WO2010147179A1 - 電気化学素子用電極及びそれを用いた電気化学素子 - Google Patents
電気化学素子用電極及びそれを用いた電気化学素子 Download PDFInfo
- Publication number
- WO2010147179A1 WO2010147179A1 PCT/JP2010/060293 JP2010060293W WO2010147179A1 WO 2010147179 A1 WO2010147179 A1 WO 2010147179A1 JP 2010060293 W JP2010060293 W JP 2010060293W WO 2010147179 A1 WO2010147179 A1 WO 2010147179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- electrode
- composite oxide
- containing composite
- electrochemical
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1228—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode that can be used for an electrochemical element such as a battery or a capacitor, and an electrochemical element using the electrode.
- LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are generally used as positive electrode active materials for high-capacity secondary batteries and capacitors that can meet this requirement.
- LiNiO 2 can be cited as a positive electrode active material that can constitute a high-capacity battery or capacitor. This is because the stability of the crystal structure in a charged state is lower than that of LiCoO 2 , and as it is, the safety of the battery or capacitor is improved. It was difficult to be satisfied. Also. LiNiO 2 was not satisfactory in terms of charge / discharge cycle life due to the low reversibility of the crystal structure.
- Patent Document 1 a lithium-containing composite oxide in which a part of Ni is substituted with an element such as Co, Al, or Mg has been proposed in order to maintain the LiNiO 2 charged crystal structure. Therefore, improvement of safety and reversibility has been attempted (for example, Patent Document 1).
- the lithium-containing composite oxide as described in Patent Document 1 has a low initial charge / discharge efficiency, so that the capacity drop tends to be large, and since the true density is low, the capacity when used as an electrode is increased. There is still room for improvement in terms of further increasing the capacity of the electrochemical element, and there is also room for improvement in terms of charge / discharge cycle characteristics of the electrochemical element.
- the present invention has been made in view of the above circumstances, and has a high capacity and high stability electrode for an electrochemical element, and the electrode for the electrochemical element, and has a high capacity, charge / discharge cycle characteristics and safety. An excellent electrochemical device is provided.
- the electrode for an electrochemical element of the present invention is The following general composition formula (1) Li 1 + x MO 2 (1)
- An electrode for an electrochemical device comprising an electrode mixture layer containing a lithium-containing composite oxide represented by In the general composition formula (1), ⁇ 0.3 ⁇ x ⁇ 0.3, and M represents an element group containing Ni, Mn, and Mg,
- M represents an element group containing Ni, Mn, and Mg
- the ratio of the number of elements of Ni, Mn and Mg contained in the element group M to the total number of elements in the element group M is a mol% unit and a, b and c, respectively, 70 ⁇ a ⁇ 97, 0 .5 ⁇ b ⁇ 30, 0.5 ⁇ c ⁇ 30, ⁇ 10 ⁇ bc ⁇ 10, and ⁇ 8 ⁇ (bc) / c ⁇ 8
- the average valence of Ni is 2.5 to 3.2
- the average valence of Mn is 3.5 to 4.2
- the electrochemical device of the present invention is an electrochemical device comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the positive electrode is the electrode for an electrochemical device according to any one of claims 1 to 14. It is characterized by being.
- capacitance and high stability can be provided, and the electrochemical element provided with the electrode for electrochemical elements is high capacity
- FIG. 1A is a schematic plan view of a lithium secondary battery according to the present invention
- FIG. 1B is a schematic cross-sectional view of FIG. 1A
- FIG. 2 is a schematic external view of a lithium secondary battery according to the present invention.
- the electrode for an electrochemical device of the present invention includes an electrode mixture layer containing, as an active material, a lithium-containing composite oxide represented by the general composition formula (1): Li 1 + x MO 2 .
- a lithium-containing composite oxide represented by the general composition formula (1): Li 1 + x MO 2 .
- ⁇ 0.3 ⁇ x ⁇ 0.3, and M represents an element group containing Ni, Mn, and Mg.
- the ratio of the number of elements of Ni, Mn, and Mg contained in the element group M to the total number of elements in the element group M is a, b, and c in mol% units, respectively, 70 ⁇ a ⁇ 97 0.5 ⁇ b ⁇ 30, 0.5 ⁇ c ⁇ 30, ⁇ 10 ⁇ bc ⁇ 10, and ⁇ 8 ⁇ (bc) / c ⁇ 8.
- the average valence of Ni is 2.5 to 3.2
- the average valence of Mn is 3.5 to 4.2
- the average valence of Mg is 1.8 to 2 .It is bivalent.
- the lithium-containing composite oxide acts as a positive electrode active material for an electrochemical element such as a lithium secondary battery.
- the electrochemical element has high capacity and high stability.
- An electrode can be provided.
- the lithium-containing composite oxide used for the electrode of the present invention contains an element group M containing at least Ni, Mn, and Mg.
- the Ni is a component that contributes to an increase in the capacity of the lithium-containing composite oxide.
- the ratio a (mol%) of the number of Ni elements is the capacity of the lithium-containing composite oxide. From the viewpoint of improvement, the content is made 70 mol% or more.
- the ratio a (mol%) of the number of Ni elements is set to 97 mol% or less.
- the ratio of Ni in the element group M is adjusted as described above so that the capacity of the lithium-containing composite oxide is 185 mAh when the driving voltage is 2.5 to 4.3 V on the basis of lithium metal. / G or more.
- the lithium-containing composite oxide has an average valence (A) of Ni of 2.5 to 3.2 measured by the method shown in the examples described later. This also makes it possible to obtain a high-capacity lithium-containing composite oxide when the drive voltage is 2.5 to 4.3 V on the basis of lithium metal.
- the lithium-containing composite oxide has a ratio b (mol%) of the number of elements of Mn and a ratio c (mol%) of the number of elements of Mg of 0. .5 ⁇ b ⁇ 30 and 0.5 ⁇ c ⁇ 30, and -10 ⁇ bc ⁇ 10 and -8 ⁇ (bc) / c ⁇ 8, and Mn and Mg are present in the crystal lattice. I am letting.
- the ratio b of Mn in all elements of the element group M is preferably 1 mol% or more, and preferably 2 mol% or more. On the other hand, it is preferably 10 mol% or less, more preferably 7 mol% or less. Further, from the viewpoint of ensuring better the effect of improving the reversibility of the layered crystal structure of the lithium-containing composite oxide by Mg, the ratio c of Mg in all elements of the element group M is 1 mol% or more. It is preferably 2 mol% or more. However, since Mg has little involvement in the charge / discharge capacity, if the amount added is large, the capacity may be reduced.
- the ratio c of Mg is preferably 15 mol% or less, more preferably 10 mol% or less, and even more preferably 7 mol% or less.
- the difference in composition ratio between Mn and Mg is desirably small, preferably ⁇ 3 ⁇ b ⁇ c ⁇ 3, and more preferably ⁇ 2 ⁇ (bc) / c ⁇ 2.
- the average valence of Mg is a value measured by the method shown in the examples described later from the viewpoint of increasing the reversibility of the crystal structure of the lithium-containing composite oxide, and is 1.8-2. .It is bivalent. Further, in the lithium-containing composite oxide, the average valence of Mn is a value measured by the method shown in the examples described later from the viewpoint of stabilizing Mg and effectively exhibiting its action. And 3.5 to 4.2.
- the element group M in the general formula (1) representing the lithium-containing composite oxide includes at least Ni, Mn, and Mg, and may be an element group composed of only these three elements.
- M may be a group of four or more elements including Co in addition to Ni, Mn and Mg.
- element group M contains Co
- the presence of Co in the crystal lattice of the lithium-containing composite oxide causes a phase of the lithium-containing composite oxide due to Li desorption and insertion during charging and discharging of the electrochemical device.
- the irreversible reaction resulting from the rearrangement can be further relaxed, and the reversibility of the crystal structure of the lithium-containing composite oxide can be enhanced.
- an electrochemical element having a long charge / discharge cycle life can be configured.
- the ratio d (mol%) of the number of elements of Co is the other elements (Ni, Mn) constituting the element group M.
- 0 ⁇ d ⁇ 30 is preferable from the viewpoint of suppressing the effect of these elements from decreasing as the amount of Mg) decreases.
- the Co ratio d is more preferably 1 mol% or more.
- the average valence of Co in the lithium-containing composite oxide is a value measured by the method shown in the examples described later from the viewpoint of ensuring the above-mentioned effect by Co, and is 2.5 to 3.2. It is preferable that
- the element group M in the general composition formula (1) representing the lithium-containing composite oxide may include elements other than Ni, Mn, Mg, and Co.
- elements other than Ni, Mn, Mg, and Co For example, Ti, Cr, Fe, Cu, Zn, It may contain elements such as Al, Ge, Sn, Ag, Ta, Nb, Mo, B, P, Zr, Ga, Ba, Sr, Ca, Si, W and S.
- the ratio of the number of elements other than Ni, Mn, Mg and Co is 15 mol% or less. It is preferably 3 mol% or less.
- Elements other than Ni, Mn, Mg, and Co in the element group M may be uniformly distributed in the lithium-containing composite oxide, or may be segregated on the particle surface or the like.
- the element group M preferably contains Zr or Ti.
- Zr and Ti may be present uniformly in the lithium-containing composite oxide, but are more preferably unevenly distributed on the surface of the lithium composite oxide. This is because the surface activity is suppressed without impairing the electrochemical characteristics of the lithium-containing composite oxide, and the effect of making the active material excellent in charge / discharge cycle characteristics, high-temperature storage characteristics and thermal stability is likely to be exhibited. is there. Therefore, the surface of the lithium-containing composite oxide may be coated with a Zr or Ti compound such as Zr oxide or Ti oxide.
- the content of the Zr or Ti is the entire lithium composite oxide particles containing Zr and Ti in order to prevent the capacity reduction of the lithium-containing composite oxide (if the particle surface has a Zr compound or Ti compound coating, 5% by mass or less, and more preferably 1% by mass or less, based on the entire particle including the part.
- 0.001% by mass or more is preferably contained.
- the true density is a large value of 4.55 to 4.95 g / cm 3 , the capacity per mass of the active material can be increased, and the reversibility is excellent.
- the true density of the lithium-containing composite oxide increases particularly when the composition is close to the stoichiometric ratio
- in the present invention in the general composition formula (1), ⁇ 0.3 ⁇ x ⁇ 0. .3.
- x is more preferably ⁇ 0.1 or more and 0.1 or less.
- the true density of the lithium-containing composite oxide can be set to a higher value of 4.6 g / cm 3 or more. .
- the integrated intensity ratio I (003 ) / I (104) can be set to 1.2 or more, the reversibility of the crystal structure is increased, and a lithium-containing composite oxide having a high capacity and excellent cycle characteristics can be obtained.
- the composition so that the Li amount ratio is smaller than the stoichiometric ratio, the amount of Li charged can be reduced during the synthesis of the lithium-containing composite oxide, so that excess Li 2 CO 3 And LiOH can be prevented from forming or remaining, the deterioration of the quality of the mixture paint caused by the excess compound is suppressed, and the preparation of the paint and the maintenance of the quality are facilitated.
- the lithium-containing composite oxide suppresses gas generation in an electrochemical device using the electrode of the present invention by moderately suppressing the activity of the surface, and in particular, a battery having a rectangular (rectangular cylindrical) outer package. In such a case, it is possible to suppress the deformation of the exterior body and improve the storability and life. From the viewpoint of securing such an effect, the lithium-containing composite oxide preferably has the following form.
- the lithium-containing composite oxide particles are mainly composed of secondary particles in which primary particles are aggregated, and the volume ratio of the primary particles having a particle size of 1 ⁇ m or less to the total volume of the primary particles is 30% by volume or less. It is preferable that it is, and it is more preferable that it is 15 volume% or less.
- the BET specific surface area of the lithium-containing composite oxide particles is preferably 0.3 m 2 / g or less, and more preferably 0.25 m 2 / g or less.
- the reaction area of the lithium-containing composite oxide is large.
- the number of active points increases. Therefore, moisture in the atmosphere; a binder used to form an electrode mixture layer of an electrode using the same as an active material; and a non-aqueous electrolyte of an electrochemical device having the electrode; and a lithium-containing composite oxide;
- the irreversible reaction is likely to occur.
- problems such as generation of gas in the electrochemical element, deformation of the outer package, and gelation of a composition (paste, slurry, etc.) containing a solvent used for forming the electrode mixture layer easily occur. Become.
- the lithium-containing composite oxide may not contain any primary particles having a particle size of 1 ⁇ m or less. That is, the ratio of primary particles having a particle size of 1 ⁇ m or less may be 0% by volume. Further, the BET specific surface area of the lithium-containing composite oxide is preferably 0.1 m 2 / g or more in order to prevent the reactivity from being lowered more than necessary. Furthermore, the number average particle diameter of the entire lithium-containing composite oxide particles composed of primary particles that are not aggregated and secondary particles formed by aggregation of the primary particles is preferably 5 to 25 ⁇ m. This is because the BET specific surface area can be controlled within an appropriate range within this range.
- the ratio of primary particles having a particle size of 1 ⁇ m or less contained in the lithium-containing composite oxide, the number average particle size of the entire lithium-containing composite oxide particles, and the number average particle size of other active materials described later can be measured by a laser diffraction / scattering particle size distribution analyzer, for example, “Microtrac HRA” manufactured by Nikkiso Co., Ltd. Values shown in the examples described later are values measured by this method.
- the BET specific surface area of the lithium-containing composite oxide is measured using a BET equation that is a theoretical equation of multimolecular layer adsorption. Specifically, it is a value obtained as a BET specific surface area using a specific surface area measuring apparatus “Macsorb HM model-1201” by a nitrogen adsorption method manufactured by Mountaintech.
- the particle shape is spherical or It is preferably substantially spherical.
- the pressing step (details will be described later) during electrode fabrication, when the lithium-containing composite oxide particles are moved by pressing to increase the density of the electrode mixture layer, the particles are moved without difficulty. , The particles will be rearranged smoothly. Therefore, since the press load can be reduced, it is possible to reduce the damage of the current collector accompanying the press, and to increase the productivity of the electrode. Further, when the lithium-containing composite oxide particles are spherical or substantially spherical, the particles can withstand a larger pressing pressure, and therefore the electrode mixture layer can be made higher in density. .
- the lithium-containing composite oxide preferably has a tap density of 2.4 g / cm 3 or more, and preferably 2.8 g / cm 3 or more, from the viewpoint of enhancing the filling property in the electrode mixture layer. More preferred. That is, the ratio of the pores is such that the tap density is high and there are no pores inside the particles, or the area ratio of minute pores of 1 ⁇ m or less measured by cross-sectional observation of the particles is 10% or less. By setting it as few particle
- the tap density of the lithium-containing composite oxide is a value determined as follows using a tap density measuring device “Powder Tester PT-S type” manufactured by Hosokawa Micron. That is, the measurement particles are ground and put into a measuring cup 100 cm 3, and tapping is performed for 180 seconds while replenishing the reduced volume appropriately. After tapping is completed, excess particles are scraped off with a blade, and then the mass of the measured particles: T (g) is measured, and the tap density is obtained by the following equation.
- the lithium-containing composite oxide When producing the lithium-containing composite oxide according to the present invention, at least Ni, Mn, and Mg (in the case where the element group M also includes Co, further Co) as a constituent element, and Li-containing It is preferable to employ a method of calcining the compound, and the lithium-containing composite oxide can be synthesized relatively easily with high purity by such a method. That is, a composite compound containing at least Ni, Mn, and Mg (and Co) is manufactured in advance, and this is baked together with a Li-containing compound. Thus, in the oxide formation reaction, Ni, Mn, and Mg (further Co) is uniformly distributed, and the lithium-containing composite oxide is synthesized with higher purity.
- the method for producing a lithium-containing composite oxide according to the present invention is not limited to the above method, but the physical properties of the lithium composite oxide to be produced, that is, the stability of the structure, depending on the production process. And reversibility of charge / discharge, true density, etc. are presumed to change greatly.
- a composite compound containing at least Ni, Mn and Mg (and Co) for example, a coprecipitation compound containing Ni, Mn and Mg (and Co), a hydrothermally synthesized compound, and a mechanically synthesized compound are used. And compounds obtained by heat-treating them, such as Ni 0.7 Mn 0.1 Mg 0.2 (OH) 2 , Ni 0.9 Co 0.05 Mn 0.03 Mg 0.02
- An oxide or hydroxide of Ni, Mn, and Mg, or an oxide or hydroxide of Ni, Mn, Mg, and Co, such as (OH) 2 is preferable.
- the coprecipitated compound can be prepared by adding an aqueous solution in which sulfates, nitrates, and the like of constituent elements such as Ni, Mn, Mg, and Co are dissolved at a predetermined ratio to an alkali hydroxide aqueous solution and reacting them. It can be obtained as a coprecipitated hydroxide of elements.
- ammonia water whose pH is adjusted to a range of about 10 to 13 with alkali hydroxide may be used. That is, the temperature of the ammonia water is kept constant in the range of about 40 to 60 ° C., and an aqueous alkaline solution is added so that the pH of the ammonia water is kept constant within the above range, while the sulfate, nitrate, etc. are added to the ammonia water. An aqueous solution in which is dissolved is gradually added to precipitate the coprecipitated compound. As a result, the constituent elements of the coprecipitated compound are uniformly distributed, and the average valences of Ni, Mn, and Mg (and Co) of the synthesized lithium-containing composite oxide can be easily controlled within the range of the present invention.
- Part of the element group M includes elements other than Ni, Mn, Mg, and Co, such as Ti, Cr, Fe, Cu, Zn, Al, Ge, Sn, Ag, Ta, Nb, Mo, B, P,
- the lithium-containing composite oxidation containing at least one element selected from the group consisting of Zr, Ga, Ba, Sr, Ca, Si, W and S (hereinafter collectively referred to as “element M ′”).
- element M ′ When manufacturing a product, it can be manufactured by mixing and firing a composite compound containing at least Ni, Mn, and Mg (and also Co), a Li-containing compound, and an element M′-containing compound.
- a composite compound containing at least Ni, Mn, and Mg (and further Co) and further an element M ′ it is preferable to use a composite compound containing at least Ni, Mn, and Mg (and further Co) and further an element M ′.
- the amount ratio of Ni, Mn, Mg, and M ′ and the amount ratio of Ni, Mn, Mg, Co, and M ′ in the composite compound are appropriately adjusted according to the composition of the target lithium-containing composite oxide. That's fine.
- lithium hydroxide monohydrate lithium nitrate, lithium carbonate, lithium acetate, odor Lithium chloride, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide, etc.
- carbon dioxide Lithium hydroxide monohydrate is preferred in that it does not generate gases that adversely affect the environment, such as nitrogen oxides and sulfur oxides.
- the lithium-containing composite oxide in order to produce the lithium-containing composite oxide, first, a composite compound containing at least Ni, Mn, and Mg (and a composite compound containing Co and element M ′), a Li-containing compound, and The element M′-containing compound used in accordance with the ratio is mixed at a ratio approximately corresponding to the composition of the target lithium-containing composite oxide.
- the lithium-containing composite oxide can be obtained by firing the obtained raw material mixture at, for example, 600 to 1000 ° C. for 1 to 24 hours.
- examples of the method for producing a lithium-containing composite oxide containing Zr or Ti include the following methods.
- an aqueous solution in which sulfates, nitrates, and the like of constituent elements such as Ni, Mn, Mg, and Co are dissolved at a predetermined ratio is added to an alkali hydroxide aqueous solution and reacted to obtain a coprecipitated hydroxide of these constituent elements.
- a lithium salt and a compound such as ZrO 2 or TiO 2 are added to the coprecipitated hydroxide and sufficiently mixed. Thereafter, the mixture is baked at a predetermined temperature and reacted to obtain a lithium-containing composite oxide.
- ammonia water having a pH adjusted to about 10 to 13 with alkali hydroxide as described above may be used.
- the lithium-containing composite oxide and the Zr compound or Ti compound are mixed, and the mixture is fired at a temperature of about 100 to 1000 ° C. The method of doing can be illustrated.
- the material mixture is once heated to a temperature lower than the firing temperature (for example, 250 to 850 ° C.), and preheated by holding at that temperature, Thereafter, it is preferable to raise the temperature to the firing temperature to advance the reaction, and it is preferable to keep the oxygen concentration in the firing environment constant.
- a temperature lower than the firing temperature for example, 250 to 850 ° C.
- a composite compound containing at least Ni, Mn, and Mg Lithium-containing composite oxidation produced by stepwise reaction between (compound compound containing Co and element M ′), Li-containing compound and element M′-containing compound used as necessary This is to improve the homogeneity of the product and to stably grow the produced lithium-containing composite oxide. That is, when the temperature is raised to the firing temperature at once, or when the oxygen concentration in the firing environment is lowered during firing, a composite compound containing at least Ni, Mn and Mg (further, Co or element M ′ is added). Composition), Li-containing compound, and element M′-containing compound used as necessary, the reaction is likely to be non-uniform, and the generated lithium-containing composite oxide tends to release Li. Uniformity is easily impaired.
- the time for the preheating is not particularly limited, but is usually about 0.5 to 30 hours.
- the atmosphere at the time of firing the raw material mixture is a gas atmosphere containing oxygen.
- a gas atmosphere containing oxygen for example, an air atmosphere, a mixed gas atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere can be used.
- the oxygen concentration (volume basis) in the atmosphere during firing is preferably 15% or more, and more preferably 18% or more.
- the flow rate of the gas containing oxygen at the time of firing the raw material mixture is preferably 2 dm 3 / min or more per 100 g of the raw material mixture. If the gas flow rate is too small, that is, if the gas flow rate is too slow, the homogeneity of the composition of the lithium-containing composite oxide may be impaired.
- the gas flow rate during firing of the raw material mixture is preferably 5 dm 3 / min or less per 100 g of the raw material mixture. Thereby, the gas containing oxygen can be used efficiently.
- the dry-mixed mixture may be used as it is.
- the raw material mixture is dispersed in a solvent such as ethanol to form a slurry and mixed for about 30 to 60 minutes using a planetary ball mill or the like. It is preferable to use a dried product. By such a method, the homogeneity of the produced lithium-containing composite oxide can be further enhanced.
- the electrode of the present invention includes an electrode mixture layer containing the lithium-containing composite oxide according to the present invention as an active material, but the electrode mixture layer may contain other active materials.
- Examples of active materials other than the lithium-containing composite oxide according to the present invention include lithium cobalt oxides such as LiCoO 2 and LiCo 1-x Ni x O 2 ; LiMnO 2 , Li 2 MnO 3 , LiMn 2 O 4 Lithium manganese oxides such as LiNiO 2 , lithium nickel oxides such as LiNi 1-xy Co x Al y O 2 ; and lithium-containing composites having a spinel structure such as Li 4/3 Ti 5/3 O 4 An oxide; a lithium-containing composite oxide having an olivine structure such as LiFePO 4 ; an oxide in which the above oxide is a basic composition and its constituent elements are substituted with various elements; and the like can be used.
- lithium cobalt oxides such as LiCoO 2 and LiCo 1-x Ni x O 2
- LiMnO 2 , Li 2 MnO 3 , LiMn 2 O 4 Lithium manganese oxides such as LiNiO 2 , lithium nickel oxides such as LiNi 1-x
- an active material having a layered structure such as LiCoO 2 having a higher operating voltage than that of the lithium-containing composite oxide according to the present invention, or an active material having a spinel structure such as LiMn 2 O 4 is used.
- the ratio of the other active materials is preferably 1% or more of the entire active material by mass ratio, and more preferably 5% or more. desirable.
- the ratio of the other active material is preferably 30% or less, more preferably 20% or less of the entire active material in terms of mass ratio.
- lithium cobalt oxide in addition to LiCoO 2 exemplified above, part of Co in LiCoO 2 is Ti, Cr, Fe, Ni, Mn, Cu, Zn, Al, Ge, Sn.
- the spinel-structured lithium-containing composite oxide includes LiMn 2 O 4 and Li 4/3 Ti 5/3 O 4 exemplified above, as well as one of Mn of LiMn 2 O 4.
- These spinel-structured lithium-containing composite oxides are excellent in safety during overcharge because the amount of lithium that can be extracted is half that of lithium-containing oxides such as lithium cobaltate and lithium nickelate. This is because the safety of the electrochemical device can be further enhanced.
- lithium-containing composite oxide according to the present invention When the lithium-containing composite oxide according to the present invention is used in combination with another active material, these may be used simply by mixing them, but these particles are used as composite particles integrated by granulation or the like. In this case, the packing density of the active material in the electrode mixture layer is improved, and the contact between the active material particles can be made more reliable. Therefore, the capacity
- the mixture layer may be formed by a process of dry-mixing them together and further forming a paint using a biaxial kneader together with a binder or the like.
- the lithium cobalt oxide is present on the surface of the lithium-containing composite oxide, so that it elutes from the composite particle. Since the Mn and Co thus deposited quickly form a film on the surface of the composite particles, the composite particles are chemically stabilized. As a result, the decomposition of the non-aqueous electrolyte in the electrochemical element due to the composite particles can be suppressed, and further elution of Mn can be suppressed, so that an electrochemical element with more excellent storability and charge / discharge cycle characteristics is configured. Will be able to.
- the number average particle diameter of one of the lithium-containing composite oxide according to the present invention and the other active material is 1 ⁇ 2 or less of the other number average particle diameter.
- composite particles are formed by combining particles having a large number average particle diameter (hereinafter referred to as “large particles”) and particles having a small number average particle diameter (hereinafter referred to as “small particles”).
- large particles particles having a large number average particle diameter
- small particles can be easily dispersed and fixed around the large particles, and composite particles having a more uniform mixing ratio can be formed. Therefore, non-uniform reaction in the electrode can be suppressed, and the charge / discharge cycle characteristics and safety of the electrochemical element can be further enhanced.
- the number average particle size of the large particles is preferably 10 to 30 ⁇ m, and the number average particle size of the small particles is It is preferably 1 to 15 ⁇ m.
- the composite particles of the lithium-containing composite oxide and the other active material according to the present invention include, for example, the above-described lithium-containing composite oxide particles and other active material particles in a common uniaxial kneader or biaxial kneader. It is possible to obtain a composite by mixing using various kneaders such as a machine, sliding the particles together and applying a share.
- the kneading is preferably a continuous kneading method in which raw materials are continuously fed in consideration of the productivity of composite particles.
- each active material particle it is preferable to further add a binder to each active material particle. Thereby, the shape of the composite particle formed can be kept strong. Further, it is more preferable to add a conductive additive and knead. Thereby, the electroconductivity between active material particles can further be improved.
- thermoplastic resin or thermosetting resin can be used as long as it is chemically stable in the electrochemical element.
- PE polyethylene
- PP polypropylene
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- PHFP polyhexafluoropropylene
- SBR styrene butadiene rubber
- tetrafluoroethylene-hexafluoroethylene Polymer tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoro Ethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene
- the amount of binder added when forming the composite particles is preferably as small as possible so that the composite particles can be stabilized. For example, it is preferably 0.03 to 2 parts by mass with respect to 100 parts by mass of the total active material. .
- any material that is chemically stable in the electrochemical element may be used.
- graphite such as natural graphite and artificial graphite, acetylene black, ketjen black (trade name), carbon black such as channel black, furnace black, lamp black and thermal black
- conductive fiber such as carbon fiber and metal fiber
- aluminum Metallic powders such as powders
- Fluorinated carbon Zinc oxide
- Conductive whiskers made of potassium titanate Conductive metal oxides such as titanium oxide
- Organic conductive materials such as polyphenylene derivatives
- One species may be used alone, or two or more species may be used in combination.
- highly conductive graphite and carbon black excellent in liquid absorption are preferable.
- the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
- the amount of the conductive assistant added is only required to ensure good conductivity and liquid absorbency, for example, 0.1 to 2 parts by mass with respect to 100 parts by mass of the total active material. It is preferable.
- the porosity of the composite particles is preferably 5 to 15%. This is because the composite particles having such a porosity have appropriate contact with the non-aqueous electrolyte (non-aqueous electrolyte solution) and penetration of the non-aqueous electrolyte into the composite particles.
- the shape of the composite particles is preferably spherical or substantially spherical, similarly to the lithium-containing composite oxide according to the present invention. Thereby, the density of the electrode mixture layer can be further increased.
- the electrode of the present invention can be produced, for example, by forming an electrode mixture layer containing the lithium-containing composite oxide or the composite particles as an active material on one side or both sides of a current collector.
- the electrode mixture layer is prepared by, for example, preparing a paste-like or slurry-like electrode mixture-containing composition by adding the lithium-containing composite oxide or the composite particles, a binder, and a conductive additive to a solvent. And it can form by apply
- Examples of the coating method for applying the electrode mixture-containing composition to the surface of the current collector include, for example, a substrate pulling method using a doctor blade; a coater method using a die coater, comma coater, knife coater, etc .; screen printing , Printing methods such as letterpress printing, and the like can be employed.
- the binder and conductive aid that can be used for the preparation of the electrode mixture-containing composition the same binders and various conductive aids exemplified as those that can be used for forming the composite particles described above are used. it can.
- the total active material including the lithium-containing composite oxide is 80 to 99% by mass, and the binder (including those contained in the composite particles) is 0.5 to 10%. It is preferable that the content of the conductive auxiliary agent (including those contained in the composite particles) is 0.5 to 10% by mass.
- the thickness of the electrode mixture layer is preferably 15 to 200 ⁇ m per side of the current collector.
- the density of the electrode mixture layer is preferably 3.1 g / cm 3 or more, and more preferably 3.52 g / cm 3 or more.
- the density of the electrode mixture layer after the press treatment is 4. It is preferably 0 g / cm 3 or less.
- roll pressing can be performed at a linear pressure of about 1 to 100 kN / cm, and by such treatment, an electrode mixture layer having the above density can be obtained.
- the density of the electrode mixture layer referred to in the present specification is a value measured by the following method.
- the electrode is cut into a predetermined area, and its mass is measured using an electronic balance having a minimum scale of 0.1 mg, and the mass of the electrode mixture layer is calculated by subtracting the mass of the current collector.
- the total thickness of the electrode was measured at 10 points with a micrometer having a minimum scale of 1 ⁇ m, and the volume of the electrode mixture layer was calculated from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. To do.
- the density of the electrode mixture layer is calculated by dividing the mass of the electrode mixture layer by the volume.
- the material of the current collector of the electrode is not particularly limited as long as it is a chemically stable electron conductor in the constructed electrochemical device.
- a composite material in which a carbon layer or a titanium layer is formed on the surface of aluminum, aluminum alloy, or stainless steel can be used.
- aluminum or an aluminum alloy is particularly preferable. This is because they are lightweight and have high electron conductivity.
- the current collector for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a fibrous body, or the like made of the above material is used.
- the surface of the current collector can be roughened by surface treatment.
- the thickness of the current collector is not particularly limited, but is usually 1 to 500 ⁇ m.
- the electrode of the present invention is not limited to those manufactured by the above manufacturing method, and may be manufactured by other manufacturing methods.
- the composite particles when using the composite particles as an active material, without using the electrode mixture-containing composition, the composite particles are directly fixed on the surface of the current collector to form an electrode mixture layer.
- the obtained electrode may be sufficient.
- a lead body for electrical connection with other members in the electrochemical element may be formed on the electrode of the present invention according to a conventional method, if necessary.
- the electrochemical element of the present invention includes the electrode for an electrochemical element according to Embodiment 1, a negative electrode, a separator, and a nonaqueous electrolyte as a positive electrode.
- the electrochemical device of the present invention includes the electrode for an electrochemical device of Embodiment 1 as a positive electrode, the electrochemical device having high capacity, excellent charge / discharge cycle characteristics and high safety can be obtained. it can.
- the electrochemical element of the present invention is not particularly limited, and includes lithium primary batteries, supercapacitors, and the like in addition to lithium secondary batteries using a non-aqueous electrolyte.
- a configuration of a lithium secondary battery which is a main application, will be described as an example.
- the negative electrode has, for example, a structure having a negative electrode mixture layer made of a negative electrode mixture containing a negative electrode active material and a binder and, if necessary, a conductive additive, on one or both sides of the current collector. Can be used.
- the negative electrode active material examples include occlusion of Li ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
- Li ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
- MCMB mesocarbon microbeads
- One or a mixture of two or more releasable carbon-based materials is used.
- simple substances such as Si, Sn, Ge, Bi, Sb, In and alloys thereof; lithium-containing nitrides; or compounds that can be charged and discharged at a low voltage close to lithium metal such as oxides such as Li 4 Ti 5 O 12 ;
- lithium metal or lithium / aluminum alloy can also be used as the negative electrode active material.
- the negative electrode was formed into a molded body (negative electrode mixture layer) using a negative electrode current collector as a core material and a negative electrode mixture obtained by appropriately adding a conductive additive or a binder as necessary to these negative electrode active materials. Or those obtained by laminating the above-mentioned various alloys or lithium metal foils alone or on the surface of the negative electrode current collector.
- binder and the conductive aid those similar to the various binders and various conductive aids exemplified in Embodiment 1 can be used.
- the material of the negative electrode current collector is not particularly limited as long as it is an electron conductor that is chemically stable in the constructed battery.
- a composite material in which a carbon layer or a titanium layer is formed on the surface of copper, copper alloy, or stainless steel can be used.
- copper or a copper alloy is particularly preferable. This is because they are not alloyed with lithium and have high electron conductivity.
- the negative electrode current collector for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a fibrous body, or the like made of the above materials can be used.
- the surface of the negative electrode current collector can be roughened by surface treatment.
- the thickness of the negative electrode current collector is not particularly limited, but is usually 1 to 500 ⁇ m.
- the negative electrode includes, for example, a negative electrode mixture-containing composition in the form of a paste or slurry in which a negative electrode mixture containing a negative electrode active material and a binder and, if necessary, a conductive additive is dispersed in a solvent. It can obtain by apply
- the above binder may be used by dissolving in a solvent.
- the said negative electrode is not limited to what was obtained by the said manufacturing method, The thing manufactured by the other method may be used.
- the thickness of the negative electrode mixture layer is preferably 10 to 300 ⁇ m per side of the negative electrode current collector.
- the separator is preferably a porous film composed of polyolefin such as polyethylene, polypropylene, ethylene-propylene copolymer; polyester such as polyethylene terephthalate or copolymer polyester;
- the separator preferably has a property of closing the pores at 100 to 140 ° C., that is, a shutdown function. Therefore, as a material of the separator, a melting point, that is, a thermoplastic resin having a melting temperature of 100 to 140 ° C. measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K 7121. It is preferable to use a resin.
- DSC differential scanning calorimeter
- a single layer porous film mainly composed of polyethylene or a laminated porous film in which 2 to 5 layers of polyethylene and polypropylene are laminated can be used as the separator.
- a resin having a melting point of 100 to 140 ° C. such as polyethylene and a resin having a melting point higher than that of polyethylene such as polypropylene are mixed or laminated
- polyethylene is 30% by mass or more as a resin constituting the porous film. Desirably, it is more desirable that it is 50 mass% or more.
- a resin porous membrane for example, a porous membrane composed of the above-exemplified thermoplastic resin used in a conventionally known lithium secondary battery or the like, that is, solvent extraction method, dry type or An ion-permeable porous membrane produced by a wet stretching method or the like can be used.
- the average pore size of the separator is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
- the air permeability of the separator indicated by the Gurley value is preferably 10 to 500 seconds.
- the Gurley value is measured by a method according to JIS P 8117, and is indicated by the number of seconds that 100 mL of air permeates the membrane under a pressure of 0.879 g / mm 2 . If the air permeability is too large, the ion permeability tends to be small, whereas if the air permeability is too small, the strength of the separator tends to be small.
- the strength of the separator is preferably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength of the separator is too small, for example, when lithium dendrite crystals are generated, there is a possibility that a short circuit may occur due to the piercing of the separator.
- the lithium-containing composite oxide according to the present invention is excellent in thermal stability, so that its safety is maintained. Can do.
- non-aqueous electrolyte a solution (non-aqueous electrolyte solution) in which an electrolyte salt is dissolved in a solvent
- the solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ⁇ -butyrolactone, 1, 2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives , Sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofur
- amine imide organic solvents sulfur-containing or fluorine-containing organic solvents, and the like can be used.
- a mixed solvent of EC, MEC, and DEC is preferable.
- lithium perchlorate As the electrolyte salt related to the non-aqueous electrolyte, lithium perchlorate; organoboron lithium salt; salt of fluorine-containing compound such as trifluoromethanesulfonate; or imide salt is preferably used.
- electrolyte salt for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 5), LiN (Rf 3 OSO 2 ) 2 , Rf represents a fluoroalkyl group. ], LiB (C 2 O 4 ) 2 [lithium bisoxalate borate (LiBOB)], and the like. These may be used alone or in combination of two or more thereof. Among these, LiPF 6 and LiBF 4 are more preferable because of good charge / discharge characteristics.
- the concentration of the electrolyte salt in the solvent is not particularly limited, but is usually 0.5 to 1.7 mol / L.
- the lithium secondary battery of the present embodiment includes, for example, an electrode laminate in which the electrode (positive electrode) of the present invention and the negative electrode are laminated via the separator, and an electrode winding obtained by winding the electrode in a spiral shape.
- a body is prepared, and such an electrode body and the non-aqueous electrolyte are enclosed in an exterior body according to a conventional method.
- the outer can can be made of steel or aluminum.
- Example 1 Synthesis of lithium-containing composite oxide> Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, manganese sulfate and magnesium sulfate were each added to 3.95 mol / dm 3.
- the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Mn and Mg in a molar ratio of 94: 3: 3. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. .
- the mixture is placed in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, and further heated to 700 ° C. to increase oxygen
- the lithium-containing composite oxide was synthesized by firing for 12 hours in an atmosphere.
- the obtained lithium-containing composite oxide was pulverized into a powder in a mortar and then stored in a desiccator.
- composition of the lithium-containing composite oxide powder was measured with an atomic absorption spectrometer, it was found to be a composition represented by Li 1.02 Ni 0.94 Mn 0.03 Mg 0.03 O 2. did.
- X-ray absorption spectroscopy was performed at the SR Center of Ritsumeikan University using the BL4 beam port of the superconducting small radiation source “Aurora” manufactured by Sumitomo Electric Industries, Ltd. Analysis was carried out. The analysis of the obtained data was performed using analysis software “REX” manufactured by Rigaku Electric Co., Ltd. based on the literature [Journal of the Electrochemical Society, 146, p2799-2809 (1999)].
- NiO and LiNi 0.5 Mn 1.5 O 4 both containing Ni with an average valence of 2 are used as standard samples.
- a standard sample of a compound containing Ni having an average valence of 3 and LiNi 0.82 Co 0.15 Al 0.03 O 2 State analysis was performed, and a regression line representing the relationship between the Ni K absorption edge position of each standard sample and the valence of Ni was created. From the position of the K absorption edge of Ni of the lithium-containing composite oxide and the regression line, the average valence of Ni was found to be 3.02.
- MnO 2 Li 2 MnO 3 and LiNi 0.5 Mn 1.5 O 4 (all having an average valence of 4 as standard samples) are used.
- Standard sample of a compound containing valence Mn LiMn 2 O 4 (standard sample of a compound containing Mn having an average valence of 3.5), LiMnO 2 and Mn 2 O 3 (all having an average valence)
- a standard sample of a compound containing trivalent Mn) and MnO (a standard sample of a compound containing Mn having an average valence of 2) were used to conduct a state analysis similar to that of the lithium-containing composite oxide, and each standard A regression line representing the relationship between the Mn K absorption edge position of the sample and the valence of Mn was prepared. From the K absorption edge position of Mn of the lithium-containing composite oxide and the regression line, the average valence of Mn was found to be 4.02.
- MgO and MgAl 2 O 4 both standard samples of compounds containing Mg having an average valence of 2
- MgO and MgAl 2 O 4 both standard samples of compounds containing Mg having an average valence of 2
- Mg standard sample of Mg having an average valence of 0
- K absorption edge position of Mg and the valence of Mg of each standard sample is determined.
- a regression line was created. From the Mg K absorption edge position of the lithium-containing composite oxide and the regression line, the average valence of Mg was found to be 2.01.
- the lithium-containing composite oxide powder had a BET specific surface area of 0.24 m 2 / g and a tap density of 2.75 g / cm 3 . Furthermore, according to “JIS R1622 General rules for sample size measurement for fine ceramic raw material particle size distribution”, the lithium-containing composite oxide powder is pulverized until it becomes primary particles, and laser diffraction scattering type particle size distribution measurement made by Nikkiso Co., Ltd. When the particle size distribution was measured by the apparatus “Microtrac HRA”, the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles was 10% by volume. However, in order to reduce the error, the number of times of crushing was 20 times.
- the X-ray-diffraction measurement of the said lithium containing complex oxide was performed. Specifically, X-ray diffraction is measured with CuK ⁇ rays using an Rigaku X-ray diffraction measuring device “RINT-2500V / PC”, and analysis of the obtained data is performed by Rigaku's analysis software “JADE”. Was used.
- the integrated intensities of the diffraction lines at the (003) plane and the (104) plane are I (003) and I (104) , respectively, and I ( 003) and I (104) are respectively And the ratio value I (003) / I (104) was obtained by calculation.
- NMP N-methyl-2-pyrrolidone
- the positive electrode mixture-containing paste is applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m, and then vacuum-dried at 120 ° C. for 12 hours to form a positive electrode mixture layer on both sides of the aluminum foil. Formed. Thereafter, press treatment was performed to adjust the thickness and density of the positive electrode mixture layer, and a nickel lead body was welded to the exposed portion of the aluminum foil to produce a strip-like positive electrode having a length of 375 mm and a width of 43 mm. .
- the positive electrode mixture layer in the obtained positive electrode had a thickness of 55 ⁇ m per one side, and the density of the positive electrode mixture layer was 3.5 g / cm 3 .
- the negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m, and then vacuum-dried at 120 ° C. for 12 hours to form a negative electrode mixture layer on both sides of the copper foil. Formed. Thereafter, press treatment was performed to adjust the thickness and density of the negative electrode mixture layer, and a nickel lead body was welded to the exposed portion of the copper foil to produce a strip-shaped negative electrode having a length of 380 mm and a width of 44 mm. .
- the negative electrode mixture layer in the obtained negative electrode had a thickness of 65 ⁇ m per one surface.
- a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of EC, MEC, and DEC in a volume ratio of 2: 3: 1.
- the strip-shaped positive electrode is overlapped with the strip-shaped negative electrode through a microporous polyethylene separator (porosity: 41%) having a thickness of 16 ⁇ m, wound in a spiral shape, and then added so as to become flat.
- the electrode winding body was pressed into a flat winding structure, and the electrode winding body was fixed with a polypropylene insulating tape.
- the electrode winding body is inserted into a rectangular battery case made of aluminum alloy having an outer dimension of 4.0 mm in thickness, 34 mm in width, and 50 mm in height, and the lead body is welded. The plate was welded to the open end of the battery case.
- the design electric capacity of the lithium secondary battery was 900 mAh.
- FIG. 1A is a schematic plan view of the lithium secondary battery
- FIG. 1B is a schematic cross-sectional view of FIG. 1A
- FIG. 1 and the negative electrode 2 are spirally wound through a separator 3 and then pressed so as to be flattened and accommodated in a rectangular battery case 4 together with a non-aqueous electrolyte as a flat electrode wound body 6 Has been.
- FIG. 1B in order to avoid complication, the metal foil, the non-aqueous electrolyte, and the like as the current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
- the battery case 4 is made of an aluminum alloy and constitutes a battery outer body.
- the battery case 4 also serves as a positive electrode terminal.
- the insulator 5 which consists of a polyethylene sheet is arrange
- the connected positive electrode lead body 7 and negative electrode lead body 8 are drawn out.
- a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11.
- a stainless steel lead plate 13 is attached via
- the cover plate 9 is inserted into the opening of the battery case 4, and the joint of the two is welded, whereby the opening of the battery case 4 is sealed and the inside of the battery is sealed.
- a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like.
- the battery is sealed by welding. Therefore, in the batteries of FIGS. 1A, 1B and 2, the nonaqueous electrolyte inlet 14 is actually a nonaqueous electrolyte inlet and a sealing member.
- the nonaqueous electrolyte injection port 14 is used. Shown as inlet 14.
- the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
- the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, By connecting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, the terminal 11 functions as a negative electrode terminal.
- FIG. 2 is a schematic external view schematically showing the external appearance of the battery shown in FIG. 1A.
- FIG. 2 is shown for the purpose of showing that the battery is a square battery.
- the battery is schematically shown, and only specific ones of the constituent members of the battery are shown.
- the inner peripheral portion of the electrode body is not cross-sectional.
- Example 2 Nickel sulfate, manganese sulfate and magnesium sulfate, respectively, 3.87mol / dm 3, 0.21mol / dm 3, except for using a mixed aqueous solution containing a concentration of 0.13 mol / dm 3, similarly as in Example 1 Thus, a coprecipitation compound was synthesized. And the hydroxide which contains Ni, Mn, and Mg by the molar ratio of 92: 5: 3 was obtained like Example 1 except having used the said coprecipitation compound. A lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used.
- This lithium-containing composite oxide had a BET specific surface area of 0.24 m 2 / g and a tap density of 2.7 g / cm 3 .
- the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 12% by volume.
- the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
- the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.45 g / cm 3 .
- Example 3 Nickel sulfate, manganese sulfate, magnesium sulfate and aluminum sulfate, respectively, 3.96mol / dm 3, 0.12mol / dm 3, 0.08mol / dm 3, a mixed aqueous solution containing a concentration of 0.04 mol / dm 3
- a coprecipitated compound was synthesized in the same manner as in Example 1 except that it was used.
- the hydroxide which contains Ni, Mn, Mg, and Al by the molar ratio of 94: 3: 2: 1 was obtained like Example 1 except having used the said coprecipitation compound.
- a lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used.
- This lithium-containing composite oxide had a BET specific surface area of 0.22 m 2 / g and a tap density of 2.82 g / cm 3 .
- the ratio of particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 8% by volume.
- the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
- the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.50 g / cm 3 .
- Example 4 Nickel sulfate, cobalt sulfate, manganese sulfate and magnesium sulfate, respectively, 3.87mol / dm 3, 0.25mol / dm 3, 0.04mol / dm 3, a mixed aqueous solution containing a concentration of 0.04 mol / dm 3
- a coprecipitated compound was synthesized in the same manner as in Example 1 except that it was used.
- the hydroxide which contains Ni, Co, Mn, and Mg by the molar ratio of 92: 6: 1: 1 was obtained like Example 1 except having used the said coprecipitation compound.
- a lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used.
- This lithium-containing composite oxide had a BET specific surface area of 0.18 m 2 / g and a tap density of 2.84 g / cm 3 .
- the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
- the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.55 g / cm 3 .
- Example 5 Ni, Co, Mn, and Mg were mixed at a molar ratio of 90: 5: 3: 2 in the same manner as in Example 4 except that the concentration of the raw material compound in the mixed aqueous solution used for the synthesis of the coprecipitation compound was changed.
- a lithium-containing composite oxide was synthesized in the same manner as in Example 4 except that the contained hydroxide was synthesized and this hydroxide was used.
- This lithium-containing composite oxide had a BET specific surface area of 0.20 m 2 / g and a tap density of 2.78 g / cm 3 .
- the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 8% by volume.
- the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
- the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.54 g / cm 3 .
- Example 6 Nickel sulfate, manganese sulfate and magnesium sulfate, respectively, 3.87mol / dm 3, 0.21mol / dm 3, except for using a mixed aqueous solution containing a concentration of 0.13 mol / dm 3, similarly as in Example 1 Thus, a coprecipitation compound was synthesized. And the hydroxide which contains Ni, Mn, and Mg by the molar ratio of 92: 5: 3 was obtained like Example 1 except having used the said coprecipitation compound. A lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of the hydroxide and 0.190 mol of LiOH.H 2 O were used.
- This lithium-containing composite oxide had a BET specific surface area of 0.22 m 2 / g and a tap density of 2.5 g / cm 3 .
- the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 12% by volume.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that the lithium-containing composite oxide was used.
- Example 7 Ni, Co, Mn, and Mg were mixed at a molar ratio of 90: 5: 3: 2 in the same manner as in Example 4 except that the concentration of the raw material compound in the mixed aqueous solution used for the synthesis of the coprecipitation compound was changed.
- a lithium-containing composite oxide was synthesized in the same manner as in Example 4 except that the contained hydroxide was synthesized and this hydroxide was used.
- This lithium-containing composite oxide had a BET specific surface area of 0.20 m 2 / g and a tap density of 2.75 g / cm 3 .
- the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 8% by volume.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that the lithium-containing composite oxide was used.
- Example 8 99.86 parts by mass (0.196 mol) of a hydroxide containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 synthesized in the same manner as in Example 5, and ZrO 2 powder 0
- a lithium-containing composite oxide containing Zr was synthesized in the same manner as in Example 1.
- the content of Zr in this lithium-containing composite oxide was 0.10% by mass.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
- Example 9 TiO 2 powder was used instead of ZrO 2 powder, and the ratio of hydroxide and TiO 2 powder containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 was 99.91 respectively.
- a lithium-containing composite oxide containing Ti was synthesized in the same manner as in Example 8 except that the amount was 0.09 parts by mass. The content of Ti in the lithium-containing composite oxide was 0.05% by mass.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
- Example 10 (Example 10) In Example 8, instead of dry mixing ZrO 2 powder with a hydroxide containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 and lithium hydroxide, the above hydroxide ZrO 2 powder was added to the reaction solution after precipitation and stirred, to synthesize a complex in which the surface of the hydroxide was coated with ZrO 2 .
- the ratios of the hydroxide and ZrO 2 powder were 99.86 parts by mass and 0.14 parts by mass, respectively.
- Zr was made in the same manner as in Example 8 except that 0.204 mol of LiOH.H 2 O and this complex were mixed and fired with respect to 0.196 mol of the hydroxide contained in this complex.
- a lithium-containing composite oxide containing was synthesized. The content of Zr in this lithium-containing composite oxide was 0.10% by mass.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used
- Example 11 TiO 2 powder was used instead of ZrO 2 powder, and the ratio of hydroxide and TiO 2 powder containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 was 99.91 respectively.
- a lithium-containing composite oxide containing Ti was synthesized in the same manner as in Example 10 except that the amount was 0.09 parts by mass. The content of Ti in the lithium-containing composite oxide was 0.05% by mass.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
- Example 12 After 99.86 parts by mass of the lithium-containing composite oxide synthesized in Example 5 and 0.14 parts by mass of ZrO 2 powder were dry-mixed, the surface was baked at 700 ° C. for 12 hours in an oxygen atmosphere, so that the surface was Zr oxidized. Lithium-containing composite oxide coated with a product was synthesized. The ratio of Zr in the whole lithium-containing composite oxide particles was 0.10% by mass. A positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
- Example 13 A lithium-containing composite oxide whose surface was coated with a Ti oxide was synthesized in the same manner as in Example 12 except that 0.09 part by mass of TiO 2 powder was used instead of 0.14 part by mass of ZrO 2 powder. The ratio of Ti in the whole lithium-containing composite oxide particles was 0.05% by mass. A positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
- Example 14 90 parts by mass of lithium-containing composite oxide (number average particle size: 20 ⁇ m) synthesized in Example 5 and Li 1.02 Mn 1.95 Al 0.02 Mg 0.02 Ti 0.01 O 4 (number average particles) (Diameter: 5 ⁇ m) After 10 parts by mass of dry mixing, 10 parts by mass of NMP solution containing PVDF as a binder at a concentration of 10% by mass was added and mixed to obtain composite particles.
- a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this composite particle was used in place of the lithium-containing composite oxide.
- Example 15 instead of Li 1.02 Mn 1.95 Al 0.02 Mg 0.02 Ti 0.01 O 4 , LiCo 0.975 Al 0.01 Mg 0.01 Ti 0.005 O 2 (number average particle diameter: Composite particles were prepared in the same manner as in Example 14 except that 6 ⁇ m) was used, and a positive electrode and a lithium secondary battery were produced in the same manner as in Example 14 except that this composite particle was used.
- Example 16 instead of Li 1.02 Mn 1.95 Al 0.02 Mg 0.02 Ti 0.01 O 4 , LiMn 0.315 Co 0.33 Ni 0.33 Al 0.01 Mg 0.01 Ti 0.005 A composite particle was prepared in the same manner as in Example 14 except that O 2 (number average particle diameter: 6 ⁇ m) was used, and the positive electrode and lithium secondary were prepared in the same manner as in Example 14 except that this composite particle was used. A battery was produced.
- Example 1 A coprecipitated compound was synthesized in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate and cobalt sulfate at concentrations of 3.79 mol / dm 3 and 0.42 mol / dm 3 was used. A hydroxide containing Ni and Co at a molar ratio of 90:10 was obtained in the same manner as in Example 1 except that the coprecipitation compound was used. A lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used. Further, a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
- Example 5 A positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that commercially available Li 1.02 Ni 0.80 Co 0.15 Al 0.05 O 2 was used as the lithium-containing composite oxide.
- the lithium-containing composite oxide was synthesized by firing in an atmosphere for 12 hours.
- the positive electrode and the lithium secondary battery were produced like Example 1 except having used this lithium containing complex oxide.
- the lithium-containing composite oxide was synthesized by firing in an atmosphere for 12 hours.
- the positive electrode and the lithium secondary battery were produced like Example 1 except having used this lithium containing complex oxide.
- Comparative Example 10 A lithium-containing composite oxide was used in the same manner as in Comparative Example 1 except that 0.196 mol of a hydroxide containing Ni and Co at a molar ratio of 90:10 and 0.190 mol of LiOH.H 2 O were used. Was synthesized. Furthermore, a positive electrode and a lithium secondary battery were produced in the same manner as in Comparative Example 1 except that this lithium-containing composite oxide was used.
- Lithium was obtained in the same manner as in Comparative Example 3 except that 0.196 mol of a hydroxide containing Ni, Co, and Mn at a molar ratio of 90: 5: 5 and 0.190 mol of LiOH.H 2 O were used. Containing composite oxide was synthesized. Furthermore, a positive electrode and a lithium secondary battery were produced in the same manner as in Comparative Example 3 except that this lithium-containing composite oxide was used.
- the average valences and X-rays of the constituent elements Ni, Co, Mn and Mg were the same as in Example 1.
- the integrated intensity ratio [I (003) / I (104) ] in diffraction was measured.
- Tables 1 and 2 show the compositions of the lithium-containing composite oxides used in the positive electrodes of Examples 1 to 13 and Comparative Examples 1 to 11, and Table 3 shows examples of Examples 1 to 13 and Comparative Examples 1 to 11.
- the average valences of Ni, Co, Mn, and Mg, which are constituent elements of the lithium-containing composite oxide used for the positive electrode, and the integrated intensity ratio [I (003) / I (104) ] in X-ray diffraction are shown. .
- the positive electrode discharge capacity was calculated by dividing the standard capacity by the mass of the lithium-containing composite oxide contained in the positive electrode.
- the composition and the average valence of Ni, Mn, and Mg (and the average valence of Co) contain a lithium-containing composite oxide, and have a large capacity and excellent thermal stability.
- the lithium secondary batteries of Examples 1 to 16 having the positive electrode have a large standard capacity, excellent safety, and good charge / discharge cycle characteristics.
- Examples 6 and 7 in which x in the general composition formula (1) is less than 0 and the amount ratio of Li in the lithium-containing composite oxide is less than the stoichiometric ratio, the lithium in Examples 1 to 5 is used.
- the gelation of the positive electrode mixture-containing paste could be suppressed and the paint stability could be improved as compared with the case where the containing composite oxide was used.
- Example 6 and Example 7 since a stable crystal structure could be maintained even when x ⁇ 0, a lithium secondary battery was configured using a lithium-containing composite oxide with x ⁇ 0. Excellent characteristics equivalent to those of Examples 1 to 5 were obtained. Further, it can be seen that Examples 8 to 13 provided with a lithium-containing composite oxide containing Zr or Ti as the positive electrode show excellent cycle characteristics. This is presumably because surface activity could be suppressed without impairing the electrochemical properties of the lithium-containing composite oxide.
- the lithium secondary batteries of Comparative Examples 1 to 7, Comparative Example 10 and Comparative Example 11 having positive electrodes containing lithium-containing composite oxides whose compositions do not satisfy the general formula (1) are the charge / discharge cycles. Low characteristics, poor safety, or small standard capacity.
- the lithium secondary batteries of Comparative Example 8 and Comparative Example 9 provided with positive electrodes containing lithium-containing composite oxides whose average valences of Ni and Mn are not appropriate have reversibility of the crystal structure of the lithium-containing composite oxides. Since it is low, the standard capacity is small and the charge / discharge cycle characteristics are low.
- the batteries of Examples 14 to 16 provided with positive electrodes mixed with other active materials having a higher operating voltage than the lithium-containing composite oxide, It can be seen that excellent cycle characteristics are exhibited in charge and discharge in a shallow region.
- the lithium-containing composite oxide according to the present invention is less stable in the crystal structure in the discharge region where the DOD is up to about 10% than in the case where the discharge depth is deeper than that. When discharging is repeated, the excellent characteristics are not easily exhibited.
- the active material having a high operating voltage when used in combination, the active material having a high operating voltage mainly contributes to discharge in the discharge region where the DOD is up to about 10%. Therefore, the above-described crystal structure in the lithium-containing composite oxide according to the present invention It is considered that the polarization of the electrode due to the instability of the electrode can be reduced.
- capacitance and high stability can be provided, and the electrochemical element provided with the electrode for electrochemical elements is high capacity
- the electrochemical device of the present invention is used for power supplies of various electronic devices such as portable electronic devices such as mobile phones and notebook personal computers, as well as electric tools, automobiles, bicycles, and power storages where safety is important. It can also be applied to other uses.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
下記一般組成式(1)
Li1+xMO2 (1)
で表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備えた電気化学素子用電極であって、
前記一般組成式(1)において、
-0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表し、
前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8であり、
前記Niの平均価数が2.5~3.2価、前記Mnの平均価数が3.5~4.2価及び前記Mgの平均価数が1.8~2.2価であることを特徴とする。
先ず、本発明の電気化学素子用電極(以下、単に「電極」という場合がある。)を説明する。本発明の電気化学素子用電極は、一般組成式(1):Li1+xMO2で表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備えている。また、上記一般組成式(1)において、-0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表す。また、上記元素群Mの全元素数に対する、上記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8である。また、上記Niの平均価数は2.5~3.2価であり、上記Mnの平均価数は3.5~4.2価であり、上記Mgの平均価数は1.8~2.2価である。
以下、本発明の電極に用いる上記リチウム含有複合酸化物について説明する。本発明の電極に用いる上記リチウム含有複合酸化物は、少なくともNi、Mn及びMgを含む元素群Mを含有している。
次に、上記リチウム含有複合酸化物の製造方法について説明する。上記リチウム含有複合酸化物は、Li含有化合物、Ni含有化合物、Mn含有化合物及びMg含有化合物などを単純に混合して焼成するだけでは、高い純度で得ることが非常に困難である。これは、Ni、Mn、Mgなどは、固体中での拡散速度が遅いため、リチウム含有複合酸化物の合成反応時に、これらを均一に拡散させることが困難であり、生成したリチウム含有複合酸化物中にNi、Mn、Mgなどが均一に分布し難いことが原因であると考えられる。
次に、本発明の電極に用いる電極合剤層について説明する。本発明の電極は、上記本発明に係るリチウム含有複合酸化物を活物質として含有する電極合剤層を備えているが、電極合剤層は、他の活物質を含んでいてもよい。本発明に係るリチウム含有複合酸化物以外の他の活物質としては、例えば、LiCoO2、LiCo1-xNixO2などのリチウムコバルト酸化物;LiMnO2、Li2MnO3、LiMn2O4などのリチウムマンガン酸化物;LiNiO2、LiNi1-x-yCoxAlyO2などのリチウムニッケル酸化物;のほか、Li4/3Ti5/3O4などのスピネル構造のリチウム含有複合酸化物;LiFePO4などのオリビン構造のリチウム含有複合酸化物;上記の酸化物を基本組成としその構成元素を各種元素で置換した酸化物;などを用いることができる。特に、本発明に係るリチウム含有複合酸化物に比べて作動電圧の高いLiCoO2などの層状構造の活物質や、LiMn2O4などのスピネル構造の活物質を、本発明に係るリチウム含有複合酸化物と併用して電池を構成すれば、例えば、放電深度が10%程度の範囲での充放電の繰り返し、即ち、電池を組み込んだ機器が実際に使用される際の条件に相当する、短時間での使用(=放電)と充電の繰り返しにおける充放電サイクル特性を高めることが可能となる。本発明に係るリチウム含有複合酸化物以外の他の活物質を用いる場合、他の活物質の割合は質量比で活物質全体の1%以上とするのが望ましく、5%以上とするのがより望ましい。一方、本発明の効果を明確にするために、他の活物質の割合は質量比で活物質全体の30%以下とすることが望ましく、20%以下とすることがより望ましい。
次に、本発明の電極の製造方法について説明する。本発明の電極は、例えば、上記リチウム含有複合酸化物や上記複合粒子を活物質として含む電極合剤層を、集電体の片面又は両面に形成することにより製造することができる。
次に、本発明の電気化学素子について説明する。本発明の電気化学素子は、正極として実施形態1の電気化学素子用電極と、負極と、セパレータと、非水電解質とを備えている。
<リチウム含有複合酸化物の合成>
水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.95mol/dm3、0.13mol/dm3、0.13mol/dm3の濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm3/分、6.6cm3/分の割合で、定量ポンプを用いて滴下して、NiとMnとMgとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm3濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に窒素ガスを1dm3/分の流量でバブリングした。
上記リチウム含有複合酸化物100質量部と、結着剤であるPVDFを10質量%の濃度で含むN-メチル-2-ピロリドン(NMP)溶液20質量部と、導電助剤である人造黒鉛1質量部及びケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
負極活物質である数平均粒子径が10μmの天然黒鉛97.5質量部と、結着剤であるスチレンブタジエンゴム1.5質量部と、増粘剤であるカルボキシメチルセルロース1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
ECとMECとDECとの容積比2:3:1の混合溶媒に、LiPF6を1mol/Lの濃度で溶解させて、非水電解質を調製した。
上記帯状の正極を、厚さが16μmの微孔性ポリエチレン製セパレータ(空孔率:41%)を介して上記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極巻回体とし、この電極巻回体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに上記電極巻回体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から上記非水電解質を注入し、1時間静置した後に注入口を封止して、図1A、Bに示す構造で、図2に示す外観のリチウム二次電池を得た。上記リチウム二次電池の設計電気容量は、900mAhとした。
硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.87mol/dm3、0.21mol/dm3、0.13mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとMnとMgとを92:5:3のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.24m2/gであり、タップ密度は2.7g/cm3であった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は12体積%であった。
硫酸ニッケル、硫酸マンガン、硫酸マグネシウム及び硫酸アルミニウムを、それぞれ、3.96mol/dm3、0.12mol/dm3、0.08mol/dm3、0.04mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとMnとMgとAlとを94:3:2:1のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.22m2/gであり、タップ密度は2.82g/cm3であった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の粒子の割合は8体積%であった。
硫酸ニッケル、硫酸コバルト、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.87mol/dm3、0.25mol/dm3、0.04mol/dm3、0.04mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとMnとMgとを92:6:1:1のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.18m2/gであり、タップ密度は2.84g/cm3であった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の粒子の割合は7体積%であった。
上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例4と同様にしてNiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、実施例4と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.20m2/gであり、タップ密度は2.78g/cm3であった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は8体積%であった。
硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.87mol/dm3、0.21mol/dm3、0.13mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとMnとMgとを92:5:3のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.190molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.22m2/gであり、タップ密度は2.5g/cm3であった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は12体積%であった。上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例4と同様にしてNiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、実施例4と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.20m2/gであり、タップ密度は2.75g/cm3であった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は8体積%であった。上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
実施例5と同様にして合成したNiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物99.86質量部(0.196mol)と、ZrO2粉末0.14質量部と、0.204molのLiOH・H2Oとを乾式混合した後、実施例1と同様にしてZrを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のZrの含有量は、0.10質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
ZrO2粉末に代えてTiO2粉末を用い、NiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物とTiO2粉末との割合を、それぞれ99.91質量部及び0.09質量部とした以外は、実施例8と同様にしてTiを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のTiの含有量は、0.05質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
実施例8において、ZrO2粉末を、NiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物及び水酸化リチウムと乾式混合する代わりに、上記水酸化物を析出させた後の反応溶液にZrO2粉末を添加して撹拌し、上記水酸化物の表面がZrO2で被覆された複合体を合成した。上記水酸化物とZrO2粉末との割合は、それぞれ99.86質量部及び0.14質量部とした。更に、この複合体に含まれる水酸化物0.196molに対して、0.204molのLiOH・H2Oと、この複合体とを混合して焼成した以外は、実施例8と同様にしてZrを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のZrの含有量は、0.10質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
ZrO2粉末に代えてTiO2粉末を用い、NiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物とTiO2粉末との割合を、それぞれ99.91質量部及び0.09質量部とした以外は、実施例10と同様にしてTiを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のTiの含有量は、0.05質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
実施例5で合成したリチウム含有複合酸化物99.86質量部と、ZrO2粉末0.14質量部とを乾式混合した後、酸素雰囲気中700℃で12時間焼成することにより、表面がZr酸化物で被覆されたリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物粒子全体におけるZrの割合は、0.10質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
ZrO2粉末0.14質量部に代えてTiO2粉末0.09質量部を用いた以外は、実施例12と同様にして表面がTi酸化物で被覆されたリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物粒子全体におけるTiの割合は、0.05質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
実施例5で合成したリチウム含有複合酸化物(数平均粒子径:20μm)90質量部と、Li1.02Mn1.95Al0.02Mg0.02Ti0.01O4(数平均粒子径:5μm)10質量部とを乾式混合した後、ここに、結着剤であるPVDFを10質量%の濃度で含むNMP溶液10質量部を加えて混合し、複合粒子を得た。
Li1.02Mn1.95Al0.02Mg0.02Ti0.01O4に代えて、LiCo0.975Al0.01Mg0.01Ti0.005O2(数平均粒子径:6μm)を用いた以外は、実施例14と同様にして複合粒子を調製し、この複合粒子を用いた以外は、実施例14と同様にして正極及びリチウム二次電池を作製した。
Li1.02Mn1.95Al0.02Mg0.02Ti0.01O4に代えて、LiMn0.315Co0.33Ni0.33Al0.01Mg0.01Ti0.005O2(数平均粒子径:6μm)を用いた以外は、実施例14と同様にして複合粒子を調製し、この複合粒子を用いた以外は、実施例14と同様にして正極及びリチウム二次電池を作製した。
硫酸ニッケル及び硫酸コバルトを、それぞれ、3.79mol/dm3、0.42mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとを90:10のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
硫酸ニッケル、硫酸コバルト及び硫酸マグネシウムを、それぞれ、3.79mol/dm3、0.38mol/dm3、0.04mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとMgとを90:9:1のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
硫酸ニッケル、硫酸コバルト及び硫酸マンガンを、それぞれ、3.79mol/dm3、0.21mol/dm3、0.21mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとMnとを90:5:5のモル比で含有する水酸化物を合成し、この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
硫酸ニッケル、硫酸コバルト及び硫酸アルミニウムを、それぞれ、3.79mol/dm3、0.21mol/dm3、0.21mol/dm3の濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとAlとを90:5:5のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・H2Oとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
リチウム含有複合酸化物として市販のLi1.02Ni0.80Co0.15Al0.05O2を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、比較例3と同様にしてNiとCoとMnとを60:20:20のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、比較例3と同様にしてリチウム含有複合酸化物を合成し、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例1と同様にしてNiとMnとMgとを70:20:10のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成し、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例1と同様にしてNiとMnとMgとを94:3:3のモル比で含有する水酸化物を合成し、この水酸化物0.196molと、0.204molのLiOH・H2Oとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm3/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に1000℃に昇温して大気雰囲気中、12時間焼成することにより、リチウム含有複合酸化物を合成した。そして、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例4と同様にしてNiとCoとMnとMgとを92:6:1:1のモル比で含有する水酸化物を合成し、この水酸化物0.196molと、0.204molのLiOH・H2Oとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm3/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に1000℃に昇温して大気雰囲気中、12時間焼成することにより、リチウム含有複合酸化物を合成した。そして、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
NiとCoとを90:10のモル比で含有する水酸化物0.196molと、0.190molのLiOH・H2Oとを用いた以外は、比較例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、比較例1と同様にして正極及びリチウム二次電池を作製した。
NiとCoとMnとを90:5:5のモル比で含有する水酸化物0.196molと、0.190molのLiOH・H2Oとを用いた以外は、比較例3と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、比較例3と同様にして正極及びリチウム二次電池を作製した。
実施例1~16及び比較例1~11の各電池を、60℃で7時間保存した後、20℃で、200mAの電流値で5時間充電し、200mAの電流値で電池電圧が2.5Vに低下するまで放電する充放電サイクルを、放電容量が一定になるまで繰り返した。次いで、定電流-定電圧充電(定電流:500mA、定電圧:4.2V、総充電時間:3時間)を行い、1時間休止後に200mAの電流値で電池電圧が2.5Vとなるまで放電して標準容量を求めた。標準容量は各電池とも100個の電池について測定し、その平均値を各実施例、比較例の標準容量とした。
実施例1~16及び比較例1~11の各電池を標準容量測定時と同じ条件で定電流-定電圧充電した後、1分休止後に200mAの電流値で電池電圧が2.5Vになるまで放電する充放電サイクルを繰り返し、放電容量が1サイクル目の放電容量の80%に低下するまでのサイクル数を求めて、各電池の充電サイクル特性を評価した。充放電サイクル特性における上記サイクル数は、各電池とも10個の電池について測定し、その平均値を各実施例、比較例のサイクル数とした。
実施例1~16及び比較例1~11の各電池を、定電流-定電圧充電(定電流:600mA、定電圧:4.25V、総充電時間:3時間)を行った後に恒温槽に入れ、2時間休止後、30℃から170℃まで、毎分5℃の割合で昇温し、引き続き170℃で3時間放置して、電池の表面温度を測定した。このときの最高到達温度が180℃以下であった電池をA、180℃を超えた電池をB、と評価した。
実施例5及び14~16の各電池について、標準容量測定時と同じ条件で定電流-定電圧充電した後、1分休止後に1000mAの電流値で6分間放電させる充放電サイクルを繰り返した。即ち、放電深度(DOD:Depth Of Discharge)が約10%となる放電条件(放電電気量:100mAh)で電池の充放電を繰り返し、電池の内部抵抗が初期の1.5倍に上昇するまでのサイクル数を測定した。各実施例とも10個ずつの電池について試験を行い、その平均値を表5に示すサイクル数とし、この値により各電池のDOD10%サイクル特性を評価した。
2 負極
3 セパレータ
Claims (15)
- 下記一般組成式(1)
Li1+xMO2 (1)
で表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備えた電気化学素子用電極であって、
前記一般組成式(1)において、
-0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表し、
前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8であり、
前記Niの平均価数が2.5~3.2価、前記Mnの平均価数が3.5~4.2価及び前記Mgの平均価数が1.8~2.2価であることを特徴とする電気化学素子用電極。 - 前記リチウム含有複合酸化物のX線回折図形における、(003)面及び(104)面での回折線の積分強度をそれぞれI(003)及びI(104)としたとき、その比の値I(003)/I(104)が1.2以上である請求項1に記載の電気化学素子用電極。
- 前記一般組成式(1)において、x<0であり、
前記リチウム含有複合酸化物のX線回折図形における、(003)面及び(104)面での回折線の積分強度をそれぞれI(003)及びI(104)としたとき、その比の値I(003)/I(104)が1.2以上である請求項1に記載の電気化学素子用電極。 - 前記一般組成式(1)において、前記元素群Mは、更にCoを含み、
前記元素群Mの全元素数に対する、前記元素群Mに含まれるCoの元素数の割合をmol%単位でdとしたとき、0<d<30である請求項1に記載の電気化学素子用電極。 - 前記一般組成式(1)において、前記元素群Mは、更にCoを含み、
前記元素群Mの全元素数に対する、前記元素群Mに含まれるCoの元素数の割合をmol%単位でdとしたとき、0<d<30であり、
前記Coの平均価数が、2.5~3.2価である請求項1に記載の電気化学素子用電極。 - 前記一般組成式(1)において、前記元素群Mは、更にZrを含む請求項1に記載の電気化学素子用電極。
- 前記一般組成式(1)において、前記元素群Mは、更にTiを含む請求項1に記載の電気化学素子用電極。
- 前記一般組成式(1)において、前記元素群Mは、更にZrを含み、
前記リチウム含有複合酸化物の表面が、Zr化合物で被覆されている請求項1に記載の電気化学素子用電極。 - 前記一般組成式(1)において、前記元素群Mは、更にTiを含み、
前記リチウム含有複合酸化物の表面が、Ti化合物で被覆されている請求項1に記載の電気化学素子用電極。 - 前記リチウム含有複合酸化物の粒子は、主として一次粒子が集合して形成される二次粒子からなり、
前記一次粒子の全体積に対する、粒径が1μm以下の一次粒子の体積割合が30体積%以下であり、
前記リチウム含有複合酸化物のBET比表面積が、0.3m2/g以下である請求項1に記載の電気化学素子用電極。 - 前記リチウム含有複合酸化物のタップ密度が、2.4g/cm3以上である請求項1に記載の電気化学素子用電極。
- 前記電極合剤層の密度が、3.1g/cm3以上である請求項1に記載の電気化学素子用電極。
- 前記電極合剤層が、結着剤として、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びポリヘキサフルオロプロピレンからなる群から選択される少なくとも1種を含む請求項1に記載の電気化学素子用電極。
- 前記電極合剤層が、導電助剤として、グラファイト及びカーボンブラックからなる群から選択される少なくとも1種を含む請求項1に記載の電気化学素子用電極。
- 正極と、負極と、非水電解質とを含む電気化学素子であって、
前記正極が、請求項1~14のいずれかに記載の電気化学素子用電極であることを特徴とする電気化学素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080009494XA CN102356487A (zh) | 2009-06-17 | 2010-06-17 | 电化学元件用电极及使用其的电化学元件 |
JP2010545714A JP5480820B2 (ja) | 2009-06-17 | 2010-06-17 | 電気化学素子用電極及びそれを用いた電気化学素子 |
US13/142,964 US20110269018A1 (en) | 2009-06-17 | 2010-06-17 | Electrode for electrochemical device and electrochemical device using the same |
KR1020117021251A KR101363443B1 (ko) | 2009-06-17 | 2010-06-17 | 전기 화학 소자용 전극 및 그것을 사용한 전기 화학 소자 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009144132 | 2009-06-17 | ||
JP2009-144132 | 2009-06-17 | ||
JP2009207857 | 2009-09-09 | ||
JP2009-207857 | 2009-09-09 | ||
JP2009247501 | 2009-10-28 | ||
JP2009-247501 | 2009-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010147179A1 true WO2010147179A1 (ja) | 2010-12-23 |
Family
ID=43356495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060293 WO2010147179A1 (ja) | 2009-06-17 | 2010-06-17 | 電気化学素子用電極及びそれを用いた電気化学素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110269018A1 (ja) |
JP (1) | JP5480820B2 (ja) |
KR (1) | KR101363443B1 (ja) |
CN (1) | CN102356487A (ja) |
WO (1) | WO2010147179A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011065987A (ja) * | 2009-08-21 | 2011-03-31 | Gs Yuasa Corp | リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法 |
JP2013517599A (ja) * | 2010-01-14 | 2013-05-16 | 株式会社エコプロ | 回分式反応器(batchreactor)を用いて濃度勾配層を有するリチウム二次電池用正極活物質前駆体、正極活物質を製造する方法、及びこれにより製造されたリチウム二次電池用正極活物質前駆体、正極活物質 |
WO2013146115A1 (ja) * | 2012-03-28 | 2013-10-03 | 三洋電機株式会社 | 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池 |
JP2013254639A (ja) * | 2012-06-07 | 2013-12-19 | Hitachi Maxell Ltd | 非水二次電池 |
WO2014147983A1 (ja) * | 2013-03-19 | 2014-09-25 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2015503181A (ja) * | 2012-01-17 | 2015-01-29 | エルジー・ケム・リミテッド | 正極活物質、及びこれを含み、不純物またはスウェリング制御のためのリチウム二次電池、並びに生産性が向上した正極活物質の製造方法 |
WO2015045340A1 (ja) * | 2013-09-30 | 2015-04-02 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
JP2015103331A (ja) * | 2013-11-22 | 2015-06-04 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | 正極活物質、およびリチウムイオン二次電池 |
JP2016184497A (ja) * | 2015-03-26 | 2016-10-20 | 株式会社豊田中央研究所 | 非水系リチウム二次電池 |
WO2016171051A1 (ja) * | 2015-04-23 | 2016-10-27 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池 |
JPWO2014208453A1 (ja) * | 2013-06-27 | 2017-02-23 | 旭硝子株式会社 | 炭酸化合物とその製造方法、およびリチウムイオン二次電池用正極活物質の製造方法 |
JP2017513179A (ja) * | 2014-03-05 | 2017-05-25 | コリア エレクトロニクス テクノロジ インスティチュート | 陽極活物質、それを有するリチウム二次電池及びその製造方法 |
JP2018502421A (ja) * | 2014-12-05 | 2018-01-25 | エルジー・ケム・リミテッド | 正極活物質、この製造方法、及びこれを含むリチウム二次電池 |
WO2019172193A1 (ja) * | 2018-03-07 | 2019-09-12 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 |
WO2020158420A1 (ja) * | 2019-01-30 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質及び非水電解質二次電池 |
JP2020155404A (ja) * | 2019-03-15 | 2020-09-24 | 株式会社豊田自動織機 | 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法 |
JP2022513681A (ja) * | 2018-11-30 | 2022-02-09 | エルジー エナジー ソリューション リミテッド | 正極活物質、前記正極活物質を含む正極及びリチウム二次電池 |
WO2023210525A1 (ja) * | 2022-04-26 | 2023-11-02 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104170155A (zh) * | 2012-03-15 | 2014-11-26 | 三洋电机株式会社 | 非水电解质二次电池 |
EP2934792B1 (de) * | 2012-12-19 | 2019-07-24 | Albemarle Germany GmbH | Suspension und verfahren zur herstellung einer lithiumpulveranode |
KR20160102083A (ko) * | 2013-02-28 | 2016-08-26 | 닛산 지도우샤 가부시키가이샤 | 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지 |
KR20140120189A (ko) * | 2013-04-02 | 2014-10-13 | 삼성에스디아이 주식회사 | 이차 전지 및 그 제조방법 |
US9905851B2 (en) * | 2013-07-26 | 2018-02-27 | Lg Chem, Ltd. | Cathode active material and method of preparing the same |
EP2865647B1 (en) | 2013-07-26 | 2016-10-19 | LG Chem, Ltd. | Anode active material and method for manufacturing same |
US9905850B2 (en) * | 2013-07-26 | 2018-02-27 | Lg Chem, Ltd. | Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same |
US10522830B2 (en) | 2013-11-22 | 2019-12-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery |
CN110380046B (zh) * | 2014-05-09 | 2022-09-20 | 株式会社半导体能源研究所 | 锂离子二次电池及电子装置 |
JP6414230B2 (ja) * | 2014-12-26 | 2018-11-07 | 日産自動車株式会社 | 電気デバイス |
JP6319335B2 (ja) * | 2016-01-18 | 2018-05-09 | トヨタ自動車株式会社 | 全固体電池の製造方法 |
US20170214045A1 (en) * | 2016-01-22 | 2017-07-27 | Apple Inc. | High-energy cathode active materials for lithium-ion batteries |
KR102565007B1 (ko) | 2016-03-11 | 2023-08-08 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 |
CN108987682B (zh) * | 2017-06-02 | 2021-05-25 | 杉杉能源(宁夏)有限公司 | 可防止颗粒破裂的富镍基前驱体材料的制备方法 |
DE102017217250A1 (de) * | 2017-09-27 | 2019-03-28 | Volkswagen Aktiengesellschaft | Stabilisierte Ni-reiche Schichtoxide als Aktivmaterial für positive Elektroden von Lithium-Ionen-Batterien |
US20220098053A1 (en) * | 2019-01-15 | 2022-03-31 | Basf Se | Process for making an electrode active material |
WO2020171126A1 (ja) * | 2019-02-22 | 2020-08-27 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
GB202004511D0 (en) * | 2020-03-27 | 2020-05-13 | Johnson Matthey Plc | Cathode material and process |
KR20230156993A (ko) * | 2022-05-09 | 2023-11-16 | 에스케이온 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
SE2250851A1 (en) * | 2022-07-06 | 2024-01-07 | Northvolt Ab | A cathode active material for a cathode in a battery cell, a cathode assembly for a battery cell and a battery cell |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11135119A (ja) * | 1997-10-27 | 1999-05-21 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池用活物質と正極板および非水電解液二次電池 |
JP2001256975A (ja) * | 2000-03-14 | 2001-09-21 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウムニッケル複合酸化物、その製造方法およびそれを用いたリチウム二次電池 |
JP2003178759A (ja) * | 2001-10-24 | 2003-06-27 | Samsung Sdi Co Ltd | リチウム二次電池用正極活物質及びその製造方法ならびに電池 |
JP2004533104A (ja) * | 2001-06-15 | 2004-10-28 | 呉羽化学工業株式会社 | リチウム二次電池用傾斜正極材 |
JP2008226463A (ja) * | 2007-03-08 | 2008-09-25 | Toyota Motor Corp | リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法 |
JP2008282667A (ja) * | 2007-05-10 | 2008-11-20 | Sony Corp | 有機電解質を用いたリチウムイオン2次電池の正極活物質 |
JP2010073686A (ja) * | 2008-08-19 | 2010-04-02 | Hitachi Maxell Ltd | 電気化学素子用電極および非水二次電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4650774B2 (ja) * | 1999-06-07 | 2011-03-16 | 株式会社豊田中央研究所 | リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池 |
JP3631166B2 (ja) * | 2001-05-31 | 2005-03-23 | 三洋電機株式会社 | 非水電解質二次電池 |
CN100342571C (zh) * | 2003-02-03 | 2007-10-10 | 三洋电机株式会社 | 非水电解质二次电池 |
CN100334758C (zh) * | 2003-08-21 | 2007-08-29 | 清美化学股份有限公司 | 锂二次电池用的正极活性物质粉末 |
CN1641913A (zh) * | 2004-01-16 | 2005-07-20 | 深圳市比克电池有限公司 | 一种锂离子电池正极材料及制备方法 |
KR100578877B1 (ko) * | 2004-03-12 | 2006-05-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR101278376B1 (ko) * | 2006-03-02 | 2013-06-25 | 에이지씨 세이미 케미칼 가부시키가이샤 | 비수 전해질 2 차 전지용 양극 활물질 및 그 제조 방법 |
JP2007250198A (ja) * | 2006-03-13 | 2007-09-27 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP5008328B2 (ja) * | 2006-03-30 | 2012-08-22 | 住友金属鉱山株式会社 | 非水電解質二次電池用の正極活物質、その製造方法及びそれを用いた非水電解質二次電池 |
CN101369658A (zh) * | 2007-08-13 | 2009-02-18 | 深圳市比克电池有限公司 | 正极活性材料、锂离子电池的正极片和锂离子电池 |
-
2010
- 2010-06-17 US US13/142,964 patent/US20110269018A1/en not_active Abandoned
- 2010-06-17 KR KR1020117021251A patent/KR101363443B1/ko active IP Right Grant
- 2010-06-17 CN CN201080009494XA patent/CN102356487A/zh active Pending
- 2010-06-17 WO PCT/JP2010/060293 patent/WO2010147179A1/ja active Application Filing
- 2010-06-17 JP JP2010545714A patent/JP5480820B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11135119A (ja) * | 1997-10-27 | 1999-05-21 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池用活物質と正極板および非水電解液二次電池 |
JP2001256975A (ja) * | 2000-03-14 | 2001-09-21 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウムニッケル複合酸化物、その製造方法およびそれを用いたリチウム二次電池 |
JP2004533104A (ja) * | 2001-06-15 | 2004-10-28 | 呉羽化学工業株式会社 | リチウム二次電池用傾斜正極材 |
JP2003178759A (ja) * | 2001-10-24 | 2003-06-27 | Samsung Sdi Co Ltd | リチウム二次電池用正極活物質及びその製造方法ならびに電池 |
JP2008226463A (ja) * | 2007-03-08 | 2008-09-25 | Toyota Motor Corp | リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法 |
JP2008282667A (ja) * | 2007-05-10 | 2008-11-20 | Sony Corp | 有機電解質を用いたリチウムイオン2次電池の正極活物質 |
JP2010073686A (ja) * | 2008-08-19 | 2010-04-02 | Hitachi Maxell Ltd | 電気化学素子用電極および非水二次電池 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011065987A (ja) * | 2009-08-21 | 2011-03-31 | Gs Yuasa Corp | リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法 |
JP2013517599A (ja) * | 2010-01-14 | 2013-05-16 | 株式会社エコプロ | 回分式反応器(batchreactor)を用いて濃度勾配層を有するリチウム二次電池用正極活物質前駆体、正極活物質を製造する方法、及びこれにより製造されたリチウム二次電池用正極活物質前駆体、正極活物質 |
US10096831B2 (en) | 2012-01-17 | 2018-10-09 | Lg Chem, Ltd. | Cathode active material and lithium secondary battery for controlling impurity or swelling including the same and method of preparing cathode active material with enhanced productivity |
JP2015503181A (ja) * | 2012-01-17 | 2015-01-29 | エルジー・ケム・リミテッド | 正極活物質、及びこれを含み、不純物またはスウェリング制御のためのリチウム二次電池、並びに生産性が向上した正極活物質の製造方法 |
WO2013146115A1 (ja) * | 2012-03-28 | 2013-10-03 | 三洋電機株式会社 | 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池 |
JPWO2013146115A1 (ja) * | 2012-03-28 | 2015-12-10 | 三洋電機株式会社 | 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池 |
JP2013254639A (ja) * | 2012-06-07 | 2013-12-19 | Hitachi Maxell Ltd | 非水二次電池 |
WO2014147983A1 (ja) * | 2013-03-19 | 2014-09-25 | 三洋電機株式会社 | 非水電解質二次電池 |
JPWO2014147983A1 (ja) * | 2013-03-19 | 2017-02-16 | 三洋電機株式会社 | 非水電解質二次電池 |
JPWO2014208453A1 (ja) * | 2013-06-27 | 2017-02-23 | 旭硝子株式会社 | 炭酸化合物とその製造方法、およびリチウムイオン二次電池用正極活物質の製造方法 |
WO2015045340A1 (ja) * | 2013-09-30 | 2015-04-02 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
JPWO2015045340A1 (ja) * | 2013-09-30 | 2017-03-09 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
JP2015103331A (ja) * | 2013-11-22 | 2015-06-04 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | 正極活物質、およびリチウムイオン二次電池 |
US10367199B2 (en) | 2014-03-05 | 2019-07-30 | Korea Electronics Technology Institute | Cathode active material, lithium secondary battery having same, and method for preparing same |
JP2017513179A (ja) * | 2014-03-05 | 2017-05-25 | コリア エレクトロニクス テクノロジ インスティチュート | 陽極活物質、それを有するリチウム二次電池及びその製造方法 |
JP2018502421A (ja) * | 2014-12-05 | 2018-01-25 | エルジー・ケム・リミテッド | 正極活物質、この製造方法、及びこれを含むリチウム二次電池 |
US10340517B2 (en) | 2014-12-05 | 2019-07-02 | Lg Chem, Ltd. | Positive electrode active material, method for preparing the same and lithium secondary battery including the same |
JP2016184497A (ja) * | 2015-03-26 | 2016-10-20 | 株式会社豊田中央研究所 | 非水系リチウム二次電池 |
US10777813B2 (en) | 2015-04-23 | 2020-09-15 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for non-aqueous electrolyte secondary battery and process for producing same, and non-aqueous electrolyte secondary battery using the positive electrode active material |
WO2016171051A1 (ja) * | 2015-04-23 | 2016-10-27 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池 |
JP2016207479A (ja) * | 2015-04-23 | 2016-12-08 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池 |
JPWO2019172193A1 (ja) * | 2018-03-07 | 2021-02-25 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 |
WO2019172193A1 (ja) * | 2018-03-07 | 2019-09-12 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 |
JP7272345B2 (ja) | 2018-03-07 | 2023-05-12 | 株式会社プロテリアル | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 |
US11949100B2 (en) | 2018-03-07 | 2024-04-02 | Proterial, Ltd. | Cathode active material used for lithium ion secondary battery and lithium ion secondary battery |
JP2022513681A (ja) * | 2018-11-30 | 2022-02-09 | エルジー エナジー ソリューション リミテッド | 正極活物質、前記正極活物質を含む正極及びリチウム二次電池 |
JP7191420B2 (ja) | 2018-11-30 | 2022-12-19 | エルジー エナジー ソリューション リミテッド | 正極活物質、前記正極活物質を含む正極及びリチウム二次電池 |
WO2020158420A1 (ja) * | 2019-01-30 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質及び非水電解質二次電池 |
JP7437641B2 (ja) | 2019-01-30 | 2024-02-26 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質及び非水電解質二次電池 |
JP2020155404A (ja) * | 2019-03-15 | 2020-09-24 | 株式会社豊田自動織機 | 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法 |
JP7404886B2 (ja) | 2019-03-15 | 2023-12-26 | 株式会社豊田自動織機 | 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法 |
WO2023210525A1 (ja) * | 2022-04-26 | 2023-11-02 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20110269018A1 (en) | 2011-11-03 |
JP5480820B2 (ja) | 2014-04-23 |
KR20110126683A (ko) | 2011-11-23 |
KR101363443B1 (ko) | 2014-02-14 |
JPWO2010147179A1 (ja) | 2012-12-06 |
CN102356487A (zh) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5480820B2 (ja) | 電気化学素子用電極及びそれを用いた電気化学素子 | |
JP5695373B2 (ja) | 電気化学素子用電極及びそれを用いた電気化学素子 | |
JP5325888B2 (ja) | 電極用活物質、非水二次電池用電極および非水二次電池 | |
JP5405941B2 (ja) | 電気化学素子用電極および非水二次電池 | |
JP5534595B2 (ja) | リチウム二次電池用正極およびリチウム二次電池 | |
US8790829B2 (en) | Nonaqueous secondary battery | |
JP2012014851A (ja) | 電気化学素子用電極および非水二次電池 | |
JP2011023335A (ja) | 非水二次電池用電極および非水二次電池 | |
JP5419093B2 (ja) | 非水二次電池 | |
JP7060776B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 | |
JP5522844B2 (ja) | 電気化学素子用電極およびリチウムイオン二次電池 | |
JP7452422B2 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
JP5670671B2 (ja) | 電池用正極の製造方法およびリチウムイオン二次電池の製造方法 | |
JP7363885B2 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 | |
WO2020171111A1 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 | |
JP5045135B2 (ja) | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 | |
US20220238874A1 (en) | Positive-electrode active material precursor for lithium-ion secondary battery, positive-electrode active material for lithium-ion secondary battery, methods of manufacturing thereof, and lithium-ion secondary battery | |
JP2013045599A (ja) | 非水電解液二次電池用正極活物質、その製造方法、および非水電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009494.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2010545714 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789553 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13142964 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117021251 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10789553 Country of ref document: EP Kind code of ref document: A1 |