[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007117028A1 - ポリエチレンテレフタレートの製造方法 - Google Patents

ポリエチレンテレフタレートの製造方法 Download PDF

Info

Publication number
WO2007117028A1
WO2007117028A1 PCT/JP2007/058016 JP2007058016W WO2007117028A1 WO 2007117028 A1 WO2007117028 A1 WO 2007117028A1 JP 2007058016 W JP2007058016 W JP 2007058016W WO 2007117028 A1 WO2007117028 A1 WO 2007117028A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene terephthalate
polycondensation
solid phase
esterification reaction
polycondensed
Prior art date
Application number
PCT/JP2007/058016
Other languages
English (en)
French (fr)
Inventor
Shinya Konuma
Original Assignee
Teijin Fibers Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2008011881A priority Critical patent/MX2008011881A/es
Priority to CA2646576A priority patent/CA2646576C/en
Application filed by Teijin Fibers Limited filed Critical Teijin Fibers Limited
Priority to PL07741452T priority patent/PL2003159T3/pl
Priority to KR1020087024295A priority patent/KR101293011B1/ko
Priority to SI200730821T priority patent/SI2003159T1/sl
Priority to CN200780012036XA priority patent/CN101415749B/zh
Priority to US12/295,211 priority patent/US8653232B2/en
Priority to AU2007236595A priority patent/AU2007236595B2/en
Priority to ES07741452T priority patent/ES2378403T3/es
Priority to DK07741452.2T priority patent/DK2003159T3/da
Priority to BRPI0709881-2A priority patent/BRPI0709881B1/pt
Priority to EP07741452A priority patent/EP2003159B1/en
Priority to EA200802112A priority patent/EA015941B1/ru
Priority to AT07741452T priority patent/ATE540994T1/de
Priority to JP2008509915A priority patent/JP5139974B2/ja
Publication of WO2007117028A1 publication Critical patent/WO2007117028A1/ja
Priority to HK09101458.4A priority patent/HK1121481A1/xx
Priority to HK09106594.8A priority patent/HK1129122A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a method for producing polyethylene terephthalate, which can obtain a molded article having a low content of acetaldehyde and a low content of cyclic trimer without causing deterioration of hue.
  • Acetaldehyde may cause offensive odors and off-flavors, or may alter the flavor of the contents, and may adversely affect the use of polyethylene terephthalate molded products.
  • Polyethylene terephthalate is widely used in the form of fibers, vinylomes, sheets, bottles, cups, or trays because of its excellent mechanical and chemical properties.
  • Such polyethylene terephthalate can usually be produced from an aromatic dicarboxylic acid such as terephthalic acid and an aliphatic diol such as ethylene dallicol. Specifically, first, a low-order condensate (ester low polymer) is formed by an esterification reaction of an aromatic dicarboxylic acid and an aliphatic diol, and then this low-order condensate is removed in the presence of a polycondensation catalyst. Manufactured by a glycol reaction (melt polycondensation). If necessary, solid state polycondensation is further performed after melt polycondensation to further increase the molecular weight. '
  • an antimony compound and a germanium compound have been conventionally used as a polycondensation catalyst.
  • polyethylene and terephthalate produced using an antimony compound as a polycondensation catalyst were inferior to polyethylene terephthalate produced using a germanium compound as a polycondensation catalyst in terms of transparency and heat resistance.
  • Polyethylene obtained especially for beverage bottle applications and food packaging materials It is also desired to reduce the acetonitrile content in terephthalate. 'Furthermore, antimony compounds have some health concerns.
  • germanium compounds have no hygiene concerns, and polyethylene terephthalate molded products produced using germanium compounds as polycondensation catalysts have good transparency, content of acetoaldehyde and content of oligomers. There are few. However, since the germanium compound is expensive, there is a problem that the production cost of polyethylene terephthalate increases. In recent years, aluminum compounds have been proposed as polycondensation catalysts for polyethylene terephthalate. However, organoaluminum compounds are not as expensive as germanium compounds, but they are relatively expensive, and some water-soluble aluminum salts are known to be neurotoxic, leaving hygiene concerns.
  • a titanium compound also has an action of promoting a polycondensation reaction of an ester, and titanium alkoxide, titanium tetrachloride, titanyl oxalate, or orthotitanic acid is known as a polycondensation catalyst.
  • titanium alkoxide, titanium tetrachloride, titanyl oxalate, or orthotitanic acid is known as a polycondensation catalyst.
  • the content of the acetoaldehyde in the polyethylene terephthalate chip and its molded product is lower than that of the polyethylene terephthalate obtained by using the germanium compound as the polycondensation catalyst.
  • the oligomer content was high.
  • the main component of the oligomer is a cyclic trimer of ethylene terephthalate, which is sometimes abbreviated as Cy-3.
  • Oligomers present in polyethylene terephthalate chips or oligomers produced during polyethylene terephthalate molding adhere to and contaminate the rollers of drawing equipment and rollers of heat treatment equipment as white powder.
  • the oligomer becomes a powdery foreign substance and contaminates the staining solution.
  • film is formed, it is made of fiber.
  • problems such as contamination of various equipment rollers and product defects such as so-called dropout on magnetic tape.
  • it becomes white powder contaminates the molding die, or adheres to the surface of the molded product, so that a molded product with a normal appearance cannot be obtained.
  • the oligomer generated during the stretching process and the heat process adheres to the mold and the like, and there is another problem that the transparency of the molded product is significantly impaired by the transfer.
  • Patent Document 1 and Patent Document 2 propose a method for reducing the oligomer content by a solid phase polycondensation method in which polyethylene terephthalate is heat-treated in a high vacuum state below its melting point.
  • Patent Document 3 proposes a method for reducing the oligomer content by a solid phase polycondensation method in which polyethylene terephthalate is heat-treated in an inert gas atmosphere at a temperature below the melting point.
  • the oligomer content When the oligomer content is reduced by this method, it has the effect of reducing the amount of white powder generated for polyethylene terephthalate having a relatively high oligomer content in the polyethylene terephthalate. However, if the polyethylene terephthalate content in polyethylene terephthalate is relatively low, the amount of white powder generated may be increased if the amount of white powder generated cannot be reduced.
  • Patent Document 4 states that by treating the polyethylene terephthalate after solid-phase polycondensation with water, the amount of acetate aldehyde and oligomer produced at the time of molding can be reduced.
  • the polycondensation catalyst is an antimony compound other than a germanium compound, When it is a ruminium compound or a titanium compound, it has no effect.
  • Patent Document 6 and Patent Document 7 propose a method of adding an alkali metal salt or an alkaline earth metal salt as a method for reducing the content of acetonitrile and / or oligomer in polyethylene terephthalate moldings.
  • This method alone, the acetoaldehyde content in polyethylene terephthalate moldings is considerably higher than that of polyethylene terephthalate using a germanium compound as a catalyst.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Sho 4 8-10 10 4 6 2
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5 1-04 8 5 0 5
  • Patent Document 3 Japanese Patent Laid-Open No. Sho 5 5-1 8 9 3 3 1
  • Patent Document 4 Japanese Patent Laid-Open No. 3-4 7 8 30
  • Patent Document 5 US Patent No. 5 0.1 7'6 80
  • Patent Document 6 International Publication No. 0 5Z0 2 3 90 0 Pamphlet
  • Patent Document 7 Japanese Patent Laid-Open No. 2 00 4-0 1 0 6 5 7
  • Patent Document 8 International Publication No. 0 3/0 0 8 4 7 9 Pamphlet
  • An object of the present invention is to provide a method for producing a polyethylene terephthalate that is suitable for solving the problems of the prior art as described above and for obtaining a molded article having a low content of alkyl aldehyde. is there. (Means for solving problems)
  • An object of the present invention is to provide a polyethylene terephthalate having a good hue with a small amount of acetonitrile and a small amount of oligomer.
  • the present inventors have intensively studied to solve the above-mentioned problems. Using specific compounds containing a titanium atom and a phosphorus atom, the conditions of the melt polycondensation are examined in detail, and the number of carboxyl ends and the intrinsic viscosity are determined. The present invention was completed by finding that the problem can be solved by obtaining a strictly controlled polyethylene terephthalate and subjecting it to solid phase polycondensation.
  • an object of the present invention is a method for producing polyethylene terephthalate, in which a compound represented by the following general formula (I) is used as a polycondensation catalyst to perform melt polycondensation, and the intrinsic viscosity is 0.4 8 to 0 5 3 d L / g, a process to obtain molten polycondensed polyethylene terephthalate having a terminal carboxyl number of 14 to 2 2 mm o 1 / kg, and then the intrinsic viscosity of the molten polycondensed polyethylene terephthalate by solid phase polycondensation
  • a method for producing polyethylene terephthalate including a step of obtaining a solid phase polycondensed polyethylene terephthalate from 0.70 to 0.86 d LZg.
  • a metal salt containing at least one kind of atom selected from the group consisting of sodium, potassium and cesium in any step in the polyethylene terephthalate production process.
  • the present invention is a method for producing polyethylene terephthalate under specific conditions using a titanium compound that is less expensive than a germanium compound and less hygienic as compared with an antimony compound and a aluminum compound as a polycondensation catalyst.
  • a polyethylene terephthalate capable of producing a molded article having a low alkyl aldehyde content and a low oligomer content equivalent to polyethylene terephthalate using a germanium compound as a polycondensation catalyst. . (Best Mode for Carrying Out the Invention)
  • the polyethylene terephthalate in the production method of the present invention is polyethylene terephthalate whose main repeating unit is an ethylene terephthalate unit.
  • main means that the content is 80 mol% or more and 100 mol% or less in the repeating units constituting polyethylene terephthalate. Therefore, in the polyethylene terephthalate of the present invention, the remaining 0 to 20 mol% may be copolymerized with a copolymer component other than the ethylene terephthalate component.
  • the other copolymerization components are unsubstituted or substituted isophthalic acid, naphthalene dicarboxylic acid norevonic acid, dipheny / resicanoreponic acid, dipheninore terdicarboxylic acid, diphenylsulephone dicarboxylic acid, diphenoxyethanedicarboxylic acid, succinic acid Acid, adipic acid, sebacic acid, zelaic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, trimellitic acid, pyromellitic acid, or their lower alkyl esters, their lower aryl esters or these Ester-forming derivatives of these acid halides, trimethylene glycol, 1,2 propanediol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, decane methylene glycol, dodecamethylene glycol Ko.
  • Mono-ole, 1,4-cyclohexanedimethano Mono-ole, Diethylene glycolate, Triethylene glycolate, Tetraethylene glycolate, Polyethylene Lenguli Cornole, Dipropylene Glicone, Tripropylene Glycol, Tetrapropylene Glycol, Polypropylene Glycol, Di (Tetramethylene) Glycol, Tri (Tetramethylene) Glycol, Polytetramethylene Dalicol, Pentaerythritol, or Mention may be made of 2,2-bis (4-hydroxyhydroxy) propane.
  • a compound represented by the following formula (I) it is necessary to use a compound represented by the following formula (I) as a polycondensation catalyst. Furthermore, it is preferable to use a polycondensation catalyst such that the titanium atom concentration is 1 to 50 ppm with respect to the polyethylene terephthalate obtained after solid phase polycondensation.
  • the compound serving as the polycondensation catalyst can be produced, for example, by heating a titanium compound and a phosphorus compound using darcol as a solvent. In that case, the compound that becomes the polycondensation catalyst is obtained as a precipitate in the glycol.
  • the two R i groups in general formula (I) are each independently an alkyl group derived from a titanium compound or an alkyl group derived from a phosphorus compound, and an alkyl group having 3 to 6 carbon atoms. Is preferred.
  • Titanium compounds used in the production of the polycondensation catalyst include titanium tetroxide, titanium tetrisopropoxide, titanium tetrannormal hydroxide, titanium tetraethoxide, titanium tetramethoxide, titante traxacetyl cetate "" one complex, Titanium tetrakis (2,4 monohexanato) complex, titanium tetrakis (3,5 monoheptane diato) complex, titanium dimethoxybisacetylacetonate complex, Titanium jetoxy bisacetyl etherate complex, Titanium diisopropoxy bisacetyl etherate complex, Titanium dinormalpropoxy bisacetyl acetate toner complex, Titanium dibutoxy bisacetyl acetate toner complex, Titanium dihydroxy bisglycolate, Titanium dihydrate Mouth Kishibis lactate, Titanium dihydroxybis (2-Hydroxyp oral pionate), Titanium lactate, Titanium oc
  • V compounds include monoethyl phosphate, monopropyl phosphate, monoptinorephosphate, monohexinorephosphate, monooctinorephosphate, monodecide. Mono-anoleyl phosphates or monophenyl phosphates such as norephosphate, monolaurinophosphate, monooleyl phosphate, or monotetradecyl phosphate are preferred. These phosphorus compounds may be used in a mixture. For example, a combination of a mixture of monoalkinophosphate and monophenolate phosphate can be preferably mentioned. In particular, it is particularly preferable that the ratio of monoalkyl phosphate is 90 mol% or more and 100 mol% or less.
  • the glycols used as a solvent in the production of the polycondensation catalyst of the general formula (I) include ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, and hexamethylene glycol. Or cyclohexanedimethanol.
  • Dalicol used in the production of polycondensation catalyst is polyethylene polyethylene produced using the polycondensation catalyst. It is preferable to use the same darlicol as the glycol used as the raw material for the phthalate.
  • the polycondensation catalyst used in the present invention is a method in which a titanium compound, a phosphorus compound, and a glycol are mixed and heated at the same time, or a solution of each of the titanium compound and the phosphorus compound is prepared, and then they are used. It can be produced by mixing and heating a glycol solution. Of these, the latter method is preferred.
  • the reaction temperature for producing the polycondensation catalyst is carried out at room temperature, the reaction may not proceed sufficiently, or the reaction may take excessive time. Accordingly, the reaction is usually preferably carried out at a reaction temperature of 50 ° C. to 200 ° C., and the reaction time is preferably completed in 1 minute to 4 hours.
  • the reaction temperature when ethylene darlicol is used as the daricol is preferably 50 ° C to 150 ° C, and the reaction temperature when hexamethylenedaricol is used is 100 ° C (:
  • the reaction time when using these glycols is more preferably in the range of 30 minutes to 2 hours When the reaction temperature is too high or the reaction time is too long. This is not preferable because the produced polycondensation catalyst deteriorates.
  • the molar ratio of the phosphorus atom to the titanium atom is 1.5 or more and less than 2.5. It is preferably 1.7 or more and less than 2.3.
  • the molar ratio is less than 1.5, the physical properties of the polyethylene terephthalate may deteriorate due to the presence of a large amount of unreacted titanium compound.
  • the molar ratio is 2.5 or more, the presence of a large amount of unreacted phosphorus compound may slow the polymerization rate of polyethylene terephthalate and may deteriorate the physical properties of polyethylene terephthalate.
  • the liquid containing the polycondensation catalyst used in the present invention as a precipitate obtained by such an operation may be used as it is as a catalyst for producing polyethylene terephthalate without solid-liquid separation.
  • centrifugation treatment Alternatively, after separating the precipitate and the solvent by filtration, the separated precipitate may be purified and used as a polycondensation catalyst.
  • a specific purification method there can be mentioned a method of recrystallization using acetone, methyl alcohol, or a mixed solvent of methyl alcohol and water.
  • the polycondensation catalyst used in the present invention can be easily separated from darcol using a filter, its chemical structure and titanium atom content in the polycondensation catalyst are analyzed by solid-state NMR and XMA metal analysis after separation. Can be analyzed. On the other hand, since the unreacted titanium compound and phosphorus compound are soluble in glycol, the unreacted rate can be determined by analyzing the titanium atom concentration or phosphorus atom concentration in the filtrate components.
  • the polycondensation catalyst should be used so that the polyethylene atom terephthalate obtained after solid-phase polycondensation has a titanium atom concentration of 1 to 50 ppm. Is preferred. Further, it is preferably used as a polycondensation catalyst in an amount of 5 to 25 ppm in terms of titanium atom concentration in the finally obtained solid phase polycondensation polyethylene terephthalate, and used in an amount of 6 to 20 ppm. More preferably.
  • a polycondensation catalyst in an amount in the range of 5 to 25 ppm when performing an operation of adding a compound containing at least one atom among sodium, potassium and cesium described later.
  • the polycondensation catalyst is used in an amount of 50 ppm or more, the polymerization rate of liquid phase polycondensation or solid phase polycondensation may be too fast, and the polyethylene terephthalate may be strongly colored.
  • the polycondensation catalyst is used at less than 1 ppm, the polymerization rate of liquid phase polycondensation or solid phase polycondensation may be too slow or the polycondensation reaction may not proceed at all.
  • the metal atom other than the titanium atom is preferably 1 O ppm or less, more preferably 5 ppm or less in terms of metal atom concentration.
  • the polycondensation catalyst may be present during the polycondensation reaction. For this reason, the addition of the polycondensation catalyst is performed in the melt polycondensation process, that is, the raw material slurry preparation process, It may be carried out in any of the esterification reaction step, liquid phase polycondensation step and other steps. Further, the entire amount of the polycondensation catalyst may be added to the reactor all at once, or may be added to the reactor in several batches.
  • the polyethylene terephthalate production method of the present invention will be described in more detail for each step.
  • polyethylene terephthalate in the present invention will be described in detail.
  • polycondensation catalyst polyethylene terephthalate can be produced mainly by polycondensation of terephthalic acid or its ester-forming derivative and ethylene dalycol.
  • an ester-forming derivative thereof can be used mainly using terephthalic acid.
  • the ester-forming derivative represents a lower alkyl ester, a lower aryl ester or an acid halide.
  • terephthalic acid or an ester-forming derivative thereof is 80 mol% or more and 10'0 mol% or less, preferably 90 mol% or more and LOO mol% with respect to 100 mol% of the aromatic dicarboxylic acid component.
  • Ethylene glycol is used in an amount of 80 mol% or more and 100 mol% or less, preferably 90 mol% or more and 100 mol% or less with respect to 100 mol% of the aliphatic glycol component.
  • Ethylene glycol is used in an amount of 80 mol% or more and 100 mol% or less, preferably 90 mol% or more and 100 mol% or less with respect to 100 mol% of the aliphatic glycol component.
  • an example of producing polyethylene terephthalate using terephthalic acid and ethylene glycol will be described in detail.
  • terephthalic acid and ethylene glycolate are esterified. Specifically, a slurry containing terephthalic acid and ethylene glycol is prepared. This slurry contains preferably 1.2 to 1.8 moles, more preferably 1.3 to 1.6 monoethylene ethylene glycolate per mole of terephthalic acid. This slurry is continuously supplied to the esterification reaction step.
  • ethylene glycol a part of the ethylene glycol recovered by distillation from the reactor in the esterification reaction step and liquid phase polycondensation step described later may be used. (Esterification reaction process)
  • the reactants are not circulated in the esterification reactor in a single stage, or two or more esterification reactors are connected in series and the reactants are circulated in the same manner.
  • the method of implementation is preferred. In both cases, water is generated by the esterification reaction under conditions where ethylene glycol is refluxed, and is removed from the esterification reactor by a rectification column.
  • the reaction conditions for carrying out the esterification continuously in a single stage while allowing the reactants to self-circulate are usually a reaction temperature of 240 to 230 ° C, and a reaction pressure of normal to 0.3 MPa. It is preferable to carry out under the following conditions.
  • the esterification reaction temperature may be initially in a low temperature range within this range, but the final esterification reaction temperature is preferably between 25 ° C and 279 ° C. 6 5 to 2 7 6 ° C is more preferable, and 2 7 3 to 2 75 ° C is most preferable.
  • the final esterification reaction temperature represents the reaction temperature at the end of the esterification reaction step.
  • the molar ratio of ethylene glycol / terephthalic acid used is preferably 1.2 to 1.8, and more preferably 1.3 to 1.6. preferable.
  • ethylene glycol or terephthalic acid that is added during the esterification reaction is included.
  • the molar ratio is preferably within the range.
  • the intrinsic viscosity value and end point of the melt polycondensed polyethylene terephthalate described later can be obtained. It becomes easy to control the value of the terminal carboxyl number within a predetermined range.
  • the esterification reaction rate is usually 90% or more, preferably 90% or more and 100% or less, more preferably 95% or more and 100%. /. In the following, it is more preferable to carry out the reaction until it becomes 97% or more and 100% or less.
  • the terminal carboxyl number of polyethylene terephthalate obtained by the melt polycondensation reaction can be controlled by adjusting the reaction temperature during the esterification reaction and the reflux ratio of ethylene dalycol. If these conditions are not met, the intrinsic viscosity may not increase in the subsequent liquid phase polycondensation step.
  • an esterification reaction product (ethylene terephthalate oligomer) of terephthalic acid and ethylene glycol is obtained.
  • the degree of polymerization of this ethylene terephthalate oligomer is preferably 3 to 12, more preferably 4 to 10, and most preferably 6 to 10.
  • the ethylene terephthalate oligomer obtained in the esterification reaction step as described above is then supplied to a polycondensation (liquid phase polycondensation) step.
  • the degree of polymerization of ethylene terephthalate oligomer is controlled by adjusting the esterification reaction rate by adjusting the ethylene glycol / terephthalic acid molar ratio, esterification reaction time, reaction pressure and reaction time as appropriate. can do. If the degree of polymerization of the ethylene terephthalate oligomer is deviated, the intrinsic viscosity may not increase in the subsequent liquid phase polycondensation step.
  • the ethylene terephthalate oligomer obtained in the esterification reaction step is reduced in pressure and above the melting point of polyethylene terephthalate.
  • Polycondensation is carried out by heating to a temperature below the decomposition temperature of the rate (usually 2400 to 2800C). This polycondensation reaction is preferably carried out while distilling off unreacted ethylene glycol and ethylene glycol generated by polycondensation outside the reactor.
  • the liquid phase polycondensation step may be performed in one tank or may be performed in a plurality of tanks.
  • the polycondensation reaction in the first tank has a reaction temperature of 245 to 290, preferably 2600 to 280 ° C, and a reaction pressure of 1 0 0 to 1 1? &, Preferably 5 0 to 2 k Pa.
  • the polycondensation reaction is performed at a reaction temperature of 2 65 to 300 ° C., preferably 2 70 to 2 90 ° C., and a reaction pressure is usually 1 to 0 0 to: L 0 Pa
  • the reaction is performed under conditions of 500 to 30 Pa.
  • the intrinsic viscosity of the obtained melt polycondensed polyethylene terephthalate is controlled to be within the following range.
  • the reaction time in the polycondensation step is preferably 240 minutes or less, more preferably 200 minutes or less, as the residence time in the polycondensation reaction tank. In this way, polyethylene terephthalate can be produced using the polycondensation catalyst described above.
  • Polyethylene terephthalate obtained in this polycondensation step is usually extruded in a molten state, cooled, and then cut to obtain granular (chip-like) polyethylene terephthalate.
  • the polyethylene terephthalate obtained should have an intrinsic viscosity IV of 0.48 to 0.53 dL / g and a terminal carboxyl number of 14 to 22 mm o 1 kg.
  • the intrinsic viscosity falls within the range of 0.48 to 0.52 d LZ g and the terminal carboxyl number falls within the range of 17 to 2 2 mm o 1 / kg.
  • the intrinsic viscosity of polyethylene terephthalate is preferably as high as possible.
  • the intrinsic viscosity exceeds the upper limit of the above range, there will be a problem that the amount of polyethylene terephthalate after solid phase polycondensation and the amount of acetate aldehyde in the polyethylene terephthalate molded product is large.
  • the content of acetonitrile in the polyethylene terephthalate molded product is large. If the number of terminal carboxyls exceeds the upper limit of the above range, the cyclic trimer content increases.
  • a phosphorus stabilizer such as trimethyl phosphate may be added at any stage in the production of polyethylene terephthalate, if necessary.
  • an antioxidant an ultraviolet absorber, a flame retardant, a fluorescent brightener, a decoloring agent, a color-tuning agent, an antifoaming agent or other additives may be added to the polyethylene terephthalate.
  • azo compounds in the production stage of polyethylene terephthalate, azo compounds, triphenylmethane compounds, quinoline compounds, anthraquinone compounds, or phthalocyanines
  • Organic blue pigments of compounds, inorganic blue pigments, or other color matching agents can also be added to the reactor.
  • the polyethylene terephthalate obtained in the liquid phase polycondensation step needs to be further supplied to the solid phase polycondensation.
  • the granular polyethylene terephthalate to be supplied to the solid phase polycondensation step is preliminarily crystallized by heating to a temperature lower than the temperature for solid phase polycondensation, and then supplied to the solid phase polycondensation step. Also good.
  • This precrystallization step involves heating the granular polyethylene terephthalate in a dry state, usually from 120 to 200 ° C, preferably from 130 to 180 ° C for 1 minute to 4 hours. Can be done.
  • pre-crystallization is performed by using granular polyethylene terephthalate in a water vapor atmosphere, in a water vapor-containing inert gas atmosphere, in an inert gas atmosphere, in a water vapor-containing air atmosphere, or in the flow of these gases. It can also be carried out by heating at a temperature of ⁇ 200 ° C for 1 minute or longer.
  • the heating time is preferably 1 minute to 20 hours, more preferably 30 minutes to 10 hours, and most preferably 1 hour to 8 hours.
  • Pre-crystallized polyethylene terephthalate has a crystallinity of 20 It is desirable to be 50%.
  • the so-called solid phase polycondensation reaction of polyethylene terephthalate does not proceed by this precrystallization treatment, and the intrinsic viscosity of the precrystallized polyethylene terephthalate is the limit of polyethylene terephthalate after liquid phase polycondensation. It is almost the same as the viscosity.
  • the difference between the intrinsic viscosity of the pre-crystallized polyethylene terephthalate and the intrinsic viscosity of the polyethylene terephthalate before pre-crystallization is usually not more than 0.06 d LZ g.
  • the density of the complete crystal state and the density of the completely amorphous state are 1.5 0 1 g _ cm 3 and 1. 3 3 5 g Z cm 3 respectively. Therefore, the crystallinity can be calculated by measuring the specific gravity of the obtained polyethylene terephthalate sample with a density gradient pipe or the like.
  • the solid phase polycondensation step consists of at least one stage, and the reaction temperature is 190 to 230 ° C, preferably 1955-225 ° C, more preferably 200-22-2. 5 ° C.
  • Oxidation is carried out in an atmosphere of nitrogen, argon, carbon dioxide, or other inert gas under a reaction pressure of 200 kPa to lkPa, preferably from normal pressure to 10 kPa. Since decomposition
  • the granular polyethylene terephthalate that has been subjected to such a solid phase polycondensation step may be subjected to water treatment if necessary.
  • This water treatment is performed by converting the granular polyethylene terephthalate to water, water vapor, water vapor-containing This is done by contact with activated gas or air containing steam.
  • the granular polyethylene terephthalate thus obtained should have an intrinsic viscosity IV of 0.70 to 0.86 d LZ g.
  • the polyethylene terephthalate after the solid phase polycondensation preferably has a terminal carboxyl number of less than 15 mm o 1 / kg.
  • the number of terminal carboxyls is more preferably 0 to less than 15 mm o 1 / kg, even more preferably 5 to 12 mm o 1 / kg.
  • Polyethylene terephthalate including esterification reaction step, liquid phase polycondensation step, and solid phase polycondensation step as described above This manufacturing process can be carried out by any of the patch type, semi-continuous type and continuous type.
  • the intrinsic viscosity of polyethylene terephthalate after solid-phase polycondensation is less than 0-70 dL / g, the strength of the polyethylene terephthalate molded product obtained by melt-molding polyethylene terephthalate will be insufficient, bottles, etc. For applications that require high transparency, the appearance may be whitened. On the other hand, if the intrinsic viscosity exceeds 0.86 dLZ g, the toughness of the polyethylene terephthalate molded article is lost, and the brittleness and the crystallization speed may be reduced.
  • the cyclic trimer content may increase, which is not preferable.
  • the above-mentioned intrinsic viscosity and molten polycondensed polyethylene It is important to carry out the process in an inert gas atmosphere within the above temperature range and pressure range.
  • a compound containing at least one atom of sodium, potassium, and cesium in polyethylene terephthalate before molding is added at a concentration of these metal atoms of 2 in polyethylene terephthalate. It is preferably added to contain ⁇ 25 ppm.
  • Metal salts other than sodium, potassium, and cesium have little effect on reducing the amount of acetonitrile. Even when sodium salt, potassium salt, or cesium salt is used, if the metal atom concentration in polyethylene terephthalate is less than 2 ppm, there is almost no effect of reducing the amount of acetate aldehyde, and more than 25 ppm. When is added, molding abnormalities such as foreign matters are generated in polyethylene terephthalate molded products.
  • the amount of metal salt added at the time of addition is contained in polyethylene terephthalate as it is. Therefore, considering this point, 2 to 25 in the obtained polyethylene terephthalate.
  • the amount added during production can be calculated so as to include ppm.
  • at least one atom of the above-mentioned sodium, potassium, and cesium in the polyethylene terephthalate at least one metal salt selected from the group consisting of acetate, carbonate, and sulfate is used. It is preferable to add.
  • acetate is preferable, that is, it is preferable to use sodium acetate, potassium acetate, or cesium acetate.
  • the solution containing the metal salt can be used without limitation as long as it is a liquid that can dissolve the metal salt at an appropriate concentration, but an aqueous solution is preferable because of its high solubility and easy availability of the solvent.
  • the contacting method can be adopted in either a batch type or a continuous type. In the case of a batch system, a method in which a solution of these metal salts and poly (ethylene terephthalate) after solid-phase polycondensation are put into a processing apparatus and brought into contact with each other can be mentioned.
  • a method of continuously supplying an aqueous solution of these metal salts in a countercurrent or a parallel flow and contacting with polyethylene terephthalate or a method of spraying a solution onto polyethylene terephthalate can be mentioned. Further, the method of drying at an appropriate temperature after adhering an aqueous solution of these metal salts is most excellent.
  • acetonitrile in polyethylene terephthalate obtained by solid phase polycondensation is obtained.
  • the content is less than 15 ppm, and the cyclic trimer content can be 0.4% by weight or less.
  • the acetonitrile content is preferably 8 ppm or less, more preferably 6 ppm or less.
  • polyethylene terephthalate includes polyethylene terephthalate immediately after contact with the solution containing the above metal salt, and then a polyethylene terephthalate molded product obtained by a method such as injection molding. . (Other)
  • the polyethylene terephthalate obtained by the production method of the present invention is excellent in hue and transparency, has a low content of acyl aldehyde, and a low content of Cy-3. It is useful as a molding material for beverages. Before producing the molded body, it is preferable to sufficiently dry the polyethylene terephthalate, and the temperature is 120 to 180 ° C. in an air atmosphere, an inert gas atmosphere, or an inert gas flow. It is preferable to do so.
  • test tubular molded body Prepare an appropriate mold of polyethylene terephthalate obtained by the production method of the present invention, and mold it at a molding temperature of 300 ° C, outer diameter of 28 mm, inner diameter of 19 mm, length of 13 6 mm, weight 5 6 g of test tubular molded body can be obtained.
  • Its detailed shape is generally a hollow cylindrical shape, with one end closed in a nearly hemispherical shape.
  • the test aldehyde content in the test tubular molded body may be less than 13 ppm and the cyclic trimer content may be 0.4% by weight or less. This is the same level as a molded article of polyethylene terephthalate under the same conditions obtained by using a conventional germanium compound under the optimum conditions.
  • a polyethylene terephthalate is produced by using as a catalyst a titanium compound that is less expensive than a germanium compound and less sanitary than an antimony compound or an aluminum compound.
  • the polyethylene terephthalate can produce molded articles with a low aldehyde content and low cyclic tridentate content, equivalent to polyethylene terephthalate using a germanium compound as a polycondensation catalyst. . This fact has great industrial significance.
  • a polyethylene terephthalate sample was pulverized and precisely weighed, then dissolved in benzyl alcohol and subjected to neutralization titration with potassium hydroxide. The titration value was converted into a value per unit weight of polyethylene terephthalate to calculate the number of terminal carboxyls.
  • a polyethylene terephthalate sample was freeze-ground and charged into a vial, and held at 150 ° C. ⁇ 60 minutes. After that, the gas in the vial was analyzed with a Hitachi headspace gas chromatography, and the AA content was calculated.
  • the dried polycondensation catalyst slurry sample was set on a scanning electron microscope (SEM, Hitachi Instrument Service S570). Quantitative analysis is performed with an energy dispersive X-ray microanalyzer (XMA, Horiba EMA X—700) connected to SEM. The phosphorus atom concentration was calculated.
  • SEM scanning electron microscope
  • XMA energy dispersive X-ray microanalyzer
  • the catalyst metal concentration in polyethylene terephthalate is determined by heating and melting a granular sample on an aluminum plate, and then creating a molded product with a flat surface using a compression press.
  • X-ray fluorescence equipment Riviere Denki Kogyo 3 2 7 0 E type
  • Polyethylene terephthalate sample was pulverized with a powder machine, weighed in a fixed amount, once dissolved with a small amount of hexafluoroisopropanol / formaldehyde solution, and diluted to a constant concentration (SO g ZL) with formaldehyde . Thereafter, this solution was subjected to gel chromatography (GPC, WALCs AL CZG PC2244 type), and the peak of the component appearing in the low molecular weight region was detected. On the other hand, Cy-3 in polyethylene terephthalate was quantified based on a calibration curve obtained from a standard sample of cyclic trimer (Cy-3).
  • a sample of the esterification reaction product obtained by the esterification process is sampled by Maurice et al.
  • the amount of carboxyl end groups was measured by [An al. Chim. A cta, 2 2, p 3 6 3 (1 9 6 0)].
  • a sample of the esterification reaction product was dissolved in hexafluoroisopropanol, and the amount of terminal hydroxyl group was determined by using 13 C-NMR for this solution. Furthermore, the number average molecular weight was calculated from the amounts of both terminal groups, and converted to the degree of polymerization.
  • T BMB P catalyst solution As a result of separating and purifying fine precipitates in the solution from various parts of the solution and conducting various analyses, the fine precipitates are compounds represented by the general formula (I). Was a compound having a normal butyl group.
  • the degree of polymerization of the ethylene terephthalate oligomer produced was about 5-9.
  • Ethylene terephthalate oligomer obtained by this esterification reaction 45 parts by mass were sequentially transferred to a polycondensation reaction tank, and 4 parts by mass of the TBMBP catalyst solution prepared in Reference Example 1 was added as a polycondensation catalyst per unit time. While maintaining the reaction temperature in the polycondensation reaction tank at 27.65 ° C and the reaction pressure at 6 OPa, it is in a molten state while removing water and ethylene glycol generated in the polycondensation reaction from the polycondensation reaction tank. The polycondensation reaction was carried out. At this time, the residence time in the polycondensation reaction tank was 180 minutes.
  • This polyethylene terephthalate (melt polycondensed polyethylene terephthalate) has an IV of 0.4 9 2 d L g and a terminal carboxyl number of f up to 1 mmol / js g.
  • This melt polycondensed polyethylene terephthalate was crystallized and dried at 160 ° C. for 5 hours under nitrogen flow. Subsequently, the crystallized polyethylene terephthalate was put into a tumbler type solid-phase polycondensation apparatus, and a solid-phase polycondensation reaction was carried out for 2 hours at 2 25 ° C under a reduced pressure of ⁇ 0.13 kPa.
  • a preform was molded by the following method. Polyethylene terephthalate (5 kg) was dried using a shelf-type dryer for 5 hours or more at a temperature of 160 ° C., normal pressure, and nitrogen flow.
  • Dry polyethylene terephthalate was injected with an injection molding machine (FN-2200 model, manufactured by Nissei Plastic Industry Co., Ltd.), cylinder temperature 3 0 0 ° C, screw rotation speed 1 60 rpm, primary pressure time 3.0 Second, mold temperature 10 ° C, cycle 30 seconds, cylindrical test tube molded body with outer diameter 28 mm, inner diameter 19 mm, length 13 36 mm, weight 56 g was injection molded . Since this test tubular molded body is molded into a bottle, a bottle is obtained. This test tubular molded body is called a molded preform.
  • FN-2200 model manufactured by Nissei Plastic Industry Co., Ltd.
  • a series of polyethylene terephthalate (melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate) and molded preform intrinsic viscosity, terminal carboxyl number, Ti atom content, P atom Tables 1 and 2 show the content, K atom content, and other qualities.
  • Example 1 the esterification reaction temperature was changed to 2 7 3.5 ° C, and the IV of the melt polycondensed polyethylene terephthalate was 0.4 8 9 d L / g, and the number of terminal carboxyls was 19 mm o
  • a polycondensation reaction was carried out in the same manner as in Example 1 except that the amount was 1 / kg ′.
  • Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate, and molded preform.
  • Example 1 the esterification reaction temperature was changed to 2 7 3.0 ° C, and the IV of the melt polycondensed polyethylene terephthalate was 0.4 8 3 d L / g, and the terminal carboxyl number was 2 2 mmo 1 / A polycondensation reaction was carried out in the same manner as in Example 1 except that kg was used. Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate, and molded preform.
  • Example 1 the esterification reaction temperature was changed to 273.5 ° C and the melt polycondensation temperature was changed to 277.5 ° C, so that the IV of the melt polycondensed polyethylene terephthalate was 0.5 0.5 0.
  • a polycondensation reaction was carried out in the same manner as in Example 1 except that d L / g and the number of terminal carboxyls were 18 mmo 1 / kg.
  • Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate and molded preform. ''
  • Example 1 the IV of the melt polycondensed polyethylene terephthalate was changed to 0.49 1 d LZ g and the terminal carboxyl number was 26 mm o 1 / A polycondensation reaction was carried out in the same manner as in Example 1 except that kg was used. Obtained melt polycondensed polyethylene tele The quality of phthalate, solid phase polycondensed polyethylene terephthalate and molded preform are shown in Tables 1 and 2.
  • Example 1 the IV of the melt polycondensed polyethylene terephthalate was changed to 0.5 4 by changing the esterification reaction temperature to 273.5 ° C and the melt polycondensation temperature to 278.3 ° C.
  • a polycondensation reaction was carried out in the same manner as in Example 1 except that 4 dL / g and the number of terminal carboxyls were 17 mm 0 1 / kg.
  • the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate and molded preform is shown in Tables 1 and 2.
  • the reaction product in the polycondensation reaction tank is continuously extruded in a strand shape from the discharge part, cooled with ice, and then By cutting, a granular polyethylene terephthalate having a size of about 3 mm was obtained.
  • the melt polycondensed polyethylene terephthalate had an IV of 0.492 2 dL / g and a terminal carboxyl number of 17 mm o 1 / kg. This melt polycondensed polyethylene terephthalate was crystallized and dried at 160 ° C. for 5 hours under nitrogen flow.
  • the crystallized polyethylene terephthalate was put into a tumbler type solid-phase polycondensation apparatus, and a solid-phase polycondensation reaction was carried out at 2 25 ° C for 27 hours under a reduced pressure of 0.1 3 kPa. .
  • the obtained polyethylene terephthalate was added by spraying an aqueous solution of acetic acid lithium so that the content of the force lithium atom in the polyethylene terephthalate was 8 ppm.
  • the solid phase polycondensed polyethylene terephthalate was obtained by drying.
  • the preform molded body was molded in the same manner as in Example 1.
  • Example 5 the esterification reaction temperature was changed to 2 7 3.5 ° C, and the IV of the melt polycondensed polyethylene terephthalate was 0.4 8 9 d L / g, and the terminal carboxyl number was 19 mmol / A polycondensation reaction was performed in the same manner as in Example 5 except that kg was used. Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate, and molded preform.
  • Example 5 the esterification reaction temperature was changed to 2 7 3.0 ° C, and IV of the melt polycondensed polyethylene terephthalate was 0.48 3 d LZg, and the number of terminal carboxyls was 2, 2 mm o 1 Zkg.
  • a polycondensation reaction was performed in the same manner as in Example 5 except that.
  • the ohm quality is shown in Tables 1 and 2.
  • Example 5 the esterification reaction temperature was changed to 2 7 4. 9 ° C and the IV of the melt polycondensed polyethylene terephthalate was 0. ASA d L / g The number of terminal carboxyls was 15 mm o 1 / kg.
  • a polycondensation reaction was carried out in the same manner as in Example 5 except that. Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate, and molded preform.
  • Example 5 the esterification reaction temperature was changed to 273.5 ° C and the melt polycondensation temperature was changed to 277.5 ° C, so that the IV of the melt polycondensed polyethylene terephthalate was 0.5 2 0
  • a polycondensation reaction was carried out in the same manner as in Example 5 except that d LZ g and the number of terminal force lpoxyl were 18 mm o 1 / kg.
  • Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate, and molded preform.
  • Example 9 the spray amount of the aqueous solution of acetic acid lithium was changed so that the potassium atom content in the polyethylene terephthalate was the value shown in Table 2, and then dried to solid phase polycondensation polyethylene terephthalate.
  • Tables 1 and 2 show the quality of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate, and molded preform.
  • Example 9 instead of using an aqueous solution of potassium acetate, an aqueous solution of sodium acetate or an aqueous solution of cesium acetate was used, and spraying was performed so that the content of the alkali metal atom in the polyethylene terephthalate was the value shown in Table 2. The amount was changed and then dried to obtain solid phase polycondensation polyethylene terephthalate. Obtained melt polycondensed polyethylene terephthalate Tables 1 and 2 show the quality of the rate, solid-phase polycondensed polyethylene terephthalate and molded preform.
  • a polycondensation reaction was carried out in the same manner as in Example 1 except that the conditions shown below were changed in Example 1. Instead of adding 4 parts by mass of TBMB P catalyst solution as a polycondensation catalyst per unit time from 274.5 ° C to 2 7 7. 2 ° C, the esterification reaction temperature was changed to 1% by weight germanium dioxide Z Changed to 6.8 parts by mass of ethylene glycol solution per unit time and 1 part by mass of ethylene glycol solution of phosphoric acid (5.5% by mass of phosphorus) per unit time. .
  • melt polycondensation temperature was changed from 27.65 ° C to 27.70 ° C
  • IV of the melt polycondensed polyethylene terephthalate was 0.5 10 dL and the terminal carboxyl number was 26. mmo 1 / kg.
  • solid phase polycondensation at 2 2 5 for 27 hours to 2 20 ° C for 2 to 3 hours.
  • Tables 1 and 2 show the qualities of the obtained melt polycondensed polyethylene terephthalate, solid phase polycondensed polyethylene terephthalate and molded preform.
  • Example 1 TBMBP 0 o.492 1 7 0.752 ⁇
  • Example 3 TBMBP 0.483 2 2 0.762 ⁇
  • Example 4 TBMBP 0.520 1 8 0.769 ⁇
  • Example 5 TBMBP 0.492 1 7 0.752 9 7
  • Example 6 TBMBP 0.489 1 9 0.754 1 0.4
  • Example 7 TBMBP 0.483 2 2 0.762 9.7
  • Example 8 TBMBP 0.494 1 5 0.751 9.5
  • Example 9 TBMBP 0.520 1 8 0.769 8.2
  • Example 10 TBMBP 0.520 1 8 0.774 8.1
  • Example 11 TBMBP 1 8 0.770 8.4
  • Example 12 TBMBP 0.520 1 9 0.774 8.2
  • Example 13 TBMBP 0.520 1 8 0.772 8.4 Comparative Example 1 TBMBP 0.491 2 6 0.762 ⁇ Comparative Example 2 TBMBP 0.544 1 7 0.740

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明の課題は、成形品のアセトアルデヒド含有量、オリゴマー含有量が少ないポリエチレンテレフタレートを提供することにある。 本発明の課題は、ポリエチレンテレフタレートの製造方法であって、下記一般式(Ⅰ)で表される化合物を重縮合触媒として使用し溶融重縮合を行い、極限粘度が0.48~0.53dL/g、末端カルボキシル数が14~22mmol/kgの溶融重縮合ポリエチレンテレフタレートを得る工程、更に溶融重縮合ポリエチレンテレフタレートを固相重縮合して極限粘度0.70~0.86dL/gの固相重縮合ポリエチレンテレフタレートを得る工程を含むポリエチレンテレフタレートの製造方法によって解決する事ができる。[但し、上記一般式(I)中、R1は、2~12個の炭素原子を有するアルキル基を表す。]

Description

ポリエチレンテレフタ レー トの製造方法
(技術分野)
本発明は、 ァセ トアルデヒ ド含有量及び環状三量体含有量が少ない 成形品を色相の悪化を伴わずに得ることのできるポリエチレンテレフ タレートの製造方法に関する。 ァセ トアルデヒ ドは悪臭、 異臭の原因 となる恐れ、 又は内容物の風味明を変質させる ¾れがあり、 ポリエチレ ンテレフタレート成形品を使用する際に悪影響を及ぼすことがある。 書
(背景技術)
ポリエチレンテレフタ レー トは、 その優れた機械的性質、 化学的性 質から、 繊維、 フイノレム、 シート、 ボトル、 カップ、 又はトレイに成 形されて広く用いられている。
このようなポリエチレンテレフタレートは、 通常、 テレフタル酸な どの芳香族ジカルボン酸と、 エチレンダリ コールなどの脂肪族ジォー ル類とを原料と して製造することができる。 具体的には、 まず、 芳香 族ジカルボン酸と脂肪族ジオールとのエステル化反応により低次縮合 物 (エステル低重合体) を形成し、 次いで重縮合触媒の存在下にこの 低次縮合物を脱グリ コール反応 (溶融重縮合) させて製造している。 また、 必要によっては溶融重縮合の後、 更に固相重縮合を行い、 さら に分子量を高めている。 '
ポリエチレンテレフタ レー トの製造方法では、 重縮合触媒として、 従来アンチモン化合物、 ゲルマニウム化合物が使用されていた。 しか しながら、 アンチモン化合物を重縮合触媒と して製造したポリエチレ , ンテレフタレートは透明性、 耐熱性の点でゲルマユゥム化合物を重縮 合触媒として製造したポリエチレンテレフタ レートに劣っていた。 ま た、 特に飲料ボトル用途、 食料包装材向けには得られるポリエチレン テレフタレート中のァセ トアルデヒ ド含有量を低減させることも要望 , .されている。 '更にアンチモン化合物は、 衛生上の懸念があるとの考え もある。
—方、 ゲルマニウム化合物は衛生上の懸念も無い上に、 ゲルマニウ ム化合物を重縮合触媒と して製造したポリエチレンテレフタレート成 形品は透明性が良好で、 ァセ トアルデヒ ド含有量、 オリ ゴマー含有量 も少ない。 しかし、 ゲルマニウム化合物が高価であるため、 ポリェチ レンテレフタレートの製造コス トが高くなるという問題があった。 更に近年、 ポリエチレンテレフタレートの重縮合触媒と してアルミ ニゥム化合物が提案されている。 しかし、 有機アルミニウム化合物は ゲルマニウム化合物ほどでは無いが比較的高価であり、 また一部の水 溶性アルミニウム塩は神経毒性を有することが知られており、 衛生上 の懸念点も残る。
ところでチタン化合物もエステルの重縮合反応を促進する作用を持 つことが知られており、 チタンアルコキシド、 四塩化チタン、 シユウ 酸チタニル、又はオルソチタン酸などが重縮合触媒と して公知である。 しかも衛生上も問題が無く安価であるため、 チタン化合物を重縮合触 媒として利用するために多くの検討が行われている。
しかしながら、 チタン化合物を重縮合触媒に用いた場合、 ゲルマ二 ゥム化合物を重縮合触媒に用いャ得られるポリエチレンテレフタレー トに比べ、 ポリエチレンテレフタレートチップ及びその成形品中のァ セ トアルデヒ ド含有量やオリ ゴマー含有量が多いという問題があった。 そのオリ ゴマーの主成分はエチレンテレフタレー トの環状三量体であ り、 以下 C y— 3 と略称することがある。
ポリ エチレンテレフタ レートチップ中に存在するォリ ゴマー、 又は ポリエチレンテレフタ レー ト成形中に生成されるオリ ゴマーが、 延伸 設備のローラー、 加熱処理設備のローラーに白粉と して付着して汚染 する問題、 または染色加工時にはオリ ゴマーが粉末状の異物となって 染色液を汚染するという問題がある。 またフィルム製膜時には繊維製 造時と同様、 各種設備のローラーを汚染する問題や、 磁気テープにお けるいわゆるドロップアゥ トといった製品欠陥の原因になるという問 題がある。 更に、 中空容器その他の各種成形品の成形時においては、' 白粉となって成形金型を汚染したり、成形品の表面に付着したり して、 正常な外観の成形品が得られなくなる。 加えて延伸処理時、 加熱処理 時に発生するオリゴマーが金型などに付着し、 これがさらに転写によ り成形品の透明性が著しく損なわれる問題もあった。
これらの問題を解決する為に、 ポリエチレンテレフタレート中のォ リ ゴマー含有量を減少させる方法が検討され、 数多くの提案がなされ ている。 例えば特許文献 1及び特許文献 2には、 ポリエチレンテレフ タレートをその融点以下において高真空状態で加熱処理する固相重縮 合法によるオリゴマー含有量の減少方法が提案されている。 また特許 文献 3には、 ポリエチレンテレフタ レートを不活性気体雰囲気下で融 点以下の温度で熱処理する固相重縮合法によるオリゴマー含有量の減 少方法が提案されている。
この方法でオリゴマー含有量を低減する場合、 ポリエチレンテレフ タ レー ト中のオリ ゴマー含有量が比較的多いポリエチレンテレフタレ ートに対しては、 白粉発生量の低減効果を有する。 しかし、 ポリェチ レンテレフタレー ト中のオリ ゴマー含有量が比較的少ないポリエチレ ンテレフタレートに対しては白粉発生量の低減効果を発揮出来ないば かり力 、 逆に白粉発生量が増加したりすることがある。
また、 食品特に飲料の包装用樹脂としてポリエチレンテレフタ レー トが用いられる場合は、 ポリエチレンテレフタレート中に含まれるァ セトアルデヒ ドが飲料のフレーバー性に影饗することがあるので、 ポ リエチレンテレフタ レー ト中のァセ トアルデヒ ド含有量を低減させる ことも同時に求められている。 特許文献 4には、 固相重縮合後のポリ エチレンテレフタレートを水で処理することにより成形.時に生成する ァセトアルデヒ ドの量とオリゴマーの量を低減できるとしている。 し かし、 重縮合触媒がゲルマニウム化合物以外のアンチモン化合物、 ァ ルミニゥム化合物、 チタン化合物である場合は全く効果が無い。
なお、 ポリエチレンテレフタレート成形品中のァセトアルデヒ ド含 有量及びやオリ ゴマー含有量を低減させる方法として、 アルカリ金属 塩やアル力リ土類金属塩を添加する方法が特許文献 6及び特許文献 7 に提案されている。 しかし、 この手法だけではポリエチレンテレフタ レート成形品中のァセトアルデヒ ド含有量は、 ゲルマニウム化合物を 触媒として用いたポリエチレンテレフタレートより もかなり高くなつ てしまう。
またチタン化合物とモノアルキルホスフエートを反応させて得られ る化合物を重縮合触媒として使用することにより、 従来のチタン触媒 使用時より も成形品中のァセトアルデヒ ド含有量が低いポリエチレン テレフタ レートが得られるという手法も特許文献 8に報告されている c しかし、 この手法でも成形品中のァセ トアルデヒ ド含有量は、 ゲルマ ニゥム化合物を触媒として用いたポリエチレンテレフタレートよりも 高くなつている。
(特許文献 1 ) 特開昭 4 8— 1 0 1 4 6 2号公報
(特許文献 2) 特開昭 5 1— 04 8 5 0 5号公報
(特許文献 3 ) 特開昭 5 5— 1 8 9 3 3 1号公報
(特許文献 4) 特開平 3— 4 7 8 3 0号公報
(特許文献 5) 米国特許第 5 0.1 7'6 8 0号公報
(特許文献 6 ) 国際公開第 0 5Z0 2 3 9 0 0号パンフレッ ト (特許文献 7 ) 特開 2 0 0 4-0 1 0 6 5 7号公報
(特許文献 8 ) 国際公開第 0 3/0 0 8 4 7 9号パンフレッ ト
(発明の開示)
(発明が解決しよう とする課題)
本発明の目的は、 上記のような従来技術が有していた問題点を解消 し、 ァセ トアルデヒ ド含有量が少ない成形品を得るのに好適なポリチ レンテレフタレートの製造方法を提供することにある。 (課題を解決するための手段)
本発明の課題は、 成形品のァセトアルデヒ ド含有量、 及ぴオリ ゴマ 一含有量が少なく色相良好なポリエチレンテレフタ レートを提供する ことにめる。
本発明者らは上記の課題を解決する為に鋭意研究したところ、 チタ ン原子とリン原子を含む特定の化合物を用いて、 溶融重縮合の条件を 詳細に検討しカルボキシル末端数と固有粘度を厳密に制御されたポリ エチレンテレフタレートを得て、 それを固相重縮合することによって 課題が解決できることを見出して本発明を完成させるに至った。
すなわち本発明の課題はポリエチレンテレフタレートの製造方法で あって、 下記一般式 ( I ) で表される化合物を重縮合触媒と して使用 し溶融重縮合を行い、 極限粘度が 0. 4 8〜0. 5 3 d L/ g、 末端 カルボキシル数が 1 4〜 2 2 mm o 1 / k gの溶融重縮合ポリェチレ ンテレフタレートを得る工程、 更に溶融重縮合ポリエチレンテレフタ レートを固相重縮合して極限粘度 0. 7 0〜0. 8 6 d LZgの固相 重縮合ポリエチレンテレフタレートを得る工程を含むポリエチレンテ · レフタレートの製造方法によって解決する事ができる。
Figure imgf000006_0001
[但し、 上記一般式 ( I ) 中、 は、 2〜1 2個の炭素原子を有す るアルキル基を表す。]
更にポリエチレンテレフタレート製造工程中のいずれかの工程で、 ナ トリ ウム、 カリ ウム、 セシウムよりなる群から選ばれる少なく とも 1 種の原子を含む金属塩を添加することがより好ましい。 (発明の効果)
本発明は、 ゲルマニウム化合物より安価で、 アンチモン化合物、 ァ ルミニゥム化合物に比べ衛生面で懸念の少ないチタン化合物を重縮合 触媒と して使用し、 特定の条件でポリエチレンテレフタレートを製造 する方法である。 その製造方法により、 ゲルマニウム化合物を重縮合 触媒と して使用したポリエチレンテレフタレートと同等の低ァセ トァ ルデヒ ド含有量、 低オリ ゴマー含有量の成形体を製造できるポリェチ レンテレフタ レー トを得ることができる。 (発明を実施するための最良の形態)
以下、 本発明を詳細に説明する。 本発明の製造方法におけるポリエ チレンテレフタレートは主たる繰返し単位がエチレンテレフタレート 単位のポリエチレンテレフタレートである。 ここで 「主たる」 とは、 ポリエチレンテレフタレートを構成している繰返し単位の中で 8 0モ ル%以上 1 0 0モル%以下であることを示す。 従って本発明のポリエ チレンテレフタレー トにおいては残り の 0〜 2 0モル%をエチレンテ レフタ レ一ト成分以外の共重合成分が共重合されていても良い。 ここ で他の共重合成分とは、 無置換若しくは置換基があるィソフタル酸、 ナフタ レンジ力ノレボン酸、 ジフエ二/レジカノレポン酸、 ジフェニノレエ一 テルジカルボン酸、 ジフェニルスノレホンジカルボン酸、 ジフエノキシ エタンジカルボン酸、 コハク酸、 アジピン酸、 セバシン酸、 ァゼライ ン酸、 デカンジカルボン酸、 シクロへキサンジカルボン酸、 トリメ リ ッ ト酸、 ピロメ リ ッ ト酸、 若しくはこれらの低級アルキルエステル、 これらの低級ァリールエステル若しくはこれ'らの酸ハライ ドのエステ ル形成性誘導体、 トリメチレングリ コール、 1 , 2一プロパンジォー ル、 テ トラメチレングリ コール、 ネオペンチルグリ コール、 へキサメ チレングリ コール、 デカンメチレングリ コ一ノレ、 ドデカメチレングリ コ.一ノレ、 1 , 4ーシクロへキサンジメタノ.一ノレ、 ジエチレングリ コー ノレ、 トリエチレングリ コーノレ、 テトラエチレングリ コーノレ、 ポリェチ レングリ コーノレ、 ジプロピレングリ コーノレ、 ト リプロ ピレングリ コー ル、 テ トラプロピレングリコール、 ポリプロピレングリ コール、 ジ (テ トラメチレン) グリ コール、 トリ (テ トラメチレン) グリ コール、 ポ リテ トラメチレンダリ コール、 ペンタエリスリ トール、 又は 2 , 2— ビス ( 4— —ヒ ドロキシェ トキシフエニル)プロパンを挙げること ができる。
本発明においては、 下記式 ( I ) で表される化合物を重縮合触媒と して使用することが必要である。 更に固相重縮合後に得られるポリェ チレンテレフタレートに対してチタン原子濃度で l〜 5 0 p p mとな るように重縮合触媒を使用することが好ましい。 その重縮合触媒とな る化合物は、 例えばチタン化合物とリン化合物とをダリ コールを溶媒 として加熱することにより製造することができる。 その場合、 重縮合 触媒となる化合物は、 グリコール中に析出物として得られる。
Figure imgf000008_0001
[但し、 上記一般式 ( I ) 中、 は、 2〜 1 2個の炭素原子を有す るアルキル基を表す。]
—般式 ( I ) 中の 2つの R i基はそれぞれ互いに独立に、 チタン化合 物に由来するアルキル基又はリ ン化合物に由来するアルキル基であり、 3〜 6個の炭素原子を有するアルキル基が好ましい。
重縮合触媒の製造に用いるチタン化合物と しては、 チタンテ トラブ トキシド、 チタンテ トライソプロポキシド、 チタンテ トラノルマルプ 口ポキシド、 チタンテトラエ トキシド、 チタンテ トラメ トキシド、 チ タンテ トラキスァセチルァセ ト ""一ト錯体、 チタンテ トラキス ( 2 , 4一へキサンジォナト) 錯体、 チタンテトラキス ( 3 , 5一へプタン ジォナト) 錯体、 チタンジメ トキシビスァセチルァセ トナート錯体、 チタンジェトキシビスァセチルァセトナート錯体、 チタンジイソプロ ポキシビスァセチルァセ トナート錯体、 チタンジノルマルプロボキシ ビスァセチルァセ トナート錯体、 チタンジブトキシビスァセチルァセ トナート錯体、 チタンジヒ ドロキシビスグリ コレート、 チタンジヒ ド 口キシビスラクテ一ト、 チタンジヒ ドロキシビス ( 2—ヒ ドロキシプ 口ピオネート)、 乳酸チタン、 チタンォクタンジォレート、 チタンジメ トキシビス トリエタノールァミネート、 チタンジェトキシビス トリエ タノールァミネート、 チタンジブトキシビス トリエタノールァミネ一 ト、 へキサメチノレジチタネー ト、 へキサェチ^ /レジチタネート、 へキサ プロピルジチタネート、 へキサプチノレ、ジチタネート、 へキサフエ二ノレ ジチタネート、 オタタメチルトリチタネート、 ォクタエチルトリチタ ネート、 ォクタプロピルト リチタネート、 ォクタプチルトリチタネー ト、ォクタフエ二ノレ ト リチタネー ト、へキサァノレコキシジチタネー ト、 又はオタタアルキルトリチタネートを挙げることができる。
又、 V ン化合物と しては、 モノェチルホスフエ一ト、 モノプロ ビル ホスフエ一ト、モノプチノレホスフエ一ト、モノへキシノレホスフェー ト、 モノォクチノレホスフェー ト、 モノデシノレホスフエ一ト、 モノラウリノレ ホスフェー ト、 モノォレイルホスフェー ト、 若しく はモノテ トラデシ ルホスフエー トといったモノアノレキルホスフエ一ト類又はモノフエ二 ルホスフェートが好ましい。 これらのリン化合物は、 混合物で用いて もよく 、 例えばモノアルキノレホスフエー トとモノフエ二ノレホスフエ一 トの混合物の組合せを好ましくあげることができる。 なかでも、 モノ アルキルホスフエ一トの比率が 9 0モル%以上 1 0 0モル%以下で構 成されていることが特に好ましい。
また一般式 ( I ) の重縮合触媒を製造する際に溶媒として用いるグ リ コールと しては、 エチレングリ コーノレ、 プロピレングリ コール'、 テ トラメチレングリ コ一ノレ、 へキサメチレングリ コ一ノレ、 又はシクロへ キサンジメタノールを例示することができる。 重縮合触媒の製造に用 いるダリ コールは、 その重縮合触媒を用いて製造するポリエチレンテ レフタレ一トの原料として使用するグリ コールと同じダリ コールを使 用することが好ましい。
本発明で使用する重縮合触媒は、 チタン化合物、 リ ン化合物及ぴグ リ コールの 3つを同時に混合し加熱する方法、 又はチタン化合物と リ ン化合物のそれぞれグリ コールの溶液を作成しその後それらのグリ コ ール溶液を混合し加熱させる方法で製造することが出来る。 これらの 中で、 後者の方法が好ましい。
重縮合触媒を製造する際の反応温度を常温で行う と、 反応が十分に 進行しないこと、 又は反応に過大に時間を要することがある。 従って 通常反応温度は 5 0 °C〜 2 0 0 °Cの温度で反応させることが好ましく,、 反応時間は、 1分〜 4時間で完結させるのが好ましい。 具体的には、 ダリ コールと してエチレンダリ コールを用いるときの反応温度は 5 0 °C〜 1 5 0 °Cが好ましく、 へキサメチレンダリ コールを用いるとき の反応温度は 1 0 0 ° (:〜 2 0 0 °Cが好ましい。 又これらのグリ コール を用いるときの反応時間は、 3 0分〜 2時間がより好ましい範囲であ る。 反応温度が高すぎるとき、 又は反応時間が長すぎるときには製造 された重縮合触媒の劣化がおこるため好ましくない。
又チタン化合物と リン化合物を反応させ、 重縮合触媒を製造するに あたり、 チタン原子に対するリ ン原子のモル比率 (リン原子モル量/ チタン原子モル量) が 1 . 5以上 2 . 5未満であることが好ましく、 1 . 7以上 2 . 3未満であることがより好ましい。 モル比率が 1 . 5 未満のとき、 未反応チタン化合物が多く存在することにより、 ポリエ チレンテレフタレー トの物性が劣化することがある。 逆にモル比率が 2 . 5以上のとき、 未反応のリ ン化合物が多く存在することにより、 ポリエチレンテレフタ レー トの重合速度が遅くなること、 ポリエチレ ンテレフタレートの物性が劣化することがある。
このよ うな操作で得られた本発明に用いる重縮合触媒を析出物とし て含有する液体は、 固液分離することなくそれをそのままポリェチレ ンテレフタレート製造用触媒として用いてもよい。 一方遠心分離処理 又は濾過処理により析出物と溶媒を分離した後、 この分離された析出 物を精製し重縮合触媒として用いても良い。 具体的な精製方法として は、 アセ トン、 メチルアルコール、 又はメチルアルコールと水の混合 溶媒を用いて再結晶する方法を挙げる事ができる。
上記の本発明に用いる重縮合触媒はフィルターを用いて容易にダリ コールと分離できるため、 分離後固体 N M R及ぴ X M Aの金属定量分 析でその化学構造及びその重縮合触媒中のチタン原子含有率を分析す ることができる。 一方、 未反応のチタン化合物とリン化合物はグリコ ールに可溶である為、 濾液成分中のチタン原子濃度又はリン原子濃度 を分析することで未反応率を求めることできる。
上記の重縮合触媒を使用したポリエチレンテレフタレートの製造に おいては、 固相重縮合後に得られるポリエチレンテレフタレートに対 してチタン原子濃度で 1〜 5 0 p p mとなるように重縮合触媒を使用 することが好ましい。 さらに最終的に得られる固相重縮合ポリエチレ ンテレフタレ一ト中にチタン原子濃度換算で 5〜 2 5 p p mになる量 で重縮合触媒として使用するのが好ましく、 6〜2 0 p p mになる量 で使用するのがさらに好ましい。 後述するナトリウム、 カリ ウム、 セ シゥムのうち、 少なく とも 1種の原子を含む化合物を添加する操作を 行う際には特に 5〜 2 5 p p mの範囲の量で重縮合触媒を用いるのが 好ましい。重縮合触媒を 5 0 p p m以上含まれるように使用したとき、 液相重縮合若しくは固相重縮合の重合速度が速すぎること、 ポリェチ レンテレフタレートが強く着色することがある。 一方重縮合触媒を 1 p p m未満となる様に用いたときには、 液相重縮合若しくは固相重縮 合の重合速度が遅すぎる又は重縮合反応が全く進行しないことがあり 好ましくない。 そして、 得られるボリエチレンテレフタ.レー ト中の金 属原子として、 チタン原子以外の金属原子は、 金属原子濃度換算で 1 O p p m以下が好ましく、 更には 5 p p m以下が好ましい。 なお、 上 記重縮合触媒は重縮合反応時に存在していればよい。 このため重縮合 触媒の添加は、溶融重縮合の工程内、すなわち原料スラリ一調製工程、 エステル化反応工程、 液相重縮合工程その他の工程のいずれの工程で 行ってもよい。 また、 重縮合触媒全量を一括で反応器に添加しても、 複数回に分けて反応器に添加してもよい。 以下本発明のポリエチレン テレフタ レート製造方法について工程ごとに更に詳細に説明する。
(原料)
更に本発明におけるボリエチレンテレフタレートの製造方法につい て詳細に説明する。 上記の重縮合触媒を用いて、 主にテレフタル酸又 はそのエステル形成性誘導体と、 エチレンダリコールとを重縮合させ てポリエチレンテレフタレートを製造することができる。
芳香族ジカルボン酸成分としては、主にテレフタル酸を用いるほ力 、 そのエステル形成性誘導体を用いる事ができる。 エステル形成性誘導 体とは低級アルキルエステル、 低級ァリールエステル又は酸ハライ ド を表す。 なお、 テレフタル酸又はそのエステル形成性誘導体は、 芳香 族ジカルボン酸成分 1 0 0モル%に対して、 8 0モル%以上1 0 '0モ ル%以下、 好ましくは 9 0モル%以上 L O Oモル%以下となるように 用いられることが好ましい。 エチレングリコールは脂肪族グリコール 成分 1 0 0モル%に対して、 8 0モル%以上 1 0 0モル%以下、 好ま しくは 9 0モル%以上 1 0 0モル%以下となるように用いられること が好ましい。 以下、 テレフタル酸とエチレングリコールを用いてポリ エチレンテレフタレートを製造する例について詳述する。
(原料スラリ一調製工程)
まず、 ポリエチレンテレフタ レー トを製造するに際して、 テレフタ ル酸とエチレングリコーノ.レをエステル化させる。 具体的には、 テレフ タル酸と、 エチレングリ コールとを含むスラ リーを調製する。 このス ラ リ一にはテレフタル酸 1モルに対して、 好ましく は 1 . 2〜 1 . 8 モル、 よ り好ましくは 1 . 3〜1 . 6モノレのエチレングリ コーノレが含 まれる。このスラリ一は、エステル化反応工程に連続的に供給される。 そのエチレングリ コールには、 後述のエステル化反応工程、 液相重縮 合工程で反応器から留去され、 回収されたエチレングリ コールを一部 に用いても良い。 (エステル化反応工程)
エステル化反応工程は、 反応物をエステル化反応器内で自己循環さ せなから一段で実施する方法、 又は 2つ以上のエステル化反応器を直 列に連結し同様に反応物を自己循環させながら実施する方法が好まし レ、。 いずれもエチレンダリ コールが還流する条件下で、 エステル化反 応によって生成した水を精留塔でエステル化反応器外に除去しながら 行う。 反応物を自己循環させながら一段で連続的にエステル化を行う ときの反応条件は、 通常、 反応温度が 2 4 0〜 2 3 0 °Cであり、 反応 圧力は常圧〜 0 . 3 M P aの条件下で行われるのが好ましい。 エステ ル化工程の反応温度は、 最初はこの範囲内の低温度の領域で行っても 良いが、 最終のエステル化反応温度は 2 5 0〜 2 7 9 °Cにするこどが 好ましく、 2 6 5〜 2 7 6 °Cがより好ましく、 2 7 3〜 2 7 5 °Cが最 も好ましい。 ここで最終のエステル化反応温度とは、 エステル化反応 工程終了時点での反応温度を表す。
このエステル化反応工程においては、 用いるエチレングリコール/ テレフタル酸のモル比が 1 . 2〜1 . 8になるようにすることが好ま しく、 1 . 3〜1 . 6になるように用いる事がより好ましい。 連続式 で製造するときには上述のように予めエチレングリ コールとテレフタ ル酸を含むスラリ一を調整しておき、 そのスラリ一内のモル比を上記 の範囲内に調整しておく ことが好ましい。 パッチ式で製造するときに は、 エステル化反応開始当初に反応器内に存在するエチレングリ コー ル 'とテレフタル酸以外にもエステル化反応の途中で添加するエチレン グリコール又はテレフタル酸を含めて上記のモル比の範囲内にするこ とが好ましい。 このモル比の範囲内でエステル化反応を行うことで、 後述する溶融重縮合ポリエチレンテレフタレー トの極限粘度.の値や末 端カルボキシル数の値を所定の範囲内に制御しゃすくなる。
このエステル化反応工程において、 エステル化反応率が通常 9 0 % 以上、 好ましくは 9 0 %以上 1 0 0 %以下、 より好ましくは 9 5 %以 上 1 0 0。/。以下、 更により好ましくは 9 7 %以上 1 0 0 %以下になる まで反応させることが望ましい。 このエステル化反応時の反応温度、 エチレンダリコールの還流比を調整することにより、 溶融重縮合反応 で得られるポリエチレンテレフタ レ一トの末端カルボキシル数を制御 することができる。 またこれらの条件範囲を逸脱するとこの後の液相 重縮合工程で極限粘度が上がらないことがある。
このエステル化反応工程によ り、 テレフタル酸とエチレングリ コー ルとのエステル化反応物 (エチレンテレフタ レー トオリ ゴマー) が得 られる。 このエチレンテレフタ レー トオリ ゴマーの重合度は 3〜 1 2 が好ましく、 4〜 1 0がより好ましく、 6〜 1 0が最も好ましい。 上 記のよ うなエステル化反応工程で得られたエチレンテレフタ レー トォ リゴマーは、 次いで重縮合(液相重縮合)工程に供給される。 エチレン テレフタ レー トオリ ゴマーの重合度は上記のエチレングリ コール/テ レフタル酸のモル比、 エステル化反応時間、 反応圧力、 及び反応時間 を適宜調節し、 エステル化反応率を調整することによ り制御すること ができる。 このエチレンテレフタレートオリ.ゴマーの重合度範囲を逸 するとこの後の液相重縮合工程で極限粘度が上がらないことがある。
(液相重縮合工程)
次に液相重縮合工程において、 上記した重縮合触媒の存在下に、 ェ ステル化反応工程で得られたエチレンテレフタレー トオリ ゴマーを、 減圧下で且つポリエチレンテレフタ レー トの融点以上、 ポリエチレン テレフタ レートの分解温度以下の温度 (通常 2 4 0〜 2 8 0 °C ) に加 熱することにより重縮合させる。 この重縮合反応では、 未反応のェチ レングリ コール及び重縮合で発生するエチレンダリ コールを反応器外 に留去させながら行われることが望ましい。 液相重縮合工程は、 1槽で行ってもよく、 複数の槽に分けて行って もよい。 例えば液相重縮合工程が 2段階で行われるときには、 第 1槽 目の重縮合反応は 反応温度が 24 5〜 2 90で、 好ましくは 2 6 0 〜2 8 0°C、 反応圧カが 1 0 0〜 1 1 ? &、 好ましくは 5 0〜 2 k P aの条件下で行われる。 最終第 2槽目での重縮合反応は、 反応温度が 2 6 5〜 3 00°C、 好ましくは 2 7 0〜 2 90°C、 反応圧力は通常 1 Ό 0 0〜: L 0 P aで、 好ましくは 500〜 3 0 P aの条件下で行われ る。 これらの重縮合反応温度、 重縮合反応圧力、 重縮合反応時間を適 宜調整することにより、 得られる溶融重縮合ポリエチレンテレフタレ ートの極限粘度を下記の範囲になるように制御する。 なお重縮合工程 の反応時間は重縮合反応槽内の滞留時間で 240分以下が好ましく、 2 0 0分以下がより好ましい。 このようにして、 上述の重縮合触媒を 用いてポリエチレンテレフタレートを製造することができる。
この重縮合工程で得られるポリエチレンテレフタレートは、 通常、 溶融状態で押出しながら、 冷却後、 切断して粒状(チップ状)のポリエ チレンテレフタレートを得る。 得られたポリエチレンテレフタレート の極限粘度 I Vは 0. 48〜0. 5 3 d L/ g、 かつ末端カルボキシ ル数が 1 4〜 22 mm o 1 k gの範囲に該当する必要がある。 好ま しくは極限粘度が 0. 48〜0. 5 2 d LZ g、 末端カルボキシル数 が 1 7〜 2 2 mm o 1 /k gの範囲に該当することである。 極限粘度 がこの範囲の下限を下回ると、 ポリエチレンテレフタレートチップの 搬送時や固相重縮合工程でチップの変形、 粉体化が起こる問題、 又は 固相重縮合反応の時間が長くなり生産性が低下するなどの問題が生じ る。 このため、 ポリエチレンテレフタレートの極限粘度はできるだけ 高い方が好ましい。 しかし、 極限粘度が上記範囲の上限を超すと、 固 相重縮合後のポリエチレンテレフタレート及びポリエチレンテレフタ レート成形品中のァセトアルデヒ ドゃ環状三量体量が多いという問題 が生じる。 また末端カルボキシル数が上記範囲の下限を下回ると、 ポ リエチレンテレフタレート成形品中のァセトアルデヒ ド含有量が大き くなり、 また末端カルボキシル数が上記範囲の上限を上回ると環状三 量体含有量が多くなつてしまう。
また、 重縮合反応では、 必要に応じてトリメチルホスフヱートなど ' のリン安定剤をポリエチレンテレフタレート製造における任意の段階 で加えても良い。 さらに酸化防止剤、 紫外線吸収剤、 難燃剤、 蛍光増 白剤、 艷消剤、 整色翱、 消泡剤又はその他の添加剤などをポリエチレ ンテレフタレート中に配合してもよい。 さらに、 得られるポリエチレ + ンテレフタ レー トの色相の改善補助をするために、 ポリエチレンテレ フタ レー トの製造段階において、 ァゾ化合物、 トリフエニルメタン化 合物、 キノ リン化合物、 アントラキノン化合物、 若しくはフタロシア ニン化合物の有機青色顔料、 無機青色色素、 又はその他の整色剤を反 応器に添加することもできる。
J
(固相重縮合工程)
本発明においては、 上記液相重縮合工程で得られるポリエチレンテ レフタ レートはさらに固相重縮合に供給される必要がある。 固相重縮 合工程に供給される粒状ポリエチレンテレフタレートは、 予め、 固相 重縮合を行う場合の温度より低い温度に加熱して予備結晶化を行った 後、 固相重縮合工程に供給してもよい。
この予備結晶化工程は、 粒状ポリエチレンテレフタレートを乾燥状 態で、 通常 1 2 0〜 2 0 0 °C、 好ましぐは 1 3 0〜: 1 8 0 °Cの温度で 1分から 4時間加熱することによって行うことができる。 またこのよ うな予備結晶化は、粒状ポリエチレンテレフタレートを水蒸気雰囲気、 .水蒸気含有不活性ガス雰囲気下、 不活性ガス雰囲気下、 水蒸気含有空 ' 気雰囲気下、 又はこれらの気体の流通下で 1 2 0 ~ 2 0 0 °Cの温度で 1分間以上加熱することによって行うこともできる。 加熱時間は 1分 以上 2 0時間以下が好ましく、 3 0分以上 1 0時間以下がより好まし く、 1時間以上 8時間以下が最も好ましい。
予備結晶化されたポリエチレンテレフタレー トは、 結晶化度が 2 0 〜 5 0 %であることが望ましい。 なお、.この予備結晶化処理によって は、 いわゆるポリエチレンテレフタレートの固相重縮合反応は進行せ ず、 予備結晶化されたポリエチレンテレフタ レー トの極限粘度は、 液 相重縮合後のポリエチレンテレフタレートの極限粘度とほぼ同じであ る。 その予備結晶化されたポリエチレンテレフタ レー トの極限粘度と 予備結晶化される前のポリエチレンテレフタレートの極限粘度との差 は、 通常 0. 0 6 d LZ g以下である。 ポリエチレンテレフタ レ一ト の結晶化度については、 完全結晶状態の密度と、 完全非晶状態の密度 がそれぞれ 1 . 5 0 1 g _ c m3、 1. 3 3 5 g Z c m3とされている ので、 得られたポリエチレンテレフタレートサンプルの比重を密度勾 配管などで測定することによって結晶化度を算出することができる。 固相重縮合工程は、 少なく とも 1段からなり、 反応温度が 1 9 0〜 2 3 0 °C、 好ましくは 1 9 5〜 2 2 5 °Cであり、 より好ましくは 2 0 0〜 2 2 5 °Cである。 反応圧力は 2 0 0 k P a〜 l k P a、 好ましく は常圧から 1 0 k P a の条件下で、 窒素、 アルゴン、 炭酸ガス、 その 他の不活性ガス雰囲気下で行われることが酸化分解を抑制する事がで きるので好ましい。 使用する不活性ガスとしては安価な窒素ガスが望 ましい。
このよ うな固相重縮合工程を経て #られた粒状ポリエチレンテレフ タレートには、 必要に応じて水処理を行ってもよく、 この水処理は、 粒状ポリエチレンテレフタ レートを水、 水蒸気、 水蒸気含有不活性ガ ス、 又は水蒸気含有空気と接触させることにより行われる。
このよ うにして得られた粒状ポリエチレンテレフタ レー トの極限粘 度 I Vは、 0. 7 0〜 0. 8 6 d LZ gであることが必要である。 更 に固相重縮合後のポリエチレンテレフタレートは末端カルボキシル数 が 1 5 mm o 1 / k g未満であることが好ましい。 末端カルボキシル 数はより好ましくは 0〜 1 5 mm o 1 /k g未満、 更により好ましく は 5〜 1 2 mm o 1 / k gである。上記のようなエステル化反応工程、 液相重縮合工程、 固相重縮合工程を含むポリエチレンテレフタ レート の製造工程はパッチ式、 半連続式、 連続式のいずれでも行うことがで きる。 固相重縮合後のポリエチレンテレフタレートの極限粘度が 0 - 7 0 d L / g未満であると、 ポリエチレンテレフタ レートを溶融成形 して得られるポリエチレンテレフタレート成形体の強度が不足するこ と、 ボトル等の透明性が必要な用途のときには外観が白化する場合が あり好ましくない。 一方極限粘度が 0 . 8 6 d L Z gを超えるとポリ エチレンテレフタレート成形体の靱性が失われ、 脆くなったり結晶化 速度が遅くなったりすることがあり好ましくない。 また固相重縮合後 のポリェチレンテレフタレートの末 5¾力ノレボキシノレ数が 1 5 m m o 1 Z k g以上になると、 環状三量体含有量が増えることがあり好ましく ない。 固相重縮合後のポリエチレンテレフタレートの末端カルボキシ ル数が 1 5 m m o 1 / k g未満とするには、 液相重縮合工程におい'て 上述した極限粘度、 末端カルボキシル数の溶融重縮合ポリエチレンテ レフタレートを得て、 不活性ガス雰囲気下、 上記の温度範囲内、 且つ 圧力範囲内で行うことが重要である。
なお、 本出願の技術においては、 成形されるまでにポリエチレンテ レフタレートにナトリ ウム、 カリ ウム、 セシウムのうち、 少なく とも 1種の原子を含む化合物を、 ポリエチレンテレフタレート中のこれら の金属原子濃度で 2〜 2 5 p p m含むよう添加されることが好ましい。 ナトリ ウム、 カリ ウム、 セシウム以外の金属塩は殆どァセ トアルデヒ ド含有量の低減効果が無い。 ナトリ ウム塩、 カリ ウム塩又はセシウム 塩を用いたときでも、 ポリエチレンテレフタレート中のその金属原子 濃度が 2 p p m未満では殆どァセ トアルデヒ ド含有量の低減効果が無 く、 また 2 5 p p mを超える量を添加したときは、 ポリエチレンテレ フタレート成形品に異物が発生するなど成形異常が起こる。 通常のポ リエチレンテレフタ レート製造工程では添加時に投入した金属塩の量 がそのままポリエチレンテレフタ レー ト中に含有されるので、 この点 を考慮することにより、 得られるポリエチレンテレフタレート中に 2 〜 2 5 p p m含むように製造時に添加する量を算出することができる。 上述のナトリ ウム、 カリウム、 セシウムのうち少なく とも 1種の原子 をポリエチレンテレフタレ ^ト中に含ませるには、 酢酸塩、 炭酸塩、 硫酸塩よりなる群から選ばれる少なく とも 1種の金属塩を添加するこ とが好ましい。 これらの中でも酢酸塩が好ましく、 すなわち酢酸ナト リ ウム、 酢酸カリ ウム、 又は酢酸セシウムを用いる事が好ましい。
これらのナトリ ウム、 カリ ウム、 セシウム金属塩の具体的な添加方 法としては、 ポリエチレンテレフタレート製造工程における任意のェ 程で可能であるが、 液相重縮合段階で添加すると、 ポリエチレンテレ フタレートの色相の悪化や重縮合反応の低下が発生し、 好ましくない ことがある。 また溶融成形時に直接'粉体状の形態で添加するのは付着! 量が不均一になる恐れがあ 上、 操作が煩雑になることもある。 これ らの点を考慮すると固相重縮合工程後に金属塩を含む溶液と接触させ る方法が好ましく挙げられる。 さらに金属塩を含む溶液としては、 金 属塩を適切な濃度で溶解できる液体であれば制限することなく用いる ことができるが、 溶解度が高く溶媒を容易に入手できることから水溶 液が好ましい。 また接触させる方法としては、 バッチ式又は連続式の いずれの方法においても採用する事ができる。 バッチ式とするときに は、 処理装置にこれらの金属塩の溶液と固相重縮合が終了したポリェ チレンテレフタ レートをいれて接触させる方法を挙げる事ができる。 または連続式のときには連続的にこれらの金属塩の水溶液を向流又は 並流で供給しポリエチレンテレフタレートと接触させる方法又はポリ エチレンテレフタレートに溶液を噴霧させる方法を挙げる事ができる。 更にこれらの金属塩の水溶液を付着きせてから適切な温度で乾燥させ る方法が最も優れている。
尚、 ポリエチレンテレフタレート中の環状三量体含有量及ぴァセト アルデヒ ド含有量は、 通常、 固相重縮合工程で低減されるため、 固相 重縮合前の溶融重縮合後の極限粘度 I V及び固相重縮合の条件などを 調整する手法で対応できる。 そして本発明の製造方法によれば固相重 縮合して得られたポリエチレンテレフタレート中のァセトアルデヒ ド 含有量を 1 5 p p m未満であり、 環状三量体含有量を 0 . 4 0重量% 以下にすることができる。 ァセ トアルデヒ ド含有量は好ましくは 8 p p m以下、 より好ましくは 6 p p m以下である。 また環状三量体含有 量は好ましくは 0 . 3 8重量%以下、 より好ましくは 0 . 3 5重量% 以下である。 ここでのポリエチレンテレフタレートとは上記の金属塩 を含む溶液と接触させた直後のポリエチレンテレフタレー ト、 その後 射出成形法などの方法により得た場合のそのボリエチレンテレフタレ 一ト製成形品も含まれる。 (その他)
よって、 本発明の製造方法で得られたポリエチレンテレフタ レート は、 色相及び透明性に優れ、 且つ、 ァセ トアルデヒ ドの含有量及ぴ、 C y— 3の含有量も少なく、 ボトル、 その他の飲料用途の成形体材料 と して有用である。 成形体を製造する前には、 ポリエチレンテレフタ レートを充分乾燥させることが好ましく、 1 2 0〜 1 8 0 °Cの温度で 空気雰囲気下、 不活性ガス雰囲気下、 又は不活性ガス流通下で行うの が好ましい。
本発明の製造方法により得られたポリエチレンテレフタレートを適 切な金型を用意し、 成形温度 3 0 0 °Cで成形して外径 2 8 m m、 内径 1 9 m m、 長さ 1 3 6 m m , 重量 5 6 gの試験管状成形体を得ること ができる。 その詳細な形状は概ね中空の円筒形であり、 一方の端がほ ぼ半球状の形に閉ざされた形状をしている。 その試験管状成形体中の ァセ トアルデヒ ド含有量が 1 3 p p m未満且つ環状三量体含有量が 0 . 4 0重量%以下にすることもできる。 これは従来のゲルマニウム化合 物を使用して最適の条件で得られてポリエチレンテレフタレー トの同 条件での成形体と同じ水準である。
以上の様に本発明によれば、 ゲルマニウム化合物より安価で、 アン チモン化合物、 アルミニゥム化合物に比べ衛生性に懸念の無いチタン 化合物を触媒と して使用し、 ポリエチレンテレフタレートを製造する 事ができる。 そのポリエチレンテレフタ レー トは、 ゲルマニウム化合 物を重縮合触媒として使用したポリエチレンテレフタ レートと同等の、 ァセトアルデヒ ド含有量が少なく、 環状三畺体含有量が少ない成形体 を製造する'事ができる。 この事実は産業上の意義が大きい。
(実施例)
以下、 実施例により本発明を更に詳細に説明する。 各実施例、 比較 例における分析評価は次のように行った。
( 1 ) 極限粘度 ( I V)
ポリエチレンテレフタレートサンプ Λ^Ο . 6 gを ο—クロロフエノ ール 5 0 c c中に加熱溶解した後.、 ー且冷却させ、 ポリエチレンテレ フタ レー トの o—クロ口フエノール溶液を得た。 ウベローデ式粘度計 を用いて 3 5 °Cの温度条件で測定したその溶液の溶液粘度から極限粘 度を算出した。
(2) 末端カルボキシル数 (CV)
ポリエチレンテレフタレー トサンプルを粉砕して精秤した後ベンジ ルアルコールに溶解し、 水酸化カリ ウムによる中和滴定を行った。 そ の滴定値からポリエチレンテレフタ レー ト単位重量当たりの数値に換 算し、 末端カルボキシル数を算出した。
( 3) ァセ トアルデヒ ド (AA) 含有量
ポリエチレンテレフタレートサンプルを凍結粉砕しバイァル瓶に仕 込み、 1 5 0 °C X 6 0分に保持した。 その後、 バイアル瓶中の気体を 日立製へッ ドスペースガスク口マ トグラフィ一にて分析して、 A A含 有量を算出した。
(4) 金属原子、 リ ン原子含有濃度分析
乾燥した重縮合触媒スラリーサンプルを走查電子顕微鏡 (S EM, 日立計測機器サービス S 5 7 0型) にセッ トした。 S EMに連結した エネルギー分散型 X線マイクロ一アナライザー (XMA, 堀場 EMA X— 7 0 0 0型) にて定量分析を行い、 重縮合触媒サンプル中のチタ ン、 リ ン原子濃度を算出した。
ポリエチレンテレフタレート中の触媒金属濃度は、 粒状のサンプル をアルミ板上で加熱溶融した後、 圧縮プレス機で平面を有する成形体 を作成し、 蛍光 X線装置 (理学電機工業 3 2 7 0 E型) にて、 定量分 析した。
( 5 ) 環状三量体 (C y— 3 ) 含有量
ポリエチレンテレフタレートサンプルを粉 機で粉砕後、 一定量秤 量し、 少量のへキサフロロィソプロパノール/ク口口ホルム混合溶液 で一旦溶解し、 クロ口ホルムで一定濃度 (S O g ZL) に希釈した。 その後、この溶液をゲ パーミッションクロマトグラフィー(G P C、 W a t e r s社 A L CZG P C 2 4 4型) にて、 低分子量領域に表れ た成分のピークを検出した。 一方、 環状三量体 (C y— 3 ) の標準サ -ンプルから求めた検量線を基準に、 ポリエチレンテレフタレート中の C y - 3の定量を行った。
( 6 ) オリゴマーの重合度 ,
エステル化工程によつて得られたエステル化反応物の試料をサンプ リ ングし、 M a u r i c e らの方?去 [An a l . C h i m. A c t a , 2 2, p 3 6 3 ( 1 9 6 0 )]によりカルボキシル末端基量を測定した。 次にエステル化反応物の試料をへキサフルォロイソプロパノールに溶 解し、 この溶液について1 3 C— NMRを用いることでヒ ドロキシル末 端基量を定量した。 さらに両方の末端基量から数平均分子量を求め、 重合度に換算した。
( 7 ) ポリエチレンテレフタレート中のアルカリ金属原子含有量分析 ポリェチレンテレフタレートサンプルを 1重量0 /0の o —クロ口フエ ノール溶液として、 その 2倍量の 0. 5モル%塩酸水溶液を加え振と う し、 抽出処理した。 得られた水相の溶液を日立ハイテクノロジーズ 社の Z— 2 3 0 0型原子吸光光度分析計にて分析し定量した。
[参考例 1 ]
攪拌機、 窒素流通配管及び加熱装置を備えた触媒調製槽中にェチレ ングリコール 2 1重量部を入れて混合攪拌した中に、 酢酸 0. 0 2 3 重量部、チタンテトラブトキシド 0. 1 6 2重量部を徐々に添加した。 触媒調整槽を 5 0 °Cで 2時間保持し透明なチタン化合物のエチレング リコール溶液を得た。 以下、 この溶液を 「T B T/E G溶液」 と称す る。 この T B T/E G溶液中のチタン濃度を、 蛍光 X線を用い測定し たところ、 チタン含有量は 1. 0重量%であった。
更に、 別の攪拌機、 窒素流通配管及び加熱装置を備えた触媒調製槽 中にエチレングレコール 1 7. 5 7重量部を入れて攪拌しながら 1 2 0 °Cまで加熱し、 モノー n—プチルホスフェー ト 0. 1 4 7重量部を 添加した。 内容物を攪拌しながら加熱混合して溶解した。 その触媒調 _ 整槽へ、 先に準備した T B TZE G溶液全量を徐々に添加した。 その 後、 1 2 0°Cの温度で 1時間攪拌保持し、 チタン化合物とリン化合物 の反応を完結させた。 その反応物は白濁状態で微細な析出物として存 在した。 以下、 この溶液を 「T BMB P触媒液」 と称する。 この溶液 の一部から、 溶液中の微細な析出物を分離 ·精製を行い、 各種の分析 を行った結果、 この微細な析出物は一般式 ( I ) で表される化合物で あって Rェがノルマルブチル基である化合物であることを確認した。
[実施例 1 ]
単位時間当たり平均 4 5 0質量部のエチレンテレフタ レートオリ ゴ マーが滞留する完全混合反応器内に、攪拌下、窒素雰囲気下で 2 7 4. 5 °C, 常圧下に維持された条件下に、 単位時間当たり 3 5 8質量部の 高純度テレフタル酸と単位時間当たり 1 9 0質量部のエチレンダリコ ールとを混合して調製されたスラリーを連続して供給レた。 エステル 化反応で発生する水とエチレンダリコールを反応器外に留去しながら、 反応器内の理論滞留時間が 4時間でエステル化反応を完結させた。 こ の時のエステル化反応で発生した水量から計算したエステル化率は 9
8 %以上で、生成したエチレンテレフタ レー トオリ ゴマーの重合度は、 約 5〜 9であつた。
このエステル化反応で得られたエチレンテレフタ レー トオリ ゴマー 4 5 0質量部を順次、 重縮合反応槽に移し、 重縮合触媒として、 参考 例 1で調製した T B MB P触媒液を単位時間当たり 4質量部投入した。 重縮合反応槽内の反応温度を 2 7 6. 5 °C、 反応圧力を 6 O P aに保 ち、 重縮合反応で発生する水、 エチレングリ コールを重縮合反応槽外 に除去しながら溶融状態で重縮合反応を行った。 この時の重縮合反応 槽内の滞留時間は、 1 8 0分であった。 その後、 重縮合反応槽内の反 応物を吐出部からス トランド状に連続的に押出し、 水で冷却、 次いで 切断して、 大きさが約 3 mm程度の粒状ポリエチレンテレフタレート を得た。 このポリエチレンテレフタ レー ト (溶融重縮合ポリエチレン テレフタレー ト) の I Vは 0. 4 9 2 d L g、 末端カルボキシル数 fま l Y mm o l /js gであつに。
この溶融重縮合ポリエチレンテレフタ レー トを窒素流通下、 1 6 0 °Cで 5時間結晶化及び乾燥させた。 続いてタンブラ一式固相重縮合 装置に結晶化したポリエチレンテレフタレートを投入して《0. 1 3 k P a の減圧下、 2 2 5 °Cで 2 7時間固相重縮合反応を行った。 この固 相重縮合済みポリエチレンテレフタレート (固相重縮合ポリエチレン テレフタレート)を用いプリフォーム成形体を下記の方法で成形した。 ポリエチレンテレフタ レート 5 k gを温度 1 6 0 °C、 常圧、 窒素流 入下条件で 5時間以上棚段式の乾燥機を用いて乾燥させた。 乾燥した ポリエチレンテレフタレートを射出成形機 (日精樹脂工業株式会社製 F N— 2 0 0 0型) にてシリ ンダー温度 3 0 0 °C、 スク リ ュー回転数 1 6 0 r p m、 一次圧時間 3. 0秒、 金型温度 1 0 °C、 サイクル 3 0 秒で、 外径 2 8 mm、 内径 1 9 mm、 長さ 1 3 6 mm、 重量 5 6 gの 円筒状の試験管状成形体を射出成形した。 この試験管状成形体をプロ 一成形するとボトルが得られることから、 この試験管状成形体は成形 プリ フォームと称される。
一連のポリエチレンテレフタ レート (溶融重縮合ポリエチレンテレ フタレート、 固相重縮合ポリエチレンテレフタレート) 及び成形プリ フォームの極限粘度、 末端カルボキシル数、 T i原子含有量、 P原子 含有量及ぴ K原子含有量、 並びにその他の品質を表 1及ぴ表 2に示し た。
[実施例 2 ]
実施例 1において、 エステル化反応温度を 2 7 3. 5 °Cに変更して 溶融重縮合ポリエチレンテレフタ レー トの I Vを 0. 4 8 9 d L/ g、 末端カルボキシル数を 1 9 mm o 1 / k g 'とする以外は実施例 1 と同 様にして重縮合反応を行った。 得られた溶融重縮合ポリエチレンテレ フタ レー ト、 固相重縮合ポリエチレンテレフタレート及ぴ成形プリフ オームの品質を表 1及ぴ表 2に示した。
[実施例 3 ]
実施例 1において、 エステル化反応温度を 2 7 3. 0 °Cに変更して 溶融重縮合ポリエチレンテレフタレー トの I Vを 0. 4 8 3 d L/ g、 末端カルボキシル数を 2 2 m m o 1 / k g とする以外は実施例 1 と同 様にして重縮合反応を行った。 得られた溶融重縮合ポリエチレンテレ フタレー ト、 固相重縮合ポリエチレンテレフタ レート及ぴ成形プリフ オームの品質を表 1及ぴ表 2に示した。
[実施例 4]
実施例 1においてエステル化反応温度を 2 7 3. 5 °C、 溶融重縮合 の温度を 2 7 7. 5 °Cに変更して溶融重縮合ポリエチレンテレフタレ ートの I Vを 0. 5 2 0 d L / g、 末端カルボキシル数を 1 8 m m o 1 /k g とする以外は実施例 1 と同様にして重縮合反応を行った。 得 られた溶融重縮合ポリエチレンテレフタ レート、 固相重縮合ポリェチ レンテレフタ レー ト及び成形プリ フォームの品質を表 1及ぴ表 2に示 した。 ''
[比較例 1 ]
実施例 1において、 エステル化反応温度を 2 7 2. 0 °Cに変更して 溶融重縮合ポリエチレンテレフタレー トの I Vを 0. 4 9 1 d LZ g、 末端カルボキシル数を 2 6 mm o 1 / k g とする以外は実施例 1 と同 様にして重縮合反応を行った。 得られた溶融重縮合ポリエチレンテレ フタレート、 固相重縮合ポリエチレンテレフタレート及び成形プリフ オームの品質を表 1及ぴ表 2に示した。
[比較例 2 ]
実施例 1 においてエステル化反応温度を 2 7 3 · 5 °C、 溶融重縮合 の温度を 2 7 8 . 3 °Cに変更して溶融重縮合ポリエチレンテレフタ レ ー トの I Vを 0 . 5 4 4 d L / g、 末端カルボキシル数を 1 7 m m 0 1 / k gとする以外は実施例 1 と同様にして重縮合反応を行った。 得. られた溶融重縮合ポリエチレンテレフタ レー ト、 固相重縮合ポリェチ レンテレフタレート及び成形プリフォームの品質を表 1及ぴ表 2に示 した。
[実施例 5 ]
単位時間当たり平均 4 5 0質量部のエチレンテレフタ レー トオリゴ マーが滞留する完全混合反応器内に、 攪拌下、 窒素雰囲気で 2 7 4 . 5 °C、 常圧下に維持された条件下に、 単位時間当たり 3 5 8質量部の 高純度テレフタル酸と単位時間当たり 1 9 0質量部のエチレングリコ ールとを混合して調製されたスラリーを連続して供給した。 エステル 化反応で発生する水とエチレンダリコールを反応器外に留去しながら、 反応器内の理論滞留時間が 4時間でエステル化反応を完結させた。 こ の時、 実施例 1 と同様の手法にて測定したエステル化率は 9 8 %以上 で、 生成したエチレンテレフタ レー トオリ ゴマーの重合度は、 約 5〜 9であった。
このエステル化反応で得られたエチレンテレフタレー トオリゴマー 4 5 0質量部を順次、 重縮合反応槽に移し、 重縮合触媒として、 参考 例 1で調製した T B M B P触媒液を単位時間当たり 4質量部投入した。 重縮合反応槽内の反応温度を 2 7 6 . 5 °C、 反応圧力を 6 0 P aに保 ち、 重縮合反応で発生する水, エチレングリコールを重縮合反応槽外 に除去しながら溶融状態で重縮合反応を行った。 この時の重縮合反応 槽内の滞留時間は、 1 8 0分であった。 その後、 重縮合反応槽内の反 応物を.吐出部からス トランド状に連続的に押出し、 氷で冷却、 次いで 切断して、 大きさが約 3 mm程度の粒状ポリエチレンテレフタレート を得た。 この溶融重縮合ポリエチレンテレフタ.レー トの I Vは 0. 4 9 2 d L/ g , 末端カルボキシル数は 1 7 mm o 1 / k gであった。 この溶融重縮合ポリエチレンテレフタ レー トを窒素流通下、 1 6 0°Cで 5時間結晶化及び乾燥させた。 続いてタンブラ一式固相重縮合 装置に結晶化したポリエチレンテレフタ レー トを投入して 0. 1 3 k P aの減圧下、 2 2 5 °Cで 2 7時間固相重縮合反応を行った。 得られ たポリエチレンテレフタレー トに、 ポリエチレンテレフタ レー ト中の 力リ ゥム原子含有量で 8 p p mになるように酢酸力リ ゥム水溶液を噴 霧することにより添加した。 その後、 乾燥することによって固相重縮 合ポリエチレンテレフタレートを得た。 その後プリ フォーム成形体を 実施例 1 と同様の方法で成形した。
一連の溶融重縮合ポリエチレンテレフタレート、 固相重縮合ポリェ チレンテレフタレート及び成形プリフォームの極限粘度、 末端カルボ キシル数、 T i原子含有量、 P原子含有量及び K原子含有量、 並びに その他の品質を表 1及び表 2に示した。
[実施例 6]
実施例 5において、 エステル化反応温度を 2 7 3. 5 °Cに変更して 溶融重縮合ポリエチレンテレフタレー トの I Vを 0. 4 8 9 d L/g、 末端カルボキシル数を 1 9 mm o l /k gとする以外は実施例 5と同 様にして重縮合反応を行った。 得られた溶融重縮合ポリエチレンテレ フタレート、 固相重縮合ポリエチレンテレフタレート及び成形プリフ オームの品質を表 1及ぴ表 2に示した。
[実施例 7]
実施例 5において、 エステル化反応温度を 2 7 3. 0°Cに変更して 溶融重縮合ポリエチレンテレフタレートの I Vを 0. 4 8 3 d LZg、 末端カルボキシル数を 2, 2 mm o 1 Zk gとする以外は実施例 5と同 様にして重縮合反応を行った。 得られた溶融重縮合ポリエチレンテレ フタ レート、 固相重縮合ポリエチレンテレフタレート及ぴ成形プリ フ オームの品質を表 1及び表 2に示した。
[実施例 8 ]
実施例 5において、 エステル化反応温度を 2 7 4. 9 °Cに変更して 溶融重縮合ポリエチレンテレフタ レー トの I Vを 0. A S A d L/ g 末端カルボキシル数を 1 5 mm o 1 / k g とする以外は実施例 5 と同 様にして重縮合反応を行った。 得られた溶融重縮合ポリエチレンテレ フタレー ト、 固相重縮合ポリエチレンテレフタレー ト及び成形プリフ オームの品質を表 1及ぴ表 2に示した。
[実施例 9 ] ■
実施例 5においてエステル化反応温度を 2 7 3. 5 °C、 溶融重縮合 の温度を 2 7 7. 5 °Cに変更して溶融重縮合ポリエチレンテレフタレ ー トの I Vを 0. 5 2 0 d LZ g、 末端力ルポキシル数を 1 8 mm o 1 /k g とする以外は実施例 5 と同様にして重縮合反応を行った。 得 られた溶融重縮合ポリエチレンテレフタレー ト、 固相重縮合ポリェチ レンテレフタレート及び成形プリフォームの品質を表 1及び表 2に示 した。
[実施例 1 0、 1 1 ]
実施例 9において、 ポリエチレンテレフタレート中のカリ ウム原子 含有量が表 2で示した値になるように酢酸力リ ゥム水溶液の噴霧量を 変更し、 その後乾燥することによって固相重縮合ポリエチレンテレフ タレートを得た。 得られた溶融重縮合ポリエチレンテレフタレート、 固相重縮合ポリエチレンテレフタ レート及び成形プリフォームの品質 を表 1及ぴ表 2に示した。
。 [実施例 1 2 , 1 3 ]
実施例 9において、 酢酸カリ ウム水溶液を用いる代わりに、 酢酸ナ トリゥム水溶液又は酢酸セシウム水溶液を用い、 ポリエチレンテレフ タ レート中のアル力リ金属原子含有量が表 2で示した値になるように 噴霧量を変更し、 その後乾燥することによって固相重縮合ポリエチレ ンテレフタ レートを得た。 得られた溶融重縮合ポリエチレンテレフタ レート、 固相重縮合ポリエチレンテレフタレート及ぴ成形プリフォー ムの品質を表 1及ぴ表 2に示した。
[比較例 3]
実施例 1において以下に示した条件に変更する以外は実施例 1 と同 様にして重縮合反応を行った。 エステル化反応温度を 2 74. 5°Cか ら 2 7 7. 2°Cに、 重縮合触媒として TBMB P触媒液を単位時間当 たり 4質量部投入する代わりに、 1質量%二酸化ゲルマニウム Zェチ レンダリコール溶液を単位時間当たり 6. 8質量部及ぴリン酸のェチ レンダリコール溶液 (リ ン濃度として 5. 5質量%) を単位時間当た り 1.質量部投入することに変更した。 更に、 溶融重縮合の温度を 2 7 6. 5 °Cから 2 7 7. 0 °Cに変更して溶融重縮合ポリエチレンテレフ タレートの I Vを 0. 5 1 0 d L 、 末端カルボキシル数を 2 6 m m o 1 / k gとした。 最後に、 固相重縮合を 2 2 5でで 2 7時間行う ことから 2 20 °Cで 2 3時間行うことに変更した。 得られた溶融重縮 合ポリエチレンテレフタ レート、 固相重縮合ポリエチレンテレフタ レ 一ト及び成形プリ フォームの品質を表 1及び表 2に示した。
表 1 触媒の種類 溶融重縮合 固相重縮合
ポリエチレン ポリエチレン テレフタ レ一 卜 テレフタ レ一ト
I V C V I V C V
(dL/g) (mmol/kg) (dL/g) (mmol/kg) 実施例 1 T B M B P 0 o.492 1 7 0.752 ― 実施例 2 T B B P 0.48 o9 1 9 0.754 ― 実施例 3 T B M B P 0.483 2 2 0.762 ― 実施例 4 T B M B P 0.520 1 8 0.769 ― 実施例 5 T B M B P 0.492 1 7 0.752 9 · 7 実施例 6 T B M B P 0.489 1 9 0.754 1 0. 4 実施例 7 T B M B P 0.483 2 2 0.762 9. 7 実施例 8 T B M B P 0.494 1 5 0.751 9. 5 実施例 9 T B M B P 0.520 1 8 0.769 8. 2 実施例 10 T B M B P 0.520 1 8 0.774 8. 1 実施例 11 T B M B P 1 8 0.770 8. 4 実施例 12 T B M B P 0.520 1 9 0.774 8. 2 実施例 13 T B M B P 0.520 1 8 0.772 8. 4 比較例 1 T B M B P 0.491 2 6 0.762 ― 比較例 2 T B M B P 0.544 1 7 0.740 ― 比較例 3 G e O 0.510 2 6 0.747 1 5. 0 表 2
Figure imgf000031_0001
* : T i 原子含有量は 0 p p mであるが、 G e原子含有量が 5 5 p p mであった。

Claims

請 求 の 範 囲
1. ポリエチレンテレフタレー トの製造方法であって、 下記一般式 ( I )で表される化合物を重縮合触媒として使用し溶融重縮合を行い、 極限粘度が 0. 4 8〜0. 5 3 d LZ g、 末端カルボキシル数が 1 4 〜 2 2 mm o 1 /k gの溶融重縮合ポリエチレンテレフタ レートを得 る工程、 更に溶融重縮合ポリエチレンテレフタ レートを固相重縮合し て極限粘度 0. 7 0〜0. 8 6 d LZ gの固相重縮合ポリエチレンテ レフタ レー トを得る工程を含むポリエチレンテレフタレー トの製造方
Figure imgf000032_0001
[但し、 上記一般式 ( I ) 中、 は、 '2〜 1 2個の炭素原子を有す るアルキル基を表す。]
2. 固相重縮合ポリエチレンテレフタレート中のチタン原子含有量 が 1〜 5 0 p p mである請求の範囲第 1項に記載のポリエチレンテレ フタレートの製造方法。
3. 溶融重縮合の工程がエステル化反応工程を含み、 エステル化反 応工程でのエステル化反応率が 9 0 %以上である請求の範囲第 1項に 記載のポリェチ.レンテレフ,タレートの製造方法。
4. 溶融重縮合の工程がエステル化反応工程を含み、 エステル化反 '応工程での最終のエステル化反応温度が 2 5 0〜,2 7 9 °Cである請求 の範囲第 1項に記載のポリエチレンテレフタレートの製造方法。
5 . 溶融重縮合の工程がエステル化反応工程を含み、 エステル化反 応工程で得られたエチレ テレフタレートオリ ゴマーの重合度が 3〜 1 2である請求の範囲第 1項に記載のポリエチレンテレフタレー トの 製造方法。
6 . 溶融重縮合の工程がエチレングリコールとテレフタル酸を原料 に用いるエステル化反応工程を含み、 エステル化反応工程で用いるェ チレングリ コール/テレフタル酸のモル比が 1 . 2〜 1 . 8である請 求の範囲第 1項に記載のポリエチレンテレフタレートの製造方法。
7 . 固相重縮合ポリエチレンテレフタレートの末端カルボキシル数 1 5 m m o 1 / k g未満であり、 固相重縮合ポリエチレンテレフタレ ート中にナトリ.ゥム、 カリ ウム及びセシウムよりなる群から選ばれる 少なく とも 1種の原子を 2〜 2 5 p p m含む請求の範囲第 1項に記載 のボリエチレンテレフタ レー トの製造方法。
8 . 固相重縮合ポリエチレンテレフタレート中のチタン原子含有量 が 5〜 2 5 p p mである請求の範囲第 7項に記載のポリエチレンテレ フタ レー トの製造方法。
9 . 固相重縮合ポリエチレンテレフタレート中にナトリ ウム、 カリ ゥム及びセシウムよりなる群から選ばれる少なく とも 1種の原子を含 ませるにあたり、 ポリエチレンテレフタレート製造工程における任意 の工程において、 酢酸塩、 炭酸塩及ぴ硫酸塩よりなる群から選ばれる 少なく とも 1種の金属塩を添加する請求の範囲第 7項に記載のポリエ チレンテレフタレー トの製造方法。
1 0 . 固相重縮合ポリ'エチレンテレフタレート中にナトリ ウム、 力 リ ゥム及びセシウムよりなる群から選ばれる少なく とも 1種の原子を 含ませるにあたり、 その原子を含む塩の水溶液と固相重縮合ポリェチ レンテレフタレートを接触させる請求の範囲第 7項に記載のポリェチ レンテレフタレートの製造方法。
PCT/JP2007/058016 2006-04-06 2007-04-05 ポリエチレンテレフタレートの製造方法 WO2007117028A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
EA200802112A EA015941B1 (ru) 2006-04-06 2007-04-05 Способ получения полиэтилентерефталата
AU2007236595A AU2007236595B2 (en) 2006-04-06 2007-04-05 Process for production of polyethylene terephthalate
PL07741452T PL2003159T3 (pl) 2006-04-06 2007-04-05 Sposób wytwarzania poli(tereftalanu etylenu)
KR1020087024295A KR101293011B1 (ko) 2006-04-06 2007-04-05 폴리에틸렌테레프탈레이트의 제조 방법
SI200730821T SI2003159T1 (sl) 2006-04-06 2007-04-05 Postopek izdelave polietilen tereftalata
CN200780012036XA CN101415749B (zh) 2006-04-06 2007-04-05 聚对苯二甲酸乙二醇酯的制备方法
US12/295,211 US8653232B2 (en) 2006-04-06 2007-04-05 Manufacturing method of polyethylene terephthalate
MX2008011881A MX2008011881A (es) 2006-04-06 2007-04-05 Proceso para produccion de terftalato de polietileno.
ES07741452T ES2378403T3 (es) 2006-04-06 2007-04-05 Método para producir tereftalato de polietileno
BRPI0709881-2A BRPI0709881B1 (pt) 2006-04-06 2007-04-05 Método de fabricação de poli(tereftalato de etileno)
DK07741452.2T DK2003159T3 (da) 2006-04-06 2007-04-05 Fremgangsmåde til fremstilling af polyethylen-terephthalat
EP07741452A EP2003159B1 (en) 2006-04-06 2007-04-05 Process for production of polyethylene terephthalate
CA2646576A CA2646576C (en) 2006-04-06 2007-04-05 Manufacturing method of polyethylene terephthalate
AT07741452T ATE540994T1 (de) 2006-04-06 2007-04-05 Verfahren zur herstellung von polyethylenterephthalat
JP2008509915A JP5139974B2 (ja) 2006-04-06 2007-04-05 ポリエチレンテレフタレートの製造方法
HK09101458.4A HK1121481A1 (en) 2006-04-06 2009-02-17 Process for production of polyethylene terephthalate
HK09106594.8A HK1129122A1 (en) 2006-04-06 2009-07-20 Process for production of polyethylene terephthalate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006105087 2006-04-06
JP2006-105087 2006-04-06
JP2006-272854 2006-10-04
JP2006272854 2006-10-04

Publications (1)

Publication Number Publication Date
WO2007117028A1 true WO2007117028A1 (ja) 2007-10-18

Family

ID=38581297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058016 WO2007117028A1 (ja) 2006-04-06 2007-04-05 ポリエチレンテレフタレートの製造方法

Country Status (21)

Country Link
US (1) US8653232B2 (ja)
EP (1) EP2003159B1 (ja)
JP (1) JP5139974B2 (ja)
KR (1) KR101293011B1 (ja)
CN (1) CN101415749B (ja)
AT (1) ATE540994T1 (ja)
AU (1) AU2007236595B2 (ja)
BR (1) BRPI0709881B1 (ja)
CA (1) CA2646576C (ja)
CY (1) CY1112240T1 (ja)
DK (1) DK2003159T3 (ja)
EA (1) EA015941B1 (ja)
ES (1) ES2378403T3 (ja)
HK (2) HK1121481A1 (ja)
MX (1) MX2008011881A (ja)
MY (1) MY153180A (ja)
PL (1) PL2003159T3 (ja)
PT (1) PT2003159E (ja)
SI (1) SI2003159T1 (ja)
TW (1) TWI402293B (ja)
WO (1) WO2007117028A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207984A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp ポリエステル樹脂の製造方法、ポリエステルフィルム、太陽電池用バックシート、並びに太陽電池モジュール

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575090B (zh) * 2009-10-27 2013-12-11 东丽株式会社 聚对苯二甲酸乙二醇酯组合物、其制造方法及聚对苯二甲酸乙二醇酯膜
CA2801397C (en) 2010-06-03 2018-04-24 Stora Enso Oyj Hydrogen treatment of impure tall oil for the production of aromatic monomers
US8877862B2 (en) 2011-07-15 2014-11-04 Saudi Basic Industries Corporation Method for color stabilization of poly(butylene-co-adipate terephthalate
US9334360B2 (en) 2011-07-15 2016-05-10 Sabic Global Technologies B.V. Color-stabilized biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
US8933162B2 (en) * 2011-07-15 2015-01-13 Saudi Basic Industries Corporation Color-stabilized biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
US8946345B2 (en) 2011-08-30 2015-02-03 Saudi Basic Industries Corporation Method for the preparation of (polybutylene-co-adipate terephthalate) through the in situ phosphorus containing titanium based catalyst
US8889820B2 (en) 2012-02-15 2014-11-18 Saudi Basic Industries Corporation Amorphous, high glass transition temperature copolyester compositions, methods of manufacture, and articles thereof
US8969506B2 (en) 2012-02-15 2015-03-03 Saudi Basic Industries Corporation Amorphous, high glass transition temperature copolyester compositions, methods of manufacture, and articles thereof
US8901273B2 (en) 2012-02-15 2014-12-02 Saudi Basic Industries Corporation Amorphous, high glass transition temperature copolyester compositions, methods of manufacture, and articles thereof
US8895660B2 (en) 2012-03-01 2014-11-25 Saudi Basic Industries Corporation Poly(butylene-co-adipate terephthalate), method of manufacture, and uses thereof
US9034983B2 (en) 2012-03-01 2015-05-19 Saudi Basic Industries Corporation Poly(butylene-co-adipate terephthalate), method of manufacture and uses thereof
US8901243B2 (en) 2012-03-30 2014-12-02 Saudi Basic Industries Corporation Biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
FI125507B2 (en) 2012-04-13 2021-12-15 Stora Enso Oyj Methods for deoxygenating tall oil and producing polymerizable monomers therefrom
KR102415147B1 (ko) * 2016-09-30 2022-07-01 도레이첨단소재 주식회사 압축성형체용 숏컷 섬유, 이를 이용한 압축성형체 및 이의 제조방법
CN109134837B (zh) * 2018-06-29 2024-01-23 浙江尤夫高新纤维股份有限公司 均质高粘聚酯及其制备方法
CN113276527A (zh) * 2021-05-28 2021-08-20 杭州大东南高科新材料有限公司 一种低萃取聚酯薄膜及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101462A (ja) 1972-04-03 1973-12-20
JPS5148505A (en) 1974-10-24 1976-04-26 Komatsu Mfg Co Ltd Dokokino sosasochi
JPS5838722A (ja) * 1981-08-31 1983-03-07 Nippon Ester Co Ltd ポリエステルの製造方法
JPH0347830A (ja) 1989-03-31 1991-02-28 Mitsui Petrochem Ind Ltd ポリエチレンテレフタレートの製造方法
US5017680A (en) 1990-07-03 1991-05-21 Eastman Kodak Company Process and catalyst-inhibitor systems for preparing poly(ethylene terephthalate)
JPH07138354A (ja) * 1993-07-12 1995-05-30 General Electric Co <Ge> 改良されたポリエステル化触媒
JP2001524536A (ja) * 1997-12-02 2001-12-04 エーシーエムエー リミティド エステル化触媒
JP2002167495A (ja) * 2000-11-30 2002-06-11 Teijin Ltd ポリエチレンテレフタレート樹脂組成物及びその識別方法
WO2003008479A1 (fr) 2001-07-16 2003-01-30 Teijin Limited Catalyseur destine a la production de polyester et procede de production de polyester faisant intervenir ce catalyseur
JP2003160656A (ja) * 2001-11-28 2003-06-03 Teijin Ltd ポリエステルの製造方法及び繊維
JP2003160655A (ja) * 2001-11-28 2003-06-03 Teijin Ltd ポリエステルの製造方法及びポリエステル繊維
JP2003183485A (ja) * 2001-12-21 2003-07-03 Mitsubishi Chemicals Corp 改質ポリエステル樹脂及びそれからなる射出ブローボトル
JP2004010657A (ja) 2002-06-04 2004-01-15 Teijin Ltd ポリエチレンテレフタレートの処理方法
JP2004060063A (ja) * 2002-07-25 2004-02-26 Teijin Ltd ポリエステル未延伸糸の製造方法
WO2005023900A1 (en) 2003-08-28 2005-03-17 The Coca-Cola Company Polyester composition and articles with reduced acetaldehyde content and method using vinyl esterification catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589331A (en) 1978-12-27 1980-07-05 Diafoil Co Ltd Production of polyester
US4205157A (en) * 1979-04-02 1980-05-27 The Goodyear Tire & Rubber Company Method for production of high molecular weight polyester with low catalyst level and low carboxyl content
TWI227246B (en) * 2001-07-16 2005-02-01 Teijin Ltd Catalyst for polyester production and process for producing polyester with the same
ATE501287T1 (de) 2003-01-09 2011-03-15 Teijin Fibers Ltd Strick-/webstoff aus polyethylenterephthalatfaser
KR20050092414A (ko) 2003-01-16 2005-09-21 데이진 화이바 가부시키가이샤 폴리에스테르 이수축 혼섬사

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101462A (ja) 1972-04-03 1973-12-20
JPS5148505A (en) 1974-10-24 1976-04-26 Komatsu Mfg Co Ltd Dokokino sosasochi
JPS5838722A (ja) * 1981-08-31 1983-03-07 Nippon Ester Co Ltd ポリエステルの製造方法
JPH0347830A (ja) 1989-03-31 1991-02-28 Mitsui Petrochem Ind Ltd ポリエチレンテレフタレートの製造方法
US5017680A (en) 1990-07-03 1991-05-21 Eastman Kodak Company Process and catalyst-inhibitor systems for preparing poly(ethylene terephthalate)
JPH07138354A (ja) * 1993-07-12 1995-05-30 General Electric Co <Ge> 改良されたポリエステル化触媒
JP2001524536A (ja) * 1997-12-02 2001-12-04 エーシーエムエー リミティド エステル化触媒
JP2002167495A (ja) * 2000-11-30 2002-06-11 Teijin Ltd ポリエチレンテレフタレート樹脂組成物及びその識別方法
WO2003008479A1 (fr) 2001-07-16 2003-01-30 Teijin Limited Catalyseur destine a la production de polyester et procede de production de polyester faisant intervenir ce catalyseur
JP2003160656A (ja) * 2001-11-28 2003-06-03 Teijin Ltd ポリエステルの製造方法及び繊維
JP2003160655A (ja) * 2001-11-28 2003-06-03 Teijin Ltd ポリエステルの製造方法及びポリエステル繊維
JP2003183485A (ja) * 2001-12-21 2003-07-03 Mitsubishi Chemicals Corp 改質ポリエステル樹脂及びそれからなる射出ブローボトル
JP2004010657A (ja) 2002-06-04 2004-01-15 Teijin Ltd ポリエチレンテレフタレートの処理方法
JP2004060063A (ja) * 2002-07-25 2004-02-26 Teijin Ltd ポリエステル未延伸糸の製造方法
WO2005023900A1 (en) 2003-08-28 2005-03-17 The Coca-Cola Company Polyester composition and articles with reduced acetaldehyde content and method using vinyl esterification catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAURICE ET AL., ANAL. CHIM. ACTA, vol. 22, 1960, pages 363

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207984A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp ポリエステル樹脂の製造方法、ポリエステルフィルム、太陽電池用バックシート、並びに太陽電池モジュール

Also Published As

Publication number Publication date
TW200745206A (en) 2007-12-16
ES2378403T3 (es) 2012-04-12
EP2003159B1 (en) 2012-01-11
CY1112240T1 (el) 2015-12-09
EP2003159A1 (en) 2008-12-17
PT2003159E (pt) 2012-01-24
CA2646576C (en) 2014-02-11
EA200802112A1 (ru) 2009-02-27
DK2003159T3 (da) 2012-02-06
KR20080110605A (ko) 2008-12-18
AU2007236595A1 (en) 2007-10-18
CN101415749B (zh) 2012-07-18
TWI402293B (zh) 2013-07-21
SI2003159T1 (sl) 2012-04-30
JPWO2007117028A1 (ja) 2009-08-27
US8653232B2 (en) 2014-02-18
ATE540994T1 (de) 2012-01-15
EP2003159A4 (en) 2010-05-19
HK1129122A1 (en) 2009-11-20
MX2008011881A (es) 2008-09-30
BRPI0709881B1 (pt) 2018-06-12
CA2646576A1 (en) 2007-10-18
US20090137769A1 (en) 2009-05-28
BRPI0709881A2 (pt) 2011-07-26
EA015941B1 (ru) 2011-12-30
PL2003159T3 (pl) 2012-06-29
KR101293011B1 (ko) 2013-08-12
CN101415749A (zh) 2009-04-22
HK1121481A1 (en) 2009-04-24
AU2007236595B2 (en) 2011-10-20
MY153180A (en) 2015-01-29
JP5139974B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2007117028A1 (ja) ポリエチレンテレフタレートの製造方法
KR100854604B1 (ko) 폴리에스테르 제조용 촉매 및 상기 촉매를 이용하는폴리에스테르 제조 방법
JPH08283394A (ja) ポリエチレンテレフタレートの製造方法
JP2004224858A (ja) ポリエステル製造用触媒およびそれよりなるポリエステル
JP2004217750A (ja) ポリエステル製造用触媒およびそれよりなるポリエステル
JPH0714997B2 (ja) ポリエチレンテレフタレートの製造方法
JPH09221540A (ja) ポリエチレンテレフタレート、中空容器および延伸フィルム
JPH0764920B2 (ja) ポリエチレンテレフタレート
JP3459430B2 (ja) 共重合ポリエステルならびにそれより成る中空容器および延伸フィルム
JP3136767B2 (ja) 共重合ポリエステルならびにそれより成る中空容器および延伸フィルム
JP3459431B2 (ja) 共重合ポリエステルならびにそれにより成る中空容器および延伸フィルム
JP3136768B2 (ja) 共重合ポリエステルならびにそれより成る中空容器および延伸フィルム
JP5062960B2 (ja) 共重合ポリエステル
JP4660107B2 (ja) ポリエステル製造用難沈殿性チタン触媒
JPH0737515B2 (ja) ポリエチレンテレフタレートの処理方法
JPH05155992A (ja) 共重合ポリエステルならびにそれより成る中空容器および延伸フィルム
JPH05170882A (ja) 共重合ポリエステルならびにそれより成る中空容器および延伸フィルム
JP2000219729A (ja) ポリエステルの製造法
JP3685303B2 (ja) ポリエステル樹脂
JPH0977858A (ja) ポリエステル製中空容器
JP2005350507A (ja) ポリエステルプレポリマーおよびその製造方法、ポリエステル樹脂
JP2008274298A (ja) ポリエステル製造用触媒およびそれよりなるポリエステル
JPH03285911A (ja) ポリエチレンテレフタレートおよびその製造方法
JPH0372523A (ja) ポリエチレンテレフタレート
JP2001302775A (ja) ポリエステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007236595

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 7692/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008509915

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2646576

Country of ref document: CA

Ref document number: MX/a/2008/011881

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12295211

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007236595

Country of ref document: AU

Date of ref document: 20070405

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087024295

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008101634

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 200780012036.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007741452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200802112

Country of ref document: EA

ENP Entry into the national phase

Ref document number: PI0709881

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081003