[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009101695A1 - 流路切換バルブ - Google Patents

流路切換バルブ Download PDF

Info

Publication number
WO2009101695A1
WO2009101695A1 PCT/JP2008/052467 JP2008052467W WO2009101695A1 WO 2009101695 A1 WO2009101695 A1 WO 2009101695A1 JP 2008052467 W JP2008052467 W JP 2008052467W WO 2009101695 A1 WO2009101695 A1 WO 2009101695A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
switching valve
flow path
path switching
Prior art date
Application number
PCT/JP2008/052467
Other languages
English (en)
French (fr)
Inventor
Kenichi Yasunaga
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to CN2008801203453A priority Critical patent/CN101896750A/zh
Priority to US12/809,225 priority patent/US20100276617A1/en
Priority to JP2009553313A priority patent/JPWO2009101695A1/ja
Priority to PCT/JP2008/052467 priority patent/WO2009101695A1/ja
Publication of WO2009101695A1 publication Critical patent/WO2009101695A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • F16K11/0743Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces with both the supply and the discharge passages being on one side of the closure plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves

Definitions

  • the present invention relates to a flow path switching valve used in an analyzer such as a high performance liquid chromatograph.
  • the analyzer is equipped with a mechanism for switching the flow path for selecting a solution such as a sample or a solvent or for introducing the sample into the analysis system from the outside.
  • a high performance liquid chromatograph has a mechanism for switching the flow path so that a sample solution under atmospheric pressure is introduced to the flow path of the mobile phase that is sent at a high pressure (several tens of MPa).
  • the mechanism is provided with a flow path switching valve.
  • a flow path switching valve in such an application, a disk-shaped rotor in which a switching groove is formed is rotated while being contacted in a plane with a disk-shaped stator in which a through hole connected to the groove is formed.
  • a flow path switching valve is used (for example, Patent Document 1).
  • the stator is sandwiched between the housing top to which the flow path is connected and the rotor, and the rotor and the stator are in surface contact with each other to prevent liquid leakage in the flow path. Then, the connected flow path is switched by rotating and sliding the rotor by a predetermined angle from a predetermined position.
  • a resin such as polyetheretherketone (PEEK) or polyimide is used for the rotor, and ceramic is used for the stator.
  • the rotor In the flow path switching valve, the rotor is pressed against the stator with a strong force in order to prevent liquid leakage.
  • the stator and the rotor surface are scraped off by friction due to the rotation to generate shavings, which causes deterioration of the subsequent column.
  • the rotor material is ceramic, such shavings are not generated, but the contact surface of both the stator and the rotor is made fine in consideration of the sealing property, and the flatness is also highly accurate.
  • a mirror adhesion phenomenon referred to as so-called linking occurs and the rotational operation of the rotor is impaired.
  • a flow path switching valve is disclosed in which the rotor is made of a fluorocarbon-containing polymer and the durability of the rotor is improved by coating a tungsten carbide / carbon (WC / C) layer (Patent Document 2).
  • the WC / C layer has a structure in which hard WC particles are dispersed in a soft amorphous carbon matrix, and is formed by alternately laminating amorphous carbon and WC.
  • DLC diamond-like carbon
  • Patent Document 3 the surface of the sliding surface of the plunger reciprocating in the pump is smoothed. And DLC coating is disclosed.
  • WC is added to amorphous carbon as in Patent Document 2 on the sliding surface of the rotor and stator of the flow path switching valve. It is conceived that a pure DLC film is formed on the sliding surface of the stator without using it.
  • Fig. 4 (a) shows an image obtained by scanning electron microscope (SEM) of DLC coating on the contact plane with the rotor of the stator.
  • SEM scanning electron microscope
  • FIG. 4 (b) shows a photograph of the contact plane of the stator after assembling the switching valve using the DLC film formed and sliding the contact plane between the rotor and the stator 200 times. The scraps generated by the wear of the rotor are confirmed on the contact plane of the stator. If this amount of wear occurs after only 200 switching operations, in some cases, it is unbearable for a liquid chromatograph flow path switching valve that continuously analyzes thousands of samples.
  • a long-life flow path switching valve having a DLC coating on the stator surface is provided.
  • the flow path switching valve of the present invention includes a stator and a rotor having contact planes that are in contact with each other, the stator has a flow port connected to each of the plurality of flow paths, and the rotor is located within the flow port of the stator. These are at least one groove for communicating the two, are urged against the contact plane of the stator, and rotate and slide so as to switch the flow port of the stator to be communicated.
  • the contact plane of the rotor that contacts the stator is made of resin, and a DLC (diamond-like carbon) film is formed on the stator, and the film is polished.
  • the portion that becomes the contact plane of the stator is polished smoothly.
  • the surface of the contact plane of the stator is preferably mirror-polished using diamond abrasive grains or the like.
  • stainless steel is preferable in terms of mechanical strength and corrosion resistance.
  • the contact plane on which the DLC coating is applied is subjected to polishing using alumina abrasive grains or the like to remove submicron-order agglomerated carbon existing on the surface of the coating.
  • the slidability in the contact plane between the rotor and the stator is improved, and an increase in torque for rotating the rotor can be suppressed.
  • the wear of the rotor due to the stator surface is reduced and the rotor can be used stably for a long period of time, and the deterioration of the column and the clogging of the piping due to the generation of scraps of the rotor can be prevented. Further, the close contact between the contact planes of the rotor and the stator is maintained, so that liquid leakage is prevented, the flow path is reliably switched, and no cross contamination occurs.
  • FIG. 1 is a schematic perspective view of a stator and a rotor portion of a flow path switching valve according to an embodiment.
  • the stator 11 is made of stainless steel and has an integrated housing to which a flow path is connected.
  • the stator sliding surface 13 of the stator 11 is in contact with the rotor sliding surface 17 of the rotor 15, and the through hole 19 provided in the stator 11 is electrically connected to the groove 21 provided in the rotor 15.
  • the rotor 15 is made of a resin such as PEEK, for example, and a plurality of grooves 21 are provided in an arc shape.
  • the stator sliding surface 13 of the stainless steel stator 11 is preferably polished (mirror-finished) with diamond abrasive grains (particle size of 1 to 3 ⁇ m) in order to improve the slidability.
  • a DLC coating having a thickness of about 2 ⁇ m is formed on the sliding surface 13 of the mirror-finished stainless steel stator 11 by magnetron sputtering.
  • DLC coating is performed by magnetron sputtering, droplets and the like are less likely to adhere to the coating surface, a smooth surface is obtained, the friction coefficient is reduced, and the wear of the rotor can be reduced.
  • the DLC coating is a technically stable formation method that has good adhesion to the sliding surface of the mirror-finished stator. Polishing is performed after DLC coating. Unlike the processing of a stainless steel stator base material, softer processing conditions may be used, and the alumina abrasive grains (particle size of 1 to 3 ⁇ m) may be processed to such an extent that carbon agglomerates are eliminated.
  • FIG. 3 (a) shows an SEM image of the flow path switching valve according to the present invention, in which the contact surface with the rotor of the stator is DLC coated and then polished.
  • this SEM image ⁇ 5000 magnification
  • the unevenness as shown in FIG. 4A is not confirmed on the surface of the DLC coating. It can be seen that a smooth flat surface is formed by polishing using the alumina abrasive grains after DLC coating.
  • FIG. 3 (b) shows a photograph of the contact plane of the stator after assembling the switching valve using DLC-coated and polished material, sliding the contact plane between the rotor and the stator 200 times. It is. Although the conditions are the same as in FIG.
  • the scraps generated by the wear of the rotor are not confirmed at all on the contact plane of the stator. It is confirmed by the polishing using the alumina abrasive grains after the DLC coating that the wear of the resin is reduced even if the sliding partner (rotor) is a resin.
  • FIG. 2 is a schematic cross-sectional view showing the overall structure of the flow path switching valve.
  • the stator 11 is provided with a plurality of flow path connecting portions 23, and the tips thereof communicate with the through holes 19 of the contact plane 13.
  • the rotor 15 is attached to the tip of the shaft 25 and is urged toward the stator 11 by an elastic member 29 provided in a body portion 27 that rotatably supports the shaft 25.
  • the body portion 27 is screwed to the outer peripheral portion of the stator 11 with bolts 31.
  • a groove 21 is formed in the contact plane 17 of the rotor 15 (see FIG. 1), and communicates with the through hole 19 of the contact plane 13 of the stator 11.
  • a portion (housing) in which the flow path connecting portion 23 is provided is configured integrally with the stator 11.
  • the housing and the stator By integrally configuring the housing and the stator, the flow path inside the flow path switching valve is shortened, the volume in the flow path is reduced, and the diffusion of sample components is suppressed.
  • the flow path connection portion 23 includes a liquid feeding device for feeding a mobile phase, a sample loop for measuring a sample solution, and separating the sample solution for each component.
  • the column to be connected is connected.
  • the through holes 19 in the contact plane of the stator are arranged on the circumference, and the groove 21 of the rotor communicates with two of them, but a flow generally called “multi-position valve” is used.
  • a flow generally called “multi-position valve” is used.
  • a multi-position valve a common through hole on the contact surface of the stator is arranged at the center, and a plurality of them are arranged on the circumference of the circumference, and the rotor groove is arranged on the circumference of the common through hole of the stator. This is a groove extending in the radial direction so as to be selectively connected to any one of the through holes.
  • the present invention can be used for high-performance liquid chromatographs, analytical instruments that require switching of flow paths, and other instruments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)

Abstract

【課題】ロータの耐久性を向上させる。 【解決手段】流路切換バルブは、接触平面13をもつステータ11と接触平面17をもつロータ15を備えている。ステータ11は複数の流路のそれぞれに接続される流通口19をその接触平面13にもち、ロータ15はステータ11の流通口19の内の2つを連通させる少なくとも1つの溝21をもち、ステータ11の接触平面13に対して付勢され、連通すべきステータ11の流通口19を切り換えるように回転摺動する。本発明では、ステータ11の接触平面13にDLCコーティングが被膜された後、研磨加工を施されており、一方、ロータ15の接触平面17は樹脂製である。

Description

流路切換バルブ
 本発明は高速液体クロマトグラフ等の分析装置で用いられる流路切換バルブに関するものである。
 分析装置においては、試料や溶媒等の溶液の選択や、試料の外部から分析系への導入のため、流路を切り換える機構が備えられる。例えば、高速液体クロマトグラフにおいては、高い圧力(数十MPa)で送液される移動相の流路に対して、大気圧下の試料溶液を導入するように流路を切り換える機構を有しており、この機構に流路切換バルブを備えられている。
 従来、このような用途における流路切換バルブとしては、切り換え溝が形成された円盤状のロータを、その溝と導通する貫通穴が形成された円盤状ステータに対し、平面で接触させつつ回転させる流路切換バルブが用いられている(例えば、特許文献1)。流路切換バルブでは、流路が接続されたハウジングトップとロータの間にステータが挟まれており、ロータとステータが相互に面接触することで流路の液漏れが防止されている。そして、ロータを所定の位置から一定角度だけ回転摺動して、接続された流路が切り換えられる。このような従来の流路切換バルブの材質として、ロータにはポリエーテルエーテルケトン(PEEK; polyetheretherketone)やポリイミド等の樹脂、ステータにはセラミック等が使われている。
 流路切換バルブを長期にわたって使用するとステータ(セラミック)よりも柔らかいロータ(樹脂)の摺動面は磨耗し、これによりバルブにおける回転トルクの増大、流体の漏洩、ロータの磨耗した部分に残留した液によるクロスコンタミネーションの増大などを引き起こすという問題がある。
 流路切換バルブにおいては、液漏れを防止するため、ロータはステータに対して強い力で押し付けられている。その状態でロータが回転すると、ロータの材質が樹脂である場合には、回転による摩擦でステータおよびロータ表面が削り取られて削り屑が発生し、後段のカラムの劣化原因となっていた。一方、ロータの材質をセラミックとする場合には、そのような削り屑は発生しないが、シール性を考慮してステータ、ロータともに、その接触面の表面粗さを細かくし、平面度も高精度に仕上げる必要があり、そのような面同士を強い力で押し付けると、いわゆるリンキング等と称される鏡面接着現象が生じ、ロータの回転動作を損なうという問題があった。
 ロータをフルオロカーボン含有ポリマーとし、タングステンカーバイド/カーボン(WC/C)層をコーティングすることでロータの耐久性を向上させた流路切換バルブが開示されている(特許文献2)。WC/C層は柔らかいアモルファスカーボンマトリクス中に硬いWC粒子が分散した構造であり、アモルファスカーボンとWCを交互に積層することにより形成される。
 摺動面に対する表面処理加工では、ダイヤモンドライクカーボン(DLC;Diamond like Carbon)をコーティングすることが注目されており、例えば、特許文献3ではポンプ内で往復動するプランジャの摺動面の表面を平滑に処理して、DLCコーティングすることが開示されている。DLCが炭素の同素体から成る非晶質(アモルファス)の硬質膜であることを考慮すれば、流路切換バルブのロータとステータの摺動面について、特許文献2のようなアモルファスカーボン中にWCを用いずに、ステータの摺動面を純粋なDLCの被膜を形成することに想到する。
特開平1-307575号 米国特許第6453946号 特開2004-60513号
 ステータのロータとの接触平面にDLCコーティングしたものの走査型電子顕微鏡(SEM;Scanning Electron Microscope)による画像を図4(a)に示す。このSEM画像(×5000倍)では、DLCコーティングの表面には、凹凸が確認される。サブミクロンオーダーの粒塊状カーボンが存在することが原因である。平滑な平面であるべき部分にこれだけの凹凸が存在すると、様々な支障が生じる。摺動する相手(ロータ)が樹脂であれば、この凹凸により表面の磨耗が激しくなる。磨耗による削れカスは、摺動面に残れば密接に接触するロータとステータの接触平面に隙間を生じさせ液漏れの原因となり、ステータ面に設けられた開口から流路に流れ込むと上述のようにカラムの劣化や流路詰まりの原因となる。また、ステータ面とロータ面は強い力で押し付けられながら回転するので、表面の凹凸により想定外の摩擦が生じるとロータを回転させるモータ等の力が不足し、流路の切り換えができなくなり、流路切換バルブが動作不能となる。流路切換バルブが動作不能になれば、流路を構成する分析装置全体として正常な動作を維持することができなくなる。多くの場合には、圧力の異常上昇を感知して安全システムが作動し、分析装置が停止する。
 図4(b)は、DLCの被膜を形成したものを用いて切換バルブを組み立て、ロータとステータとの接触平面を200回摺動させた後、ステータの接触平面を撮影したものである。ロータが磨耗して生じた削れカスがステータの接触平面に確認される。わずか200回の切り換えで、これだけの磨耗が生じるのであれば、場合によっては数千にも及ぶ試料を連続的に分析する液体クロマトグラフの流路切換バルブの用途には堪えない。
 本発明では、ステータ面にDLCコーティングを施した長寿命な流路切換バルブを提供する。
 本発明の流路切換バルブは、互いに接する接触平面をもつステータとロータを備え、ステータは複数の流路のそれぞれに接続される流通口をその接触平面にもち、ロータはステータの流通口の内の2つを連通させる少なくとも1つの溝をもち、ステータの接触平面に対して付勢され、連通すべき上記ステータの流通口を切り換えるように回転摺動するものである。そして、ステータと接触するロータの接触平面は樹脂製であり、ステータにはDLC(ダイヤモンドライクカーボン)の被膜が形成され、その被膜が研磨されている。
 DLCコーティングを施す前には、ステータの接触平面となる部分が平滑に研磨加工される。この加工はステータの接触平面の表面をダイヤモンド砥粒等を用いて鏡面研磨とするのが好ましい。ステータの基材としては、機械的強度や対腐蝕性の面でステンレスが好ましい。
 DLCコーティングを施した接触平面にアルミナ砥粒等を用いた研磨加工を施し、コーティングの表面に存在するサブミクロンオーダーの粒塊状のカーボンを除去する。
 DLCコーティングの表面に存在するカーボンの粒塊を研磨により除去することで、ロータとステータの接触平面における摺動性が向上し、ロータを回転させるトルクの増大を抑制することができる。ステータ表面によるロータの磨耗が低減し、長期間安定して使用でき、ロータの削れカスの発生によるカラムの劣化や配管の詰まりを防止することができる。また、ロータとステータの接触平面の密接な接触が維持されることにより液漏れを防止し、確実な流路の切り換えを行なうとともに、クロスコンタミネーションを生じない。
流路切換バルブのステータ及びロータ部分の概略斜視図である。 流路切換バルブ全体の概略断面図である。 本発明に係るステータ表面の(a)DLCコーティングを研磨加工後のSEM画像、(b)使用後の光学画像である。 従来技術に係るステータ表面の(a)DLCコーティング後のSEM画像、(b)使用後の光学画像である。
符号の説明
  11   ステータ
  13   ステータ摺動面
  15   ロータ
  17   ロータ摺動面
  19   貫通穴
  21   溝
  23   流路接続部
  25   シャフト
  27   ボディ部
  29   弾性部材
  31   ボルト
  33   軸受
 以下、本発明の実施例を、図を参照しつつ説明する。
 図1は一実施例の流路切換バルブのステータ及びロータ部分の概略斜視図である。
 ステータ11はステンレス製であり、流路が接続されるハウジングが一体化されたものである。ステータ11のステータ摺動面13はロータ15のロータ摺動面17と接し、ステータ11に設けられた貫通穴19がロータ15に設けられた溝21と導通するようになっている。ロータ15は、例えばPEEK等の樹脂製であり、溝21が円弧状に複数設けられている。
 ステンレス製ステータ11のステータ摺動面13は、摺動性を高めるため、ダイヤモンド砥粒(粒径1~3μm)を用いて研磨(鏡面加工)するのが好ましい。
 鏡面加工したステンレス製ステータ11の摺動面13にマグネトロンスパッタリング法によりDLCコーティングが2μm程度の厚さに形成されている。マグネトロンスパッタリング法によるDLCコーティングを行なうと、ドロップレットなどがコーティング表面に付着しにくくなり、平滑な表面が得られ、摩擦係数が低減されて、ロータの磨耗を低減させることができる。DLCコーティングは、鏡面加工されたステータの摺動面との密着性がよく、且つ、技術的に安定した形成方法である。DLCコーティング後、研磨加工を施す。ステンレス製のステータ基材の加工とは異なり、よりソフトな加工条件でよく、アルミナ砥粒(粒径1~3μm)により、カーボンの粒塊がなくなる程度に加工するだけでよい。
 本発明に係る流路切換バルブにおいて、ステータのロータとの接触平面にDLCコーティングした後に研磨加工を行ったもののSEM画像を図3(a)に示す。このSEM画像(×5000倍)では、DLCコーティングの表面には図4(a)で示したような凹凸が確認されない。DLCコーティング後のアルミナ砥粒を用いた研磨加工により、平滑な平面が形成されていることがわかる。図3(b)は、DLCコーティングした後、研磨加工を行ったものを用いて切換バルブを組み立て、ロータとステータとの接触平面を200回摺動させた後、ステータの接触平面を撮影したものである。図4(b)と同じ条件であるが、ロータが磨耗して生じる削れカスは、ステータの接触平面に全く確認されない。DLCコーティング後のアルミナ砥粒を用いた研磨により、摺動する相手(ロータ)が樹脂であっても、樹脂の磨耗は低減されることが確認される。
 図2は流路切換バルブの全体構造を示した概略断面図である。ステータ11には流路接続部23が複数設けられており、その先端は接触平面13の貫通穴19に通じている。ロータ15はシャフト25の先端に取り付けられており、シャフト25を回転可能に支持するボディ部27内に設けられた弾性部材29によってステータ11方向に付勢されている。ボディ部27はボルト31によってステータ11の外周部にネジ止めされている。ロータ15の接触平面17には溝21が形成されており(図1を参照)、ステータ11の接触平面13の貫通穴19を連通する。流路を切り換える際、シャフト25を回転させてロータ15をステータ11に対して回転摺動させ、貫通穴19と溝21の接続を切り換える。この例においては、流路接続部23が設けられる部分(ハウジング)がステータ11と一体に構成されている。ハウジングとステータを一体に構成することで、流路切換バルブの内部での流路が短くなり流路内の容積を小さくし、試料成分の拡散を抑制しているのであるが、一般的な流路切換バルブのようにハウジングとステータを別体に構成しても良い。
 本発明の流路切換バルブを液体クロマトグラフに用いる場合には、流路接続部23には、移動相を送液する送液装置や試料溶液を計量するサンプルループ、試料溶液を成分ごとに分離するカラム等が接続される。
 実施例ではステータの接触平面の貫通穴19が円周上に配置され、ロータの溝21がその内の2つを連通するようになっているが、一般的に“マルチポジションバルブ”と呼ばれる流路切換バルブにも同様に適用することができる。マルチポジションバルブにおいては、ステータの接触面の貫通穴として中央に共通のものを配置し、その周囲の円周上に複数個を配置し、ロータの溝はステータの共通の貫通穴を円周上のいずれかの貫通穴に選択的に接続するように半径方向に延びた溝となる。
 本発明は高速液体クロマトグラフをはじめ、流路の切り換えを必要とする分析機器、その他の機器に利用することができる。

 

Claims (5)

  1.  互いに接する接触平面をもつステータとロータを備え、前記ステータは複数の流路が接続されるハウジングとのそれぞれ連通する流通口をその接触平面に有し、前記ロータは前記ステータの接触平面上の流通口の内の2つを連通させる少なくとも1つの溝を有して前記ステータの接触平面に対して付勢され、連通すべき前記ステータの流通口を切り換えるように回転摺動する流路切換バルブにおいて、前記ステータの接触平面は前記ステータの基材を研磨した後にダイヤモンドライクカーボンで被膜を形成し、さらに前記被膜を研磨加工して形成されたことを特徴とする流路切換バルブ。
  2.  前記ステータの基材はステンレス製であることを特徴とする請求項1に記載の流路切換バルブ。
  3.  前記ステータの基材をダイヤモンド砥粒を用いて研磨したことを特徴とする請求項2に記載の流路切換バルブ。
  4.  前記被膜の研磨には、アルミナ砥粒を用いることを特徴とする請求項2~3のいずれか1項に記載の流路切換バルブ。
  5.  前記ステータは、流路を接続するハウジングと一体に形成されたものであることを特徴とする請求項1に記載の流路切換バルブ。
PCT/JP2008/052467 2008-02-14 2008-02-14 流路切換バルブ WO2009101695A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801203453A CN101896750A (zh) 2008-02-14 2008-02-14 流路切换阀
US12/809,225 US20100276617A1 (en) 2008-02-14 2008-02-14 Flow channel switching valve
JP2009553313A JPWO2009101695A1 (ja) 2008-02-14 2008-02-14 流路切換バルブ
PCT/JP2008/052467 WO2009101695A1 (ja) 2008-02-14 2008-02-14 流路切換バルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052467 WO2009101695A1 (ja) 2008-02-14 2008-02-14 流路切換バルブ

Publications (1)

Publication Number Publication Date
WO2009101695A1 true WO2009101695A1 (ja) 2009-08-20

Family

ID=40956739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052467 WO2009101695A1 (ja) 2008-02-14 2008-02-14 流路切換バルブ

Country Status (4)

Country Link
US (1) US20100276617A1 (ja)
JP (1) JPWO2009101695A1 (ja)
CN (1) CN101896750A (ja)
WO (1) WO2009101695A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000104A1 (de) 2011-01-12 2012-07-12 Dionex Softron Gmbh Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
CN103423484A (zh) * 2013-09-11 2013-12-04 青岛普仁仪器有限公司 阀门及色谱仪
DE102012107378A1 (de) 2012-08-10 2014-02-13 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107377A1 (de) 2012-08-10 2014-02-13 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107379A1 (de) 2012-08-10 2014-02-13 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107380A1 (de) 2012-08-10 2014-05-22 Dionex Softron Gmbh Schaltventil, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
US20140191146A1 (en) * 2011-06-17 2014-07-10 Waters Technologies Corporation Rotary Shear Valve with a Two-pin Drive Shaft for Liquid Chromatography Applications
JP2014520250A (ja) * 2011-04-25 2014-08-21 ウオーターズ・テクノロジーズ・コーポレイシヨン 保護被膜を有するバルブ
WO2014141358A1 (ja) * 2013-03-11 2014-09-18 株式会社島津製作所 流路切換バルブ
JP2015515383A (ja) * 2012-02-01 2015-05-28 ウオーターズ・テクノロジーズ・コーポレイシヨン マイクロ流体装置への流体接続の処理
US9063114B2 (en) 2012-08-10 2015-06-23 Dionex Softron Gmbh Switching valve for liquid chromatography
WO2015122253A1 (ja) * 2014-02-12 2015-08-20 株式会社日立ハイテクノロジーズ 流路切り替えバルブおよび当該バルブを用いた液体クロマトグラフ装置
WO2021141056A1 (ja) 2020-01-10 2021-07-15 京セラ株式会社 セラミック接合体、セラミック接合体の製造方法、流路切替弁用ステータおよび流路切替弁

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939415B2 (en) 2011-01-12 2018-04-10 Dionex Softron Gmbh High-pressure control valve for high-performance liquid chromatography
CN103423483B (zh) * 2013-09-11 2015-08-26 青岛普仁仪器有限公司 阀门及色谱仪
US10376888B2 (en) 2014-07-03 2019-08-13 Centrillion Technology Holdings Corporation Device for storage and dispensing of reagents
WO2017004502A1 (en) 2015-07-02 2017-01-05 Centrillion Technology Holdings Corporation Systems and methods to dispense and mix reagents
CN105042116B (zh) * 2015-08-25 2017-10-13 江苏德林环保技术有限公司 电动程序进样阀
DE102017010020A1 (de) * 2016-11-02 2018-05-03 Mann + Hummel Gmbh Einheit zum Regeln oder Steuern eines Fluiddrucks
US10697552B2 (en) * 2017-01-26 2020-06-30 Toto Ltd. Faucet valve
WO2019186690A1 (ja) * 2018-03-27 2019-10-03 株式会社島津製作所 水質分析計用マルチポートバルブ
DE102018116830A1 (de) * 2018-07-11 2020-01-16 Agilent Technologies, Inc. - A Delaware Corporation - Ventilanordnung mit Ventilmodul und Basismodul
CN109027315B (zh) * 2018-09-14 2019-12-06 中国航发湖南动力机械研究所 多通阀和燃气分析设备
CN111341692A (zh) * 2018-12-18 2020-06-26 夏泰鑫半导体(青岛)有限公司 磁悬浮旋转系统、快速热处理装置
KR20210104971A (ko) * 2020-02-18 2021-08-26 두산인프라코어 주식회사 파일럿 포펫형 릴리프 밸브

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151097A (ja) * 1984-12-25 1986-07-09 Showa Denko Kk 平滑面をもつダイヤモンド薄膜の製法
JPH01307575A (ja) * 1988-06-03 1989-12-12 Shimadzu Corp 切換えバルブ
JPH06100398A (ja) * 1992-09-18 1994-04-12 Kobe Steel Ltd 鏡面を有するダイヤモンド膜の製造方法
JPH08128540A (ja) * 1994-10-31 1996-05-21 Kyocera Corp 摺動装置
JPH10130817A (ja) * 1996-10-23 1998-05-19 Toyota Central Res & Dev Lab Inc 被覆部材およびその製造方法
JP2000320670A (ja) * 1999-05-11 2000-11-24 Kayaba Ind Co Ltd ピストンの表面処理方法
JP2002031040A (ja) * 2000-07-12 2002-01-31 Kayaba Ind Co Ltd 液圧ピストンポンプ・モータ摺動部の表面処理構造
JP2003166656A (ja) * 2001-11-29 2003-06-13 Kyocera Corp ディスクバルブ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012487A (en) * 1997-03-10 2000-01-11 Brian A. Hauck Prime purge injection valve or multi-route selections valve
US6046112A (en) * 1998-12-14 2000-04-04 Taiwan Semiconductor Manufacturing Company Chemical mechanical polishing slurry
US6453946B2 (en) * 2000-03-10 2002-09-24 Rheodyne, Lp Long lifetime fluid switching valve
US6748975B2 (en) * 2001-12-26 2004-06-15 Micralyne Inc. Microfluidic valve and method of manufacturing same
JP2003215118A (ja) * 2002-01-29 2003-07-30 Shimadzu Corp 液体クロマトグラフ用オートサンプラ
CN101580928B (zh) * 2003-02-26 2012-07-18 住友电气工业株式会社 无定形碳膜及其制备方法以及无定形碳膜涂敷的材料
WO2005047826A2 (en) * 2003-11-10 2005-05-26 Waters Investments Limited A device and method for controlling the flow of fluid in a conduit
WO2006021071A1 (en) * 2004-08-25 2006-03-02 Systeme Analytique Inc. Rotary valve and analytical chromatographic system using the same
MY149202A (en) * 2006-05-02 2013-07-31 Teijin Pharma Ltd Rotary-valve and adsorption separation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151097A (ja) * 1984-12-25 1986-07-09 Showa Denko Kk 平滑面をもつダイヤモンド薄膜の製法
JPH01307575A (ja) * 1988-06-03 1989-12-12 Shimadzu Corp 切換えバルブ
JPH06100398A (ja) * 1992-09-18 1994-04-12 Kobe Steel Ltd 鏡面を有するダイヤモンド膜の製造方法
JPH08128540A (ja) * 1994-10-31 1996-05-21 Kyocera Corp 摺動装置
JPH10130817A (ja) * 1996-10-23 1998-05-19 Toyota Central Res & Dev Lab Inc 被覆部材およびその製造方法
JP2000320670A (ja) * 1999-05-11 2000-11-24 Kayaba Ind Co Ltd ピストンの表面処理方法
JP2002031040A (ja) * 2000-07-12 2002-01-31 Kayaba Ind Co Ltd 液圧ピストンポンプ・モータ摺動部の表面処理構造
JP2003166656A (ja) * 2001-11-29 2003-06-13 Kyocera Corp ディスクバルブ

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095097A1 (de) 2011-01-12 2012-07-19 Dionex Softron Gmbh Hochdruck-schaltventil für die hochleistungsflüssigkeitschromatographie
DE102011000104A1 (de) 2011-01-12 2012-07-12 Dionex Softron Gmbh Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
JP2014520250A (ja) * 2011-04-25 2014-08-21 ウオーターズ・テクノロジーズ・コーポレイシヨン 保護被膜を有するバルブ
US20140191146A1 (en) * 2011-06-17 2014-07-10 Waters Technologies Corporation Rotary Shear Valve with a Two-pin Drive Shaft for Liquid Chromatography Applications
US10866218B2 (en) 2012-02-01 2020-12-15 Waters Technologies Corporation Managing fluidic connections to microfluidic devices
JP2015515383A (ja) * 2012-02-01 2015-05-28 ウオーターズ・テクノロジーズ・コーポレイシヨン マイクロ流体装置への流体接続の処理
US9063114B2 (en) 2012-08-10 2015-06-23 Dionex Softron Gmbh Switching valve for liquid chromatography
US9400265B2 (en) 2012-08-10 2016-07-26 Dionex Softron Gmbh Switching valve for high-performance liquid chromatography
DE102012107378B4 (de) * 2012-08-10 2014-05-15 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107379A1 (de) 2012-08-10 2014-02-13 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107380B4 (de) * 2012-08-10 2017-03-09 Dionex Softron Gmbh Schaltventil, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107377A1 (de) 2012-08-10 2014-02-13 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107378A1 (de) 2012-08-10 2014-02-13 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107377B4 (de) * 2012-08-10 2016-11-03 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107379B4 (de) * 2012-08-10 2016-09-29 Dionex Softron Gmbh Schaltventil für die Flüssigkeitschromatographie, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
DE102012107380A1 (de) 2012-08-10 2014-05-22 Dionex Softron Gmbh Schaltventil, insbesondere Hochdruck-Schaltventil für die Hochleistungsflüssigkeitschromatographie
US9297790B2 (en) 2012-08-10 2016-03-29 Dionex Softron Gmbh Switching valve for liquid chromatography
US9329157B2 (en) 2012-08-10 2016-05-03 Dionex Softron Gmbh Switching valve for liquid chromatography
JP5999252B2 (ja) * 2013-03-11 2016-09-28 株式会社島津製作所 流路切換バルブ
WO2014141358A1 (ja) * 2013-03-11 2014-09-18 株式会社島津製作所 流路切換バルブ
CN103423484B (zh) * 2013-09-11 2015-08-26 青岛普仁仪器有限公司 阀门及色谱仪
CN103423484A (zh) * 2013-09-11 2013-12-04 青岛普仁仪器有限公司 阀门及色谱仪
JP2015152033A (ja) * 2014-02-12 2015-08-24 株式会社日立ハイテクノロジーズ 流路切り替えバルブおよび当該バルブを用いた液体クロマトグフラフ装置
WO2015122253A1 (ja) * 2014-02-12 2015-08-20 株式会社日立ハイテクノロジーズ 流路切り替えバルブおよび当該バルブを用いた液体クロマトグラフ装置
US10364900B2 (en) 2014-02-12 2019-07-30 Hitachi High-Technologies Corporation Fluid switching valve and liquid chromatograph apparatus using the same
WO2021141056A1 (ja) 2020-01-10 2021-07-15 京セラ株式会社 セラミック接合体、セラミック接合体の製造方法、流路切替弁用ステータおよび流路切替弁

Also Published As

Publication number Publication date
JPWO2009101695A1 (ja) 2011-06-02
US20100276617A1 (en) 2010-11-04
CN101896750A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
WO2009101695A1 (ja) 流路切換バルブ
US8438910B2 (en) Shear valve with DLC comprising multi-layer coated member
EP2454505B1 (en) Rotary shear valve assembly with hard-on-hard seal surfaces
JP4952795B2 (ja) 流路切換えバルブ
JP6043786B2 (ja) 可変圧力荷重を有する高圧流体切替弁
US20130284959A1 (en) High-pressure control valve for high-performance liquid chromatography
US20050124262A1 (en) Processing pad assembly with zone control
JP2008215494A (ja) 流路切換えバルブ
WO2014141358A1 (ja) 流路切換バルブ
JP5692417B2 (ja) 流路切替バルブ
WO2015122253A1 (ja) 流路切り替えバルブおよび当該バルブを用いた液体クロマトグラフ装置
JP4983292B2 (ja) 流路切換えバルブ
JP4586002B2 (ja) メカニカルシール
EP3803376A1 (en) Chromatography valve for fluid analysis
JP7303723B2 (ja) 流路切替バルブシステムおよび液体クロマトグラフ
US11433404B2 (en) Centrifugal field-flow fractionation device having a restricting member to prevent deformation of an intermediate layer
WO2022130950A1 (ja) 流路切替バルブおよび液体クロマトグラフ
WO2012173908A1 (en) Rotary shear valve with a two-pin drive shaft for liquid chromatography applications
WO2020039521A1 (ja) 流路切替バルブ
JP2023110304A (ja) 流路切替バルブ、及びその製造方法
JP6057448B1 (ja) 流量調節弁
EP2592313B1 (en) Rotary shear valve assembly with a polymer insert device
JP2003314703A (ja) メカニカルシール装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120345.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553313

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12809225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711303

Country of ref document: EP

Kind code of ref document: A1