[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010147179A1 - 電気化学素子用電極及びそれを用いた電気化学素子 - Google Patents

電気化学素子用電極及びそれを用いた電気化学素子 Download PDF

Info

Publication number
WO2010147179A1
WO2010147179A1 PCT/JP2010/060293 JP2010060293W WO2010147179A1 WO 2010147179 A1 WO2010147179 A1 WO 2010147179A1 JP 2010060293 W JP2010060293 W JP 2010060293W WO 2010147179 A1 WO2010147179 A1 WO 2010147179A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrode
composite oxide
containing composite
electrochemical
Prior art date
Application number
PCT/JP2010/060293
Other languages
English (en)
French (fr)
Inventor
河野聡
岸見光浩
大矢正幸
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to CN201080009494XA priority Critical patent/CN102356487A/zh
Priority to JP2010545714A priority patent/JP5480820B2/ja
Priority to US13/142,964 priority patent/US20110269018A1/en
Priority to KR1020117021251A priority patent/KR101363443B1/ko
Publication of WO2010147179A1 publication Critical patent/WO2010147179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode that can be used for an electrochemical element such as a battery or a capacitor, and an electrochemical element using the electrode.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are generally used as positive electrode active materials for high-capacity secondary batteries and capacitors that can meet this requirement.
  • LiNiO 2 can be cited as a positive electrode active material that can constitute a high-capacity battery or capacitor. This is because the stability of the crystal structure in a charged state is lower than that of LiCoO 2 , and as it is, the safety of the battery or capacitor is improved. It was difficult to be satisfied. Also. LiNiO 2 was not satisfactory in terms of charge / discharge cycle life due to the low reversibility of the crystal structure.
  • Patent Document 1 a lithium-containing composite oxide in which a part of Ni is substituted with an element such as Co, Al, or Mg has been proposed in order to maintain the LiNiO 2 charged crystal structure. Therefore, improvement of safety and reversibility has been attempted (for example, Patent Document 1).
  • the lithium-containing composite oxide as described in Patent Document 1 has a low initial charge / discharge efficiency, so that the capacity drop tends to be large, and since the true density is low, the capacity when used as an electrode is increased. There is still room for improvement in terms of further increasing the capacity of the electrochemical element, and there is also room for improvement in terms of charge / discharge cycle characteristics of the electrochemical element.
  • the present invention has been made in view of the above circumstances, and has a high capacity and high stability electrode for an electrochemical element, and the electrode for the electrochemical element, and has a high capacity, charge / discharge cycle characteristics and safety. An excellent electrochemical device is provided.
  • the electrode for an electrochemical element of the present invention is The following general composition formula (1) Li 1 + x MO 2 (1)
  • An electrode for an electrochemical device comprising an electrode mixture layer containing a lithium-containing composite oxide represented by In the general composition formula (1), ⁇ 0.3 ⁇ x ⁇ 0.3, and M represents an element group containing Ni, Mn, and Mg,
  • M represents an element group containing Ni, Mn, and Mg
  • the ratio of the number of elements of Ni, Mn and Mg contained in the element group M to the total number of elements in the element group M is a mol% unit and a, b and c, respectively, 70 ⁇ a ⁇ 97, 0 .5 ⁇ b ⁇ 30, 0.5 ⁇ c ⁇ 30, ⁇ 10 ⁇ bc ⁇ 10, and ⁇ 8 ⁇ (bc) / c ⁇ 8
  • the average valence of Ni is 2.5 to 3.2
  • the average valence of Mn is 3.5 to 4.2
  • the electrochemical device of the present invention is an electrochemical device comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the positive electrode is the electrode for an electrochemical device according to any one of claims 1 to 14. It is characterized by being.
  • capacitance and high stability can be provided, and the electrochemical element provided with the electrode for electrochemical elements is high capacity
  • FIG. 1A is a schematic plan view of a lithium secondary battery according to the present invention
  • FIG. 1B is a schematic cross-sectional view of FIG. 1A
  • FIG. 2 is a schematic external view of a lithium secondary battery according to the present invention.
  • the electrode for an electrochemical device of the present invention includes an electrode mixture layer containing, as an active material, a lithium-containing composite oxide represented by the general composition formula (1): Li 1 + x MO 2 .
  • a lithium-containing composite oxide represented by the general composition formula (1): Li 1 + x MO 2 .
  • ⁇ 0.3 ⁇ x ⁇ 0.3, and M represents an element group containing Ni, Mn, and Mg.
  • the ratio of the number of elements of Ni, Mn, and Mg contained in the element group M to the total number of elements in the element group M is a, b, and c in mol% units, respectively, 70 ⁇ a ⁇ 97 0.5 ⁇ b ⁇ 30, 0.5 ⁇ c ⁇ 30, ⁇ 10 ⁇ bc ⁇ 10, and ⁇ 8 ⁇ (bc) / c ⁇ 8.
  • the average valence of Ni is 2.5 to 3.2
  • the average valence of Mn is 3.5 to 4.2
  • the average valence of Mg is 1.8 to 2 .It is bivalent.
  • the lithium-containing composite oxide acts as a positive electrode active material for an electrochemical element such as a lithium secondary battery.
  • the electrochemical element has high capacity and high stability.
  • An electrode can be provided.
  • the lithium-containing composite oxide used for the electrode of the present invention contains an element group M containing at least Ni, Mn, and Mg.
  • the Ni is a component that contributes to an increase in the capacity of the lithium-containing composite oxide.
  • the ratio a (mol%) of the number of Ni elements is the capacity of the lithium-containing composite oxide. From the viewpoint of improvement, the content is made 70 mol% or more.
  • the ratio a (mol%) of the number of Ni elements is set to 97 mol% or less.
  • the ratio of Ni in the element group M is adjusted as described above so that the capacity of the lithium-containing composite oxide is 185 mAh when the driving voltage is 2.5 to 4.3 V on the basis of lithium metal. / G or more.
  • the lithium-containing composite oxide has an average valence (A) of Ni of 2.5 to 3.2 measured by the method shown in the examples described later. This also makes it possible to obtain a high-capacity lithium-containing composite oxide when the drive voltage is 2.5 to 4.3 V on the basis of lithium metal.
  • the lithium-containing composite oxide has a ratio b (mol%) of the number of elements of Mn and a ratio c (mol%) of the number of elements of Mg of 0. .5 ⁇ b ⁇ 30 and 0.5 ⁇ c ⁇ 30, and -10 ⁇ bc ⁇ 10 and -8 ⁇ (bc) / c ⁇ 8, and Mn and Mg are present in the crystal lattice. I am letting.
  • the ratio b of Mn in all elements of the element group M is preferably 1 mol% or more, and preferably 2 mol% or more. On the other hand, it is preferably 10 mol% or less, more preferably 7 mol% or less. Further, from the viewpoint of ensuring better the effect of improving the reversibility of the layered crystal structure of the lithium-containing composite oxide by Mg, the ratio c of Mg in all elements of the element group M is 1 mol% or more. It is preferably 2 mol% or more. However, since Mg has little involvement in the charge / discharge capacity, if the amount added is large, the capacity may be reduced.
  • the ratio c of Mg is preferably 15 mol% or less, more preferably 10 mol% or less, and even more preferably 7 mol% or less.
  • the difference in composition ratio between Mn and Mg is desirably small, preferably ⁇ 3 ⁇ b ⁇ c ⁇ 3, and more preferably ⁇ 2 ⁇ (bc) / c ⁇ 2.
  • the average valence of Mg is a value measured by the method shown in the examples described later from the viewpoint of increasing the reversibility of the crystal structure of the lithium-containing composite oxide, and is 1.8-2. .It is bivalent. Further, in the lithium-containing composite oxide, the average valence of Mn is a value measured by the method shown in the examples described later from the viewpoint of stabilizing Mg and effectively exhibiting its action. And 3.5 to 4.2.
  • the element group M in the general formula (1) representing the lithium-containing composite oxide includes at least Ni, Mn, and Mg, and may be an element group composed of only these three elements.
  • M may be a group of four or more elements including Co in addition to Ni, Mn and Mg.
  • element group M contains Co
  • the presence of Co in the crystal lattice of the lithium-containing composite oxide causes a phase of the lithium-containing composite oxide due to Li desorption and insertion during charging and discharging of the electrochemical device.
  • the irreversible reaction resulting from the rearrangement can be further relaxed, and the reversibility of the crystal structure of the lithium-containing composite oxide can be enhanced.
  • an electrochemical element having a long charge / discharge cycle life can be configured.
  • the ratio d (mol%) of the number of elements of Co is the other elements (Ni, Mn) constituting the element group M.
  • 0 ⁇ d ⁇ 30 is preferable from the viewpoint of suppressing the effect of these elements from decreasing as the amount of Mg) decreases.
  • the Co ratio d is more preferably 1 mol% or more.
  • the average valence of Co in the lithium-containing composite oxide is a value measured by the method shown in the examples described later from the viewpoint of ensuring the above-mentioned effect by Co, and is 2.5 to 3.2. It is preferable that
  • the element group M in the general composition formula (1) representing the lithium-containing composite oxide may include elements other than Ni, Mn, Mg, and Co.
  • elements other than Ni, Mn, Mg, and Co For example, Ti, Cr, Fe, Cu, Zn, It may contain elements such as Al, Ge, Sn, Ag, Ta, Nb, Mo, B, P, Zr, Ga, Ba, Sr, Ca, Si, W and S.
  • the ratio of the number of elements other than Ni, Mn, Mg and Co is 15 mol% or less. It is preferably 3 mol% or less.
  • Elements other than Ni, Mn, Mg, and Co in the element group M may be uniformly distributed in the lithium-containing composite oxide, or may be segregated on the particle surface or the like.
  • the element group M preferably contains Zr or Ti.
  • Zr and Ti may be present uniformly in the lithium-containing composite oxide, but are more preferably unevenly distributed on the surface of the lithium composite oxide. This is because the surface activity is suppressed without impairing the electrochemical characteristics of the lithium-containing composite oxide, and the effect of making the active material excellent in charge / discharge cycle characteristics, high-temperature storage characteristics and thermal stability is likely to be exhibited. is there. Therefore, the surface of the lithium-containing composite oxide may be coated with a Zr or Ti compound such as Zr oxide or Ti oxide.
  • the content of the Zr or Ti is the entire lithium composite oxide particles containing Zr and Ti in order to prevent the capacity reduction of the lithium-containing composite oxide (if the particle surface has a Zr compound or Ti compound coating, 5% by mass or less, and more preferably 1% by mass or less, based on the entire particle including the part.
  • 0.001% by mass or more is preferably contained.
  • the true density is a large value of 4.55 to 4.95 g / cm 3 , the capacity per mass of the active material can be increased, and the reversibility is excellent.
  • the true density of the lithium-containing composite oxide increases particularly when the composition is close to the stoichiometric ratio
  • in the present invention in the general composition formula (1), ⁇ 0.3 ⁇ x ⁇ 0. .3.
  • x is more preferably ⁇ 0.1 or more and 0.1 or less.
  • the true density of the lithium-containing composite oxide can be set to a higher value of 4.6 g / cm 3 or more. .
  • the integrated intensity ratio I (003 ) / I (104) can be set to 1.2 or more, the reversibility of the crystal structure is increased, and a lithium-containing composite oxide having a high capacity and excellent cycle characteristics can be obtained.
  • the composition so that the Li amount ratio is smaller than the stoichiometric ratio, the amount of Li charged can be reduced during the synthesis of the lithium-containing composite oxide, so that excess Li 2 CO 3 And LiOH can be prevented from forming or remaining, the deterioration of the quality of the mixture paint caused by the excess compound is suppressed, and the preparation of the paint and the maintenance of the quality are facilitated.
  • the lithium-containing composite oxide suppresses gas generation in an electrochemical device using the electrode of the present invention by moderately suppressing the activity of the surface, and in particular, a battery having a rectangular (rectangular cylindrical) outer package. In such a case, it is possible to suppress the deformation of the exterior body and improve the storability and life. From the viewpoint of securing such an effect, the lithium-containing composite oxide preferably has the following form.
  • the lithium-containing composite oxide particles are mainly composed of secondary particles in which primary particles are aggregated, and the volume ratio of the primary particles having a particle size of 1 ⁇ m or less to the total volume of the primary particles is 30% by volume or less. It is preferable that it is, and it is more preferable that it is 15 volume% or less.
  • the BET specific surface area of the lithium-containing composite oxide particles is preferably 0.3 m 2 / g or less, and more preferably 0.25 m 2 / g or less.
  • the reaction area of the lithium-containing composite oxide is large.
  • the number of active points increases. Therefore, moisture in the atmosphere; a binder used to form an electrode mixture layer of an electrode using the same as an active material; and a non-aqueous electrolyte of an electrochemical device having the electrode; and a lithium-containing composite oxide;
  • the irreversible reaction is likely to occur.
  • problems such as generation of gas in the electrochemical element, deformation of the outer package, and gelation of a composition (paste, slurry, etc.) containing a solvent used for forming the electrode mixture layer easily occur. Become.
  • the lithium-containing composite oxide may not contain any primary particles having a particle size of 1 ⁇ m or less. That is, the ratio of primary particles having a particle size of 1 ⁇ m or less may be 0% by volume. Further, the BET specific surface area of the lithium-containing composite oxide is preferably 0.1 m 2 / g or more in order to prevent the reactivity from being lowered more than necessary. Furthermore, the number average particle diameter of the entire lithium-containing composite oxide particles composed of primary particles that are not aggregated and secondary particles formed by aggregation of the primary particles is preferably 5 to 25 ⁇ m. This is because the BET specific surface area can be controlled within an appropriate range within this range.
  • the ratio of primary particles having a particle size of 1 ⁇ m or less contained in the lithium-containing composite oxide, the number average particle size of the entire lithium-containing composite oxide particles, and the number average particle size of other active materials described later can be measured by a laser diffraction / scattering particle size distribution analyzer, for example, “Microtrac HRA” manufactured by Nikkiso Co., Ltd. Values shown in the examples described later are values measured by this method.
  • the BET specific surface area of the lithium-containing composite oxide is measured using a BET equation that is a theoretical equation of multimolecular layer adsorption. Specifically, it is a value obtained as a BET specific surface area using a specific surface area measuring apparatus “Macsorb HM model-1201” by a nitrogen adsorption method manufactured by Mountaintech.
  • the particle shape is spherical or It is preferably substantially spherical.
  • the pressing step (details will be described later) during electrode fabrication, when the lithium-containing composite oxide particles are moved by pressing to increase the density of the electrode mixture layer, the particles are moved without difficulty. , The particles will be rearranged smoothly. Therefore, since the press load can be reduced, it is possible to reduce the damage of the current collector accompanying the press, and to increase the productivity of the electrode. Further, when the lithium-containing composite oxide particles are spherical or substantially spherical, the particles can withstand a larger pressing pressure, and therefore the electrode mixture layer can be made higher in density. .
  • the lithium-containing composite oxide preferably has a tap density of 2.4 g / cm 3 or more, and preferably 2.8 g / cm 3 or more, from the viewpoint of enhancing the filling property in the electrode mixture layer. More preferred. That is, the ratio of the pores is such that the tap density is high and there are no pores inside the particles, or the area ratio of minute pores of 1 ⁇ m or less measured by cross-sectional observation of the particles is 10% or less. By setting it as few particle
  • the tap density of the lithium-containing composite oxide is a value determined as follows using a tap density measuring device “Powder Tester PT-S type” manufactured by Hosokawa Micron. That is, the measurement particles are ground and put into a measuring cup 100 cm 3, and tapping is performed for 180 seconds while replenishing the reduced volume appropriately. After tapping is completed, excess particles are scraped off with a blade, and then the mass of the measured particles: T (g) is measured, and the tap density is obtained by the following equation.
  • the lithium-containing composite oxide When producing the lithium-containing composite oxide according to the present invention, at least Ni, Mn, and Mg (in the case where the element group M also includes Co, further Co) as a constituent element, and Li-containing It is preferable to employ a method of calcining the compound, and the lithium-containing composite oxide can be synthesized relatively easily with high purity by such a method. That is, a composite compound containing at least Ni, Mn, and Mg (and Co) is manufactured in advance, and this is baked together with a Li-containing compound. Thus, in the oxide formation reaction, Ni, Mn, and Mg (further Co) is uniformly distributed, and the lithium-containing composite oxide is synthesized with higher purity.
  • the method for producing a lithium-containing composite oxide according to the present invention is not limited to the above method, but the physical properties of the lithium composite oxide to be produced, that is, the stability of the structure, depending on the production process. And reversibility of charge / discharge, true density, etc. are presumed to change greatly.
  • a composite compound containing at least Ni, Mn and Mg (and Co) for example, a coprecipitation compound containing Ni, Mn and Mg (and Co), a hydrothermally synthesized compound, and a mechanically synthesized compound are used. And compounds obtained by heat-treating them, such as Ni 0.7 Mn 0.1 Mg 0.2 (OH) 2 , Ni 0.9 Co 0.05 Mn 0.03 Mg 0.02
  • An oxide or hydroxide of Ni, Mn, and Mg, or an oxide or hydroxide of Ni, Mn, Mg, and Co, such as (OH) 2 is preferable.
  • the coprecipitated compound can be prepared by adding an aqueous solution in which sulfates, nitrates, and the like of constituent elements such as Ni, Mn, Mg, and Co are dissolved at a predetermined ratio to an alkali hydroxide aqueous solution and reacting them. It can be obtained as a coprecipitated hydroxide of elements.
  • ammonia water whose pH is adjusted to a range of about 10 to 13 with alkali hydroxide may be used. That is, the temperature of the ammonia water is kept constant in the range of about 40 to 60 ° C., and an aqueous alkaline solution is added so that the pH of the ammonia water is kept constant within the above range, while the sulfate, nitrate, etc. are added to the ammonia water. An aqueous solution in which is dissolved is gradually added to precipitate the coprecipitated compound. As a result, the constituent elements of the coprecipitated compound are uniformly distributed, and the average valences of Ni, Mn, and Mg (and Co) of the synthesized lithium-containing composite oxide can be easily controlled within the range of the present invention.
  • Part of the element group M includes elements other than Ni, Mn, Mg, and Co, such as Ti, Cr, Fe, Cu, Zn, Al, Ge, Sn, Ag, Ta, Nb, Mo, B, P,
  • the lithium-containing composite oxidation containing at least one element selected from the group consisting of Zr, Ga, Ba, Sr, Ca, Si, W and S (hereinafter collectively referred to as “element M ′”).
  • element M ′ When manufacturing a product, it can be manufactured by mixing and firing a composite compound containing at least Ni, Mn, and Mg (and also Co), a Li-containing compound, and an element M′-containing compound.
  • a composite compound containing at least Ni, Mn, and Mg (and further Co) and further an element M ′ it is preferable to use a composite compound containing at least Ni, Mn, and Mg (and further Co) and further an element M ′.
  • the amount ratio of Ni, Mn, Mg, and M ′ and the amount ratio of Ni, Mn, Mg, Co, and M ′ in the composite compound are appropriately adjusted according to the composition of the target lithium-containing composite oxide. That's fine.
  • lithium hydroxide monohydrate lithium nitrate, lithium carbonate, lithium acetate, odor Lithium chloride, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide, etc.
  • carbon dioxide Lithium hydroxide monohydrate is preferred in that it does not generate gases that adversely affect the environment, such as nitrogen oxides and sulfur oxides.
  • the lithium-containing composite oxide in order to produce the lithium-containing composite oxide, first, a composite compound containing at least Ni, Mn, and Mg (and a composite compound containing Co and element M ′), a Li-containing compound, and The element M′-containing compound used in accordance with the ratio is mixed at a ratio approximately corresponding to the composition of the target lithium-containing composite oxide.
  • the lithium-containing composite oxide can be obtained by firing the obtained raw material mixture at, for example, 600 to 1000 ° C. for 1 to 24 hours.
  • examples of the method for producing a lithium-containing composite oxide containing Zr or Ti include the following methods.
  • an aqueous solution in which sulfates, nitrates, and the like of constituent elements such as Ni, Mn, Mg, and Co are dissolved at a predetermined ratio is added to an alkali hydroxide aqueous solution and reacted to obtain a coprecipitated hydroxide of these constituent elements.
  • a lithium salt and a compound such as ZrO 2 or TiO 2 are added to the coprecipitated hydroxide and sufficiently mixed. Thereafter, the mixture is baked at a predetermined temperature and reacted to obtain a lithium-containing composite oxide.
  • ammonia water having a pH adjusted to about 10 to 13 with alkali hydroxide as described above may be used.
  • the lithium-containing composite oxide and the Zr compound or Ti compound are mixed, and the mixture is fired at a temperature of about 100 to 1000 ° C. The method of doing can be illustrated.
  • the material mixture is once heated to a temperature lower than the firing temperature (for example, 250 to 850 ° C.), and preheated by holding at that temperature, Thereafter, it is preferable to raise the temperature to the firing temperature to advance the reaction, and it is preferable to keep the oxygen concentration in the firing environment constant.
  • a temperature lower than the firing temperature for example, 250 to 850 ° C.
  • a composite compound containing at least Ni, Mn, and Mg Lithium-containing composite oxidation produced by stepwise reaction between (compound compound containing Co and element M ′), Li-containing compound and element M′-containing compound used as necessary This is to improve the homogeneity of the product and to stably grow the produced lithium-containing composite oxide. That is, when the temperature is raised to the firing temperature at once, or when the oxygen concentration in the firing environment is lowered during firing, a composite compound containing at least Ni, Mn and Mg (further, Co or element M ′ is added). Composition), Li-containing compound, and element M′-containing compound used as necessary, the reaction is likely to be non-uniform, and the generated lithium-containing composite oxide tends to release Li. Uniformity is easily impaired.
  • the time for the preheating is not particularly limited, but is usually about 0.5 to 30 hours.
  • the atmosphere at the time of firing the raw material mixture is a gas atmosphere containing oxygen.
  • a gas atmosphere containing oxygen for example, an air atmosphere, a mixed gas atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere can be used.
  • the oxygen concentration (volume basis) in the atmosphere during firing is preferably 15% or more, and more preferably 18% or more.
  • the flow rate of the gas containing oxygen at the time of firing the raw material mixture is preferably 2 dm 3 / min or more per 100 g of the raw material mixture. If the gas flow rate is too small, that is, if the gas flow rate is too slow, the homogeneity of the composition of the lithium-containing composite oxide may be impaired.
  • the gas flow rate during firing of the raw material mixture is preferably 5 dm 3 / min or less per 100 g of the raw material mixture. Thereby, the gas containing oxygen can be used efficiently.
  • the dry-mixed mixture may be used as it is.
  • the raw material mixture is dispersed in a solvent such as ethanol to form a slurry and mixed for about 30 to 60 minutes using a planetary ball mill or the like. It is preferable to use a dried product. By such a method, the homogeneity of the produced lithium-containing composite oxide can be further enhanced.
  • the electrode of the present invention includes an electrode mixture layer containing the lithium-containing composite oxide according to the present invention as an active material, but the electrode mixture layer may contain other active materials.
  • Examples of active materials other than the lithium-containing composite oxide according to the present invention include lithium cobalt oxides such as LiCoO 2 and LiCo 1-x Ni x O 2 ; LiMnO 2 , Li 2 MnO 3 , LiMn 2 O 4 Lithium manganese oxides such as LiNiO 2 , lithium nickel oxides such as LiNi 1-xy Co x Al y O 2 ; and lithium-containing composites having a spinel structure such as Li 4/3 Ti 5/3 O 4 An oxide; a lithium-containing composite oxide having an olivine structure such as LiFePO 4 ; an oxide in which the above oxide is a basic composition and its constituent elements are substituted with various elements; and the like can be used.
  • lithium cobalt oxides such as LiCoO 2 and LiCo 1-x Ni x O 2
  • LiMnO 2 , Li 2 MnO 3 , LiMn 2 O 4 Lithium manganese oxides such as LiNiO 2 , lithium nickel oxides such as LiNi 1-x
  • an active material having a layered structure such as LiCoO 2 having a higher operating voltage than that of the lithium-containing composite oxide according to the present invention, or an active material having a spinel structure such as LiMn 2 O 4 is used.
  • the ratio of the other active materials is preferably 1% or more of the entire active material by mass ratio, and more preferably 5% or more. desirable.
  • the ratio of the other active material is preferably 30% or less, more preferably 20% or less of the entire active material in terms of mass ratio.
  • lithium cobalt oxide in addition to LiCoO 2 exemplified above, part of Co in LiCoO 2 is Ti, Cr, Fe, Ni, Mn, Cu, Zn, Al, Ge, Sn.
  • the spinel-structured lithium-containing composite oxide includes LiMn 2 O 4 and Li 4/3 Ti 5/3 O 4 exemplified above, as well as one of Mn of LiMn 2 O 4.
  • These spinel-structured lithium-containing composite oxides are excellent in safety during overcharge because the amount of lithium that can be extracted is half that of lithium-containing oxides such as lithium cobaltate and lithium nickelate. This is because the safety of the electrochemical device can be further enhanced.
  • lithium-containing composite oxide according to the present invention When the lithium-containing composite oxide according to the present invention is used in combination with another active material, these may be used simply by mixing them, but these particles are used as composite particles integrated by granulation or the like. In this case, the packing density of the active material in the electrode mixture layer is improved, and the contact between the active material particles can be made more reliable. Therefore, the capacity
  • the mixture layer may be formed by a process of dry-mixing them together and further forming a paint using a biaxial kneader together with a binder or the like.
  • the lithium cobalt oxide is present on the surface of the lithium-containing composite oxide, so that it elutes from the composite particle. Since the Mn and Co thus deposited quickly form a film on the surface of the composite particles, the composite particles are chemically stabilized. As a result, the decomposition of the non-aqueous electrolyte in the electrochemical element due to the composite particles can be suppressed, and further elution of Mn can be suppressed, so that an electrochemical element with more excellent storability and charge / discharge cycle characteristics is configured. Will be able to.
  • the number average particle diameter of one of the lithium-containing composite oxide according to the present invention and the other active material is 1 ⁇ 2 or less of the other number average particle diameter.
  • composite particles are formed by combining particles having a large number average particle diameter (hereinafter referred to as “large particles”) and particles having a small number average particle diameter (hereinafter referred to as “small particles”).
  • large particles particles having a large number average particle diameter
  • small particles can be easily dispersed and fixed around the large particles, and composite particles having a more uniform mixing ratio can be formed. Therefore, non-uniform reaction in the electrode can be suppressed, and the charge / discharge cycle characteristics and safety of the electrochemical element can be further enhanced.
  • the number average particle size of the large particles is preferably 10 to 30 ⁇ m, and the number average particle size of the small particles is It is preferably 1 to 15 ⁇ m.
  • the composite particles of the lithium-containing composite oxide and the other active material according to the present invention include, for example, the above-described lithium-containing composite oxide particles and other active material particles in a common uniaxial kneader or biaxial kneader. It is possible to obtain a composite by mixing using various kneaders such as a machine, sliding the particles together and applying a share.
  • the kneading is preferably a continuous kneading method in which raw materials are continuously fed in consideration of the productivity of composite particles.
  • each active material particle it is preferable to further add a binder to each active material particle. Thereby, the shape of the composite particle formed can be kept strong. Further, it is more preferable to add a conductive additive and knead. Thereby, the electroconductivity between active material particles can further be improved.
  • thermoplastic resin or thermosetting resin can be used as long as it is chemically stable in the electrochemical element.
  • PE polyethylene
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PHFP polyhexafluoropropylene
  • SBR styrene butadiene rubber
  • tetrafluoroethylene-hexafluoroethylene Polymer tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoro Ethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene
  • the amount of binder added when forming the composite particles is preferably as small as possible so that the composite particles can be stabilized. For example, it is preferably 0.03 to 2 parts by mass with respect to 100 parts by mass of the total active material. .
  • any material that is chemically stable in the electrochemical element may be used.
  • graphite such as natural graphite and artificial graphite, acetylene black, ketjen black (trade name), carbon black such as channel black, furnace black, lamp black and thermal black
  • conductive fiber such as carbon fiber and metal fiber
  • aluminum Metallic powders such as powders
  • Fluorinated carbon Zinc oxide
  • Conductive whiskers made of potassium titanate Conductive metal oxides such as titanium oxide
  • Organic conductive materials such as polyphenylene derivatives
  • One species may be used alone, or two or more species may be used in combination.
  • highly conductive graphite and carbon black excellent in liquid absorption are preferable.
  • the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
  • the amount of the conductive assistant added is only required to ensure good conductivity and liquid absorbency, for example, 0.1 to 2 parts by mass with respect to 100 parts by mass of the total active material. It is preferable.
  • the porosity of the composite particles is preferably 5 to 15%. This is because the composite particles having such a porosity have appropriate contact with the non-aqueous electrolyte (non-aqueous electrolyte solution) and penetration of the non-aqueous electrolyte into the composite particles.
  • the shape of the composite particles is preferably spherical or substantially spherical, similarly to the lithium-containing composite oxide according to the present invention. Thereby, the density of the electrode mixture layer can be further increased.
  • the electrode of the present invention can be produced, for example, by forming an electrode mixture layer containing the lithium-containing composite oxide or the composite particles as an active material on one side or both sides of a current collector.
  • the electrode mixture layer is prepared by, for example, preparing a paste-like or slurry-like electrode mixture-containing composition by adding the lithium-containing composite oxide or the composite particles, a binder, and a conductive additive to a solvent. And it can form by apply
  • Examples of the coating method for applying the electrode mixture-containing composition to the surface of the current collector include, for example, a substrate pulling method using a doctor blade; a coater method using a die coater, comma coater, knife coater, etc .; screen printing , Printing methods such as letterpress printing, and the like can be employed.
  • the binder and conductive aid that can be used for the preparation of the electrode mixture-containing composition the same binders and various conductive aids exemplified as those that can be used for forming the composite particles described above are used. it can.
  • the total active material including the lithium-containing composite oxide is 80 to 99% by mass, and the binder (including those contained in the composite particles) is 0.5 to 10%. It is preferable that the content of the conductive auxiliary agent (including those contained in the composite particles) is 0.5 to 10% by mass.
  • the thickness of the electrode mixture layer is preferably 15 to 200 ⁇ m per side of the current collector.
  • the density of the electrode mixture layer is preferably 3.1 g / cm 3 or more, and more preferably 3.52 g / cm 3 or more.
  • the density of the electrode mixture layer after the press treatment is 4. It is preferably 0 g / cm 3 or less.
  • roll pressing can be performed at a linear pressure of about 1 to 100 kN / cm, and by such treatment, an electrode mixture layer having the above density can be obtained.
  • the density of the electrode mixture layer referred to in the present specification is a value measured by the following method.
  • the electrode is cut into a predetermined area, and its mass is measured using an electronic balance having a minimum scale of 0.1 mg, and the mass of the electrode mixture layer is calculated by subtracting the mass of the current collector.
  • the total thickness of the electrode was measured at 10 points with a micrometer having a minimum scale of 1 ⁇ m, and the volume of the electrode mixture layer was calculated from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. To do.
  • the density of the electrode mixture layer is calculated by dividing the mass of the electrode mixture layer by the volume.
  • the material of the current collector of the electrode is not particularly limited as long as it is a chemically stable electron conductor in the constructed electrochemical device.
  • a composite material in which a carbon layer or a titanium layer is formed on the surface of aluminum, aluminum alloy, or stainless steel can be used.
  • aluminum or an aluminum alloy is particularly preferable. This is because they are lightweight and have high electron conductivity.
  • the current collector for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a fibrous body, or the like made of the above material is used.
  • the surface of the current collector can be roughened by surface treatment.
  • the thickness of the current collector is not particularly limited, but is usually 1 to 500 ⁇ m.
  • the electrode of the present invention is not limited to those manufactured by the above manufacturing method, and may be manufactured by other manufacturing methods.
  • the composite particles when using the composite particles as an active material, without using the electrode mixture-containing composition, the composite particles are directly fixed on the surface of the current collector to form an electrode mixture layer.
  • the obtained electrode may be sufficient.
  • a lead body for electrical connection with other members in the electrochemical element may be formed on the electrode of the present invention according to a conventional method, if necessary.
  • the electrochemical element of the present invention includes the electrode for an electrochemical element according to Embodiment 1, a negative electrode, a separator, and a nonaqueous electrolyte as a positive electrode.
  • the electrochemical device of the present invention includes the electrode for an electrochemical device of Embodiment 1 as a positive electrode, the electrochemical device having high capacity, excellent charge / discharge cycle characteristics and high safety can be obtained. it can.
  • the electrochemical element of the present invention is not particularly limited, and includes lithium primary batteries, supercapacitors, and the like in addition to lithium secondary batteries using a non-aqueous electrolyte.
  • a configuration of a lithium secondary battery which is a main application, will be described as an example.
  • the negative electrode has, for example, a structure having a negative electrode mixture layer made of a negative electrode mixture containing a negative electrode active material and a binder and, if necessary, a conductive additive, on one or both sides of the current collector. Can be used.
  • the negative electrode active material examples include occlusion of Li ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
  • Li ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
  • MCMB mesocarbon microbeads
  • One or a mixture of two or more releasable carbon-based materials is used.
  • simple substances such as Si, Sn, Ge, Bi, Sb, In and alloys thereof; lithium-containing nitrides; or compounds that can be charged and discharged at a low voltage close to lithium metal such as oxides such as Li 4 Ti 5 O 12 ;
  • lithium metal or lithium / aluminum alloy can also be used as the negative electrode active material.
  • the negative electrode was formed into a molded body (negative electrode mixture layer) using a negative electrode current collector as a core material and a negative electrode mixture obtained by appropriately adding a conductive additive or a binder as necessary to these negative electrode active materials. Or those obtained by laminating the above-mentioned various alloys or lithium metal foils alone or on the surface of the negative electrode current collector.
  • binder and the conductive aid those similar to the various binders and various conductive aids exemplified in Embodiment 1 can be used.
  • the material of the negative electrode current collector is not particularly limited as long as it is an electron conductor that is chemically stable in the constructed battery.
  • a composite material in which a carbon layer or a titanium layer is formed on the surface of copper, copper alloy, or stainless steel can be used.
  • copper or a copper alloy is particularly preferable. This is because they are not alloyed with lithium and have high electron conductivity.
  • the negative electrode current collector for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a fibrous body, or the like made of the above materials can be used.
  • the surface of the negative electrode current collector can be roughened by surface treatment.
  • the thickness of the negative electrode current collector is not particularly limited, but is usually 1 to 500 ⁇ m.
  • the negative electrode includes, for example, a negative electrode mixture-containing composition in the form of a paste or slurry in which a negative electrode mixture containing a negative electrode active material and a binder and, if necessary, a conductive additive is dispersed in a solvent. It can obtain by apply
  • the above binder may be used by dissolving in a solvent.
  • the said negative electrode is not limited to what was obtained by the said manufacturing method, The thing manufactured by the other method may be used.
  • the thickness of the negative electrode mixture layer is preferably 10 to 300 ⁇ m per side of the negative electrode current collector.
  • the separator is preferably a porous film composed of polyolefin such as polyethylene, polypropylene, ethylene-propylene copolymer; polyester such as polyethylene terephthalate or copolymer polyester;
  • the separator preferably has a property of closing the pores at 100 to 140 ° C., that is, a shutdown function. Therefore, as a material of the separator, a melting point, that is, a thermoplastic resin having a melting temperature of 100 to 140 ° C. measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K 7121. It is preferable to use a resin.
  • DSC differential scanning calorimeter
  • a single layer porous film mainly composed of polyethylene or a laminated porous film in which 2 to 5 layers of polyethylene and polypropylene are laminated can be used as the separator.
  • a resin having a melting point of 100 to 140 ° C. such as polyethylene and a resin having a melting point higher than that of polyethylene such as polypropylene are mixed or laminated
  • polyethylene is 30% by mass or more as a resin constituting the porous film. Desirably, it is more desirable that it is 50 mass% or more.
  • a resin porous membrane for example, a porous membrane composed of the above-exemplified thermoplastic resin used in a conventionally known lithium secondary battery or the like, that is, solvent extraction method, dry type or An ion-permeable porous membrane produced by a wet stretching method or the like can be used.
  • the average pore size of the separator is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the air permeability of the separator indicated by the Gurley value is preferably 10 to 500 seconds.
  • the Gurley value is measured by a method according to JIS P 8117, and is indicated by the number of seconds that 100 mL of air permeates the membrane under a pressure of 0.879 g / mm 2 . If the air permeability is too large, the ion permeability tends to be small, whereas if the air permeability is too small, the strength of the separator tends to be small.
  • the strength of the separator is preferably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength of the separator is too small, for example, when lithium dendrite crystals are generated, there is a possibility that a short circuit may occur due to the piercing of the separator.
  • the lithium-containing composite oxide according to the present invention is excellent in thermal stability, so that its safety is maintained. Can do.
  • non-aqueous electrolyte a solution (non-aqueous electrolyte solution) in which an electrolyte salt is dissolved in a solvent
  • the solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ⁇ -butyrolactone, 1, 2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives , Sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofur
  • amine imide organic solvents sulfur-containing or fluorine-containing organic solvents, and the like can be used.
  • a mixed solvent of EC, MEC, and DEC is preferable.
  • lithium perchlorate As the electrolyte salt related to the non-aqueous electrolyte, lithium perchlorate; organoboron lithium salt; salt of fluorine-containing compound such as trifluoromethanesulfonate; or imide salt is preferably used.
  • electrolyte salt for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 5), LiN (Rf 3 OSO 2 ) 2 , Rf represents a fluoroalkyl group. ], LiB (C 2 O 4 ) 2 [lithium bisoxalate borate (LiBOB)], and the like. These may be used alone or in combination of two or more thereof. Among these, LiPF 6 and LiBF 4 are more preferable because of good charge / discharge characteristics.
  • the concentration of the electrolyte salt in the solvent is not particularly limited, but is usually 0.5 to 1.7 mol / L.
  • the lithium secondary battery of the present embodiment includes, for example, an electrode laminate in which the electrode (positive electrode) of the present invention and the negative electrode are laminated via the separator, and an electrode winding obtained by winding the electrode in a spiral shape.
  • a body is prepared, and such an electrode body and the non-aqueous electrolyte are enclosed in an exterior body according to a conventional method.
  • the outer can can be made of steel or aluminum.
  • Example 1 Synthesis of lithium-containing composite oxide> Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, manganese sulfate and magnesium sulfate were each added to 3.95 mol / dm 3.
  • the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Mn and Mg in a molar ratio of 94: 3: 3. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. .
  • the mixture is placed in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, and further heated to 700 ° C. to increase oxygen
  • the lithium-containing composite oxide was synthesized by firing for 12 hours in an atmosphere.
  • the obtained lithium-containing composite oxide was pulverized into a powder in a mortar and then stored in a desiccator.
  • composition of the lithium-containing composite oxide powder was measured with an atomic absorption spectrometer, it was found to be a composition represented by Li 1.02 Ni 0.94 Mn 0.03 Mg 0.03 O 2. did.
  • X-ray absorption spectroscopy was performed at the SR Center of Ritsumeikan University using the BL4 beam port of the superconducting small radiation source “Aurora” manufactured by Sumitomo Electric Industries, Ltd. Analysis was carried out. The analysis of the obtained data was performed using analysis software “REX” manufactured by Rigaku Electric Co., Ltd. based on the literature [Journal of the Electrochemical Society, 146, p2799-2809 (1999)].
  • NiO and LiNi 0.5 Mn 1.5 O 4 both containing Ni with an average valence of 2 are used as standard samples.
  • a standard sample of a compound containing Ni having an average valence of 3 and LiNi 0.82 Co 0.15 Al 0.03 O 2 State analysis was performed, and a regression line representing the relationship between the Ni K absorption edge position of each standard sample and the valence of Ni was created. From the position of the K absorption edge of Ni of the lithium-containing composite oxide and the regression line, the average valence of Ni was found to be 3.02.
  • MnO 2 Li 2 MnO 3 and LiNi 0.5 Mn 1.5 O 4 (all having an average valence of 4 as standard samples) are used.
  • Standard sample of a compound containing valence Mn LiMn 2 O 4 (standard sample of a compound containing Mn having an average valence of 3.5), LiMnO 2 and Mn 2 O 3 (all having an average valence)
  • a standard sample of a compound containing trivalent Mn) and MnO (a standard sample of a compound containing Mn having an average valence of 2) were used to conduct a state analysis similar to that of the lithium-containing composite oxide, and each standard A regression line representing the relationship between the Mn K absorption edge position of the sample and the valence of Mn was prepared. From the K absorption edge position of Mn of the lithium-containing composite oxide and the regression line, the average valence of Mn was found to be 4.02.
  • MgO and MgAl 2 O 4 both standard samples of compounds containing Mg having an average valence of 2
  • MgO and MgAl 2 O 4 both standard samples of compounds containing Mg having an average valence of 2
  • Mg standard sample of Mg having an average valence of 0
  • K absorption edge position of Mg and the valence of Mg of each standard sample is determined.
  • a regression line was created. From the Mg K absorption edge position of the lithium-containing composite oxide and the regression line, the average valence of Mg was found to be 2.01.
  • the lithium-containing composite oxide powder had a BET specific surface area of 0.24 m 2 / g and a tap density of 2.75 g / cm 3 . Furthermore, according to “JIS R1622 General rules for sample size measurement for fine ceramic raw material particle size distribution”, the lithium-containing composite oxide powder is pulverized until it becomes primary particles, and laser diffraction scattering type particle size distribution measurement made by Nikkiso Co., Ltd. When the particle size distribution was measured by the apparatus “Microtrac HRA”, the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles was 10% by volume. However, in order to reduce the error, the number of times of crushing was 20 times.
  • the X-ray-diffraction measurement of the said lithium containing complex oxide was performed. Specifically, X-ray diffraction is measured with CuK ⁇ rays using an Rigaku X-ray diffraction measuring device “RINT-2500V / PC”, and analysis of the obtained data is performed by Rigaku's analysis software “JADE”. Was used.
  • the integrated intensities of the diffraction lines at the (003) plane and the (104) plane are I (003) and I (104) , respectively, and I ( 003) and I (104) are respectively And the ratio value I (003) / I (104) was obtained by calculation.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture-containing paste is applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m, and then vacuum-dried at 120 ° C. for 12 hours to form a positive electrode mixture layer on both sides of the aluminum foil. Formed. Thereafter, press treatment was performed to adjust the thickness and density of the positive electrode mixture layer, and a nickel lead body was welded to the exposed portion of the aluminum foil to produce a strip-like positive electrode having a length of 375 mm and a width of 43 mm. .
  • the positive electrode mixture layer in the obtained positive electrode had a thickness of 55 ⁇ m per one side, and the density of the positive electrode mixture layer was 3.5 g / cm 3 .
  • the negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m, and then vacuum-dried at 120 ° C. for 12 hours to form a negative electrode mixture layer on both sides of the copper foil. Formed. Thereafter, press treatment was performed to adjust the thickness and density of the negative electrode mixture layer, and a nickel lead body was welded to the exposed portion of the copper foil to produce a strip-shaped negative electrode having a length of 380 mm and a width of 44 mm. .
  • the negative electrode mixture layer in the obtained negative electrode had a thickness of 65 ⁇ m per one surface.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of EC, MEC, and DEC in a volume ratio of 2: 3: 1.
  • the strip-shaped positive electrode is overlapped with the strip-shaped negative electrode through a microporous polyethylene separator (porosity: 41%) having a thickness of 16 ⁇ m, wound in a spiral shape, and then added so as to become flat.
  • the electrode winding body was pressed into a flat winding structure, and the electrode winding body was fixed with a polypropylene insulating tape.
  • the electrode winding body is inserted into a rectangular battery case made of aluminum alloy having an outer dimension of 4.0 mm in thickness, 34 mm in width, and 50 mm in height, and the lead body is welded. The plate was welded to the open end of the battery case.
  • the design electric capacity of the lithium secondary battery was 900 mAh.
  • FIG. 1A is a schematic plan view of the lithium secondary battery
  • FIG. 1B is a schematic cross-sectional view of FIG. 1A
  • FIG. 1 and the negative electrode 2 are spirally wound through a separator 3 and then pressed so as to be flattened and accommodated in a rectangular battery case 4 together with a non-aqueous electrolyte as a flat electrode wound body 6 Has been.
  • FIG. 1B in order to avoid complication, the metal foil, the non-aqueous electrolyte, and the like as the current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
  • the battery case 4 is made of an aluminum alloy and constitutes a battery outer body.
  • the battery case 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of a polyethylene sheet is arrange
  • the connected positive electrode lead body 7 and negative electrode lead body 8 are drawn out.
  • a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11.
  • a stainless steel lead plate 13 is attached via
  • the cover plate 9 is inserted into the opening of the battery case 4, and the joint of the two is welded, whereby the opening of the battery case 4 is sealed and the inside of the battery is sealed.
  • a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like.
  • the battery is sealed by welding. Therefore, in the batteries of FIGS. 1A, 1B and 2, the nonaqueous electrolyte inlet 14 is actually a nonaqueous electrolyte inlet and a sealing member.
  • the nonaqueous electrolyte injection port 14 is used. Shown as inlet 14.
  • the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
  • the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, By connecting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, the terminal 11 functions as a negative electrode terminal.
  • FIG. 2 is a schematic external view schematically showing the external appearance of the battery shown in FIG. 1A.
  • FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • the battery is schematically shown, and only specific ones of the constituent members of the battery are shown.
  • the inner peripheral portion of the electrode body is not cross-sectional.
  • Example 2 Nickel sulfate, manganese sulfate and magnesium sulfate, respectively, 3.87mol / dm 3, 0.21mol / dm 3, except for using a mixed aqueous solution containing a concentration of 0.13 mol / dm 3, similarly as in Example 1 Thus, a coprecipitation compound was synthesized. And the hydroxide which contains Ni, Mn, and Mg by the molar ratio of 92: 5: 3 was obtained like Example 1 except having used the said coprecipitation compound. A lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used.
  • This lithium-containing composite oxide had a BET specific surface area of 0.24 m 2 / g and a tap density of 2.7 g / cm 3 .
  • the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 12% by volume.
  • the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
  • the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.45 g / cm 3 .
  • Example 3 Nickel sulfate, manganese sulfate, magnesium sulfate and aluminum sulfate, respectively, 3.96mol / dm 3, 0.12mol / dm 3, 0.08mol / dm 3, a mixed aqueous solution containing a concentration of 0.04 mol / dm 3
  • a coprecipitated compound was synthesized in the same manner as in Example 1 except that it was used.
  • the hydroxide which contains Ni, Mn, Mg, and Al by the molar ratio of 94: 3: 2: 1 was obtained like Example 1 except having used the said coprecipitation compound.
  • a lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used.
  • This lithium-containing composite oxide had a BET specific surface area of 0.22 m 2 / g and a tap density of 2.82 g / cm 3 .
  • the ratio of particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 8% by volume.
  • the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
  • the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.50 g / cm 3 .
  • Example 4 Nickel sulfate, cobalt sulfate, manganese sulfate and magnesium sulfate, respectively, 3.87mol / dm 3, 0.25mol / dm 3, 0.04mol / dm 3, a mixed aqueous solution containing a concentration of 0.04 mol / dm 3
  • a coprecipitated compound was synthesized in the same manner as in Example 1 except that it was used.
  • the hydroxide which contains Ni, Co, Mn, and Mg by the molar ratio of 92: 6: 1: 1 was obtained like Example 1 except having used the said coprecipitation compound.
  • a lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used.
  • This lithium-containing composite oxide had a BET specific surface area of 0.18 m 2 / g and a tap density of 2.84 g / cm 3 .
  • the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
  • the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.55 g / cm 3 .
  • Example 5 Ni, Co, Mn, and Mg were mixed at a molar ratio of 90: 5: 3: 2 in the same manner as in Example 4 except that the concentration of the raw material compound in the mixed aqueous solution used for the synthesis of the coprecipitation compound was changed.
  • a lithium-containing composite oxide was synthesized in the same manner as in Example 4 except that the contained hydroxide was synthesized and this hydroxide was used.
  • This lithium-containing composite oxide had a BET specific surface area of 0.20 m 2 / g and a tap density of 2.78 g / cm 3 .
  • the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 8% by volume.
  • the positive electrode and the lithium secondary battery were produced like Example 1 except having used the said lithium containing complex oxide.
  • the density of the positive electrode mixture layer in the positive electrode used for this lithium secondary battery was 3.54 g / cm 3 .
  • Example 6 Nickel sulfate, manganese sulfate and magnesium sulfate, respectively, 3.87mol / dm 3, 0.21mol / dm 3, except for using a mixed aqueous solution containing a concentration of 0.13 mol / dm 3, similarly as in Example 1 Thus, a coprecipitation compound was synthesized. And the hydroxide which contains Ni, Mn, and Mg by the molar ratio of 92: 5: 3 was obtained like Example 1 except having used the said coprecipitation compound. A lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of the hydroxide and 0.190 mol of LiOH.H 2 O were used.
  • This lithium-containing composite oxide had a BET specific surface area of 0.22 m 2 / g and a tap density of 2.5 g / cm 3 .
  • the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 12% by volume.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that the lithium-containing composite oxide was used.
  • Example 7 Ni, Co, Mn, and Mg were mixed at a molar ratio of 90: 5: 3: 2 in the same manner as in Example 4 except that the concentration of the raw material compound in the mixed aqueous solution used for the synthesis of the coprecipitation compound was changed.
  • a lithium-containing composite oxide was synthesized in the same manner as in Example 4 except that the contained hydroxide was synthesized and this hydroxide was used.
  • This lithium-containing composite oxide had a BET specific surface area of 0.20 m 2 / g and a tap density of 2.75 g / cm 3 .
  • the ratio of primary particles having a particle size of 1 ⁇ m or less to the total volume of primary particles measured in the same manner as in Example 1 was 8% by volume.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that the lithium-containing composite oxide was used.
  • Example 8 99.86 parts by mass (0.196 mol) of a hydroxide containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 synthesized in the same manner as in Example 5, and ZrO 2 powder 0
  • a lithium-containing composite oxide containing Zr was synthesized in the same manner as in Example 1.
  • the content of Zr in this lithium-containing composite oxide was 0.10% by mass.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
  • Example 9 TiO 2 powder was used instead of ZrO 2 powder, and the ratio of hydroxide and TiO 2 powder containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 was 99.91 respectively.
  • a lithium-containing composite oxide containing Ti was synthesized in the same manner as in Example 8 except that the amount was 0.09 parts by mass. The content of Ti in the lithium-containing composite oxide was 0.05% by mass.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
  • Example 10 (Example 10) In Example 8, instead of dry mixing ZrO 2 powder with a hydroxide containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 and lithium hydroxide, the above hydroxide ZrO 2 powder was added to the reaction solution after precipitation and stirred, to synthesize a complex in which the surface of the hydroxide was coated with ZrO 2 .
  • the ratios of the hydroxide and ZrO 2 powder were 99.86 parts by mass and 0.14 parts by mass, respectively.
  • Zr was made in the same manner as in Example 8 except that 0.204 mol of LiOH.H 2 O and this complex were mixed and fired with respect to 0.196 mol of the hydroxide contained in this complex.
  • a lithium-containing composite oxide containing was synthesized. The content of Zr in this lithium-containing composite oxide was 0.10% by mass.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used
  • Example 11 TiO 2 powder was used instead of ZrO 2 powder, and the ratio of hydroxide and TiO 2 powder containing Ni, Co, Mn and Mg in a molar ratio of 90: 5: 3: 2 was 99.91 respectively.
  • a lithium-containing composite oxide containing Ti was synthesized in the same manner as in Example 10 except that the amount was 0.09 parts by mass. The content of Ti in the lithium-containing composite oxide was 0.05% by mass.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
  • Example 12 After 99.86 parts by mass of the lithium-containing composite oxide synthesized in Example 5 and 0.14 parts by mass of ZrO 2 powder were dry-mixed, the surface was baked at 700 ° C. for 12 hours in an oxygen atmosphere, so that the surface was Zr oxidized. Lithium-containing composite oxide coated with a product was synthesized. The ratio of Zr in the whole lithium-containing composite oxide particles was 0.10% by mass. A positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
  • Example 13 A lithium-containing composite oxide whose surface was coated with a Ti oxide was synthesized in the same manner as in Example 12 except that 0.09 part by mass of TiO 2 powder was used instead of 0.14 part by mass of ZrO 2 powder. The ratio of Ti in the whole lithium-containing composite oxide particles was 0.05% by mass. A positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
  • Example 14 90 parts by mass of lithium-containing composite oxide (number average particle size: 20 ⁇ m) synthesized in Example 5 and Li 1.02 Mn 1.95 Al 0.02 Mg 0.02 Ti 0.01 O 4 (number average particles) (Diameter: 5 ⁇ m) After 10 parts by mass of dry mixing, 10 parts by mass of NMP solution containing PVDF as a binder at a concentration of 10% by mass was added and mixed to obtain composite particles.
  • a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this composite particle was used in place of the lithium-containing composite oxide.
  • Example 15 instead of Li 1.02 Mn 1.95 Al 0.02 Mg 0.02 Ti 0.01 O 4 , LiCo 0.975 Al 0.01 Mg 0.01 Ti 0.005 O 2 (number average particle diameter: Composite particles were prepared in the same manner as in Example 14 except that 6 ⁇ m) was used, and a positive electrode and a lithium secondary battery were produced in the same manner as in Example 14 except that this composite particle was used.
  • Example 16 instead of Li 1.02 Mn 1.95 Al 0.02 Mg 0.02 Ti 0.01 O 4 , LiMn 0.315 Co 0.33 Ni 0.33 Al 0.01 Mg 0.01 Ti 0.005 A composite particle was prepared in the same manner as in Example 14 except that O 2 (number average particle diameter: 6 ⁇ m) was used, and the positive electrode and lithium secondary were prepared in the same manner as in Example 14 except that this composite particle was used. A battery was produced.
  • Example 1 A coprecipitated compound was synthesized in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate and cobalt sulfate at concentrations of 3.79 mol / dm 3 and 0.42 mol / dm 3 was used. A hydroxide containing Ni and Co at a molar ratio of 90:10 was obtained in the same manner as in Example 1 except that the coprecipitation compound was used. A lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were used. Further, a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that this lithium-containing composite oxide was used.
  • Example 5 A positive electrode and a lithium secondary battery were produced in the same manner as in Example 1 except that commercially available Li 1.02 Ni 0.80 Co 0.15 Al 0.05 O 2 was used as the lithium-containing composite oxide.
  • the lithium-containing composite oxide was synthesized by firing in an atmosphere for 12 hours.
  • the positive electrode and the lithium secondary battery were produced like Example 1 except having used this lithium containing complex oxide.
  • the lithium-containing composite oxide was synthesized by firing in an atmosphere for 12 hours.
  • the positive electrode and the lithium secondary battery were produced like Example 1 except having used this lithium containing complex oxide.
  • Comparative Example 10 A lithium-containing composite oxide was used in the same manner as in Comparative Example 1 except that 0.196 mol of a hydroxide containing Ni and Co at a molar ratio of 90:10 and 0.190 mol of LiOH.H 2 O were used. Was synthesized. Furthermore, a positive electrode and a lithium secondary battery were produced in the same manner as in Comparative Example 1 except that this lithium-containing composite oxide was used.
  • Lithium was obtained in the same manner as in Comparative Example 3 except that 0.196 mol of a hydroxide containing Ni, Co, and Mn at a molar ratio of 90: 5: 5 and 0.190 mol of LiOH.H 2 O were used. Containing composite oxide was synthesized. Furthermore, a positive electrode and a lithium secondary battery were produced in the same manner as in Comparative Example 3 except that this lithium-containing composite oxide was used.
  • the average valences and X-rays of the constituent elements Ni, Co, Mn and Mg were the same as in Example 1.
  • the integrated intensity ratio [I (003) / I (104) ] in diffraction was measured.
  • Tables 1 and 2 show the compositions of the lithium-containing composite oxides used in the positive electrodes of Examples 1 to 13 and Comparative Examples 1 to 11, and Table 3 shows examples of Examples 1 to 13 and Comparative Examples 1 to 11.
  • the average valences of Ni, Co, Mn, and Mg, which are constituent elements of the lithium-containing composite oxide used for the positive electrode, and the integrated intensity ratio [I (003) / I (104) ] in X-ray diffraction are shown. .
  • the positive electrode discharge capacity was calculated by dividing the standard capacity by the mass of the lithium-containing composite oxide contained in the positive electrode.
  • the composition and the average valence of Ni, Mn, and Mg (and the average valence of Co) contain a lithium-containing composite oxide, and have a large capacity and excellent thermal stability.
  • the lithium secondary batteries of Examples 1 to 16 having the positive electrode have a large standard capacity, excellent safety, and good charge / discharge cycle characteristics.
  • Examples 6 and 7 in which x in the general composition formula (1) is less than 0 and the amount ratio of Li in the lithium-containing composite oxide is less than the stoichiometric ratio, the lithium in Examples 1 to 5 is used.
  • the gelation of the positive electrode mixture-containing paste could be suppressed and the paint stability could be improved as compared with the case where the containing composite oxide was used.
  • Example 6 and Example 7 since a stable crystal structure could be maintained even when x ⁇ 0, a lithium secondary battery was configured using a lithium-containing composite oxide with x ⁇ 0. Excellent characteristics equivalent to those of Examples 1 to 5 were obtained. Further, it can be seen that Examples 8 to 13 provided with a lithium-containing composite oxide containing Zr or Ti as the positive electrode show excellent cycle characteristics. This is presumably because surface activity could be suppressed without impairing the electrochemical properties of the lithium-containing composite oxide.
  • the lithium secondary batteries of Comparative Examples 1 to 7, Comparative Example 10 and Comparative Example 11 having positive electrodes containing lithium-containing composite oxides whose compositions do not satisfy the general formula (1) are the charge / discharge cycles. Low characteristics, poor safety, or small standard capacity.
  • the lithium secondary batteries of Comparative Example 8 and Comparative Example 9 provided with positive electrodes containing lithium-containing composite oxides whose average valences of Ni and Mn are not appropriate have reversibility of the crystal structure of the lithium-containing composite oxides. Since it is low, the standard capacity is small and the charge / discharge cycle characteristics are low.
  • the batteries of Examples 14 to 16 provided with positive electrodes mixed with other active materials having a higher operating voltage than the lithium-containing composite oxide, It can be seen that excellent cycle characteristics are exhibited in charge and discharge in a shallow region.
  • the lithium-containing composite oxide according to the present invention is less stable in the crystal structure in the discharge region where the DOD is up to about 10% than in the case where the discharge depth is deeper than that. When discharging is repeated, the excellent characteristics are not easily exhibited.
  • the active material having a high operating voltage when used in combination, the active material having a high operating voltage mainly contributes to discharge in the discharge region where the DOD is up to about 10%. Therefore, the above-described crystal structure in the lithium-containing composite oxide according to the present invention It is considered that the polarization of the electrode due to the instability of the electrode can be reduced.
  • capacitance and high stability can be provided, and the electrochemical element provided with the electrode for electrochemical elements is high capacity
  • the electrochemical device of the present invention is used for power supplies of various electronic devices such as portable electronic devices such as mobile phones and notebook personal computers, as well as electric tools, automobiles, bicycles, and power storages where safety is important. It can also be applied to other uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の電気化学素子用電極は、一般組成式:Li1+xMO(1)で表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備え、前記一般組成式(1)において、-0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表し、前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8であり、前記Niの平均価数が2.5~3.2価、前記Mnの平均価数が3.5~4.2価及び前記Mgの平均価数が1.8~2.2価であることを特徴とする。

Description

電気化学素子用電極及びそれを用いた電気化学素子
 本発明は、電池、キャパシタなどの電気化学素子に用い得る電極と、その電極を用いた電気化学素子に関する。
 近年、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量で且つ高容量の二次電池やキャパシタなどの電気化学素子が必要とされるようになってきた。現在、この要求に応え得る高容量二次電池やキャパシタには、一般に、LiCoO、LiNiO、LiMnなどが正極活物質として用いられている。
 特に高容量の電池やキャパシタを構成し得る正極活物質として、LiNiOが挙げられるが、これは充電状態での結晶構造の安定性がLiCoOよりも低く、そのままでは電池やキャパシタの安全性を満足することが困難であった。また。LiNiOは、充放電サイクル寿命についても、結晶構造の可逆性の低さから、満足のいくものではなかった。
 このような事情を受けて、LiNiOの充電状態の結晶構造を保持させるために、Co、Al、Mgなどの元素でNiの一部を置換したリチウム含有複合酸化物が提案されており、これにより、安全性や可逆性の改良が試みられている(例えば、特許文献1。)。
特開2007-273108号公報
 しかしながら、特許文献1に記載されているようなリチウム含有複合酸化物は、初期充放電効率が低いために容量低下が大きくなりやすく、また、真密度が低いために電極としたときの容量を高め難いこともあり、電気化学素子の更なる高容量化の点で未だ改善の余地があり、更には、電気化学素子の充放電サイクル特性の点でも改良の余地がある。
 本発明は、上記事情に鑑みてなされたものであり、高容量で安定性が高い電気化学素子用電極、及びその電気化学素子用電極を備え、高容量で、充放電サイクル特性及び安全性に優れた電気化学素子を提供する。
 本発明の電気化学素子用電極は、
 下記一般組成式(1)
 Li1+xMO                (1)
で表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備えた電気化学素子用電極であって、
 前記一般組成式(1)において、
 -0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表し、
 前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8であり、
 前記Niの平均価数が2.5~3.2価、前記Mnの平均価数が3.5~4.2価及び前記Mgの平均価数が1.8~2.2価であることを特徴とする。
 また、本発明の電気化学素子は、正極と、負極と、非水電解質とを含む電気化学素子であって、前記正極が、請求項1~14のいずれかに記載の電気化学素子用電極であることを特徴とする。
 本発明によれば、高容量で安定性が高い電気化学素子用電極を提供でき、また、その電気化学素子用電極を備え、高容量で、充放電サイクル特性及び安全性に優れた電気化学素子を提供できる。
図1Aは、本発明に係るリチウム二次電池の平面概略図であり、図1Bは、図1Aの断面概略図である。 図2は、本発明に係るリチウム二次電池の外観概略図である。
 (実施形態1)
 先ず、本発明の電気化学素子用電極(以下、単に「電極」という場合がある。)を説明する。本発明の電気化学素子用電極は、一般組成式(1):Li1+xMOで表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備えている。また、上記一般組成式(1)において、-0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表す。また、上記元素群Mの全元素数に対する、上記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8である。また、上記Niの平均価数は2.5~3.2価であり、上記Mnの平均価数は3.5~4.2価であり、上記Mgの平均価数は1.8~2.2価である。
 上記リチウム含有複合酸化物は、リチウム二次電池などの電気化学素子の正極活物質として作用し、上記リチウム含有複合酸化物を活物質として使用することにより、高容量で安定性が高い電気化学素子用電極を提供できる。
 <リチウム含有複合酸化物>
 以下、本発明の電極に用いる上記リチウム含有複合酸化物について説明する。本発明の電極に用いる上記リチウム含有複合酸化物は、少なくともNi、Mn及びMgを含む元素群Mを含有している。
 上記Niは、リチウム含有複合酸化物の容量向上に寄与する成分である。上記リチウム含有複合酸化物を表す上記一般組成式(1)における元素群Mの全元素数を100mol%としたとき、Niの元素数の割合a(mol%)は、リチウム含有複合酸化物の容量向上を図る観点から、70mol%以上とする。但し、元素群M中のNiの割合が多すぎると、例えば、MnやMgの量が減って、これらによる効果が小さくなる。よって、上記Niの元素数の割合a(mol%)は、97mol%以下とする。
 本発明では、元素群M中のNiの割合を上記のように調整することで、上記リチウム含有複合酸化物の容量を、リチウム金属基準で駆動電圧が2.5~4.3Vの場合、185mAh/g以上とすることができる。
 また、上記Niの平均価数が小さくなるほど、リチウム含有複合酸化物の電気伝導性が低下する。よって、上記リチウム含有複合酸化物は、後記の実施例で示す方法により測定されるNiの平均価数(A)が、2.5~3.2価である。また、これにより、リチウム金属基準で駆動電圧が2.5~4.3Vとした場合に、高容量のリチウム含有複合酸化物とすることができる。
 また、上記リチウム含有複合酸化物は、元素群Mの全元素数を100mol%としたとき、Mnの元素数の割合b(mol%)及びMgの元素数の割合c(mol%)を、0.5<b<30及び0.5<c<30とし、且つ-10<b-c<10及び-8≦(b-c)/c≦8として、その結晶格子中にMn及びMgを存在させている。これにより、Liの脱離及び挿入によってリチウム含有複合酸化物の相転位が起こる際に、Mg2+がLiサイトに転位することから不可逆反応が緩和され、空間群R3-mとして表されるリチウム含有複合酸化物の層状の結晶構造の可逆性が向上する。また、4価のMnが2価のMgを安定させることから、充放電サイクル寿命の長い電気化学素子を構成することが可能となる。
 上記Mnによる2価のMgを安定させる効果をより良好に確保する観点からは、元素群Mの全元素中におけるMnの割合bは、1mol%以上であることが好ましく、2mol%以上であることがより好ましく、一方、10mol%以下であることが好ましく、7mol%以下であることがより好ましい。また、上記Mgによるリチウム含有複合酸化物の層状の結晶構造の可逆性向上の効果をより良好に確保する観点からは、元素群Mの全元素中におけるMgの割合cは、1mol%以上であることが好ましく、2mol%以上であることがより好ましい。但し、Mgは充放電容量への関与が小さいために、添加量が多いと容量の低下を招く虞がある。よって、上記Mgの割合cは、15mol%以下であることが好ましく、10mol%以下であることがより好ましく、7mol%以下であることが更に好ましい。そして、MnとMgの組成比の差が小さいのが望ましく、-3≦b-c≦3であることが好ましく、また、-2≦(b-c)/c≦2であることが好ましい。
 上記リチウム含有複合酸化物において、Mgの平均価数は、リチウム含有複合酸化物の結晶構造の可逆性を高める観点から、後記の実施例で示す方法により測定される値で、1.8~2.2価である。また、上記リチウム含有複合酸化物において、Mnの平均価数は、Mgを安定化させて、その作用を有効に発揮させ得るようにする観点から、後記の実施例で示す方法により測定される値で、3.5~4.2価である。
 上記リチウム含有複合酸化物を表す上記一般式(1)における元素群Mは、少なくともNi、Mn及びMgを含むものであり、これら3種の元素のみからなる元素群であってもよい。
 また、上記Mは、Ni、Mn及びMgに加えて、更にCoも含む4種以上の元素群であってもよい。元素群MがCoを含む場合には、Coがリチウム含有複合酸化物の結晶格子中に存在することで、電気化学素子の充放電でのLiの脱離及び挿入によってリチウム含有複合酸化物の相転位から起こる不可逆反応を更に緩和することができ、リチウム含有複合酸化物の結晶構造の可逆性を高めることができる。これにより、充放電サイクル寿命の長い電気化学素子を構成することが可能となる。
 上記元素群MがCoを含む場合、元素群Mの全元素数を100mol%としたとき、Coの元素数の割合d(mol%)は、元素群Mを構成する他の元素(Ni、Mn及びMg)の量が少なくなることによって、これらの元素による効果が小さくなることを抑制する観点から、0<d<30であることが好ましい。上記Coによるリチウム含有複合酸化物の結晶構造の可逆性向上の効果をより良好に確保する観点からは、上記Coの割合dは、1mol%以上であることがより好ましい。
 更に、上記リチウム含有複合酸化物におけるCoの平均価数は、Coによる上記効果を良好に確保する観点から、後記の実施例で示す方法により測定される値で、2.5~3.2価であることが好ましい。
 上記リチウム含有複合酸化物を表す上記一般組成式(1)における元素群Mは、Ni、Mn、Mg及びCo以外の元素を含んでいてもよく、例えば、Ti、Cr、Fe、Cu、Zn、Al、Ge、Sn、Ag、Ta、Nb、Mo、B、P、Zr、Ga、Ba、Sr、Ca、Si、W及びSなどの元素を含んでいても構わない。但し、本発明の効果を十分に得るためには、元素群Mの全元素数を100mol%としたとき、Ni、Mn、Mg及びCo以外の元素の元素数の割合は、15mol%以下とすることが好ましく、3mol%以下とすることがより好ましい。元素群MにおけるNi、Mn、Mg及びCo以外の元素は、リチウム含有複合酸化物中に均一に分布していてもよく、また、粒子表面などに偏析していてもよい。
 上記元素の中でも、元素群Mは、Zr又はTiを含むことが好ましい。これらの元素を含有することにより、充放電サイクル特性のより一層の向上が可能となる。Zr及びTiは、リチウム含有複合酸化物中に均一に存在していてもよいが、リチウム複合酸化物の表面に偏在させることがより好ましい。リチウム含有複合酸化物の電気化学特性を損なうことなく、その表面活性を抑制して、充放電サイクル特性、高温貯蔵特性及び熱的安定性に優れた活物質とする効果が発揮されやすくなるためである。従って、リチウム含有複合酸化物の表面を、Zr酸化物、Ti酸化物などの、Zr又はTiの化合物で被覆するものであってもよい。これにより、リチウム含有複合酸化物の粒子表面の不純物や副生成物を減少させることができ、リチウム含有複合酸化物を含むペースト、スラリーなどの組成物を用いて電極合剤層を形成する際に、組成物のゲル化などを抑制することができ、塗料安定性も向上することができる。
 上記Zr又はTiの含有量は、リチウム含有複合酸化物の容量低下を防ぐために、Zr及びTiを含むリチウム複合酸化物粒子全体(粒子表面にZr化合物又はTi化合物の被覆を有する場合は、上記被覆部も含めた粒子全体)の5質量%以下とするのが好ましく、1質量%以下とするのがより好ましい。一方、リチウム含有複合酸化物の表面活性を抑制する効果を十分に発揮させるためには、0.001質量%以上含有させることが好ましい。
 上記組成を有するリチウム含有複合酸化物では、その真密度が4.55~4.95g/cmと大きな値になり、活物質の質量あたりの容量を大きくすることができ、可逆性に優れた材料とすることができる。
 また、上記リチウム含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなるため、本発明では上記一般組成式(1)において、-0.3≦x≦0.3とする。xの値をこのように調整することで、真密度及び可逆性を高めることができる。xは、-0.1以上0.1以下であることがより好ましく、この場合には、リチウム含有複合酸化物の真密度を4.6g/cm以上と、より高い値にすることができる。
 ここで、x<0の場合、即ち化学量論比よりもLiが不足する場合には、リチウム含有複合酸化物の合成において、その層状構造を構成するLi層のLiサイトにNiが入り込み、構造不整を生じやすくなる。X線回折図形において、(003)面及び(104)面でのそれぞれの回折線の積分強度をI(003)及びI(104)とすると、安定な構造とするためには、その比の値〔積分強度比:I(003)/I(104)〕は1.2以上であることが望ましいが、上記のような構造不整が生じた場合、積分強度比が1.2よりも小さくなり、充放電容量が減少してサイクル特性が低下してしまう。
 しかし、Mgを結晶中に固溶させることにより、x<0の場合であってもLi層の形成が容易となり、Li層にNiが入り込むのを防ぐことができるので、積分強度比I(003)/I(104)を1.2以上とすることができ、結晶構造の可逆性が高まり、高容量で且つ優れたサイクル特性を有するリチウム含有複合酸化物を得ることができる。
 また、化学量論比よりもLi量比が少なくなるよう組成を設計することにより、リチウム含有複合酸化物の合成時に、Liの仕込み量を低減することができるので、余剰となるLiCOやLiOHの生成あるいはそれらの残留を防止することができ、上記余剰化合物により生じる合剤塗料の質の低下が抑制され、塗料作製及びその品質維持が容易になる。
 上記リチウム含有複合酸化物は、その表面の活性を適度に抑えることで、本発明の電極を用いた電気化学素子において、ガス発生を抑制し、特に角形(角筒形)の外装体を有する電池とした場合に外装体の変形を抑えて、貯蔵性や寿命を向上させることができる。このような効果を確保する観点から、上記リチウム含有複合酸化物は、以下の形態を有することが好ましい。
 先ず、上記リチウム含有複合酸化物の粒子は主として一次粒子が集合してなる二次粒子からなり、上記一次粒子の全体積に対する、粒径が1μm以下の一次粒子の体積割合が、30体積%以下であることが好ましく、15体積%以下であることがより好ましい。また、上記リチウム含有複合酸化物の粒子のBET比表面積は、0.3m/g以下であることが好ましく、0.25m/g以下であることがより好ましい。
 即ち、上記リチウム含有複合酸化物において、全一次粒子中における粒径が1μm以下の一次粒子の割合が大きすぎたり、BET比表面積が大きすぎる場合には、リチウム含有複合酸化物の反応面積が大きくなり、活性点が多くなる。このため、大気中の水分;これを活物質として使用する電極の電極合剤層の形成に用いる結着剤;及び上記電極を有する電気化学素子の非水電解質;と、リチウム含有複合酸化物との不可逆な反応が起こりやすくなる。これにより、電気化学素子内でガスが発生して外装体が変形したり、電極合剤層の形成に使用する溶剤を含む組成物(ペースト、スラリーなど)がゲル化したりする問題が発生しやすくなる。
 上記リチウム含有複合酸化物は、粒径が1μm以下の一次粒子を全く含まなくてもよい。即ち、粒径が1μm以下の一次粒子の割合が0体積%であってもよい。また、上記リチウム含有複合酸化物のBET比表面積は、その反応性が必要以上に低下することを防ぐために、0.1m/g以上であることが好ましい。更に、凝集していない一次粒子と、一次粒子が凝集して形成された二次粒子とからなる上記リチウム含有複合酸化物の粒子全体の数平均粒子径は、5~25μmであることが好ましい。この範囲内であれば、BET比表面積を適切な範囲に制御できるからである。
 上記リチウム含有複合酸化物に含まれる、粒径が1μm以下の一次粒子の割合、及びリチウム含有複合酸化物の粒子全体の数平均粒子径、更には、後記の他の活物質の数平均粒子径は、レーザー回折散乱式粒度分布測定装置、例えば、日機装社製「マイクロトラックHRA」などにより測定することができる。後記の実施例に示す値は、この方法により測定した値である。また、上記リチウム含有複合酸化物のBET比表面積は、多分子層吸着の理論式であるBET式を用いて測定したものである。具体的には、Mountech社製の窒素吸着法による比表面積測定装置「Macsorb HM modele-1201」を用いて、BET比表面積として得た値である。
 上記リチウム含有複合酸化物は、これを活物質として使用する電極に係る電極合剤層の密度を高め、電極の容量、ひいては電気化学素子の容量をより高める観点から、その粒子形状が、球状又は略球状であることが好ましい。これにより、電極作製時のプレス工程(詳しくは後述する)において、プレス処理によってリチウム含有複合酸化物の粒子を移動させて電極合剤層の密度を高める際に、粒子の移動が無理なく行われ、粒子がスムーズに再配列されるようになる。そのため、プレス荷重を小さくすることができることから、プレスに伴う集電体のダメージを軽減でき、電極の生産性を高めることが可能となる。また、上記リチウム含有複合酸化物の粒子が、球状又は略球状の場合には、粒子がより大きなプレス圧にも耐えることができるため、電極合剤層をより高密度とすることも可能となる。
 更に、上記リチウム含有複合酸化物は、電極合剤層における充填性を高める観点から、タップ密度が、2.4g/cm以上であることが好ましく、2.8g/cm以上であることがより好ましい。即ち、タップ密度が高く、粒子内部に空孔を有さないか、粒子の断面観察から測定される1μm以下の微小な空孔の面積比率が10%以下であるような、空孔の割合の少ない粒子とすることで、電極合剤層でのリチウム含有複合酸化物の充填性を高めることができる。
 上記リチウム含有複合酸化物のタップ密度は、ホソカワミクロン社製のタップ密度測定装置「パウダテスタPT-S型」を用い、以下のようにして求められる値である。即ち、測定用カップ100cmに測定粒子をすり切り一杯に入れ、体積が減少した分を適宜補充しながら180秒間タッピングを行う。タッピング終了後、余分な粒子をブレードですり切った後、測定粒子の質量:T(g)を測定し、次式にてタップ密度を求める。
 タップ密度(g/cm)=T/100
 <リチウム含有複合酸化物の製造方法>
 次に、上記リチウム含有複合酸化物の製造方法について説明する。上記リチウム含有複合酸化物は、Li含有化合物、Ni含有化合物、Mn含有化合物及びMg含有化合物などを単純に混合して焼成するだけでは、高い純度で得ることが非常に困難である。これは、Ni、Mn、Mgなどは、固体中での拡散速度が遅いため、リチウム含有複合酸化物の合成反応時に、これらを均一に拡散させることが困難であり、生成したリチウム含有複合酸化物中にNi、Mn、Mgなどが均一に分布し難いことが原因であると考えられる。
 本発明に係るリチウム含有複合酸化物を製造する際には、少なくとも、Ni、Mn及びMg(元素群MがCoも含む場合には、更にCo)を構成元素として含有する複合化合物と、Li含有化合物とを焼成する方法を採用することが好ましく、このような方法によって、上記リチウム含有複合酸化物を、高い純度で比較的容易に合成できる。即ち、あらかじめ、少なくともNi、Mn及びMg(更にはCo)を含有する複合化合物を製造しておき、これをLi含有化合物と共に焼成することにより、酸化物形成反応において、Ni、Mn及びMg(更にはCo)が均一に分布し、リチウム含有複合酸化物がより高純度で合成される。
 本発明に係るリチウム含有複合酸化物の製造方法は、上記方法に限定されるものではないが、どのような製造過程を経るかによって、生成するリチウム複合酸化物の物性、即ち、構造の安定性や充放電の可逆性、真密度などが大きく変化するものと推測される。
 ここで、少なくともNi、Mn及びMg(更にはCo)を含有する複合化合物としては、例えば、Ni、Mn及びMg(更にはCo)を含む共沈化合物、水熱合成された化合物、メカニカル合成された化合物、及びそれらを熱処理して得られる化合物などが挙げられ、Ni0.7Mn0.1Mg0.2(OH)、Ni0.9Co0.05Mn0.03Mg0.02(OH)などの、NiとMnとMgとの酸化物又は水酸化物や、NiとMnとMgとCoとの酸化物又は水酸化物が好ましい。
 上記共沈化合物は、例えば、Ni、Mn、Mg、Coなどの構成元素の硫酸塩、硝酸塩などを所定の割合で溶解させた水溶液を水酸化アルカリ水溶液に添加して反応させることにより、これら構成元素の共沈水酸化物として得ることができる。
 上記水酸化アルカリ水溶液の代わりに、水酸化アルカリによりpHをおよそ10~13の範囲に調整したアンモニア水を用いてもよい。即ち、アンモニア水の温度をおよそ40~60℃の範囲で一定に保ち、アンモニア水のpHが上記範囲で一定に保たれるようアルカリ水溶液を添加しながら、上記アンモニア水に上記硫酸塩、硝酸塩などを溶解させた水溶液を徐々に添加して共沈化合物を析出させる。これにより、共沈化合物の構成元素が均一に分布し、合成したリチウム含有複合酸化物のNi、Mn及びMg(更にはCo)の平均価数を前述の本発明の範囲に制御しやすくなる。
 上記元素群Mの一部に、Ni、Mn、Mg及びCo以外の元素、例えば、Ti、Cr、Fe、Cu、Zn、Al、Ge、Sn、Ag、Ta、Nb、Mo、B、P、Zr、Ga、Ba、Sr、Ca、Si、W及びSよりなる群から選択される少なくとも1種の元素(以下、これらを纏めて「元素M'」という。)を含有する上記リチウム含有複合酸化物を製造する場合には、少なくともNi、Mn及びMg(更にはCo)を含有する複合化合物と、Li含有化合物と、元素M'含有化合物とを混合して焼成することにより製造できるが、可能であれば、少なくともNi、Mn及びMg(更にはCo)と、更に元素M'も含有する複合化合物を用いることが好ましい。また、上記複合化合物におけるNi、Mn、Mg及びM'の量比や、Ni、Mn、Mg、Co及びM'の量比は、目的とするリチウム含有複合酸化物の組成に応じて適宜調整すればよい。
 上記リチウム含有複合酸化物の粒子の製造に用い得るLi含有化合物としては、種々のリチウム塩を用いることができ、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられ、それらの中でも、炭酸ガス、窒素酸化物、硫黄酸化物などの環境に悪影響を及ぼすガスが発生しない点で、水酸化リチウム・一水和物が好ましい。
 以上より、上記リチウム含有複合酸化物を製造するには、先ず、少なくともNi、Mn及びMgを含有する複合化合物(更にはCoや元素M'を含有する複合化合物)と、Li含有化合物と、必要に応じて使用される元素M'含有化合物とを、目的とするリチウム含有複合酸化物の組成にほぼ応じた比率で混合する。そして、得られた原料混合物を、例えば、600~1000℃で1~24時間焼成することで、上記リチウム含有複合酸化物を得ることができる。
 また、ZrあるいはTiを含有するリチウム含有複合酸化物を製造する方法としては、以下の方法を例示することができる。
 先ず、Ni、Mn、Mg、Coなどの構成元素の硫酸塩、硝酸塩などを所定の割合で溶解させた水溶液を水酸化アルカリ水溶液に添加して反応させ、これら構成元素の共沈水酸化物を得る。次に、これを十分に水洗して乾燥した後、この共沈水酸化物に、リチウム塩とZrO又はTiOなどの化合物とを加えて十分に混合する。その後、この混合物を所定の温度で焼成して反応させることによりリチウム含有複合酸化物が得られる。
 上記水酸化アルカリ水溶液の代わりに、前述のように水酸化アルカリによりpHをおよそ10~13の範囲に調整したアンモニア水を用いてもよい。
 また、共沈水酸化物とリチウム塩とZr化合物又はTi化合物とを混合し焼成する方法ではなく、共沈化合物を析出させた反応溶液に、更にZr化合物又はTi化合物を加えることにより、上記構成元素の共沈水酸化物をZr化合物又はTi化合物で被覆した複合体を形成することができるので、これをリチウム塩とともに焼成してリチウム含有複合酸化物とする方法であってもよい。
 また、リチウム含有複合酸化物の表面をZr化合物又はTi化合物で被覆する方法としては、リチウム含有複合酸化物とZr化合物又はTi化合物とを混合し、その混合物を100~1000℃程度の温度で焼成する方法を例示することができる。
 上記原料混合物の焼成に際しては、一度に所定温度まで昇温するよりも、一旦焼成温度よりも低い温度(例えば、250~850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましく、また、焼成環境の酸素濃度を一定に保つことが好ましい。
 これは、本発明に係る上記リチウム含有複合酸化物の生成過程において、3価のNiが不安定であるために非化学量論組成となりやすいことから、少なくともNi、Mn及びMgを含有する複合化合物(更にはCoや元素M'を含有する複合化合物)と、Li含有化合物と、必要に応じて使用される元素M'含有化合物との反応を段階的に生じさせて、生成するリチウム含有複合酸化物の均質性を高め、また、生成したリチウム含有複合酸化物を安定して結晶成長させるためである。即ち、一度に焼成温度まで昇温した場合や、焼成環境の酸素濃度が焼成途中に低下するような場合には、少なくともNi、Mn及びMgを含有する複合化合物(更にはCoや元素M'を含有する複合化合物)と、Li含有化合物と、必要に応じて使用される元素M'含有化合物との反応が不均一になりやすく、生成したリチウム含有複合酸化物がLiを放出しやすいなど、組成の均一性が損なわれやすい。
 上記予備加熱の時間については特に制限はないが、通常、0.5~30時間程度とすればよい。
 また、上記原料混合物の焼成時の雰囲気は、酸素を含むガス雰囲気とする。例えば、大気雰囲気、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合ガス雰囲気、酸素ガス雰囲気などとすることができる。焼成時の雰囲気の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。また、焼成時の雰囲気の酸素濃度を一定に維持するために、上記酸素を含むガスを連続的にフローさせた雰囲気中で上記原料混合物の焼成を行うことが好ましい。リチウム含有複合酸化物の製造コストを低減して、その生産性、ひいては電極の生産性を高める観点からは、大気フロー中で上記原料混合物の焼成を行うことが、より好ましい。
 上記原料混合物の焼成時における上記酸素を含むガスの流量は、上記原料混合物100gあたり2dm/分以上とすることが好ましい。上記ガスの流量が少なすぎる場合、即ちガス流速が遅すぎる場合には、上記リチウム含有複合酸化物の組成の均質性が損なわれる虞がある。また、上記原料混合物の焼成時における上記ガスの流量は、上記原料混合物100gあたり5dm/分以下とすることが好ましい。これにより酸素を含むガスを効率よく使用できる。
 また、上記原料混合物を焼成する工程では、乾式混合された混合物をそのまま用いてもよいが、原料混合物をエタノールなどの溶媒に分散させてスラリー状にし、遊星型ボールミルなどで30~60分間程度混合し、これを乾燥させたものを用いることが好ましい。このような方法によって、製造されるリチウム含有複合酸化物の均質性を更に高めることができる。
 <電極合剤層>
 次に、本発明の電極に用いる電極合剤層について説明する。本発明の電極は、上記本発明に係るリチウム含有複合酸化物を活物質として含有する電極合剤層を備えているが、電極合剤層は、他の活物質を含んでいてもよい。本発明に係るリチウム含有複合酸化物以外の他の活物質としては、例えば、LiCoO、LiCo1-xNiなどのリチウムコバルト酸化物;LiMnO、LiMnO、LiMnなどのリチウムマンガン酸化物;LiNiO、LiNi1-x-yCoAlなどのリチウムニッケル酸化物;のほか、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;上記の酸化物を基本組成としその構成元素を各種元素で置換した酸化物;などを用いることができる。特に、本発明に係るリチウム含有複合酸化物に比べて作動電圧の高いLiCoOなどの層状構造の活物質や、LiMnなどのスピネル構造の活物質を、本発明に係るリチウム含有複合酸化物と併用して電池を構成すれば、例えば、放電深度が10%程度の範囲での充放電の繰り返し、即ち、電池を組み込んだ機器が実際に使用される際の条件に相当する、短時間での使用(=放電)と充電の繰り返しにおける充放電サイクル特性を高めることが可能となる。本発明に係るリチウム含有複合酸化物以外の他の活物質を用いる場合、他の活物質の割合は質量比で活物質全体の1%以上とするのが望ましく、5%以上とするのがより望ましい。一方、本発明の効果を明確にするために、他の活物質の割合は質量比で活物質全体の30%以下とすることが望ましく、20%以下とすることがより望ましい。
 上記他の活物質のうち、リチウムコバルト酸化物としては、上記例示のLiCoOの他、LiCoOのCoの一部をTi、Cr、Fe、Ni、Mn、Cu、Zn、Al、Ge、Sn、Mg、Ga、W、Ba及びZrよりなる群から選択される少なくとも1種の元素で置換した酸化物(但し、本発明に係る上記リチウム含有複合酸化物は除く)が好ましい。これらのリチウムコバルト酸化物は、その導電率が1.0×10-3S・cm-1以上と高く、電極の負荷特性をより高め得るからである。
 また、上記他の活物質のうち、スピネル構造のリチウム含有複合酸化物としては、上記例示のLiMn及びLi4/3Ti5/3の他、LiMnのMnの一部を、Ti、Cr、Fe、Ni、Co、Cu、Zn、Al、Ge、Sn、Mg、Ga、W、Ba及びZrよりなる群から選択される少なくとも1種の元素で置換した酸化物が好ましい。これらのスピネル構造のリチウム含有複合酸化物は、リチウムの引き抜き可能量が、コバルト酸リチウムやニッケル酸リチウムなどのリチウム含有酸化物の1/2であるため、過充電時などの安全性に優れており、電気化学素子の安全性を更に高めることができるからである。
 本発明に係るリチウム含有複合酸化物と、他の活物質とを併用する場合には、これらを単に混合して用いてもよいが、これらの粒子を造粒などにより一体化した複合粒子として使用することがより好ましく、この場合には、電極合剤層における活物質の充填密度が向上し、活物質粒子相互間の接触をより確実にすることができる。そのため、本発明の電極を用いた電気化学素子の容量及び負荷特性を更に高めることができる。
 また、両者を乾式混合し、更に結着剤などと共に二軸混練機を用いて塗料化する工程により合剤層を形成するのであってもよい。
 また、本発明に係るリチウム含有複合酸化物において、上記リチウムコバルト酸化物との複合粒子の使用に際し、上記リチウム含有複合酸化物の表面に上記リチウムコバルト酸化物が存在することで、複合粒子から溶出したMnとCoとが、複合粒子の表面に速やかに析出して被膜を形成するため、複合粒子が化学的に安定化する。これにより、複合粒子による電気化学素子内の非水電解質の分解を抑制でき、また、更なるMnの溶出を抑えることができるため、貯蔵性及び充放電サイクル特性がより優れた電気化学素子を構成することができるようになる。
 上記複合粒子とする場合、本発明に係るリチウム含有複合酸化物と他の活物質のいずれか一方の数平均粒子径が、他方の数平均粒子径の1/2以下であることが好ましい。このように、大きな数平均粒子径の粒子(以下、「大粒子」という。)と、小さな数平均粒子径の粒子(以下、「小粒子」という。)とを組み合わせて複合粒子を形成する場合には、小粒子が、大粒子の周囲に分散、定着しやすくなり、より均一な混合比の複合粒子を形成することができる。そのため、電極内での不均一な反応を抑えることができ、電気化学素子の充放電サイクル特性や安全性を更に高めることが可能となる。
 上記のように大粒子と小粒子とを使用して複合粒子を形成する場合、大粒子の数平均粒子径は、10~30μmであることが好ましく、また、小粒子の数平均粒子径は、1~15μmであることが好ましい。
 本発明に係るリチウム含有複合酸化物と他の活物質との複合粒子は、例えば、上記リチウム含有複合酸化物の粒子と他の活物質の粒子とを、一般的な一軸混練機や二軸混練機などの種々の混練機を用いて混合し、粒子同士を摺り合せてシェアをかけることで複合化して得ることができる。また、上記混練は、複合粒子の生産性を考慮すれば、原料を連続的に供給する連続混練方式が好ましい。
 上記混練の際には、上記各活物質粒子に、更に結着剤を加えることが好ましい。これにより、形成される複合粒子の形状を強固に保つことができる。また、導電助剤も加えて混練することがより好ましい。これにより、活物質粒子間の導電性を更に高めることができる。
 上記複合粒子の製造時に添加する結着剤としては、電気化学素子内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン(PHFP)、スチレンブタジエンゴム(SBR)、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体;又は、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体及びそれら共重合体のNaイオン架橋体などが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、電気化学素子内での安定性や電気化学素子の特性などを考慮すると、PVDF、PTFE、PHFPが好ましい。
 上記複合粒子を形成する場合の結着剤の添加量は、複合粒子を安定化できれば少ないほど好ましく、例えば、全活物質100質量部に対して、0.03~2質量部であることが好ましい。
 上記複合粒子の製造時に添加する導電助剤としては、電気化学素子内で化学的に安定なものであればよい。例えば、天然黒鉛、人造黒鉛などのグラファイト、アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維、金属繊維などの導電性繊維;アルミニウム粉などの金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウムなどからなる導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電性の高いグラファイトと、吸液性に優れたカーボンブラックが好ましい。また、上記導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャーなどの集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性が良好となる。
 上記複合粒子を形成する場合の導電助剤の添加量は、導電性と吸液性が良好に確保できればよく、例えば、全活物質100質量部に対して、0.1~2質量部であることが好ましい。
 また、上記複合粒子の空孔率は、5~15%であることが好ましい。このような空孔率を有する複合粒子であれば、非水電解質(非水電解液)との接触や、非水電解質の複合粒子への浸透が適度となるからである。
 更に、上記複合粒子の形状も、本発明に係るリチウム含有複合酸化物と同様に、球状又は略球状であることが好ましい。これにより、電極合剤層の更なる高密度化が可能となる。
 <電気化学素子用電極の製造方法>
 次に、本発明の電極の製造方法について説明する。本発明の電極は、例えば、上記リチウム含有複合酸化物や上記複合粒子を活物質として含む電極合剤層を、集電体の片面又は両面に形成することにより製造することができる。
 上記電極合剤層は、例えば、上記リチウム含有複合酸化物又は上記複合粒子と、結着剤と、導電助剤とを溶剤に添加してペースト状やスラリー状の電極合剤含有組成物を調製し、これを種々の塗工方法によって集電体表面に塗布し、乾燥し、更にプレス工程によって電極合剤層の厚さや密度を調整することにより形成することができる。
 上記電極合剤含有組成物を集電体の表面に塗布する際の塗工方法としては、例えば、ドクターブレードを用いた基材引き上げ方式;ダイコータ、コンマコータ、ナイフコータなどを用いたコータ方式;スクリーン印刷、凸版印刷などの印刷方式;などを採用することができる。
 上記電極合剤含有組成物の調製に用い得る結着剤及び導電助剤としては、前述の複合粒子の形成に用い得るものとして例示した各種結着剤及び各種導電助剤と同様のものを使用できる。
 上記電極合剤層においては、上記リチウム含有複合酸化物を含む全活物質を、80~99質量%とし、結着剤(複合粒子中に含有されるものを含む)を、0.5~10質量%とし、導電助剤(複合粒子中に含有されるものを含む)を、0.5~10質量%とすることが好ましい。
 また、プレス処理後において、上記電極合剤層の厚さは、集電体の片面あたり、15~200μmであることが好ましい。更に、プレス処理後において、上記電極合剤層の密度は、3.1g/cm以上であることが好ましく、3.52g/cm以上であることがより好ましい。このような高密度の電極合剤層を有する電極とすることで、より高容量化を図ることができる。但し、電極合剤層の密度が大きすぎると、空孔率が小さくなって、非水電解質の浸透性が低下する虞があることから、プレス処理後における電極合剤層の密度は、4.0g/cm以下であることが好ましい。プレス処理としては、例えば、1~100kN/cm程度の線圧でロールプレスすることができ、このような処理によって、上記密度を有する電極合剤層とすることができる。
 また、本明細書でいう電極合剤層の密度は、以下の方法により測定される値である。先ず、電極を所定面積に切り取り、その質量を最小目盛0.1mgの電子天秤を用いて測定し、集電体の質量を差し引いて電極合剤層の質量を算出する。一方、電極の全厚を最小目盛1μmのマイクロメーターで10点測定し、これらの測定値から集電体の厚みを差し引いた値の平均値と、面積とから、電極合剤層の体積を算出する。そして、上記電極合剤層の質量を上記体積で割ることにより電極合剤層の密度を算出する。
 上記電極の集電体の材質は、構成された電気化学素子において化学的に安定な電子伝導体であれば特に限定されない。例えば、アルミニウム又はアルミニウム合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などの他に、アルミニウム、アルミニウム合金又はステンレス鋼の表面に炭素層又はチタン層を形成した複合材などを用いることができる。これらの中でも、アルミニウム又はアルミニウム合金が特に好ましい。これらは、軽量で電子伝導性が高いからである。上記集電体には、例えば、上記材質からなるフォイル、フィルム、シート、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維状物の成形体などが使用される。また、集電体の表面に、表面処理を施して凹凸を付けることもできる。集電体の厚さは特に限定されないが、通常1~500μmである。
 本発明の電極は、上記の製造方法により製造されたものに限定されず、他の製造方法により製造されたものであってもよい。例えば、上記複合粒子を活物質として使用する場合には、電極合剤含有組成物を用いずに、上記複合粒子を、そのまま集電体の表面に定着させて電極合剤層を形成する方法によって得られた電極であってもよい。
 また、本発明の電極には、必要に応じて、電気化学素子内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。
 (実施形態2)
 次に、本発明の電気化学素子について説明する。本発明の電気化学素子は、正極として実施形態1の電気化学素子用電極と、負極と、セパレータと、非水電解質とを備えている。
 本発明の電気化学素子は、正極として実施形態1の電気化学素子用電極を備えているので、高容量で、優れた充放電サイクル特性と高い安全性とを備えた電気化学素子とすることができる。
 本発明の電気化学素子は、特に限定されるものではなく、非水電解質を用いるリチウム二次電池の他、リチウム一次電池やスーパーキャパシタなどが含まれる。以下、特に主要な用途であるリチウム二次電池の構成を例示して説明する。
 上記負極には、例えば、負極活物質及び結着剤、更には必要に応じて導電助剤を含有する負極合剤からなる負極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
 上記負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、Liイオンを吸蔵・放出可能な炭素系材料の1種又は2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの単体及びその合金;リチウム含有窒化物;又はLiTi12などの酸化物などのリチウム金属に近い低電圧で充放電できる化合物;もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。
 上記負極は、これらの負極活物質に導電助剤や必要に応じて結着剤などを適宜添加した負極合剤を、負極集電体を芯材として成形体(負極合剤層)に仕上げたもの、又は上記各種合金やリチウム金属の箔を単独もしくは負極集電体の表面に積層したものなどが用いられる。
 上記結着剤及び上記導電助剤としては、実施形態1で例示した各種結着剤及び各種導電助剤と同様のものを使用できる。
 上記負極集電体の材質は、構成された電池において化学的に安定な電子伝導体であれば特に限定されない。例えば、銅又は銅合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などの他に、銅、銅合金又はステンレス鋼の表面に炭素層又はチタン層を形成した複合材などを用いることができる。これらの中でも、銅又は銅合金が特に好ましい。これらは、リチウムと合金化せず、電子伝導性も高いからである。上記負極集電体には、例えば、上記の材質からなるフォイル、フィルム、シート、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維状物の成形体などが使用できる。また、上記負極集電体の表面に、表面処理を施して凹凸を付けることもできる。上記負極集電体の厚みは特に限定されないが、通常1~500μmである。
 上記負極は、例えば、負極活物質及び結着剤、更には必要に応じて導電助剤を含有する負極合剤を溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を、負極集電体の片面又は両面に塗布し、乾燥して負極合剤層を形成することにより得ることができる。上記結着剤は溶剤に溶解していて用いてもよい。上記負極は上記製造方法により得られたものに限定されず、他の方法により製造したものであってもよい。上記負極合剤層の厚さは、負極集電体の片面あたり10~300μmであることが好ましい。
 上記セパレータは、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン;ポリエチレンテレフタレート、共重合ポリエステルなどのポリエステル;などで構成された多孔質膜であることが好ましい。上記セパレータは、100~140℃において、その孔が閉塞する性質、即ちシャットダウン機能を有していることが好ましい。そのため、セパレータの材質としては、融点、即ち、日本工業規格(JIS)K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100~140℃の熱可塑性樹脂を用いることが好ましい。例えば、ポリエチレンを主成分とする単層の多孔質膜、又は、ポリエチレンとポリプロピレンとを2~5層積層した積層多孔質膜などをセパレータとして使用できる。ポリエチレンなどの融点が100~140℃の樹脂と、ポリプロピレンなどのポリエチレンより融点の高い樹脂とを混合又は積層して用いる場合には、多孔質膜を構成する樹脂としてポリエチレンが30質量%以上であることが望ましく、50質量%以上であることがより望ましい。
 このような樹脂多孔質膜としては、例えば、従来から知られているリチウム二次電池などで使用されている上記例示の熱可塑性樹脂で構成された多孔質膜、即ち、溶剤抽出法、乾式又は湿式延伸法などにより作製されたイオン透過性の多孔質膜を用いることができる。
 上記セパレータの平均孔径は、好ましくは0.01μm以上、より好ましくは0.05μm以上であって、好ましくは1μm以下、より好ましくは0.5μm以下である。
 ガーレー値で示される上記セパレータの透気度は、10~500secであることが好ましい。ここでガーレー値とは、JIS P 8117に準拠した方法で測定されるもので、0.879g/mmの圧力下で100mLの空気が膜を透過する秒数で示される。上記透気度が大きすぎると、イオン透過性が小さくなる傾向があり、他方、上記透気度が小さすぎると、セパレータの強度が小さくなる傾向がある。
 また、上記セパレータの強度は、直径が1mmのニードルを用いた突き刺し強度で50g以上であることが好ましい。セパレータの突き刺し強度が小さすぎると、例えば、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生するおそれがある。
 本発明に係るリチウム二次電池は、その内部が150℃以上となった場合でも、本発明に係る上記リチウム含有複合酸化物が、熱的安定性に優れているため、その安全性を保つことができる。
 上記非水電解質には、電解質塩を溶媒に溶解させた溶液(非水電解液)を使用することができる。上記溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトンなどの非プロトン性有機溶媒が挙げられ、これらを1種単独で用いてもよく、これらの2種以上を併用してもよい。また、アミンイミド系有機溶媒や、含イオウ系又は含フッ素系有機溶媒なども用いることができる。これらの中でも、ECとMECとDECとの混合溶媒が好ましく、この場合、混合溶媒の全容量に対して、DECを15容量%以上80容量%以下の量で含むことがより好ましい。このような混合溶媒であれば、電池の低温特性や充放電サイクル特性を高く維持しつつ、高電圧充電時における溶媒の安定性を高めることができるからである。
 上記非水電解質に係る電解質塩としては、リチウムの過塩素酸塩;有機ホウ素リチウム塩;トリフロロメタンスルホン酸塩などの含フッ素化合物の塩;又はイミド塩などが好適に用いられる。このような電解質塩の具体例としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦5)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基を表す。〕、LiB(C〔リチウムビスオキサレートボレート(LiBOB)〕などが挙げられ、これらを1種単独で用いてもよく、これらの2種以上を併用してもよい。これらの中でも、LiPFやLiBFなどが、充放電特性が良好なことからより好ましい。上記溶媒中における上記電解質塩の濃度は特に限定されないが、通常0.5~1.7mol/Lである。
 また、上記非水電解質に安全性や充放電サイクル性、高温貯蔵性などの特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。Mnを含む活物質の表面活性を安定にできることから、硫黄元素を含む添加剤を加えることが特に好ましい。
 本実施形態のリチウム二次電池は、例えば、本発明の電極(正極)と上記負極とを、上記のセパレータを介して積層した電極積層体や、更にこれを渦巻状に巻回した電極巻回体を作製し、このような電極体と、上記非水電解質とを、常法に従い外装体内に封入して構成される。電池の形態としては、従来から知られているリチウム二次電池と同様に、筒形(円筒形や角筒形)の外装缶を使用した筒形電池や、扁平形(平面視で円形や角形の扁平形)の外装缶を使用した扁平形電池、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池などとすることができる。また、外装缶には、スチール製やアルミニウム製のものが使用できる。
 以下、実施例に基づいて本発明を詳細に述べる。但し、下記実施例は、本発明を制限するものではない。
 (実施例1)
 <リチウム含有複合酸化物の合成>
 水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.95mol/dm、0.13mol/dm、0.13mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとMnとMgとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に窒素ガスを1dm/分の流量でバブリングした。
 上記共沈化合物を水洗、濾過及び乾燥させて、NiとMnとMgとを94:3:3のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に700℃に昇温して酸素雰囲気中で12時間焼成することにより、リチウム含有複合酸化物を合成した。得られたリチウム含有複合酸化物は、乳鉢で粉砕して粉体とした後、デシケーター中で保存した。
 上記リチウム含有複合酸化物の粉体について、原子吸光分析装置で組成を測定したところ、Li1.02Ni0.94Mn0.03Mg0.03で表される組成であることが判明した。
 また、上記リチウム含有複合酸化物の状態分析を行うために、立命館大学SRセンターにおいて、住友電工社製の超伝導小型放射光源「オーロラ」のBL4ビームポートを用いて、X線吸収分光(XAS)分析を行った。得られたデータの解析は、文献[Journal of the Electrochemical Society,146 p2799-2809(1999)]に基づき、リガク電機社製の解析ソフト「REX」を用いて行った。
 先ず、上記状態分析に基づき、上記リチウム含有複合酸化物のNi、Mn及びMgのK吸収端位置をそれぞれ求めた。
 次に、上記リチウム含有複合酸化物のNiの平均価数を決定するために、標準サンプルとして、NiO及びLiNi0.5Mn1.5(いずれも平均価数が2価のNiを含有する化合物の標準サンプル)、並びにLiNi0.82Co0.15Al0.03(平均価数が3価のNiを含有する化合物の標準サンプル)を用いてリチウム含有複合酸化物と同様の状態分析を行い、各標準サンプルのNiのK吸収端位置とNiの価数との関係を表す回帰直線を作成した。上記リチウム含有複合酸化物のNiのK吸収端位置と上記回帰線から、Niの平均価数は、3.02価と求まった。
 また、上記リチウム含有複合酸化物のMnの平均価数を決定するために、標準サンプルとして、MnO2、LiMnO及びLiNi0.5Mn1.5(いずれも平均価数が4価のMnを含有する化合物の標準サンプル)、LiMn(平均価数が3.5価のMnを含有する化合物の標準サンプル)、LiMnO及びMn(いずれも平均価数が3価のMnを含有する化合物の標準サンプル)、並びにMnO(平均価数が2価のMnを含有する化合物の標準サンプル)を用いてリチウム含有複合酸化物と同様の状態分析を行い、各標準サンプルのMnのK吸収端位置とMnの価数との関係を表す回帰直線を作成した。上記リチウム含有複合酸化物のMnのK吸収端位置と上記回帰線から、Mnの平均価数は、4.02価と求まった。
 更に、上記リチウム含有複合酸化物のMgの平均価数を決定するために、標準サンプルとして、MgO及びMgAl(いずれも平均価数が2価のMgを含有する化合物の標準サンプル)、並びにMg(平均価数が0価のMgの標準サンプル)を用いてリチウム含有複合酸化物と同様の状態分析を行い、各標準サンプルのMgのK吸収端位置とMgの価数との関係を表す回帰直線を作成した。上記リチウム含有複合酸化物のMgのK吸収端位置と上記回帰線から、Mgの平均価数は、2.01価と求まった。
 また、上記リチウム含有複合酸化物粉体のBET比表面積は0.24m/gで、タップ密度は2.75g/cmであった。更に、「JIS R1622 ファインセラミックス原料粒子径分布測定のための試料調整通則」に従って、上記リチウム含有複合酸化物粉体を一次粒子になるまで解砕し、日機装社製のレーザー回折散乱式粒度分布測定装置「マイクロトラックHRA」により粒度分布を測定したところ、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は10体積%であった。但し、誤差を低減するため、解砕回数は20回とした。
 また、上記リチウム含有複合酸化物のX線回折測定を行った。具体的には、リガク社製のX線回折測定装置「RINT-2500V/PC」を用いてCuKα線によりX線回折の測定を行い、得られたデータの解析はリガク社製の解析ソフト「JADE」を用いて行った。ここで、X線回折図形における、(003)面及び(104)面での回折線の積分強度をそれぞれI(003)及びI(104)とし、I(003)及びI(104)は、それぞれの回折線のピーク面積から求め、その比の値I(003)/I(104)を計算により求めた。
 <正極の作製>
 上記リチウム含有複合酸化物100質量部と、結着剤であるPVDFを10質量%の濃度で含むN-メチル-2-ピロリドン(NMP)溶液20質量部と、導電助剤である人造黒鉛1質量部及びケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
 上記正極合剤含有ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さ及び密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚さが55μmであり、正極合剤層の密度は、3.5g/cmであった。
 <負極の作製>
 負極活物質である数平均粒子径が10μmの天然黒鉛97.5質量部と、結着剤であるスチレンブタジエンゴム1.5質量部と、増粘剤であるカルボキシメチルセルロース1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
 上記負極合剤含有ペーストを、厚さが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さ及び密度を調節し、銅箔の露出部にニッケル製のリード体を溶接して、長さ380mm、幅44mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚さが65μmであった。
 <非水電解質の調製>
 ECとMECとDECとの容積比2:3:1の混合溶媒に、LiPFを1mol/Lの濃度で溶解させて、非水電解質を調製した。
 <電池の組み立て>
 上記帯状の正極を、厚さが16μmの微孔性ポリエチレン製セパレータ(空孔率:41%)を介して上記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極巻回体とし、この電極巻回体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに上記電極巻回体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から上記非水電解質を注入し、1時間静置した後に注入口を封止して、図1A、Bに示す構造で、図2に示す外観のリチウム二次電池を得た。上記リチウム二次電池の設計電気容量は、900mAhとした。
 ここで図1A、B及び図2に示す電池について説明すると、図1Aは上記リチウム二次電池の平面概略図、図1Bは図1Aの断面概略図であって、図1Bに示すように、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の電極巻回体6として、角筒形の電池ケース4に非水電解質とともに収容されている。但し、図1Bでは、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解質などは図示していない。
 電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリエチレンシートからなる絶縁体5が配置され、正極1、負極2及びセパレータ3からなる扁平状の電極巻回体6からは、正極1及び負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
 そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1A、Bの電池では、蓋板9に非水電解質注入口14が設けられており、この非水電解質注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。従って、図1A、B及び図2の電池では、実際には、非水電解質注入口14は、非水電解質注入口と封止部材であるが、説明を容易にするために、非水電解質注入口14として示している。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
 この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっている。
 図2は図1Aに示す電池の外観を模式的に示す外観概略図であり、この図2は上記電池が角形電池であることを示すことを目的として図示されたものである。この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1Bにおいても、電極体の内周側の部分は断面にしていない。
 (実施例2)
 硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.87mol/dm、0.21mol/dm、0.13mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとMnとMgとを92:5:3のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.24m/gであり、タップ密度は2.7g/cmであった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は12体積%であった。
 そして、上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。このリチウム二次電池に使用した正極における正極合剤層の密度は、3.45g/cmであった。
 (実施例3)
 硫酸ニッケル、硫酸マンガン、硫酸マグネシウム及び硫酸アルミニウムを、それぞれ、3.96mol/dm、0.12mol/dm、0.08mol/dm、0.04mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとMnとMgとAlとを94:3:2:1のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.22m/gであり、タップ密度は2.82g/cmであった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の粒子の割合は8体積%であった。
 そして、上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。このリチウム二次電池に使用した正極における正極合剤層の密度は、3.50g/cmであった。
 (実施例4)
 硫酸ニッケル、硫酸コバルト、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.87mol/dm、0.25mol/dm、0.04mol/dm、0.04mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとMnとMgとを92:6:1:1のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.18m/gであり、タップ密度は2.84g/cmであった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の粒子の割合は7体積%であった。
 そして、上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。このリチウム二次電池に使用した正極における正極合剤層の密度は、3.55g/cmであった。
 (実施例5)
 上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例4と同様にしてNiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、実施例4と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.20m/gであり、タップ密度は2.78g/cmであった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は8体積%であった。
 そして、上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。このリチウム二次電池に使用した正極における正極合剤層の密度は、3.54g/cmであった。
 (実施例6)
 硫酸ニッケル、硫酸マンガン及び硫酸マグネシウムを、それぞれ、3.87mol/dm、0.21mol/dm、0.13mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとMnとMgとを92:5:3のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.190molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.22m/gであり、タップ密度は2.5g/cmであった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は12体積%であった。上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例7)
 上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例4と同様にしてNiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、実施例4と同様にしてリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物は、BET比表面積が0.20m/gであり、タップ密度は2.75g/cmであった。また、上記リチウム含有複合酸化物粉体において、実施例1と同様にして測定される、一次粒子の全体積に対する、粒径が1μm以下の一次粒子の割合は8体積%であった。上記リチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例8)
 実施例5と同様にして合成したNiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物99.86質量部(0.196mol)と、ZrO粉末0.14質量部と、0.204molのLiOH・HOとを乾式混合した後、実施例1と同様にしてZrを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のZrの含有量は、0.10質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例9)
 ZrO粉末に代えてTiO粉末を用い、NiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物とTiO粉末との割合を、それぞれ99.91質量部及び0.09質量部とした以外は、実施例8と同様にしてTiを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のTiの含有量は、0.05質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例10)
 実施例8において、ZrO粉末を、NiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物及び水酸化リチウムと乾式混合する代わりに、上記水酸化物を析出させた後の反応溶液にZrO粉末を添加して撹拌し、上記水酸化物の表面がZrOで被覆された複合体を合成した。上記水酸化物とZrO粉末との割合は、それぞれ99.86質量部及び0.14質量部とした。更に、この複合体に含まれる水酸化物0.196molに対して、0.204molのLiOH・HOと、この複合体とを混合して焼成した以外は、実施例8と同様にしてZrを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のZrの含有量は、0.10質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例11)
 ZrO粉末に代えてTiO粉末を用い、NiとCoとMnとMgとを90:5:3:2のモル比で含有する水酸化物とTiO粉末との割合を、それぞれ99.91質量部及び0.09質量部とした以外は、実施例10と同様にしてTiを含有するリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物中のTiの含有量は、0.05質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例12)
 実施例5で合成したリチウム含有複合酸化物99.86質量部と、ZrO粉末0.14質量部とを乾式混合した後、酸素雰囲気中700℃で12時間焼成することにより、表面がZr酸化物で被覆されたリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物粒子全体におけるZrの割合は、0.10質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例13)
 ZrO粉末0.14質量部に代えてTiO粉末0.09質量部を用いた以外は、実施例12と同様にして表面がTi酸化物で被覆されたリチウム含有複合酸化物を合成した。このリチウム含有複合酸化物粒子全体におけるTiの割合は、0.05質量%であった。このリチウム含有複合酸化物を使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例14)
 実施例5で合成したリチウム含有複合酸化物(数平均粒子径:20μm)90質量部と、Li1.02Mn1.95Al0.02Mg0.02Ti0.01(数平均粒子径:5μm)10質量部とを乾式混合した後、ここに、結着剤であるPVDFを10質量%の濃度で含むNMP溶液10質量部を加えて混合し、複合粒子を得た。
 この複合粒子を、リチウム含有複合酸化物に代えて使用した以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (実施例15)
 Li1.02Mn1.95Al0.02Mg0.02Ti0.01に代えて、LiCo0.975Al0.01Mg0.01Ti0.005(数平均粒子径:6μm)を用いた以外は、実施例14と同様にして複合粒子を調製し、この複合粒子を用いた以外は、実施例14と同様にして正極及びリチウム二次電池を作製した。
 (実施例16)
 Li1.02Mn1.95Al0.02Mg0.02Ti0.01に代えて、LiMn0.315Co0.33Ni0.33Al0.01Mg0.01Ti0.005(数平均粒子径:6μm)を用いた以外は、実施例14と同様にして複合粒子を調製し、この複合粒子を用いた以外は、実施例14と同様にして正極及びリチウム二次電池を作製した。
 (比較例1)
 硫酸ニッケル及び硫酸コバルトを、それぞれ、3.79mol/dm、0.42mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとを90:10のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例2)
 硫酸ニッケル、硫酸コバルト及び硫酸マグネシウムを、それぞれ、3.79mol/dm、0.38mol/dm、0.04mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとMgとを90:9:1のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例3)
 硫酸ニッケル、硫酸コバルト及び硫酸マンガンを、それぞれ、3.79mol/dm、0.21mol/dm、0.21mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとMnとを90:5:5のモル比で含有する水酸化物を合成し、この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例4)
 硫酸ニッケル、硫酸コバルト及び硫酸アルミニウムを、それぞれ、3.79mol/dm、0.21mol/dm、0.21mol/dmの濃度で含有する混合水溶液を使用した以外は、実施例1と同様にして共沈化合物を合成した。そして、上記共沈化合物を用いた以外は、実施例1と同様にしてNiとCoとAlとを90:5:5のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとを用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例5)
 リチウム含有複合酸化物として市販のLi1.02Ni0.80Co0.15Al0.05を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例6)
 上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、比較例3と同様にしてNiとCoとMnとを60:20:20のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、比較例3と同様にしてリチウム含有複合酸化物を合成し、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例7)
 上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例1と同様にしてNiとMnとMgとを70:20:10のモル比で含有する水酸化物を合成し、この水酸化物を用いた以外は、実施例1と同様にしてリチウム含有複合酸化物を合成し、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例8)
 上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例1と同様にしてNiとMnとMgとを94:3:3のモル比で含有する水酸化物を合成し、この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に1000℃に昇温して大気雰囲気中、12時間焼成することにより、リチウム含有複合酸化物を合成した。そして、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例9)
 上記共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を変更した以外は、実施例4と同様にしてNiとCoとMnとMgとを92:6:1:1のモル比で含有する水酸化物を合成し、この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、上記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に1000℃に昇温して大気雰囲気中、12時間焼成することにより、リチウム含有複合酸化物を合成した。そして、このリチウム含有複合酸化物を用いた以外は、実施例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例10)
 NiとCoとを90:10のモル比で含有する水酸化物0.196molと、0.190molのLiOH・HOとを用いた以外は、比較例1と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、比較例1と同様にして正極及びリチウム二次電池を作製した。
 (比較例11)
 NiとCoとMnとを90:5:5のモル比で含有する水酸化物0.196molと、0.190molのLiOH・HOとを用いた以外は、比較例3と同様にしてリチウム含有複合酸化物を合成した。更に、このリチウム含有複合酸化物を用いた以外は、比較例3と同様にして正極及びリチウム二次電池を作製した。
 上記実施例2~13及び比較例1~11の正極に用いたリチウム含有複合酸化物についても実施例1と同様にして、構成元素であるNi、Co、Mn及びMgの平均価数及びX線回折における積分強度比〔I(003)/I(104)〕を測定した。
 表1及び表2に、実施例1~13及び比較例1~11の正極に用いたリチウム含有複合酸化物の組成を、また、表3に、実施例1~13及び比較例1~11の正極に用いたリチウム含有複合酸化物の構成元素である、Ni、Co、Mn及びMgの平均価数、及びX線回折における積分強度比〔I(003)/I(104)〕を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 また、実施例1~16及び比較例1~11のリチウム二次電池について、以下の各評価を行った。それらの結果を表4に示す。
 <標準容量>
 実施例1~16及び比較例1~11の各電池を、60℃で7時間保存した後、20℃で、200mAの電流値で5時間充電し、200mAの電流値で電池電圧が2.5Vに低下するまで放電する充放電サイクルを、放電容量が一定になるまで繰り返した。次いで、定電流-定電圧充電(定電流:500mA、定電圧:4.2V、総充電時間:3時間)を行い、1時間休止後に200mAの電流値で電池電圧が2.5Vとなるまで放電して標準容量を求めた。標準容量は各電池とも100個の電池について測定し、その平均値を各実施例、比較例の標準容量とした。
 また、上記標準容量を、正極に含まれるリチウム含有複合酸化物の質量で割って、正極放電容量を算出した。
 <充放電サイクル特性>
 実施例1~16及び比較例1~11の各電池を標準容量測定時と同じ条件で定電流-定電圧充電した後、1分休止後に200mAの電流値で電池電圧が2.5Vになるまで放電する充放電サイクルを繰り返し、放電容量が1サイクル目の放電容量の80%に低下するまでのサイクル数を求めて、各電池の充電サイクル特性を評価した。充放電サイクル特性における上記サイクル数は、各電池とも10個の電池について測定し、その平均値を各実施例、比較例のサイクル数とした。
 <安全性の評価>
 実施例1~16及び比較例1~11の各電池を、定電流-定電圧充電(定電流:600mA、定電圧:4.25V、総充電時間:3時間)を行った後に恒温槽に入れ、2時間休止後、30℃から170℃まで、毎分5℃の割合で昇温し、引き続き170℃で3時間放置して、電池の表面温度を測定した。このときの最高到達温度が180℃以下であった電池をA、180℃を超えた電池をB、と評価した。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、組成、並びにNi、Mn及びMgの平均価数(更にはCoの平均価数)が適正なリチウム含有複合酸化物を含有し、容量が大きく、熱安定性に優れた正極を備えた実施例1~16のリチウム二次電池は、標準容量が大きく、安全性が優れており、また、充放電サイクル特性も良好である。
 特に、一般組成式(1)におけるxを0未満とし、リチウム含有複合酸化物のLiの量比を化学量論比よりも少なくした実施例6及び実施例7では、実施例1~5のリチウム含有複合酸化物を用いた場合よりも、正極合剤含有ペーストのゲル化などを抑制することができ、塗料安定性を向上させることができた。一方、実施例6及び実施例7では、x<0であっても安定な結晶構造を保つことができたことにより、x≧0としたリチウム含有複合酸化物を用いてリチウム二次電池を構成した実施例1~5と同等の優れた特性を得ることができた。また、Zr又はTiを含むリチウム含有複合酸化物を正極として備えた実施例8~13が優れたサイクル特性を示していることが分かる。これは、上記リチウム含有複合酸化物の電気化学特性を損なうことなく、表面活性を抑制できたためであると推測される。
 これに対し、組成が上記一般式(1)を満たさないリチウム含有複合酸化物を含有する正極を備えた比較例1~7、比較例10及び比較例11のリチウム二次電池は、充放電サイクル特性が低く、また、安全性が劣っているか、標準容量が小さい。また、NiやMnの平均価数が適正でないリチウム含有複合酸化物を含有する正極を備えた比較例8及び比較例9のリチウム二次電池は、リチウム含有複合酸化物の結晶構造の可逆性が低いため、標準容量が小さく、充放電サイクル特性が低い。
 更に、実施例5及び14~16のリチウム二次電池について、以下の評価を行った。その結果を表5に示す。
 <DOD10%サイクル特性>
 実施例5及び14~16の各電池について、標準容量測定時と同じ条件で定電流-定電圧充電した後、1分休止後に1000mAの電流値で6分間放電させる充放電サイクルを繰り返した。即ち、放電深度(DOD:Depth Of Discharge)が約10%となる放電条件(放電電気量:100mAh)で電池の充放電を繰り返し、電池の内部抵抗が初期の1.5倍に上昇するまでのサイクル数を測定した。各実施例とも10個ずつの電池について試験を行い、その平均値を表5に示すサイクル数とし、この値により各電池のDOD10%サイクル特性を評価した。
Figure JPOXMLDOC01-appb-T000005
 表5から、本発明に係るリチウム含有複合酸化物に加え、上記リチウム含有複合酸化物よりも作動電圧が高い他の活物質を混合した正極を備えた実施例14~16の電池は、放電深度が浅い領域での充放電において、優れたサイクル特性を示すことが分かる。
 本発明に係るリチウム含有複合酸化物は、DODが10%程度までの放電領域において、それよりも放電深度が深くなった場合よりも結晶構造の安定性が劣るため、放電深度が浅い領域で充放電を繰り返す場合は、その優れた特性が発揮されにくい。一方、作動電圧が高い活物質を併用すると、DODが10%程度までの放電領域では、作動電圧が高い活物質が主として放電に寄与するため、本発明に係るリチウム含有複合酸化物における上記結晶構造の不安定性に起因する電極の分極を低減できると考えられる。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 本発明によれば、高容量で安定性が高い電気化学素子用電極を提供でき、また、その電気化学素子用電極を備え、高容量で、充放電サイクル特性及び安全性に優れた電気化学素子を提供できる。また、本発明の電気化学素子は、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器などの各種電子機器の電源用途を始めとして、安全性が重視される電動工具、自動車、自転車、電力貯蔵用などの用途にも適用することができる。
 1 正極
 2 負極
 3 セパレータ
 

Claims (15)

  1.  下記一般組成式(1)
     Li1+xMO                (1)
    で表されるリチウム含有複合酸化物を活物質として含む電極合剤層を備えた電気化学素子用電極であって、
     前記一般組成式(1)において、
     -0.3≦x≦0.3であり、且つ、Mは、Ni、Mn及びMgを含む元素群を表し、
     前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、Mn及びMgの元素数の割合をmol%単位で、それぞれa、b及びcとしたとき、70≦a≦97、0.5<b<30、0.5<c<30、-10<b-c<10及び-8≦(b-c)/c≦8であり、
     前記Niの平均価数が2.5~3.2価、前記Mnの平均価数が3.5~4.2価及び前記Mgの平均価数が1.8~2.2価であることを特徴とする電気化学素子用電極。
  2.  前記リチウム含有複合酸化物のX線回折図形における、(003)面及び(104)面での回折線の積分強度をそれぞれI(003)及びI(104)としたとき、その比の値I(003)/I(104)が1.2以上である請求項1に記載の電気化学素子用電極。
  3.  前記一般組成式(1)において、x<0であり、
     前記リチウム含有複合酸化物のX線回折図形における、(003)面及び(104)面での回折線の積分強度をそれぞれI(003)及びI(104)としたとき、その比の値I(003)/I(104)が1.2以上である請求項1に記載の電気化学素子用電極。
  4.  前記一般組成式(1)において、前記元素群Mは、更にCoを含み、
     前記元素群Mの全元素数に対する、前記元素群Mに含まれるCoの元素数の割合をmol%単位でdとしたとき、0<d<30である請求項1に記載の電気化学素子用電極。
  5.  前記一般組成式(1)において、前記元素群Mは、更にCoを含み、
     前記元素群Mの全元素数に対する、前記元素群Mに含まれるCoの元素数の割合をmol%単位でdとしたとき、0<d<30であり、
     前記Coの平均価数が、2.5~3.2価である請求項1に記載の電気化学素子用電極。
  6.  前記一般組成式(1)において、前記元素群Mは、更にZrを含む請求項1に記載の電気化学素子用電極。
  7.  前記一般組成式(1)において、前記元素群Mは、更にTiを含む請求項1に記載の電気化学素子用電極。
  8.  前記一般組成式(1)において、前記元素群Mは、更にZrを含み、
     前記リチウム含有複合酸化物の表面が、Zr化合物で被覆されている請求項1に記載の電気化学素子用電極。
  9.  前記一般組成式(1)において、前記元素群Mは、更にTiを含み、
     前記リチウム含有複合酸化物の表面が、Ti化合物で被覆されている請求項1に記載の電気化学素子用電極。
  10.  前記リチウム含有複合酸化物の粒子は、主として一次粒子が集合して形成される二次粒子からなり、
     前記一次粒子の全体積に対する、粒径が1μm以下の一次粒子の体積割合が30体積%以下であり、
     前記リチウム含有複合酸化物のBET比表面積が、0.3m/g以下である請求項1に記載の電気化学素子用電極。
  11.  前記リチウム含有複合酸化物のタップ密度が、2.4g/cm以上である請求項1に記載の電気化学素子用電極。
  12.  前記電極合剤層の密度が、3.1g/cm以上である請求項1に記載の電気化学素子用電極。
  13.  前記電極合剤層が、結着剤として、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びポリヘキサフルオロプロピレンからなる群から選択される少なくとも1種を含む請求項1に記載の電気化学素子用電極。
  14.  前記電極合剤層が、導電助剤として、グラファイト及びカーボンブラックからなる群から選択される少なくとも1種を含む請求項1に記載の電気化学素子用電極。
  15.  正極と、負極と、非水電解質とを含む電気化学素子であって、
     前記正極が、請求項1~14のいずれかに記載の電気化学素子用電極であることを特徴とする電気化学素子。
     
PCT/JP2010/060293 2009-06-17 2010-06-17 電気化学素子用電極及びそれを用いた電気化学素子 WO2010147179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080009494XA CN102356487A (zh) 2009-06-17 2010-06-17 电化学元件用电极及使用其的电化学元件
JP2010545714A JP5480820B2 (ja) 2009-06-17 2010-06-17 電気化学素子用電極及びそれを用いた電気化学素子
US13/142,964 US20110269018A1 (en) 2009-06-17 2010-06-17 Electrode for electrochemical device and electrochemical device using the same
KR1020117021251A KR101363443B1 (ko) 2009-06-17 2010-06-17 전기 화학 소자용 전극 및 그것을 사용한 전기 화학 소자

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009144132 2009-06-17
JP2009-144132 2009-06-17
JP2009207857 2009-09-09
JP2009-207857 2009-09-09
JP2009247501 2009-10-28
JP2009-247501 2009-10-28

Publications (1)

Publication Number Publication Date
WO2010147179A1 true WO2010147179A1 (ja) 2010-12-23

Family

ID=43356495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060293 WO2010147179A1 (ja) 2009-06-17 2010-06-17 電気化学素子用電極及びそれを用いた電気化学素子

Country Status (5)

Country Link
US (1) US20110269018A1 (ja)
JP (1) JP5480820B2 (ja)
KR (1) KR101363443B1 (ja)
CN (1) CN102356487A (ja)
WO (1) WO2010147179A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065987A (ja) * 2009-08-21 2011-03-31 Gs Yuasa Corp リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
JP2013517599A (ja) * 2010-01-14 2013-05-16 株式会社エコプロ 回分式反応器(batchreactor)を用いて濃度勾配層を有するリチウム二次電池用正極活物質前駆体、正極活物質を製造する方法、及びこれにより製造されたリチウム二次電池用正極活物質前駆体、正極活物質
WO2013146115A1 (ja) * 2012-03-28 2013-10-03 三洋電機株式会社 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
JP2013254639A (ja) * 2012-06-07 2013-12-19 Hitachi Maxell Ltd 非水二次電池
WO2014147983A1 (ja) * 2013-03-19 2014-09-25 三洋電機株式会社 非水電解質二次電池
JP2015503181A (ja) * 2012-01-17 2015-01-29 エルジー・ケム・リミテッド 正極活物質、及びこれを含み、不純物またはスウェリング制御のためのリチウム二次電池、並びに生産性が向上した正極活物質の製造方法
WO2015045340A1 (ja) * 2013-09-30 2015-04-02 三洋電機株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2015103331A (ja) * 2013-11-22 2015-06-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 正極活物質、およびリチウムイオン二次電池
JP2016184497A (ja) * 2015-03-26 2016-10-20 株式会社豊田中央研究所 非水系リチウム二次電池
WO2016171051A1 (ja) * 2015-04-23 2016-10-27 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JPWO2014208453A1 (ja) * 2013-06-27 2017-02-23 旭硝子株式会社 炭酸化合物とその製造方法、およびリチウムイオン二次電池用正極活物質の製造方法
JP2017513179A (ja) * 2014-03-05 2017-05-25 コリア エレクトロニクス テクノロジ インスティチュート 陽極活物質、それを有するリチウム二次電池及びその製造方法
JP2018502421A (ja) * 2014-12-05 2018-01-25 エルジー・ケム・リミテッド 正極活物質、この製造方法、及びこれを含むリチウム二次電池
WO2019172193A1 (ja) * 2018-03-07 2019-09-12 日立金属株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
WO2020158420A1 (ja) * 2019-01-30 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2020155404A (ja) * 2019-03-15 2020-09-24 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法
JP2022513681A (ja) * 2018-11-30 2022-02-09 エルジー エナジー ソリューション リミテッド 正極活物質、前記正極活物質を含む正極及びリチウム二次電池
WO2023210525A1 (ja) * 2022-04-26 2023-11-02 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170155A (zh) * 2012-03-15 2014-11-26 三洋电机株式会社 非水电解质二次电池
EP2934792B1 (de) * 2012-12-19 2019-07-24 Albemarle Germany GmbH Suspension und verfahren zur herstellung einer lithiumpulveranode
KR20160102083A (ko) * 2013-02-28 2016-08-26 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
KR20140120189A (ko) * 2013-04-02 2014-10-13 삼성에스디아이 주식회사 이차 전지 및 그 제조방법
US9905851B2 (en) * 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
EP2865647B1 (en) 2013-07-26 2016-10-19 LG Chem, Ltd. Anode active material and method for manufacturing same
US9905850B2 (en) * 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US10522830B2 (en) 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
CN110380046B (zh) * 2014-05-09 2022-09-20 株式会社半导体能源研究所 锂离子二次电池及电子装置
JP6414230B2 (ja) * 2014-12-26 2018-11-07 日産自動車株式会社 電気デバイス
JP6319335B2 (ja) * 2016-01-18 2018-05-09 トヨタ自動車株式会社 全固体電池の製造方法
US20170214045A1 (en) * 2016-01-22 2017-07-27 Apple Inc. High-energy cathode active materials for lithium-ion batteries
KR102565007B1 (ko) 2016-03-11 2023-08-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN108987682B (zh) * 2017-06-02 2021-05-25 杉杉能源(宁夏)有限公司 可防止颗粒破裂的富镍基前驱体材料的制备方法
DE102017217250A1 (de) * 2017-09-27 2019-03-28 Volkswagen Aktiengesellschaft Stabilisierte Ni-reiche Schichtoxide als Aktivmaterial für positive Elektroden von Lithium-Ionen-Batterien
US20220098053A1 (en) * 2019-01-15 2022-03-31 Basf Se Process for making an electrode active material
WO2020171126A1 (ja) * 2019-02-22 2020-08-27 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
US12074321B2 (en) 2019-08-21 2024-08-27 Apple Inc. Cathode active materials for lithium ion batteries
GB202004511D0 (en) * 2020-03-27 2020-05-13 Johnson Matthey Plc Cathode material and process
KR20230156993A (ko) * 2022-05-09 2023-11-16 에스케이온 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
SE2250851A1 (en) * 2022-07-06 2024-01-07 Northvolt Ab A cathode active material for a cathode in a battery cell, a cathode assembly for a battery cell and a battery cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135119A (ja) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd 非水電解液二次電池用活物質と正極板および非水電解液二次電池
JP2001256975A (ja) * 2000-03-14 2001-09-21 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物、その製造方法およびそれを用いたリチウム二次電池
JP2003178759A (ja) * 2001-10-24 2003-06-27 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法ならびに電池
JP2004533104A (ja) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 リチウム二次電池用傾斜正極材
JP2008226463A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
JP2008282667A (ja) * 2007-05-10 2008-11-20 Sony Corp 有機電解質を用いたリチウムイオン2次電池の正極活物質
JP2010073686A (ja) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd 電気化学素子用電極および非水二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650774B2 (ja) * 1999-06-07 2011-03-16 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP3631166B2 (ja) * 2001-05-31 2005-03-23 三洋電機株式会社 非水電解質二次電池
CN100342571C (zh) * 2003-02-03 2007-10-10 三洋电机株式会社 非水电解质二次电池
CN100334758C (zh) * 2003-08-21 2007-08-29 清美化学股份有限公司 锂二次电池用的正极活性物质粉末
CN1641913A (zh) * 2004-01-16 2005-07-20 深圳市比克电池有限公司 一种锂离子电池正极材料及制备方法
KR100578877B1 (ko) * 2004-03-12 2006-05-11 삼성에스디아이 주식회사 리튬 이차 전지
KR101278376B1 (ko) * 2006-03-02 2013-06-25 에이지씨 세이미 케미칼 가부시키가이샤 비수 전해질 2 차 전지용 양극 활물질 및 그 제조 방법
JP2007250198A (ja) * 2006-03-13 2007-09-27 Sanyo Electric Co Ltd 非水電解質二次電池
JP5008328B2 (ja) * 2006-03-30 2012-08-22 住友金属鉱山株式会社 非水電解質二次電池用の正極活物質、その製造方法及びそれを用いた非水電解質二次電池
CN101369658A (zh) * 2007-08-13 2009-02-18 深圳市比克电池有限公司 正极活性材料、锂离子电池的正极片和锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135119A (ja) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd 非水電解液二次電池用活物質と正極板および非水電解液二次電池
JP2001256975A (ja) * 2000-03-14 2001-09-21 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物、その製造方法およびそれを用いたリチウム二次電池
JP2004533104A (ja) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 リチウム二次電池用傾斜正極材
JP2003178759A (ja) * 2001-10-24 2003-06-27 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法ならびに電池
JP2008226463A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
JP2008282667A (ja) * 2007-05-10 2008-11-20 Sony Corp 有機電解質を用いたリチウムイオン2次電池の正極活物質
JP2010073686A (ja) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd 電気化学素子用電極および非水二次電池

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065987A (ja) * 2009-08-21 2011-03-31 Gs Yuasa Corp リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
JP2013517599A (ja) * 2010-01-14 2013-05-16 株式会社エコプロ 回分式反応器(batchreactor)を用いて濃度勾配層を有するリチウム二次電池用正極活物質前駆体、正極活物質を製造する方法、及びこれにより製造されたリチウム二次電池用正極活物質前駆体、正極活物質
US10096831B2 (en) 2012-01-17 2018-10-09 Lg Chem, Ltd. Cathode active material and lithium secondary battery for controlling impurity or swelling including the same and method of preparing cathode active material with enhanced productivity
JP2015503181A (ja) * 2012-01-17 2015-01-29 エルジー・ケム・リミテッド 正極活物質、及びこれを含み、不純物またはスウェリング制御のためのリチウム二次電池、並びに生産性が向上した正極活物質の製造方法
WO2013146115A1 (ja) * 2012-03-28 2013-10-03 三洋電機株式会社 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
JPWO2013146115A1 (ja) * 2012-03-28 2015-12-10 三洋電機株式会社 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
JP2013254639A (ja) * 2012-06-07 2013-12-19 Hitachi Maxell Ltd 非水二次電池
WO2014147983A1 (ja) * 2013-03-19 2014-09-25 三洋電機株式会社 非水電解質二次電池
JPWO2014147983A1 (ja) * 2013-03-19 2017-02-16 三洋電機株式会社 非水電解質二次電池
JPWO2014208453A1 (ja) * 2013-06-27 2017-02-23 旭硝子株式会社 炭酸化合物とその製造方法、およびリチウムイオン二次電池用正極活物質の製造方法
WO2015045340A1 (ja) * 2013-09-30 2015-04-02 三洋電機株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JPWO2015045340A1 (ja) * 2013-09-30 2017-03-09 三洋電機株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2015103331A (ja) * 2013-11-22 2015-06-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 正極活物質、およびリチウムイオン二次電池
US10367199B2 (en) 2014-03-05 2019-07-30 Korea Electronics Technology Institute Cathode active material, lithium secondary battery having same, and method for preparing same
JP2017513179A (ja) * 2014-03-05 2017-05-25 コリア エレクトロニクス テクノロジ インスティチュート 陽極活物質、それを有するリチウム二次電池及びその製造方法
JP2018502421A (ja) * 2014-12-05 2018-01-25 エルジー・ケム・リミテッド 正極活物質、この製造方法、及びこれを含むリチウム二次電池
US10340517B2 (en) 2014-12-05 2019-07-02 Lg Chem, Ltd. Positive electrode active material, method for preparing the same and lithium secondary battery including the same
JP2016184497A (ja) * 2015-03-26 2016-10-20 株式会社豊田中央研究所 非水系リチウム二次電池
US10777813B2 (en) 2015-04-23 2020-09-15 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and process for producing same, and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2016171051A1 (ja) * 2015-04-23 2016-10-27 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JP2016207479A (ja) * 2015-04-23 2016-12-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JPWO2019172193A1 (ja) * 2018-03-07 2021-02-25 日立金属株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
WO2019172193A1 (ja) * 2018-03-07 2019-09-12 日立金属株式会社 リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP7272345B2 (ja) 2018-03-07 2023-05-12 株式会社プロテリアル リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
US11949100B2 (en) 2018-03-07 2024-04-02 Proterial, Ltd. Cathode active material used for lithium ion secondary battery and lithium ion secondary battery
JP2022513681A (ja) * 2018-11-30 2022-02-09 エルジー エナジー ソリューション リミテッド 正極活物質、前記正極活物質を含む正極及びリチウム二次電池
JP7191420B2 (ja) 2018-11-30 2022-12-19 エルジー エナジー ソリューション リミテッド 正極活物質、前記正極活物質を含む正極及びリチウム二次電池
WO2020158420A1 (ja) * 2019-01-30 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP7437641B2 (ja) 2019-01-30 2024-02-26 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2020155404A (ja) * 2019-03-15 2020-09-24 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法
JP7404886B2 (ja) 2019-03-15 2023-12-26 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法
WO2023210525A1 (ja) * 2022-04-26 2023-11-02 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池

Also Published As

Publication number Publication date
US20110269018A1 (en) 2011-11-03
JP5480820B2 (ja) 2014-04-23
KR20110126683A (ko) 2011-11-23
KR101363443B1 (ko) 2014-02-14
JPWO2010147179A1 (ja) 2012-12-06
CN102356487A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5480820B2 (ja) 電気化学素子用電極及びそれを用いた電気化学素子
JP5695373B2 (ja) 電気化学素子用電極及びそれを用いた電気化学素子
JP5325888B2 (ja) 電極用活物質、非水二次電池用電極および非水二次電池
JP5405941B2 (ja) 電気化学素子用電極および非水二次電池
JP5534595B2 (ja) リチウム二次電池用正極およびリチウム二次電池
US8790829B2 (en) Nonaqueous secondary battery
JP2012014851A (ja) 電気化学素子用電極および非水二次電池
JP2011023335A (ja) 非水二次電池用電極および非水二次電池
JP5419093B2 (ja) 非水二次電池
JP7060776B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP5522844B2 (ja) 電気化学素子用電極およびリチウムイオン二次電池
JP7452422B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP5670671B2 (ja) 電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JP7363885B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
WO2020171111A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP5045135B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
US20220238874A1 (en) Positive-electrode active material precursor for lithium-ion secondary battery, positive-electrode active material for lithium-ion secondary battery, methods of manufacturing thereof, and lithium-ion secondary battery
JP2013045599A (ja) 非水電解液二次電池用正極活物質、その製造方法、および非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009494.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010545714

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13142964

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117021251

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789553

Country of ref document: EP

Kind code of ref document: A1