WO2010018711A1 - 低級炭化水素芳香族化触媒及び芳香族化合物の製造方法 - Google Patents
低級炭化水素芳香族化触媒及び芳香族化合物の製造方法 Download PDFInfo
- Publication number
- WO2010018711A1 WO2010018711A1 PCT/JP2009/061070 JP2009061070W WO2010018711A1 WO 2010018711 A1 WO2010018711 A1 WO 2010018711A1 JP 2009061070 W JP2009061070 W JP 2009061070W WO 2010018711 A1 WO2010018711 A1 WO 2010018711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- reaction
- lower hydrocarbon
- hydrocarbon
- aromatic compound
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 53
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 39
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 39
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 32
- 150000001491 aromatic compounds Chemical class 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000005899 aromatization reaction Methods 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000013078 crystal Substances 0.000 claims abstract description 22
- 239000010457 zeolite Substances 0.000 claims abstract description 19
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 16
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 239000011733 molybdenum Substances 0.000 claims abstract description 10
- 239000012495 reaction gas Substances 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 27
- 150000004945 aromatic hydrocarbons Chemical class 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 54
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 32
- 239000011148 porous material Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 4
- 239000011609 ammonium molybdate Substances 0.000 description 4
- 229940010552 ammonium molybdate Drugs 0.000 description 4
- 235000018660 ammonium molybdate Nutrition 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- -1 methane and the like Chemical class 0.000 description 2
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/48—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/04—Benzene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/76—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/76—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
- C07C2/82—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
- C07C2/84—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C07C2529/48—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
Definitions
- the present invention relates to advanced utilization of methane-based natural gas, biogas and methane hydrate.
- Natural gas, biogas and methane hydrate are considered to be the most effective energy resources for global warming countermeasures, and there is growing interest in their utilization technology.
- Methane resources are attracting attention as next-generation new organic resources and hydrogen resources for fuel cells, taking advantage of their cleanness.
- the present invention is a catalytic chemical conversion technology for efficiently producing, from lower hydrocarbons such as methane and the like, aromatic compounds mainly composed of benzene and naphthalenes, which are raw materials for chemical products such as plastics, and high purity hydrogen gas
- the present invention relates to a method for producing the catalyst.
- Non-patent Document 1 As a method of producing an aromatic compound such as benzene and hydrogen from a lower hydrocarbon such as methane, a method of reacting a lower hydrocarbon in the presence of a catalyst is known.
- a catalyst at this time molybdenum supported on zeolite of ZSM-5 series is considered effective (Non-patent Document 1).
- Non-patent Document 1 molybdenum supported on zeolite of ZSM-5 series is considered effective.
- the development of better catalysts is desired.
- zeolites mentioned as crystalline metallosilicates used as catalysts for this reaction have solid acidity and a crystal pore diameter of several angstroms (for example, 5 to 6 angstroms in the case of ZSM-5) as molecular sieves. doing.
- lower hydrocarbons such as methane are bonded together on the supported active species, that is, metal species such as molybdenum or tungsten or rhenium or their carbides to form a straight chain having 2 or more carbon atoms. It becomes a chain hydrocarbon.
- the linear hydrocarbon causes a cyclization reaction due to the space inside the pore of the metallosilicate as a support and the Br ⁇ ⁇ ⁇ nsted acid point. That is, the reaction is cyclically dehydrogenated by this reaction to convert it to an aromatic hydrocarbon which is an unsaturated cyclic hydrocarbon such as benzene.
- the above sequential reaction produces aromatic hydrocarbons from lower hydrocarbons.
- the zeolite used as a catalyst for this reaction has solid acidity and a crystal pore diameter of several angstroms as a molecular sieve.
- the size of a typical zeolite crystal is about several ⁇ m, which is much larger than the crystal pore size. Therefore, when a zeolite is used as a catalyst, the diffusion-controlled state in which the diffusion of the raw material or product in the zeolite crystal dominates the reaction is more likely to occur than the solid acid property. That is, since the pore inlet density is small, the opportunity for the diffusion and permeation of linear hydrocarbons having 2 or more carbon atoms generated in the first step of the sequential reaction into the interior of the pores is reduced, and the cyclization reaction is not achieved. The chain hydrocarbon caulks on the zeolite surface, causing a decrease in the active life stability of the catalyst and a decrease in the aromatic hydrocarbon yield.
- the present invention aims to reduce the influence of the diffusion of substances in the pores and to provide a low-hydrocarbon aromatization catalyst with high reaction efficiency by using nanoscale zeolite with reduced zeolite crystal size. .
- the lower hydrocarbon aromatization catalyst of the present invention which achieves the above object is a catalyst which reacts lower hydrocarbons to produce an aromatic compound, and the catalyst is made of metallosilicate having an average crystal diameter of 500 nm or less. It is characterized by becoming.
- the method for producing an aromatic compound according to the present invention is characterized in that a reaction gas containing a lower hydrocarbon is reacted with a catalyst comprising a metallosilicate having an average crystal diameter of 500 nm or less to produce an aromatic compound.
- the pore entrance density is increased by making the crystal diameter into nanosize, and the linear hydrocarbon into the pore is obtained. Diffusion The opportunity for penetration can be increased.
- ZSM-5 zeolite is mentioned. Further, molybdenum may be supported on the metallosilicate.
- the lower hydrocarbon aromatization catalyst according to the embodiment of the present invention can be obtained by supporting a precursor containing molybdenum on a metallosilicate.
- molecular sieves 5A which are porous bodies consisting of silica and alumina, alumino such as faujasite (NaY) and NaX, ZSM-5, H-ZSM-5 A silicate is illustrated.
- a porous support such as ALPO-5, VPI-5, etc. containing phosphoric acid as a main component, which is characterized by comprising micropores or channels of 0.6 nm to 1.3 nm, is also used as a catalyst Examples are metallosilicates.
- mesoporous membranes such as FSM-16 and MCM-41 characterized by cylindrical pores (channels) of mesopores (1 nm to 10 nm) mainly composed of silica and partially composed of alumina
- metallosilicates used for catalysts.
- examples of precursors containing molybdenum include ammonium paramolybdate, phosphomolybdic acid, 12 silicomolybdic acid, halides such as chlorides and bromides, and mineral acid salts such as nitrates, sulfates and phosphates, Examples thereof include carbonates and carboxylates such as borates.
- ammonium molybdate is impregnated and supported on a metallosilicate carrier, dried, and then heat treated in an air stream at 250 ° C. to 800 ° C., preferably 400 ° C. to 700 ° C., Mention may be made of the preparation of molybdenum supported metallosilicate catalysts.
- the catalyst used in the present invention can be used by forming a pellet or extruded product by adding a binder such as silica, alumina, clay or the like.
- methane or a saturated or unsaturated hydrocarbon having 2 to 6 carbon atoms can be mentioned as an example.
- the gas to be reacted contains at least 50% by weight, preferably at least 70% by weight of methane.
- saturated or unsaturated hydrocarbon having 2 to 6 carbon atoms may be contained. Examples of these saturated or unsaturated hydrocarbons having 2 to 6 carbon atoms include ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene and isobutene.
- the aromatization reaction of the lower hydrocarbon in the method for producing an aromatic hydrocarbon and hydrogen from the lower hydrocarbon of the present invention can be carried out in a batch system or a flow system.
- a flow-through type reaction mode such as a fixed bed, moving bed or fluidized bed.
- the reaction temperature is 300 ° C. to 900 ° C., preferably 450 ° C. to 800 ° C., and the reaction pressure is 0.01 MPa to 1 MPa, preferably 0.1 MPa to 0.7 MPa. Perform the reaction.
- an average crystal diameter is calculated
- Benzene yield (%) ⁇ (the amount of generated benzene) / (the amount of methane subjected to the methane reforming reaction) ⁇ ⁇ 100 (1)
- the reaction test conditions were all performed at a methane reaction temperature of 780 ° C., a pressure of 0.3 MPa, and a weight hourly space velocity (WHSV) of 3000 ml / g / h.
- the composition of the reaction gas used as the lower hydrocarbon feedstock is 90% methane and 10% argon.
- the catalyst is heated to 550 ° C. in an air stream and maintained for 2 hours, then switched to a pretreatment gas of 20% methane: 80% hydrogen and heated to 700 ° C. And maintained for 3 hours. Thereafter, the reaction gas was switched to and heated to 780 ° C., and the activity was evaluated to confirm the performance of the catalyst.
- Table 1 shows the benzene yield (%) of each catalyst at 3 hours after the start of the reaction. Moreover, FIG. 1 has shown the time-dependent change of the benzene yield (%) in each catalyst.
- the pore entrance density is increased by making the crystal diameter nanosize, and the diffusion and permeation of linear hydrocarbons into the pores is achieved.
- the cyclization reaction proceeds rapidly, and the reduction in the number of pore entrances due to coking, which is a side reaction, can be suppressed.
- the reaction to which the present invention is applied is a sequential reaction, and there is a possibility that the substance produced in the first step of the reaction may be the causative substance of the decrease in activity of the catalyst. Therefore, in the present invention, coking is suppressed and catalyst active life stability is improved by increasing the opportunity for reaction to the second stage.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
ベンゼン収率(%)={(生成したベンゼン量)/(メタン改質反応に供されたメタン量)}×100 …(1)
(比較例1)
メタロシリケート担体として、市販の平均結晶径1μmのH型ZSM-5ゼオライト(SiO2/Al2O3=28)400gに、44.2gのモリブデン酸アンモニウムをイオン交換水1500mlに溶解した水溶液にて3時間室温で攪拌を行い、含浸担持した。触媒を乾燥させた後、550℃で8時間焼成することにより触媒を得た。
メタロシリケート担体として、平均結晶径の異なるゼオライトを用いた以外は、比較例1と同様に調製を行った。すなわち、メタロシリケート担体として、市販の平均結晶径70-80nmのH型ZSM-5ゼオライト(SiO2/Al2O3=28)400gに、44.2gのモリブデン酸アンモニウムをイオン交換水1500mlに溶解した水溶液にて3時間室温で攪拌を行い、含浸担持した。触媒を乾燥させた後、550℃で8時間焼成することにより触媒を得た。
メタロシリケート担体として、平均結晶径の異なるゼオライトを用いた以外は、比較例1と同様に調製を行った。すなわち、メタロシリケート担体として、市販の平均結晶径500nmのH型ZSM-5ゼオライト(SiO2/Al2O3=28)400gに、44.2gのモリブデン酸アンモニウムをイオン交換水1500mlに溶解した水溶液にて3時間室温で攪拌を行い、含浸担持した。触媒を乾燥させた後、550℃で8時間焼成することにより触媒を得た。
Claims (4)
- 低級炭化水素を接触させて、芳香族化合物を生成する触媒であって、
前記触媒は500nm以下の平均結晶径を有するメタロシリケートからなる
ことを特徴とする低級炭化水素芳香族化触媒。 - 前記メタロシリケートはZSM-5ゼオライトである
ことを特徴とする請求項1に記載の低級炭化水素芳香族化触媒。 - 前記メタロシリケートには、モリブデンが担持される
ことを特徴とする請求項1又は請求項2に記載の低級炭化水素芳香族化触媒。 - 500nm以下の平均結晶径を有するメタロシリケートからなる触媒に低級炭化水素を含む反応ガスを接触させて芳香族化合物を生成する
ことを特徴とする芳香族化合物の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/058,413 US20110172478A1 (en) | 2008-08-12 | 2009-06-18 | Catalyst for aromatization of lower hydrocarbon, and process for production of aromatic compound |
GB1104197.7A GB2474822B (en) | 2008-08-12 | 2009-06-18 | Molybdenum carried on ZSM-5 Zeolite for aromatisation of methane |
CN200980131097.7A CN102119054A (zh) | 2008-08-12 | 2009-06-18 | 低级烃芳构化催化剂及芳香族化合物的制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008207757A JP5564769B2 (ja) | 2008-08-12 | 2008-08-12 | 低級炭化水素芳香族化触媒及び芳香族化合物の製造方法 |
JP2008-207757 | 2008-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018711A1 true WO2010018711A1 (ja) | 2010-02-18 |
Family
ID=41668858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061070 WO2010018711A1 (ja) | 2008-08-12 | 2009-06-18 | 低級炭化水素芳香族化触媒及び芳香族化合物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110172478A1 (ja) |
JP (1) | JP5564769B2 (ja) |
CN (1) | CN102119054A (ja) |
GB (1) | GB2474822B (ja) |
WO (1) | WO2010018711A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA201291227A1 (ru) * | 2010-05-12 | 2013-05-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Катализатор ароматизации метана, способ изготовления и способ использования катализатора |
JP5949069B2 (ja) * | 2012-04-03 | 2016-07-06 | 株式会社明電舎 | 低級炭化水素芳香族化触媒の製造方法 |
PT3484619T (pt) | 2016-07-13 | 2020-07-20 | Shell Int Research | Composição de catalisador compreendendo zeólito de tipo con e zeólito de tipo zsm-5, preparação e processo que utiliza tal composição |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS505335A (ja) * | 1973-02-09 | 1975-01-21 | ||
JPS55124721A (en) * | 1979-03-14 | 1980-09-26 | Shell Int Research | Manufacture of aromatic hydrocarbon mixture |
JPS62162615A (ja) * | 1985-10-15 | 1987-07-18 | エクソン ケミカル パテンツ インコ−ポレ−テツド | 改良ゼオライトl |
JPH01122919A (ja) * | 1987-08-31 | 1989-05-16 | Mobil Oil Corp | ゼオライトの二段合成方法 |
WO2007088745A1 (ja) * | 2006-01-31 | 2007-08-09 | Asahi Kasei Chemicals Corporation | 芳香族炭化水素化合物製造用触媒 |
JP2007523075A (ja) * | 2004-02-09 | 2007-08-16 | エイビービー ラマス グローバル インコーポレイテッド | ナノ結晶性ゼオライトyを使用する炭化水素の転化 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5242675A (en) * | 1985-10-15 | 1993-09-07 | Exxon Research & Engineering Company | Zeolite L |
US5160500A (en) * | 1985-10-21 | 1992-11-03 | Mobil Oil Corporation | Zeolite synthesis using an alcohol or like molecules |
US5063038A (en) * | 1985-10-21 | 1991-11-05 | Mobil Oil Corp. | Zeolite synthesis using an alcohol or like molecule |
US5486498A (en) * | 1986-10-14 | 1996-01-23 | Exxon Research & Engineering Company | Zeolite L |
US5233112A (en) * | 1987-08-31 | 1993-08-03 | Mobil Oil Corp | Catalytic conversion over specially synthesized crystalline porous chalcogenides |
US5147838A (en) * | 1987-08-31 | 1992-09-15 | Mobil Oil Corporation | Temperature programmed synthesis or crystalline porous chalcogenides |
JPH055335A (ja) * | 1991-06-26 | 1993-01-14 | Taisei Corp | スライド式開閉屋根 |
JPH10122919A (ja) * | 1996-10-17 | 1998-05-15 | Mitsubishi Heavy Ind Ltd | 計測用回転トラバース装置 |
ATE305499T1 (de) * | 1998-11-16 | 2005-10-15 | Shell Int Research | Katalytisches entwachsungsverfahren |
US6793911B2 (en) * | 2002-02-05 | 2004-09-21 | Abb Lummus Global Inc. | Nanocrystalline inorganic based zeolite and method for making same |
EP1661859A1 (en) * | 2004-11-26 | 2006-05-31 | Total France | Zeolite compositions and preparation and use thereof |
JP5228064B2 (ja) * | 2008-01-28 | 2013-07-03 | エクソンモービル・ケミカル・パテンツ・インク | メタンからの芳香族化合物の製造 |
FR2931706B1 (fr) * | 2008-05-28 | 2010-12-24 | Inst Francais Du Petrole | Catalyseur a base d'un materiau cristallise comprenant du silicium a porosite hierarchisee et organisee et procede ameliore de traitement de charges hydrocarbonees |
-
2008
- 2008-08-12 JP JP2008207757A patent/JP5564769B2/ja active Active
-
2009
- 2009-06-18 CN CN200980131097.7A patent/CN102119054A/zh active Pending
- 2009-06-18 US US13/058,413 patent/US20110172478A1/en not_active Abandoned
- 2009-06-18 GB GB1104197.7A patent/GB2474822B/en not_active Expired - Fee Related
- 2009-06-18 WO PCT/JP2009/061070 patent/WO2010018711A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS505335A (ja) * | 1973-02-09 | 1975-01-21 | ||
JPS55124721A (en) * | 1979-03-14 | 1980-09-26 | Shell Int Research | Manufacture of aromatic hydrocarbon mixture |
JPS62162615A (ja) * | 1985-10-15 | 1987-07-18 | エクソン ケミカル パテンツ インコ−ポレ−テツド | 改良ゼオライトl |
JPH01122919A (ja) * | 1987-08-31 | 1989-05-16 | Mobil Oil Corp | ゼオライトの二段合成方法 |
JP2007523075A (ja) * | 2004-02-09 | 2007-08-16 | エイビービー ラマス グローバル インコーポレイテッド | ナノ結晶性ゼオライトyを使用する炭化水素の転化 |
WO2007088745A1 (ja) * | 2006-01-31 | 2007-08-09 | Asahi Kasei Chemicals Corporation | 芳香族炭化水素化合物製造用触媒 |
Also Published As
Publication number | Publication date |
---|---|
US20110172478A1 (en) | 2011-07-14 |
JP2010042348A (ja) | 2010-02-25 |
CN102119054A (zh) | 2011-07-06 |
GB2474822A (en) | 2011-04-27 |
GB201104197D0 (en) | 2011-04-27 |
JP5564769B2 (ja) | 2014-08-06 |
GB2474822B (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology | |
Zhang et al. | b-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: Synergy of acid sites and diffusion | |
US20100185034A1 (en) | Process for producing aromatic hydrocarbon | |
JP5481996B2 (ja) | 芳香族炭化水素製造方法 | |
JP5499669B2 (ja) | 低級炭化水素及び芳香族化合物の製造方法及び製造触媒 | |
RU2349569C2 (ru) | Способ получения ароматического углеводорода и водорода | |
Ishihara et al. | Effect of matrix on aromatics production by cracking and dehydrocyclization of n-pentane using Ga ion-exchanged ZSM-5-alumina composite catalysts | |
KR101731165B1 (ko) | 에탄올 탈수 촉매 및 이를 이용한 에틸렌 제조방법 | |
WO2012002269A1 (ja) | 芳香族炭化水素製造方法 | |
JP2021506909A (ja) | ベンゼンおよび/またはトルエンのメチル化によるパラキシレンの製造用触媒 | |
KR102532822B1 (ko) | 금속 함침된 zsm-5와 메조다공성 모더나이트 제올라이트 복합체 촉매 위에서 btx로 중질 리포메이트를 전환시키는 방법 | |
WO2010018711A1 (ja) | 低級炭化水素芳香族化触媒及び芳香族化合物の製造方法 | |
US8735641B2 (en) | Method for selective dealkylation of alkyl-substituted C9+ aromatic compounds using bimodal porous dealkylation catalyst at low temperature | |
US10647633B2 (en) | Catalyst and process for the production of para-xylene | |
JPH1147606A (ja) | 低級炭化水素の芳香族化触媒及び該触媒を用いた芳香族化合物の製造法 | |
JP4677194B2 (ja) | 触媒を用いた低級炭化水素の転化方法 | |
JP4302954B2 (ja) | 低級炭化水素の芳香族化合物化触媒の製造方法 | |
JP5151951B2 (ja) | 低級炭化水素芳香族化触媒及びその触媒の製造方法 | |
US8642493B2 (en) | Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst | |
WO2011118279A1 (ja) | 芳香族化合物製造方法 | |
Al-Eid et al. | Effect of ZSM-5 particle size and framework silica-to-alumina ratio on hexane aromatization | |
Meng et al. | An efficient synthesis protocol of core-shell ZSM-5@ Silicalite-1 for the targeted alkylation reaction of toluene with ethanol | |
KR101790987B1 (ko) | 글리세롤을 이용한 바이오 방향족 화합물의 제조방법 | |
JP5949069B2 (ja) | 低級炭化水素芳香族化触媒の製造方法 | |
JP2008229519A (ja) | 低級炭化水素改質触媒の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131097.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09806607 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13058413 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 1104197 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20090618 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1104197.7 Country of ref document: GB |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09806607 Country of ref document: EP Kind code of ref document: A1 |