WO2009101695A1 - 流路切換バルブ - Google Patents
流路切換バルブ Download PDFInfo
- Publication number
- WO2009101695A1 WO2009101695A1 PCT/JP2008/052467 JP2008052467W WO2009101695A1 WO 2009101695 A1 WO2009101695 A1 WO 2009101695A1 JP 2008052467 W JP2008052467 W JP 2008052467W WO 2009101695 A1 WO2009101695 A1 WO 2009101695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- rotor
- switching valve
- flow path
- path switching
- Prior art date
Links
- 239000011248 coating agent Substances 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 21
- 238000005498 polishing Methods 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000006061 abrasive grain Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 239000011347 resin Substances 0.000 abstract description 9
- 229920005989 resin Polymers 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 238000012864 cross contamination Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/02—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
- F16K11/06—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
- F16K11/072—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
- F16K11/074—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
- F16K11/0743—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces with both the supply and the discharge passages being on one side of the closure plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K25/00—Details relating to contact between valve members and seats
- F16K25/005—Particular materials for seats or closure elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/16—Injection
- G01N30/20—Injection using a sampling valve
- G01N2030/202—Injection using a sampling valve rotary valves
Definitions
- the present invention relates to a flow path switching valve used in an analyzer such as a high performance liquid chromatograph.
- the analyzer is equipped with a mechanism for switching the flow path for selecting a solution such as a sample or a solvent or for introducing the sample into the analysis system from the outside.
- a high performance liquid chromatograph has a mechanism for switching the flow path so that a sample solution under atmospheric pressure is introduced to the flow path of the mobile phase that is sent at a high pressure (several tens of MPa).
- the mechanism is provided with a flow path switching valve.
- a flow path switching valve in such an application, a disk-shaped rotor in which a switching groove is formed is rotated while being contacted in a plane with a disk-shaped stator in which a through hole connected to the groove is formed.
- a flow path switching valve is used (for example, Patent Document 1).
- the stator is sandwiched between the housing top to which the flow path is connected and the rotor, and the rotor and the stator are in surface contact with each other to prevent liquid leakage in the flow path. Then, the connected flow path is switched by rotating and sliding the rotor by a predetermined angle from a predetermined position.
- a resin such as polyetheretherketone (PEEK) or polyimide is used for the rotor, and ceramic is used for the stator.
- the rotor In the flow path switching valve, the rotor is pressed against the stator with a strong force in order to prevent liquid leakage.
- the stator and the rotor surface are scraped off by friction due to the rotation to generate shavings, which causes deterioration of the subsequent column.
- the rotor material is ceramic, such shavings are not generated, but the contact surface of both the stator and the rotor is made fine in consideration of the sealing property, and the flatness is also highly accurate.
- a mirror adhesion phenomenon referred to as so-called linking occurs and the rotational operation of the rotor is impaired.
- a flow path switching valve is disclosed in which the rotor is made of a fluorocarbon-containing polymer and the durability of the rotor is improved by coating a tungsten carbide / carbon (WC / C) layer (Patent Document 2).
- the WC / C layer has a structure in which hard WC particles are dispersed in a soft amorphous carbon matrix, and is formed by alternately laminating amorphous carbon and WC.
- DLC diamond-like carbon
- Patent Document 3 the surface of the sliding surface of the plunger reciprocating in the pump is smoothed. And DLC coating is disclosed.
- WC is added to amorphous carbon as in Patent Document 2 on the sliding surface of the rotor and stator of the flow path switching valve. It is conceived that a pure DLC film is formed on the sliding surface of the stator without using it.
- Fig. 4 (a) shows an image obtained by scanning electron microscope (SEM) of DLC coating on the contact plane with the rotor of the stator.
- SEM scanning electron microscope
- FIG. 4 (b) shows a photograph of the contact plane of the stator after assembling the switching valve using the DLC film formed and sliding the contact plane between the rotor and the stator 200 times. The scraps generated by the wear of the rotor are confirmed on the contact plane of the stator. If this amount of wear occurs after only 200 switching operations, in some cases, it is unbearable for a liquid chromatograph flow path switching valve that continuously analyzes thousands of samples.
- a long-life flow path switching valve having a DLC coating on the stator surface is provided.
- the flow path switching valve of the present invention includes a stator and a rotor having contact planes that are in contact with each other, the stator has a flow port connected to each of the plurality of flow paths, and the rotor is located within the flow port of the stator. These are at least one groove for communicating the two, are urged against the contact plane of the stator, and rotate and slide so as to switch the flow port of the stator to be communicated.
- the contact plane of the rotor that contacts the stator is made of resin, and a DLC (diamond-like carbon) film is formed on the stator, and the film is polished.
- the portion that becomes the contact plane of the stator is polished smoothly.
- the surface of the contact plane of the stator is preferably mirror-polished using diamond abrasive grains or the like.
- stainless steel is preferable in terms of mechanical strength and corrosion resistance.
- the contact plane on which the DLC coating is applied is subjected to polishing using alumina abrasive grains or the like to remove submicron-order agglomerated carbon existing on the surface of the coating.
- the slidability in the contact plane between the rotor and the stator is improved, and an increase in torque for rotating the rotor can be suppressed.
- the wear of the rotor due to the stator surface is reduced and the rotor can be used stably for a long period of time, and the deterioration of the column and the clogging of the piping due to the generation of scraps of the rotor can be prevented. Further, the close contact between the contact planes of the rotor and the stator is maintained, so that liquid leakage is prevented, the flow path is reliably switched, and no cross contamination occurs.
- FIG. 1 is a schematic perspective view of a stator and a rotor portion of a flow path switching valve according to an embodiment.
- the stator 11 is made of stainless steel and has an integrated housing to which a flow path is connected.
- the stator sliding surface 13 of the stator 11 is in contact with the rotor sliding surface 17 of the rotor 15, and the through hole 19 provided in the stator 11 is electrically connected to the groove 21 provided in the rotor 15.
- the rotor 15 is made of a resin such as PEEK, for example, and a plurality of grooves 21 are provided in an arc shape.
- the stator sliding surface 13 of the stainless steel stator 11 is preferably polished (mirror-finished) with diamond abrasive grains (particle size of 1 to 3 ⁇ m) in order to improve the slidability.
- a DLC coating having a thickness of about 2 ⁇ m is formed on the sliding surface 13 of the mirror-finished stainless steel stator 11 by magnetron sputtering.
- DLC coating is performed by magnetron sputtering, droplets and the like are less likely to adhere to the coating surface, a smooth surface is obtained, the friction coefficient is reduced, and the wear of the rotor can be reduced.
- the DLC coating is a technically stable formation method that has good adhesion to the sliding surface of the mirror-finished stator. Polishing is performed after DLC coating. Unlike the processing of a stainless steel stator base material, softer processing conditions may be used, and the alumina abrasive grains (particle size of 1 to 3 ⁇ m) may be processed to such an extent that carbon agglomerates are eliminated.
- FIG. 3 (a) shows an SEM image of the flow path switching valve according to the present invention, in which the contact surface with the rotor of the stator is DLC coated and then polished.
- this SEM image ⁇ 5000 magnification
- the unevenness as shown in FIG. 4A is not confirmed on the surface of the DLC coating. It can be seen that a smooth flat surface is formed by polishing using the alumina abrasive grains after DLC coating.
- FIG. 3 (b) shows a photograph of the contact plane of the stator after assembling the switching valve using DLC-coated and polished material, sliding the contact plane between the rotor and the stator 200 times. It is. Although the conditions are the same as in FIG.
- the scraps generated by the wear of the rotor are not confirmed at all on the contact plane of the stator. It is confirmed by the polishing using the alumina abrasive grains after the DLC coating that the wear of the resin is reduced even if the sliding partner (rotor) is a resin.
- FIG. 2 is a schematic cross-sectional view showing the overall structure of the flow path switching valve.
- the stator 11 is provided with a plurality of flow path connecting portions 23, and the tips thereof communicate with the through holes 19 of the contact plane 13.
- the rotor 15 is attached to the tip of the shaft 25 and is urged toward the stator 11 by an elastic member 29 provided in a body portion 27 that rotatably supports the shaft 25.
- the body portion 27 is screwed to the outer peripheral portion of the stator 11 with bolts 31.
- a groove 21 is formed in the contact plane 17 of the rotor 15 (see FIG. 1), and communicates with the through hole 19 of the contact plane 13 of the stator 11.
- a portion (housing) in which the flow path connecting portion 23 is provided is configured integrally with the stator 11.
- the housing and the stator By integrally configuring the housing and the stator, the flow path inside the flow path switching valve is shortened, the volume in the flow path is reduced, and the diffusion of sample components is suppressed.
- the flow path connection portion 23 includes a liquid feeding device for feeding a mobile phase, a sample loop for measuring a sample solution, and separating the sample solution for each component.
- the column to be connected is connected.
- the through holes 19 in the contact plane of the stator are arranged on the circumference, and the groove 21 of the rotor communicates with two of them, but a flow generally called “multi-position valve” is used.
- a flow generally called “multi-position valve” is used.
- a multi-position valve a common through hole on the contact surface of the stator is arranged at the center, and a plurality of them are arranged on the circumference of the circumference, and the rotor groove is arranged on the circumference of the common through hole of the stator. This is a groove extending in the radial direction so as to be selectively connected to any one of the through holes.
- the present invention can be used for high-performance liquid chromatographs, analytical instruments that require switching of flow paths, and other instruments.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Multiple-Way Valves (AREA)
- Sliding Valves (AREA)
Abstract
Description
13 ステータ摺動面
15 ロータ
17 ロータ摺動面
19 貫通穴
21 溝
23 流路接続部
25 シャフト
27 ボディ部
29 弾性部材
31 ボルト
33 軸受
図1は一実施例の流路切換バルブのステータ及びロータ部分の概略斜視図である。
ステータ11はステンレス製であり、流路が接続されるハウジングが一体化されたものである。ステータ11のステータ摺動面13はロータ15のロータ摺動面17と接し、ステータ11に設けられた貫通穴19がロータ15に設けられた溝21と導通するようになっている。ロータ15は、例えばPEEK等の樹脂製であり、溝21が円弧状に複数設けられている。
Claims (5)
- 互いに接する接触平面をもつステータとロータを備え、前記ステータは複数の流路が接続されるハウジングとのそれぞれ連通する流通口をその接触平面に有し、前記ロータは前記ステータの接触平面上の流通口の内の2つを連通させる少なくとも1つの溝を有して前記ステータの接触平面に対して付勢され、連通すべき前記ステータの流通口を切り換えるように回転摺動する流路切換バルブにおいて、前記ステータの接触平面は前記ステータの基材を研磨した後にダイヤモンドライクカーボンで被膜を形成し、さらに前記被膜を研磨加工して形成されたことを特徴とする流路切換バルブ。
- 前記ステータの基材はステンレス製であることを特徴とする請求項1に記載の流路切換バルブ。
- 前記ステータの基材をダイヤモンド砥粒を用いて研磨したことを特徴とする請求項2に記載の流路切換バルブ。
- 前記被膜の研磨には、アルミナ砥粒を用いることを特徴とする請求項2~3のいずれか1項に記載の流路切換バルブ。
- 前記ステータは、流路を接続するハウジングと一体に形成されたものであることを特徴とする請求項1に記載の流路切換バルブ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008801203453A CN101896750A (zh) | 2008-02-14 | 2008-02-14 | 流路切换阀 |
US12/809,225 US20100276617A1 (en) | 2008-02-14 | 2008-02-14 | Flow channel switching valve |
JP2009553313A JPWO2009101695A1 (ja) | 2008-02-14 | 2008-02-14 | 流路切換バルブ |
PCT/JP2008/052467 WO2009101695A1 (ja) | 2008-02-14 | 2008-02-14 | 流路切換バルブ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/052467 WO2009101695A1 (ja) | 2008-02-14 | 2008-02-14 | 流路切換バルブ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009101695A1 true WO2009101695A1 (ja) | 2009-08-20 |
Family
ID=40956739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/052467 WO2009101695A1 (ja) | 2008-02-14 | 2008-02-14 | 流路切換バルブ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100276617A1 (ja) |
JP (1) | JPWO2009101695A1 (ja) |
CN (1) | CN101896750A (ja) |
WO (1) | WO2009101695A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011000104A1 (de) | 2011-01-12 | 2012-07-12 | Dionex Softron Gmbh | Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
CN103423484A (zh) * | 2013-09-11 | 2013-12-04 | 青岛普仁仪器有限公司 | 阀门及色谱仪 |
DE102012107378A1 (de) | 2012-08-10 | 2014-02-13 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107377A1 (de) | 2012-08-10 | 2014-02-13 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107379A1 (de) | 2012-08-10 | 2014-02-13 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107380A1 (de) | 2012-08-10 | 2014-05-22 | Dionex Softron Gmbh | Schaltventil, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
US20140191146A1 (en) * | 2011-06-17 | 2014-07-10 | Waters Technologies Corporation | Rotary Shear Valve with a Two-pin Drive Shaft for Liquid Chromatography Applications |
JP2014520250A (ja) * | 2011-04-25 | 2014-08-21 | ウオーターズ・テクノロジーズ・コーポレイシヨン | 保護被膜を有するバルブ |
WO2014141358A1 (ja) * | 2013-03-11 | 2014-09-18 | 株式会社島津製作所 | 流路切換バルブ |
JP2015515383A (ja) * | 2012-02-01 | 2015-05-28 | ウオーターズ・テクノロジーズ・コーポレイシヨン | マイクロ流体装置への流体接続の処理 |
US9063114B2 (en) | 2012-08-10 | 2015-06-23 | Dionex Softron Gmbh | Switching valve for liquid chromatography |
WO2015122253A1 (ja) * | 2014-02-12 | 2015-08-20 | 株式会社日立ハイテクノロジーズ | 流路切り替えバルブおよび当該バルブを用いた液体クロマトグラフ装置 |
WO2021141056A1 (ja) | 2020-01-10 | 2021-07-15 | 京セラ株式会社 | セラミック接合体、セラミック接合体の製造方法、流路切替弁用ステータおよび流路切替弁 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9939415B2 (en) | 2011-01-12 | 2018-04-10 | Dionex Softron Gmbh | High-pressure control valve for high-performance liquid chromatography |
CN103423483B (zh) * | 2013-09-11 | 2015-08-26 | 青岛普仁仪器有限公司 | 阀门及色谱仪 |
US10376888B2 (en) | 2014-07-03 | 2019-08-13 | Centrillion Technology Holdings Corporation | Device for storage and dispensing of reagents |
WO2017004502A1 (en) | 2015-07-02 | 2017-01-05 | Centrillion Technology Holdings Corporation | Systems and methods to dispense and mix reagents |
CN105042116B (zh) * | 2015-08-25 | 2017-10-13 | 江苏德林环保技术有限公司 | 电动程序进样阀 |
DE102017010020A1 (de) * | 2016-11-02 | 2018-05-03 | Mann + Hummel Gmbh | Einheit zum Regeln oder Steuern eines Fluiddrucks |
US10697552B2 (en) * | 2017-01-26 | 2020-06-30 | Toto Ltd. | Faucet valve |
WO2019186690A1 (ja) * | 2018-03-27 | 2019-10-03 | 株式会社島津製作所 | 水質分析計用マルチポートバルブ |
DE102018116830A1 (de) * | 2018-07-11 | 2020-01-16 | Agilent Technologies, Inc. - A Delaware Corporation - | Ventilanordnung mit Ventilmodul und Basismodul |
CN109027315B (zh) * | 2018-09-14 | 2019-12-06 | 中国航发湖南动力机械研究所 | 多通阀和燃气分析设备 |
CN111341692A (zh) * | 2018-12-18 | 2020-06-26 | 夏泰鑫半导体(青岛)有限公司 | 磁悬浮旋转系统、快速热处理装置 |
KR20210104971A (ko) * | 2020-02-18 | 2021-08-26 | 두산인프라코어 주식회사 | 파일럿 포펫형 릴리프 밸브 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151097A (ja) * | 1984-12-25 | 1986-07-09 | Showa Denko Kk | 平滑面をもつダイヤモンド薄膜の製法 |
JPH01307575A (ja) * | 1988-06-03 | 1989-12-12 | Shimadzu Corp | 切換えバルブ |
JPH06100398A (ja) * | 1992-09-18 | 1994-04-12 | Kobe Steel Ltd | 鏡面を有するダイヤモンド膜の製造方法 |
JPH08128540A (ja) * | 1994-10-31 | 1996-05-21 | Kyocera Corp | 摺動装置 |
JPH10130817A (ja) * | 1996-10-23 | 1998-05-19 | Toyota Central Res & Dev Lab Inc | 被覆部材およびその製造方法 |
JP2000320670A (ja) * | 1999-05-11 | 2000-11-24 | Kayaba Ind Co Ltd | ピストンの表面処理方法 |
JP2002031040A (ja) * | 2000-07-12 | 2002-01-31 | Kayaba Ind Co Ltd | 液圧ピストンポンプ・モータ摺動部の表面処理構造 |
JP2003166656A (ja) * | 2001-11-29 | 2003-06-13 | Kyocera Corp | ディスクバルブ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012487A (en) * | 1997-03-10 | 2000-01-11 | Brian A. Hauck | Prime purge injection valve or multi-route selections valve |
US6046112A (en) * | 1998-12-14 | 2000-04-04 | Taiwan Semiconductor Manufacturing Company | Chemical mechanical polishing slurry |
US6453946B2 (en) * | 2000-03-10 | 2002-09-24 | Rheodyne, Lp | Long lifetime fluid switching valve |
US6748975B2 (en) * | 2001-12-26 | 2004-06-15 | Micralyne Inc. | Microfluidic valve and method of manufacturing same |
JP2003215118A (ja) * | 2002-01-29 | 2003-07-30 | Shimadzu Corp | 液体クロマトグラフ用オートサンプラ |
CN101580928B (zh) * | 2003-02-26 | 2012-07-18 | 住友电气工业株式会社 | 无定形碳膜及其制备方法以及无定形碳膜涂敷的材料 |
WO2005047826A2 (en) * | 2003-11-10 | 2005-05-26 | Waters Investments Limited | A device and method for controlling the flow of fluid in a conduit |
WO2006021071A1 (en) * | 2004-08-25 | 2006-03-02 | Systeme Analytique Inc. | Rotary valve and analytical chromatographic system using the same |
MY149202A (en) * | 2006-05-02 | 2013-07-31 | Teijin Pharma Ltd | Rotary-valve and adsorption separation system |
-
2008
- 2008-02-14 WO PCT/JP2008/052467 patent/WO2009101695A1/ja active Application Filing
- 2008-02-14 CN CN2008801203453A patent/CN101896750A/zh active Pending
- 2008-02-14 JP JP2009553313A patent/JPWO2009101695A1/ja active Pending
- 2008-02-14 US US12/809,225 patent/US20100276617A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151097A (ja) * | 1984-12-25 | 1986-07-09 | Showa Denko Kk | 平滑面をもつダイヤモンド薄膜の製法 |
JPH01307575A (ja) * | 1988-06-03 | 1989-12-12 | Shimadzu Corp | 切換えバルブ |
JPH06100398A (ja) * | 1992-09-18 | 1994-04-12 | Kobe Steel Ltd | 鏡面を有するダイヤモンド膜の製造方法 |
JPH08128540A (ja) * | 1994-10-31 | 1996-05-21 | Kyocera Corp | 摺動装置 |
JPH10130817A (ja) * | 1996-10-23 | 1998-05-19 | Toyota Central Res & Dev Lab Inc | 被覆部材およびその製造方法 |
JP2000320670A (ja) * | 1999-05-11 | 2000-11-24 | Kayaba Ind Co Ltd | ピストンの表面処理方法 |
JP2002031040A (ja) * | 2000-07-12 | 2002-01-31 | Kayaba Ind Co Ltd | 液圧ピストンポンプ・モータ摺動部の表面処理構造 |
JP2003166656A (ja) * | 2001-11-29 | 2003-06-13 | Kyocera Corp | ディスクバルブ |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012095097A1 (de) | 2011-01-12 | 2012-07-19 | Dionex Softron Gmbh | Hochdruck-schaltventil für die hochleistungsflüssigkeitschromatographie |
DE102011000104A1 (de) | 2011-01-12 | 2012-07-12 | Dionex Softron Gmbh | Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
JP2014520250A (ja) * | 2011-04-25 | 2014-08-21 | ウオーターズ・テクノロジーズ・コーポレイシヨン | 保護被膜を有するバルブ |
US20140191146A1 (en) * | 2011-06-17 | 2014-07-10 | Waters Technologies Corporation | Rotary Shear Valve with a Two-pin Drive Shaft for Liquid Chromatography Applications |
US10866218B2 (en) | 2012-02-01 | 2020-12-15 | Waters Technologies Corporation | Managing fluidic connections to microfluidic devices |
JP2015515383A (ja) * | 2012-02-01 | 2015-05-28 | ウオーターズ・テクノロジーズ・コーポレイシヨン | マイクロ流体装置への流体接続の処理 |
US9063114B2 (en) | 2012-08-10 | 2015-06-23 | Dionex Softron Gmbh | Switching valve for liquid chromatography |
US9400265B2 (en) | 2012-08-10 | 2016-07-26 | Dionex Softron Gmbh | Switching valve for high-performance liquid chromatography |
DE102012107378B4 (de) * | 2012-08-10 | 2014-05-15 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107379A1 (de) | 2012-08-10 | 2014-02-13 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107380B4 (de) * | 2012-08-10 | 2017-03-09 | Dionex Softron Gmbh | Schaltventil, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107377A1 (de) | 2012-08-10 | 2014-02-13 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107378A1 (de) | 2012-08-10 | 2014-02-13 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107377B4 (de) * | 2012-08-10 | 2016-11-03 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107379B4 (de) * | 2012-08-10 | 2016-09-29 | Dionex Softron Gmbh | Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
DE102012107380A1 (de) | 2012-08-10 | 2014-05-22 | Dionex Softron Gmbh | Schaltventil, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie |
US9297790B2 (en) | 2012-08-10 | 2016-03-29 | Dionex Softron Gmbh | Switching valve for liquid chromatography |
US9329157B2 (en) | 2012-08-10 | 2016-05-03 | Dionex Softron Gmbh | Switching valve for liquid chromatography |
JP5999252B2 (ja) * | 2013-03-11 | 2016-09-28 | 株式会社島津製作所 | 流路切換バルブ |
WO2014141358A1 (ja) * | 2013-03-11 | 2014-09-18 | 株式会社島津製作所 | 流路切換バルブ |
CN103423484B (zh) * | 2013-09-11 | 2015-08-26 | 青岛普仁仪器有限公司 | 阀门及色谱仪 |
CN103423484A (zh) * | 2013-09-11 | 2013-12-04 | 青岛普仁仪器有限公司 | 阀门及色谱仪 |
JP2015152033A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社日立ハイテクノロジーズ | 流路切り替えバルブおよび当該バルブを用いた液体クロマトグフラフ装置 |
WO2015122253A1 (ja) * | 2014-02-12 | 2015-08-20 | 株式会社日立ハイテクノロジーズ | 流路切り替えバルブおよび当該バルブを用いた液体クロマトグラフ装置 |
US10364900B2 (en) | 2014-02-12 | 2019-07-30 | Hitachi High-Technologies Corporation | Fluid switching valve and liquid chromatograph apparatus using the same |
WO2021141056A1 (ja) | 2020-01-10 | 2021-07-15 | 京セラ株式会社 | セラミック接合体、セラミック接合体の製造方法、流路切替弁用ステータおよび流路切替弁 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009101695A1 (ja) | 2011-06-02 |
US20100276617A1 (en) | 2010-11-04 |
CN101896750A (zh) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009101695A1 (ja) | 流路切換バルブ | |
US8438910B2 (en) | Shear valve with DLC comprising multi-layer coated member | |
EP2454505B1 (en) | Rotary shear valve assembly with hard-on-hard seal surfaces | |
JP4952795B2 (ja) | 流路切換えバルブ | |
JP6043786B2 (ja) | 可変圧力荷重を有する高圧流体切替弁 | |
US20130284959A1 (en) | High-pressure control valve for high-performance liquid chromatography | |
US20050124262A1 (en) | Processing pad assembly with zone control | |
JP2008215494A (ja) | 流路切換えバルブ | |
WO2014141358A1 (ja) | 流路切換バルブ | |
JP5692417B2 (ja) | 流路切替バルブ | |
WO2015122253A1 (ja) | 流路切り替えバルブおよび当該バルブを用いた液体クロマトグラフ装置 | |
JP4983292B2 (ja) | 流路切換えバルブ | |
JP4586002B2 (ja) | メカニカルシール | |
EP3803376A1 (en) | Chromatography valve for fluid analysis | |
JP7303723B2 (ja) | 流路切替バルブシステムおよび液体クロマトグラフ | |
US11433404B2 (en) | Centrifugal field-flow fractionation device having a restricting member to prevent deformation of an intermediate layer | |
WO2022130950A1 (ja) | 流路切替バルブおよび液体クロマトグラフ | |
WO2012173908A1 (en) | Rotary shear valve with a two-pin drive shaft for liquid chromatography applications | |
WO2020039521A1 (ja) | 流路切替バルブ | |
JP2023110304A (ja) | 流路切替バルブ、及びその製造方法 | |
JP6057448B1 (ja) | 流量調節弁 | |
EP2592313B1 (en) | Rotary shear valve assembly with a polymer insert device | |
JP2003314703A (ja) | メカニカルシール装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880120345.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08711303 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009553313 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12809225 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08711303 Country of ref document: EP Kind code of ref document: A1 |