[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007114240A1 - 光情報記録再生装置、光情報再生装置、及び光情報記録再生方法 - Google Patents

光情報記録再生装置、光情報再生装置、及び光情報記録再生方法 Download PDF

Info

Publication number
WO2007114240A1
WO2007114240A1 PCT/JP2007/056844 JP2007056844W WO2007114240A1 WO 2007114240 A1 WO2007114240 A1 WO 2007114240A1 JP 2007056844 W JP2007056844 W JP 2007056844W WO 2007114240 A1 WO2007114240 A1 WO 2007114240A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
recording medium
reproducing
optical information
light beam
Prior art date
Application number
PCT/JP2007/056844
Other languages
English (en)
French (fr)
Inventor
Kazuo Takahashi
Kiyoshi Tateishi
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008508606A priority Critical patent/JP4748817B2/ja
Priority to US12/295,563 priority patent/US20090086595A1/en
Publication of WO2007114240A1 publication Critical patent/WO2007114240A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/083Disposition or mounting of heads or light sources relatively to record carriers relative to record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Definitions

  • Optical information recording / reproducing apparatus optical information reproducing apparatus, and optical information recording / reproducing method
  • the present invention relates to an optical information recording / reproducing apparatus, an optical information reproducing apparatus, and an optical information recording / reproducing method for recording or reproducing optical information such as a hologram on a recording medium such as an optical disk.
  • Patent Document 1 discloses a recording / reproducing apparatus that uses a hologram recording medium as a disk (hologram disk).
  • reference light is irradiated from an optical head, passes through the recording layer, converges as a spot on the reflecting layer, and the reference light reflected by the reflecting layer diverges and passes through the recording layer.
  • the signal light carrying the information to be recorded irradiated from the same optical head is allowed to pass through the recording layer.
  • the reflected reference light and signal light interfere in the recording layer to form an interference pattern, and a hologram can be recorded in the recording layer.
  • the recorded information can be reproduced by irradiating the hologram recording medium with reference light and detecting and demodulating the reproduction light from each of the holograms.
  • Patent Document 2 Japanese Patent Laid-Open No. 11 311937
  • Patent Document 2 JP 2005-203095 A
  • the problems to be solved by the present invention include the above-described problems as an example.
  • the invention according to claim 1 is a light that performs recording / reproduction on a recording medium by irradiating a recording / reproducing light beam to a recording medium of an information recording system using holography.
  • An information recording / reproducing apparatus comprising: a recording medium driving means for rotating the recording medium; a light head for irradiating the recording medium with a recording / reproducing light beam; and a recording irradiated from the optical head.
  • the irradiation tracking is performed to move the irradiation position following the movement in the rotational direction of the recording medium for at least a certain period.
  • the control means and a recording medium control means for controlling the rotation of the recording medium driving means in cooperation with the follow-up control by the irradiation follow-up control means.
  • the invention according to claim 9 is an optical information for reproducing information on a recording medium by irradiating a reproducing light beam to a recording medium of an information recording system using holography.
  • a reproducing apparatus a recording medium driving means for moving the recording medium, an optical head for irradiating the recording medium with the reproducing light beam, and the reproducing light emitted from the optical head Detection means for detecting the irradiation position of the beam, and irradiation tracking control means for executing tracking control for moving the irradiation position following the movement of the recording medium for at least a certain period based on the detection result of the detection means;
  • recording medium control means for controlling the drive of the recording medium driving means in cooperation with the tracking control by the irradiation tracking control means.
  • the invention moves an information recording system recording medium using holography, and irradiates the moving recording medium with an optical beam for recording and reproduction.
  • An optical information recording / reproducing method for performing recording / reproduction with respect to the recording medium by detecting an irradiation position of the recording / reproducing light beam and detecting the irradiation position for at least a certain period based on the detection result of the irradiation position.
  • the driving of the recording medium is controlled in cooperation with the tracking.
  • FIG. 1 is a block diagram showing an overall configuration of a servo control unit in the hologram recording / reproducing apparatus of the present embodiment.
  • a disk-shaped optical disk is used as a recording medium, and holographic multiplex recording and reproduction is performed on an optical disk in a state of being rotationally driven while being fixed to a rotating shaft of a spindle motor. It is assumed that The same applies to each modification described later.
  • a hologram recording / reproducing apparatus 1 includes an optical disc 2 as a recording medium, a spindle motor 3 that rotationally drives the optical disc 2, a spindle control circuit 4 that controls the drive of the spindle motor 3, and an optical disc 2
  • the pickup 5 receives the recording / reproducing light beam La and the reflected light, and the sled motor 6 that holds this pickup 5 and moves it in the radial direction of the optical disk 2 and the servo detection signal from the pickup 5 (details)
  • Tracking control circuit 9 that controls the drive, thread that controls the drive of the sled motor 6
  • a focus tracking control circuit 11 that controls driving of the pickup 5 in the tangential direction (described later in detail). Each circuit is controlled by a main controller (CPU) (not shown).
  • FIG. 2 is a diagram schematically showing the arrangement of the optical path at the time of hologram recording together with the configurations of the pickup 5 and the optical disc 2.
  • the figure in the circle is an enlarged view of part A and a cross-sectional view thereof.
  • a pickup 5 includes a recording / reproducing laser 21, a beam splitter 22, a shutter 23, a beam expander 24, a spatial light modulator 25, a first half mirror 26, a first mirror 27, a second Mirror 28, second half mirror 29, playback detector 30, dichroic mirror 31, third half mirror 32, servo laser 33, servo detector 34, movable mirror 35, objective lens 36, and 2-axis actuator 37 is doing.
  • the movable mirror 35, the objective lens 36, and the two-axis actuator 37 constitute a three-axis actuator 38.
  • the recording / reproducing laser 21 is a light source for hologram recording / reproducing signal light and reference light (hereinafter, both appropriately referred to as recording / reproducing light beam La), for example, for recording / reproducing blue-violet light having a wavelength of 405 nm.
  • a semiconductor laser that emits laser light Lao is used.
  • the servo laser 33 is a light source of a servo light beam Ls for controlling the drive of the three-axis actuator 38.
  • a semiconductor laser that emits red servo laser light Lso having a wavelength of 650 nm is used.
  • These recording / reproducing laser 21 and servo laser 33 are controlled by a laser driver (not shown) that transmits and receives various control signals including timing signals to and from the main controller.
  • the optical disk 2 is fixed (or may be detachable) to a rotation shaft of the spindle motor 3 and is driven to rotate.
  • a recording layer 2a, a servo layer 2b, a reflective layer 2c, and a protective layer 2d are sequentially laminated on a substrate such as a resin or glass.
  • a photosensitive material such as a polymer or a photorefractive material lithium niobate single crystal is used.
  • a plurality of pits 2e are concentrically (or spirally) arranged on the reflective layer 2c, and positioning tracks 2f are formed along the pit rows on the servo layer 2b.
  • the servo light beam 1 ⁇ is emitted onto the positioning track 2f of the servo layer 2b.
  • the converging position of the servo light beam Ls and the recording / reproducing light beam La is positioned by the same objective lens 36, and is constant with the positioning track 2f of the servo layer 2b where the servo light beam Ls is collected.
  • the recording / reproducing light beam La is condensed on the recording layer 2a with a shift amount of (shift in the thickness direction of the optical disc 2), and a hologram is recorded.
  • the servo optical beam is placed on the positioning track 2f of the servo layer 2b.
  • a recording / reproducing optical beam La (only the reference light as described later) is condensed on a predetermined data recording / reproducing area of the recording layer 2a, and the hologram is reproduced using the reflected light. Is done. Therefore, the servo layer 2b, the reflective layer 2c, and the pit 2e are transmitted with a transmittance of a predetermined value or more with respect to the recording / reproducing light beam La, and are reflected with a predetermined value or more with respect to the servo light beam Ls.
  • the recording / reproducing laser beam Lao emitted from the recording / reproducing laser 21 is split into a signal beam Ld and a reference beam Lr by the beam splitter 22.
  • the shutter 23 transmits the signal light Ld.
  • the beam diameter of the signal light Ld is expanded by the beam expander 24 and formed as parallel light.
  • the parallel light is incident on a Spatial Light Modulation (SLM) 25 composed of a transmissive TFT liquid crystal panel (LCD).
  • SLM Spatial Light Modulation
  • the spatial light modulator 25 forms a two-dimensional light / dark dot pattern based on a data signal to be recorded as a hologram. More specifically, a recording data signal composed of a one-dimensional digital signal sequence is first converted into a two-dimensional data sequence by an encoder (not shown) and an error correction code is added to the two-dimensional data signal (unit page sequence data signal).
  • the SLM driver (not shown) provided in the encoder drives the spatial light modulator 25 with a drive signal based on the two-dimensional data signal, so that the panel plane of the spatial light modulator 25 is generated. A two-dimensional light and dark dot pattern corresponding to is formed.
  • the signal light Ld is optically modulated corresponding to the two-dimensional data signal.
  • the spatial light modulator 25 has a modulation processing unit corresponding to each unit page (two-dimensional data signal), and has parallel light having a wavelength of 405 nm (that is, the signal light Ld before modulation).
  • the light transmission is switched on and off for each pixel (dot, pixel) and modulated to form a signal light beam.
  • the spatial light modulator 25 passes the signal light Ld corresponding to the logical value “1” of each bit of the two-dimensional data signal, which is an electrical signal, on the cross section of the optical path of the signal light Ld.
  • the signal light Ld is blocked in response to “0”.
  • electro-optical conversion is performed in accordance with the contents of each bit in the two-dimensional data signal, and a signal light beam modulated as the signal light Ld of the unit page sequence corresponding to the two-dimensional data signal is generated.
  • the signal light Ld including the recording data is sequentially transmitted through the first half mirror 26, the second half mirror 29, and the dichroic mirror 31, and then reflected by the movable mirror 35 to deflect its optical path. .
  • the signal light Ld reflected by the movable mirror 35 is condensed at the recording position of the optical disc 2 by the objective lens 36. That is, the dot pattern signal component of the signal light Ld is Fourier transformed and condensed in the recording layer 2a of the optical disc 2.
  • the reference light Lr split by the beam splitter 22 is deflected by the first mirror 27 and the second mirror 28 and guided to the first half mirror 26.
  • the reference light Lr is reflected by the first half mirror 26 and overlaps with the signal light Ld, and is guided to the optical disc 2 through the same optical path as the signal light Ld as a recording / reproducing light beam La.
  • the reference light Lr intersects the signal light Ld inside the recording layer 2a of the optical disk 2 to form an optical interference pattern, and this optical interference pattern is recorded on the recording layer 2a as a change in refractive index. Thereby, hologram recording is performed.
  • the servo laser light Lso emitted from the servo laser 33 is sequentially reflected by the second half mirror 29 and the dichroic mirror 31 to be used as the servo light beam Ls and the recording / reproducing light beam La. They are overlapped and guided to the optical disc 2 through the same optical path.
  • the objective lens 36 condenses the servo light beam Ls on the optical disc 2 together with the recording / reproducing light beam La (signal light Ld and reference light Lr).
  • the servo light beam Ls is reflected by the reflective layer 2c, and the reflected light of the servo light beam Ls is sequentially reflected by the movable mirror 35 and the dichroic mirror 31, and then the third light beam.
  • FIG. 3 is a diagram schematically showing the arrangement of the optical path at the time of hologram reproduction together with the configurations of the pickup 5 and the optical disc 2.
  • the signal light Ld is blocked by the shirt 23 or the spatial light modulator 25, and only the reference light Lr serves as the recording / reproduction light beam La along the same optical path as at the time of recording.
  • the reference light Lr reflected by the reflective layer 2c is guided to the objective lens 36 as reproduction light that reproduces the optical interference pattern formed on the recording layer 2a.
  • the objective lens 36 performs inverse Fourier transform.
  • the reproduction light becomes parallel light including a light and dark dot pattern corresponding to the light interference pattern.
  • this reproduction light is reflected by the movable mirror 35, it passes through the dichroic mirror 31, is reflected by the second half mirror 29, and is received by the reproduction detector 30 composed of a charge coupled device (CCD).
  • CCD charge coupled device
  • the reproduction detector 30 reconverts the electrical two-dimensional data signal based on the bright and dark dot pattern included in the received reproduction light, and further reproduces the one-dimensional data signal by a data decoder (not shown). In this way, hologram reproduction is performed.
  • the optical path of the servo light beam Ls at the time of reproducing the hologram is the same as that at the time of recording the hologram, and the description thereof is omitted.
  • the servo light beam Ls is condensed on the positioning track 2f in response to surface blurring or eccentricity during rotation of the optical disc 2.
  • the recording / reproducing light beam La is focused on a predetermined data recording / reproducing area and irradiated, and the three-axis actuator 38 focuses the servo light beam Ls on the focal position and the recording / reproducing light beam La. The position can be moved and controlled.
  • the 3-axis actuator 38 is formed by the optical disk 2 in the thickness direction (X-axis direction), the normal direction of the positioning track 2f (Y-axis direction; the radial direction of the optical disk 2), and the tangential direction of the positioning track 2f (The focus position can be moved in the Z-axis direction).
  • the objective lens 36 and the movable mirror 35 in the triaxial actuator 38 shown in FIGS. 2 and 3 are driven.
  • the thickness direction of the optical disc 2 is referred to as an axial direction
  • the normal direction of the positioning track 2f is referred to as a radial direction
  • the tangential direction of the positioning track 2f is referred to as a tangential direction.
  • the objective lens 36 is moved by driving the biaxial actuator 37 to move the focal point in the axial direction and the tangential direction.
  • the focal point is moved in the radial direction by rotating the movable mirror 35 around the rotation axis in the tangential direction by a recording medium driving means (not shown).
  • the method of moving the focus is not limited to this.
  • the objective lens 36 may be moved in the axial direction and the radial direction by the two-axis actuator 37, and the movable mirror 35 may be rotated around the rotation axis in the radial direction.
  • the focus may be moved in other combinations.
  • FIG. Fig. 4 is a top view showing the appearance of the 2-axis actuator 37 with the axial force also seen
  • Fig. 4 (a) is the neutral position in the tangential direction
  • Fig. 4 (b) is one side in the tangential direction
  • FIG. 4 (c) is a diagram at the moved position
  • FIG. 4 (c) is a diagram at the position moved to the other side in the tangential direction.
  • the left-right direction in the figure coincides with the tangential direction.
  • the positioning track 2f of the optical disc 2 is substantially parallel to the left-right direction in the figure, and the data recording / reproducing area is from the left to the right.
  • An example of moving in the direction toward is described.
  • a two-axis actuator 37 provided with an objective lens 36 includes a bobbin 41 to which the objective lens 36 is fixed, an axial direction drive coil 42 provided on the bobbin 41, and a bobbin 41.
  • the bobbin 41 has an axial direction drive coil 42 and a tangential direction drive coil 43 wound in parallel with the two orthogonal axes (the tangential direction drive coil 43 has an axial cross section). Is shown in the figure).
  • the suspension 45 that supports the bobbin 41 is made of an elastic material, and is neutral with respect to the movement of the bobbin 41 in the tangential direction as shown in FIG. Supporting the bobbin 41 with a restoring force to return it to the position.
  • the suspension 45 also functions as a power supply line that individually feeds a driving signal to each of the axial direction driving coil 42 and the tangential direction driving coil 43.
  • the magnetic circuit 46 includes a permanent magnet or an electromagnet, and forms magnetic lines of force around the bobbin 41 in a predetermined arrangement.
  • a drive signal is given to each coil 42, 43 through the suspension 45, so that an attractive force and a repulsive force act on each coil 42, 43 due to the influence of the magnetic field lines formed by the magnetic circuit 46.
  • the bobbin 41 is driven to move against the restoring force of the suspension 45.
  • the bobbin 41 and the objective lens 36 can be moved in the axial direction (in the direction orthogonal to the plane of the drawing) according to the sign of the drive signal. . Accordingly, focusing can be performed so that the servo light beam Ls is focused on the reflective layer 2c of the recording medium in response to the surface shake of the optical disc 2.
  • a focus tracking drive signal described later is given to the tangential direction drive coil 43.
  • the bobbin 41 and the objective lens 36 can be moved in the tangential direction (left-right direction in the figure) according to the polarity (sign) of the focus follow-up drive signal and the magnitude of the absolute value.
  • the condensing position of the recording / reproducing light beam La and the servo light beam Ls The focus can be moved following (details will be described later).
  • the bobbin 41 is moved in the reverse direction of the tangential direction (in the data recording / reproducing area) as shown in FIG. It can be moved to the opposite side of the moving direction). Also, by giving a positive focus follow-up drive signal to the tangential direction drive 43, the bobbin 41 is moved forward in the tangential direction (as shown in FIG. 4C). (Moving direction side).
  • the movable mirror 35 (not particularly explained but a galvano mirror is used) is rotated around the rotation axis in the tangential direction, so that the recording / reproducing light beam La Focus position and focus of servo light beam Ls in radial direction Can be moved.
  • the movable mirror 35 (not particularly explained but a galvano mirror is used) is rotated around the rotation axis in the tangential direction, so that the recording / reproducing light beam La Focus position and focus of servo light beam Ls in radial direction Can be moved.
  • the control signal generation circuit 7 uses a servo detection signal obtained from the servo detector 34 of the pickup 5 to generate a focusing error signal indicating an axial deviation between the reflective layer 2c of the optical disk 2 and the focal point. And a tracking error signal indicating a deviation between the positioning track 2f and the focal point.
  • a focusing error signal astigmatism is detected by a cylindrical lens (not shown) when the focal point is deviated from the reflecting layer 2c of the optical disc 2, and is generated using this astigmatism (astigmatism method).
  • diffracted light is generated by defocusing with respect to the positioning track 2f provided along the pit 2e of the reflective layer 2c of the optical disc 2, and this diffracted light is used. Generate.
  • error signals are input to the focusing control circuit 8 and the tracking control circuit 9, respectively.
  • the focusing control circuit 8 and the tracking control circuit 9 drive the two-axis actuator 37 and the movable mirror 35 (three-axis actuator 38) of the pickup 5 so that the focusing error signal and the tracking error signal become zero, respectively, and perform proper positioning. Focusing control and tracking control are performed to focus on the track 2f.
  • the entire pick-up 5 is radially moved by the thread motor 6 so that the movement of the focus is within the movable range of the movable mirror 35. Move in the direction.
  • the thread control circuit 10 is generated by the thread control circuit 10 using the low frequency component of the tracking drive signal or tracking error signal, and performs thread control so that the low frequency component of the tracking drive signal or tracking error signal becomes zero. .
  • the control signal generation circuit 7 generates a focus tracking error signal in addition to the focusing error signal and the tracking error signal.
  • This focus tracking error signal is generated when the servo optical beam Ls passes through the pit 2e engraved along the positioning track 2f when the focus is tracing the predetermined positioning track 2f.
  • the control signal generation circuit 7 Based on the diffracted light, the control signal generation circuit 7 generates.
  • the focus tracking control circuit 11 drives and controls the 2-axis actuator 37 in the tangential direction so that the focus follows the focus tracking pit 2e for at least a fixed time. Meanwhile, the focus of the servo light beam Ls is controlled so as to rest on one pit 2e.
  • the condensing position of the recording / reproducing light beam La is stationary with respect to one data recording / reproducing area that rotates.
  • the above operation is called focus tracking.
  • a long exposure time can be secured for one data recording / reproducing area and sufficient exposure energy can be provided even when using a light beam with low energy such as a semiconductor laser. .
  • a light beam with low energy such as a semiconductor laser.
  • the focus tracking control circuit 11 uses the low frequency component of the focus tracking drive signal or the focus tracking error signal as the focus tracking deviation signal. Input to spindle control circuit 4.
  • This focal follow-up deviation signal is the average deviation in the tangential direction, that is, how much the center position of the reciprocating motion of the objective lens 36 in the tangential direction (hereinafter referred to as the follow-up center position) is from the movable neutral point of the 2-axis actuator 37. It is a signal indicating whether it is shifted! /.
  • the spindle control circuit 4 feeds back the rotational speed of the spindle motor 3 so that the focus tracking deviation signal approaches zero, thereby fixing the objective lens 36.
  • the tracking center position in the mechanical direction is positioned near the movable neutral point of the 2-axis actuator 37.
  • FIG. 5 is a diagram showing temporal changes in the follow-up operation position of the objective lens 36 and the focus follow-up drive signal when the spindle motor 3 is operating properly.
  • the lower part represents the time change of the focus tracking drive signal.
  • the slope of the curve in the upper portion is roughly positive, and the period during which the objective lens 36 is moving in this direction follows.
  • the period during which the objective lens 36 is moving in the opposite direction is called the return period.
  • the objective lens 36 is reciprocated while repeating the following period and return period.
  • the next data recording / reproducing area arrives immediately after the end of the return section, and acceleration in the follow-up direction is performed following deceleration in the return direction.
  • the polarities of the focus follow drive signals during acceleration drive in the follow direction and deceleration drive in the return direction are the same (positive)
  • the focus tracking drive signals have the same polarity (negative) during deceleration driving in the tracking direction and acceleration driving in the return direction.
  • the length of the follow-up section is set to a length that can sufficiently secure the irradiation amount of the recording / reproducing light beam La onto the optical disc 2.
  • the follow-up speed (rotational speed of optical disc 2) is set from the length of the follow-up section and the movable range of the 2-axis actuator 37.
  • the absolute value of the focus follow-up drive signal during acceleration driving and deceleration drive in the follow-up section is Is set. Also, by setting the absolute value of the focus tracking drive signal during acceleration driving and deceleration driving during the return section to be large, the objective lens 36 is returned quickly (the movement speed in the return section is faster in the upper part of FIG. 5). The slope of the curve is negative and abrupt). As a result, the interval between the data recording / reproducing areas on the optical disk 2 can be reduced, and the recording density of the optical disk 2 can be improved.
  • the acceleration amount during acceleration driving and the deceleration amount during deceleration driving in each period are set to have opposite polarities and substantially the same absolute value, and their average is almost zero. . Further, if the objective lens 36 performs a tracking operation around the movable neutral point of the two-axis actuator 37, the average drive amount in the focus tracking control section becomes zero.
  • the time during each acceleration drive and each deceleration drive is sufficiently shorter than the follow-up time.
  • the time change of the moving position of the objective lens 36 in the absolute position in the tangential direction can be expressed by a simple curve as shown in FIG.
  • the lower part of FIG. 6 shows the appearance of the two-axis actuator 37 in a state corresponding to each follow-up operation position.
  • the movable neutral point is a position where the objective lens 36 is settled by the restoring force of the suspension 45 in a state where a sufficient time has passed after the focus follow drive signal is zero (no load).
  • the center position of the reciprocating motion of the objective lens 36 is referred to as a tracking center position.
  • FIG. 7 is a diagram simply showing a time change of the moving position of the objective lens 36 and the focus tracking drive signal when the tracking center position is shifted to the tracking direction side due to some cause.
  • the average value of the focus tracking drive signal in the focus tracking control section gives a positive value signal in order to maintain the movable center position against the restoring force of the suspension 45.
  • the control is performed so as to reduce the rotation speed of the spindle motor 3, the follow-up center position approaches the movable neutral point.
  • FIG. 8 is a diagram simply representing the time change of the moving position of the objective lens 36 and the focus tracking drive signal when the tracking center position is shifted to the return direction side due to some cause.
  • the average value of the focus tracking drive signal in the focus tracking control section gives a negative value signal in order to keep the movable center position against the restoring force of the suspension 45. .
  • the control is performed so as to increase the rotation speed of the spindle motor 3, the follow-up center position approaches the movable neutral point.
  • the hologram recording / reproducing apparatus 1 of the present embodiment inputs this focus tracking drive signal to the spindle control circuit 4 as the focus tracking deviation signal, and the spindle control circuit 4 makes the focus tracking deviation signal zero.
  • the tracking center position is brought closer to the movable neutral point.
  • the objective lens 36 is reciprocated around the movable neutral point in the tangential direction of the biaxial actuator 37 in order to follow the focus of the objective lens 36 with respect to the movement of the data recording / reproducing area. That is, as shown in FIG. 6, the follow-up start position and the follow-up end position of the objective lens 36 can be held almost at the same distance from the movable neutral point of the 2-axis actuator 37! is necessary.
  • the hologram recording / reproducing apparatus 1 of the present embodiment also feeds back the focus tracking deviation signal to the spindle control (see FIG. 1).
  • the eccentric state of the objective lens 36 (the tracking center position and the movable neutral point are greatly deviated) is resolved, and the objective lens 36 reciprocates around the movable neutral point of the 2-axis actuator 37 as shown in FIG.
  • follow-up action can be performed so as to keep exercising. Therefore, data can be recorded / reproduced while the optical system is appropriate and the control system is stable.
  • the timing force of the focus tracking operation S is determined by the rotation speed of the spindle motor 3 (rotation speed of the optical disc 2), and therefore accurate. Rotation control was required, and it was necessary to perform signal processing based on disk information in spindle control.
  • the operation timing is automatically corrected by linking (synchronizing, linking) the spindle control and the focus follow-up control, and high accuracy is not required in any control, There is also an advantage that a relatively simple configuration can be obtained.
  • FIG. 11 is a functional block diagram showing a functional configuration of the spindle control circuit 4 in the present embodiment.
  • the spindle control circuit 4 includes an integrator 51 that integrates the focus tracking deviation signal input from the focus tracking control circuit 11, and a first gain 52 that amplifies the signal output from the integrator 51. And a reference voltage generator 53 for generating a reference voltage corresponding to an appropriate spindle speed.
  • the spindle motor 3 uses a motor whose rotational speed is controlled by an input voltage.
  • the focus tracking deviation signal input from the focus tracking control circuit 11 is time-integrated by an integrator 51 (basically composed of a low-pass filter), and the deviation amount of the objective lens 36 (tracking center position and movable neutral point). Is calculated as a voltage corresponding to a deviation between the two.
  • the bias voltage is amplified at a predetermined magnification by the first gain 52 and then added to the reference voltage from the reference voltage generator 53 and output to the spindle motor 3.
  • a voltage that is increased or decreased from the reference voltage in accordance with the change in the eccentricity voltage is input to the spindle motor 3.
  • feedback control of the number of rotations of the spindle motor 3 is performed so that the deviation amount approaches zero.
  • the focus tracking drive signal and the focus tracking error signal are signals having the same waveform, any signal may be used as the focus tracking deviation signal.
  • the reference voltage that serves as a reference for the rotation speed of the optical disc 2 is changed according to the radial position of the optical disc 2 on which recording / reproduction is performed. It's a little bit.
  • FIG. 12 is a flowchart showing a control procedure of a hologram recording operation executed by the main controller of hologram recording / reproducing apparatus 1. In FIG. 12, for example, although not shown, this flow is started when an operation for starting a hologram recording operation is performed on the operation unit.
  • step S5 a control signal is output to the spindle control circuit 4 to start the rotation of the spindle motor 3, and the process proceeds to the next step S10.
  • step S10 a control signal is output to a laser driver (not shown) to generate a servo laser. Turn on the 33.
  • step S15 a control signal for starting operation is output to the focusing control circuit 8 to start the focusing control.
  • step S20 an operation start control signal is output to the tracking control circuit 9 to start tracking control.
  • the predetermined positioning track 2f is focused and the trace operation is started.
  • step S25 a control signal is output to the focus tracking control circuit 11, and the focus tracking drive signal is input to the 2-axis actuator 37, thereby driving the objective lens 36 in the tangential direction to obtain an initial position. Move to.
  • step S30 the process proceeds to step S30, and waits until the focal point reaches a predetermined data recording / reproducing area where recording should be started. If it is determined that the focal point has arrived, the process proceeds to the next step S35.
  • step S35 a control signal is output to the focus tracking control circuit 11, and the 2-axis actuator is output.
  • the focus tracking drive signal is input to 37 to start the tracking operation so that the focus is fixed to the data recording / reproducing area.
  • step S40 a control signal is output to the spindle control circuit 4 so that the feedback control of the rotation speed of the spindle motor 3 is performed so that the focus tracking deviation signal approaches zero.
  • step S45 a control signal is output to a laser driver (not shown), and lighting of the recording / reproducing laser 21 is started.
  • step S50 the opening of the shirt 23, recording data input to an encoder (not shown), and pattern control of the spatial light modulator 25 are performed, so that one page is recorded in the data recording / playback area being followed. Record the minute data.
  • step S55 a control signal is output to a laser driver (not shown), and the recording / reproducing laser 21 is turned off.
  • step S60 it is determined whether or not the recording of data for all pages to be recorded has been completed. If all pages of data have been recorded, the determination is satisfied and this flow ends. On the other hand, if the recording of data for all pages has not been completed, the judgment is not satisfied and the routine goes to Step S65.
  • step S65 a control signal is output to the focus tracking control circuit 11, a focus tracking drive signal is output to the 2-axis actuator 37, and the focus is moved in the tracking direction until the focus reaches the next data recording / reproducing area. Move in the opposite direction.
  • step S70 the process proceeds to step S70 and waits until the focal point reaches a predetermined data recording / reproducing area where recording should be started. If it is determined that the focal point has arrived, the process proceeds to next step S75.
  • step S75 a control signal is output to the focus tracking control circuit 11, a focus tracking drive signal is input to the two-axis actuator 37, and a tracking operation is started so that the focus is fixed in the data recording / reproducing area. Then, the process returns to step S45 and the same control procedure is repeated.
  • the hologram recording operation can be performed by the above flow.
  • the optical disc 2 is applied as the recording medium, but the present invention is not limited to this.
  • the focus tracking deviation is applied to a control circuit that controls the drive of an actuator such as a linear motor that drives the card in the tangential direction.
  • Input a signal and perform feedback control.
  • the optical information recording / reproducing apparatus (hologram recording / reproducing apparatus in this example) 1 is attached to a recording medium (in this example, an optical disk) 2 of an information recording method using holography.
  • an optical information recording / reproducing apparatus 1 that performs recording / reproduction on the recording medium 2 by irradiating a recording / reproducing light beam (in this example, a recording / reproducing light beam) La, and a recording medium driving unit that moves the recording medium 2 (In this example, a spindle motor) 3, an optical head (in this example, a pickup) 5 for irradiating the recording medium 2 with a recording / reproducing light beam La, and a recording / reproducing light emitted from the optical head 5
  • the detection means (servo detector in this example) 34 for detecting the irradiation position of the light beam La and the detection result of the detection means 34, the movement of the recording medium 2 is followed for at least a certain period.
  • Irradiation follow-up control means (in this example, control signal generation circuit 7, focus follow-up control circuit 11, magnetic circuit 46, and tangential direction drive coil 43) that performs follow-up control to move the irradiation position with this irradiation follow-up
  • a recording medium control means (in this example, a spindle control circuit) 4 for controlling the driving of the recording medium driving means 3 is provided in cooperation with the follow-up control by the control means 7, 11, 46, 43.
  • a holographic recording medium 2 is driven by the recording medium driving means 3, and the recording head 2 is driven from the optical head 5.
  • Recording / reproduction (information recording or reproduction) is performed on the recording medium 2 by irradiation with the recording / reproducing light beam La. Then, based on the result of detecting the irradiation position of the recording / reproducing light beam La by the detection means 34, the irradiation position is moved following the movement of the recording medium 2 by the irradiation follow-up control means 7, 11, 46, 43. As a result, irradiation can be performed in a state where the relative irradiation position of the recording / reproducing light beam La on the recording medium 2 is kept constant for at least a certain period. As a result, it is possible to perform recording and reproduction (information recording or reproduction) at a relatively high speed with a beam output that is not so large.
  • the optical information reproducing apparatus (hologram recording / reproducing apparatus in this example) 1 in the present embodiment is a reproducing light beam (in this example) with respect to an information recording type recording medium (optical disk in this example) 2 using holography.
  • the optical information reproducing apparatus 1 reproduces the recording medium 2 by irradiating the recording medium 2 with a recording medium driving means (in this example, a spindle motor) 3 for moving the recording medium 2, and a recording medium.
  • the irradiation follow-up control means executes follow-up control for moving the irradiation position following the movement of the recording medium 2 for at least a certain period.
  • the control signal generation circuit 7, the focus tracking control circuit 11, the magnetic circuit 46, and the tangential direction driving coil 43 and the tracking control by the irradiation tracking control means 7, 11, 46, 43 are linked.
  • recording medium control means (spindle control circuit in this example) 4 for controlling the driving of the recording medium driving means 3.
  • the holographic recording medium 2 is driven by the recording medium driving means 3, and the optical head 5 is connected to the driven recording medium 2.
  • the reproduction light beam Lr is irradiated to reproduce information from the recording medium 2.
  • the irradiation position is moved following the movement of the recording medium 2 by the irradiation tracking control means 7, 11, 46, 43.
  • irradiation can be performed in a state where the relative irradiation position of the reproducing light beam Lr on the recording medium 2 is kept constant for at least a certain period.
  • information can be reproduced at a relatively high speed with a beam output that is not so large.
  • the tracking by the irradiation tracking control means 7, 11, 46, 43 Even if there is a possibility that the irradiation position of the reproducing light beam Lr with respect to the recording medium 2 cannot be kept sufficiently constant only by the control, the follow-up control of the irradiation follow-up control means 7, 11, 46, 43 can be performed.
  • the tracking control can be supplemented by the recording medium control means 4 controlling the drive of the recording medium driving means 3 in conjunction. As a result, the irradiation position of the reproduction light beam Lr on the recording medium 2 can be maintained stably and reliably constant.
  • An optical information recording / reproducing method implemented in the optical information recording / reproducing apparatus 1 (hologram recording / reproducing apparatus in this example) 1 of the present embodiment is an information recording system recording medium (optical disk in this example) using holography.
  • the irradiation position of the recording / reproducing light beam La is detected, and based on the detection result of the irradiation position, the irradiation position is made to follow the movement of the recording medium 2 for at least a certain period, and this tracking is linked.
  • the drive of the recording medium 2 is controlled.
  • the holographic recording medium 2 is moved, and the recording / reproducing light beam La is applied to the moving recording medium 2. Irradiate and record / reproduce to / from recording medium 2 (information recording or reproduction) Is done. Then, based on the result of detecting the irradiation position of the recording / reproducing light beam La, the irradiation position follows the movement of the recording medium 2. Thus, irradiation can be performed in a state where the relative irradiation position of the recording / reproducing light beam La on the recording medium 2 is kept constant for at least a certain period. As a result, recording / reproduction (information recording or reproduction) can be performed at a relatively high speed with a beam output that is not so large.
  • the tracking control can be supplemented by controlling the drive of the recording medium 2 in conjunction with the tracking. As a result, the irradiation position of the recording / reproducing light beam La on the recording medium 2 can be stably and reliably maintained constant.
  • the irradiation follow-up control means 7, 11, 46, 43 drive the irradiation position in the moving direction of the recording medium 2 (in this example, the tangential direction). Based on the irradiation position detection means (in this example, the magnetic circuit 46 and the tangential direction drive coil 43) and the irradiation position detection result of the recording / reproducing light beam La by the detection means 34, the recording medium 2 is moved for at least a certain period.
  • the drive signal generation means (in this example, the control signal generation circuit 7) generates the drive signal (in this example, the focus follow-up drive signal) to the irradiation position drive means 46, 43 so that the irradiation position is moved in accordance with And a focus tracking control circuit 11) and a recording medium control signal generating means for generating a recording medium control signal corresponding to the drive signal generated by the drive signal generating means 7 and 11 (in this example, a focus tracking eccentricity signal) (
  • the recording medium control means 4 controls the drive of the recording medium drive means 3 based on the recording medium control signal generated by the recording medium control signal generation means 11. To do.
  • a drive signal is generated by the drive signal generation means 7, 11, and the irradiation position drive means 46, 43 are generated based on this drive signal.
  • the irradiation position follows the movement of the recording medium 2 by driving the irradiation position.
  • irradiation is performed with the relative irradiation position of the recording / reproducing light beam La on the recording medium 2 kept constant for at least a certain period.
  • the drive signal generating means Corresponding to the drive signals 7 and 11 (in other words, according to the detection result by the detecting means 34), the recording medium control signal generating means 11 generates the recording medium control signal, and the recording medium control means 4 is the recording medium control signal.
  • the follow-up control is supplemented by controlling the drive of the recording medium driving means 3 based on the above. As a result, the irradiation position of the recording / reproducing light beam La on the recording medium 2 can be maintained stably and reliably constant.
  • the irradiation position driving means 46 and 43 are lenses (object lenses in this example) provided in the optical path of the recording / reproducing light beam La.
  • a circuit (magnetic circuit in this example) 46 is a circuit for arranged magnetic field lines around the coil 43.
  • a lens 36 provided in the optical path of the recording / reproducing light beam La is installed on a movable body 41 with a coil 43. Then, a driving force is generated in the coil 43 by an attractive force or a repulsive force acting between the magnetic force lines generated in the coil 43 of the movable body 41 and the magnetic force lines arranged in the magnetic circuit 46. As a result, the entire movable body 41 can be driven, and the irradiation position can be driven in the moving direction of the recording medium 2.
  • the irradiation position driving means 46 and 43 repeatedly drive the irradiation position in the forward direction and the reverse direction with respect to the movement of the recording medium 2.
  • the drive signal generation means 7 and 11 are forward components for driving in the forward direction so as to move the irradiation position following the movement of the recording medium 2 for at least a certain period (in this example, positive components).
  • a drive signal including a value following focus driving signal) and a backward component for driving in the opposite direction is generated.
  • the irradiation position driving means 46, 43 follow the moving recording medium 2 so that the irradiation position is set in order with respect to the movement of the recording medium 2. Drive in the direction. As a result, the irradiation position of the recording / reproducing light beam La on the recording medium 2 is kept constant for at least a certain period, and highly accurate recording / reproduction (information recording or reproduction) is performed. Thereafter, in order to irradiate the next irradiation target position on the recording medium 2, the irradiation position driving means 46, 43 drive the irradiation position in the opposite direction to the movement of the recording medium 2, and the initial position before the follow-up.
  • the drive signal generating means 7, 11 By generating a forward component for driving in the forward direction and a reverse component for driving in the reverse direction as drive signals, respectively, it is possible to perform repetitive driving in the forward direction and the reverse direction as described above. Can be realized.
  • the recording medium control signal generating means 11 is in a period in which the irradiation position is moved following the movement of the recording medium 2.
  • a recording medium control signal is generated based on the drive signal.
  • the irradiation position of the recording / reproducing light beam La on the recording medium 2 can be stably and sufficiently maintained only by the tracking control by the irradiation tracking control means 7, 11, 46, 43, the above drive
  • the center point of the repetitive motion of the actual irradiation position by the signal coincides with the driving center point of the irradiation position driving means 46, 43 (in this example, the movable neutral point). That is, the forward direction component and the backward direction component should be just symmetrical (behave in such a way that the values coincide with each other when the time integration is performed).
  • the irradiation position of the recording / reproducing light beam La cannot always be maintained sufficiently constant only by the follow-up control due to the drive unevenness of the recording medium drive means 3 described above, the accuracy limit of the drive control, the restriction of the follow-up control possible range, etc. In this case, the repetition center of the actual irradiation position and the driving center of the irradiation position driving means 46 and 43 do not match (become gradually shifted).
  • the follow-up control for moving the irradiation position following the movement of the recording medium 2 is performed, so that the driving position of the irradiation position driving means 46, 43 becomes one side region.
  • the forward component for driving in the forward direction and the reverse component for driving in the reverse direction from the drive center to the other side region are symmetrical as described above. (Behavior that the values match with the opposite sign when time integration is performed), the drive to the region on the side of the offset force is biased and increased. In other words, the component of the drive signal with respect to the region on the side to be driven is increased.
  • the recording medium control signal generating means 11 follows the movement of the recording medium in which the behavior is repeated as described above. Then, a recording medium control signal is generated based on the drive signal during the period of movement. Thus, the recording medium control signal is generated in response to the bias of the drive signal component as described above, and the recording medium control means 4 controls the movement of the recording medium driving means 3 to supplement the follow-up control. This As a result, the irradiation position of the recording / reproducing light beam La on the recording medium 2 can be maintained stably and reliably constant.
  • the recording medium control signal generating means 11 generates a recording medium control signal corresponding to the time integral value of the drive signal.
  • the recording medium control signal generating means 11 generates a recording medium control signal according to the time integration of the drive signal.
  • the recording medium control signal is generated in response to the bias of the drive signal component as described above, and the recording medium control means 4 controls the drive of the recording medium driving means 3 to compensate for the follow-up control. .
  • the irradiation position of the recording / reproducing light beam La on the recording medium 2 can be stably and reliably maintained constant.
  • the optical head 5 includes a recording / reproducing laser beam for generating the recording / reproducing light beam La (in this example, a blue-violet recording / reproducing laser beam).
  • Recording / reproducing light emitting means for emitting Lao (in this example, a recording / reproducing laser) 21 and a recording / reproducing laser beam Lao for positioning the recording / reproducing light beam La on the recording medium 2 are different from Lao Servo laser light having a wavelength (red servo laser light in this example)
  • An optical system for accessing the optical information by irradiating the recording medium 2 with the laser light Lso in this example, a beam splitter 22, a shirt 23, a beam expander 24, a spatial light modulator 25, a first half mirror 26, First mirror 27, 2 mirror 28, 2nd half mirror 29, di
  • the recording / reproducing light emitting means 21 when optical information is recorded, recording is performed from the recording / reproducing light emitting means 21. Signal light Ld and reference light Lr as reproduction laser light Lao are emitted, and the signal light Ld and reference light Lr are irradiated through the optical systems 22 to 29, 31, 32, 35, and 36 to irradiate the recording medium. 2 can record optical information.
  • the recording / reproducing light emitting means 21 emits the reference light Lr as the recording / reproducing laser beam Lao and passes through the optical systems 22 to 29, 31, 32, 35, 36.
  • the optical information from the recording medium 2 can be reproduced by irradiating the reference light Lr.
  • the position detection during recording or reproduction is performed by irradiating the recording medium 2 with the servo laser light Lso from the servo light emitting means 33 via the optical systems 22 to 29, 31, 32, 35, 36.
  • the reflected light can be detected by a servo light detector.
  • the recording medium 2 has a disk shape, and the recording medium driving means 3 rotates the recording medium 2 to rotate the recording medium 2. It is characterized by moving body 2.
  • the recording medium control means 4 drives the recording medium in conjunction with the tracking control of the irradiation follow-up control means 7, 11, 46, 43.
  • the follow-up control can be supplemented by controlling the rotational drive of the means 3.
  • the spindle control circuit 4 obtains the reference voltage corresponding to the appropriate spindle speed by the independent dedicated reference voltage generator.
  • the present invention is not limited to this. In other words, the reference voltage should be obtained so that the feed knock control is performed based on the number of revolutions of the spindle motor 3 at that time.
  • FIG. 13 is a functional block diagram showing a functional configuration of the spindle control circuit 104 in the present modification, and corresponds to FIG. 11 in the above embodiment.
  • the same symbols are used for parts equivalent to the configuration of the spindle control circuit 4 in the above embodiment (see FIG. 11). A description will be omitted as appropriate.
  • the rotary encoder 111 that outputs the rotation speed of the spindle motor 3 as an FG pulse signal, and converts the FG pulse signal into a frequency.
  • the frequency change 112 the target frequency generator 113 that generates a frequency corresponding to an appropriate spindle speed, and the frequency signals output from the frequency converter 112 and the target frequency generator 113 are compared, and the comparison result is obtained.
  • a comparator 114 that outputs a signal and a second gain 115 that amplifies the output result signal from the comparator 114 are provided.
  • a voltage that functions in the same way as the reference voltage in the above embodiment is obtained from the second gain 115, and the spindle control circuit 104 in the present modification can obtain the same effect as in the above embodiment.
  • rotation control can be performed more accurately than in the case where the reference voltage obtained from the independent reference voltage generator 53 is used.
  • the focus tracking operation may become unstable. Focus tracking control circuit 11 Before feeding back the focus tracking deviation signal, which also generates force, to the spindle control, the rotation can be stabilized by feeding back other rotation information.
  • the focus tracking operation can be started in a stable state by keeping the rotational speed of the optical disc 2 within an appropriate error range before the focus tracking operation or in the initial state of the focus tracking operation.
  • it is hardly affected by disturbances of a relatively high frequency as compared with the case where the reference voltage is used.
  • the tracking period is started immediately after the return period in the focus tracking control.
  • the present invention is not limited to this, and a standby period is provided between the return period and the next tracking period. Also good.
  • FIG. 14 is a diagram illustrating a temporal change in the movement position of the objective lens 36 and the focus follow-up drive signal when the standby period is provided.
  • the optical disc 2 is rotated at a relatively low speed in order to provide a margin for the focus tracking operation, and after the return period, the objective lens 36 is held at the tracking start position until the next data recording / reproduction area arrives. Wait period to wait There is a space. As a result, even if the rotational speed of the optical disc 2 and the reciprocating motion of the objective lens 36 are controlled completely independently without being synchronized, a reliable focus tracking operation can be performed.
  • the spindle control circuit 104 performs feedback control so as to increase the rotation speed of the spindle motor 3, and the standby period is automatically compressed. As a result, wasteful waiting time is eliminated and high-speed and efficient recording / reproducing operation can be automatically performed.
  • the hologram recording / reproducing apparatus 1 in the above embodiment performs recording / reproducing with respect to the optical disk 2 by irradiating the recording / reproducing optical beam La onto the information recording optical disk 2 using holography. 1 and a spindle motor 3 for moving the optical disc 2, a pickup 5 for irradiating the optical disc 2 with a recording / reproducing optical beam La, and a recording / reproducing optical beam emitted from the optical head 5
  • Servo detector 34 that detects the irradiation position of La, and control signal generation that executes tracking control that moves the irradiation position following the movement of the optical disc 2 for at least a certain period based on the detection result of this servo detector 34
  • the holographic optical disc 2 is driven by the spindle motor 3, and the optical disc 2 to be driven is irradiated with the recording / reproducing light beam La from the pick-up 5. Recording / reproduction (recording or reproduction of information) with respect to the optical disc 2 is performed. Based on the irradiation position detection result of the recording / reproducing optical beam La by the servo detector 34, the irradiation position is detected by the control signal generation circuit 7, the focus tracking control circuit 11, the magnetic circuit 46, and the tangential direction drive coil 43.
  • the disk 2 is moved following the movement of the disk 2, so that irradiation can be performed with the relative irradiation position of the recording / reproducing light beam La on the optical disk 2 kept constant for at least a certain period.
  • recording / reproduction (information recording or reproduction) can be performed at a relatively high speed with a beam output that is not so large.
  • the control signal generation circuit 7, Tracking control can be supplemented by the spindle control circuit 4 controlling the drive of the spindle motor 3 in conjunction with the tracking control of the focus tracking control circuit 11, the magnetic circuit 46, and the tangential direction drive coil 43. .
  • the irradiation position of the recording / reproducing light beam La with respect to the optical disc 2 can be stably and reliably maintained constant.
  • the hologram recording / reproducing apparatus 1 in the above-described embodiment is a hologram recording / reproducing apparatus 1 that performs reproduction on the optical disc 2 by irradiating the reference light Lr to the information recording type optical disc 2 using holography.
  • the pickup 5 for irradiating the optical disc 2 with the reference light Lr
  • the servo detector for detecting the irradiation position of the reference light Lr emitted from the head 5 34 and a control signal generation circuit 7 for performing tracking control for moving the irradiation position following the movement of the optical disk 2 for at least a certain period based on the detection result of the servo detector 34, the focus tracking control circuit 11, Magnetic circuit 46, tangential direction drive coil 43, control signal generation circuit 7, focus tracking control circuit 11, magnetic circuit 46 And in conjunction the follow-up control by Tanjung tangential direction driving coil 43, and a spindle control circuit 4 for controlling the driving of the spindle motor 3.
  • the holographic optical disc 2 is driven by the spindle motor 3, and the reference optical beam Lr is irradiated from the pick-up 5 to the optical disc 2 to be driven. Information is played back.
  • the control signal The irradiation position is moved following the movement of the optical disc 2 by the generation circuit 7, the focus tracking control circuit 11, the magnetic circuit 46, and the tangential direction driving coil 43. Thereby, irradiation can be performed in a state where the relative irradiation position of the reference light Lr with respect to the optical disk 2 is kept constant for at least a certain period. As a result, information can be reproduced relatively quickly with a beam output that is not so large.
  • the spindle control circuit 4 controls the drive of the spindle motor 3 in conjunction with the follow-up control of the control circuit 11, the magnetic circuit 46, and the tangential direction drive coil 43, whereby the follow-up control can be supplemented.
  • the irradiation position of the reference light Lr with respect to the optical disc 2 can be stably and reliably maintained constant.
  • the optical information recording / reproducing method implemented in the hologram recording / reproducing apparatus 1 of the above embodiment moves the information recording type optical disc 2 using holography, and performs recording / reproducing on the moving optical disc 2.
  • the holographic optical disk 2 is moved, and the recording / reproducing light beam is moved to the moving optical disk 2.
  • La is irradiated and recording / reproduction (information recording or reproduction) on the optical disc 2 is performed.
  • the irradiation position follows the movement of the optical disc 2, thereby at least a certain period of time. Irradiation can be performed with the relative irradiation position kept constant. As a result, it is relatively fast with a beam output that is not very large. Recording / reproduction (information recording or reproduction) can be performed.
  • the irradiation position of the recording / playback light beam La on the optical disc 2 is not necessarily constant with the follow-up control alone. Even if there is a possibility that it cannot be maintained, the tracking control can be supplemented by controlling the drive of the optical disc 2 in conjunction with the tracking. As a result, the irradiation position of the recording / reproducing light beam La on the optical disk 2 can be stably and reliably maintained constant.
  • FIG. 1 is a block diagram showing the overall configuration of a servo control unit in a hologram recording / reproducing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the arrangement of optical paths at the time of hologram recording, together with the configuration of a pickup and an optical disc.
  • FIG. 3 is a diagram schematically showing the arrangement of an optical path at the time of hologram reproduction together with the configuration of a pickup and an optical disc.
  • FIG. 4 is a top view showing the external appearance of the two-axis actuator viewed from the axial direction.
  • FIG. 5 is a diagram showing temporal changes in the tracking operation position of the objective lens and the focus tracking drive signal when the spindle motor is operating properly.
  • FIG. 6 is a diagram showing a temporal change in the tracking operation position of a simplified objective lens and the appearance of the two-axis actuator in a state corresponding to each tracking operation position.
  • FIG. 7 is a diagram simply showing the time change of the moving position of the objective lens and the focus tracking drive signal when the tracking center position is shifted from the movable neutral point to the tracking direction side.
  • FIG. 8 is a diagram simply showing the time change of the moving position of the objective lens and the focus follow-up drive signal when the follow-up center position is also shifted toward the return direction in the movable neutral point force.
  • FIG. 9 is a diagram simply representing the time change of the moving position of the objective lens when the rotation speed of the spindle motor is high.
  • FIG. 10 is a diagram simply showing a change with time of the moving position of the objective lens when the focus tracking deviation signal is fed back to the spindle control.
  • FIG. 11 is a functional block diagram showing a functional configuration of a spindle control circuit in the embodiment. is there.
  • FIG. 12 is a flowchart showing a control procedure of a hologram recording operation executed by the main controller of the hologram recording / reproducing apparatus.
  • FIG. 13 is a functional block diagram showing a functional configuration of a spindle control circuit in a modification in which a reference voltage for spindle control is generated based on the number of rotations of the spindle motor.
  • FIG. 14 is a diagram simply illustrating the time change of the moving position of the objective lens and the focus tracking drive signal in a modified example in which a standby period is provided during focus tracking control.
  • Control signal generation circuit (irradiation tracking control means, drive signal generation means)
  • Focus tracking control circuit (irradiation tracking control means, drive signal generation means, recording medium control signal generation means)

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Holo Graphy (AREA)

Abstract

【課題】ホログラフィを利用した情報記録において、記録再生用光ビームの照射追従制御を行う際に照射位置を安定的かつ確実に一定に維持する。 【解決手段】光ディスク2のデータ記録再生領域の回転方向に対してピックアップ5に備えられた対物レンズ36を往復動させてその焦点をデータ記録再生領域に追従制御する焦点追従制御回路11が、対物レンズ36の追従中心位置と可動中立点との間のずれを示す焦点追従偏奇信号をスピンドル制御回路4に出力する。スピンドル制御回路4は、この焦点追従偏奇信号をゼロに近づけるようスピンドルモータ3の回転数をフィードバック制御する。

Description

明 細 書
光情報記録再生装置、光情報再生装置、及び光情報記録再生方法 技術分野
[0001] 本発明は、光ディスクなどの記録媒体にホログラム等の光情報の記録又は再生を 行う光情報記録再生装置、光情報再生装置、及び光情報記録再生方法に関する。 背景技術
[0002] 高密度情報記録のために 2次元データ信号の高密度記録が可能なホログラムが注 目されている。このホログラムの特徴は、記録情報を担持する光の波面を、フォトリフ ラタティブ材料などの光感応材料力 なる記録媒体に 3次元的に屈折率の変化とし て記録することにある。例えば、特許文献 1には、ホログラム記録媒体をディスク (ホロ グラムディスク)として利用した記録再生装置が開発されて 、る。
[0003] このホログラム記録再生装置においては、光ヘッドより参照光を照射し、記録層を 通過させ反射層上でスポットとして収束させて、反射層により反射した参照光が発散 して記録層を通過するよう構成するとともに、同じ光ヘッドより照射した記録すべき情 報を担う信号光が記録層を通過するようにさせる。これにより、記録層内において、反 射した参照光と信号光とが干渉して干渉パターンを形成し、記録層内にホログラムを 記録することができる。また、ホログラム記録媒体に参照光を照射してホログラムの各 々からの再生光を検出、復調することによって、記録された情報を再生することがで きる。
[0004] し力しながら光源として一般的な半導体レーザを利用した場合には、回転する光デ イスク上のある一点の固定位置に参照光と信号光を照射しても、短時間で 1つのデー タ記録再生領域に干渉パターンによって情報を記録するだけの十分な露光エネルギ 一を与えることが難し 、と 、う問題点がある。
[0005] そこで、例えば特許文献 2には、回転移動する光ディスク上の各データ記録再生領 域に対してある一定時間追従して参照光と信号光を照射するよう光ヘッドを駆動する ことで、それぞれのデータ記録再生領域に対し露光時間を長く確保することができ、 十分な露光エネルギーを与える構成が開示されて!、る。 [0006] 特許文献 1 :特開平 11 311937号公報
特許文献 2:特開 2005 - 203095号公報
発明の開示
発明が解決しょうとする課題
[0007] 上記従来技術では、光ディスクの記録媒体駆動手段の回転むら、回転制御の精度 限界、光ヘッドの追従制御可能範囲の制約等により、上記の追従制御だけでは光デ イスクに対する参照光と信号光の照射位置を必ずしも十分に一定に維持できなくなる 可能性があり、照射追従制御の安定性、確実性の点で改善の余地があった。
[0008] 本発明が解決しょうとする課題には、上記した問題が一例として挙げられる。
課題を解決するための手段
[0009] 上記課題を解決するために、請求項 1記載の発明は、ホログラフィを利用した情報 記録方式の記録媒体に対し記録再生用光ビームを照射することによって記録媒体に 対する記録再生を行う光情報記録再生装置であって、記録媒体を回転駆動させる記 録媒体駆動手段と、記録媒体に対して記録再生用光ビームを照射するための光へッ ドと、この光ヘッドから照射される記録再生用光ビームの照射位置を検出する検出手 段と、この検出手段の検出結果に基づき、少なくとも一定期間、照射位置を記録媒体 の回転方向移動に追従して移動させる追従制御を実行する照射追従制御手段と、こ の照射追従制御手段による追従制御に連携して、記録媒体駆動手段の回転を制御 する記録媒体制御手段とを有する。
[0010] 上記課題を解決するために、請求項 9記載の発明は、ホログラフィを利用した情報 記録方式の記録媒体に対し再生用光ビームを照射することによって前記記録媒体に 対する再生を行う光情報再生装置であって、前記記録媒体を移動させる記録媒体駆 動手段と、前記記録媒体に対して前記再生用光ビームを照射するための光ヘッドと 、この光ヘッドから照射される前記再生用光ビームの照射位置を検出する検出手段 と、この検出手段の検出結果に基づき、少なくとも一定期間、前記記録媒体の移動 に追従して前記照射位置を移動させる追従制御を実行する照射追従制御手段と、こ の照射追従制御手段による前記追従制御に連携して、前記記録媒体駆動手段の駆 動を制御する記録媒体制御手段とを有する。 [0011] 上記課題を解決するために、請求項 10記載の発明は、ホログラフィを利用した情 報記録方式の記録媒体を移動させ、その移動する記録媒体に対し記録再生用光ビ ームを照射することにより、当該記録媒体に対する記録再生を行う光情報記録再生 方法であって、前記記録再生用光ビームの照射位置を検出し、この照射位置の検出 結果に基づき、少なくとも一定期間、前記照射位置を前記記録媒体の移動に追従さ せるとともに、この追従に連携して前記記録媒体の駆動を制御する。
発明を実施するための最良の形態
[0012] 以下、本発明の一実施の形態を図面を参照しつつ説明する。
[0013] 図 1は、本実施形態のホログラム記録再生装置におけるサーボ制御部の全体の構 成を示すブロック図である。
[0014] なお、本実施形態にぉ ヽては、記録媒体としてディスク形状の光ディスクを利用し、 スピンドルモータの回転軸に固定して回転駆動されている状態の光ディスクに対しホ ログラム多重記録及び再生を行うことを前提とする。また、これは後述する各変形例 においても同様とする。
[0015] 図 1において、ホログラム記録再生装置 1は、記録媒体である光ディスク 2、この光 ディスク 2を回転駆動するスピンドルモータ 3、このスピンドルモータ 3の駆動を制御す るスピンドル制御回路 4、光ディスク 2に対する記録再生用光ビーム Laの照射とその 反射光を受光するピックアップ 5、このピックアップ 5を保持して光ディスク 2の半径方 向に移動させるスレッドモータ 6、ピックアップ 5からのサーボ用の検出信号 (詳しくは 後述)により各駆動方向の誤差信号を生成する制御信号生成回路 7、ピックアップ 5 のフォーカシング方向(詳しくは後述)の駆動を制御するフォーカシング制御回路 8、 ピックアップ 5のトラッキング方向(詳しくは後述)の駆動を制御するトラッキング制御回 路 9、スレッドモータ 6の駆動を制御するスレッド制御回路 10、及びピックアップ 5のタ ンジ ンシャル方向(詳しくは後述)の駆動を制御する焦点追従制御回路 11を有して いる。そして各回路は図示しないメインコントローラ(CPU)により制御されている。
[0016] まずここで、ピックアップ 5と光ディスク 2の構成について詳しく説明する。図 2は、ピ ックアップ 5と光ディスク 2の構成とともにホログラム記録時における光路の配置を模式 的に示す図である。なお円内の図は、部分 Aの拡大図とその断面図である。 [0017] この図 2において、ピックアップ 5は、記録再生用レーザ 21、ビームスプリッタ 22、シ ャッタ 23、ビームエキスパンダ 24、空間光変調器 25、第 1ハーフミラー 26、第 1ミラー 27、第 2ミラー 28、第 2ハーフミラー 29、再生用ディテクタ 30、ダイクロイツクミラー 31 、第 3ハーフミラー 32、サーボ用レーザ 33、サーボ用ディテクタ 34、可動ミラー 35、 対物レンズ 36、及び 2軸ァクチユエータ 37を有している。そしてこのうちの可動ミラー 35、対物レンズ 36、及び 2軸ァクチユエータ 37が 3軸ァクチユエータ 38を構成する。
[0018] 記録再生用レーザ 21は、ホログラムの記録再生用の信号光及び参照光(以下適宜 、いずれも記録再生用光ビーム Laという)の光源であり、例えば波長 405nmの青紫 色の記録再生用レーザ光 Laoを射出する半導体レーザが利用される。また、サーボ 用レーザ 33は、 3軸ァクチユエータ 38の駆動制御するためのサーボ用光ビーム Lsの 光源であり、例えば波長 650nmの赤色のサーボ用レーザ光 Lsoを射出する半導体 レーザが利用される。これら記録再生用レーザ 21とサーボ用レーザ 33は、上記メイ ンコントローラとの間でタイミング信号等を含む各種制御信号を送受する図示しない レーザドライバによって制御されている。
[0019] 光ディスク 2は、スピンドルモータ 3の回転軸に固定 (又は着脱可能にしてもよい)さ れて回転駆動されるようになっている。そして光ディスク 2の構成としては、榭脂又は ガラス等の基板上に記録層 2a、サーボ層 2b、反射層 2c、及び保護層 2dが順次積層 形成されている。記録層 2aには、例えばポリマーやフォトリフラクティブ材料のニオブ 酸リチウム単結晶などの光感応性材料が使用されている。反射層 2c上には複数のピ ット 2eが同心状に(又はスパイラル状に)配置されており、サーボ層 2bにはそのピット 列に沿って位置決め用トラック 2fが形成されている。
[0020] ホログラム記録時には、サーボ層 2bの位置決め用トラック 2f上にサーボ用光ビーム 1^魏光する。このとき、サーボ用光ビーム Lsと記録再生用光ビーム Laはそれぞれ 同一の対物レンズ 36によって集光位置が位置決めされ、サーボ用光ビーム Lsが集 光されるサーボ層 2bの位置決め用トラック 2fと一定のシフト量 (光ディスク 2の厚み方 向のズレ)をもって、記録層 2aに記録再生用光ビーム Laが集光されて、ホログラムが 記録される。
[0021] またホログラム再生時には、サーボ層 2bの位置決め用トラック 2f上にサーボ用光ビ ーム Lsを集光すると、記録層 2aの所定のデータ記録再生領域に記録再生用光ビー ム La (後述するように参照光のみ)が集光されてその反射光を利用してホログラムが 再生される。このために、サーボ層 2b、反射層 2c及びピット 2eには、記録再生用光 ビーム Laに対して所定値以上の透過率で透過し、サーボ用光ビーム Lsに対しては 所定値以上の反射率で反射するような波長選択性を有する材料が用いられて!/ヽる。 これにより、記録再生用光ビーム Laに対しては透過し、サーボ用光ビーム Lsに対し ては反射するため、集光位置を制御するためのサーボ層 2bの位置決め用トラック 2f 力 記録層 2aにおけるホログラムの記録及び再生には何ら影響を及ぼさないことに なる。
[0022] 記録再生用レーザ 21から射出された記録再生用レーザ光 Laoはビームスプリッタ 2 2によって信号光 Ldと参照光 Lrとに分割される。この例のホログラム記録時にはシャ ッタ 23が信号光 Ldを透過し、さらにこの信号光 Ldはビームエキスパンダ 24によって ビーム径が拡大され、平行光として形成される。そしてこの平行光は、透過型の TFT 液晶パネル(LCD)で構成される空間光変調器(SLM ; Spatial Light Modulation) 2 5に入射される。
[0023] この空間光変調器 25は、ホログラムとして記録すべきデータ信号に基づいて 2次元 の明暗ドットパターンを形成するものである。より詳細には、まず 1次元のデジタル信 号列からなる記録データ信号を、図示しないエンコーダにより 2次元データ列に変換 してエラー訂正符号を付加することで 2次元データ信号 (単位ページ系列データ信 号)が生成され、またエンコーダ内に設けられた図示しない SLMドライバが上記 2次 元データ信号に基づいた駆動信号により空間光変調器 25を駆動することにより、空 間光変調器 25のパネル平面に対応する 2次元の明暗ドットパターンが形成される。
[0024] そして、この空間光変調器 25に形成された 2次元の明暗ドットパターンに平行光の 信号光 Ldを透過させることで、信号光 Ldは上記 2次元データ信号に対応して光変 調されることになる。すなわち、空間光変調器 25は、単位ページ(2次元データ信号) ごとに対応する変調処置単位を有し、波長が 405nmで可干渉性を有する平行光( つまり変調前の信号光 Ld)を、 2次元データ信号に応じて各画素(ドット、ピクセル)毎 に光の透過のオン'オフを切り換えて変調し、信号光ビームを形成する。より具体的 には、空間光変調器 25は、信号光 Ldの光路断面上において、電気信号である 2次 元データ信号の各ビットの論理値" 1"に対応して信号光 Ldを通過させ、論理値" 0" に対応して信号光 Ldを遮断する。これにより、 2次元データ信号における各ビット内 容に従った電気一光学変換を行うことになり、 2次元データ信号に対応する単位ぺー ジ系列の信号光 Ldとして変調された信号光ビームが生成される。
[0025] そしてこの記録データを含んだ信号光 Ldは、第 1ハーフミラー 26、第 2ハーフミラー 29、及びダイクロイツクミラー 31を順次透過した後に可動ミラー 35によって反射され てその光路が偏向される。可動ミラー 35により反射された信号光 Ldは、対物レンズ 3 6により光ディスク 2の記録位置に集光される。これはすなわち、信号光 Ldのドットパ ターン信号成分がフーリエ変換されて、光ディスク 2の記録層 2a内に集光されること になる。
[0026] 一方、ビームスプリッタ 22によって分割された参照光 Lrは、第 1ミラー 27、第 2ミラー 28によって偏向されて第 1ハーフミラー 26に導かれる。参照光 Lrは、第 1ハーフミラ 一 26によって反射されて信号光 Ldと重なり、記録再生用光ビーム Laとして信号光 L dと同一の光路を経て光ディスク 2に導かれる。これにより、参照光 Lrは信号光 Ldと光 ディスク 2の記録層 2aの内部で交差して光干渉パターンを形成し、この光干渉パター ンが屈折率の変化として記録層 2aに記録される。これによりホログラム記録が行われ る。
[0027] また同時に、サーボ用レーザ 33から射出されたサーボ用レーザ光 Lsoは、第 2ハー フミラー 29とダイクロイツクミラー 31に順次反射されてサーボ用光ビーム Lsとして上記 記録再生用光ビーム Laと重なり、同一の光路を経て光ディスク 2に導かれる。このとき 対物レンズ 36は、上記記録再生用光ビーム La (信号光 Ld及び参照光 Lr)とともにサ 一ボ用光ビーム Lsを光ディスク 2に集光する。前述したようにサーボ用光ビーム Lsだ けは反射層 2cで反射され、このサーボ用光ビーム Lsの反射光は、可動ミラー 35、ダ ィクロイツクミラー 31、で順次反射された後に、第 3ハーフミラー 32を透過してサーボ 用ディテクタ 34に入射する。特に詳しく図示していないが、このサーボ用ディテクタ 3 4は受光部分が 4分割されており、各受光部分での受光量に応じて電気信号に変化 された検出信号が得られる。 [0028] 以上のようにしてホログラム記録を行う際のピックアップ 5における光路が形成される 。次に図 3は、ピックアップ 5と光ディスク 2の構成とともにホログラム再生時における光 路の配置を模式的に示す図である。
[0029] この図 3において、ホログラム再生時には、信号光 Ldが、シャツタ 23又は空間光変 調器 25によって遮られ、参照光 Lrのみが記録再生用光ビーム Laとして上記記録時 と同じ光路に沿って光ディスク 2に導かれる。そして反射層 2cで反射した参照光 Lrは 、記録層 2aに形成された光干渉パターンを再現した再生光となって対物レンズ 36に 導かれ、このとき対物レンズ 36が逆フーリエ変換を行うことで、再生光が光干渉パタ ーンに対応した明暗ドットパターンを含む平行光となる。そして、この再生光が可動ミ ラー 35で反射された後、ダイクロイツクミラー 31を透過し、第 2ハーフミラー 29で反射 されて電荷結合素子 (CCD)で構成される再生用ディテクタ 30で受光される。この再 生用ディテクタ 30は、受光した再生光に含まれる明暗ドットパターンに基づいて電気 的な 2次元データ信号を再変換し、さらに図示しないデーコーダにより 1次元データ 信号が再生される。このようにしてホログラム再生が行われる。
[0030] なお、このホログラム再生時におけるサーボ用光ビーム Lsの光路については、上記 ホログラム記録時と同じとなるので説明を省略する。
[0031] そして上記ホログラムの記録時及び再生時のどちらにおいても、光ディスク 2の回転 駆動時における面ぶれや偏芯などに対応して、位置決め用トラック 2f上にサーボ用 光ビーム Lsを集光し照射すると同時に記録再生用光ビーム Laを所定のデータ記録 再生領域に集光して照射させるために、 3軸ァクチユエータ 38が、サーボ用光ビーム Lsの焦点位置および記録再生用光ビーム Laの集光位置を移動制御できるようにな つている。詳しく説明すると、 3軸ァクチユエータ 38は、光ディスク 2の厚み方向(X軸 方向)、位置決め用トラック 2fの法線方向(Y軸方向;光ディスク 2の半径方向)、及び 位置決め用トラック 2fの接線方向(Z軸方向)に焦点位置を移動できるようになつてい る。この例では図 2、図 3に示す 3軸ァクチユエータ 38内の対物レンズ 36及び可動ミ ラー 35を駆動することで行う。なお、以下においては、光ディスク 2の厚み方向をアキ シャル方向、位置決め用トラック 2fの法線方向をラジアル方向、位置決め用トラック 2f の接線方向をタンジェンシャル方向と称呼する。 [0032] 図 2、図 3で示す例において、 2軸ァクチユエータ 37を駆動することによって対物レ ンズ 36を移動させて、焦点をアキシャル方向及びタンジェンシャル方向に移動させる ようにしている。また、可動ミラー 35を図示しない記録媒体駆動手段によりタンジェン シャル方向の回転軸周りに回転させることにより、焦点をラジアル方向に移動させるよ うにしている。しかし、焦点の移動の方法はこれに限られない。例えば 2軸ァクチユエ ータ 37によって対物レンズ 36をアキシャル方向とラジアル方向に移動させ、可動ミラ 一 35をラジアル方向の回転軸周りに回転させてもよい。また他の組合せで焦点を移 動させてもよい。また、例えば可動ミラー 35以外にも圧電ァクチユエータゃリニアモー タで 2軸ァクチユエータ 37全体を移動させ、焦点を 3軸方向に移動させることも可能 である。
[0033] ここで、図 4を参照して 2軸ァクチユエータ 37について詳しく説明する。図 4は、 2軸 ァクチユエータ 37をアキシャル方向力も見た外観で表す上面図であり、図 4 (a)はタ ンジェンシャル方向中立位置にある図、図 4 (b)はタンジェンシャル方向の一方側に 移動した位置にある図、図 4 (c)はタンジ ンシャル方向の他方側に移動した位置に ある図である。なお、この図 4において、図中の左右方向がタンジェンシャル方向と一 致しており、この例では光ディスク 2の位置決め用トラック 2fが図中の左右方向とほぼ 平行でデータ記録再生領域が左側から右側へ向かう方向に移動する場合を例にと つて説明する。
[0034] 図 4において、対物レンズ 36が設置された 2軸ァクチユエータ 37は、対物レンズ 36 が固定されているボビン 41と、ボビン 41に設けられたアキシャル方向用駆動コイル 4 2と、同じくボビン 41に設けられたタンジェンシャル方向用駆動コイル 43と、ボビン 41 をピックアップベース(ピックアップ 5の筐体) 44から支持するサスペンション 45と、ボ ビン 41を挟む位置に設けられた磁気回路 46とを有して ヽる。
[0035] ボビン 41の中央には、対物レンズ 36が固定されている。またこのボビン 41には、直 交する 2軸にそれぞれ平行にアキシャル方向用駆動コイル 42とタンジュンシャル方 向用駆動コイル 43とが卷回されている(タンジェンシャル方向用駆動コイル 43は軸 方向断面で図示している)。そして、ボビン 41を支持するサスペンション 45は、弾性 材料からなり、ボビン 41のタンジェンシャル方向の移動に対して図 4 (a)に示す中立 位置に戻す復元力を付カ卩しつつボビン 41を支持して 、る。またサスペンション 45は 、アキシャル方向用駆動コイル 42とタンジュンシャル方向用駆動コイル 43とのそれぞ れに個別に駆動用信号を給電する給電線としても機能する。磁気回路 46は、永久 磁石または電磁石を備えており、ボビン 41の周囲に所定の配置で磁力線を形成す るようになっている。
[0036] 以上の構成により、サスペンション 45を介して各コイル 42, 43に駆動信号を与える ことで、各コイル 42, 43には磁気回路 46により形成された磁力線の影響により引力と 斥力が作用し、サスペンション 45の復元力に抗してボビン 41を移動させるよう駆動す る。この例では、アキシャル方向用駆動コイル 42に駆動信号を与えることにより、駆動 信号の正負と大きさに応じてボビン 41及び対物レンズ 36をアキシャル方向(図面の 紙面直交方向)に移動させることができる。これにより、光ディスク 2の面ぶれなどに対 応して記録媒体の反射層 2cにサーボ用光ビーム Lsの焦点を結ぶようフォーカシング 帘 U御することができる。
[0037] また、この例では、タンジ ンシャル方向用駆動コイル 43に後述する焦点追従駆動 信号を与える。これにより、この焦点追従駆動信号の極性 (符号)と絶対値の大きさに 応じてボビン 41及び対物レンズ 36をタンジュンシャル方向(図中の左右方向)に移 動させることができる。この結果、タンジュンシャル方向に沿って (位置決め用トラック 2fに沿って)光ディスク 2の回転に伴うデータ記録再生領域の移動に対し、記録再生 用光ビーム Laの集光位置及びサーボ用光ビーム Lsの焦点を追従移動(詳しくは後 述する)させることができる。特にこの例では、負の値の焦点追従駆動信号をタンジェ ンシャル方向用駆動コイル 43に与えることにより、図 4 (b)に示すようにボビン 41をタ ンジェンシャル方向の逆方向(データ記録再生領域の移動方向の逆側)へ移動させ ることができる。また、正の値の焦点追従駆動信号をタンジ ンシャル方向用駆動コ ィノレ 43に与えることにより、図 4 (c)に示すようにボビン 41をタンジェンシャノレ方向の 順方向(データ記録再生領域の移動方向側)へ移動させることができる。
[0038] また、この例では、上述したように可動ミラー 35 (特に説明しないがガルバノミラーを 利用するとよ 、)をタンジュンシャル方向の回転軸周りに回転させることにより、記録 再生用光ビーム Laの集光位置及びサーボ用光ビーム Lsの焦点をラジアル方向に移 動させることができる。これにより、光ディスク 2の偏芯、トラックピッチむらなどに対応 して焦点をラジアル方向に移動させるようラジアル制御させることができる。
[0039] ここで図 1に戻り、サーボ制御について詳しく説明する。制御信号生成回路 7は、ピ ックアップ 5のサーボ用ディテクタ 34から得られるサーボ用の検出信号を用いて、光 ディスク 2の反射層 2cと焦点との間のアキシャル方向のずれを示すフォーカシング誤 差信号、及び、位置決め用トラック 2fと焦点との間のずれを示すトラッキング誤差信 号を生成する。フォーカシング誤差信号の生成については、焦点が光ディスク 2の反 射層 2cからずれることによって、図示しないシリンドリカルレンズにより非点収差を検 出し、この非点収差を用いて生成を行う(非点収差法)。また、トラッキング誤差信号 の生成については、光ディスク 2の反射層 2cのピット 2eに沿って設けられた位置決め 用トラック 2fに対して焦点がずれることにより回折光を発生させ、この回折光を利用し て生成を行う。
[0040] これらの誤差信号は、それぞれフォーカシング制御回路 8及びトラッキング制御回 路 9に入力される。フォーカシング制御回路 8及びトラッキング制御回路 9は、フォー カシング誤差信号及びトラッキング誤差信号がそれぞれゼロとなるようにピックアップ 5の 2軸ァクチユエータ 37と可動ミラー 35 (3軸ァクチユエータ 38)を駆動し、適切な 位置決め用トラック 2f上に焦点を結ぶようにフォーカシング制御及びトラッキング制御 を行う。
[0041] また、トラッキング制御において、焦点をトラッキング方向に大きく移動させる必要が ある場合には、焦点の移動が可動ミラー 35の可動範囲内に納まるように、ピックアツ プ 5全体をスレッドモータ 6によってラジアル方向に移動させる。スレッド制御回路 10 は、トラッキング駆動信号またはトラッキング誤差信号の低域成分を用いてスレッド制 御回路 10によって生成され、トラッキング駆動信号またはトラッキング誤差信号の低 域成分がゼロとなるようにスレッド制御を行う。
[0042] そして本実施形態の例では、制御信号生成回路 7は、上記フォーカシング誤差信 号、トラッキング誤差信号の他にも、焦点追従誤差信号を生成する。この焦点追従誤 差信号は、焦点が所定の位置決め用トラック 2fをトレースしている際、サーボ用光ビ ーム Lsが位置決め用トラック 2fにそって刻まれたピット 2eを通過することで発生する 回折光に基づき、制御信号生成回路 7が生成する。そして焦点追従制御回路 11は、 焦点誤差信号に基づいて、少なくとも一定時間の間に焦点追従用のピット 2eに焦点 を追従させるよう、 2軸ァクチユエータ 37をタンジェンシャル方向に駆動制御する。そ の間、サーボ用光ビーム Lsの焦点はある一つのピット 2e上に静止するように制御さ れる。その結果、記録再生用光ビーム Laの集光位置は、回転移動するある一つのデ ータ記録再生領域に対して静止する。以上の動作を焦点追従という。この追従動作 を行うことにより、半導体レーザなど力 のそれほどエネルギの大きくない光ビームを 用いても、 1つのデータ記録再生領域に対して長い露光時間を確保し十分な露光ェ ネルギーを与えることができる。この結果、現実的な記録媒体および光源を用いて比 較的高速な情報の記録が可能となる。
[0043] このとき、タンジュンシャル方向に対するァクチユエータの機械的な駆動範囲には 限界があるため、無限に焦点追従し続けることは不可能である。そこで、ある一つの データ記録再生領域に対して一定時間だけ追従動作を行った後、一旦、焦点追従 を停止し、対物レンズ 36を光ディスク 2の回転方向とは逆方向に駆動した後、次のデ ータ記録再生領域に対して再度焦点追従を行う。したがって、対物レンズ 36、サー ボ用光ビーム Lsの焦点、及び記録再生用光ビーム Laの集光位置は、タンジュンシャ ル方向に往復運動を繰り返しながらデータ記録再生領域の移動に追従する。
[0044] そして、本実施形態のホログラム記録再生装置 1にお 、ては、焦点追従制御回路 1 1は、焦点追従駆動信号又は焦点追従誤差信号の低域成分を焦点追従偏奇信号と して、スピンドル制御回路 4に入力する。この焦点追従偏奇信号は、タンジェンシャル 方向への平均的偏奇、すなわちタンジ ンシャル方向における対物レンズ 36の往復 運動の中心位置(以下、追従中心位置という)が 2軸ァクチユエータ 37の可動中立点 からどの程度ずれて!/、るかを示す信号である。
[0045] そしてスピンドルモータ 3が光ディスク 2を回転している間に、フォーカシング制御及 びトラッキング制御によって所定の位置決め用トラック 2fに適正に焦点を結ぶことによ り、データ記録再生領域のトレース動作が行われる。この際にスピンドル制御回路 4 は、上記焦点追従偏奇信号がゼロに近づくようにスピンドルモータ 3の回転速度をフ イードバック制御することにより、対物レンズ 36を固定する 2軸ァクチユエータ 37のタ ンジヱンシャル方向の追従中心位置を 2軸ァクチユエータ 37の可動中立点付近に位 置させるようにする。
[0046] 以下、このような焦点追従動作について詳しく説明する。
[0047] 図 5は、スピンドルモータ 3が適正に作動している場合の対物レンズ 36の追従動作 位置と焦点追従駆動信号の時間変化を示す図である。なお、図中の上段部分は、対 物レンズ 36のタンジュンシャル方向での絶対位置(=追従制御又は反復駆動時のァ クチユエータ 37における対物レンズ 36の位置)における移動位置の時間変化を表し ており、下段部分は、焦点追従駆動信号の時間変化を表している。
[0048] この図 5において、対物レンズ 36が追従方向に移動している間は、上段部分の曲 線の傾きが概略的に正となり、この方向に対物レンズ 36が移動している期間を追従 期間といい、逆の方向に対物レンズ 36が移動している期間を復帰期間という。記録 再生時には、これら追従期間と復帰期間を繰り返しながら対物レンズ 36を往復運動 させること〖こなる。
[0049] 追従期間においては、光ディスク 2のデータ記録再生領域に追従するために、まず 追従方向加速区間において 2軸ァクチユエータ 37のタンジュンシャル方向用駆動コ ィル 43に正の値の焦点追従駆動信号を与えて追従方向へ加速駆動を行い助走さ せた後、焦点追従制御区間において焦点追従誤差信号をゼロに近づけるようフィー ドバック制御を行う。これにより、焦点追従制御区間において、(光ディスク 2の偏芯な どによる)タンジュンシャル方向のズレに対しても高!、精度で焦点をデータ記録再生 領域に一致させるよう追従しつつ、データの記録再生を行うことができる。そしてこの 焦点追従制御区間での記録再生時間を一定時間確保することにより、データを確実 に記録再生することができる。そしてこの焦点追従制御区間での記録再生が終了し た後に、追従方向の移動を終了すべく追従方向減速区間において負の値の焦点追 従駆動信号を与えることにより、対物レンズ 36の減速駆動を行う。
[0050] 次に復帰期間において、対物レンズ 36の位置を戻すため、復帰方向加速区間に おいて負の値の焦点追従駆動信号を与えて追従方向と逆の方向(復帰方向)へカロ 速駆動を行う。次に焦点追従駆動信号の給電を停止すると、 2軸ァクチユエータ 37 の動特性 (サスペンション 45の動特性)により、対物レンズ 36は、復帰方向定速区間 で定速で移動する。そして、所定の時間が経過した後、復帰方向の移動を終了すベ く復帰方向減速区間において正の値の焦点追従駆動信号を与えることにより、対物 レンズ 36の減速駆動を行う。この状態で対物レンズ 36の移動速度は十分に小さくな り、次のデータ記録再生領域を検出すると、再び追従動作を開始する。
[0051] 理想的には、図 5に示すように、復帰区間終了直後に次のデータ記録再生領域が 到達し、復帰方向の減速に続いて追従方向の加速が行われるのが望ましい。ここで 、追従方向と復帰方向のそれぞれの移動方向が逆であるため、追従方向の加速駆 動時と復帰方向の減速駆動時のそれぞれの焦点追従駆動信号の極性は同じ (正) であり、また追従方向の減速駆動時と復帰方向の加速駆動時のそれぞれの焦点追 従駆動信号の極性は同じ (負)である。
[0052] また、追従区間の長さは、光ディスク 2への記録再生用光ビーム Laの照射量が十 分確保できる長さに設定される。追従区間の長さと 2軸ァクチユエータ 37の可動範囲 から追従速度 (光ディスク 2の回転速度)が設定され、追従区間における加速駆動時 と減速駆動時のそれぞれの焦点追従駆動信号の絶対値の大きさが設定される。また 、復帰区間における加速駆動時と減速駆動時のそれぞれの焦点追従駆動信号の絶 対値を大きく設定することで、対物レンズ 36を早く復帰させる (復帰区間の移動速度 が速ぐ図 5上段の曲線の傾きが負で急激になる)ことができる。これにより、光デイス ク 2におけるデータ記録再生領域どうしの間隔を小さくすることができ、光ディスク 2の 記録密度を向上させることができる。
[0053] そして以上のような理想の状態では、各期間における加速駆動時の加速量と減速 駆動時の減速量は逆極性で絶対値が略同じに設定され、それらの平均はほぼゼロと なる。また、対物レンズ 36が 2軸ァクチユエータ 37の可動中立点を中心に追従動作 を行うとすれば、焦点追従制御区間における駆動量の平均はゼロとなる。
[0054] そこで各期間における、対物レンズ 36の駆動量の平均値 (絶対位置の平均値)を 用いて、さらに各加速駆動時及び各減速駆動時の時間は追従時間に対して十分に 短いとすると、対物レンズ 36のタンジュンシャル方向での絶対位置における移動位 置の時間変化は、図 6のような簡略ィ匕した曲線で表せる。なお、図 6中の下段部分は 、各追従動作位置に対応した状態の 2軸ァクチユエータ 37の外観を示している。ここ で可動中立点とは、焦点追従駆動信号をゼロとして十分に時間が経過した状態 (無 負荷時)で、サスペンション 45の復元力により対物レンズ 36が静定した位置である。 また、ここでは対物レンズ 36の往復運動の中心位置を追従中心位置と称呼する。
[0055] 図 7は、何らかの原因で追従中心位置が可動中立点力も追従方向側にずれている 場合の、対物レンズ 36の移動位置と焦点追従駆動信号の時間変化を簡略的に表す 図である。この図 7において、焦点追従制御区間における焦点追従駆動信号の平均 値は、サスペンション 45の復元力に抗して可動中心位置を保持しょうとするために正 の値の信号を与えていることになる。このとき、スピンドルモータ 3の回転数を低下さ せるよう制御すると、追従中心位置が可動中立点に近づく。
[0056] 図 8は、何らかの原因で追従中心位置が可動中立点力も復帰方向側にずれている 場合の対物レンズ 36の移動位置と焦点追従駆動信号の時間変化を簡略的に表す 図である。この図 8において、焦点追従制御区間における焦点追従駆動信号の平均 値は、サスペンション 45の復元力に抗して可動中心位置を保持しょうとするために負 の値の信号を与えていることになる。このとき、スピンドルモータ 3の回転数を上昇さ せるよう制御すると、追従中心位置が可動中立点に近づく。
[0057] すなわち、焦点追従駆動信号に比例して追従中心位置が可動中立点力もどの方 向にどれだけずれているかを検出することができる。そこで、本実施形態のホログラム 記録再生装置 1は、この焦点追従駆動信号を焦点追従偏奇信号としてスピンドル制 御回路 4に入力し、スピンドル制御回路 4がこの焦点追従偏奇信号をゼロにするよう スピンドルモータ 3の回転数をフィードバック制御することで、追従中心位置を可動中 立点に近づけるようにする。
[0058] 前述したように、データ記録再生領域の移動に対する対物レンズ 36の焦点追従は 、 2軸ァクチユエータ 37のタンジェンシャル方向の可動中立点を中心に、対物レンズ 36を往復運動させることが好ましい。すなわち、図 6に示したように、対物レンズ 36の 追従開始位置と追従終了位置が、それぞれ 2軸ァクチユエータ 37の可動中立点に 対してほぼ等 ヽ離間距離を保持して!/ヽることが必要である。
[0059] ここで、比較例として、スピンドルモータ 3の回転数に対して追従制御に関連した制 御を何も行わな 、場合にっ 、て説明する。もしスピンドルモータ 3の回転数が適正な 回転数よりも少しでも高 、場合、記録再生用光ビーム Laの集光位置をデータ記録再 生領域に相対的に追従させるだけでは、図 9に示す挙動となる。すなわち、対物レン ズ 36の追従中心位置が、 2軸ァクチユエータ 37の可動中立点から徐々に離れていく よう発散し、 V、ずれは対物レンズ 36が 2軸ァクチユエータ 37の適正可動範囲を越え て適切な姿勢が得られなくなったり、他の光学部品と機械的に干渉してしまうなどに より適正な制御が行えなくなってしまう。
[0060] また、光ディスク 2から再生される情報に基づいて正確な回転数でスピンドルモータ 3を回転させた場合でも、何らかの原因で追従中心位置と可動中立点との間に一度 ずれが生じると、そのずれを復元する手段がないため、光学系構造が不適正な配置 でかつ制御系が不安定な状態を維持したまま記録再生動作を継続してしまうことに なる。また、タンジュンシャル方向に往復運動する焦点追従を行っていることから、反 射層 2cのピット 2eなどをトレースする速度が不連続となるため、適正な基準クロックを 得ることが難しぐスピンドル制御を正確に行うことが困難となっている。
[0061] これに対して、本実施形態のホログラム記録再生装置 1は、焦点追従制御回路 11 力も焦点追従偏奇信号をスピンドル制御にフィードバック(図 1参照)する。この結果、 対物レンズ 36の偏奇状態 (追従中心位置と可動中立点が大きくずれた状態)を解消 し、図 10に示すように、 2軸ァクチユエータ 37の可動中立点を中心に対物レンズ 36 が往復運動し続けるよう追従動作を行うことができる。したがって、光学系が適正かつ 制御系が安定な状態でデータの記録再生を行うことができる。
[0062] さらに、焦点追従偏奇信号による上記フィードバック制御を行わな ヽ場合、焦点追 従動作のタイミング力 Sスピンドルモータ 3の回転数 (光ディスク 2の回転速度)で決定さ れてしまうため、正確な回転制御が要求され、スピンドル制御においてディスク情報 に基づ!/ヽた信号処理等を行う必要があった。本実施形態のホログラム記録再生装置 1では、スピンドル制御と焦点追従制御を連動(同期、連携)させることによって、動作 タイミングの補正が自動的に働き、いずれの制御においても高い精度を必要とせず、 比較的簡易な構成とすることができる利点もある。
[0063] 次に、以上のようにスピンドルモータ 3の回転数をフィードバック制御するスピンドル 制御回路 4の回路構成について説明する。 [0064] 図 11は、本実施形態におけるスピンドル制御回路 4の機能的構成を表す機能プロ ック図である。この図 11において、スピンドル制御回路 4は、焦点追従制御回路 11か ら入力された焦点追従偏奇信号を積分する積分器 51と、この積分器 51から出力さ れる信号を増幅する第 1ゲイン 52と、適切なスピンドル回転数に対応する基準電圧を 発生する基準電圧発生器 53とを有している。なお、この例では、スピンドルモータ 3 は入力される電圧により回転数が制御されるものを用いて 、る。
[0065] 焦点追従制御回路 11から入力された焦点追従偏奇信号は、積分器 51 (基本的に ローパスフィルタで構成)により時間積分されて対物レンズ 36の偏奇量 (追従中心位 置と可動中立点との間のずれに対応する量)に対応する電圧として算出される。この 偏奇量電圧を第 1ゲイン 52により所定の倍率で増幅した後、基準電圧発生器 53から の基準電圧に加算してスピンドルモータ 3へ出力する。これにより、偏奇量電圧の変 化に応じて基準電圧から増減された電圧が、スピンドルモータ 3に入力される。この 結果、偏奇量をゼロに近づけるようスピンドルモータ 3回転数のフィードバック制御が 行われる。
[0066] なお、焦点追従制御区間においては、焦点追従駆動信号と焦点追従誤差信号と は同様の波形の信号となるため、いずれの信号を焦点追従偏奇信号として利用して もよい。また、光ディスク 2の回転制御において定線速度制御を行う場合には、光ディ スク 2の回転数の基準となる基準電圧は記録再生を行う光ディスク 2の半径位置に応 じて変ィ匕させること〖こなる。
[0067] 以上の構成のホログラム記録再生装置 1においてホログラム記録動作における制 御手順について説明する。
[0068] 図 12は、ホログラム記録再生装置 1のメインコントローラによって実行されるホロダラ ム記録動作の制御手順を表すフローチャートである。図 12において、例えば図示し な 、操作部にぉ 、てホログラム記録動作を開始させる操作が行われると、このフロー が開始される。
[0069] まずステップ S5において、スピンドル制御回路 4に制御信号を出力してスピンドル モータ 3の回転を開始させ、次のステップ S10へ移る。
[0070] ステップ S10では、図示しないレーザドライバに制御信号を出力してサーボ用レー ザ 33を点灯させる。
[0071] 次にステップ S15へ移り、フォーカシング制御回路 8に作動開始の制御信号を出力 し、フォーカシング制御を開始させる。
[0072] 次にステップ S20へ移り、トラッキング制御回路 9に作動開始の制御信号を出力し、 トラッキング制御を開始させる。この時点で所定の位置決め用トラック 2fに焦点が結 ばれ、トレース動作が開始される。
[0073] 次にステップ S25へ移り、焦点追従制御回路 11に制御信号を出力し、焦点追従駆 動信号を 2軸ァクチユエータ 37に入力させることで対物レンズ 36をタンジェンシャル 方向に駆動し、初期位置に移動させる。
[0074] 次にステップ S30へ移り、焦点が記録を開始すべき所定のデータ記録再生領域に 到達するまで待機し、到達したと判定された場合には次のステップ S35へ移る。
[0075] ステップ S35では、焦点追従制御回路 11に制御信号を出力し、 2軸ァクチユエータ
37に焦点追従駆動信号を入力させて、焦点がデータ記録再生領域に固定するよう 追従動作を開始させる。
[0076] 次にステップ S40へ移り、スピンドル制御回路 4に制御信号を出力し、焦点追従偏 奇信号をゼロに近づけるようスピンドルモータ 3の回転速度のフィードバック制御を行 わせるようにする。
[0077] 次にステップ S45へ移り、図示しないレーザドライバに制御信号を出力して、記録 再生用レーザ 21の点灯を開始させる。
[0078] 次にステップ S50へ移り、シャツタ 23の開口、図示しないエンコーダへの記録デー タ入力、及び空間光変調器 25のパターン制御を行うことにより、追従中のデータ記 録再生領域に 1ページ分のデータを記録させる。
[0079] 次にステップ S55へ移り、図示しないレーザドライバに制御信号を出力して、記録 再生用レーザ 21を消灯させる。
[0080] 次にステップ S60へ移り、記録すべき全ページ分のデータの記録が完了したか否 か判定する。全ページ分のデータの記録が完了している場合、判定が満たされ、こ のフローを終了する。一方、全ページ分のデータの記録が完了していない場合、判 定が満たされず、ステップ S65へ移る。 [0081] ステップ S65では、焦点追従制御回路 11に制御信号を出力し、 2軸ァクチユエータ 37に焦点追従駆動信号を出力させて、焦点が次のデータ記録再生領域に到達する まで、焦点を追従方向とは逆の方向に移動させる。
[0082] 次にステップ S70へ移り、焦点が記録を開始すべき所定のデータ記録再生領域に 到達するまで待機し、到達したと判定された場合には次のステップ S75へ移る。
[0083] ステップ S75では、焦点追従制御回路 11に制御信号を出力し、 2軸ァクチユエータ 37に焦点追従駆動信号を入力させて、焦点がデータ記録再生領域に固定するよう 追従動作を開始させる。そしてステップ S45へ戻り、同様の制御手順を繰り返す。以 上のフローによりホログラム記録動作を行うことができる。
[0084] なお、本実施形態では、記録媒体として光ディスク 2を適用したが、本発明はそれ に限られない。例えばカード形状の光記録媒体を適用することも可能であり、その場 合には、カードのタンジェンシャル方向の駆動を行うリニアモータ等のァクチユエータ の駆動制御を行う制御回路に対して、焦点追従偏奇信号を入力しフィードバック制 御させる。
[0085] 以上説明したように、本実施形態における光情報記録再生装置 (この例ではホログ ラム記録再生装置) 1は、ホログラフィを利用した情報記録方式の記録媒体 (この例で は光ディスク) 2に対し記録再生用光ビーム (この例では記録再生用光ビーム) Laを 照射することによって記録媒体 2に対する記録再生を行う光情報記録再生装置 1で あって、記録媒体 2を移動させる記録媒体駆動手段 (この例ではスピンドルモータ) 3 と、記録媒体 2に対して記録再生用光ビーム Laを照射するための光ヘッド (この例で はピックアップ) 5と、この光ヘッド 5から照射される記録再生用光ビーム Laの照射位 置を検出する検出手段 (この例ではサーボ用ディテクタ) 34と、この検出手段 34の検 出結果に基づき、少なくとも一定期間、記録媒体 2の移動に追従して照射位置を移 動させる追従制御を実行する照射追従制御手段 (この例では制御信号生成回路 7、 焦点追従制御回路 11、磁気回路 46、及びタンジュンシャル方向用駆動コイル 43)と 、この照射追従制御手段 7, 11, 46, 43による追従制御に連携して、記録媒体駆動 手段 3の駆動を制御する記録媒体制御手段 (この例ではスピンドル制御回路) 4とを 有することを特徴とする。 [0086] 本実施形態の光情報記録再生装置 1にお!/、ては、ホログラフィ方式の記録媒体 2 が記録媒体駆動手段 3によって駆動され、その駆動される記録媒体 2に対し光ヘッド 5から記録再生用光ビーム Laが照射されて、記録媒体 2に対する記録再生 (情報の 記録又は再生)が行われる。そして、検出手段 34による記録再生用光ビーム Laの照 射位置検出結果に基づき、照射追従制御手段 7, 11, 46, 43により照射位置が記 録媒体 2の移動に追従して移動される。これによつて、少なくとも一定期間、記録媒体 2に対する記録再生用光ビーム Laの相対照射位置を一定に維持した状態で照射を 行うことができる。この結果、それほど大きくないビーム出力で比較的高速に記録再 生 (情報の記録又は再生)を行うことができる。
[0087] そしてさらに、記録媒体駆動手段 3の駆動(回転を含む)むら、駆動制御の精度限 界、追従制御可能範囲の制約等により、照射追従制御手段 7, 11, 46, 43による追 従制御だけでは記録媒体 2に対する記録再生用光ビーム Laの照射位置を必ずしも 十分に一定に維持できなくなる可能性がある場合であっても、照射追従制御手段 7, 11, 46, 43の当該追従制御に連動して記録媒体制御手段 4が記録媒体駆動手段 3 の駆動を制御することで、追従制御を補うことができる。この結果、記録媒体 2に対す る記録再生用光ビーム Laの照射位置を安定的かつ確実に一定に維持することがで きる。
[0088] 本実施形態における光情報再生装置 (この例ではホログラム記録再生装置) 1は、 ホログラフィを利用した情報記録方式の記録媒体 (この例では光ディスク) 2に対し再 生用光ビーム (この例では参照光) Lrを照射することによって記録媒体 2に対する再 生を行う光情報再生装置 1であって、記録媒体 2を移動させる記録媒体駆動手段 (こ の例ではスピンドルモータ) 3と、記録媒体 2に対して再生用光ビーム Lrを照射するた めの光ヘッド(この例ではピックアップ) 5と、この光ヘッド 5から照射される再生用光ビ ーム Lrの照射位置を検出する検出手段 (この例ではサーボ用ディテクタ) 34と、この 検出手段 34の検出結果に基づき、少なくとも一定期間、記録媒体 2の移動に追従し て照射位置を移動させる追従制御を実行する照射追従制御手段 (この例では制御 信号生成回路 7、焦点追従制御回路 11、磁気回路 46、及びタンジ ンシャル方向 用駆動コイル 43)と、この照射追従制御手段 7, 11, 46, 43による追従制御に連携し て、記録媒体駆動手段 3の駆動を制御する記録媒体制御手段 (この例ではスピンド ル制御回路) 4とを有することを特徴とする。
[0089] 本実施形態の光情報再生装置 1にお!/、ては、ホログラフィ方式の記録媒体 2が記 録媒体駆動手段 3によって駆動され、その駆動される記録媒体 2に対し光ヘッド 5か ら再生用光ビーム Lrが照射されて、記録媒体 2に対する情報の再生が行われる。そ して、検出手段 34による再生用光ビーム Lrの照射位置検出結果に基づき、照射追 従制御手段 7, 11, 46, 43により照射位置が記録媒体 2の移動に追従して移動され る。これによつて、少なくとも一定期間、記録媒体 2に対する再生用光ビーム Lrの相 対照射位置を一定に維持した状態で照射を行うことができる。この結果、それほど大 きくないビーム出力で比較的高速に情報の再生を行うことができる。
[0090] そしてさらに、記録媒体駆動手段 3の駆動(回転を含む)むら、駆動制御の精度限 界、追従制御可能範囲の制約等により、照射追従制御手段 7, 11, 46, 43による追 従制御だけでは記録媒体 2に対する再生用光ビーム Lrの照射位置を必ずしも十分 に一定に維持できなくなる可能性がある場合であっても、照射追従制御手段 7, 11, 46, 43の当該追従制御に連動して記録媒体制御手段 4が記録媒体駆動手段 3の駆 動を制御することで、追従制御を補うことができる。この結果、記録媒体 2に対する再 生用光ビーム Lrの照射位置を安定的かつ確実に一定に維持することができる。
[0091] 本実施形態の光情報記録再生装置 (この例ではホログラム記録再生装置) 1で実 施される光情報記録再生方法は、ホログラフィを利用した情報記録方式の記録媒体 (この例では光ディスク) 2を移動させ、その移動する記録媒体 2に対し記録再生用光 ビーム (この例では記録再生用光ビーム) Laを照射することにより、当該記録媒体 2に 対する記録再生を行う光情報記録再生方法であって、記録再生用光ビーム Laの照 射位置を検出し、この照射位置の検出結果に基づき、少なくとも一定期間、照射位 置を記録媒体 2の移動に追従させるとともに、この追従に連携して記録媒体 2の駆動 を制御することを特徴とする。
[0092] 本実施形態の光情報記録再生装置 1で実施される光情報記録再生方法において は、ホログラフィ方式の記録媒体 2を移動させ、その移動する記録媒体 2に対し記録 再生用光ビーム Laを照射し、記録媒体 2に対する記録再生 (情報の記録又は再生) が行われる。そして、記録再生用光ビーム Laの照射位置を検出した結果に基づき、 照射位置が記録媒体 2の移動に追従される。これによつて、少なくとも一定期間、記 録媒体 2に対する記録再生用光ビーム Laの相対照射位置を一定に維持した状態で 照射を行うことができる。この結果、それほど大きくないビーム出力で比較的高速に 記録再生 (情報の記録又は再生)を行うことができる。
[0093] そしてさらに、記録媒体 2の駆動(回転を含む)むら、駆動制御の精度限界、追従制 御可能範囲の制約等により、上記追従制御だけでは記録媒体 2に対する記録再生 用光ビーム Laの照射位置を必ずしも十分に一定に維持できなくなる可能性がある場 合であっても、追従に連動して記録媒体 2の駆動を制御することにより、追従制御を 補うことができる。この結果、記録媒体 2に対する記録再生用光ビーム Laの照射位置 を安定的かつ確実に一定に維持することができる。
[0094] 上記実施形態における光情報記録再生装置 1においては、照射追従制御手段 7, 11, 46, 43は、照射位置を記録媒体 2の移動方向(この例ではタンジュンシャル方 向)に駆動する照射位置駆動手段 (この例では磁気回路 46及びタンジェンシャル方 向用駆動コイル 43)と、検出手段 34による記録再生用光ビーム Laの照射位置検出 結果に基づき、少なくとも一定期間、記録媒体 2の移動に追従して照射位置を移動さ せるように、照射位置駆動手段 46, 43への駆動信号 (この例では焦点追従駆動信 号)を生成する駆動信号生成手段 (この例では制御信号生成回路 7及び焦点追従制 御回路 11)と、この駆動信号生成手段 7, 11で生成された駆動信号に対応した記録 媒体制御信号 (この例では焦点追従偏奇信号)を生成する記録媒体制御信号生成 手段 (この例では焦点追従制御回路) 11とを備えており、記録媒体制御手段 4は、記 録媒体制御信号生成手段 11で生成した記録媒体制御信号に基づき記録媒体駆動 手段 3の駆動を制御することを特徴とする。
[0095] 検出手段 34による記録再生用光ビーム Laの照射位置検出結果に基づき、駆動信 号生成手段 7, 11で駆動信号が生成され、この駆動信号に基づき照射位置駆動手 段 46, 43が照射位置を駆動することで照射位置が記録媒体 2の移動に追従する。こ れによって、少なくとも一定期間、記録媒体 2に対する記録再生用光ビーム Laの相 対照射位置を一定に維持した状態で照射を行う。このとき、上記駆動信号生成手段 7, 11の駆動信号に対応して (言い換えれば検出手段 34による検出結果に応じて) 記録媒体制御信号生成手段 11が記録媒体制御信号を生成し、記録媒体制御手段 4がその記録媒体制御信号に基づき記録媒体駆動手段 3の駆動を制御することで、 追従制御を補う。これにより、記録媒体 2に対する記録再生用光ビーム Laの照射位 置を安定的かつ確実に一定に維持することができる。
[0096] 上記実施形態における光情報記録再生装置 1にお!/、ては、照射位置駆動手段 46 , 43は、記録再生用光ビーム Laの光路に設けられたレンズ (この例では対物レンズ) 36を備えた可動体(この例ではボビン) 41を移動方向へ駆動するためのコイル(この 例ではタンジュンシャル方向用駆動コイル) 43と、このコイル 43の周囲に磁力線を配 置するための磁気回路 (この例では磁気回路) 46とを備えることを特徴とする。
[0097] 記録再生用光ビーム Laの光路に設けたレンズ 36を、コイル 43付きの可動体 41に 設置する。そして、当該可動体 41のコイル 43に発生させた磁力線と磁気回路 46で 配置された磁力線との間に作用する引力または斥力により、コイル 43に駆動力を発 生させる。これによつて、可動体 41全体を駆動して、照射位置を記録媒体 2の移動 方向に駆動することができる。
[0098] 上記実施形態における光情報記録再生装置 1にお!/、ては、照射位置駆動手段 46 , 43は、照射位置を、記録媒体 2の移動に対し順方向と逆方向とに反復駆動し、駆 動信号生成手段 7, 11は、少なくとも一定期間、照射位置を記録媒体 2の移動に追 従して移動させるように、順方向へ駆動するための順方向成分 (この例では正の値の 焦点追従駆動信号)と逆方向へ駆動するための逆方向成分 (この例では負の値の焦 点追従駆動信号)とを含む駆動信号を生成することを特徴とする。
[0099] 移動する記録媒体 2の照射目標位置に対し照射を開始した後、当該移動する記録 媒体 2に追従するように照射位置駆動手段 46, 43は照射位置を記録媒体 2の移動 に対し順方向に駆動する。これによつて、記録媒体 2に対する記録再生用光ビーム L aの照射位置を少なくとも一定の期間に一定に維持し、精度の高い記録再生 (情報の 記録又は再生)を行う。その後、記録媒体 2の次の照射目標位置に対し照射を行うた めに、照射位置駆動手段 46, 43は照射位置を記録媒体 2の移動に対し逆方向に駆 動し、追従前の初期位置へ復帰させる。本実施形態では駆動信号生成手段 7, 11 が駆動信号として順方向へ駆動するための順方向成分と、逆方向へ駆動するための 逆方向成分とを、それぞれ生成することにより、上記のような順方向と逆方向との反 復駆動を実現することができる。
[0100] 上記実施形態における光情報記録再生装置 1にお!/、ては、記録媒体制御信号生 成手段 11は、前記照射位置を記録媒体 2の移動に追従して移動させる期間におけ る駆動信号に基づき、記録媒体制御信号を生成することを特徴とする。
[0101] 照射追従制御手段 7, 11, 46, 43による追従制御だけで記録媒体 2に対する記録 再生用光ビーム Laの照射位置を安定的に十分に一定に維持できている場合には、 上記駆動信号による現実の照射位置の反復動作の中心点 (この例では追従中心位 置)と、上記照射位置駆動手段 46, 43の駆動中心点 (この例では可動中立点)とが 一致する。すなわち、上記順方向成分と上記逆方向成分とはちょうど対称的な挙動( 時間積分すると逆符号で値が一致するような挙動)となるはずである。しかしながら、 上述した記録媒体駆動手段 3の駆動むら、駆動制御の精度限界、追従制御可能範 囲の制約等により追従制御だけでは記録再生用光ビーム Laの照射位置を必ずしも 十分に一定に維持できなくなる場合は、上記現実の照射位置の反復中心と、照射位 置駆動手段 46, 43の駆動中心とがー致しなくなる(徐々にずれてくる)。
[0102] し力もこの間、照射位置を記録媒体 2の移動に追従して移動させる追従制御が実 行されていることによって、上記照射位置駆動手段 46, 43の駆動中心から一方側領 域となる上記順方向へ駆動するための上記順方向成分と、駆動中心から他方側領 域となる上記逆方向へ駆動するための上記逆方向成分とが、前述のようにちようど対 称的な挙動(時間積分すると逆符号で値が一致するような挙動)とはならず、 、ずれ 力の側の領域への駆動が偏って増大する。言い換えれば、駆動信号のうち、その偏 つて駆動される側の領域に対する成分が増大する。
[0103] そこで、上記実施形態の光情報記録再生装置 1にお!/、ては、記録媒体制御信号生 成手段 11が、上記のように反復動作する挙動となる、記録媒体の移動に追従して移 動させる期間における駆動信号に基づき、記録媒体制御信号を生成する。これによ り、上述のような駆動信号成分の偏りに対応して記録媒体制御信号を生成し、記録 媒体制御手段 4が記録媒体駆動手段 3の移動を制御することで追従制御を補う。こ の結果、記録媒体 2に対する記録再生用光ビーム Laの照射位置を安定的かつ確実 に一定に維持することができる。
[0104] 上記実施形態における光情報記録再生装置 1にお!/、ては、記録媒体制御信号生 成手段 11は、駆動信号の時間積分値に応じた記録媒体制御信号を生成することを 特徴とする。
[0105] 駆動信号の順方向成分又は逆方向成分の偏りがなければ、それらの符号を逆とす れば駆動信号全体を時間積分したときに順方向成分と逆方向成分とが打ち消しあい 、ほぼ 0となるはずである。
[0106] そこで、上記実施形態の光情報記録再生装置 1にお!/、ては、記録媒体制御信号生 成手段 11が、上記駆動信号の時間積分に応じて記録媒体制御信号を生成する。こ れにより、上述のような駆動信号成分の偏りに確実に対応して記録媒体制御信号を 生成し、記録媒体制御手段 4が記録媒体駆動手段 3の駆動を制御することで追従制 御を補う。この結果、記録媒体 2に対する記録再生用光ビーム Laの照射位置を安定 的かつ確実に一定に維持することができる。
[0107] 上記実施形態における光情報記録再生装置 1においては、光ヘッド 5は、記録再 生用光ビーム Laを生成するための記録再生用レーザ光 (この例では青紫色の記録 再生用レーザ光) Laoを射出する記録再生用光射出手段 (この例では記録再生用レ 一ザ) 21と、記録媒体 2に対する記録再生用光ビーム Laの照射位置決めのための、 記録再生用レーザ光 Laoと異なる波長を備えたサーボ用レーザ光 (この例では赤色 のサーボ用レーザ光) Lsoを射出するサーボ用光射出手段 (この例ではサーボ用レ 一ザ) 33と、記録再生用光ビーム La及びサーボ用レーザ光 Lsoを記録媒体 2に照射 して光学情報のアクセスを行うための光学系(この例ではビームスプリッタ 22、シャツ タ 23、ビームエキスパンダ 24、空間光変調器 25、第 1ハーフミラー 26、第 1ミラー 27 、第 2ミラー 28、第 2ハーフミラー 29、ダイクロイツクミラー 31、第 3ハーフミラー 32、可 動ミラー 35、及び対物レンズ 36)と、サーボ用レーザ光 Lsoが記録媒体 2に照射され 、位置決め情報が含まれて反射されたサーボ用レーザ光 Lsoの反射光を検出するサ ーボ光検出器 (サーボ用ディテクタ) 34とを備えることを特徴とする。
[0108] これにより、光学情報の記録を行う場合には、記録再生用光射出手段 21から記録 再生用レーザ光 Laoとしての信号光 Ld及び参照光 Lrを射出し、光学系 22〜29, 31 , 32, 35, 36を介しそれら信号光 Ld及び参照光 Lrを干渉させて照射し、記録媒体 2 への光学情報の記録を行うことができる。光学情報の再生を行う場合には、記録再 生用光射出手段 21から記録再生用レーザ光 Laoとしての参照光 Lrを射出し、光学 系 22〜29, 31, 32, 35, 36を介しそれら参照光 Lrを照射し、記録媒体 2からの光 学情報の再生を行うことができる。そして、上記記録時又は再生時の位置検出は、サ 一ボ用光射出手段 33からのサーボ用レーザ光 Lsoを光学系 22〜29, 31, 32, 35, 36を介して記録媒体 2に照射し、その反射光をサーボ光検出器で検出することで行 うことができる。
[0109] 上記実施形態における光情報記録再生装置 1にお!/、ては、記録媒体 2は、ディスク 状であり、記録媒体駆動手段 3は、記録媒体 2を回転駆動することによって、記録媒 体 2の移動を行うことを特徴とする。
[0110] ディスク状の記録媒体 2を記録媒体駆動手段 3で回転駆動する構成において、照 射追従制御手段 7, 11, 46, 43の追従制御に連動して記録媒体制御手段 4が記録 媒体駆動手段 3の当該回転駆動を制御することで、追従制御を補うことができる。こ の結果、記録媒体 2に対する記録再生用光ビーム Laの照射位置を安定的かつ確実 に一定に維持することができる。
[0111] なお、本実施形態は、上記に限られず、種々の変形が可能である。以下、そのよう な変形例を順を追って説明する。
[0112] (1)スピンドルモータの回転数に基づいてスピンドル制御の基準電圧を発生させる
¾口
[0113] 上記実施形態では、スピンドル制御回路 4にお 、て、適切なスピンドル回転数に対 応する基準電圧を独立した専用の基準電圧発生器により得ていたが、これに限られ ない。すなわち、その時点でのスピンドルモータ 3の回転数に基づいてこれをフィード ノ ック制御するように基準電圧を得てもょ ヽ。
[0114] 図 13は、本変形例におけるスピンドル制御回路 104の機能的構成を表す機能プロ ック図であり、上記実施形態における図 11に対応する図である。なお、上記実施形 態におけるスピンドル制御回路 4の構成(図 11参照)と同等の部分については同じ符 号を付して適宜説明を省略する。
[0115] この図 13において、上記図 11における基準電圧発生器 53に代えて、スピンドルモ ータ 3の回転数を FGパルス信号で出力するロータリエンコーダ 111と、 FGパルス信 号を周波数に変換する周波数変 112と、適切なスピンドル回転数に対応する周 波数を発生する目標周波数発生器 113と、周波数変換器 112及び目標周波数発生 器 113からそれぞれ出力された周波数信号を比較してその比較結果の信号を出力 する比較器 114と、比較器 114からの出力結果信号を増幅する第 2ゲイン 115とを有 している。
[0116] これにより、第 2ゲイン 115からは上記実施形態における基準電圧と同等に機能す る電圧が得られ、本変形例におけるスピンドル制御回路 104でも上記実施形態と同 等の効果が得られる。さらに本変形例によれば、独立した基準電圧発生器 53から得 た基準電圧を用いる場合と比較して、正確に回転制御を行うことができる。特に焦点 追従動作前、または焦点追従動作の初期状態において、スピンドル制御が適正に働 いてない場合、焦点追従動作が不安定になる可能性がある。焦点追従制御回路 11 力も生成される焦点追従偏奇信号をスピンドル制御にフィードバックする前に、他の 回転情報をフィードバックすることで回転を安定ィ匕しておくことができる。したがって、 焦点追従動作前、又は焦点追従動作の初期状態において、光ディスク 2の回転速度 を適切な誤差範囲内に収めることにより、焦点追従動作を安定した状態で開始できる 。また、焦点追従動作開始後においても、基準電圧を利用した場合に比べて比較的 高い周波数の外乱に対してもほとんど影響を受けることがない。
[0117] (2)焦点追従制御中に待機期間を設ける場合
[0118] 上記実施形態では、焦点追従制御において復帰期間後にすぐに追従期間を開始 していたが、これに限られず、復帰期間後から次の追従期間までの間に待機期間を 設けるようにしてもよい。
[0119] 図 14は、待機期間を設けた場合の対物レンズ 36の移動位置と焦点追従駆動信号 との時間変化を表す図である。この図 14において、焦点追従動作に余裕を持たせる ために、光ディスク 2を比較的低速で回転させ、復帰期間後に対物レンズ 36を追従 開始位置に保持したまま次のデータ記録再生領域が到達するまで待機する待機期 間を設けている。これにより、光ディスク 2の回転速度と対物レンズ 36の往復動作とを 同期させることなく完全に独立して制御しても、確実な焦点追従動作を行うことができ る。
[0120] なお、この場合、追従中心位置が可動中立点に近い状態であっても、待機期間中 には、サスペンション 45の復元力に抗して復帰方向側に対物レンズ 36を保持させる ために負の値の焦点追従駆動信号が与え続けられ、それに応じた焦点追従偏奇信 号が発生することになる。したがって、スピンドルモータ 3の回転数を上昇させるように スピンドル制御回路 104がフィードバック制御を行い、自動的に待機期間が圧縮され るようになる。この結果、むだな待機時間が省略されて高速かつ効率的な記録再生 動作を自動的に行うことができる。
[0121] 上記実施形態におけるホログラム記録再生装置 1は、ホログラフィを利用した情報 記録方式の光ディスク 2に対し記録再生用光ビーム Laを照射することによって光ディ スク 2に対する記録再生を行うホログラム記録再生装置 1であって、光ディスク 2を移 動させるスピンドルモータ 3と、光ディスク 2に対して記録再生用光ビーム Laを照射す るためのピックアップ 5と、この光ヘッド 5から照射される記録再生用光ビーム Laの照 射位置を検出するサーボ用ディテクタ 34と、このサーボ用ディテクタ 34の検出結果 に基づき、少なくとも一定期間、照射位置を光ディスク 2の移動に追従して移動させる 追従制御を実行する制御信号生成回路 7、焦点追従制御回路 11、磁気回路 46、及 びタンジ ンシャル方向用駆動コイル 43と、これら制御信号生成回路 7、焦点追従制 御回路 11、磁気回路 46、及びタンジェンシャル方向用駆動コイル 43による追従制 御に連携して、スピンドルモータ 3の駆動を制御するスピンドル制御回路 4とを有する
[0122] 本実施形態のホログラム記録再生装置 1においては、ホログラフィ方式の光ディスク 2がスピンドルモータ 3によって駆動され、その駆動する光ディスク 2に対しピックアツ プ 5から記録再生用光ビーム Laが照射されて、光ディスク 2に対する記録再生 (情報 の記録又は再生)が行われる。そして、サーボ用ディテクタ 34による記録再生用光ビ ーム Laの照射位置検出結果に基づき、制御信号生成回路 7、焦点追従制御回路 11 、磁気回路 46、及びタンジェンシャル方向用駆動コイル 43により照射位置が光ディ スク 2の移動に追従して移動され、これによつて少なくとも一定期間、光ディスク 2に対 する記録再生用光ビーム Laの相対照射位置を一定に維持した状態で照射を行うこ とができる。この結果、それほど大きくないビーム出力で比較的高速に記録再生 (情 報の記録又は再生)を行うことができる。
[0123] そしてさらに、スピンドルモータ 3の駆動(回転を含む)むら、駆動制御の精度限界、 追従制御可能範囲の制約等により、制御信号生成回路 7、焦点追従制御回路 11、 磁気回路 46、及びタンジュンシャル方向用駆動コイル 43による追従制御だけでは光 ディスク 2に対する記録再生用光ビーム Laの照射位置を必ずしも十分に一定に維持 できなくなる可能性がある場合であっても、制御信号生成回路 7、焦点追従制御回路 11、磁気回路 46、及びタンジュンシャル方向用駆動コイル 43の当該追従制御に連 動してスピンドル制御回路 4がスピンドルモータ 3の駆動を制御することで、追従制御 を補うことができる。この結果、光ディスク 2に対する記録再生用光ビーム Laの照射位 置を安定的かつ確実に一定に維持することができる。
[0124] 上記実施形態におけるホログラム記録再生装置 1は、ホログラフィを利用した情報 記録方式の光ディスク 2に対し参照光 Lrを照射することによって光ディスク 2に対する 再生を行うホログラム記録再生装置 1であって、光ディスク 2を移動させるスピンドルモ ータ 3と、光ディスク 2に対して参照光 Lrを照射するためのピックアップ 5と、この光へ ッド 5から照射される参照光 Lrの照射位置を検出するサーボ用ディテクタ 34と、この サーボ用ディテクタ 34の検出結果に基づき、少なくとも一定期間、照射位置を光ディ スク 2の移動に追従して移動させる追従制御を実行する制御信号生成回路 7、焦点 追従制御回路 11、磁気回路 46、及びタンジェンシャル方向用駆動コイル 43と、これ ら制御信号生成回路 7、焦点追従制御回路 11、磁気回路 46、及びタンジュンシャル 方向用駆動コイル 43による追従制御に連携して、スピンドルモータ 3の駆動を制御 するスピンドル制御回路 4とを有する。
[0125] 本実施形態のホログラム記録再生装置 1においては、ホログラフィ方式の光ディスク 2がスピンドルモータ 3によって駆動され、その駆動する光ディスク 2に対しピックアツ プ 5から参照光 Lrが照射されて、光ディスク 2に対する情報の再生が行われる。そし て、サーボ用ディテクタ 34による参照光 Lrの照射位置検出結果に基づき、制御信号 生成回路 7、焦点追従制御回路 11、磁気回路 46、及びタンジュンシャル方向用駆 動コイル 43により照射位置が光ディスク 2の移動に追従して移動される。これにより、 少なくとも一定期間、光ディスク 2に対する参照光 Lrの相対照射位置を一定に維持し た状態で照射を行うことができる。この結果、それほど大きくないビーム出力で比較的 高速に情報の再生を行うことができる。
[0126] そしてさらに、スピンドルモータ 3の駆動(回転を含む)むら、駆動制御の精度限界、 追従制御可能範囲の制約等により、制御信号生成回路 7、焦点追従制御回路 11、 磁気回路 46、及びタンジュンシャル方向用駆動コイル 43による追従制御だけでは光 ディスク 2に対する参照光 Lrの照射位置を必ずしも十分に一定に維持できなくなる可 能性がある場合であっても、制御信号生成回路 7、焦点追従制御回路 11、磁気回路 46、及びタンジ ンシャル方向用駆動コイル 43の当該追従制御に連動してスピンド ル制御回路 4がスピンドルモータ 3の駆動を制御することで、追従制御を補うことがで きる。この結果、光ディスク 2に対する参照光 Lrの照射位置を安定的かつ確実に一 定に維持することができる。
[0127] また、上記実施形態のホログラム記録再生装置 1で実施される光情報記録再生方 法は、ホログラフィを利用した情報記録方式の光ディスク 2を移動させ、その移動する 光ディスク 2に対し記録再生用光ビーム Laを照射することにより、当該光ディスク 2に 対する記録再生を行う光情報記録再生方法であって、記録再生用光ビーム Laの照 射位置を検出し、この照射位置の検出結果に基づき、少なくとも一定期間、照射位 置を光ディスク 2の移動に追従させるとともに、この追従に連携して光ディスク 2の駆 動を制御することを特徴とする。
[0128] 本実施形態のホログラム記録再生装置 1で実施される光情報記録再生方法にお!、 ては、ホログラフィ方式の光ディスク 2を移動させ、その移動する光ディスク 2に対し記 録再生用光ビーム Laを照射し、光ディスク 2に対する記録再生 (情報の記録又は再 生)が行われる。そして、記録再生用光ビーム Laの照射位置を検出した結果に基づ き、照射位置が光ディスク 2の移動に追従され、これによつて少なくとも一定期間、光 ディスク 2に対する記録再生用光ビーム Laの相対照射位置を一定に維持した状態で 照射を行うことができる。この結果、それほど大きくないビーム出力で比較的高速に 記録再生 (情報の記録又は再生)を行うことができる。
[0129] そしてさらに、光ディスク 2の駆動むら、駆動制御の精度限界、追従制御可能範囲 の制約等により、上記追従制御だけでは光ディスク 2に対する記録再生用光ビーム L aの照射位置を必ずしも十分に一定に維持できなくなる可能性がある場合であっても 、追従に連動して光ディスク 2の駆動を制御することにより、追従制御を補うことができ る。この結果、光ディスク 2に対する記録再生用光ビーム Laの照射位置を安定的か つ確実に一定に維持することができる。
図面の簡単な説明
[0130] [図 1]本発明の一実施形態のホログラム記録再生装置におけるサーボ制御部の全体 の構成を示すブロック図である。
[図 2]ピックアップと光ディスクの構成とともにホログラム記録時における光路の配置を 模式的に示す図である。
[図 3]ピックアップと光ディスクの構成とともにホログラム再生時における光路の配置を 模式的に示す図である。
[図 4]2軸ァクチユエータをアキシャル方向から見た外観で表す上面図である。
[図 5]スピンドルモータが適正に作動している場合の対物レンズの追従動作位置と焦 点追従駆動信号の時間変化を示す図である。
[図 6]簡略化した対物レンズの追従動作位置の時間変化と、各追従動作位置に対応 した状態の 2軸ァクチユエータの外観を示す図である。
[図 7]追従中心位置が可動中立点から追従方向側にずれている場合の対物レンズの 移動位置と焦点追従駆動信号の時間変化を簡略的に表す図である。
[図 8]追従中心位置が可動中立点力も復帰方向側にずれている場合の対物レンズの 移動位置と焦点追従駆動信号の時間変化を簡略的に表す図である。
[図 9]スピンドルモータの回転数が高い場合における対物レンズの移動位置の時間 変化を簡略的に表す図である。
[図 10]焦点追従偏奇信号をスピンドル制御にフィードバックさせた場合における対物 レンズの移動位置の時間変化を簡略的に表す図である。
[図 11]実施形態におけるスピンドル制御回路の機能的構成を表す機能ブロック図で ある。
[図 12]ホログラム記録再生装置のメインコントローラによって実行されるホログラム記 録動作の制御手順を表すフローチャートである。
[図 13]スピンドルモータの回転数に基づいてスピンドル制御の基準電圧を発生させる 変形例におけるスピンドル制御回路の機能的構成を表す機能ブロック図である。 圆 14]焦点追従制御中に待機期間を設ける変形例における対物レンズの移動位置 と焦点追従駆動信号の時間変化を簡略的に表す図である。
符号の説明
1 ホログラム記録再生装置 (光情報記録再生装置、光情報再生装置)
2 光ディスク (記録媒体)
3 スピンドルモータ (記録媒体駆動手段)
4 スピンドル制御回路 (記録媒体制御手段)
5 ピックアップ(光ヘッド、)
7 制御信号生成回路 (照射追従制御手段、駆動信号生成手段)
11 焦点追従制御回路 (照射追従制御手段、駆動信号生成手段記録媒 体制御信号生成手段)
21 記録再生用レーザ (記録再生用光射出手段)
25 空間光変調器 (光学系)
30 再生用ディテクタ
33 サーボ用レーザ (サーボ用光射出手段)
34 サーボ用ディテクタ (検出手段)
35 可動ミラー (光学系)
36 対物レンズ (レンズ、光学系)
37 2軸ァクチユエータ
41 ボビン(可動体)
42 アキシャル方向用駆動コイル
43 タンジ ンシャル方向用駆動コイル (照射追従制御手段、照射位置 駆動手段、コイル) 45 サスペンション
46 磁気回路 (照射追従制御手段、照射位置駆動手段)
51 積分器
52 第 1ゲイン
53 基準電圧発生器
104 スピンドル制御回路
La 記録再生用光ビーム
Lao 記録再生用レーザ光
Ld 信号光
Lr 参照光 (再生用光ビーム)
Ls サーボ用光ビーム
Lso サーボ用レーザ光

Claims

請求の範囲
[1] ホログラフィを利用した情報記録方式の記録媒体に対し記録再生用光ビームを照 射することによって前記記録媒体に対する記録再生を行う光情報記録再生装置であ つて、
前記記録媒体を移動させる記録媒体駆動手段と、
前記記録媒体に対して前記記録再生用光ビームを照射するための光ヘッドと、 この光ヘッドから照射される前記記録再生用光ビームの照射位置を検出する検出 手段と、
この検出手段の検出結果に基づき、少なくとも一定期間、前記記録媒体の移動に 追従して前記照射位置を移動させる追従制御を実行する照射追従制御手段と、 この照射追従制御手段による前記追従制御に連携して、前記記録媒体駆動手段 の駆動を制御する記録媒体制御手段と
を有することを特徴とする光情報記録再生装置。
[2] 請求項 1記載の光情報記録再生装置において、
前記照射追従制御手段は、
前記照射位置を前記記録媒体の移動方向に駆動する照射位置駆動手段と、 前記検出手段による記録再生用光ビームの照射位置検出結果に基づき、少なくと も一定期間、前記記録媒体の移動に追従して前記照射位置を移動させるように、前 記照射位置駆動手段への駆動信号を生成する駆動信号生成手段と、
この駆動信号生成手段で生成された駆動信号に対応した記録媒体制御信号を生 成する記録媒体制御信号生成手段と
を備えており、
前記記録媒体制御手段は、
前記記録媒体制御信号生成手段で生成した前記記録媒体制御信号に基づき前 記記録媒体駆動手段の駆動を制御する
ことを特徴とする光情報記録再生装置。
[3] 請求項 2記載の光情報記録再生装置にお 、て、
前記照射位置駆動手段は、 前記記録再生用光ビームの光路に設けられたレンズを備えた可動体を前記移動方 向へ駆動するためのコイルと、
このコイルの周囲に磁力線を配置するための磁気回路と
を備えることを特徴とする光情報記録再生装置。
[4] 請求項 2記載の光情報記録再生装置にお 、て、
前記照射位置駆動手段は、
前記照射位置を、前記記録媒体の移動に対し順方向と逆方向とに反復駆動し、 前記駆動信号生成手段は、
少なくとも一定期間、前記照射位置を前記記録媒体の移動に追従して移動させる ように、前記順方向へ駆動するための順方向成分と前記逆方向へ駆動するための逆 方向成分とを含む前記駆動信号を生成することを特徴とする光情報記録再生装置。
[5] 請求項 4記載の光情報記録再生装置にお 、て、
前記記録媒体制御信号生成手段は、
前記照射位置を前記記録媒体の移動に追従して移動させる期間における前記駆 動信号に基づき、前記記録媒体制御信号を生成することを特徴とする光情報記録再 生装置。
[6] 請求項 4記載の光情報記録再生装置にお 、て、
前記記録媒体制御信号生成手段は、
前記駆動信号の時間積分値に応じた前記記録媒体制御信号を生成することを特 徴とする光情報記録再生装置。
[7] 請求項 1記載の光情報記録再生装置において、
前記光ヘッドは、
前記記録再生用光ビームを生成するための記録再生用レーザ光を射出する記録 再生用光射出手段と、
前記記録媒体に対する前記記録再生用光ビームの照射位置決めのための、前記 記録再生用レーザ光と異なる波長を備えたサーボ用レーザ光を射出するサーボ用 光射出手段と、
前記記録再生用光ビーム及び前記サーボ用レーザ光を前記記録媒体に照射して 光学情報のアクセスを行うための光学系と
前記サーボ用レーザ光が記録媒体に照射され、位置決め情報が含まれて反射さ れた前記サーボ用レーザ光の反射光を検出するサーボ光検出器と
を備えることを特徴とする光情報記録再生装置。
[8] 請求項 1記載の光情報記録再生装置において、
前記記録媒体は、ディスク状であり、
前記記録媒体駆動手段は、前記記録媒体を回転駆動することによって、前記記録 媒体の移動を行うことを特徴とする光情報記録再生装置。
[9] ホログラフィを利用した情報記録方式の記録媒体に対し再生用光ビームを照射す ることによって前記記録媒体に対する再生を行う光情報再生装置であって、 前記記録媒体を移動させる記録媒体駆動手段と、
前記記録媒体に対して前記再生用光ビームを照射するための光ヘッドと、 この光ヘッドから照射される前記再生用光ビームの照射位置を検出する検出手段 と、
この検出手段の検出結果に基づき、少なくとも一定期間、前記記録媒体の移動に 追従して前記照射位置を移動させる追従制御を実行する照射追従制御手段と、 この照射追従制御手段による前記追従制御に連携して、前記記録媒体駆動手段 の駆動を制御する記録媒体制御手段と
を有することを特徴とする光情報再生装置。
[10] ホログラフィを利用した情報記録方式の記録媒体を移動させ、その移動する記録媒 体に対し記録再生用光ビームを照射することにより、当該記録媒体に対する記録再 生を行う光情報記録再生方法であって、
前記記録再生用光ビームの照射位置を検出し、
この照射位置の検出結果に基づき、少なくとも一定期間、前記照射位置を前記記 録媒体の移動に追従させるとともに、この追従に連携して前記記録媒体の駆動を制 御することを特徴とする光情報記録再生方法。
PCT/JP2007/056844 2006-03-31 2007-03-29 光情報記録再生装置、光情報再生装置、及び光情報記録再生方法 WO2007114240A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008508606A JP4748817B2 (ja) 2006-03-31 2007-03-29 光情報記録再生装置、光情報再生装置、及び光情報記録再生方法
US12/295,563 US20090086595A1 (en) 2006-03-31 2007-03-29 Optical information recording/reproducing apparatus, optical information reproducing apparatus, and optical information recording/reproducing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006099564 2006-03-31
JP2006-099564 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114240A1 true WO2007114240A1 (ja) 2007-10-11

Family

ID=38563508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056844 WO2007114240A1 (ja) 2006-03-31 2007-03-29 光情報記録再生装置、光情報再生装置、及び光情報記録再生方法

Country Status (3)

Country Link
US (1) US20090086595A1 (ja)
JP (1) JP4748817B2 (ja)
WO (1) WO2007114240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199656A (ja) * 2008-02-21 2009-09-03 Pulstec Industrial Co Ltd ホログラム記録装置及びホログラム記録方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520483B2 (en) 2010-07-29 2013-08-27 General Electric Company Method and system for processing information from optical disk layers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178457A (ja) * 2001-12-10 2003-06-27 Optware:Kk 光ディスク記録方法、光ディスク記録装置及び光ディスク再生装置
JP2004086966A (ja) * 2002-08-26 2004-03-18 Optware:Kk 光情報再生装置および光情報記録再生装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302433A (zh) * 1999-02-26 2001-07-04 松下电器产业株式会社 光学的信息记录重放装置
JP3639212B2 (ja) * 2000-12-11 2005-04-20 株式会社オプトウエア 光情報記録方法
US7706233B2 (en) * 2003-03-20 2010-04-27 Optware Corporation Optical-disk recording method, recording apparatus and reproducing apparatus
JP4205996B2 (ja) * 2003-06-25 2009-01-07 Tdk株式会社 ホログラフィック記録システム及び光学チョッパー
JP4250633B2 (ja) * 2006-03-28 2009-04-08 株式会社東芝 光情報記録媒体、光情報記録装置および光情報記録方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178457A (ja) * 2001-12-10 2003-06-27 Optware:Kk 光ディスク記録方法、光ディスク記録装置及び光ディスク再生装置
JP2004086966A (ja) * 2002-08-26 2004-03-18 Optware:Kk 光情報再生装置および光情報記録再生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199656A (ja) * 2008-02-21 2009-09-03 Pulstec Industrial Co Ltd ホログラム記録装置及びホログラム記録方法

Also Published As

Publication number Publication date
JPWO2007114240A1 (ja) 2009-08-13
JP4748817B2 (ja) 2011-08-17
US20090086595A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP3991483B2 (ja) ディスクドライブ装置
JPS626445A (ja) 光ピツクアツプのトラツキング制御方式
CN1268740A (zh) 光盘驱动装置、光盘驱动方法和光盘装置
US7538788B2 (en) Label writing
JP4748817B2 (ja) 光情報記録再生装置、光情報再生装置、及び光情報記録再生方法
CN1961357A (zh) 全息记录载体
WO2008050947A1 (en) Apparatus and method to record and/or reproduce holographic information
JP2003059068A (ja) ディスク装置及びサーボ機構の調整方法
JP2003091847A (ja) 光学ヘッド装置の駆動方法及び装置及び光学式情報処理装置
WO2004032125A1 (ja) 光ディスク装置
JP2003272182A (ja) 光ディスク装置およびその焦点探索方法
JP5163412B2 (ja) 光ヘッド装置及び多層光記録媒体再生システム
US20160086628A1 (en) Optical Component Positioning Device and Optical Recording Device Using Same
JPH0980298A (ja) フォーカシング制御方法及びその装置並びに光ディスク原盤記録装置
JP2005063566A (ja) 光ディスク再生装置
JPH02201739A (ja) 光ディスク装置のトラックアクセス装置
JPH09282691A (ja) 光学的情報記録再生装置
JP2002245640A (ja) 光ディスク装置
CN102576550A (zh) 集成电路及光盘装置
JP2004326936A (ja) 光ディスク装置
JP2002216367A (ja) 光ディスク装置
JPH0240137A (ja) 光学式情報記録再生装置
JPH06274914A (ja) 光情報記録再生装置
JPS6282518A (ja) 光テ−プ装置
JPS63195828A (ja) 光デイスク装置の自動焦点制御方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740282

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008508606

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12295563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740282

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)