[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007094431A1 - 露光装置、露光方法及びデバイス製造方法 - Google Patents

露光装置、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
WO2007094431A1
WO2007094431A1 PCT/JP2007/052777 JP2007052777W WO2007094431A1 WO 2007094431 A1 WO2007094431 A1 WO 2007094431A1 JP 2007052777 W JP2007052777 W JP 2007052777W WO 2007094431 A1 WO2007094431 A1 WO 2007094431A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
pattern
light
image
substrate
Prior art date
Application number
PCT/JP2007/052777
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP07714307A priority Critical patent/EP1986224A4/en
Publication of WO2007094431A1 publication Critical patent/WO2007094431A1/ja
Priority to US12/222,583 priority patent/US20080316453A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-214783
  • a micro device such as a semiconductor device is formed by superimposing a plurality of patterns on a substrate.
  • a micro device electronic device
  • the present invention adopts the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • an exposure apparatus for exposing the substrate (P), wherein the first exposure light (EL1) from the first pattern (PA1) is supplied to the first exposure area (AR1). ) To the first exposure area ( The first pattern (PA1) image can be formed on AR1), and the second exposure light (EL2) from the second pattern (PA2) different from the first pattern (PA1) is irradiated to the second exposure area (AR2).
  • An optical system (PL) that can form an image of the second pattern (PA2) in the second exposure area (AR2), and a light receiving device that receives the detection light via at least part of the optical system (PL) ( 31), and the substrate (P1) includes the image of the first pattern (PA1) formed in the first exposure area (AR1) and the image of the second pattern (PA2) formed in the second exposure area (AR2).
  • Multiple exposure of the predetermined area (S) above In parallel with at least part of the operation, the positional relationship between the image of the first pattern (PA1) and the substrate through at least part of the optical system (PL)
  • an exposure apparatus (EX) including a detection system (30) for acquiring information on the positional relationship between the image of the second pattern (PA 2) and the substrate (P).
  • the substrate can be efficiently subjected to multiple exposure. Further, in parallel with at least a part of the multiple exposure operation, information on the positional relationship between the image of the first pattern, the image of the second pattern, and the substrate can be acquired. Based on the information obtained using the detection system, a pattern can be formed at a desired position on the substrate.
  • an exposure apparatus for exposing the substrate (P), wherein the first exposure light (EL1) from the first pattern (PA1) is incident and the first exposure light (EL1) is incident.
  • a second exposure light (EL2) from a second pattern (PA2) different from the pattern (PA1) has an optical element (20) on which at least one of the first exposure light (EL1) from the optical element (20) is incident.
  • the first exposure area (AR1) and the second exposure area (AR2) are irradiated to the first exposure area (AR1) and the second exposure area (AR2), respectively.
  • An optical system (PL) that can form an image of the first pattern (PA1) and an image of the second pattern (PA2) on (AR2), and the first exposure area (AR1) from the optical element (20)
  • a detection system (30) having a light receiving device (31) for receiving directional light as detection light in an area (35a) different from the second exposure area (AR2), and the first exposure area (AR1)
  • an exposure apparatus (EX) that performs multiple exposure of a predetermined area (S) on a substrate (P) with an image of a second pattern (PA2) formed in the two exposure areas (AR2).
  • the substrate can be efficiently subjected to multiple exposure. Also, based on the information obtained using the detection system, for example, the first pattern image and the second pattern image Can be formed in a predetermined region on the substrate in a desired positional relationship.
  • an exposure apparatus for exposing the substrate (P), wherein the first exposure light (EL1) from the first pattern (PA1) is incident and the first exposure light (EL1) is incident.
  • the exposure apparatus of the third aspect of the present invention using the polarization separation optical element and the detection system, the image of the first pattern and the image of the second pattern are placed in a predetermined region on the substrate with a desired positional relationship.
  • the substrate can be efficiently subjected to multiple exposure while being formed.
  • a device can be manufactured using an exposure apparatus that can efficiently perform multiple exposure of a substrate.
  • the exposure method of the fifth aspect of the present invention information on the positional relationship between the image of the first pattern, the image of the second pattern, and the substrate in parallel with at least a part of the multiple exposure operation Since the pattern can be obtained, the pattern can be surely overlapped and formed at a desired position on the substrate.
  • the first exposure area (AR1) is irradiated to form an image of the first pattern (PA1) in the first exposure area (AR1), and the first pattern (PA1) is different from the first pattern (PA1) through the optical element (20).
  • the second exposure area (AR2) By irradiating the second exposure area (AR2) with the second exposure light (EL2) from the two patterns (PA2), an image of the second pattern (PA2) is formed in the second exposure area (AR2).
  • An exposure method including receiving light directed to different areas as detection light (SA9) is provided.
  • the substrate can be efficiently subjected to multiple exposure. Further, based on information obtained by receiving light directed from the optical element toward an area different from the first exposure area and the second exposure area as detection light, for example, the first pattern image and the second pattern An image can be formed in a desired positional relationship in a predetermined region on the substrate.
  • the second exposure light (EL2) from the second pattern (PA2) different from the above is incident on the polarization separation optical element (20), and the first mark (RM1) and the second pattern related to the first pattern (PA1)
  • the position of the first and second marks (R Ml, RM2) is detected by detecting the second mark (R M2) related to (PA2) with light via the polarization separation optical element (30) (SA1 To SA4, SA9) and the first exposure light (EL1) and second exposure light (EL2) from the polarization separation optical element (30) to the first exposure area (AR1) and the second exposure area (AR2), respectively.
  • An exposure method including multiple exposure (SA9) of a predetermined region on the above is provided.
  • the image of the first pattern and the image of the second pattern are formed in a predetermined region on the substrate in a desired positional relationship by light passing through the polarization separation optical element.
  • the substrate can be efficiently subjected to multiple exposure.
  • a device manufacturing method in which the substrate is exposed by the exposure method of the above aspect of the present invention (SA9, 204), and the exposed substrate is developed ( And a device manufacturing method including processing the developed substrate (205).
  • SA9, 204 the exposure method of the above aspect of the present invention
  • a device manufacturing method including processing the developed substrate 205.
  • the substrate can be efficiently subjected to multiple exposure. Further, a pattern can be formed at a desired position on the substrate by multiple exposure. Therefore, a device having a desired performance can be manufactured with high productivity.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 (A) is a diagram showing an example of the first mask held on the first mask stage
  • FIG. 2 (B) is a diagram showing an example of the second mask held on the second mask stage. is there.
  • FIG. 3 is a schematic diagram showing a relationship between a shot region and first and second exposure regions of a substrate according to the first embodiment.
  • FIG. 4 is a diagram showing a light receiving device according to the first embodiment.
  • FIG. 5 is a view showing a light receiving surface of the light receiving device according to the first embodiment.
  • FIG. 6 is a schematic diagram showing images of first and second alignment marks formed on the light receiving surface.
  • FIG. 7 is a schematic diagram showing images of first and second alignment marks formed on the light receiving surface.
  • FIG. 8 is a diagram showing an example of an aerial image measuring device.
  • FIG. 9 is a flowchart for explaining an exposure method according to the first embodiment.
  • FIG. 10 is a view of the substrate stage for explaining an example of the exposure operation, and also viewing the upward force.
  • FIG. 11 is a schematic diagram for explaining an example of an exposure operation according to the first embodiment.
  • FIGS. 12A and 12B are diagrams for explaining an example of an exposure operation according to the first embodiment. It is a schematic diagram.
  • FIG. 13 is a schematic block diagram that shows an exposure apparatus according to a second embodiment.
  • FIG. 14 is a schematic diagram showing a relationship between a shot region and first and second exposure regions of a substrate according to a second embodiment.
  • FIG. 15 is a view showing a light receiving device according to a second embodiment.
  • FIG. 16 is a view showing a light receiving surface of a light receiving device according to a second embodiment.
  • FIG. 17 is a schematic block diagram that shows an exposure apparatus according to a third embodiment.
  • FIG. 18A is a view showing an example of the first mask held on the first mask stage
  • (B) is a diagram showing an example of a second mask held on the second mask stage.
  • FIG. 19 is a view showing alignment marks according to the third embodiment.
  • FIG. 20 is a view showing a light receiving device according to a third embodiment.
  • FIG. 21 is a view showing a light receiving surface of a light receiving device according to a third embodiment.
  • FIGS. 22A and 22B are schematic diagrams for explaining an example of an exposure operation according to the third embodiment.
  • FIG. 23 is a flowchart showing an example of a microdevice manufacturing process.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYz orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X axis direction, in the horizontal plane!
  • the direction perpendicular to the X-axis direction is the Y-axis direction, and the direction perpendicular to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and 0Z directions, respectively.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX is movable while holding a first mask stage 1 that can move while holding a first mask Ml having a first pattern PA1 and a second mask M2 that has a second pattern PA2.
  • the second mask stage 2 the substrate stage 4 that can move while holding the substrate P, the measurement system 3 that can measure the position information of each stage, and the first pattern PA1 of the first mask Ml with the first exposure light EL1 Of the first illumination system IL1 that illuminates the second pattern PA2 of the second mask M2 with the second exposure light EL2 and the first pattern PA1 illuminated with the first exposure light EL1.
  • a projection optical system PL that projects the image of the second pattern PA2 illuminated by the image and the second exposure light EL2 onto the substrate P, and a control device 5 that controls the operation of the entire exposure apparatus EX are provided.
  • the substrate stage 4 is movable on the base member BP on the light exit side of the projection optical system PL, that is, on the image plane side of the projection optical system PL.
  • the control device 5 is connected to a storage device 6 for storing various information relating to exposure.
  • the substrate referred to here includes, for example, a substrate in which a photosensitive material (photoresist) is coated on a base material such as a semiconductor wafer such as a silicon wafer, and a protective film (topcoat film) separately from the photosensitive film.
  • a photosensitive material photoresist
  • a base material such as a semiconductor wafer such as a silicon wafer
  • a protective film topcoat film
  • the mask includes a reticle on which a device pattern to be reduced and projected on a substrate is formed. For example, a predetermined pattern is formed on a transparent plate member such as a glass plate using a light shielding film such as chromium.
  • This transmissive mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and includes, for example, a phase shift mask such as a noise tone type or a spatial frequency modulation type.
  • a force reflection type mask using a transmission type mask as a mask may be used.
  • the first pattern PA1 and the second pattern PA2 are different patterns.
  • the first and second masks Ml and M2 may have different types of forces that are assumed to be the same type.
  • one of the first and second masks Ml and M2 can be a binary mask and the other can be a phase shift reticle! /.
  • the projection optical system PL of the present embodiment includes an optical element 20 on which the first exposure light EL1 from the first pattern PA1 and the second exposure light EL2 from the second pattern PA2 are incident.
  • the first exposure area AR1 and the second exposure area AR2 are set in a predetermined positional relationship on the light emission side of the projection optical system PL, that is, on the image plane side of the projection optical system PL.
  • the first exposure area AR1 and the second exposure area AR2 are set at the same position.
  • the projection optical system PL of the present embodiment includes a first optical system 11 that guides the first exposure light EL1 from the first pattern PA1 to the optical element 20, and a second exposure light EL2 from the second pattern PA2 to the optical element 20.
  • the optical element 20 includes at least a part of the first exposure light EL1 incident through the first optical system 11 and at least a part of the second exposure light EL2 incident through the second optical system 12.
  • the first exposure area AR1 and the second exposure area AR2 can be irradiated through the third optical system 13, respectively. That is, the projection optical system PL of the present embodiment includes at least a part of the first exposure light EL1 and at least a part of the second exposure light EL2 from the optical element 20 as the first exposure area AR1 and the second exposure area AR2. Each can be irradiated.
  • the projection optical system PL can irradiate the first exposure area EL1 with the first exposure light EL1 from the first pattern PA1, and can form an image of the first pattern PA1 in the first exposure area AR1.
  • the second exposure light beam EL2 from the second pattern PA2 can be irradiated to the second exposure area AR2, and an image of the second pattern PA2 can be formed in the second exposure area AR2. That is, the exposure apparatus EX of the present embodiment uses the first exposure light EL1 emitted from the first illumination system IL1 and irradiated to the first exposure area AR1 via the first pattern PA1 and the projection optical system PL.
  • the first pattern PA1 can be formed in the first exposure area AR1, and the second exposure area AR2 is emitted from the second illumination system IL2 and irradiated to the second exposure area AR2 through the second pattern PA2 and the projection optical system PL.
  • An image of the second pattern PA2 can be formed in the second exposure area AR2 with the exposure light EL2.
  • the projection optical system PL includes an image of the first pattern PA1 formed in the first exposure area AR1, and a second exposure area AR2.
  • the second pattern PA2 to be formed is commonly used to form both images.
  • the exposure apparatus EX of the present embodiment uses the substrate P with the image of the first pattern PA1 formed in the first exposure area AR1 and the image of the second pattern PA2 formed in the second exposure area AR2.
  • the upper shot area S is subjected to multiple exposure (double exposure).
  • the exposure apparatus EX of the present embodiment moves the first mask Ml, the second mask M2, and the substrate P in synchronization with each other in a predetermined scanning direction, and the image of the first pattern PA1 of the first mask Ml and This is a scanning exposure apparatus (so-called scanning stepper) that projects an image of the second pattern PA2 of the second mask M2 onto the substrate P.
  • the scanning direction (synchronous movement direction) of the substrate P is the Y-axis direction.
  • the exposure apparatus EX moves the first exposure area AR1 and the second exposure via the projection optical system PL while moving the shot area S of the substrate P in the Y-axis direction with respect to the first exposure area AR1 and the second exposure area AR2.
  • the exposure apparatus EX of the present embodiment moves the first mask Ml in the Y-axis direction and the second mask M2 in the Z-axis direction in synchronization with the movement of the substrate P in the Y-axis direction. That is, in the present embodiment, the scanning direction (synchronous movement direction) of the first mask Ml is the Y-axis direction, and the scanning direction (synchronous movement direction) of the second mask M2 is the Z-axis direction.
  • the exposure apparatus EX of the present embodiment has a light receiving device 31 that receives detection light via at least a part of the projection optical system PL, and an image of the first pattern PA1 and an image of the second pattern PA2 And a detection system 30 for acquiring information on the positional relationship between the substrate P and the substrate P.
  • the light receiving device 31 of the detection system 30 is provided in the barrel PK of the projection optical system PL.
  • the first exposure area AR1 and the second exposure area AR2 from the optical element 20 are not directed to either direction, i.e., in a direction or area different from the first exposure area AR1 and the second exposure area AR2 (here, the upper surface 35a of the light receiving device 31). A part of at least one of them is received as detection light.
  • the light from the optical element 20 is received between the optical element 20 and the light receiving device 31. At least one optical element is arranged to lead to 1, but is not shown for the sake of simplicity.
  • the optical element 20 of the present embodiment includes a polarization separation optical element that separates each of the first exposure light EL1 and the second exposure light EL2 into exposure light in the first polarization state and exposure light in the second polarization state ( For example, it includes a polarizing beam splitter.
  • the projection optical system PL combines a part of the first exposure light EL1 from the first pattern PA1 separated by the optical element 20 and a part of the second exposure light EL2 from the second pattern PA2 separated by the optical element 20.
  • the first exposure area AR1 and the second exposure area AR2 are respectively irradiated.
  • the light receiving device 31 does not go from the optical element 20 to the first exposure area AR1 or the second exposure area AR2 out of the first exposure light EL1 and the second exposure light EL2 incident on the optical element 20. At least one of the first exposure light EL1 and the second exposure light EL2 is received as detection light.
  • the first and second illumination systems IL1 and IL2 will be described.
  • the first illumination system IL1 illuminates the first illumination area IA1 on the first mask Ml held by the first mask stage 1 with the first exposure light EL1 having a uniform illuminance distribution.
  • the illumination optical system of the first illumination system IL1 is, for example, a shaping optical system with variable illumination conditions, an illuminance uniformizing member that uniformizes the illuminance distribution of the first exposure light EL1, such as an internal reflection type integrator or fly-eye lens. Etc.), a mask blind system (also called a masking system or variable field stop) that defines the first illumination area IA1, and a relay optical system.
  • the second illumination system IL2 for example, a shaping optical system that makes the illumination conditions variable, an illuminance uniformity member that uniformizes the illuminance distribution of the second exposure light EL2, a mask blind system that defines the second illumination area IA2, And a relay optical system.
  • the shaping optical system provided in the first illumination system IL1 includes, for example, an exchangeable diffractive optical element, a plurality of prisms (such as an axicon) having a variable interval, and a zoom optical system (a before power system).
  • the pupil plane of the illumination optical system that is optically conjugate with the pupil plane of the projection optical system PL by at least one of the replacement of the diffractive optical element, the movement of the prism (change of the above-mentioned interval), and the movement of the zoom optical system.
  • the intensity distribution of the first exposure light EL1 is changed (in other words, the shape and Z or size of the secondary light source formed on the pupil plane of the illumination optical system is changed).
  • the illumination condition of the first mask Ml is changed. Therefore, the illumination optical system can set illumination conditions corresponding to the pattern of the first mask Ml and It is also possible to change the illumination conditions according to the change.
  • At least a part of the mask blind system provided in the first illumination system IL1 for example, a plurality of independently movable light-shielding plates (masking blades) is provided on the surface of the first mask Ml in the illumination optical system.
  • the size (width) of the illumination area IA1 on the first mask Ml is changed by moving at least one of the plurality of light shielding plates. Therefore, the size (width) of the first exposure area AR1 (the projection area of the image of the first pattern PA1 conjugate with the first illumination area IA1 with respect to the projection optical system PL) can be adjusted by this mask blind system. .
  • the light source device may be controlled to prevent unnecessary exposure.
  • the second illumination system IL2 illuminates the second illumination area IA2 on the second mask M2 held by the second mask stage 2 with the second exposure light EL2 having a uniform illuminance distribution.
  • the illumination optical system of the second illumination system IL2 has the same configuration as that of the illumination optical system of the first illumination system IL1, and a detailed description thereof will be omitted. Note that the first illumination system IL1 and the second illumination system IL2 may share a part thereof (for example, a light source device or a part of the illumination optical system).
  • first and second exposure lights EL1 and EL2 emitted from the first and second illumination systems IL1 and IL2 for example, bright lines (g-line, h-line, i Line) and KrF excimer laser light (wavelength 248nm) and other deep ultraviolet light (DUV light), ArF excimer laser light (wavelength 193 ⁇ m) and F laser light (wavelength 157nm) vacuum ultraviolet light (VUV light), etc. Used. Book
  • ArF excimer laser light is used as the first and second exposure lights EL1 and EL2.
  • the exposure apparatus EX of the present embodiment has a first light source device corresponding to the first illumination system IL1, and a second light source device corresponding to the second illumination system IL2. That is, the exposure apparatus EX of the present embodiment has a plurality of light source devices (excimer laser light source devices).
  • the first illumination system IL1 illuminates the first pattern PA1 of the first mask Ml with the first exposure light EL1 in the first polarization state, and the second illumination system IL2 in the second polarization state.
  • the second pattern PA2 of the second mask M2 is illuminated with the second exposure light EL2.
  • the first illumination system IL1 illuminates the first mask Ml with the first exposure light EL1 whose main component is the P-polarized component (for example, the P-polarized component is 90% or more), and the second illumination system IL2
  • the second mask M2 is illuminated with the second exposure light EL2 whose S polarization component is the main component (for example, the S polarization component is 90% or more).
  • the exposure light emitted from one light source device is separated into first exposure light EL1 in the first polarization state and second exposure light EL2 in the second polarization state, and the first exposure light EL1 and the first exposure light EL1 are separated from each other.
  • the first pattern PA1 and the second pattern PA2 may be illuminated with the two exposure light EL2.
  • the first mask stage 1 is movable at least in the X axis, Y axis, and ⁇ Z directions by holding the first mask Ml by driving the first mask stage driving device 1D including an actuator such as a linear motor. is there.
  • the first mask stage 1 holds the first mask Ml so that the first pattern forming surface on which the first pattern PA1 of the first mask Ml is formed and the XY plane are substantially parallel.
  • the position information of the first mask stage 1 (and hence the first mask Ml) is measured by the laser interferometer 301 of the measurement system 3.
  • the laser interferometer 301 measures the position information of the first mask stage 1 using the reflecting surface 301K provided on the first mask stage 1.
  • the control device 5 drives the first mask stage driving device 1D based on the measurement result of the laser interferometer 301, and controls the position of the first mask M1 held on the first mask stage 1.
  • the second mask stage 2 can move in at least the Z axis, the X axis, and the ⁇ Y direction by holding the second mask M2 by driving the second mask stage driving device 2D including an actuator such as a linear motor. is there.
  • the second mask stage 2 holds the second mask M2 so that the second pattern forming surface on which the second pattern PA2 of the second mask M2 is formed and the XZ plane are substantially parallel.
  • the position information of the second mask stage 2 (! /, Second mask M2) is measured by the laser interferometer 302 of the measurement system 3.
  • the laser interferometer 302 measures the position information of the second mask stage 2 using the reflecting surface 302K provided on the second mask stage 2.
  • the control device 5 drives the second mask stage drive device 2D and is held by the second mask stage 2! And controls the position of the second mask M2. .
  • FIG. 2 (A) is a plan view showing the first mask Ml held on the first mask stage 1
  • FIG. ) Is a plan view showing the second mask M2 held on the second mask stage 2.
  • the first mask stage 1 has the first mask Ml so that the first pattern formation surface on which the first pattern PA1 of the first mask Ml is formed and the XY plane are substantially parallel to each other.
  • the second mask stage 2 holds the second mask M2 so that the second pattern forming surface on which the second pattern PA2 of the second mask M2 is formed and the XZ plane are substantially parallel to each other.
  • the first illumination area IA1 by the first exposure light EL1 on the first mask Ml is set to a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction
  • the second exposure on the second mask M2 The second illumination area IA2 by the light EL2 is also set to a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction.
  • the first mask stage 1 can move the first mask Ml having the first pattern PA1 in the Y-axis direction with respect to the first exposure light EL1. Further, the second mask stage 2 can move the second mask M2 having the second pattern PA2 in the Z-axis direction with respect to the second exposure light EL2.
  • the control device 5 exposes one shot area on the substrate P
  • the first pattern formation area SA1 in which at least the first pattern PA1 is formed in the first mask Ml is generated by the first exposure light EL1.
  • the first mask stage 1 is controlled to move the first mask Ml in the Y-axis direction so as to pass through the first illumination area IA1.
  • the second pattern formation area SA2 in which at least the second pattern PA2 is formed in the second mask M2 is second exposure.
  • the second mask stage 2 is controlled to move the second mask M2 in the Z-axis direction so as to pass through the second illumination area IA2 by the light EL2.
  • the first mask Ml includes a first alignment mark RM1 formed in a predetermined positional relationship with the first pattern PA1, and the second mask M2 is formed in a predetermined positional relationship with the second pattern PA2.
  • the second alignment mark RM2 is provided.
  • the first and second alignment marks RM1 and RM2 each include a two-dimensional mark, for example, a cross mark.
  • a plurality of the first alignment marks RM1 are formed in a predetermined region in the first pattern formation surface on which the first pattern PA1 is formed in the first mask Ml.
  • the first alignment mark RM1 is formed on the first mask Ml in each of the + X side and X side edge regions of the first pattern formation region SA1 of the first mask M1. Are formed side by side along the scanning direction (Y-axis direction). Therefore, all of the first alignment mark RM1 is changed from the first illumination system IL1 by the relative movement of the first illumination area IA and the first mask Ml. Illuminated with 1 exposure light ELI.
  • a plurality of second alignment marks RM2 are formed in a predetermined region within the second pattern formation surface where the second pattern PA2 is formed in the second mask M2.
  • the second alignment mark RM2 is the second alignment mark RM2 in each of the + X side and ⁇ X side edge regions of the second pattern formation region SA2 of the second mask M2.
  • a plurality of masks M2 are formed side by side along the scanning direction (Z-axis direction). Therefore, the second alignment mark RM2 is all illuminated with the second exposure light EL2 from the second illumination system IL2 by the relative movement of the second illumination area IA2 and the second mask M2.
  • the first alignment mark RM1 and the second alignment mark RM2 are formed on the first mask Ml and the second mask M2 so as to correspond to each other.
  • the number and arrangement of the first and second alignment marks RM1 and RM2 are not limited to those shown in FIG. 2.
  • the first and second alignment marks RM1 and RM2 are used as the first and second pattern formation surfaces. Form outside.
  • the projection optical system PL predetermines the image of the first pattern PA1 of the first mask M1 illuminated with the first exposure light EL1 and the image of the second pattern PA2 of the second mask M2 illuminated with the second exposure light EL2. Is projected onto the substrate P at a projection magnification of.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is 1Z4, 1/5, 1Z8, or the like.
  • a plurality of optical elements of the projection optical system PL are held by a lens barrel PK.
  • Projection optical system PL of the present embodiment includes a plurality of optical elements, and includes a first optical system 11 that guides first exposure light EL1 from first pattern PA1 to optical element 20, and a plurality of optical elements.
  • a second optical system 12 for guiding the second exposure light EL2 from the second pattern PA2 to the optical element 20 and a plurality of optical elements, and the first exposure light EL1 and the second exposure light EL2 from the optical element 20
  • a third optical system 13 for guiding each of the first exposure area AR1 and the second exposure area AR2.
  • the optical element 20 includes a first incident surface 21 on which the first exposure light EL1 from the first pattern PA1 of the first mask Ml is incident, and a second exposure light from the second pattern PA2 of the second mask M2. It has a second incident surface 22 on which EL2 is incident.
  • the first exposure light EL1 from the first pattern PA1 of the first mask Ml enters the first incident surface 21 of the optical element 20 through the first optical system 11.
  • the second The second exposure light EL2 from the second pattern PA2 of the two mask M2 is incident on the second incident surface 22 of the optical element 20 through the second optical system 12. That is, the first exposure light EL1 and the second exposure light EL2 are incident on the optical element 20 from different directions (here, orthogonal directions).
  • the optical element 20 is a polarization separation optical element (polarization beam splitter), and the first exposure light EL1 in the first polarization state is the exposure light mainly composed of the P polarization component, and the second polarization state.
  • the second exposure light EL2 is exposure light mainly composed of an S-polarized component.
  • part of the first exposure light EL1 (P-polarized component) incident on the optical element 20 from the first pattern PA1 via the first incident surface 21 is a predetermined surface (polarization separation surface).
  • Part of the second exposure light EL2 that has passed through 25, exited from the first exit surface 23 of the optical element 20, and entered the optical element 20 from the second pattern PA2 through the second entrance surface 22 (S-polarized light) Component) is reflected from the predetermined surface 25 and is emitted from the first exit surface 23 of the optical element 20. That is, a part of the first exposure light EL1 and a part of the second exposure light EL2 incident on the optical element 20 from different directions are emitted from the same surface (first emission surface 23) of the optical element 20 in the same direction.
  • the “P-polarized component” is linearly polarized light that is parallel to the incident surface of the incident light (first exposure light EL1) on the polarization separation surface 25 (oscillates within the incident surface), and the “S-polarized component” is It is linearly polarized light perpendicular to the incident surface of the incident light (second exposure light EL2) on the polarization separation surface 25 (vibrates in a plane perpendicular to the incident surface). Then, the first exposure light EL1 and the second exposure light EL2 emitted from the first emission surface 23 are respectively irradiated to the first exposure area AR1 and the second exposure area AR2 via the third optical system 13.
  • the other part (S-polarized light component) of the first exposure light EL1 incident on the optical element 20 from the first pattern PA1 via the first incident surface 21 does not go to the first exposure area AR1
  • the other part of the second exposure light EL2 reflected from the predetermined surface 25 and emitted from the second exit surface 24 of the optical element 20 and incident on the optical element 20 from the second pattern PA2 via the second incident surface 22 ( (P-polarized component) passes through the predetermined surface 25 and exits from the second exit surface 24 of the optical element 20 without going to the second exposure area AR2.
  • the other part of the first exposure light EL1 and the other part of the second exposure light EL2 incident on the optical element 20 from different directions are emitted in the same direction from the same surface (second emission surface 24) of the optical element 20. Head to the light receiving device 31.
  • first exposure light EL1 P-polarized component
  • second exposure light EL2 S-polarized component
  • the first dew as appropriate Light beam ELI (P) and second exposure light beam EL2 (S), respectively
  • a part of the first exposure light beam EL1 (S-polarized component) and a part of the second light beam EL2 emitted from the second exit surface 24 (P-polarized light component) will be appropriately referred to as first exposure light ELI (S) and second exposure light EL2 (P), respectively.
  • the detection system is located at a position where the first exposure light ELI (S) and the second exposure light EL2 (P) emitted from the second emission surface 24 of the optical element 20 can be irradiated.
  • Thirty light receiving devices 31 are arranged.
  • the light receiving device 31 is provided in the lens barrel PK of the projection optical system PL, but the measurement is provided with a member other than the projection optical system PL (lens barrel PK), for example, the alignment system 7 or the like. It may be arranged on a frame (not shown).
  • the light receiving device 31 is not directed to either the first exposure area AR1 or the second exposure area AR2 from the optical element 20, and the first exposure light EL1 (S) and the second exposure light EL2 emitted from the second emission surface 24. (P) can be received.
  • the imaging characteristics (imaging state) of the image of the first pattern PA1 and the image of the second pattern PA2 by the projection optical system PL can be independently adjusted.
  • 1) Image formation characteristic adjustment device LC1 and 2nd image formation characteristic adjustment device LC2 are provided.
  • the first and second imaging characteristic adjusting devices LC1 and LC2 include an optical element driving mechanism capable of moving at least one of the plurality of optical elements of the projection optical system PL.
  • the first imaging characteristic adjusting device LC1 moves at least one specific optical element of the first optical system 11 in the Z-axis direction parallel to the optical axis of the first optical system 11 and the direction perpendicular to the optical axis. It can move in the (X-axis and Y-axis directions) and can be tilted with respect to the XY plane orthogonal to the optical axis (that is, it can rotate in ⁇ , 0 Y direction).
  • the first exposure light EL1 from the first pattern PA1 is irradiated to the first exposure area AR1 via the first optical system 11, the optical element 20, and the third optical system 13, and the first imaging characteristic adjustment device LC1
  • the imaging characteristics of the image of the first pattern P A1 formed by the first exposure light EL1 irradiated to the first exposure area AR1 can be adjusted It is.
  • the second imaging characteristic adjustment device LC2 moves at least one specific optical element of the second optical system 12 in the Y-axis direction parallel to the optical axis of the second optical system 12 and the direction perpendicular to the optical axis. It can move in the (X-axis and Z-axis directions) and can tilt with respect to the XZ plane orthogonal to the optical axis (that is, it can rotate in the ⁇ X and ⁇ Z directions).
  • the second exposure light EL2 from the second pattern PA2 The second exposure area AR2 is irradiated through the optical system 12, the optical element 20, and the third optical system 13, and the second imaging characteristic adjustment device LC2 drives a specific optical element of the second optical system 12.
  • the first and second imaging characteristic adjusting devices LC1 and LC2 are controlled by the control device 5.
  • the control device 5 uses the first and second imaging characteristic adjustment devices LC1 and LC2 to drive specific optical elements of the projection optical system PL (first and second optical systems 11 and 12), thereby projecting. It is possible to adjust imaging characteristics including various types of optical system PL (for example, distortion, astigmatism, spherical aberration, wavefront aberration, etc.), projection magnification, and image plane position (focal position).
  • control device 5 uses the first and second imaging characteristic adjustment devices LC1 and LC2 to position the images of the first and second patterns PA1 and PA2 in the XY direction and the Z or 0Z direction. Adjustments (ie shift adjustments and Z or rotation adjustments) can also be made.
  • the control device 5 uses the first and second imaging characteristic adjusting devices LC1 and LC2 to adjust the state (size, distortion, etc.) of the images of the first and second patterns PA1 and PA2.
  • First and second patterns PA1 and PA2 where the images of the projection optical system PL on which the respective images are formed are adjusted in the Z-axis direction, and in the ⁇ X and ⁇ Y directions, and in the first and second patterns.
  • Two patterns PA1 and PA2 can adjust the position of each image in the X-axis, Y-axis, and ⁇ Z directions.
  • At least one optical element of the first and second optical systems 11 and 12 that is moved by the first and second imaging characteristic adjusting devices LC1 and LC2 is limited to a lens.
  • other optical elements such as a plane parallel plate or a reflecting element may be used.
  • two imaging characteristic adjustment devices (LC1, LC2) are provided.
  • only one imaging characteristic adjustment device may be provided, or three or more imaging characteristic adjustment devices may be provided.
  • a device may be provided.
  • at least one optical element of the third optical system 13 can be moved in the Z-axis direction, X-axis, and Y-axis directions parallel to the optical axis of the third optical system 13, and rotated in the ⁇ X and ⁇ Y directions.
  • the first imaging characteristic adjustment device LC1 is in the X-axis, Y-axis, Z-axis, ⁇ X, and ⁇ Y directions with five degrees of freedom
  • the second imaging characteristic adjustment device LC2 is the X-axis.
  • Y-axis, Z-axis, ⁇ X and ⁇ Z directions are each moved in the direction of 5 degrees of freedom.
  • the direction is not limited.
  • the imaging characteristic adjusting device adopts a method of moving the optical element, but other methods may be used instead or in combination.
  • a pressure adjusting mechanism that adjusts the gas pressure in the space between some optical elements held inside the lens barrel PK may be used. .
  • An exposure apparatus equipped with an image formation characteristic adjustment device capable of adjusting the image formation characteristic of the pattern image by the projection optical system is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-78454 (corresponding US Pat. No. 4,666,273). ), JP-A-11-195602 (corresponding US Pat. No. 6,235,438), WO 03Z65428 pamphlet (corresponding US Patent Application Publication No. 2005Z0206850), and the like.
  • the substrate stage 4 is movable while holding the substrate P in a predetermined area including the first exposure area AR1 and the second exposure area AR2 irradiated with the first exposure light EL1 and the second exposure light EL2.
  • the substrate stage 4 includes, for example, a substrate holder 4H that holds the substrate P while being supported in a non-contact manner on the base member BP by an air bearing.
  • the substrate holder 4H holds the substrate P so that the surface of the substrate P and the XY plane are substantially parallel.
  • the substrate stage 4 is driven by a substrate stage driving device 4D including an actuator such as a linear motor, for example, and the substrate P is moved in six degrees of freedom in the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions. Can be moved to.
  • a substrate stage driving device 4D including an actuator such as a linear motor, for example, and the substrate P is moved in six degrees of freedom in the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions. Can be moved to.
  • the position information of the substrate stage 4 (and thus the substrate P) is measured by the laser interferometer 304 of the measurement system 3.
  • the laser interferometer 304 measures the positional information of the substrate stage 4 in the X axis, Y axis, and ⁇ Z directions using the reflective surface 304 K provided on the substrate stage 4.
  • the surface position information (position information about the Z axis, ⁇ X, and ⁇ Y directions) of the surface of the substrate P held on the substrate stage 4 is detected by a focus leveling detection system (not shown). Is done.
  • the control device 5 drives the substrate stage driving device 4D based on the measurement result of the laser interferometer 304 and the detection result of the focus' repelling detection system, and controls the position of the substrate P held on the substrate stage 4.
  • the focus leveling detection system measures the position information in the Z-axis direction of the substrate P at each of the plurality of measurement points, as disclosed in, for example, US Pat. No. 6,608,681, and obtains the surface position information. Multiple points to detect A position detection system can be used.
  • at least a part of the plurality of measurement points is set in the first and second exposure areas AR1 and AR2. For example, in the example of the liquid immersion light exposure apparatus described later, all the measurement points are set. May be set outside the first and second exposure areas AR1 and AR2 (or the immersion area).
  • the laser interferometer 304 is also capable of measuring positional information of the substrate stage 4 in the Z-axis, ⁇ , and ⁇ Y directions.
  • the focus / leveling detection system may not be provided.
  • the substrate stage 4 includes at least a part of the aerial image measuring instrument 162 as disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-14005 (corresponding to US Patent Application Publication No. 2002Z0041377). Is arranged.
  • the control device 5 uses the aerial image measuring instrument 162 to detect the position information of the image of the first pattern PA1 formed in the first exposure area AR1 in the XY coordinate system defined by the measurement system 3, and the second exposure area. At least one of the positional information of the image of the second pattern PA2 formed on AR2 can be acquired.
  • the aerial image measuring device 162 since the aerial image measuring device 162 detects at least one of the images of the first and second alignment marks R Ml and RM2 of the first and second masks Ml and M2, the first and second masks in the XY coordinate system are detected. At least one of the projection positions of the second patterns PA1 and PA2 can also be obtained.
  • the exposure apparatus EX of the present embodiment detects a reference mark FP provided on the substrate stage 4 and an alignment mark AM provided on the substrate P.
  • the equipment system 7 is provided.
  • the alignment system 7 is an offset system alignment system provided in the vicinity of the projection optical system PL.
  • JP-A-4-65603 corresponding US Pat. No. 5,493,403
  • the broadband detection luminous flux is not subject to the photosensitive material on the substrate P as disclosed in the issue No., etc., and the reference mark formed on the substrate stage 4 and the alignment mark AM formed on the substrate P.
  • Element This is a FIA (Field Image Alignment) type alignment system that measures the position of a mark by taking an image using D) and processing the image signals.
  • This index defines the detection reference position of the alignment system 7 in the XY coordinate system defined by the measurement system 3.
  • the alignment system 7 detects the positional relationship (displacement) between the image of the mark to be detected and the index, and the control device 5 obtains the detected positional relationship from the measurement system 3 when the alignment system 7 detects the mark.
  • the position (coordinate value) of the detection target mark in the XY coordinate system defined by the measurement system 3 can be detected.
  • the baseline amount of the alignment system 7, that is, the distance between the alignment reference position of the alignment system 7 in the XY coordinate system and at least one projection position of the images of the first and second patterns PA1 and PA2 is ,
  • the alignment mark AM and the reference mark FP of the substrate P each include a two-dimensional mark, for example, two periodic marks that are periodically arranged in the X-axis and Y-axis directions.
  • FIG. 3 is a schematic diagram showing the positional relationship between the shot area S on the substrate P and the first and second exposure areas AR1 and AR2.
  • the first exposure area AR1 by the first exposure light EL1 on the substrate P is set to a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction.
  • the second exposure area AR2 by the second exposure light EL2 is also set to a rectangular shape (slit shape) whose longitudinal direction is the X-axis direction.
  • the first exposure area AR1 irradiated with the first exposure light EL1 and the second exposure area AR2 irradiated with the second exposure light EL2 overlap (match). ing.
  • the 3 also shows an example of alignment mark AM for detecting the position information of shot area S on substrate P.
  • the force marks AM are formed on both sides of the shot area S in the Y-axis direction.
  • the number and position of the alignment marks AM are not limited to this.
  • the substrate stage 4 is movable in the Y-axis direction with respect to the first exposure area AR1 and the second exposure area R2 in the shot area S on the substrate P.
  • the controller 5 exposes the substrate P
  • the substrate 5 The substrate stage 4 is controlled to move the substrate P in the Y-axis direction so that the shot area S on P passes through the first and second exposure areas AR1 and AR2 by the first and second exposure lights EL1 and EL2. To do.
  • FIG. 4 is a schematic configuration diagram showing the detection system 30.
  • the detection system 30 is for acquiring information on the positional relationship between the image of the first pattern PA1, the image of the second pattern ⁇ 2 and the shot area S on the substrate ⁇ , and is at least of the projection optical system PL.
  • a light receiving device 31 capable of receiving at least one part of the first exposure light EL1 and the second exposure light EL2 through a part thereof is provided.
  • the light receiving device 31 includes the first exposure light ELI (where the first exposure area AR1 and the second exposure area AR2 emitted from the second emission surface 24 of the optical element 20 are not suitable for misalignment. S) and the second exposure light beam EL2 (P) are received as detection light for acquiring information on the positional relationship described above.
  • the light receiving device 31 includes a plate member 35 having a transmission part (opening) 36 through which the first exposure light EL1 (S) and the second exposure light EL2 (P) can pass, and a plate And a light receiving element 32 that receives the light that has passed through the transmitting portion 36 (first position) of the member 35 via a predetermined optical system 33.
  • the first and second exposure lights ELI (S) and EL2 (P) are emitted from the second emission surface 24 of the optical element 20 and irradiated to the light receiving surface 32a of the light receiving element 32 via the optical system 33 of the light receiving device 31. Is done.
  • the plate member 35 is made of, for example, quartz, and can transmit the first and second exposure lights ELI (S) and EL2 (P).
  • the transmission part 36 is formed by forming an opening in a light shielding region made of a metal such as Cr (chrome) on the upper surface 35a of the plate member 35.
  • the transmission part 36 is provided at two locations separated in the X-axis direction in accordance with the arrangement of the alignment marks RM1 and RM2.
  • the light that has passed through the transmission part (opening) 36 of the plate member 35 is received by the light receiving element 32 through the optical system 33.
  • the light receiving element 32 includes a photoelectric conversion element such as an image pickup element (CCD or the like), a photomultiplier tube (PMT, a photomultiplier tube) or the like.
  • the upper surface 35a of the plate member 35 of the light receiving device 31 is disposed at a position (or its vicinity) optically conjugate with the object plane (not shown) and the image plane (not shown) of the projection optical system PL. RU That is, the upper surface 35a of the plate member 35 of the light receiving device 31 is positioned optically conjugate with (or in the vicinity of) the first and second pattern formation surfaces of the first and second masks Ml and M2 and the surface of the substrate P. ). Further, the upper surface 35 a of the plate member 35 of the light receiving device 31 and the light receiving surface 32 a of the light receiving element 32 are optically conjugate with each other via the optical system 33. Therefore, the first exposure area AR1, second The first exposure light ELI (S) and the second exposure light EL2 (P) are incident on the upper surface 35a of the plate member 35 in the same positional relationship as the exposure area AR2.
  • FIG. 5 is a view showing the upper surface 35 a of the plate member 35 of the light receiving device 31.
  • the first and second exposure lights EL1 and EL2 are emitted from the first and second illumination systems IL1 and IL2 and enter the projection optical system PL, the first exposure light ELI (S ) And second exposure light EL2 (P).
  • the first exposure area AR1 and the second exposure area AR2 overlap on the image plane of the projection optical system PL.
  • the area AR2 ′ irradiated with the second exposure light EL2 (P) is formed so as to overlap.
  • the area AR1 'irradiated with the first exposure light EL1 on the upper surface 35a of the plate member 35 of the light receiving device 31 is appropriately referred to as a first detection light area AR1'
  • the second The area AR2 ′ irradiated with the exposure light EL2 is appropriately referred to as a second detection light area AR2 ′.
  • the upper surface 35a of the plate member 35 is disposed at a position (or its vicinity) optically conjugate with the object plane and the image plane of the projection optical system PL.
  • An image of the first pattern PA1 is formed in the first detection light region AR1 ′ by the first exposure light ELI (S) irradiated to the first detection light region AR1 ′ on the upper surface 35a of the first surface, and the first detection light region AR1 ′ on the light receiving surface 32a
  • An image of the second pattern PA2 is formed in the second detection light area AR2 ′ by the second exposure light EL2 (P) irradiated to the second detection area AR2 ′.
  • the first alignment mark RM1 on the first mask Ml can be arranged inside the first illumination area IA1. Therefore, it can be illuminated with the first exposure light EL1 from the first illumination system IL1.
  • the second alignment mark RM2 on the second mask M2 can be arranged inside the second illumination area IA2, it can be illuminated with the second exposure light EL2 from the second illumination system IL2. Therefore, an image of the first alignment mark RM1 is also formed in the first detection light region AR1 on the upper surface 35a of the plate member 35, and the second detection region AR2 on the upper surface 35a of the plate member 35 is An image of the second alignment mark RM2 is also formed. That is, in the present embodiment, the image of the first alignment mark RM1 and the second alignment mark are formed on the upper surface 35a of the plate member 35 via the optical element 20 of the projection optical system PL. The image of Tomark RM2 is formed.
  • the transmission part 36 of the light receiving device 31 has an image of the first alignment mark RM1 and an image of the second alignment mark RM2 on the upper surface 35a of the plate member 35. It is arranged at two positions where it can be formed. Further, as described above, the light receiving surface 32a of the light receiving element 32 is disposed at a conjugate position with respect to the transmission part 36 of the plate member 35 and the optical system 33, and therefore, the first light receiving surface 32a of the light receiving device 31 has the first light receiving surface 32a.
  • the image of the second pattern PA1, PA2 is not formed, and only the image of at least one of the first alignment mark RM1 and the second alignment mark RM2 can be formed.
  • the light receiving device 31 includes the first exposure light ELI (S) from the first alignment mark RM1 and the second exposure light from the second alignment mark RM2.
  • the light EL2 (P) is received as detection light through a part of the projection optical system PL including the optical element 20.
  • FIG. 6 is a schematic diagram showing an example of a state in which the image power of the first alignment mark RM1 is formed on the light receiving surface 32a.
  • images of four edges of the transmission part (opening) 36 of the plate member 35 are formed in a rectangular shape on the light receiving surface 32a of the light receiving device 31 of the detection system 30 of the present embodiment.
  • an image of the first alignment mark RM1 is formed inside the edge image of the transmission part 36.
  • the transmissive part 36 (the edge image of the transmissive part 36) serves as a reference when determining the position information of the images of the first and second patterns PA1 and PA2.
  • the first pattern PA1 on the first mask Ml and the first alignment mark RM1 are formed in a predetermined positional relationship.
  • the positional relationship between the image of the first alignment mark RM1 and the edge image of the transmission part 36 and the projection position of the first alignment mark RM1 in the first exposure area AR1 are associated in advance. Accordingly, as will be described later, the positional relationship between the image of the first alignment mark RM1 formed on the light receiving surface 32a of the light receiving element 32 via a part of the projection optical system PL and the edge image of the transmitting portion 36 is obtained.
  • the position information of the image of the first alignment mark RM1 formed in the first exposure area AR1 and thus the image of the first pattern PA1, and the position information of the first pattern PA1 (first mask Ml) It is possible to acquire positional deviation information from the target position.
  • control device 5 determines the position information of the image of the first pattern PA1 formed in the first exposure area AR1 and the Z or Z based on the light reception result of the light receiving device 31. Can acquire position information of the first pattern PA1 (first mask Ml). Note that the position information acquired by the control device 5 includes rotation information that includes only position information in the X-axis direction and the Y-axis direction.
  • control device 5 receives the light reception result of the light receiving device 31 (the positional relationship between the image of the second alignment mark RM2 formed on the light receiving surface 32a of the light receiving element 32 and the edge image of the transmitting portion 36). Based on this, it is possible to acquire the position information of the image of the second pattern PA2 formed in the second exposure area AR2 and the position information of the Z or the second pattern PA2 (second mask M2).
  • control device 5 determines the positional relationship between the first pattern image and the second pattern image formed in the exposure area (AR1, AR2), and the first pattern. It is possible to obtain at least one of the positional relationships between the one pattern PA1 (first mask Ml) and the second pattern PA2 (second mask M2).
  • the control device 5 In the state where the emission of the second exposure light EL2 from the second illumination system IL2 is stopped, the first alignment mark RM1 may be illuminated with the first exposure light EL1 from the first illumination system IL1.
  • the second pattern PA 2 formed on the light receiving surface 32a is formed by forming only the image of the second alignment mark RM2 without forming the image of the first alignment mark RM1 on the light receiving surface 32a.
  • the control device 5 uses the second exposure light EL2 from the second illumination system IL2 in a state where the emission of the first exposure light EL1 from the first illumination system IL1 is stopped. 2 Alignment mark RM2 should be illuminated.
  • the image of the first alignment mark RM1 and the image of the second alignment mark RM2 may be simultaneously formed on the light receiving surface 32a of the light receiving element 32.
  • FIG. 7 is a schematic diagram showing an example of a state in which the image of the first alignment mark RM1 and the image power receiving element 32 of the second alignment mark RM2 are formed on the light receiving surface 32a.
  • an image of the first pattern PA1 and an image of the second pattern PA2 are formed on the light receiving surface 32a.
  • the detection system 30 uses the image of the first alignment mark R Ml formed on the light receiving surface 32a of the light receiving device 31 through a part of the projection optical system PL based on the light reception result of the light receiving device 31, and the transmission portion 36.
  • Positional relationship with the edge image and the image of the second alignment mark RM2 And the positional relationship between the transmissive part 36 and the edge image.
  • the first pattern PA1 on the first mask Ml and the first alignment mark RM1 are formed in a predetermined positional relationship, and the second pattern PA2 and the second alignment mark RM2 on the second mask M2 are predetermined. It is formed by positional relationship. Therefore, the control device 5 determines the position information of the image of the first pattern PA1 formed in the first exposure area AR1 and the second exposure area AR2 based on the light reception result of the light receiving device 31.
  • the image of the first alignment mark RM1 and the image of the second alignment mark RM2 are simultaneously formed on the light receiving surface 32a of the light receiving device 31, the image of the first alignment mark RM1 and the second alignment mark are formed.
  • the shape of the first alignment mark RM1 and the shape of the second alignment mark RM2 may be different.
  • the control device 5 in order to form each of the first alignment mark RM1 image and the second alignment mark RM2 image on the light receiving surface 32a, the control device 5 must The first alignment mark RM1 may be illuminated with the first exposure light EL1 from the illumination system IL1, and the second alignment mark RM2 may be illuminated with the second exposure light EL2 from the second illumination system IL2.
  • FIG. 8 is a diagram showing the aerial image measuring instrument 162.
  • the control device 5 uses the aerial image measuring instrument 162 to determine the position information of the image of the first pattern PA1 formed in the first exposure area AR1 and the second pattern PA2 formed in the second exposure area AR2. Image position information can be measured.
  • at least a part of the aerial image measuring instrument 162 is provided on the substrate stage 4 that can be arranged on the image plane side of the projection optical system PL.
  • a reference plate 50 having a transmission part (opening) FM ′ through which light can be transmitted is provided on the substrate stage 4, and below the reference plate 50 (one Z direction).
  • An internal space 58 of the substrate stage 4 is formed.
  • a part of the aerial image detector 162 that receives the detection light irradiated onto the substrate stage 4 by the projection optical system PL is provided.
  • the aerial image detector 162 includes an optical system 163 provided below the reference plate 50, and a light receiving element 164 that receives light via the optical system 163.
  • the reference plate 50 is formed of, for example, quartz, and can transmit the first exposure light ELI (P) and the second exposure light EL2 (S).
  • the transmission part FM ′ is formed by forming a cross-shaped opening (slit) in a light-shielding region made of a metal such as Cr (chromium).
  • This transmission part FM, (second position) is a reference for determining the position information of the images of the first and second patterns PA1 and PA2.
  • the transmission part FM ′ is appropriately referred to as a reference transmission part FM ′.
  • a reference mark FP detected by the alignment system 7 is formed on the reference plate 50.
  • the reference transmission part FM 'and the reference mark FP are provided in a predetermined positional relationship.
  • the control device 5 moves the substrate stage 4 in the XY directions, and arranges the reference transmission portion FM ′ on the substrate stage 4 in the first exposure area AR1.
  • the control device 5 irradiates the first exposure light EL1 as detection light to the first alignment mark RM1 of the first mask Ml from the first illumination system IL1.
  • the first alignment mark RM1 can be arranged in the first illumination area IA1, and the first illumination system IL1 performs the first exposure on the first alignment mark RM1 arranged in the first illumination area IA1. Can be illuminated with light EL1.
  • the control device 5 measures the position information of the substrate stage 4 using the measurement system 3, and the aerial image of the first alignment mark RM1 illuminated by the first exposure light EL1 by the aerial image measuring device 162. Is measured via the projection optical system PL. As described above, in the present embodiment, the first exposure area AR1 and the second exposure area AR2 overlap, and the control device 5 measures the aerial image of the first alignment mark RM1. Sometimes, the emission of the second exposure light EL2 from the second illumination system IL2 is stopped. Thereby, the aerial image measuring instrument 162 can detect the positional relationship between the reference transmission part FM ′ on the reference plate 50 and the first alignment mark RM1 on the first mask Ml.
  • the control device 5 determines the positional relationship between the first pattern PA1 and the reference transmission part FM ′.
  • the first pattern that can be obtained and formed in the first exposure area AR1 The positional relationship between the projected position of the PAl image and the reference transmission part FM can be obtained. That is, the control device 5 can obtain the position information of the image of the first pattern PA1 formed in the first exposure area AR1 based on the measurement result of the aerial image measuring device 162.
  • an image of the first alignment mark RM1 is also formed on the light receiving surface 32a of the light receiving device 31.
  • the control device 5 determines the image of the first alignment mark RM1 formed on the light receiving surface 32a of the light receiving device 31 and the transmission portion based on the detection result of the detection system 30. The positional relationship with 36 edge images can be obtained. Further, as described above, the control device 5 determines whether the image of the first alignment mark FM1 formed in the first exposure area AR1 and the reference transmission portion FM ′ are based on the measurement result of the aerial image measuring instrument 162.
  • the positional relationship and the positional relationship between the image of the first pattern PA1 formed in the first exposure area AR1 and the reference transmission part FM ′ can be obtained. Therefore, the control device 5 detects the position information of the image of the first alignment mark R Ml formed on the light receiving surface 32a as the detection result of the detection system 30 (the image of the first alignment mark RM1 and the transmission part 36). The positional relationship with the edge image) and the positional information of the image of the first pattern PA1 formed in the first exposure area AR1, which is the measurement result of the aerial image measuring device 162, can be associated with each other.
  • the control device 5 detects the position information of the image of the first pattern PA1 formed in the first exposure area AR1, and the Z or first pattern.
  • the location information of PA1 can be acquired.
  • control device 5 detects the position information of the image of the second alignment mark RM2 formed on the light receiving surface 32a as the detection result of the detection system 30 (the image of the second alignment mark RM2 and the image).
  • the positional relationship with the edge image of the transmission part 36) and the positional information of the image of the second pattern PA2 formed in the second exposure area AR2 that is the measurement result of the aerial image measuring device 162 can be associated.
  • the control device 5 detects the position information of the image of the second pattern PA2 formed in the second exposure area AR2, and the Z or second pattern.
  • the position information of PA2 can be acquired. Therefore, the control device 5 also obtains the positional relationship between the image of the first pattern PA1 and the image of the second pattern PA2 in the exposure area (AR1, AR2) based on the output of the light receiving device 31 of the detection system 30. be able to.
  • the first alignment mark RM1 used when acquiring the position information of the image of the first pattern PA1 (position information of the first pattern PA1) using the aerial image measuring instrument 162 is a plurality of first alignment marks RM1.
  • a specific first alignment mark RM 1 can be used.
  • a measurement mark different from the first alignment mark RM1 may be provided on the first mask Ml and the measurement mark may be used.
  • the second alignment mark RM2 used when acquiring the position information of the image of the second pattern PA2 is specified among the plurality of second alignment marks RM2.
  • the second alignment mark R M2 can be used.
  • a measurement mark different from the second alignment mark RM2 may be provided on the second mask M2, and the measurement mark may be used.
  • the mark used for measurement by the aerial image measuring instrument 162 is formed in a predetermined positional relationship with the first and second alignment marks RM1, RM2 on which the image is formed on the light receiving surface 32a of the light receiving device 31. Good. The same applies to the detection system 30.
  • FIG. 9 is a flowchart for explaining the exposure method according to the present embodiment.
  • the control device 5 is formed in the first exposure area AR1 using the aerial image measuring device 162 as described with reference to FIG.
  • the position information of the image of the first pattern PA1 is acquired (step SA1).
  • the first exposure light ELI (P) is irradiated on the reference plate 50
  • the light reception of the detection system 30 The light receiving surface 32a of the apparatus 31 is also irradiated with the first exposure light beam EL1 (S), and the detection system 30 detects whether the image of the first alignment mark RM1 formed on the light receiving surface 32a and the edge image of the transmission part 36 are Detect the positional relationship.
  • the control device 5 determines the position information of the image of the first pattern PA1 formed in the first exposure area AR1 based on the measurement result of the aerial image measuring device 162 and the detection result of the detection system 30, and Correlate with detection results of detection system 30.
  • the control device 5 stores the relationship between the detection result of the detection system 30 and the positional information of the image of the first pattern PA1 formed in the first exposure area AR1, in the storage device 6 (step SA2). Thereafter, the control device 5 enters the first exposure area AR1 based on the output of the light receiving device 31 of the detection system 30 and the information stored in the storage device 6.
  • the position information of the formed image of the first pattern PA1 can be acquired.
  • control device 5 is connected to the detection system 30 that performs the measurement operation (measurement operation using the aerial image measuring instrument 162) of the position information of the image of the first pattern PA1 formed in the first exposure area AR1.
  • the first pattern formed in the first exposure area AR1 based on the detection result of the detection system 30 (light reception result of the light receiving device 31) and the information stored in the storage device 6
  • the position information of the image of PA1 can be acquired.
  • the control device 5 uses the aerial image measuring instrument 162 to obtain position information of the image of the second pattern PA2 formed in the second exposure area AR2. Get (step SA3).
  • the aerial image measuring instrument 162 in order to acquire the position information of the image of the second pattern PA2 by the aerial image measuring instrument 162, when the second exposure light EL2 is irradiated on the reference plate 50, the light receiving device 31 of the detection system 30 The light receiving surface 32a is also irradiated with the second exposure light EL2, and the detection system 30 detects the positional relationship between the image of the second alignment mark RM2 formed on the light receiving surface 32a and the edge image of the transmission part 36. .
  • the control device 5 associates the positional information of the image of the second pattern PA2 formed in the second exposure area AR2 with the detection result of the detection system 30.
  • the control device 5 stores the relationship between the detection result of the detection system 30 and the positional information of the image of the second pattern PA2 formed in the second exposure area AR2 in the storage device 6 (step SA4).
  • the control device 5 determines the position information of the image of the second pattern P A2 formed in the second exposure area AR2 based on the output of the light receiving device 31 of the detection system 30 and the information stored in the storage device 6. Can be obtained.
  • control device 5 performs detection by the detection system 30 without performing measurement operation (measurement operation using the aerial image measuring device 162) of the position information of the image of the second pattern PA2 formed in the second exposure area AR2.
  • measurement operation measuring operation using the aerial image measuring device 162
  • the image of the second pattern PA2 formed in the second exposure area AR2 based on the detection result of the detection system 30 (the light reception result of the light receiving device 31) and the information stored in the storage device 6 Location information can be obtained.
  • control device 5 moves the substrate stage 4 in the XY directions, and places the reference mark FP on the substrate stage 4 in the detection area of the alignment system 7. Then, the control device 5 uses the alignment system 7 to detect the reference mark FP on the substrate stage 4 while measuring the position information of the substrate stage 4 using the measurement system 3 (step SA5). As a result, the control device The device 5 can determine the positional relationship between the detection reference position of the alignment system 7 in the XY coordinate system defined by the measurement system 3 and the reference mark FP.
  • the control device 5 derives the positional relationship between the detection reference position of the alignment system 7 and the projection position of the image of the first pattern PA1 (step SA6).
  • the reference transmission part FM ′ on the reference plate 50 and the reference mark FP are formed in a predetermined positional relationship, and the positional relationship between the reference transmission part FM ′ and the reference mark FP is known.
  • the control device 5 determines the positional relationship between the projection position of the image of the first pattern PA1 obtained in step SA1 and the reference transmission part FM ', and the detection reference position and reference mark FP of the alignment system 7 obtained in step SA6.
  • the control device 5 determines the projection position of the image of the first pattern PA1 obtained in step SA1, the detection reference position of the alignment system 7 obtained in step SA6, and the positions of the reference transmission part FM ′ and the reference mark FP. Based on the relationship, the baseline amount of alignment 7 can be determined. In this embodiment, the amount of baseline is obtained by substituting or using the projection position of the image of the second pattern PA2 obtained in step SA3 instead of or using the projection position of the image of the first pattern PA1 obtained in step SA1. You may decide.
  • the measurement by the aerial image measuring device 162 may be performed.
  • the control device 5 starts alignment processing for the substrate P on the substrate stage 4.
  • the control device 5 moves the substrate stage 4 in the X and Y directions, and at least one of the plurality of alignment marks AM provided in the detection region of the alignment system 7 corresponding to each of the shot regions S1 to S21 on the substrate P.
  • the parts are arranged sequentially.
  • the control device 5 sequentially detects a plurality of alignment marks AM on the substrate P using the alignment system 7 while measuring the position information of the substrate stage 4 using the measurement system 3 (step SA7). Thereby, the control device 5 can obtain the positional relationship between the detection reference position of the alignment system 7 and the alignment mark AM in the XY coordinate system defined by the measurement system 3.
  • the control device 5 determines each alignment mark AM on the substrate P obtained in step SA8. Based on the position information, the position information of each of the plurality of shot areas S1 to S21 on the substrate P with respect to the detection reference position of the alignment system 7 is obtained by arithmetic processing (step S A8).
  • arithmetic processing for example, Japanese Patent Laid-Open No. 61-44429 (corresponding US Pat. No. 4,780,617) discloses the position information of each of the plurality of shot areas S1 to S21 on the substrate P by calculation processing. The so-called EGA (Ennounced 'Global' Alignment) method can be used.
  • the control device 5 detects the alignment mark AM on the substrate P by the alignment system 7, and a plurality of shot regions provided on the substrate P in the XY coordinate system defined by the measurement system 3
  • the position coordinates (array coordinates) of each of S1 to S21 can be determined. That is, the control device 5 knows where each shot region S1 to S21 on the substrate P is located with respect to the detection reference position of the alignment system 7 in the XY coordinate system defined by the measurement system 3. be able to.
  • the control device 5 determines the positional relationship between the detection reference position of the alignment system 7 in the XY coordinate system and the shot areas S1 to S21 on the substrate P (shot relative to the detection reference position) obtained in step SA8.
  • the positional relationship between the detection reference position of the alignment system 7 and the projection position of the image of the first pattern PA1 of the first mask Ml in the XY coordinate system obtained in step SA6 Based on the baseline amount), the positional relationship between the shot areas S1 to S21 on the substrate P and the projection position of the first pattern PA1 of the first mask Ml in the XY coordinate system is derived.
  • the position (coordinate value) in the XY coordinate system where the image of the first pattern PA1 is accurately exposed for each shot area on the substrate P is determined.
  • each shot area on the substrate P can be moved by moving the substrate P based on the determined position.
  • the image of the first pattern PA1 and the image of the second pattern PA2 can be formed with a desired positional relationship.
  • control device 5 starts exposure of the shot area S on the substrate P (step SA9).
  • the control device 5 moves the first pattern PA1 and the second pattern PA2 in each scanning direction (Y-axis direction, Z-axis direction) and moves the substrate P in the scanning direction (Y-axis direction).
  • the upper shot area S is subjected to multiple exposure.
  • the control device 5 projects the first and second patterns at the desired timing on the exposure areas (AR1, AR2) based on the results of the above steps SA1, SA3, SA5 to SA8.
  • the substrate stage 4 is moved so that a pattern is formed at a desired position in each shot area on the substrate P.
  • the control device 5 uses the measurement system 3 to detect the position information of the first and second mask stages 1 and 2 and the substrate stage 4 while detecting the first mask by the first mask stage 1 and the second mask stage 2. While the movement of Ml and the second mask M2 in each scanning direction (Y-axis direction, Z-axis direction) and the movement of the substrate P in the scanning direction (Y-axis direction) by the substrate stage 4 are performed in synchronization, The first exposure light EL1 and the second exposure light EL2 illuminate the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2, respectively. Each of the exposure areas AR2 is irradiated with each of the first exposure light EL1 and the second exposure light EL2, and the shot area S of the substrate P is subjected to multiple exposure.
  • the control device 5 moves the substrate P in the Y-axis direction relative to the first and second exposure areas AR1, AR2, moves the first mask Ml relative to the first illumination area IA1, and moves the first mask Ml in the Y-axis direction.
  • Each is irradiated, and the shot area S on the substrate P is subjected to multiple exposure.
  • the first mask Ml is moved in the + Y direction during the exposure of the substrate P
  • the second mask M2 is moved in the + Z direction
  • the substrate P is moved in the + Y direction.
  • FIG. 10 is a plan view of the substrate stage 4 holding the substrate P.
  • FIG. 10 As shown in FIG. 10, on the substrate P, a plurality of shot areas S1 to S21, which are exposure target areas, are set in a matrix and correspond to each of the shot areas S1 to S21. There are multiple alignment marks AM.
  • the control device 5 When exposing each of the shot areas S1 to S21 of the substrate P, the control device 5 causes the first and second exposure areas AR1 and AR2 and the substrate P to relatively move as shown by an arrow yl in FIG. Irradiating the first and second exposure light beams EL1 and EL2 to the first and second exposure areas AR1 and AR2 while moving, thereby irradiating the first and second exposure light beams EL1 and EL2 on the substrate P.
  • the control device 5 controls the operation of the substrate stage 4 so that the first and second exposure areas AR1 and AR2 move along the arrow yl with respect to the substrate P.
  • the control device 5 sequentially performs multiple exposure on the plurality of shot regions S1 to S21 on the substrate P by repeating the scanning operation in the Y direction and the scanning operation in the + Y direction of the substrate P.
  • one shot region S on the substrate P is scanned in one scan operation.
  • Multiple exposure double exposure
  • the photosensitive material layer in the shot area S on the substrate P is not subjected to a development process or the like, and the first exposure light EL1 irradiated to the first exposure area AR1 and the second exposure irradiated to the second exposure area AR2.
  • the control device 5 performs the multiple exposure of the shot area S on the substrate P with the image of the first pattern PA1 and the image of the second pattern PA2, and the detection operation of the detection system 30.
  • the detection system 30 is parallel to at least a part of the operation of multiple exposure of the shot area S on the substrate P with the image of the first pattern PA1 and the image of the second pattern PA2 (
  • the images of the first and second alignment marks RM1 and RM2 formed on the light-receiving surface 32a of the light-receiving device 31 and the transmission portion are generated while the first mask Ml and the second mask M2 and the substrate P are moved synchronously.
  • the positional relationship with 36 edge images is detected. That is, the control device 5 detects the alignment mark image sequentially formed on the light receiving surface 32a of the light receiving element 32 in parallel with at least a part of the operation of performing multiple exposure of the shot area S on the substrate P. 30 is sequentially detected, and information on the positional relationship between the image of the first pattern PA1, the image of the second pattern PA2, and the substrate P is obtained through at least a part of the projection optical system PL.
  • the control device 5 adjusts the position of at least one of the first pattern PA1 and the second pattern PA2 based on the output of the light receiving device 31 of the detection system 30. That is, the control device 5 is formed in the first exposure area AR1 based on the output of the light receiving device 31 of the detection system 30 so that each pattern is formed at a desired position in each shot area on the substrate P.
  • the image of the first pattern PA1 that is, the positional relationship between the image of the first pattern PA1 and the shot area S of the substrate P
  • the image of the second pattern PA2 formed in the second exposure area AR2.
  • At least one of the position that is, the positional relationship between the image of the second pattern PA2 and the shot area S of the substrate P
  • the positional relationship between the image of the first pattern PA1 and the image of the second pattern PA2 is adjusted.
  • first alignment mark RM1 moves in the scanning direction (Y-axis direction) of the first mask Ml, and the second pattern P
  • the second alignment mark RM2 moves together with the A2 in the scanning direction (Z-axis direction) of the second mask M2, but as described above, the first alignment mark RM1 is placed inside the first illumination area IA1.
  • the second alignment mark RM2 is arranged inside the second illumination area IA2.
  • the first alignment mark RM1 disposed in the first illumination area IA1 is illuminated with the first exposure light EL1, and the second array disposed in the second illumination area IA2.
  • Mentor mark RM2 is illuminated with second exposure light EL2. Therefore, even during the exposure of the substrate P, the image of the first alignment mark RM1 and the second illumination area IA2 arranged on the first illumination area IA1 are formed on the light receiving surface 32a of the light receiving device 31 of the detection system 30. An image of the second alignment mark RM2 arranged at the position is formed.
  • a plurality of first alignment marks RM1 are formed side by side along the scanning direction (Y-axis direction) on the first mask Ml, and the second alignment marks RM2
  • a plurality of second masks M2 are formed side by side in the scanning direction (Z-axis direction). Therefore, when the first mask Ml and the second mask M2 are moved in each scanning direction (Y-axis direction and Z-axis direction) in order to perform multiple exposure of the shot area S on the substrate P, the first illumination area IA1
  • Each of the plurality of first alignment marks RM1 is sequentially arranged, and each of the plurality of second alignment marks RM2 is sequentially arranged in the second illumination area IA2.
  • the detection system 30 moves the first mask M1 and the second mask M2 in each scanning direction (Y-axis direction and Z-axis direction) in order to perform multiple exposure of the shot region S on the substrate P.
  • the position information of the image of the first alignment mark RM1 and the position information of the image of the second alignment mark RM2 formed on the light receiving surface 32a are sequentially acquired.
  • the second pattern PA2 (second pattern When the partial image of turn PA2 is placed at the target position, as shown in Fig. 12 (A), the image of the specific second alignment mark RM2 is formed at a predetermined position on the light receiving surface 32a. (Here, the image of the second alignment mark RM2 is formed almost at the center of the rectangular edge image of the transmission part 36).
  • the specific first alignment mark RM 1 is also arranged at a position shifted from the state shown in FIG. In this case, the image of the first alignment mark RM1 at the first timing is shifted in the X-axis direction with respect to the state shown in FIG. 12 (A) as shown in the schematic diagram of FIG. 12 (B). Formed in position.
  • the second pattern PA2 partial image of the second pattern PA2
  • the image of the specific second alignment mark RM2 at the first timing is also shifted. Formed.
  • the control device 5 detects the position information of the image of the first alignment mark RM 1 formed on the light receiving surface 32a of the light receiving device 31 of the detection system 30 (the image of the first alignment mark RM 1 and the transmission part). 36) and the positional information of the image of the second alignment mark RM2 (the positional relationship between the image of the second alignment mark RM2 and the edge image of the transmission part 36).
  • the control device 5 determines that the image of the first pattern PA 1, the image of the second pattern PA 2, and the shot area S on the substrate P are in desired positions. As shown, the shot area S on the substrate P is subjected to multiple exposure while adjusting the positions of the first mask stage 1 and the second mask stage 2 based on the output of the light receiving device 31.
  • the control device 5 adjusts the positional relationship between the image of the first pattern PA1, the image of the second pattern PA2, and the shot area S on the substrate P based on the information acquired by the detection system 30. Multiple exposure of the shot area S on the substrate P is possible. For example, the control device 5 determines the first pattern PA 1 of the first mask Ml and the second pattern of the second mask M2 based on the information acquired by the detection system 30 during multiple exposure of one shot area S of the substrate P. If it is determined that the positional relationship with the pattern PA2 deviates from the target positional relationship, the first mask stage is determined based on the detection result of the detection system 30 during multiple exposure of one shot area S of the substrate P.
  • the position of at least one of the first and second mask stages 2 is adjusted to adjust the position of at least one of the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2.
  • the positional relationship between the first pattern PA1 of the first mask Ml, the second pattern PA2 of the second mask M2 and the shot area S on the substrate P is always adjusted to a desired state, and the image of the first pattern PA1 and the first pattern PA1
  • An image of two patterns PA2 and can be formed at a desired position in the shot region S on the substrate P.
  • at least the first and second imaging characteristic adjustment devices LC1 and LC2 are used.
  • the position of the images of the first and second patterns PA1 and PA2 may be adjusted using one of them.
  • the positional information of the images of the first and second patterns PA1 and PA2 formed in the exposure areas (AR1 and AR2), and the Z or first and second patterns PA1 and PA2 The force that acquires the position information of the substrate During exposure of the substrate P, the alignment marks RM1, RM2 move in the Y-axis direction with respect to the exposure light (ELI, EL2) as the masks Ml, M2 move.
  • the alignment marks RM1, RM2 also move on the light receiving surface 32a of the light receiving element 32. Therefore, the first and second alignment marks R are used when detecting the displacement in the Y-axis direction of the images of the first and second alignment marks RM1 and R M2. Image force of Ml and RM2
  • the positional relationship between the 36 edge image and the positional relationship between the Z or second alignment mark RM2 image and the transparent portion 36 edge image may be obtained.
  • the position information of the image of the first pattern PA1 formed in the first exposure area AR1 and the second exposure area using the aerial image measuring device 162 provided on the substrate stage 4 are used.
  • the position information of the image of the second pattern PA2 formed on the AR2 is acquired, the information may be acquired by other methods. For example, using the alignment system disposed above the first and second masks Ml and M2, respectively, the first and second alignment marks RM1 and RM2 and the transmission part FM of the reference plate 50 (or another reference)
  • the position information of the images of the first and second patterns PA1 and PA2 may be obtained by detecting the mark).
  • each of the first exposure area AR1 and the second exposure area AR2 is irradiated with the first exposure light EL1 and the second exposure light EL2, respectively, and the shot area S on the substrate P
  • the shot area S of the substrate P can be efficiently subjected to multiple exposure.
  • one shot area S is converted into the image of the first pattern PA1 and the second pattern PA2 by one scanning operation. The image can be exposed and the throughput can be improved.
  • the detection system 30 is used to perform the multiple exposure of the shot area S of the substrate P (while performing multiple exposure), and the image of the first pattern PA1 and the second pattern.
  • the positional relationship between the image of the turn PA2 and the shot area S on the substrate P can be detected. Therefore, the control device 5 determines the image of the first pattern PA1 and the image of the second pattern PA2 based on the information obtained using the detection system 30 even during the multiple exposure of the shot area S of the substrate P. And the positional relationship between the shot region S of the substrate P can be adjusted.
  • the detection system 30 includes the first and second exposure lights ELI (S), EL that do not go from the optical element 20 to either the first exposure area AR1 or the second exposure area AR2.
  • the image of the first pattern PA1 and the image of the second pattern PA2 are based on the information obtained by using the detection system 30. It can be formed at a desired position in the shot region S on P.
  • FIG. 13 is a schematic block diagram that shows an exposure apparatus EX according to the second embodiment
  • FIG. 14 shows a shot area S and first and second exposure areas AR1, AR2 on the substrate P according to the second embodiment.
  • FIG. 13 in the exposure apparatus EX of the present embodiment, the first illumination area IA1 on the first mask M1 and the optical axis AX1 of the first optical system 11 are shifted in the Y-axis direction.
  • the second illumination area IA2 on the second mask M2 and the optical axis AX2 of the second optical system 12 are shifted in the Z-axis direction.
  • the first exposure area AR1 and the second exposure area AR2 are set at different positions within the field of view of the projection optical system PL.
  • the first exposure area AR1 and the second exposure area AR2 are set apart from each other in the Y-axis direction (scanning direction of the substrate P), for example.
  • the first exposure area AR1 and the second exposure area AR2 can be simultaneously arranged in one shot area S. That is, in the present embodiment, the distance in the Y-axis direction between the first exposure area AR1 (center of the first exposure area AR1) and the second exposure area AR2 (center of the second exposure area AR2) is the substrate It is smaller than the width of one shot area S on P in the Y-axis direction.
  • FIG. 15 is a diagram showing a configuration in the vicinity of the light receiving device 31 according to the second embodiment
  • FIG. 16 is a diagram showing an upper surface 35 a of the plate member 35 of the light receiving device 31.
  • the upper surface 35a of the plate member 35 of the light receiving device 31 is disposed at a position optically conjugate with the object plane and the image plane of the projection optical system PL. Therefore, the first exposure light ELI is placed on the upper surface 35a of the plate member 35 of the light receiving device 31 in the same positional relationship as the first exposure area AR1 and the second exposure area AR2 set on the image plane side of the projection optical system PL. (S) and second exposure light EL2 (P) enter.
  • the projection optical system PL includes the first exposure area AR1 and the second exposure area AR2 so that the first exposure area AR1 and the second exposure area AR2 are separated in the Y-axis direction.
  • the Z-axis direction is separated in the same positional relationship as the first exposure area AR1 and the second exposure area AR2.
  • the first exposure light ELI (S) and the second exposure light EL2 (P) are incident on the first detection light region AR1 ′ and the second detection light region AR2 ′ formed in this manner.
  • the transmissive part 36 of the light receiving device 31 has an image of the first alignment mark RM1 and an image of the second alignment mark RM2 on the upper surface 35a of the plate member 35. It is placed in a position where it can be formed.
  • the image of the first alignment mark RM 1 and the image of the second alignment mark RM 2 are formed apart from each other in the Z-axis direction, there are 4 transmission portions 36 on the upper surface 35 a of the plate member 35.
  • the detection system 30 is formed on the light receiving surface 32a of the light receiving device 31 through a part of the projection optical system PL based on the light reception result of the light receiving device 31.
  • the positional relationship between the image of the first alignment mark RM1 and the edge image of the transmission part 36 can be obtained. Therefore, the control device 5 obtains the positional relationship between the image of the first alignment mark RM1 and the edge image of the transmission part 36, thereby obtaining the positional information of the image of the first pattern PA1 and the Z or the first pattern PA1. Location information can be obtained.
  • the detection system 30 uses the image of the second alignment mark RM2 formed on the light receiving surface 32a of the light receiving device 31 through a part of the projection optical system PL based on the light reception result of the light receiving device 31 and the transmission portion.
  • the positional relationship with 36 edge images can be obtained. Therefore, the control device 5 obtains the positional relationship between the image of the second alignment mark RM2 and the edge image of the transmission part 36, thereby obtaining the positional information of the image of the second pattern PA2 and the Z or the second pattern PA2.
  • location information wear.
  • the control device 5 determines the positional relationship between the image of the first pattern PA1 and the image of the second pattern PA2. And Z or information on the positional relationship between the first pattern PA1 and the second pattern PA2 can be acquired.
  • control device 5 adjusts the positional relationship between the image of the first pattern PA1, the image of the second pattern PA2, and the shot area S on the substrate P based on the detection result of the detection system 30.
  • the shot area S on the substrate P can be subjected to multiple exposure.
  • the control device 5 uses the detection system 30 to image the first pattern PA1 even when the first exposure area AR1 and the second exposure area AR2 are separated from each other. And information on the positional relationship between the image of the second pattern PA2 and the shot area S on the substrate P can be acquired.
  • the first and second exposure areas AR1 and AR2 are arranged apart from each other in the Y-axis direction on the substrate P. However, the first exposure area AR1 and the second exposure area AR2 are separated from each other. You can place them so that some of them overlap.
  • the first alignment mark RM1 is illuminated with the first exposure light EL1 emitted from the first illumination system IL1 and illuminating the first pattern PA1.
  • the light receiving device 31 receives the first exposure light EL1 from the first alignment mark RM1, for example, it is S-polarized at the same wavelength as the first exposure light EL1 separately from the first illumination system IL1.
  • a first illuminating device that can emit detection light whose component is a main component may be provided, and the first alignment mark RM1 may be illuminated with the detection light emitted from the first illuminating device.
  • a second illumination device that can emit detection light having the same wavelength as that of the second exposure light EL2 and having a P-polarized component as a main component is provided. Illuminate the second alignment mark RM2 with the detection light.
  • both the first alignment mark RM1 image and the second alignment mark RM2 image are detected using the detection system 30 during the multiple exposure operation of the substrate P. Although only one of them is detected, the positional relationship between the image of the first pattern PA1, the image of the second pattern PA2, and the substrate P may be adjusted.
  • the detection operation of the detection system 30 is performed in parallel with at least a part of the multiple exposure operation of the substrate P.
  • Only the detection operation may be performed. That is, before the exposure of the substrate P is started, the first and second masks Ml and M2 are moved in the respective scanning directions with respect to the first and second exposure lights ELI and EL2, and the detection system 30 is used.
  • the image of the first alignment mark RM1 and / or the image of the second alignment mark RM2 is detected, and based on the result, the position of the image of the first pattern PA1, the image of the second pattern PA2, and the substrate P is detected. It is also possible to perform a multiple exposure operation for shot area S on substrate P while adjusting the relationship.
  • the light receiving device 31 uses the first alignment mark RM1 and / or the second alignment mark on the basis of the edge of the transmission portion 36 provided on the upper surface 35a of the plate member 35.
  • the position information of the alignment mark RM2 is acquired, but the image position of the first alignment mark RM1 and Z or the second alignment mark RM2 is output from the output of the light receiving element 32 using a line sensor or the like as the light receiving element 32. You can also get information directly.
  • FIG. 17 is a schematic block diagram that shows an exposure apparatus EX that includes the detection system 30 ′ according to the third embodiment.
  • the detection system 30 ′ according to the third embodiment is configured to irradiate a detection light Lb different from the first and second exposure lights EL1 and EL2, and project the detection light Lb from the irradiation apparatus 40.
  • a light receiving device 43 that receives light through at least a part of the PL.
  • the irradiation device 40 irradiates detection light Lb having a wavelength different from that of the first and second exposure lights EL1 and EL2.
  • the first and second exposure light beams EL1 and EL2 have a wavelength of 193 nm, and the irradiation device 40 irradiates the detection light Lb having a wavelength of, for example, about 633 nm.
  • the detection light Lb is randomly polarized light.
  • light having the same wavelength as the first and second exposure lights ELI and EL2 may be used as the detection light Lb, or light containing 50% each of the P-polarized component and the S-polarized component as the detection light Lb. Use it.
  • Irradiation device 40 irradiates detection light Lb toward optical element 20 of projection optical system PL, and light receiving device 43 detects detection light Lb from first incidence surface 21 of optical element 20 and second incidence. At least one of the detection lights Lb from the surface 22 is received. As shown in FIG.
  • the device 43 includes a first light receiver 41 that receives the detection light Lb from the first incident surface 21 of the optical element 20 and a second light receiver 42 that receives the detection light Lb from the second incident surface 22.
  • the irradiation device 40 irradiates the second emission surface 24 of the optical element 20 with the detection light Lb.
  • Part of the detection light Lb (S-polarized component) incident on the second exit surface 24 exits from the first entrance surface 21 of the optical element 20 via a predetermined surface (polarization separation surface) 25, and the second exit surface 24.
  • the remaining part (P-polarized component) of the detection light Lb incident on the light is emitted from the second incident surface 22 of the optical element 20 through the predetermined surface 25.
  • the detection light emitted from the first incident surface 21 is appropriately referred to as Lb (S)
  • the detection light emitted from the second incident surface 22 is appropriately referred to as Lb (P).
  • the detection light Lb (S) emitted from the first incident surface 21 passes through the first optical system 11, and the first alignment formed in a predetermined positional relationship with the first pattern PA1 of the first mask Ml. Irradiated to mark RM1.
  • the first light receiver 41 receives the detection light Lb (S) from the first alignment mark RM1 ′. That is, the first light receiver 41 is emitted from the irradiation device 40, and is a first alignment formed in a predetermined positional relationship with respect to the predetermined surface 25 of the optical element 20, the first incident surface 21, and the first pattern PA1. Receives detection light Lb (S) via mark RM1 '.
  • the detection light Lb (P) emitted from the second incident surface 22 is, via the second optical system 12, the second alignment formed in a predetermined positional relationship with the second pattern PA2 of the second mask M2. Irradiated to mark RM2.
  • the second light receiver 42 receives the detection light Lb (P) from the second alignment mark RM2 ′. That is, the second light receiver 42 is emitted from the irradiation device 40, and is a second alignment mark formed in a predetermined positional relationship with respect to the predetermined surface 25 and the second incident surface 22 of the optical element 20 and the second pattern PA2. Receives detection light Lb (P) via RM2 '.
  • the detection light Lb emitted from the irradiation device 40 and incident on the optical element 20 via the second emission surface 24 does not travel to either the first exposure area AR1 or the second exposure area AR2.
  • the light receiving device 43 is irradiated in a different direction from the first exposure area AR1 and the second exposure area AR2.
  • the light receiving device 43 including the first and second light receivers 41 and 42 receives the detection light Lb from the optical element 20 that is not directed to either the first exposure area AR1 or the second exposure area AR2.
  • FIG. 18 (A) is a plan view showing the first mask Ml held on the first mask stage 1 according to the present embodiment
  • FIG. 18 (B) is the first mask held on the second mask stage 2.
  • the first illumination area IA1 by the first exposure light EL1 on the first mask Ml is set to a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction
  • the second mask M2 The second illumination area IA2 by the second exposure light EL2 above is also set in a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction.
  • the first mask stage 1 can move the first mask M 1 having the first pattern PA 1 in the Y-axis direction with respect to the first exposure light EL 1
  • the second mask stage 2 the second mask M2 having the second pattern PA2 can be moved in the Z-axis direction with respect to the second exposure light EL2.
  • the first alignment mark RM1 is provided on both sides of the first pattern formation area SA1 of the first mask Ml in the X-axis direction. A plurality of lines are formed along the Ml scanning direction (Y-axis direction).
  • the first alignment mark RM1 is formed outside the first pattern formation area SA1, and is arranged outside the first illumination area IA1. Therefore, when the substrate P is exposed, the first exposure light EL1 from the first illumination system IL1 is not illuminated.
  • the second alignment mark RM2 is positioned on both sides of the second pattern formation area SA2 of the second mask M2 in the X-axis direction on the second mask M2 scanning direction (Z-axis).
  • the second alignment mark RM2 is also formed outside the second pattern formation area SA2, and is arranged outside the second illumination area IA2. Therefore, when the substrate P is exposed, the second exposure light EL2 from the second illumination system IL2 is not illuminated. Also in the present embodiment, the first alignment mark RM1 and the second alignment mark RM2 are formed on the first mask Ml and the second mask M2 so as to correspond to each other.
  • FIG. 19 is an enlarged view showing the first alignment mark RM1 ′ according to the present embodiment
  • FIG. 20 is a schematic diagram showing the relationship between the first light receiver 41 and the first mask Ml.
  • the first alignment mark R Ml ′ is an opening formed in a light-shielding region made of a metal such as Cr (chromium) on the first mask Ml, and can transmit the detection light Lb (S). is there.
  • the first alignment mark RM1 ' is a rectangular (slit-shaped) opening whose longitudinal direction is the direction (X-axis direction) that intersects the scanning direction (Y-axis direction) of the first mask Ml. (Transmission region).
  • the first alignment mark RM1 ′ is irradiated with the detection light Lb (S) emitted from the irradiation device 40. Can be placed in area 44. At least a part of the detection light Lb (S) emitted from the illumination device 40 and applied to the first alignment mark RM1 ′ via the optical element 20 and the first optical system 11 is disposed in the irradiation region 44. Passes through the first alignment mark RM1 'and reaches the first light receiving surface 45 of the first light receiver 41.
  • FIG. 21 is a schematic diagram showing the first light receiving surface 45 of the first light receiver 41.
  • a light receiving region 47 capable of receiving the detection light Lb (S) is formed.
  • the light receiving region 47 is formed in a rectangular shape (slit shape) whose longitudinal direction is the X-axis direction so as to correspond to the first alignment mark RM1 ′.
  • the detection system 30 ′ can detect whether or not the first alignment mark RM1 ′ is arranged in the irradiation region 44 based on the output of the first light receiver 41.
  • the second alignment mark RM2 of the second mask M2 can be placed in the irradiation region 44 by the detection light Lb (P) emitted from the irradiation device 40. Therefore, at least a part of the detection light Lb (P) emitted from the illumination device 40 and irradiated through the optical element 20 and the second optical system 12 can be transmitted.
  • the second alignment mark RM 2 ′ is a rectangular (slit-shaped) opening whose longitudinal direction is the direction (X-axis direction) intersecting the scanning direction (Z-axis direction) of the second mask M2.
  • the detection light Lb (P) that has passed through the second alignment mark RM2 ′ is applied to the second light receiving surface 46 of the second light receiver 42. Further, the second light receiving surface 46 of the second light receiver 42 has a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction so as to correspond to the second alignment mark RM2 ′, as with the first light receiver 41. ) Transmission region 48 is formed.
  • the detection system 30 can detect whether or not the second alignment mark RM 2 ′ is arranged in the irradiation region 44 based on the output of the second light receiver 42.
  • the optical elements of the projection optical system PL are optimal for the first and second exposure lights EL1 and EL2.
  • a correction optical system 14 for making the detection light Lb incident on the light receiving device 43 in a desired state, for example, for correcting chromatic aberration, is provided between the irradiation device 40 and the optical element 20.
  • an image of the first alignment mark RM1 ′ illuminated with the detection light Lb (S) is formed on the first light receiving surface 45 between the first mask Ml and the first light receiver 41.
  • the optical system 15 is provided.
  • an image of the second alignment mark RM2 ′ illuminated with the detection light Lb (P) is formed on the second light receiving surface 46 between the second mask M2 and the second light receiver 42.
  • An optical system 16 is provided!
  • the control device 5 controls the first mask stage 1, the second mask stage 2, and the substrate stage 4 to change the first mask Ml having the first pattern PA1 and the second pattern PA2.
  • the second mask M2 is moved in each scanning direction (Y-axis direction, Z-axis direction) and the substrate P is moved in the scanning direction (Y-axis direction) while the image of the first pattern PA1 and the second pattern
  • the shot area S of the substrate P is subjected to multiple exposure with the image of PA2.
  • the control device 5 continues to emit the detection light Lb toward the optical element 20 from the irradiation device 40 of the detection system 30 ′ during the exposure of the substrate P. That is, the control device 5 continues the irradiation operation of the detection light Lb by the irradiation device 40 during the exposure of the substrate P. Therefore, during the exposure of the substrate P, the predetermined portions of the first and second masks Ml and M2 are continuously illuminated with the detection light Lb emitted from the first and second incident surfaces 21 and 22 of the optical element 20. .
  • the control device 5 detects the detection light Lb (S) irradiated to the first light receiving surface 45 of the first light receiver 41 via the first alignment mark RM1 'and the second light reception of the second light receiver 42. Based on the detection light Lb (P) irradiated onto the surface 46 via the second alignment mark RM2 ′, the positional relationship between the image of the first pattern PA1 and the image of the second pattern PA2, and the first pattern PA1 Information on at least one of the positional relationships with the second pattern PA2 can be acquired.
  • the control device 5 determines the timing at which the first light receiving surface 45 of the first light receiver 41 of the detection system 30 'is irradiated with the detection light Lb (S) via the first alignment mark RM1' and the second light receiving. On the substrate P based on the timing at which the second light receiving surface 46 of the detector 42 is irradiated with the detection light Lb (P) via the second alignment mark RM2 corresponding to the first alignment mark RM1.
  • the positional relationship (displacement) between the first pattern PA1 and the second pattern PA2, and Z Alternatively, the positional relationship (positional deviation) between the image (partial image) of the first pattern PA1 projected onto the shot region S and the image (partial image) of the second pattern PA2 can be obtained.
  • a plurality of first alignment marks RM1 on the first mask Ml For example, at the first timing during exposure of the shot region S on the substrate P, as shown in the schematic diagram of FIG. 2 2 (A), a plurality of first alignment marks RM1 on the first mask Ml Consider a case where a specific first alignment mark RM1 ′ is placed in the irradiation area 44.
  • the first pattern PA1 partial image of the first pattern PA1
  • the specific first alignment mark RM1 ′ is arranged in the irradiation region 44.
  • the second pattern PA2 partial image of the second pattern PA2
  • the image of the specific second alignment mark RM2 ′ is arranged in the irradiation region 44. Shall be.
  • the specific first alignment mark RM1 ′ in this case is also arranged at a position shifted from the irradiation region 44. That is, at the first timing, since the first alignment mark RM1, is not arranged in the irradiation region 44, the detection light Lb (S) is blocked by the light shielding region and does not reach the first light receiver 41. .
  • the second pattern PA2 partial image of the second pattern PA2 is placed at the target position at this first timing, it corresponds to the specific first alignment mark RM1 at the first timing.
  • a specific second alignment mark RM2 is also placed in the irradiation area 44. That is, the corresponding first and second alignment marks RM1 'and RM2' are arranged in the irradiation region 44 at different timings, and the first and second light receivers 41 and 42 receive the detection light Lb at different timings. To do.
  • the control device 5 determines the timing at which the detection light Lb having passed through the first alignment mark RM1 'is received by the first light receiver 41, that is, the image of the first alignment mark RM1 is on the first light receiving surface 45.
  • the control device 5 determines that the image of the first pattern PA1, the image of the second pattern PA2, and the shot area S on the substrate P are in desired positions. As shown, the shot area S on the substrate P is subjected to multiple exposure while adjusting the positions of the first mask stage 1 and the second mask stage 2 based on the output of the light receiving device 43.
  • the first pattern P1 and the second pattern PA2 are detected using the detection system 30 when each shot region S on the substrate P is subjected to multiple exposure.
  • the control device 5 determines the first relationship based on the information acquired by the detection system 30 ′.
  • the shot area S on the substrate P can be subjected to multiple exposure while adjusting the positional relationship between the image of the first pattern PA1, the image of the second pattern PA2 and the shot area S on the substrate P.
  • the detection emitted from the irradiation device 40 is detected. Even if the light Lb leaks onto the substrate P, unnecessary exposure of the substrate P can be suppressed.
  • the first and second alignment marks RM1 'and RM2' are provided outside the first and second illumination areas IA1 and IA2, and the first and second alignment marks RM 1, the image of RM2 ′ can be prevented from being projected onto the substrate P.
  • the first and second alignment marks RM1, RM2 each have a direction intersecting the scanning direction of the first and second masks Ml, M2, and a longitudinal direction.
  • the detection system 30 is based on the detection light Lb via the first and second alignment marks RM1, RM2, and the first and second patterns of the first and second masks Ml and M2. It is possible to detect the position information related to the driving directions of PA1 and PA2 with high accuracy.
  • the detection operation of the detection system 30 is executed before the multiple exposure of the shot area S on the substrate P is started, and during the exposure of each shot of the substrate P, Based on the detection result, the first pattern PA1 and the second pattern so that the image of the first pattern PA1 and the image of the second pattern PA2 and the shot region S on the substrate P have a desired positional relationship. At least the position of PA2 and board P can be adjusted.
  • the exposure area (AR1, AR2) is formed. At least one of the first mask Ml having the first pattern PA1 and the second mask M2 having the second pattern PA2 to adjust the position of at least one of the image of the first pattern PA1 and the image of the second pattern PA2. Although one of the positions is adjusted, the control device 5 does at least the image of the first pattern PA1 formed in the first exposure area AR1 and the image of the second pattern PA2 formed in the second exposure area AR2. One position adjustment can be performed using at least one of the first imaging characteristic adjusting device LC1 and the second imaging characteristic adjusting device LC2.
  • the control device 5 uses the first and second imaging characteristic adjustment devices LC1 and LC2, and uses the X-axis direction, Y-axis direction, and ⁇ Z of the images of the first and second patterns PA1 and PA2, respectively.
  • the direction can be adjusted. Therefore, for example, during the exposure of the substrate P, the control device 5 uses the first and second imaging characteristic adjustment devices LC1 and LC2 based on the output of the light receiving device 31 to display the image of the first pattern PA1.
  • the positional relationship between the image of the first pattern PA1, the image of the second pattern PA2, and the substrate P can be adjusted by adjusting the position of at least one of the images of the second pattern PA2.
  • a polarization separation optical element (polarization beam splitter) is used as the optical element 20, but the first exposure light EL1 and the second exposure light are used as the optical element 20.
  • the first mask Ml moves in the Y-axis direction
  • the second mask M2 moves in the first mask Ml (Y-axis direction).
  • the projection optical system PL may be configured so that the first mask Ml and the second mask M2 move in the same direction (for example, the Y-axis direction).
  • the projection optical system is a double-headed type, and the first and second masks Ml and M2 in which the first and second pattern forming surfaces are arranged on the same plane on the object plane side of the projection optical system are different mask stages. Each may move in the same running direction, or the first and second masks Ml and M2 may be moved to the same mask stay.
  • the first and second patterns PA1 and PA2 are formed on different masks (M1 and M2).
  • the first and second patterns PA1 and PA2 are formed on one mask. It may be formed.
  • the projection optical system PL is not limited to the reduction system, and may be, for example, an equal magnification system or an enlargement system.
  • the projection optical system PL has been described as an example of a catadioptric system (force tadaptic system) including a reflective optical element and a refractive optical element.
  • the projection optical system PL May be a refractive system that does not include a reflective optical element, or a reflective system that does not include a refractive optical element.
  • the projection optical system PL is not limited to a double-headed catadioptric system, and has a plurality of reflecting surfaces as disclosed in, for example, International Publication No.
  • the size and shape of the first exposure area AR1 and the second exposure area AR2 may be different.
  • the width in the X axis direction and the width in the Z or Y axis direction may be different between the first exposure area AR1 and the second exposure area AR2.
  • the first and second exposure areas AR1 and AR2 are not limited to rectangles, but other shapes such as arcs, trapezoids, or parallelograms. It may be a shape.
  • the exposure light EL1 is applied to each of the first exposure area AR1 and the second exposure area AR2.
  • the power to continue the EL2 irradiation In at least one of the exposure regions, the exposure light may be irradiated only during a part of the period during which the yacht region S passes. That is, only a part of the shot area S may be subjected to multiple (double) exposure!
  • the alignment system 7 is an image processing method.
  • the alignment system 7 is not limited to this, and other methods such as a method of detecting diffracted light generated by a mark force by irradiation of a coherent beam, etc. But you can.
  • the position information of the images of the first and second patterns PA1 and PA2 is measured using the aerial image measuring instrument 162, but the position information measuring device is an aerial image measuring instrument. It is not limited to and may be arbitrary.
  • the first and second alignment marks RM1 and RM2 are detected by the detection system 30 while the first and second masks Ml and M2 are moving.
  • the first and second alignment marks RM1 and RM2 may be detected while the second masks Ml and M2 are stationary.
  • the multiple exposure using three or more patterns may be performed in which the substrate is subjected to double exposure by the first and second patterns PA1 and PA2.
  • the substrate P may be irradiated with EL1 and EL2.
  • the liquid immersion system is, for example, a supply member that is provided in the vicinity of the optical path of the exposure light between the terminal optical element of the projection optical system PL and the substrate P and has a supply port for supplying liquid to the optical path. And a recovery member having a recovery port for recovering the liquid.
  • the liquid immersion system does not have to be part of the exposure apparatus (for example, the liquid supply member and Z or the liquid recovery member) provided in the exposure apparatus, for example, instead of equipment such as a factory where the exposure apparatus is installed. Also good.
  • the structure of the immersion system is not limited to the above-mentioned structure. For example, European Patent Publication No. 1420298, International Publication No. 2004Z055803, International Publication No.
  • water pure water
  • PFPE perfluorinated polyether
  • cedar oil a fluorinated fluid such as perfluorinated polyether (PFPE) or fluorinated oil
  • PFPE perfluorinated polyether
  • cedar oil a liquid having a higher refractive index with respect to exposure light than water, for example, a liquid with a refractive index of about 1.6 to 1.8
  • the liquid LQ having a higher refractive index than pure water for example, 1.5 or more
  • isopropanol having a refractive index of about 1.50
  • the liquid LQ may be a mixture of any two or more of these liquids, or a liquid obtained by adding (mixing) at least one of these liquids to pure water.
  • the liquid LQ is, H + in the pure water, Cs +, K +, Cl_ , SO 2_, added a base or acid such as PO 2_ Caro
  • Liquid LQ is a projection optical system PL with a small light absorption coefficient and low temperature dependence, and a photosensitive material (or topcoat film or antireflection coating) applied to the surface of Z or substrate P. It is preferable that it is stable with respect to a film etc.).
  • a supercritical fluid can be used as the liquid LQ.
  • the substrate P can be provided with a top coat film for protecting the photosensitive material and the base material from the liquid.
  • the terminal optical element FL is made of, for example, Sekihide (silica), or a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride. It may be formed of a material having a refractive index higher than that of quartz or fluorite (for example, 1.6 or more). Examples of the material having a refractive index of 1.6 or more include sapphire, germanium dioxide, etc. disclosed in International Publication No. 2005Z059617, or disclosed in International Publication No. 2005Z059618. It is possible to use potassium chloride (refractive index is about 1.75).
  • the terminal optical when used in the immersion method, for example, as disclosed in WO 2004Z019128 pamphlet (corresponding US Patent Publication No. 2005Z0248856), in addition to the optical path on the image plane side of the terminal optical element, the terminal optical Even if the optical path on the object surface side of the element is filled with liquid, Good. Further, a thin film having lyophilicity and Z or a dissolution preventing function may be formed on a part (including at least a contact surface with the liquid) or the entire surface of the terminal optical element. Quartz has a high affinity for liquids and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing semiconductor devices, but also a glass substrate for display devices, a ceramic wafer for thin film magnetic heads, or a mask used in an exposure apparatus. Reticle masters (synthetic quartz, silicon wafers) or film members are used. Further, the shape of the substrate P is not limited to a circle but may be other shapes such as a rectangle.
  • the present invention is disclosed in, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Patents 6, 341, 007, 6, 400, 441, 6, 549, 269 and 6). , 590,634), Special Table 2000-505958 (corresponding US Pat. No. 5,969,441), etc., and can be applied to a multistage type exposure apparatus having a plurality of substrate stages. .
  • Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 corresponding US Patents 6, 341, 007, 6, 400, 441, 6, 549, 269 and 6).
  • Special Table 2000-505958 corresponding US Pat. No. 5,969,441
  • the disclosure of the above US patent is incorporated into the description of the multi-stage type exposure apparatus.
  • the substrate is held as disclosed in, for example, Japanese Patent Laid-Open No. 11-135400 (corresponding pamphlet of International Publication No. 1999Z23692) and Japanese Patent Laid-Open No. 2000-164504 (corresponding US Pat. No. 6,897,963).
  • the present invention can also be applied to an exposure apparatus that includes a substrate stage to be measured and a measurement stage on which a measurement member (for example, a reference member on which a reference mark is formed, and Z or various photoelectric sensors) is mounted. it can.
  • a measurement member for example, a reference member on which a reference mark is formed, and Z or various photoelectric sensors
  • the first and second masks Ml and M2 are used to form the first and second patterns.
  • an electronic mask variable molding
  • Mask active mask, or pattern generator.
  • a DMD Deformable Micro-mirror Device or Digital Micro-mirror Device
  • SLM Spatial Light Modulator
  • the DMD Based on the child data, it has a plurality of reflective elements (micromirrors) to be driven, and the plurality of reflective elements are arranged in a two-dimensional matrix on the surface of the DMD and are driven in units of exposure light.
  • the angle of the reflecting surface of each reflecting element is adjusted.
  • the operation of the DMD can be controlled by the controller 30.
  • the control device 30 Based on the electronic data (pattern information) corresponding to the first pattern and the second pattern to be formed on the substrate P, the control device 30 drives each DMD reflecting element and irradiates it with the illumination system IL.
  • the exposure light is converted into a pattern by a reflective element.
  • DMD eliminates the need for mask replacement and mask alignment on the mask stage when the turn is changed. Therefore, multiple exposure can be performed more efficiently.
  • a mask stage is not provided, and the substrate can be simply moved in the X-axis and Y-axis directions by the substrate stage.
  • the relative positions of the two electronic masks that respectively generate the first and second patterns are adjusted by, for example, an actuator.
  • at least one of the two electronic masks may adjust the pattern generation timing, or may shift the pattern generation position on the electronic mask.
  • An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-313842, Japanese Patent Application Laid-Open No. 2004-304135, and US Pat. No. 6,778,257. To the extent permitted by the laws of the designated or selected countries, the disclosure of US Pat. No. 6,778,257 is incorporated into the text.
  • the position information of the mask stage and the substrate stage is measured using the interferometer system.
  • the present invention is not limited to this, and for example, a scale (diffraction grating) provided on the upper surface of the substrate stage is detected.
  • the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated (calibrated) using the measurement result of the interferometer system.
  • the position of the substrate stage may be controlled by switching between the interferometer system and the encoder system or using both.
  • a light source device that generates ArF excimer laser light as exposure light EL.
  • an ArF excimer laser was used, but a solid-state laser light source such as a DFB semiconductor laser or a fiber laser as disclosed in International Publication No. 1999Z46835 pamphlet (corresponding US Pat. No. 7,023,610),
  • a harmonic generation device that includes a light amplification unit having a fiber amplifier and the like, a wavelength conversion unit, and the like and outputs pulsed light having a wavelength of 193 nm may be used.
  • the first and second illumination areas and the first and second exposure areas are each rectangular, but other shapes such as arcs, trapezoids, parallelograms, or A rhombus may be used.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can also be widely applied to exposure equipment for manufacturing micromachines, MEMS, DNA chips, image sensors (CCD), reticles or masks.
  • the exposure apparatus EX provides various subsystems including the constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after this assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Adjustments are made to achieve electrical accuracy.
  • Various subsystem powers The assembly process to the exposure equipment includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • Microdevices such as semiconductor devices are shown in Fig. 23.
  • a step 201 for performing performance / performance design a step 202 for manufacturing a mask (reticle) based on the design step, a step 203 for manufacturing a substrate as a substrate of the device, and the exposure apparatus EX of the above-described embodiment
  • Substrate processing step 204 including exposure process for exposing pattern to substrate and development process of exposed substrate, device assembly step (including processing processes such as dicing process, bonding process, and knocking process) 205, inspection step 206, etc. It is manufactured through.
  • the present invention multiple exposure of a substrate can be realized accurately, highly and efficiently. For this reason, a device having a high-density and complicated circuit pattern used for a liquid crystal display element or a micromachine can be produced with a high throughput. Therefore, the present invention will contribute significantly to the development of the precision equipment industry, including Japan's semiconductor industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 露光装置EXは、第1パターンPA1からの第1露光光EL1を第1露光領域AR1に照射して第1露光領域に第1パターンの像を形成し、第2パターンPA2からの第2露光光EL2を第2露光領域AR2に照射して第2露光領域に第2パターンの像を形成する光学システムPLと、光学システムの少なくとも一部を介して検出光を受光する受光装置31を有する。第1パターンの像と第2パターンの像とで基板P上の所定領域を多重露光する動作の少なくとも一部と並行して、光学システムPLの少なくとも一部を介して第1パターンの像と基板との位置関係に関する情報、並びに第2パターンの像と基板との位置関係に関する情報を取得する検出システム30とを備えている。基板を効率良く多重露光できる。

Description

露光装置、露光方法及びデバイス製造方法
技術分野
[0001] 本発明は、基板を露光する露光装置、露光方法及びデバイス製造方法に関する。
背景技術
[0002] フォトリソグラフイエ程で用いられる露光装置において、例えば下記特許文献に開 示されて!/、るような、基板を多重露光する露光装置が知られて 、る。
特許文献 1:特開平 10— 214783号公報
発明の開示
発明が解決しょうとする課題
[0003] 多重露光において、複数のマスクを用意してマスク毎に露光を実行したり、複数の 照明条件を用意してマスク毎に異なる照明条件で露光を実行したりする場合がある。 この場合、マスクを交換する時間や、照明条件等を変更する時間が必要となるため、 露光装置の稼動率が低下し、スループットが低下する可能性がある。
[0004] また、半導体デバイス等のマイクロデバイス (電子デバイス)は、基板上に複数のバタ ーンを重ね合わせて形成されるが、所望のデバイスを製造するために、多重露光に おいても、パターンどうしを効率良く良好に位置合わせすることが重要である。
[0005] 本発明はこのような事情に鑑みてなされたものであって、基板を効率良く多重露光 できる露光装置、露光方法及びデバイス製造方法を提供することを目的とする。また 本発明は、多重露光によって、基板上の所望の位置にパターンを形成できる露光装 置、露光方法及びデバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0006] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0007] 本発明の第 1の態様に従えば、基板 (P)を露光する露光装置であって、第 1パター ン (PA1)からの第 1露光光 (EL1)を第 1露光領域 (AR1)に照射して第 1露光領域( AR1)に第 1パターン (PA1)の像を形成可能であり、第 1パターン (PA1)と異なる第 2パターン (PA2)からの第 2露光光 (EL2)を第 2露光領域 (AR2)に照射して第 2露 光領域 (AR2)に第 2パターン (PA2)の像を形成可能な光学システム (PL)と、光学 システム (PL)の少なくとも一部を介して検出光を受光する受光装置 (31)を有し、第 1露光領域 (AR1)に形成される第 1パターン (PA1)の像と第 2露光領域 (AR2)に 形成される第 2パターン (PA2)の像とで基板 (P)上の所定領域 (S)を多重露光する 動作の少なくとも一部と並行して、光学システム (PL)の少なくとも一部を介して第 1パ ターン (PA1)の像と前記基板との位置関係に関する情報、並びに第 2パターン (PA 2)の像と基板 (P)との位置関係に関する情報を取得する検出システム (30)とを備え た露光装置 (EX)が提供される。
[0008] 本発明の第 1の態様によれば、基板を効率良く多重露光できる。また、多重露光す る動作の少なくとも一部と並行して、第 1パターンの像と第 2パターンの像と基板との 位置関係に関する情報を取得することができる。そして、その検出システムを用いて 得られる情報に基づいて、基板上の所望の位置にパターンを形成することができる。
[0009] 本発明の第 2の態様に従えば、基板 (P)を露光する露光装置であって、第 1パター ン (PA1)からの第 1露光光 (EL1)が入射するとともに、第 1パターン (PA1)と異なる 第 2パターン (PA2)からの第 2露光光 (EL2)が入射する光学素子(20)を有し、光学 素子(20)からの第 1露光光 (EL1)の少なくとも一部と第 2露光光 (EL2)の少なくとも 一部とを第 1露光領域 (AR1)と第 2露光領域 (AR2)とにそれぞれ照射して、第 1露 光領域 (AR1)と第 2露光領域 (AR2)とに第 1パターン (PA1)の像と第 2パターン (P A2)の像とをそれぞれ形成可能な光学システム (PL)と、光学素子(20)から第 1露 光領域 (AR1)及び第 2露光領域 (AR2)とは異なる領域(35a)に向力 光を検出光 として受光する受光装置 (31)を有する検出システム (30)とを備え、第 1露光領域 (A R1)に形成される第 1パターン (PA1)の像と第 2露光領域 (AR2)に形成される第 2 パターン (PA2)の像とで基板 (P)上の所定領域 (S)を多重露光する露光装置 (EX) が提供される。
[0010] 本発明の第 2の態様によれば、基板を効率良く多重露光できる。また、検出システ ムを用いて得られる情報に基づいて、例えば、第 1パターンの像と第 2パターンの像と を基板上の所定領域に所望の位置関係で形成することができる。
[0011] 本発明の第 3の態様に従えば、基板 (P)を露光する露光装置であって、第 1パター ン (PA1)からの第 1露光光 (EL1)が入射するとともに、第 1パターン (PA1)と異なる 第 2パターン (PA2)からの第 2露光光 (EL2)が入射する偏光分離光学素子(20)と 、第 1パターン (PA1)に関連する第 1マーク (RM1)と第 2パターン (PA2)に関連す る第 2マーク (RM2)とを前記偏光分離光学素子 (20)を介して検出することで第 1及 び第 2マーク (RM1、 RM2)の位置を検出する検出システム(30)とを備え、偏光分 離光学素子 (20)からの第 1露光光 (EL1)及び第 2露光光 (EL2)を第 1露光領域 (A R1)及び第 2露光領域 (AR2)にそれぞれ照射して、第 1露光領域 (AR1)及び第 2 露光領域 (AR2)に第 1パターン (PA1)の像及び第 2パターン (PA2)の像をそれぞ れ形成して前記基板 (P)上の所定領域を多重露光する露光装置 (EX)が提供される
[0012] 本発明の第 3の態様の露光装置によれば、偏光分離光学素子と検出システムを用 いて、第 1パターンの像及び第 2パターンの像を基板上の所定領域に所望の位置関 係で形成しつつ、基板を効率良く多重露光できる。
[0013] 本発明の第 4の態様に従えば、上記態様の露光装置 (EX)を用いて基板を露光す ること (SA9、 204)と、露光した基板を現像すること(204)と、現像した基板を加工す ること (205)を含むデバイス製造方法が提供される。
[0014] 本発明の第 4の態様によれば、基板を効率良く多重露光できる露光装置を用いて デバイスを製造することができる。
[0015] 本発明の第 5の態様に従えば、基板 (P)を露光する露光方法であって、光学システ ム (PL)を介して第 1パターン (PA1)からの第 1露光光 (EL1)を第 1露光領域 (AR1 )に照射して第 1露光領域 (AR1)に前記第 1パターン (PA1)の像を形成しつつ、光 学システム (PL)を介して第 1パターン (PA1)と異なる第 2パターン (PA2)からの第 2 露光光 (EL2)を第 2露光領域 (AR2)に照射して第 2露光領域 (AR2)に第 2パター ン (PA2)の像を形成することによって、第 1パターン像と第 2パターン像とで基板上の 所定領域を多重露光すること(SA9)と、多重露光の動作の少なくとも一部と並行して 、光学システム (PL)の少なくとも一部を介して第 1パターン (PA1)の像と基板 (P)と の位置関係に関する情報、並びに第 2パターン (PA2)の像と基板 (P)との位置関係 に関する情報を取得すること(SA1〜SA4、 SA9)を含む露光方法が提供される。
[0016] 本発明の第 5の態様の露光方法によれば、多重露光の動作の少なくとも一部と並 行して、第 1パターンの像と第 2パターンの像と基板との位置関係に関する情報を取 得することができるので、基板上の所望の位置に確実にパターンを重ね合わせて形 成することができる。
[0017] 本発明の第 6の態様に従えば、基板 (P)を露光する露光方法であって、光学素子( 20)を介して第 1パターン (PA1)からの第 1露光光 (EL1)を第 1露光領域 (AR1)に 照射して第 1露光領域 (AR1)に第 1パターン (PA1)の像を形成しつつ、光学素子( 20)を介して第 1パターン (PA1)と異なる第 2パターン (PA2)からの第 2露光光 (EL 2)を第 2露光領域 (AR2)に照射して第 2露光領域 (AR2)に第 2パターン (PA2)の 像を形成することによって、第 1パターン (PA1)の像と第 2パターン (PA2)の像とで 基板上の所定領域を多重露光すること (SA9)と、光学素子(20)から第 1露光領域 及び第 2露光領域とは異なる領域に向力う光を検出光として受光すること(SA9)を含 む露光方法が提供される。
[0018] 本発明の第 6の態様によれば、基板を効率良く多重露光できる。また、光学素子か ら第 1露光領域及び第 2露光領域とは異なる領域に向力う光を検出光として受光して 得られる情報に基づいて、例えば、第 1パターンの像と第 2パターンの像とを基板上 の所定領域に所望の位置関係で形成することができる。
[0019] 本発明の第 7の態様に従えば、基板 (P)を露光する露光方法であって、第 1パター ン (PA1)からの第 1露光光 (EL1)と第 1パターン (PA1)と異なる第 2パターン (PA2 )からの第 2露光光 (EL2)を偏光分離光学素子(20)に入射することと、第 1パターン (PA1)に関連する第 1マーク (RM1)と第 2パターン (PA2)に関連する第 2マーク (R M2)を偏光分離光学素子 (30)を介した光で検出することで第 1及び第 2マーク (R Ml, RM2)の位置を検出すること(SA1〜SA4、 SA9)と、偏光分離光学素子(30) からの第 1露光光 (EL1)及び第 2露光光 (EL2)を第 1露光領域 (AR1)及び第 2露 光領域 (AR2)にそれぞれ照射して、第 1露光領域 (AR1)及び第 2露光領域 (AR2) に第 1パターン (PA1)の像及び第 2パターン (PA2)の像をそれぞれ形成して基板 ( P)上の所定領域を多重露光すること (SA9)を含む露光方法が提供される。
[0020] 本発明の第 7の態様の露光方法によれば、偏光分離光学素子を介した光により第 1パターンの像及び第 2パターンの像を基板上の所定領域に所望の位置関係で形 成しつつ、基板を効率良く多重露光できる。
[0021] 本発明の第 8の態様に従えば、デバイス製造方法であって、本発明の上記態様の 露光方法により基板を露光すること(SA9, 204)と、露光した基板を現像すること(2 04)と、現像した基板を加工すること (205)を含むデバイス製造方法が提供される。 本発明の第 8の態様のデバイス製造方法によれば、基板を効率良く多重露光できる 露光方法を用いてデバイスを高スループットで製造することができる。
発明の効果
[0022] 本発明によれば、基板を効率良く多重露光することができる。また、多重露光によつ て、基板上の所望位置にパターンを形成することができる。したがって、所望の性能 を有するデバイスを生産性良く製造することができる。
図面の簡単な説明
[0023] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]図 2 (A)は第 1マスクステージに保持された第 1マスクの一例を示す図、図 2 (B) は第 2マスクステージに保持された第 2マスクの一例を示す図である。
[図 3]第 1実施形態に係る基板のショット領域と第 1、第 2露光領域との関係を示す模 式図である。
[図 4]第 1実施形態に係る受光装置を示す図である。
[図 5]第 1実施形態に係る受光装置の受光面を示す図である。
[図 6]受光面上に形成された第 1、第 2ァライメントマークの像を示す模式図である。
[図 7]受光面上に形成された第 1、第 2ァライメントマークの像を示す模式図である。
[図 8]空間像計測器の一例を示す図である。
[図 9]第 1実施形態に係る露光方法を説明するためのフローチャート図である。
[図 10]露光動作の一例を説明するための基板ステージを上方力も見た図である。
[図 11]第 1実施形態に係る露光動作の一例を説明するための模式図である。
[図 12]図 12 (A)及び (B)は第 1実施形態に係る露光動作の一例を説明するための 模式図である。
[図 13]第 2実施形態に係る露光装置を示す概略構成図である。
[図 14]第 2実施形態に係る基板のショット領域と第 1、第 2露光領域との関係を示す模 式図である。
[図 15]第 2実施形態に係る受光装置を示す図である。
[図 16]第 2実施形態に係る受光装置の受光面を示す図である。
[図 17]第 3実施形態に係る露光装置を示す概略構成図である。
[図 18]図 18 (A)は第 1マスクステージに保持された第 1マスクの一例を示す図、図 18
(B)は第 2マスクステージに保持された第 2マスクの一例を示す図である。
[図 19]第 3実施形態に係るァライメントマークを示す図である。
[図 20]第 3実施形態に係る受光装置を示す図である。
[図 21]第 3実施形態に係る受光装置の受光面を示す図である。
[図 22]図 22 (A)及び (B)は第 3実施形態に係る露光動作の一例を説明するための 模式図である。
[図 23]マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0024] 1…第 1マスクステージ、 2…第 2マスクステージ、 4…基板ステージ、 5…制御装置、 6…記憶装置、 11· ··第 1光学系、 12· ··第 2光学系、 13· ··第 3光学系、 20· ··光学素 子、 21· ··第 1入射面、 22…第 2入射面、 23…第 1射出面、 24…第 2射出面、 30、 30 '…検出システム、 31· ··受光装置、 32· ··受光面、 40· ··照射装置、 41· ··第 1受光器、 42· ··第 2受光器、 43· ··受光装置、 45· ··第 1受光面、 46· ··第 2受光面、 AR1…第 1 露光領域、 ΑΚ2· ··第 2露光領域、 EL1…第 1露光光、 EL2…第 2露光光、 EX…露 光装置、 IL1…第 1照明系、 IL2…第 2照明系、 La、 Lb…検出光、 Μ1· ··第 1マスク、 Μ2· ··第 2マスク、 P…基板、 PA1…第 1パターン、 PA2…第 2パターン、 PL…投影 光学系、 RM1、 RM1,…第 1ァライメントマーク、 RM2、 RM2,…第 2ァライメントマ ーク、 S…ショット領域
発明を実施するための最良の形態
[0025] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Y軸方 向、 X軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸 方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 θ Y,及び 0 Z方向とする。
[0026] <第 1実施形態 >
第 1実施形態について説明する。図 1は、第 1実施形態に係る露光装置 EXを示す 概略構成図である。図 1において、露光装置 EXは、第 1パターン PA1を有する第 1 マスク Mlを保持して移動可能な第 1マスクステージ 1と、第 2パターン PA2を有する 第 2マスク M2を保持して移動可能な第 2マスクステージ 2と、基板 Pを保持して移動 可能な基板ステージ 4と、各ステージの位置情報を計測可能な計測システム 3と、第 1 露光光 EL1で第 1マスク Mlの第 1パターン PA1を照明する第 1照明系 IL1と、第 2露 光光 EL2で第 2マスク M2の第 2パターン PA2を照明する第 2照明系 IL2と、第 1露光 光 EL1で照明された第 1パターン PA1の像及び第 2露光光 EL2で照明された第 2パ ターン PA2の像を基板 P上に投影する投影光学系 PLと、露光装置 EX全体の動作を 制御する制御装置 5とを備えている。基板ステージ 4は、投影光学系 PLの光射出側 、すなわち投影光学系 PLの像面側で、ベース部材 BP上で移動可能である。また、 制御装置 5には、露光に関する各種情報を記憶する記憶装置 6が接続されている。
[0027] なお、ここでいう基板は、例えばシリコンウェハのような半導体ウェハ等の基材上に 感光材 (フォトレジスト)を塗布したものを含み、感光膜とは別に保護膜 (トップコート膜 )などの各種の膜を塗布したものも含む。マスクは基板上に縮小投影されるデバイス パターンが形成されたレチクルを含み、例えばガラス板等の透明板部材上にクロム等 の遮光膜を用いて所定のパターンが形成されたものである。この透過型マスクは、遮 光膜でパターンが形成されるバイナリーマスクに限られず、例えばノヽーフトーン型、あ るいは空間周波数変調型などの位相シフトマスクも含む。また、本実施形態において は、マスクとして透過型のマスクを用いる力 反射型のマスクを用いてもよい。また、本 実施形態においては、第 1パターン PA1と第 2パターン PA2とは異なるパターンであ る。さらに、第 1、第 2マスク Ml、 M2は種類が同一であるものとした力 その種類が異 なっていてもよい。例えば、第 1、第 2マスク Ml、 M2の一方がバイナリーマスクで、他 方が位相シフトレチクルでもよ!/、。
[0028] 本実施形態の投影光学系 PLは、第 1パターン PA1からの第 1露光光 EL1と第 2パ ターン PA2からの第 2露光光 EL2とが入射する光学素子 20を有している。また、本 実施形態においては、その投影光学系 PLの光射出側、すなわち投影光学系 PLの 像面側に、第 1露光領域 AR1と第 2露光領域 AR2とが所定位置関係で設定される。 本実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とが同一位置に設 定されている。本実施形態の投影光学系 PLは、第 1パターン PA1からの第 1露光光 EL1を光学素子 20へ導く第 1光学系 11と、第 2パターン PA2からの第 2露光光 EL2 を光学素子 20へ導く第 2光学系 12と、光学素子 20からの第 1露光光 EL1及び第 2 露光光 EL2を第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれへ導く第 3光学 系 13とを有している。光学素子 20は、第 1光学系 11を介して入射された第 1露光光 EL1の少なくとも一部と、第 2光学系 12を介して入射された第 2露光光 EL2の少なく とも一部とを、第 3光学系 13を介して第 1露光領域 AR1と第 2露光領域 AR2とにそれ ぞれ照射可能である。すなわち、本実施形態の投影光学系 PLは、光学素子 20から の第 1露光光 EL1の少なくとも一部と第 2露光光 EL2の少なくとも一部とを第 1露光 領域 AR1と第 2露光領域 AR2とにそれぞれ照射可能である。
[0029] 投影光学系 PLは、第 1パターン PA1からの第 1露光光 EL1を第 1露光領域 AR1に 照射して、その第 1露光領域 AR1に第 1パターン PA1の像を形成可能であり、第 2パ ターン PA2からの第 2露光光 EL2を第 2露光領域 AR2に照射して、その第 2露光領 域 AR2に第 2パターン PA2の像を形成可能である。すなわち、本実施形態の露光装 置 EXは、第 1照明系 IL1より射出され、第 1パターン PA1及び投影光学系 PLを介し て第 1露光領域 AR1に照射される第 1露光光 EL1によって、第 1露光領域 AR1に第 1パターン PA1の像を形成可能であり、第 2照明系 IL2より射出され、第 2パターン P A2及び投影光学系 PLを介して第 2露光領域 AR2に照射される第 2露光光 EL2によ つて、第 2露光領域 AR2に第 2パターン PA2の像を形成可能である。投影光学系 PL は、第 1露光領域 AR1に形成される第 1パターン PA1の像と、第 2露光領域 AR2〖こ 形成される第 2パターン PA2の像の両方の像の形成に共通に使用されている。
[0030] そして、本実施形態の露光装置 EXは、第 1露光領域 AR1に形成される第 1パター ン PA1の像と第 2露光領域 AR2に形成される第 2パターン PA2の像とで基板 P上の ショット領域 Sを多重露光(二重露光)する。
[0031] また、本実施形態の露光装置 EXは、第 1マスク Ml及び第 2マスク M2と基板 Pとを 所定の走査方向に同期移動しつつ、第 1マスク Mlの第 1パターン PA1の像及び第 2 マスク M2の第 2パターン PA2の像を基板 P上に投影する走査型露光装置 (所謂スキ ヤニングステツパ)である。本実施形態においては、基板 Pの走査方向(同期移動方 向)を Y軸方向とする。露光装置 EXは、基板 Pのショット領域 Sを第 1露光領域 AR1 及び第 2露光領域 AR2に対して Y軸方向に移動しつつ、投影光学系 PLを介して第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに第 1露光光 EL1及び第 2露光 光 EL2のそれぞれを照射することによって、第 1露光領域 AR1に形成される第 1バタ ーン PA1の像と第 2露光領域 AR2に形成される第 2パターン PA2の像とで基板 P上 のショット領域 Sを多重露光する。また、本実施形態の露光装置 EXは、基板 Pの Y軸 方向への移動と同期して、第 1マスク Mlを Y軸方向に移動し、第 2マスク M2を Z軸 方向に移動する。すなわち、本実施形態においては、第 1マスク Mlの走査方向(同 期移動方向)を Y軸方向とし、第 2マスク M2の走査方向(同期移動方向)を Z軸方向 とする。
[0032] また、本実施形態の露光装置 EXは、投影光学系 PLの少なくとも一部を介して検出 光を受光する受光装置 31を有し、第 1パターン PA1の像と第 2パターン PA2の像と 基板 Pとの位置関係に関する情報を取得する検出システム 30を備えている。検出シ ステム 30の受光装置 31は、本実施形態においては投影光学系 PLの鏡筒 PKに設 けられている。第 1光学系 11及び第 2光学系 12を介して光学素子 20に入射した第 1 露光光 EL1及び第 2露光光 EL2のうち、光学素子 20から第 1露光領域 AR1及び第 2露光領域 AR2のいずれにも向かわない、すなわち、第 1露光領域 AR1及び第 2露 光領域 AR2とは異なる方向または領域 (ここでは受光装置 31の上面 35a)に向かう、 第 1露光光 EL1及び第 2露光光 EL2の少なくとも一方の一部を検出光として受光す る。なお、光学素子 20と受光装置 31との間には、光学素子 20からの光を受光装置 3 1へ導くために少なくとも一つの光学素子が配置されているが、説明を簡略ィ匕するた めに、図示省略されている。
[0033] 本実施形態の光学素子 20は、第 1露光光 EL1及び第 2露光光 EL2のそれぞれを 第 1偏光状態の露光光と第 2偏光状態の露光光とに分離する偏光分離光学素子 (例 えば、偏光ビームスプリッタ)を含む。投影光学系 PLは、光学素子 20で分離した第 1 ノターン PA1からの第 1露光光 EL1の一部と、光学素子 20で分離した第 2パターン PA2からの第 2露光光 EL2の一部とを、第 1露光領域 AR1と第 2露光領域 AR2とに それぞれ照射する。また、受光装置 31は、光学素子 20に入射した第 1露光光 EL1 及び第 2露光光 EL2のうち、その光学素子 20から第 1露光領域 AR1及び第 2露光 領域 AR2のいずれにも向かわない、第 1露光光 EL1及び第 2露光光 EL2の少なくと も一方の一部を検出光として受光する。
[0034] まず、第 1、第 2照明系 IL1、 IL2について説明する。第 1照明系 IL1は、第 1マスク ステージ 1に保持された第 1マスク Ml上の第 1照明領域 IA1を均一な照度分布の第 1露光光 EL1で照明する。第 1照明系 IL1の照明光学系は、例えば、照明条件を可 変とする成形光学系、第 1露光光 EL1の照度分布を均一化する照度均一化部材 (内 面反射型インテグレータあるいはフライアイレンズなど)、第 1照明領域 IA1を規定す るマスクブラインド系(マスキング 'システム、又は可変視野絞りとも呼ばれる)、及びリ レー光学系などを有する。第 2照明系 IL2も同様に、例えば、照明条件を可変とする 成形光学系、第 2露光光 EL2の照度分布を均一化する照度均一化部材、第 2照明 領域 IA2を規定するマスクブラインド系、及びリレー光学系などを有する。
[0035] 第 1照明系 IL1に設けられた成形光学系は、例えば、交換可能な回折光学素子、 間隔が可変である複数のプリズム(アキシコンなど)、及びズーム光学系(ァフォー力 ル系)を有する。そして、回折光学素子の交換、プリズムの移動(上記間隔の変更)、 及びズーム光学系の移動の少なくとも 1つによって、投影光学系 PLの瞳面と光学的 に共役となる照明光学系の瞳面上での第 1露光光 EL1の強度分布を変更する (換言 すれば、照明光学系の瞳面に形成される 2次光源の形状及び Z又は大きさを変更 する)。これにより、第 1マスク Mlの照明条件が変更される。従って、照明光学系は、 第 1マスク Mlのパターンに対応した照明条件を設定できるとともに、そのパターンの 変更に応じて照明条件の変更も行うことが可能である。
[0036] 第 1照明系 IL1に設けられたマスクブラインド系は、その少なくとも一部、例えば独 立に可動な複数の遮光板 (マスキング 'ブレード)が、照明光学系内で第 1マスク Ml の表面と光学的にほぼ共役な面に配置され、その複数の遮光板の少なくとも 1つの 移動によって、第 1マスク Ml上の照明領域 IA1の大きさ(幅)などを変更する。従って 、このマスクブラインド系によって、第 1露光領域 AR1 (投影光学系 PLに関して第 1照 明領域 IA1と共役な、第 1パターン PA1の像の投影領域)の大きさ (幅)などを調整で きる。すなわち、第 1露光領域 AR1に照射される第 1露光光 EL1による基板の走査 露光の開始及び終了を制御可能となっている。これにより、 1回の走査露光動作によ つて多重露光すべき基板 P上の 1つのショット領域以外での不要な露光が防止される 。なお、光源装置を制御してその不要な露光を防止してもよい。
[0037] 第 2照明系 IL2は、第 2マスクステージ 2に保持された第 2マスク M2上の第 2照明領 域 IA2を均一な照度分布の第 2露光光 EL2で照明する。第 2照明系 IL2の照明光学 系は、その構成が第 1照明系 IL1の照明光学系と同一であるので、その詳細な説明 は省略する。なお、第 1照明系 IL1と第 2照明系 IL2とでその一部 (例えば、光源装置 、あるいは照明光学系の一部)を兼用してもよい。
[0038] 第 1、第 2照明系 IL1、 IL2のそれぞれから射出される第 1、第 2露光光 EL1、 EL2と しては、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線)及び KrFエキシマレ 一ザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波長 193η m)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本
2
実施形態においては、第 1、第 2露光光 EL1、 EL2として、 ArFエキシマレーザ光が 用いられる。
[0039] 本実施形態の露光装置 EXは、第 1照明系 IL1に対応する第 1光源装置と、第 2照 明系 IL2に対応する第 2光源装置とを有している。すなわち、本実施形態の露光装 置 EXは、複数の光源装置 (エキシマレーザ光源装置)を有している。また本実施形 態においては、第 1照明系 IL1は、第 1偏光状態の第 1露光光 EL1で第 1マスク Ml の第 1パターン PA1を照明し、第 2照明系 IL2は、第 2偏光状態の第 2露光光 EL2で 第 2マスク M2の第 2パターン PA2を照明する。より具体的には、本実施形態におい ては、第 1照明系 IL1は、 P偏光成分が主成分 (例えば、 P偏光成分が 90%以上)で ある第 1露光光 EL1で第 1マスク Mlを照明し、第 2照明系 IL2は、 S偏光成分が主成 分 (例えば、 S偏光成分が 90%以上)である第 2露光光 EL2で第 2マスク M2を照明 する。
[0040] なお、 1つの光源装置から射出された露光光を第 1偏光状態の第 1露光光 EL1と第 2偏光状態の第 2露光光 EL2とに分離し、それら第 1露光光 EL1と第 2露光光 EL2と で第 1パターン PA1と第 2パターン PA2とを照明するようにしてもよい。
[0041] 次に、第 1マスクステージ 1について説明する。第 1マスクステージ 1は、例えばリニ ァモータ等のァクチユエータを含む第 1マスクステージ駆動装置 1Dの駆動により、第 1マスク Mlを保持して、少なくとも X軸、 Y軸、及び θ Z方向に移動可能である。第 1 マスクステージ 1は、第 1マスク Mlの第 1パターン PA1が形成された第 1パターン形 成面と XY平面とがほぼ平行となるように、第 1マスク Mlを保持する。第 1マスクステ ージ 1 (ひいては第 1マスク Ml)の位置情報は、計測システム 3のレーザ干渉計 301 によって計測される。レーザ干渉計 301は、第 1マスクステージ 1上に設けられた反射 面 301Kを用いて第 1マスクステージ 1の位置情報を計測する。制御装置 5は、レー ザ干渉計 301の計測結果に基づいて第 1マスクステージ駆動装置 1Dを駆動し、第 1 マスクステージ 1に保持されている第 1マスク M 1の位置制御を行う。
[0042] 次に、第 2マスクステージ 2について説明する。第 2マスクステージ 2は、例えばリニ ァモータ等のァクチユエータを含む第 2マスクステージ駆動装置 2Dの駆動により、第 2マスク M2を保持して、少なくとも Z軸、 X軸、及び θ Y方向に移動可能である。第 2 マスクステージ 2は、第 2マスク M2の第 2パターン PA2が形成された第 2パターン形 成面と XZ平面とがほぼ平行となるように、第 2マスク M2を保持する。第 2マスクステ ージ 2 (ひ!/、ては第 2マスク M2)の位置情報は、計測システム 3のレーザ干渉計 302 によって計測される。レーザ干渉計 302は、第 2マスクステージ 2上に設けられた反射 面 302Kを用いて第 2マスクステージ 2の位置情報を計測する。制御装置 5は、レー ザ干渉計 302の計測結果に基づ 、て第 2マスクステージ駆動装置 2Dを駆動し、第 2 マスクステージ 2に保持されて!、る第 2マスク M2の位置制御を行う。
[0043] 図 2 (A)は、第 1マスクステージ 1に保持された第 1マスク Mlを示す平面図、図 2 (B )は、第 2マスクステージ 2に保持された第 2マスク M2を示す平面図である。図 2に示 すように、第 1マスクステージ 1は、第 1マスク Mlの第 1パターン PA1が形成された第 1パターン形成面と XY平面とがほぼ平行となるように、第 1マスク Mlを保持し、第 2 マスクステージ 2は、第 2マスク M2の第 2パターン PA2が形成された第 2パターン形 成面と XZ平面とがほぼ平行となるように、第 2マスク M2を保持する。第 1マスク Ml上 での第 1露光光 EL1による第 1照明領域 IA1は、 X軸方向を長手方向とする矩形状( スリット状)に設定されており、第 2マスク M2上での第 2露光光 EL2による第 2照明領 域 IA2も、 X軸方向を長手方向とする矩形状 (スリット状)に設定されている。
[0044] 第 1マスクステージ 1は、第 1パターン PA1を有する第 1マスク Mlを第 1露光光 EL1 に対して Y軸方向に移動可能である。また、第 2マスクステージ 2は、第 2パターン PA 2を有する第 2マスク M2を第 2露光光 EL2に対して Z軸方向に移動可能である。制 御装置 5は、基板 P上の一つのショット領域を露光するとき、第 1マスク Mlのうち、少 なくとも第 1パターン PA1が形成された第 1パターン形成領域 SA1が第 1露光光 EL1 による第 1照明領域 IA1を通過するように、第 1マスクステージ 1を制御して第 1マスク Mlを Y軸方向に移動する。また、制御装置 5は、基板 P上の一つのショット領域を露 光するとき、第 2マスク M2のうち、少なくとも第 2パターン PA2が形成された第 2バタ ーン形成領域 SA2が、第 2露光光 EL2による第 2照明領域 IA2を通過するように、第 2マスクステージ 2を制御して、第 2マスク M2を Z軸方向に移動する。
[0045] また、第 1マスク Mlは、第 1パターン PA1と所定位置関係で形成された第 1ァラィメ ントマーク RM1を備えており、第 2マスク M2は、第 2パターン PA2と所定位置関係で 形成された第 2ァライメントマーク RM2を備えている。本実施形態では、第 1、第 2ァ ライメントマーク RM1、 RM2はそれぞれ 2次元マーク、例えば十字状マークを含む。
[0046] 第 1ァライメントマーク RM1は、第 1マスク Mlのうち、第 1パターン PA1が形成され た第 1パターン形成面内の所定領域に複数形成されている。図 2 (A)に示すように、 第 1ァライメントマーク RM 1は、第 1マスク M 1の第 1パターン形成領域 S A 1の + X側 及び X側のエッジ領域のそれぞれにおいて、第 1マスク Mlの走査方向(Y軸方向 )に沿って複数並んで形成されている。従って、第 1ァライメントマーク RM1はその全 てが、第 1照明領域 IAと第 1マスク Mlとの相対移動によって第 1照明系 IL1からの第 1露光光 ELIで照明される。第 2ァライメントマーク RM2は、第 2マスク M2のうち、第 2パターン PA2が形成された第 2パターン形成面内の所定領域に複数形成されてい る。図 2 (B)に示すように、第 2ァライメントマーク RM2は、第 2マスク M2の第 2パター ン形成領域 SA2の +X側及び— X側のエッジ領域のそれぞれにお ヽて、第 2マスク M2の走査方向(Z軸方向)に沿って複数並んで形成されている。従って、第 2ァライ メントマーク RM2はその全て力 第 2照明領域 IA2と第 2マスク M2との相対移動によ つて第 2照明系 IL2からの第 2露光光 EL2で照明される。また、本実施形態において は、第 1ァライメントマーク RM1と第 2ァライメントマーク RM2とは、互いに対応するよ うに第 1マスク Ml上及び第 2マスク M2上のそれぞれに形成されている。なお、第 1、 第 2ァライメントマーク RM1、 RM2はその数や配置が図 2に限定されるものでなぐ例 えば第 1、第 2ァライメントマーク RM1、 RM2を第 1、第 2パターン形成面の外側に形 成してちょい。
[0047] 次に、図 1を参照しながら投影光学系 PLについて説明する。投影光学系 PLは、第 1露光光 EL1で照明された第 1マスク Mlの第 1パターン PA1の像及び第 2露光光 E L2で照明された第 2マスク M2の第 2パターン PA2の像を所定の投影倍率で基板 P 上に投影する。本実施形態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/ 5、 1Z8等の縮小系である。投影光学系 PLの複数の光学素子は鏡筒 PKで保持さ れている。
[0048] 本実施形態の投影光学系 PLは、複数の光学素子を含み、第 1パターン PA1から の第 1露光光 EL1を光学素子 20へ導く第 1光学系 11と、複数の光学素子を含み、 第 2パターン PA2からの第 2露光光 EL2を光学素子 20へ導く第 2光学系 12と、複数 の光学素子を含み、光学素子 20からの第 1露光光 EL1及び第 2露光光 EL2のそれ ぞれを第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれへ導く第 3光学系 13と を備えている。
[0049] 光学素子 20は、第 1マスク Mlの第 1パターン PA1からの第 1露光光 EL1が入射す る第 1入射面 21と、第 2マスク M2の第 2パターン PA2からの第 2露光光 EL2が入射 する第 2入射面 22とを有して 、る。第 1マスク Mlの第 1パターン PA1からの第 1露光 光 EL1は、第 1光学系 11を介して光学素子 20の第 1入射面 21に入射する。また、第 2マスク M2の第 2パターン PA2からの第 2露光光 EL2は、第 2光学系 12を介して光 学素子 20の第 2入射面 22に入射する。すなわち、第 1露光光 EL1と第 2露光光 EL2 とは光学素子 20に対して異なる方向(ここでは直交する方向)から入射する。上述の ように、光学素子 20は、偏光分離光学素子 (偏光ビームスプリッタ)であり、第 1偏光 状態の第 1露光光 EL1は P偏光成分を主成分とする露光光であり、第 2偏光状態の 第 2露光光 EL2は S偏光成分を主成分とする露光光である。本実施形態にぉ 、ては 、第 1パターン PA1から第 1入射面 21を介して光学素子 20に入射した第 1露光光 E L1の一部 (P偏光成分)は、所定面 (偏光分離面) 25を透過して、光学素子 20の第 1 射出面 23より射出され、第 2パターン PA2から第 2入射面 22を介して光学素子 20に 入射した第 2露光光 EL2の一部(S偏光成分)は、所定面 25で反射して光学素子 20 の第 1射出面 23より射出される。すなわち、光学素子 20に異なる方向から入射した 第 1露光光 EL1の一部と第 2露光光 EL2の一部は光学素子 20の同一面 (第 1射出 面 23)から同一の方向に射出する。ここでは「P偏光成分」は偏光分離面 25への入 射光 (第 1露光光 EL1)の入射面に対して平行な (入射面内で振動する)直線偏光で あり、「S偏光成分」は偏光分離面 25への入射光 (第 2露光光 EL2)の入射面に対し て垂直な (入射面に直交する面内で振動する)直線偏光である。そして、第 1射出面 23より射出された第 1露光光 EL1と第 2露光光 EL2とは、第 3光学系 13を介して、第 1露光領域 AR1と第 2露光領域 AR2とにそれぞれ照射される。
[0050] 一方、第 1パターン PA1から第 1入射面 21を介して光学素子 20に入射した第 1露 光光 EL1の他部(S偏光成分)は、第 1露光領域 AR1に向かわずに、所定面 25で反 射して光学素子 20の第 2射出面 24より射出され、第 2パターン PA2から第 2入射面 2 2を介して光学素子 20に入射した第 2露光光 EL2の他部(P偏光成分)は、第 2露光 領域 AR2に向かわずに、所定面 25を透過して光学素子 20の第 2射出面 24より射出 される。すなわち、光学素子 20に異なる方向から入射した第 1露光光 EL1の他部と 第 2露光光 EL2の他部は光学素子 20の同一面 (第 2射出面 24)から同一の方向に 射出して、受光装置 31に向かう。
[0051] なお、以下の説明において、光学素子 20の第 1射出面 23から射出される第 1露光 光 EL1の一部 (P偏光成分)及び第 2露光光 EL2の一部(S偏光成分)を適宜第 1露 光光 ELI (P)及び第 2露光光 EL2 (S)とそれぞれ称し、第 2射出面 24から射出され る第 1露光光 EL1の一部(S偏光成分)及び第 2露光光 EL2の一部(P偏光成分)を 適宜第 1露光光 ELI (S)及び第 2露光光 EL2 (P)とそれぞれ称する。
[0052] 図 1に示すように、光学素子 20の第 2射出面 24から射出される第 1露光光 ELI (S) 及び第 2露光光 EL2 (P)が照射可能な位置には、検出システム 30の受光装置 31が 配置されている。本実施形態においては、受光装置 31は、投影光学系 PLの鏡筒 P Kに設けられているが、投影光学系 PL (鏡筒 PK)とは別の部材、例えばァライメント 系 7などが設けられる計測フレーム (不図示)などに配置してもよい。受光装置 31は、 光学素子 20から第 1露光領域 AR1及び第 2露光領域 AR2のいずれにも向かわない 、第 2射出面 24から射出される第 1露光光 EL1 (S)及び第 2露光光 EL2 (P)を受光 可能である。
[0053] また、本実施形態の露光装置 EXには、投影光学系 PLによる第 1パターン PA1の 像及び第 2パターン PA2の像の結像特性 (結像状態)をそれぞれ独立に調整可能な 第 1結像特性調整装置 LC1及び第 2結像特性調整装置 LC2が設けられて ヽる。第 1 、第 2結像特性調整装置 LC1、 LC2は、投影光学系 PLの複数の光学素子の少なく とも 1つを移動可能な光学素子駆動機構を含む。
[0054] 第 1結像特性調整装置 LC1は、第 1光学系 11の少なくとも一つの特定の光学素子 を、第 1光学系 11の光軸と平行な Z軸方向、及び光軸に垂直な方向(X軸、 Y軸方向 )に移動可能であるとともに、光軸と直交する XY平面に対して傾斜可能 (すなわち、 Θ Χ, 0 Y方向に回転可能)である。第 1パターン PA1からの第 1露光光 EL1は、第 1 光学系 11、光学素子 20、及び第 3光学系 13を介して第 1露光領域 AR1に照射され 、第 1結像特性調整装置 LC1は、第 1光学系 11の特定の光学素子を駆動することに よって、第 1露光領域 AR1に照射される第 1露光光 EL1で形成される第 1パターン P A1の像の結像特性を調整可能である。
[0055] 第 2結像特性調整装置 LC2は、第 2光学系 12の少なくとも一つの特定の光学素子 を、第 2光学系 12の光軸と平行な Y軸方向、及び光軸に垂直な方向(X軸、 Z軸方向 )に移動可能であるとともに、光軸と直交する XZ平面に対して傾斜可能 (すなわち、 Θ X、 θ Z方向に回転可能)である。第 2パターン PA2からの第 2露光光 EL2は、第 2 光学系 12、光学素子 20、及び第 3光学系 13を介して第 2露光領域 AR2に照射され 、第 2結像特性調整装置 LC2は、第 2光学系 12の特定の光学素子を駆動することに よって、第 2露光領域 AR2に照射される第 2露光光 EL2で形成される第 2パターン P A2の像の結像特性を調整可能である。
[0056] 第 1、第 2結像特性調整装置 LC1、 LC2は、制御装置 5によって制御される。制御 装置 5は、第 1、第 2結像特性調整装置 LC1、 LC2を用いて、投影光学系 PL (第 1、 第 2光学系 11、 12)の特定の光学素子を駆動することで、投影光学系 PLの各種収 差 (例えば、ディストーション、非点収差、球面収差、波面収差等)、投影倍率及び像 面位置 (焦点位置)等を含む結像特性を調整することができる。
[0057] また、制御装置 5は、第 1、第 2結像特性調整装置 LC1、 LC2を用いて、第 1、第 2 パターン PA1、 PA2の像の XY方向、及び Z又は 0 Z方向の位置調整(すなわち、 シフト調整、及び Z又はローテーション調整)を行うこともできる。
[0058] すなわち、制御装置 5は、第 1、第 2結像特性調整装置 LC1、 LC2を用いて、第 1、 第 2パターン PA1、 PA2それぞれの像の状態 (大きさ、歪み等)の調整、第 1、第 2パ ターン PA1、PA2それぞれの像が形成される投影光学系 PLの像面の Z軸方向の位 置調整、及び Θ X、 θ Y方向の傾斜調整、並びに第 1、第 2パターン PA1、 PA2それ ぞれの像の X軸方向、 Y軸方向、 Θ Z方向の位置調整を行うことができる。
[0059] なお、本実施形態では第 1、第 2結像特性調整装置 LC1、 LC2によってそれぞれ 移動する第 1、第 2光学系 11、 12の少なくとも 1つの光学素子は、レンズに限られるも のでなく他の光学素子、例えば平行平面板、あるいは反射素子などでもよい。また、 本実施形態では 2つの結像特性調整装置 (LC1、 LC2)を設けるものとしたが、 1つ の結像特性調整装置を設けるだけでもよ 、し、あるいは 3つ以上の結像特性調整装 置を設けてもよい。例えば、第 3光学系 13の少なくとも 1つの光学素子を、第 3光学系 13の光軸と平行な Z軸方向、及び X軸、 Y軸方向に移動可能、かつ Θ X、 θ Y方向 に回転可能とする結像特性調整装置を設けてもよい。さらに、本実施形態では、第 1 結像特性調整装置 LC1が X軸、 Y軸、 Z軸、 θ X及び θ Y方向の 5自由度の方向に、 第 2結像特性調整装置 LC2が X軸、 Y軸、 Z軸、 θ X及び θ Z方向の 5自由度の方向 にそれぞれ光学素子を移動するものとしたが、光学素子の移動方向はこの 5自由度 の方向に限定されるものではない。また、本実施形態では結像特性調整装置が光学 素子を移動する方式を採用するものとしたが、他の方式を代用あるいは併用してもよ い。例えば、第 1、第 2結像特性調整装置 LC1、 LC2として、鏡筒 PKの内部に保持 されている一部の光学素子間の空間の気体の圧力を調整する圧力調整機構を用い てもよい。
[0060] なお、投影光学系によるパターンの像の結像特性を調整可能な結像特性調整装 置を備えた露光装置については、例えば特開昭 60— 78454号公報 (対応米国特許 第 4,666,273号)、特開平 11— 195602号公報(対応米国特許第 6,235,438号)、 国際公開第 03Z65428号パンフレット(対応米国特許出願公開第 2005Z020685 0号)等に開示されている。
[0061] 次に、基板ステージ 4について説明する。基板ステージ 4は、第 1露光光 EL1及び 第 2露光光 EL2が照射される第 1露光領域 AR1及び第 2露光領域 AR2を含む所定 領域内で基板 Pを保持して移動可能である。図 1に示すように、基板ステージ 4は、例 えばエアベアリングによりベース部材 BP上で非接触支持されるとともに、基板 Pを保 持する基板ホルダ 4Hを有している。基板ホルダ 4Hは、基板 Pの表面と XY平面とが ほぼ平行となるように、基板 Pを保持する。基板ステージ 4は、例えばリニアモータ等 のァクチユエータを含む基板ステージ駆動装置 4Dの駆動により、基板 Pを X軸、 Y軸 、Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に移動可能である。
[0062] 基板ステージ 4 (ひ 、ては基板 P)の位置情報は、計測システム 3のレーザ干渉計 3 04によって計測される。レーザ干渉計 304は、基板ステージ 4に設けられた反射面 3 04Kを用いて基板ステージ 4の X軸、 Y軸、及び θ Z方向に関する位置情報を計測 する。また、基板ステージ 4に保持されている基板 Pの表面の面位置情報 (Z軸、 θ X 、及び Θ Y方向に関する位置情報)は、不図示のフォーカス'レべリング検出系によつ て検出される。制御装置 5は、レーザ干渉計 304の計測結果及びフォーカス'レペリ ング検出系の検出結果に基づ 、て基板ステージ駆動装置 4Dを駆動し、基板ステー ジ 4に保持されている基板 Pの位置制御を行う。なお、フォーカス'レべリング検出系 は、例えば米国特許第 6,608,681号などに開示されるように、その複数の計測点で それぞれ基板 Pの Z軸方向の位置情報を計測してその面位置情報を検出する多点 位置検出系を用いることができる。本実施形態では、この複数の計測点はその少なく とも一部が第 1、第 2露光領域 AR1、 AR2内に設定されるが、例えば後述の液浸露 光装置の例では、全ての計測点が第 1、第 2露光領域 AR1、 AR2 (または液浸領域) の外側に設定されてもよい。また、レーザ干渉計 304は基板ステージ 4の Z軸、 Θ Χ及 び θ Y方向の位置情報をも計測可能としてよぐその詳細は、例えば特表 2001— 51 0577号公報 (対応国際公開第 1999Z28790号パンフレット)に開示されている。こ の場合、フォーカス'レべリング検出系は設けなくてもよい。あるいは、複数の計測点 が第 1、第 2露光領域 AR1、 AR2の内部及び Z又は外部に配置されるようにフォー カス'レべリング検出系を設けなくてもよぐ例えば投影光学系 PLから離して設けても よい。
[0063] また、基板ステージ 4には、例えば特開 2002— 14005号公報 (対応する米国特許 出願公開第 2002Z0041377号明細書)等に開示されているような空間像計測器 1 62の少なくとも一部が配置されている。制御装置 5は、空間像計測器 162を用いて、 計測システム 3で規定される XY座標系内における第 1露光領域 AR1に形成される 第 1パターン PA1の像の位置情報、及び第 2露光領域 AR2に形成される第 2パター ン PA2の像の位置情報の少なくとも一方を取得することができる。本実施形態では、 空間像計測器 162によって第 1、第 2マスク Ml、 M2の第 1、第 2ァライメントマーク R Ml、 RM2の像の少なくとも一方を検出するので、 XY座標系における第 1、第 2パタ ーン PA1、PA2の投影位置の少なくとも一方も求めることができる。
[0064] また、図 1に示すように、本実施形態の露光装置 EXは、基板ステージ 4上に設けら れた基準マーク FPと、基板 P上に設けられたァライメントマーク AMとを検出するァラ ィメント系 7を備えている。ァライメント系 7は、投影光学系 PLの近傍に設けられたォ ファタシス方式のァライメント系であって、例えば特開平 4— 65603号 (対応米国特 許第 5, 493, 403号)、米国特許第 5,646,413号などに開示されているような、基板 P上の感光材を感光させな 、ブロードバンドな検出光束を対象マーク (基板 Pに形成 されたァライメントマーク AM、及び基板ステージ 4上に形成された基準マーク FP等) に照射し、その対象マークからの反射光により受光面に結像された対象マークの像と 指標 (ァライメント系 7内に設けられた指標板上の指標マーク)の像とを撮像素子 (CC D等)を用いて撮像し、それらの撮像信号を画像処理することでマークの位置を計測 する FIA (Field Image Alignment)方式のァライメント系である。この指標は、計測シス テム 3で規定される XY座標系内におけるァライメント系 7の検出基準位置を規定する ものである。ァライメント系 7は、検出対象マークの像と指標との位置関係 (位置ずれ) を検出し、制御装置 5はその検出された位置関係と、ァライメント系 7によるマーク検 出時に計測システム 3から得られる基板ステージ 4の位置情報に基づ 、て、計測シス テム 3で規定される XY座標系内における検出対象マークの位置 (座標値)を検出す ることができる。なお、ァライメント系 7のベースライン量、すなわち XY座標系内にお けるァライメント系 7の検出基準位置と、第 1、第 2パターン PA1、 PA2の像の少なくと も一方の投影位置との距離は、空間像計測器 162による第 1、第 2マスク Ml、 M2の 第 1、第 2ァライメントマーク RM1、 RM2の像の少なくとも一方の検出と、ァライメント 系 7による基準マーク FPの検出とによって求められ、記憶装置 6に記憶されて 、る。 また、本実施形態では基板 Pのァライメントマーク AM及び基準マーク FPがそれぞれ 2次元マーク、例えば X軸、 Y軸方向にそれぞれ周期的に配列される 2つの周期マー クを含む。
[0065] 図 3は、基板 P上のショット領域 Sと第 1、第 2露光領域 AR1、 AR2との位置関係を 示す模式図である。図 3に示すように、基板 P上での第 1露光光 EL1による第 1露光 領域 AR1は、 X軸方向を長手方向とする矩形状 (スリット状)に設定されており、基板 P上での第 2露光光 EL2による第 2露光領域 AR2も、 X軸方向を長手方向とする矩 形状 (スリット状)に設定されている。なお、上述したように、本実施形態においては、 第 1露光光 EL1が照射される第 1露光領域 AR1、及び第 2露光光 EL2が照射される 第 2露光領域 AR2とは重複(一致)している。なお、図 3には、基板 P上のショット領域 Sの位置情報を検出するためのァライメントマーク AMの一例も示されている。本実施 形態では、ショット領域 Sの Y軸方向の両側にそれぞれァライメントマーク AMが形成 されている力 ァライメントマーク AMの個数や位置はこれに限定されるものではない
[0066] 基板ステージ 4は、基板 P上のショット領域 Sを第 1露光領域 AR1及び第 2露光領域 R2に対して Y軸方向に移動可能である。制御装置 5は、基板 Pを露光するとき、基板 P上のショット領域 Sが第 1、第 2露光光 EL1、 EL2による第 1、第 2露光領域 AR1、 A R2を通過するように、基板ステージ 4を制御して基板 Pを Y軸方向に移動する。
[0067] 次に、検出システム 30について説明する。図 4は、検出システム 30を示す概略構 成図である。検出システム 30は、第 1パターン PA1の像と第 2パターン ΡΑ2の像と基 板 Ρ上のショット領域 Sとの位置関係に関する情報を取得するためのものであって、投 影光学系 PLの少なくとも一部を介して第 1露光光 EL1及び第 2露光光 EL2の少なく とも一方の一部を受光可能な受光装置 31を備えている。本実施形態においては、受 光装置 31は、光学素子 20の第 2射出面 24から射出される第 1露光領域 AR1及び第 2露光領域 AR2の 、ずれにも向かわな 、第 1露光光 ELI (S)及び第 2露光光 EL2 ( P)を、上述の位置関係に関する情報を取得するための検出光として受光する。
[0068] 図 4において、受光装置 31は、第 1露光光 EL1 (S)及び第 2露光光 EL2 (P)が透 過可能な透過部(開口) 36が形成された板部材 35と、板部材 35の透過部 36 (第 1の 位置)を通過した光を所定の光学系 33を介して受光する受光素子 32とを備えている 。第 1、第 2露光光 ELI (S)、 EL2 (P)は、光学素子 20の第 2射出面 24より射出し、 受光装置 31の光学系 33を介して受光素子 32の受光面 32aに照射される。
[0069] 板部材 35は、例えば石英などによって形成されており、第 1、第 2露光光 ELI (S)、 EL2 (P)が透過可能である。透過部 36は、板部材 35の上面 35aに、例えば Cr (クロ ム)等の金属で形成された遮光領域に開口を形成したものである。透過部 36は、ァラ ィメントマーク RM1, RM2の配置に合わせて、 X軸方向に離れた二箇所に設けられ ている。板部材 35の透過部(開口) 36を通過した光は、光学系 33を介して受光素子 32に受光される。受光素子 32は、例えば撮像素子 (CCD等)、フォト'マルチプライ ャ ·チューブ (PMT、光電子増倍管)等の光電変換素子を含む。
[0070] 受光装置 31の板部材 35の上面 35aは、投影光学系 PLの物体面 (不図示)、及び 像面 (不図示)と光学的に共役な位置 (又はその近傍)に配置されて 、る。すなわち、 受光装置 31の板部材 35の上面 35aは、第 1、第 2マスク Ml, M2の第 1、第 2パター ン形成面、及び基板 Pの表面と光学的に共役な位置 (又はその近傍)に配置されて いる。また、受光装置 31の板部材 35の上面 35aと受光素子 32の受光面 32aとは、光 学系 33を介して光学的に互いに共役である。したがって、第 1露光領域 AR1,第 2 露光領域 AR2と同様の位置関係で、板部材 35の上面 35aに第 1露光光 ELI (S) , 第 2露光光 EL2 (P)が入射する。
[0071] 図 5は、受光装置 31の板部材 35の上面 35aを示す図である。第 1、第 2照明系 IL1 、 IL2より第 1、第 2露光光 EL1、 EL2を射出し、投影光学系 PLに入射させた場合、 板部材 35の上面 35aに、第 1露光光 ELI (S)と第 2露光光 EL2 (P)とが入射する。 図 3に示したように、本実施形態においては、投影光学系 PLの像面において、第 1 露光領域 AR1と第 2露光領域 AR2とが重複する。したがって、投影光学系 PLの物 体面、及び像面と光学的に共役な位置に配置されている板部材 35の上面 35aにお いて、第 1露光光 EL1 (S)が照射される領域 AR1 'と、第 2露光光 EL2 (P)が照射さ れる領域 AR2'とは重複するように形成される。
[0072] ここで、以下の説明において、受光装置 31の板部材 35の上面 35aの、第 1露光光 EL1が照射される領域 AR1 'を適宜、第 1検出光領域 AR1 'と称し、第 2露光光 EL2 が照射される領域 AR2'を適宜、第 2検出光領域 AR2'と称する。
[0073] 上述したように、板部材 35の上面 35aは、投影光学系 PLの物体面、及び像面と光 学的に共役な位置 (又はその近傍)に配置されているので、板部材 35の上面 35a上 の第 1検出光領域 AR1 'に照射される第 1露光光 ELI (S)によって、第 1検出光領域 AR1 'に第 1パターン PA1の像が形成され、受光面 32a上の第 2検出領域 AR2'に 照射される第 2露光光 EL2 (P)によって、第 2検出光領域 AR2'に第 2パターン PA2 の像が形成される。
[0074] また、図 2を参照して説明したように、本実施形態においては、第 1マスク Ml上の 第 1ァライメントマーク RM1は、第 1照明領域 IA1の内側に配置可能となっているの で、第 1照明系 IL1からの第 1露光光 EL1で照明できる。また、第 2マスク M2上の第 2ァライメントマーク RM2は、第 2照明領域 IA2の内側に配置可能となっているので、 第 2照明系 IL2からの第 2露光光 EL2で照明できる。したがって、板部材 35の上面 3 5a上の第 1検出光領域 AR1,には、第 1ァライメントマーク RM1の像も形成され、板 部材 35の上面 35a上の第 2検出領域 AR2,には、第 2ァライメントマーク RM2の像も 形成される。すなわち、本実施形態においては、板部材 35の上面 35aには、投影光 学系 PLの光学素子 20等を介して、第 1ァライメントマーク RM1の像と、第 2ァライメン トマーク RM2の像とが形成される。
[0075] そして、図 5に示すように、受光装置 31の透過部 36は、板部材 35の上面 35aにお いて、第 1ァライメントマーク RM1の像、及び第 2ァライメントマーク RM2の像が形成 可能な位置(二箇所)に配置されている。また、上述したように、受光素子 32の受光 面 32aは、板部材 35の透過部 36と光学系 33に関して共役な位置に配置されている ので、受光装置 31の受光面 32aには、第 1,第 2パターン PA1, PA2の像は形成さ れず、第 1ァライメントマーク RM1と第 2ァライメントマーク RM2の少なくとも一方の像 のみが形成可能である。
[0076] このように、本実施形態においては、受光装置 31 (受光素子 32)は、第 1ァライメン トマーク RM1からの第 1露光光 ELI (S)と第 2ァライメントマーク RM2からの第 2露光 光 EL2 (P)とを、光学素子 20を含む投影光学系 PLの一部を介して検出光として受 光する。
[0077] 図 6は、第 1ァライメントマーク RM1の像力 受光面 32aに形成されている状態の一 例を示す模式図である。図 6に示すように、本実施形態の検出システム 30の受光装 置 31の受光面 32a上には、板部材 35の透過部(開口) 36の 4つのエッジの像が矩 形状に形成されており、透過部 36のエッジ像の内側に第 1ァライメントマーク RM1の 像が形成される。透過部 36 (透過部 36のエッジ像)は、第 1、第 2パターン PA1、 PA 2の像の位置情報を求めるときの基準となる。第 1マスク Ml上の第 1パターン PA1と 第 1ァライメントマーク RM1とは所定位置関係で形成されている。また、第 1ァライメン トマーク RM1の像と透過部 36のエッジ像との位置関係と、第 1露光領域 AR1におけ る第 1ァライメントマーク RM1の投影位置 (第 1パターン像の投影位置)とは、後述す るように予め関連付けされる。従って、後述するように、受光素子 32の受光面 32aに 投影光学系 PLの一部を介して形成される第 1ァライメントマーク RM1の像と透過部 3 6のエッジ像との位置関係を求めることによって、第 1露光領域 AR1に形成される第 1 ァライメントマーク RM1の像、ひいては第 1パターン PA1の像の位置情報、及び Z又 は第 1パターン PA1 (第 1マスク Ml)の位置情報(目標位置から位置ずれ情報など) を取得することができる。すなわち、制御装置 5は、受光装置 31の受光結果に基づ いて、第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情報、及び Z又 は第 1パターン PA1 (第 1マスク Ml)の位置情報を取得することができる。なお、制御 装置 5が取得する位置情報は、 X軸方向、 Y軸方向に関する位置情報だけでなぐ回 転情報も含む。
[0078] 同様にして、制御装置 5は、受光装置 31の受光結果 (受光素子 32の受光面 32aに 形成される第 2ァライメントマーク RM2の像と透過部 36のエッジ像との位置関係)に 基づいて、第 2露光領域 AR2に形成される第 2パターン PA2の像の位置情報、及び Z又は第 2パターン PA2 (第 2マスク M2)の位置情報を取得することができる。
[0079] また、制御装置 5は、受光装置 31の受光結果に基づいて、露光領域 (AR1, AR2) 内に形成される第 1パターンの像と第 2パターンの像との位置関係と、第 1パターン P A1 (第 1マスク Ml)と第 2パターン PA2 (第 2マスク M2)との位置関係の少なくとも一 方ち取得することがでさる。
[0080] なお、図 6に示すように、受光面 32a上に第 2ァライメントマーク RM2の像を形成せ ずに、第 1ァライメントマーク RM1の像のみを形成するためには、制御装置 5は、第 2 照明系 IL2からの第 2露光光 EL2の射出を停止した状態で、第 1照明系 IL1からの 第 1露光光 EL1で第 1ァライメントマーク RM1を照明すればよい。
[0081] また、受光面 32a上に第 1ァライメントマーク RM1の像を形成せずに、第 2ァラィメ ントマーク RM2の像のみを形成して、その受光面 32aに形成される第 2パターン PA 2の像の位置情報を求めるためには、制御装置 5は、第 1照明系 IL1からの第 1露光 光 EL1の射出を停止した状態で、第 2照明系 IL2からの第 2露光光 EL2で第 2ァライ メントマーク RM2を照明すればよい。
[0082] なお、第 1ァライメントマーク RM1の像と第 2ァライメントマーク RM2の像とを同時に 受光素子 32の受光面 32aに形成してもよ 、。
[0083] 図 7は、第 1ァライメントマーク RM1の像及び第 2ァライメントマーク RM2の像力 受 光素子 32の受光面 32aに形成されている状態の一例を示す模式図である。図 7に示 すように、受光面 32a上には、第 1パターン PA1の像と第 2パターン PA2の像とが形 成されている。検出システム 30は、受光装置 31の受光結果に基づいて、受光装置 3 1の受光面 32aに投影光学系 PLの一部を介して形成される第 1ァライメントマーク R Mlの像と透過部 36のエッジ像との位置関係、及び第 2ァライメントマーク RM2の像 と透過部 36のエッジ像との位置関係を求めることができる。第 1マスク Ml上の第 1パ ターン PA1と第 1ァライメントマーク RM1とは所定位置関係で形成されており、第 2マ スク M2上の第 2パターン PA2と第 2ァライメントマーク RM2とは所定位置関係で形 成されている。このため、制御装置 5は、受光装置 31の受光結果に基づいて、第 1露 光領域 AR1に形成される第 1パターン PA1の像の位置情報と第 2露光領域 AR2〖こ 形成される第 2パターン PA2の像の位置情報と、露光領域 (AR1, AR2)内における 第 1パターン PA1の像と第 2パターン PA2の像との位置関係と、第 1パターン PA1の 位置情報と、第 2パターン PA2の位置情報と、第 1パターン PA1と第 2パターン PA2 との位置関係の少なくとも 1つを求めることができる。
[0084] なお、受光装置 31の受光面 32a上に第 1ァライメントマーク RM1の像と第 2ァラィメ ントマーク RM2の像とを同時に形成する場合、第 1ァライメントマーク RM1の像と第 2 ァライメントマーク RM2の像を独立して検出しやすくするために、第 1ァライメントマー ク RM1の形状と第 2ァライメントマーク RM2の形状を異ならせるようにしてもよい。
[0085] なお、図 7に示すように、受光面 32a上に第 1ァライメントマーク RM1の像及び第 2 ァライメントマーク RM2の像のそれぞれを形成するためには、制御装置 5は、第 1照 明系 IL1からの第 1露光光 EL1で第 1ァライメントマーク RM1を照明するとともに、第 2照明系 IL2からの第 2露光光 EL2で第 2ァライメントマーク RM2を照明すればよい。
[0086] 次に、空間像計測器 162について説明する。図 8は、空間像計測器 162を示す図 である。制御装置 5は、空間像計測器 162を用いて、第 1露光領域 AR1に形成され る第 1パターン PA1の像の位置情報、及び第 2露光領域 AR2に形成される第 2バタ ーン PA2の像の位置情報を計測可能である。本実施形態においては、空間像計測 器 162の少なくとも一部は、投影光学系 PLの像面側に配置可能な基板ステージ 4に 設けられている。図 8に示すように、本実施形態においては、基板ステージ 4上に、光 が透過可能な透過部(開口) FM'を有する基準板 50が設けられ、その基準板 50の 下方(一 Z方向)に、基板ステージ 4の内部空間 58が形成されている。内部空間 58に は、投影光学系 PLにより基板ステージ 4上に照射される検出光を受光する空間像検 出器 162の一部が設けられている。空間像検出器 162は、基準板 50の下方に設け られた光学系 163と、光学系 163を介した光を受光する受光素子 164とを備えて 、る [0087] 基準板 50は、例えば石英などによって形成されており、第 1露光光 ELI (P)、第 2 露光光 EL2 (S)が透過可能である。透過部 FM'は、例えば Cr (クロム)等の金属で 形成された遮光領域に十字形状の開口(スリット)を形成したものである。基準板 50 の透過部(開口) FM'に照射された光は、光学系 163を介して受光素子 164に受光 される。この透過部 FM,(第 2の位置)は、第 1、第 2パターン PA1、 PA2の像の位置 情報を求めるときの基準となる。以下の説明において、透過部 FM'を適宜、基準透 過部 FM'と称する。
[0088] また、不図示ではあるが、基準板 50上には、ァライメント系 7で検出される基準マー ク FPが形成されている。基準透過部 FM'と基準マーク FPとは所定位置関係で設け られている。
[0089] 次に、空間像計測器 162を用いて第 1パターン PA1の像の位置情報を計測する動 作の一例について説明する。制御装置 5は、基板ステージ 4を XY方向に移動し、第 1露光領域 AR1に、基板ステージ 4上の基準透過部 FM'を配置する。また、制御装 置 5は、第 1照明系 IL1より、第 1マスク Mlの第 1ァライメントマーク RM1に、検出光と して第 1露光光 EL1を照射する。上述のように、第 1ァライメントマーク RM1は第 1照 明領域 IA1に配置可能であり、第 1照明系 IL1は、第 1照明領域 IA1に配置された第 1ァライメントマーク RM1を第 1露光光 EL1で照明可能である。そして、制御装置 5は 、計測システム 3を用いて基板ステージ 4の位置情報を計測しつつ、空間像計測器 1 62により、第 1露光光 EL1で照明された第 1ァライメントマーク RM1の空間像を投影 光学系 PLを介して計測する。なお上述のように、本実施形態においては、第 1露光 領域 AR1と第 2露光領域 AR2とは重複しており、制御装置 5は、第 1ァライメントマー ク RM1の空間像を計測しているときには、第 2照明系 IL2からの第 2露光光 EL2の射 出を停止する。これにより、空間像計測器 162は、基準板 50上の基準透過部 FM'と 、第 1マスク Ml上の第 1ァライメントマーク RM1との位置関係を検出することができる 。第 1マスク Ml上の第 1パターン PA1と第 1ァライメントマーク RM1とは所定位置関 係で形成されているため、制御装置 5は、第 1パターン PA1と基準透過部 FM'との 位置関係を求めることができるとともに、第 1露光領域 AR1に形成される第 1パターン PAlの像の投影位置と基準透過部 FM,との位置関係を求めることができる。すなわ ち、制御装置 5は、空間像計測器 162の計測結果に基づいて、第 1露光領域 AR1に 形成される第 1パターン PA1の像の位置情報を求めることができる。
[0090] また、空間像計測器 162による計測中、受光装置 31の受光面 32a上にも、第 1ァラ ィメントマーク RM1の像が形成される。図 6等を参照して説明したように、制御装置 5 は、検出システム 30の検出結果に基づいて、受光装置 31の受光面 32a上に形成さ れる第 1ァライメントマーク RM1の像と透過部 36のエッジ像との位置関係を求めるこ とができる。また、上述したように、制御装置 5は、空間像計測器 162の計測結果に基 づいて、第 1露光領域 AR1に形成される第 1ァライメントマーク FM1の像と基準透過 部 FM'との位置関係、及び第 1露光領域 AR1に形成される第 1パターン PA1の像と 基準透過部 FM'との位置関係を求めることができる。したがって、制御装置 5は、検 出システム 30の検出結果である受光面 32a上に形成される第 1ァライメントマーク R Mlの像の位置情報(第 1ァライメントマーク RM1の像と透過部 36のエッジ像との位 置関係)と、空間像計測器 162の計測結果である第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情報とを関連付けることができる。
[0091] したがって、制御装置 5は、検出システム 30の受光装置 31の出力に基づいて、第 1 露光領域 AR1に形成される第 1パターン PA1の像の位置情報、及び Z又は第 1バタ ーン PA1の位置情報を取得することができる。
[0092] 同様にして、制御装置 5は、検出システム 30の検出結果である受光面 32a上に形 成される第 2ァライメントマーク RM2の像の位置情報 (第 2ァライメントマーク RM2の 像と透過部 36のエッジ像との位置関係)と、空間像計測器 162の計測結果である第 2露光領域 AR2に形成される第 2パターン PA2の像の位置情報とを関連付けること ができる。
[0093] したがって、制御装置 5は、検出システム 30の受光装置 31の出力に基づいて、第 2 露光領域 AR2に形成される第 2パターン PA2の像の位置情報、及び Z又は第 2バタ ーン PA2の位置情報を取得することができる。したがって、制御装置 5は、検出シス テム 30の受光装置 31の出力に基づいて、露光領域 (AR1, AR2)における第 1パタ ーン PA1の像と第 2パターン PA2の像との位置関係も求めることができる。 [0094] なお、空間像計測器 162を用いて第 1パターン PA1の像の位置情報 (第 1パターン PA1の位置情報)を取得する場合に用いられる第 1ァライメントマーク RM1は、複数 の第 1ァライメントマーク RM 1のうち、特定の第 1ァライメントマーク RM 1を用いること ができる。あるいは、第 1ァライメントマーク RM1とは別の計測マークを第 1マスク Ml 上に設け、その計測マークを用いてもよい。同様に、第 2パターン PA2の像の位置情 報 (第 2パターン PA2の位置情報)を取得する場合に用いられる第 2ァライメントマー ク RM2は、複数の第 2ァライメントマーク RM2のうち、特定の第 2ァライメントマーク R M2を用いることができる。あるいは、第 2ァライメントマーク RM2とは別の計測マーク を第 2マスク M2上に設け、その計測マークを用いてもよい。すなわち、空間像計測器 162の計測に用いられるマークは、受光装置 31の受光面 32aに像が形成される第 1 、第 2ァライメントマーク RM1, RM2と所定の位置関係で形成されていればよい。こ れは、検出システム 30でも同様である。
[0095] 次に、上述の構成を有する露光装置 EXを用いて基板 Pを露光する方法について 図 9を参照して説明する。図 9は、本実施形態に係る露光方法を説明するためのフロ 一チャート図である。
[0096] まず、基板 Pの露光を開始する前に、制御装置 5は、図 8等を参照して説明したよう に、空間像計測器 162を用いて、第 1露光領域 AR1に形成される第 1パターン PA1 の像の位置情報を取得する (ステップ SA1)。上述のように、空間像計測器 162で第 1パターン PA1の像の位置情報を取得するために、第 1露光光 ELI (P)が基準板 50 に照射されているとき、検出システム 30の受光装置 31の受光面 32aにも第 1露光光 EL1 (S)が照射されており、検出システム 30は、受光面 32aに形成される第 1ァラィメ ントマーク RM1の像と透過部 36のエッジ像との位置関係を検出する。上述のように、 制御装置 5は、空間像計測器 162の計測結果と検出システム 30の検出結果に基づ いて、第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情報と、検出シ ステム 30の検出結果とを関連付ける。制御装置 5は、検出システム 30の検出結果と 、第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情報との関係を、記 憶装置 6に記憶する (ステップ SA2)。これ以降、制御装置 5は、検出システム 30の受 光装置 31の出力と、記憶装置 6に記憶した情報とに基づいて、第 1露光領域 AR1に 形成される第 1パターン PA1の像の位置情報を取得することができる。すなわち、制 御装置 5は、第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情報の計 測動作 (空間像計測器 162を用いた計測動作)を行うことなぐ検出システム 30によ る検出動作を行うことで、検出システム 30の検出結果 (受光装置 31の受光結果)と、 記憶装置 6に記憶した情報とに基づいて、第 1露光領域 AR1に形成される第 1バタ ーン PA1の像の位置情報を取得することができる。
[0097] また、制御装置 5は、図 8等を参照して説明したように、空間像計測器 162を用いて 、第 2露光領域 AR2に形成される第 2パターン PA2の像の位置情報を取得する (ス テツプ SA3)。上述のように、空間像計測器 162で第 2パターン PA2の像の位置情報 を取得するために、第 2露光光 EL2が基準板 50に照射されているとき、検出システム 30の受光装置 31の受光面 32aにも第 2露光光 EL2が照射されており、検出システム 30は、受光面 32aに形成される第 2ァライメントマーク RM2の像と透過部 36のエッジ 像との位置関係を検出する。そして、上述のように、制御装置 5は、第 2露光領域 AR 2に形成される第 2パターン PA2の像の位置情報と、検出システム 30の検出結果とを 関連付ける。制御装置 5は、検出システム 30の検出結果と、第 2露光領域 AR2に形 成される第 2パターン PA2の像の位置情報との関係を、記憶装置 6に記憶する (ステ ップ SA4)。これ以降、制御装置 5は、検出システム 30の受光装置 31の出力と、記憶 装置 6に記憶した情報とに基づいて、第 2露光領域 AR2に形成される第 2パターン P A2の像の位置情報を取得することができる。すなわち、制御装置 5は、第 2露光領域 AR2に形成される第 2パターン PA2の像の位置情報の計測動作 (空間像計測器 16 2を用いた計測動作)を行うことなぐ検出システム 30による検出動作を行うことで、検 出システム 30の検出結果 (受光装置 31の受光結果)と、記憶装置 6に記憶した情報 とに基づいて、第 2露光領域 AR2に形成される第 2パターン PA2の像の位置情報を 取得することができる。
[0098] 次に、制御装置 5は、基板ステージ 4を XY方向に移動し、ァライメント系 7の検出領 域に、基板ステージ 4上の基準マーク FPを配置する。そして、制御装置 5は、計測シ ステム 3を用いて、基板ステージ 4の位置情報を計測しつつ、ァライメント系 7を用いて 、基板ステージ 4上の基準マーク FPを検出する (ステップ SA5)。これにより、制御装 置 5は、計測システム 3によって規定される XY座標系内におけるァライメント系 7の検 出基準位置と基準マーク FPとの位置関係を求めることができる。
[0099] 次に、制御装置 5は、ァライメント系 7の検出基準位置と、第 1パターン PA1の像の 投影位置との位置関係を導出する (ステップ SA6)。基準板 50上の基準透過部 FM' と基準マーク FPとは所定位置関係で形成されており、基準透過部 FM'と基準マーク FPとの位置関係は既知である。制御装置 5は、ステップ SA1で求めた、第 1パターン PA1の像の投影位置と基準透過部 FM'との位置関係と、ステップ SA6で求めた、ァ ライメント系 7の検出基準位置と基準マーク FPとの位置関係と、既知である基準透過 部 FM'と基準マーク FPとの位置関係とに基づいて、計測システム 3によって規定さ れる XY座標系内でのァライメント系 7の検出基準位置と、第 1マスク Mlの第 1パター ン PA1の像の投影位置との位置関係を導出することができる。すなわち、制御装置 5 は、ステップ SA1で求めた第 1パターン PA1の像の投影位置と、ステップ SA6で求 めたァライメント系 7の検出基準位置と、基準透過部 FM'と基準マーク FPとの位置関 係とに基づき、ァライメント系 7のベースライン量を決定できる。本実施形態では、ステ ップ SA1で求めた第 1パターン PA1の像の投影位置を用いている力 ステップ SA3 で求めた第 2パターン PA2の像の投影位置を代用あるいは併用してベースライン量 を決定してもよい。
[0100] なお、ァライメント系 7による基準マーク FPの検出の後、空間像計測器 162による計 測を行ってもよい。
[0101] 次に、制御装置 5は、基板ステージ 4上の基板 Pに対するァライメント処理を開始す る。制御装置 5は、基板ステージ 4を XY方向に移動し、ァライメント系 7の検出領域に 、基板 P上の各ショット領域 S1〜S21に対応して設けられている複数のァライメントマ ーク AMの少なくとも一部を順次配置する。制御装置 5は、計測システム 3を用いて、 基板ステージ 4の位置情報を計測しつつ、ァライメント系 7を用いて、基板 P上の複数 のァライメントマーク AMを順次検出する (ステップ SA7)。これにより、制御装置 5は、 計測システム 3によって規定される XY座標系内でのァライメント系 7の検出基準位置 とァライメントマーク AMとの位置関係を求めることができる。
[0102] 次に、制御装置 5は、ステップ SA8で求めた、基板 P上の各ァライメントマーク AM の位置情報に基づいて、ァライメント系 7の検出基準位置に対する、基板 P上の複数 のショット領域 S1〜S21のそれぞれの位置情報を演算処理によって求める(ステップ S A8)。基板 P上の複数のショット領域 S 1〜S21のそれぞれの位置情報を演算処理 によって求める際には、例えば特開昭 61—44429号公報 (対応米国特許第 4,780, 617号)に開示されているような、所謂 EGA (ェンノヽンスド 'グローバル 'ァライメント) 方式を用いて求めることができる。これにより、制御装置 5は、ァライメント系 7によって 、基板 P上のァライメントマーク AMの検出を行い、計測システム 3で規定される XY座 標系内における基板 P上に設けられた複数のショット領域 S1〜S21それぞれの位置 座標 (配列座標)を決定することができる。すなわち、制御装置 5は、計測システム 3 で規定される XY座標系内において、ァライメント系 7の検出基準位置に対して、基板 P上の各ショット領域 S1〜S21がどこに位置しているのかを知ることができる。
[0103] 制御装置 5は、ステップ SA8で求めた、 XY座標系内でのァライメント系 7の検出基 準位置と基板 P上のショット領域 S1〜S21との位置関係 (検出基準位置に対するショ ット領域の配列情報)、及びステップ SA6で求めた、 XY座標系内での、ァライメント 系 7の検出基準位置と、第 1マスク Mlの第 1パターン PA1の像の投影位置との位置 関係(前述のベースライン量)に基づいて、 XY座標系内での、基板 P上のショット領 域 S1〜S21と、第 1マスク Mlの第 1パターン PA1の投影位置との位置関係を導出 する。すなわち、基板 P上のショット領域毎に第 1パターン PA1の像が正確に露光さ れる XY座標系での位置 (座標値)を決定する。なお、本実施形態では第 1パターン P A1と第 2パターン PA2とは投影位置が同一であるので、この決定された位置に基づ いて基板 Pを移動することで、基板 P上の各ショット領域に、所望の位置関係で、第 1 パターン PA1の像と第 2パターン PA2の像とを形成することが可能となる。
[0104] 次に、制御装置 5は、基板 P上のショット領域 Sの露光を開始する (ステップ SA9)。
制御装置 5は、第 1パターン PA1と第 2パターン PA2とを各走査方向(Y軸方向、 Z軸 方向)に移動するとともに、基板 Pを走査方向(Y軸方向)に移動しつつ、基板 P上の ショット領域 Sを多重露光する。具体的には、制御装置 5は、上述のステップ SA1, S A3, SA5〜SA8の結果〖こ基づいて、露光領域 (AR1, AR2)に所望のタイミングで 第 1、第 2パターンが投影されるように、第 1、第 2マスクステージ 1、 2を移動するととも に、基板 P上の各ショット領域内の所望位置にパターンが形成されるように基板ステ ージ 4を移動する。制御装置 5は、計測システム 3を用いて、第 1、第 2マスクステージ 1、 2及び基板ステージ 4の位置情報を検出しながら、第 1マスクステージ 1及び第 2マ スクステージ 2による第 1マスク Ml及び第 2マスク M2の各走査方向(Y軸方向、 Z軸 方向)への移動と、基板ステージ 4による基板 Pの走査方向(Y軸方向)への移動とを 同期して行いつつ、第 1露光光 EL1及び第 2露光光 EL2で、第 1マスク Mlの第 1パ ターン PA1及び第 2マスク M2の第 2パターン PA2のそれぞれを照明し、基板 P上の 第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに、第 1露光光 EL1及び第 2 露光光 EL2のそれぞれを照射して、基板 Pのショット領域 Sを多重露光する。
[0105] 制御装置 5は、第 1、第 2露光領域 AR1、 AR2に対する基板 Pの Y軸方向への移動 と、第 1照明領域 IA1に対する第 1マスク Mlの Y軸方向への移動、及び第 2照明領 域 IA2に対する第 2マスク M2の Z軸方向への移動とを同期して行 、つつ、第 1露光 光 EL1及び第 2露光光 EL2を第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれ に照射して、基板 P上のショット領域 Sを多重露光する。本実施形態においては、基 板 Pの露光中に、例えば第 1マスク Mlが +Y方向に移動される場合、第 2マスク M2 は +Z方向に移動され、基板 Pは +Y方向に移動される。
[0106] 図 10は、基板 Pを保持した基板ステージ 4の平面図である。図 10に示すように、基 板 P上には、露光対象領域である複数のショット領域 S 1〜S 21がマトリクス状に設定 されているとともに、ショット領域 S1〜S 21のそれぞれに対応して複数のァライメント マーク AMが設けられている。基板 Pのショット領域 S1〜S21のそれぞれを露光する とき、制御装置 5は、図 10中、例えば矢印 ylで示すように、第 1、第 2露光領域 AR1 、 AR2と基板 Pとを相対的に移動しつつ、第 1、第 2露光領域 AR1、 AR2に第 1、第 2 露光光 EL1、 EL2を照射すること〖こよって、基板 P上に第 1、第 2露光光 EL1、 EL2 を照射する。制御装置 5は、第 1、第 2露光領域 AR1、 AR2が基板 Pに対して矢印 yl に沿って移動するように、基板ステージ 4の動作を制御する。制御装置 5は、基板 Pの Y方向へのスキャン動作と +Y方向へのスキャン動作とを繰り返すことによって、基 板 P上の複数のショット領域 S 1〜S 21を順次多重露光する。
[0107] 本実施形態においては、 1回のスキャン動作で、基板 P上の 1つのショット領域 Sを 第 1パターン PA1の像と第 2パターン PA2の像とで多重露光(二重露光)することが できる。基板 P上のショット領域 Sの感光材層は、現像工程等を介さずに、第 1露光領 域 AR1に照射された第 1露光光 EL1と、第 2露光領域 AR2に照射された第 2露光光 EL2とで多重露光(二重露光)される。
[0108] 本実施形態においては、制御装置 5は、第 1パターン PA1の像と第 2パターン PA2 の像とで基板 P上のショット領域 Sを多重露光する動作と、検出システム 30の検出動 作とを並行して (または同時に)行う。すなわち、本実施形態においては、検出システ ム 30は、第 1パターン PA1の像と第 2パターン PA2の像とで基板 P上のショット領域 S を多重露光する動作の少なくとも一部と並行して (例えば、第 1マスク Ml及び第 2マ スク M2と基板 Pとを同期移動しながら)、受光装置 31の受光面 32aに形成される第 1 ,第 2ァライメントマーク RM1, RM2の像と透過部 36のエッジ像との位置関係の検出 を行う。すなわち、制御装置 5は、基板 P上のショット領域 Sを多重露光する動作の少 なくとも一部と並行して、受光素子 32の受光面 32aに順次形成されるァライメントマ 一クの像を検出システム 30を使って順次検出し、投影光学系 PLの少なくとも一部を 介して第 1パターン PA1の像と第 2パターン PA2の像と基板 Pとの位置関係に関する 情報を取得する。
[0109] 制御装置 5は、基板 Pの露光中に、検出システム 30の受光装置 31の出力に基づい て、第 1パターン PA1及び第 2パターン PA2の少なくとも一方の位置を調整する。す なわち、制御装置 5は、基板 P上の各ショット領域内の所望位置に各パターンが形成 されるように、検出システム 30の受光装置 31の出力に基づいて、第 1露光領域 AR1 に形成される第 1パターン PA1の像の位置 (すなわち、第 1パターン PA1の像と基板 Pのショット領域 Sとの位置関係)と、第 2露光領域 AR2に形成される第 2パターン PA 2の像の位置(すなわち、第 2パターン PA2の像と基板 Pのショット領域 Sとの位置関 係)と、第 1パターン PA1の像と第 2パターン PA2の像との位置関係の少なくとも 1つ を調整する。
[0110] 基板 P上のショット領域 Sを多重露光するために、第 1マスク Mlと第 2マスク M2とを 各走査方向 (Y軸方向、 Z軸方向)に移動したとき、第 1パターン PA1とともに第 1ァラ ィメントマーク RM1が第 1マスク Mlの走査方向(Y軸方向)に移動し、第 2パターン P A2とともに第 2ァライメントマーク RM2が第 2マスク M2の走査方向(Z軸方向)に移 動するが、上述のように、第 1ァライメントマーク RM1は、第 1照明領域 IA1の内側に 配置され、第 2ァライメントマーク RM2は、第 2照明領域 IA2の内側に配置される。し たがって、基板 Pの露光中においても、第 1照明領域 IA1に配置された第 1ァライメン トマーク RM1は第 1露光光 EL1で照明され、第 2照明領域 IA2に配置された第 2ァラ ィメントマーク RM2は第 2露光光 EL2で照明される。したがって、基板 Pの露光中に おいても、検出システム 30の受光装置 31の受光面 32aには、第 1照明領域 IA1に配 置された第 1ァライメントマーク RM1の像と第 2照明領域 IA2に配置された第 2ァライ メントマーク RM2の像とが形成される。
[0111] 図 2に示したように、第 1ァライメントマーク RM1は、第 1マスク Ml上に走査方向(Y 軸方向)に沿って複数並んで形成されており、第 2ァライメントマーク RM2は、第 2マ スク M2上に走査方向(Z軸方向)に複数並んで形成されている。したがって、基板 P 上のショット領域 Sを多重露光するために、第 1マスク Mlと第 2マスク M2とを各走査 方向 (Y軸方向、 Z軸方向)に移動したとき、第 1照明領域 IA1には複数の第 1ァラィメ ントマーク RM1のそれぞれが順次配置され、第 2照明領域 IA2には複数の第 2ァライ メントマーク RM2のそれぞれが順次配置される。
[0112] 検出システム 30は、基板 P上のショット領域 Sを多重露光するために、第 1マスク M 1と第 2マスク M2とを各走査方向(Y軸方向、 Z軸方向)に移動しているときに、受光 面 32a上に形成される第 1ァライメントマーク RM1の像の位置情報と、第 2ァライメント マーク RM2の像の位置情報とを順次取得する。
[0113] 例えば、基板 P上のショット領域 Sの露光中における第 1のタイミングにおいて、図 1 1の模式図に示すように、第 1マスク Ml上の複数の第 1ァライメントマーク RM1のうち 、ある特定の第 1ァライメントマーク RM1が第 1露光光 EL1で照明された場合につい て考える。この第 1のタイミングにおいて第 1パターン PA1 (第 1パターン PA1の部分 像)が目標位置に配置されているとき、図 12 (A)の模式図に示すように、特定の第 1 ァライメントマーク RM1の像が受光面 32a上の所定位置に形成されるものとする(ここ では第 1ァライメントマーク RM1の像が透過部 36の矩形状のエッジ像のほぼ中心に 形成されるものとする)。同様に、第 1のタイミングにおいて第 2パターン PA2 (第 2パ ターン PA2の部分像)が目標位置に配置されているとき、図 12 (A)に示すように、特 定の第 2ァライメントマーク RM2の像が受光面 32a上の所定位置に形成されるものと する(ここでは第 2ァライメントマーク RM2の像が透過部 36の矩形状のエッジ像のほ ぼ中心に形成されるものとする)。
[0114] 第 1のタイミングにおける第 1パターン PA1 (第 1パターン PA1の部分像)が目標位 置からずれて!/ヽる場合 (例えば、目標位置から X軸方向にずれて!/ヽる場合)、特定の 第 1ァライメントマーク RM 1も、図 11に示した状態に対してずれた位置に配置される 。この場合、その第 1のタイミングにおける第 1ァライメントマーク RM1の像は、図 12 ( B)の模式図に示すように、図 12 (A)に示した状態に対して X軸方向にずれた位置に 形成される。同様に、第 1のタイミングにおける第 2パターン PA2 (第 2パターン PA2 の部分像)が目標位置力もずれている場合、その第 1のタイミングにおける特定の第 2ァライメントマーク RM2の像もずれた位置に形成される。
[0115] したがって、制御装置 5は、検出システム 30の受光装置 31の受光面 32aに形成さ れる第 1ァライメントマーク RM 1の像の位置情報 (第 1ァライメントマーク RM 1の像と 透過部 36のエッジ像との位置関係)と、第 2ァライメントマーク RM2の像の位置情報( 第 2ァライメントマーク RM2の像と透過部 36のエッジ像との位置関係)との少なくとも 一方に基づいて、第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情 報、第 2露光領域 AR2に形成される第 2パターン PA2の像の位置情報、第 1パター ン PA1の位置情報、第 2パターン PA2の位置情報、第 1パターン PA1の像 (部分像) と第 2パターン PA2の像 (部分像)との位置関係、及び第 1パターン PA1と第 2パター ン PA2との位置関係の少なくとも一つを取得することができる。
[0116] そして、制御装置 5は、基板 P上のショット領域 Sの多重露光中に、第 1パターン PA 1の像と第 2パターン PA2の像と基板 P上のショット領域 Sとが所望の位置関係になる ように、受光装置 31の出力に基づいて、第 1マスクステージ 1及び第 2マスクステージ 2の位置を調整しつつ、基板 P上のショット領域 Sを多重露光する。
[0117] このように、基板 P上の 1つのショット領域 Sを多重露光しているときに、第 1マスク M 1の第 1パターン PA1と第 2マスク M2の第 2パターン PA2と基板 P上のショット領域 S との位置関係が目標位置関係力 ずれる可能性がある。しかしながら、本実施形態 においては、基板 P上の 1つのショット領域 Sを多重露光しているときに、検出システ ム 30を用いて、第 1パターン P1と第 2パターン PA2との基板 P上のショット領域 Sとの 位置関係、ひいては第 1パターン P1の像と第 2パターン PA2の像と基板 P上のショッ ト領域 Sとの位置関係を検出している。このため、制御装置 5は、検出システム 30で 取得した情報に基づいて、第 1パターン PA1の像と第 2パターン PA2の像と基板 P上 のショット領域 Sとの位置関係を調整しつつ、その基板 P上のショット領域 Sを多重露 光することができる。例えば、制御装置 5は、基板 Pの 1つのショット領域 Sの多重露光 中に、検出システム 30で取得した情報に基づいて、第 1マスク Mlの第 1パターン PA 1と第 2マスク M2の第 2パターン PA2との位置関係が目標位置関係からずれたと判 断した場合には、その基板 Pの 1つのショット領域 Sの多重露光中に、検出システム 3 0の検出結果に基づいて、第 1マスクステージ 1及び第 2マスクステージ 2の少なくとも 一方の位置を調整して、第 1マスク Mlの第 1パターン PA1及び第 2マスク M2の第 2 パターン PA2の少なくとも一方の位置を調整する。これにより、第 1マスク Mlの第 1 パターン PA1と第 2マスク M2の第 2パターン PA2と基板 P上のショット領域 Sとの位置 関係が常に所望状態に調整され、第 1パターン PA1の像と第 2パターン PA2の像と を基板 P上のショット領域 S内の所望位置に形成することができる。なお、検出システ ム 30の検出結果に基づく第 1マスクステージ 1及び第 2マスクステージ 2の位置調整 に代えて、あるいはそれに加えて第 1、第 2結像特性調整装置 LC1、 LC2の少なくと も一方を用いて、第 1、第 2パターン PA1、 PA2の像の位置を調整してもよい。
なお上述の説明においては、受光装置 31の受光面 32aに形成される第 1ァラィメ ントマーク RM1の像と透過部 36のエッジ像との位置関係、及び Z又は第 2ァライメン トマーク RM2の像と透過部 36のエッジ像との位置関係に基づいて、露光領域 (AR1 , AR2)に形成される第 1、第 2パターン PA1, PA2の像の位置情報、及び Z又は第 1、第 2パターン PA1, PA2の位置情報を取得している力 基板 Pの露光中は、マス ク Ml、 M2の移動に伴って、露光光(ELI, EL2)に対してァライメントマーク RM1, RM2も Y軸方向に移動するため、受光素子 32の受光面 32aにおいてァライメントマ ーク RM1、 RM2の像も移動する。したがって、第 1、第 2ァライメントマーク RM1, R M2の像の Y軸方向の位置ずれを検知する場合には、第 1、第 2ァライメントマーク R Ml, RM2の像力 透過部 36のエッジ像に対して所定位置 (例えば、矩形状のエツ ジ像の中心)に形成されるべき所定のタイミングで、第 1ァライメントマーク RM1の像と 透過部 36のエッジ像との位置関係、及び Z又は第 2ァライメントマーク RM2の像と透 過部 36のエッジ像との位置関係を求めればよい。
[0119] なお上述の説明においては、基板ステージ 4に設けられた空間像計測器 162を用 いて、第 1露光領域 AR1に形成される第 1パターン PA1の像の位置情報、及び第 2 露光領域 AR2に形成される第 2パターン PA2の像の位置情報を取得したが、他の 方法によりそれらの情報を取得してもよい。例えば、第 1、第 2マスク Ml、 M2の上方 にそれぞれ配置されるァライメント系を用いて、第 1、第 2ァライメントマーク RM1、 R M2と基準板 50の透過部 FM,(あるいは別の基準マーク)とを検出して、第 1、第 2パ ターン PA1、 PA2の像の位置情報を取得してもよ 、。
[0120] 以上説明したように、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに第 1 露光光 EL1及び第 2露光光 EL2のそれぞれを照射するとともに、基板 P上のショット 領域 Sが第 1露光領域 AR1と第 2露光領域 AR2とを通過するように基板 Pを Y軸方向 に移動することで、基板 Pのショット領域 Sを効率良く多重露光することができる。本実 施形態においては、基板 P上のショット領域 Sを多重露光(二重露光)するときに、 1回 のスキャン動作で、 1つのショット領域 Sを第 1パターン PA1の像と第 2パターン PA2 の像とで露光することができ、スループットを向上できる。また、基板 Pの一 Y方向へ のスキャン動作と +Y方向へのスキャン動作とを繰り返すことによって、基板 P上の複 数のショット領域 Sを効率良く多重露光することができる。また、 1回のスキャン動作で 1つのショット領域 Sを多重露光することができるので、各ショット領域 S内に第 1パタ ーン PA1の像と第 2パターン PA2の像とを所望の位置関係で形成することができる。
[0121] そして、本実施形態においては、検出システム 30を用いて、基板 Pのショット領域 S を多重露光する動作と並行して (多重露光しながら)、第 1パターン PA1の像と第 2パ ターン PA2の像と基板 P上のショット領域 Sとの位置関係を検出することができる。し たがって、制御装置 5は、基板 Pのショット領域 Sの多重露光中においても、検出シス テム 30を用いて得られる情報に基づいて、第 1パターン PA1の像と第 2パターン PA 2の像と基板 Pのショット領域 Sとの位置関係を調整することができる。 [0122] また、本実施形態においては、検出システム 30は、光学素子 20から第 1露光領域 AR1及び第 2露光領域 AR2のいずれにも向かわない第 1、第 2露光光 ELI (S)、 EL 2 (P)を検出光として受光装置 31により受光して 、るので、その検出システム 30を用 いて得られる情報に基づいて、第 1パターン PA1の像と第 2パターン PA2の像とを基 板 P上のショット領域 S内の所望位置に形成することができる。
[0123] <第 2実施形態 >
次に、第 2実施形態について説明する。以下の説明において、上述の実施形態と 同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは 省略する。
[0124] 図 13は、第 2実施形態に係る露光装置 EXを示す概略構成図、図 14は、第 2実施 形態に係る基板 P上のショット領域 Sと第 1、第 2露光領域 AR1、 AR2との位置関係を 示す模式図である。図 13に示すように、本実施形態の露光装置 EXは、第 1マスク M 1上の第 1照明領域 IA1と第 1光学系 11の光軸 AX1とが Y軸方向にずれているととも に、第 2マスク M2上の第 2照明領域 IA2と第 2光学系 12の光軸 AX2とが Z軸方向に ずれている。この場合、図 14に示すように、投影光学系 PLの視野内で第 1露光領域 AR1と第 2露光領域 AR2とは異なる位置に設定される。具体的には、第 1露光領域 AR1と第 2露光領域 AR2とが、例えば Y軸方向(基板 Pの走査方向)に関して、離れ て設定される。また、本実施形態において、第 1露光領域 AR1と第 2露光領域 AR2と は、 1つのショット領域 Sに同時に配置可能となっている。すなわち、本実施形態にお いては、第 1露光領域 AR1 (第 1露光領域 AR1の中心)と第 2露光領域 AR2 (第 2露 光領域 AR2の中心)との Y軸方向の距離は、基板 P上の 1つのショット領域 Sの Y軸 方向の幅よりも小さい。
[0125] 図 15は、第 2実施形態に係る受光装置 31の近傍の構成を示す図、図 16は、受光 装置 31の板部材 35の上面 35aを示す図である。本実施形態においても、受光装置 31の板部材 35の上面 35aは、投影光学系 PLの物体面、及び像面と光学的に共役 な位置に配置されている。したがって、受光装置 31の板部材 35の上面 35aには、投 影光学系 PLの像面側に設定される第 1露光領域 AR1と第 2露光領域 AR2と同様の 位置関係で第 1露光光 ELI (S)と第 2露光光 EL2 (P)とが入射する。図 14に示した ように、本実施形態においては、投影光学系 PLは、第 1露光領域 AR1と第 2露光領 域 AR2とが Y軸方向に離れるように、それら第 1露光領域 AR1と第 2露光領域 AR2と を基板 P上に設定する。したがって、基板 Pの表面と光学的に配置されている受光装 置 31の板部材 35の上面 35aにおいて、第 1露光領域 AR1と第 2露光領域 AR2と同 様の位置関係で Z軸方向に離れて形成される第 1検出光領域 AR1 '及び第 2検出光 領域 AR2'のそれぞれに、第 1露光光 ELI (S)と第 2露光光 EL2 (P)とのそれぞれが 入射する。
[0126] 第 1検出光領域 AR1 'に第 1露光光 EL1 (S)を照射することによって、第 1検出光 領域 AR1,に第 1パターン PA1の像及び第 1ァライメントマーク RM1の像を形成可能 であり、第 2検出領域 AR2'に第 2露光光 EL2 (P)を照射することによって、第 2検出 光領域 AR2,に第 2パターン PA2の像及び第 2ァライメントマーク RM2の像を形成可 能である。
[0127] そして、図 16に示すように、受光装置 31の透過部 36は、板部材 35の上面 35aに おいて、第 1ァライメントマーク RM1の像、及び第 2ァライメントマーク RM2の像が形 成可能な位置に配置されている。本実施形態においては、第 1ァライメントマーク RM 1の像と第 2ァライメントマーク RM2の像は Z軸方向に離れて形成されるため、板部材 35の上面 35aには、透過部 36が 4力所設けられて!/、る。
[0128] また、上述の第 1実施形態と同様、検出システム 30は、受光装置 31の受光結果に 基づいて、受光装置 31の受光面 32aに投影光学系 PLの一部を介して形成される第 1ァライメントマーク RM1の像と透過部 36のエッジ像との位置関係を求めることがで きる。したがって、制御装置 5は、第 1ァライメントマーク RM1の像と透過部 36のエツ ジ像との位置関係を求めることによって、第 1パターン PA1の像の位置情報、及び Z または第 1パターン PA1の位置情報を求めることができる。同様に、検出システム 30 は、受光装置 31の受光結果に基づいて、受光装置 31の受光面 32aに投影光学系 P Lの一部を介して形成される第 2ァライメントマーク RM2の像と透過部 36のエッジ像 との位置関係を求めることができる。したがって、制御装置 5は、第 2ァライメントマー ク RM2の像と透過部 36のエッジ像との位置関係を求めることによって、第 2パターン PA2の像の位置情報、及び Zまたは第 2パターン PA2の位置情報を求めることがで きる。そして、制御装置 5は、第 1ァライメントマーク RM1の像と第 2ァライメントマーク RM2の像との位置関係に基づいて、第 1パターン PA1の像と第 2パターン PA2の像 との位置関係、及び Zまたは第 1パターン PA1と第 2パターン PA2との位置関係に 関する情報を取得することができる。
[0129] そして、制御装置 5は、検出システム 30の検出結果に基づいて、第 1パターン PA1 の像と第 2パターン PA2の像と基板 P上のショット領域 Sとの位置関係を調整しつつ、 基板 P上のショット領域 Sを多重露光することができる。
[0130] 以上説明したように、制御装置 5は、第 1露光領域 AR1と第 2露光領域 AR2とが離 れている場合であっても、検出システム 30を用いて、第 1パターン PA1の像と第 2パ ターン PA2の像と基板 P上のショット領域 Sとの位置関係に関する情報を取得するこ とができる。なお、本実施形態では基板 P上で第 1、第 2露光領域 AR1、 AR2が Y軸 方向に離れて配置されるものとしたが、第 1露光領域 AR1と第 2露光領域 AR2とをそ の一部が重複するように配置してもよ 、。
[0131] なお、上述の第 1、第 2実施形態においては、第 1照明系 IL1より射出され、第 1パ ターン PA1を照明するための第 1露光光 EL1で第 1ァライメントマーク RM1を照明し 、受光装置 31は、その第 1ァライメントマーク RM1からの第 1露光光 EL1を受光して いるが、例えば、第 1照明系 IL1とは別に、第 1露光光 EL1と同じ波長で S偏光成分 を主成分とする検出光を射出可能な第 1照明装置を設け、その第 1照明装置から射 出した検出光で第 1ァライメントマーク RM1を照明するようにしてもよい。同様に、第 2 照明系 IL2とは別に、第 2露光光 EL2と同じ波長で P偏光成分を主成分とする検出 光を射出可能な第 2照明装置を設け、その第 2照明装置力 射出した検出光で第 2 ァライメントマーク RM2を照明するようにしてもょ 、。
[0132] なお、上述の各実施形態においては、基板 Pの多重露光動作中に、検出システム 30を使って、第 1ァライメントマーク RM1の像と第 2ァライメントマーク RM2の像の両 方を検出するようにしているが、どちらか一方のみを検出して、第 1パターン PA1の像 と第 2パターン PA2の像と基板 Pとの位置関係を調整するようにしてもょ 、。
[0133] また、上述の各実施形態においては、基板 Pの多重露光動作の少なくとも一部と並 行して、検出システム 30の検出動作を行っているが、基板 Pの露光を開始する前に 検出動作を行うだけでもよい。すなわち、基板 Pの露光を開始する前に、第 1、第 2露 光光 ELI, EL2に対して第 1、第 2マスク Ml, M2を各走査方向に移動するとともに 、検出システム 30を使って、第 1ァライメントマーク RM1の像、及び/又は第 2ァライ メントマーク RM2の像を検出し、その結果に基づいて、第 1パターン PA1の像と第 2 ノターン PA2の像と基板 Pとの位置関係を調整しながら、基板 P上のショット領域 Sに 対する多重露光動作を行うようにしてもょ ヽ。
[0134] また、上述の各実施形態において、受光装置 31は、板部材 35の上面 35aに設けら れた透過部 36のエッジを基準として、第 1ァライメントマーク RM1、及び/または第 2 ァライメントマーク RM2の位置情報を取得して 、るが、受光素子 32としてラインセン サなどを用いて受光素子 32の出力から第 1ァライメントマーク RM1、及び Z又は第 2 ァライメントマーク RM2の像の位置情報を直接取得するようにしても良 、。
[0135] <第 3実施形態 >
次に、第 3実施形態について説明する。以下の説明において、第 1実施形態と同一 又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略 する。
[0136] 図 17は、第 3実施形態に係る検出システム 30'を備えた露光装置 EXを示す概略 構成図である。第 3実施形態に係る検出システム 30'は、第 1、第 2露光光 EL1、 EL 2とは別の検出光 Lbを照射する照射装置 40と、照射装置 40からの検出光 Lbを投影 光学系 PLの少なくとも一部を介して受光する受光装置 43とを備えている。照射装置 40は、第 1、第 2露光光 EL1、 EL2と異なる波長の検出光 Lbを照射する。本実施形 態においては、第 1、第 2露光光 EL1、 EL2の波長は 193nmであり、照射装置 40は 、例えば約 633nmの波長を有する検出光 Lbを照射する。また本実施形態において 、検出光 Lbは、ランダム偏光の光である。
[0137] なお、第 1、第 2露光光 ELI, EL2と同じ波長の光を検出光 Lbとして用いてもよいし 、 P偏光成分と S偏光成分とを 50%ずつ含む光を検出光 Lbとして用いてもょ 、。
[0138] 照射装置 40は、投影光学系 PLの光学素子 20に向けて検出光 Lbを照射し、受光 装置 43は、光学素子 20の第 1入射面 21からの検出光 Lb、及び第 2入射面 22から の検出光 Lbの少なくとも一方を受光する。図 17に示すように、本実施形態の受光装 置 43は、光学素子 20の第 1入射面 21からの検出光 Lbを受光する第 1受光器 41と、 第 2入射面 22からの検出光 Lbを受光する第 2受光器 42とを含む。
[0139] 具体的には、照射装置 40は、光学素子 20の第 2射出面 24に検出光 Lbを照射す る。第 2射出面 24に入射した検出光 Lbの一部(S偏光成分)は、所定面 (偏光分離 面) 25を介して光学素子 20の第 1入射面 21より射出され、第 2射出面 24に入射した 検出光 Lbの残りの一部 (P偏光成分)は、所定面 25を介して光学素子 20の第 2入射 面 22より射出される。なお、以下の説明において、第 1入射面 21から射出される検出 光を Lb (S)、第 2入射面 22から射出される検出光を Lb (P)と適宜称することにする。
[0140] 第 1入射面 21より射出された検出光 Lb (S)は、第 1光学系 11を介して、第 1マスク Mlの第 1パターン PA1と所定位置関係で形成された第 1ァライメントマーク RM1,に 照射される。第 1受光器 41は、第 1ァライメントマーク RM1 'からの検出光 Lb (S)を受 光する。すなわち、第 1受光器 41は、照射装置 40から射出され、光学素子 20の所定 面 25と、第 1入射面 21と、第 1パターン PA1に対して所定位置関係で形成された第 1ァライメントマーク RM1 'とを介した検出光 Lb (S)を受光する。
[0141] 第 2入射面 22より射出された検出光 Lb (P)は、第 2光学系 12を介して、第 2マスク M2の第 2パターン PA2と所定位置関係で形成された第 2ァライメントマーク RM2,に 照射される。第 2受光器 42は、第 2ァライメントマーク RM2'からの検出光 Lb (P)を受 光する。すなわち、第 2受光器 42は、照射装置 40から射出され、光学素子 20の所定 面 25、第 2入射面 22と、第 2パターン PA2に対して所定位置関係で形成された第 2 ァライメントマーク RM2'とを介した検出光 Lb (P)を受光する。
[0142] すなわち、照射装置 40より射出され、第 2射出面 24を介して光学素子 20に入射し た検出光 Lbは、第 1露光領域 AR1及び第 2露光領域 AR2のいずれにも向かわずに 、第 1露光領域 AR1及び第 2露光領域 AR2とは異なる方向に向かい、受光装置 43 に照射される。第 1、第 2受光器 41、 42を含む受光装置 43は、光学素子 20から第 1 露光領域 AR1及び第 2露光領域 AR2のいずれにも向かわない検出光 Lbを受光す る。
[0143] 図 18 (A)は、本実施形態に係る第 1マスクステージ 1に保持された第 1マスク Mlを 示す平面図、図 18 (B)は、第 2マスクステージ 2に保持された第 2マスク M2を示す平 面図である。本実施形態においても、第 1マスク Ml上での第 1露光光 EL1による第 1 照明領域 IA1は、 X軸方向を長手方向とする矩形状 (スリット状)に設定されており、 第 2マスク M2上での第 2露光光 EL2による第 2照明領域 IA2も、 X軸方向を長手方 向とする矩形状 (スリット状)に設定されている。また、本実施形態においても、第 1マ スクステージ 1は、第 1パターン PA1を有する第 1マスク M 1を第 1露光光 EL 1に対し て Y軸方向に移動可能であり、第 2マスクステージ 2は、第 2パターン PA2を有する第 2マスク M2を第 2露光光 EL2に対して Z軸方向に移動可能である。
[0144] 図 18 (A)に示すように、本実施形態においては、第 1ァライメントマーク RM1,は、 X軸方向に関して第 1マスク Mlの第 1パターン形成領域 SA1の両側に、第 1マスク Mlの走査方向(Y軸方向)に沿って複数並んで形成されている。本実施形態におい ては、第 1ァライメントマーク RM1,は、第 1パターン形成領域 SA1の外側に形成され ており、第 1照明領域 IA1の外側に配置される。したがって、基板 Pの露光時などに おいては、第 1照明系 IL1からの第 1露光光 EL1で照明されない。また、図 18 (B)に 示すように、第 2ァライメントマーク RM2,は、 X軸方向に関して第 2マスク M2の第 2 パターン形成領域 SA2の両側に、第 2マスク M2の走査方向(Z軸方向)に沿って複 数並んで形成されている。第 2ァライメントマーク RM2,も、第 2パターン形成領域 SA 2の外側に形成されており、第 2照明領域 IA2の外側に配置される。したがって、基 板 Pの露光時などにおいては、第 2照明系 IL2からの第 2露光光 EL2で照明されない 。また、本実施形態においても、第 1ァライメントマーク RM1,と第 2ァライメントマーク RM2,とは、互いに対応するように第 1マスク Ml上及び第 2マスク M2上のそれぞれ に形成されている。
[0145] 図 19は、本実施形態に係る第 1ァライメントマーク RM1 'を示す拡大図、図 20は、 第 1受光器 41と第 1マスク Mlとの関係を示す模式図である。第 1ァライメントマーク R Ml 'は、第 1マスク Ml上に、例えば Cr (クロム)等の金属で形成された遮光領域に 開口を形成したものであり、検出光 Lb (S)が透過可能である。図 19に示すように、第 1ァライメントマーク RM1 'は、第 1マスク Mlの走査方向(Y軸方向)と交差する方向( X軸方向)を長手方向とする矩形状 (スリット状)の開口(透過領域)である。そして、第 1ァライメントマーク RM1 'は、照射装置 40から射出された検出光 Lb (S)による照射 領域 44に配置可能となっている。照明装置 40から射出され、光学素子 20及び第 1 光学系 11を介して第 1ァライメントマーク RM1 'に照射される検出光 Lb (S)の少なく とも一部は、照射領域 44に配置されている第 1ァライメントマーク RM1 'を通過して、 第 1受光器 41の第 1受光面 45に到達する。
[0146] 図 21は、第 1受光器 41の第 1受光面 45を示す模式図である。第 1受光面 45には、 検出光 Lb (S)を受光可能な受光領域 47が形成されている。本実施形態においては 、受光領域 47は、第 1ァライメントマーク RM1 'に対応するように、 X軸方向を長手方 向とする矩形状 (スリット状)に形成されている。検出光 Lb (S)の照射領域 44に第 1ァ ライメントマーク RM1 'が配置されたとき、第 1ァライメントマーク RM1 'を通過した検 出光 Lb (S)は、第 1受光面 45の受光領域 47に照射され、第 1受光器 41は、検出光 Lb (S)を受光する。したがって、検出システム 30'は、第 1受光器 41の出力に基づい て、照射領域 44に第 1ァライメントマーク RM1 'が配置されたかどうかを検出すること ができる。
[0147] 第 2マスク M2の第 2ァライメントマーク RM2,は、第 1ァライメントマーク RM1,と同 様、照射装置 40から射出された検出光 Lb (P)による照射領域 44に配置可能となつ ており、照明装置 40から射出され、光学素子 20及び第 2光学系 12を介して照射され る検出光 Lb (P)の少なくとも一部が透過可能である。また、第 2ァライメントマーク RM 2'は、第 2マスク M2の走査方向(Z軸方向)と交差する方向(X軸方向)を長手方向と する矩形状 (スリット状)の開口である。第 2ァライメントマーク RM2'を通過した検出 光 Lb (P)は、第 2受光器 42の第 2受光面 46に照射される。また、第 2受光器 42の第 2受光面 46には、第 1受光器 41と同様、第 2ァライメントマーク RM2'に対応するよう に、 X軸方向を長手方向とする矩形状 (スリット状)の透過領域 48が形成されている。 検出光 Lb (P)の照射領域 44に第 2ァライメントマーク RM2'が配置されたとき、第 2 ァライメントマーク RM2'を通過した検出光 Lb (P)は、第 2受光面 46の受光領域 48 に照射され、第 2受光器 42は、検出光 Lb (P)を受光する。したがって、検出システム 30,は、第 2受光器 42の出力に基づいて、照射領域 44に第 2ァライメントマーク RM 2'が配置されたかどうかを検出することができる。
[0148] なお、投影光学系 PLの各光学素子は、第 1、第 2露光光 EL1、 EL2に対して最適 化されており、照射装置 40と光学素子 20との間には、検出光 Lbを所望状態で受光 装置 43に入射させるための、例えば色収差を補正するための補正光学系 14が設け られている。また、第 1マスク Mlと第 1受光器 41との間には、検出光 Lb (S)で照明さ れた第 1ァライメントマーク RM1 'の像を第 1受光面 45上に結像させるための光学系 15が設けられている。同様に、第 2マスク M2と第 2受光器 42との間には、検出光 Lb (P)で照明された第 2ァライメントマーク RM2'の像を第 2受光面 46上に結像させる ための光学系 16が設けられて!/、る。
[0149] 次に、本実施形態に係る露光装置 EXを用いて基板 Pを露光する方法について説 明する。上述の実施形態と同様、制御装置 5は、第 1マスクステージ 1、第 2マスクステ ージ 2、及び基板ステージ 4を制御して、第 1パターン PA1を有する第 1マスク Mlと 第 2パターン PA2を有する第 2マスク M2とを各走査方向(Y軸方向、 Z軸方向)に移 動するとともに、基板 Pを走査方向(Y軸方向)に移動しつつ、第 1パターン PA1の像 及び第 2パターン PA2の像で基板 Pのショット領域 Sを多重露光する。
[0150] 本実施形態においては、制御装置 5は、基板 Pの露光中、検出システム 30'の照射 装置 40より、光学素子 20に向けて検出光 Lbを射出し続ける。すなわち、制御装置 5 は、基板 Pの露光中、照射装置 40による検出光 Lbの照射動作を継続して行う。した がって、基板 Pの露光中、第 1、第 2マスク Ml、 M2の所定部分は、光学素子 20の第 1、第 2入射面 21、 22から射出された検出光 Lbで照明され続ける。
[0151] 制御装置 5は、第 1受光器 41の第 1受光面 45に第 1ァライメントマーク RM1 'を介し て照射される検出光 Lb (S)、及び第 2受光器 42の第 2受光面 46に第 2ァライメントマ ーク RM2'を介して照射される検出光 Lb (P)に基づいて、第 1パターン PA1の像と 第 2パターン PA2の像との位置関係、及び第 1パターン PA1と第 2パターン PA2との 位置関係の少なくとも一方に関する情報を取得することができる。
[0152] 制御装置 5は、検出システム 30'の第 1受光器 41の第 1受光面 45に第 1ァライメント マーク RM1 'を介して検出光 Lb (S)が照射されるタイミングと、第 2受光器 42の第 2 受光面 46に、第 1ァライメントマーク RM1,に対応する第 2ァライメントマーク RM2,を 介して検出光 Lb (P)が照射されるタイミングとに基づいて、基板 P上のショット領域 S の露光中に第 1パターン PA1と第 2パターン PA2との位置関係 (位置ずれ)、及び Z 又はショット領域 Sに投影される第 1パターン PA1の像 (部分像)と、第 2パターン PA 2の像 (部分像)との位置関係 (位置ずれ)を求めることができる。
[0153] 例えば、基板 P上のショット領域 Sの露光中における第 1のタイミングにおいて、図 2 2 (A)の模式図に示すように、第 1マスク Ml上の複数の第 1ァライメントマーク RM1, のうち、ある特定の第 1ァライメントマーク RM1 'が照射領域 44に配置された場合に ついて考える。そして、第 1のタイミングにおいて第 1パターン PA1 (第 1パターン PA 1の部分像)が目標位置に配置されているとき、特定の第 1ァライメントマーク RM1 ' が照射領域 44に配置されるものとする。同様に、第 1のタイミングにおいて第 2パター ン PA2 (第 2パターン PA2の部分像)が目標位置に配置されているとき、特定の第 2 ァライメントマーク RM2'の像が照射領域 44に配置されるものとする。
[0154] 第 1のタイミングにおける第 1パターン PA1 (第 1パターン PA1の部分像)が目標位 置からずれている場合、図 22 (B)の模式図に示すように、その第 1のタイミングにお ける特定の第 1ァライメントマーク RM1 'も、照射領域 44からずれた位置に配置され る。すなわち、その第 1のタイミングにおいては、第 1ァライメントマーク RM1,は照射 領域 44に配置されないため、検出光 Lb (S)は遮光領域に遮られて、第 1受光器 41 に到達しな 、。この第 1のタイミングにお ヽて第 2パターン PA2 (第 2パターン PA2の 部分像)が目標位置に配置されている場合、第 1のタイミングにおいて、特定の第 1の ァライメントマーク RM1,に対応する特定の第 2ァライメントマーク RM2,も照射領域 4 4に配置される。すなわち、対応する第 1、第 2ァライメントマーク RM1 '、 RM2'は、 異なるタイミングで、照射領域 44に配置され、第 1、第 2受光器 41、 42は異なるタイミ ングで検出光 Lbを受光する。
[0155] 制御装置 5は、第 1ァライメントマーク RM1 'を通過した検出光 Lbが第 1受光器 41 に受光されるタイミング、すなわち第 1ァライメントマーク RM1の像が第 1受光面 45上 の受光領域 47に形成されるタイミングと、第 2ァライメントマーク RM2,を通過した検 出光 Lbが第 2受光器 42に受光されるタイミング、すなわち第 2ァライメントマーク RM 2'の像が第 2受光面 46上の受光領域 48に形成されるタイミングとを比較して、その 比較結果に基づいて、第 1パターン PA1の像と第 2パターン PA2の像との位置関係 、及び Z又は第 1パターン PA1と第 2パターン PA2との位置関係を取得することがで きる。
[0156] そして、制御装置 5は、基板 P上のショット領域 Sの多重露光中に、第 1パターン PA 1の像と第 2パターン PA2の像と基板 P上のショット領域 Sとが所望の位置関係になる ように、受光装置 43の出力に基づいて、第 1マスクステージ 1及び第 2マスクステージ 2の位置を調整しつつ、基板 P上のショット領域 Sを多重露光する。
[0157] 以上説明したように、本実施形態においても、基板 P上の各ショット領域 Sを多重露 光しているときに、検出システム 30,を用いて、第 1パターン P1と第 2パターン PA2と の位置関係、及び Z又は第 1パターン P1の像と第 2パターン PA2の像との位置関係 を検出しているので、制御装置 5は、検出システム 30'で取得した情報に基づいて、 第 1パターン PA1の像と第 2パターン PA2の像と基板 P上のショット領域 Sとの位置関 係を調整しつつ、その基板 P上のショット領域 Sを多重露光することができる。
[0158] また、本実施形態においては、第 1、第 2露光光 EL1、 EL2とは異なる波長の検出 光 Lbを用いて位置情報の検出を行っているので、照射装置 40から射出された検出 光 Lbが基板 P上に漏れても、基板 Pを不要に露光してしまうことを抑制することができ る。また、本実施形態においては、第 1、第 2ァライメントマーク RM1 '、 RM2'は、第 1、第 2照明領域 IA1、 IA2の外側に設けられており、第 1、第 2ァライメントマーク RM 1,、 RM2'の像が基板 P上に投影されることを抑制することができる。
[0159] また、本実施形態においては、第 1、第 2ァライメントマーク RM1,、 RM2,のそれぞ れは、第 1、第 2マスク Ml、 M2の走査方向と交差する方向と長手方向とする形状で あり、検出システム 30,は、第 1、第 2ァライメントマーク RM1,、 RM2,を介した検出 光 Lbに基づいて、第 1、第 2マスク Ml、 M2の第 1、第 2パターン PA1、 PA2の各走 查方向に関する位置情報を精度良く検出することができる。
[0160] なお、本実施形態にぉ 、ても、基板 P上のショット領域 Sの多重露光を開始する前 に、検出システム 30'の検出動作を実行し、基板 Pの各ショットの露光中は、その検 出結果に基づいて、第 1パターン PA1の像と第 2パターン PA2の像と基板 P上のショ ット領域 Sとが所望の位置関係になるように第 1パターン PA1と第 2パターン PA2と基 板 Pの少なくとも位置を調整することができる。
[0161] なお、上述の第 1〜第 3実施形態においては、露光領域 (AR1, AR2)に形成され る第 1パターン PA1の像と第 2パターン PA2の像との少なくとも一方の位置を調整す るために、第 1パターン PA1を有する第 1マスク Ml及び第 2パターン PA2を有する 第 2マスク M2の少なくとも一方の位置を調整しているが、制御装置 5は、第 1露光領 域 AR1に形成される第 1パターン PA1の像と第 2露光領域 AR2に形成される第 2パ ターン PA2の像の少なくとも一方の位置調整を、第 1結像特性調整装置 LC1及び第 2結像特性調整装置 LC2の少なくとも一方を用いて行うことができる。上述のように、 制御装置 5は、第 1、第 2結像特性調整装置 LC1、 LC2を用いて、第 1、第 2パターン PA1、 PA2それぞれの像の X軸方向、 Y軸方向、 θ Z方向の位置調整を行うことがで きる。したがって、制御装置 5は、例えば基板 Pの露光中に、受光装置 31の出力に基 づいて、第 1、第 2結像特性調整装置 LC1、 LC2を用いて、第 1パターン PA1の像及 び第 2パターン PA2の像の少なくとも一方の位置を調整することによって、第 1パター ン PA1の像と第 2パターン PA2の像と基板 Pとの位置関係を調整することができる。
[0162] なお、上述の各実施形態においては、光学素子 20として、偏光分離光学素子 (偏 光ビームスプリッタ)を用いているが、光学素子 20として、第 1露光光 EL1及び第 2露 光光 EL2それぞれの光路を分岐する分岐光学素子 (ハーフミラー)を用いてもょ 、。 分岐光学素子は、例えば使用する露光光 EL1、 EL2や検出光 Lbなどの照射光がラ ンダム偏光であっても、それら照射光を分岐することができ、照射光の偏光状態の自 由度を高めることができる。
[0163] なお、上述の各実施形態においては、第 1マスク Mlが +Y方向に移動するときに は、第 2マスク M2が +Z方向に移動している力 第 1マスク Mlが +Y方向に移動す るときには、第 2マスク M2が一 Z方向に移動するようにしてもよい。
[0164] なお、上述の各実施形態においては、基板 Pの露光中に、第 1マスク Mlが Y軸方 向に移動し、第 2マスク M2が第 1マスク Mlの移動方向(Y軸方向)と交差する方向( Z軸方向)に移動している力 第 1マスク Mlと第 2マスク M2とが同じ方向(例えば Y軸 方向)に移動するように、投影光学系 PLを構成してもよい。この場合、例えば投影光 学系を双頭型とし、投影光学系の物体面側で同一平面に第 1、第 2パターン形成面 が配置される第 1、第 2マスク Ml、 M2を異なるマスクステージでそれぞれ同一の走 查方向に移動してもよいし、あるいは第 1、第 2マスク Ml、 M2を同一のマスクステー ジに載置して同一の走査方向に移動してもよい。後者では、例えばマスクステージ上 で第 1、第 2マスク Ml、 M2を相対移動するァクチユエータを設け、第 1、第 2パター ン PA1、 PA2の像の位置関係を調整可能とすることが好ましい。また、上述の各実施 形態においては、第 1、第 2パターン PA1、 PA2を異なるマスク (Ml、 M2)に形成す るものとした力 1つのマスク上に第 1、第 2パターン PA1、 PA2を形成してもよい。
[0165] なお、上述の各実施形態において、投影光学系 PLとしては、縮小系に限られず、 例えば等倍系及び拡大系のいずれであってもよい。また、上述の各実施形態におい ては、投影光学系 PLとして、反射光学素子と屈折光学素子とを含む反射屈折系 (力 タディ ·ォプトリック系)を例にして説明したが、投影光学系 PLとしては、反射光学素 子を含まない屈折系、あるいは屈折光学素子を含まない反射系等であってもよい。さ らに、投影光学系 PLは双頭型の反射屈折系に限られず、例えば国際公開第 2004 Z107011号パンフレット(対応米国特許出願公開第 2006Z0121364号)に開示 されるように、複数の反射面を有しかつ中間像を少なくとも 1回形成する光学系 (反射 系または反屈系)がその一部に設けられ、かつ単一の光軸を有する、いわゆるインラ イン型の反射屈折系でもよい。また、投影光学系 PLが生成する投影像は倒立像及 び正立像の!/、ずれでもよ!/ヽ。
[0166] また、上述の各実施形態において、第 1露光領域 AR1及び第 2露光領域 AR2の 大きさ及び形状の少なくとも一方が異なっていてもよい。例えば、第 1露光領域 AR1 と第 2露光領域 AR2とで X軸方向の幅及び Z又は Y軸方向の幅が異なっていてもよ い。なお、 X軸方向の幅が異なる場合には、 1回のスキャン動作によってショット領域 S内の一部だけが多重(二重)露光される。また、第 1、第 2露光領域 AR1、 AR2 (及 び Z又は第 1、第 2照明領域 IA1、 IA2)はその形状が矩形に限られず、他の形状、 例えば円弧状、台形、あるいは平行四辺形などでもよい。
[0167] また、上述の各実施形態においては、ショット領域 Sが第 1露光領域 AR1及び第 2 露光領域 AR2を通過する間、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれ に露光光 EL1、 EL2の照射が続けられる力 少なくとも一方の露光領域において、シ ヨット領域 Sが通過する間の一部の期間だけで露光光が照射されるようにしてもよい。 すなわち、ショット領域 S内の一部だけ多重(二重)露光するようにしてもよ!、。 なお、上記各実施形態では、ァライメント系 7が画像処理方式であるものとしたが、 これに限られず他の方式、例えばコヒーレントなビームの照射によってマーク力 発 生する回折光などを検出する方式などでもよい。また、上記各実施形態では、空間 像計測器 162を用いて第 1、第 2パターン PA1、 PA2の像の位置情報を計測するも のとしたが、その位置情報の計測装置は空間像計測器に限定されず任意でよい。さ らに、上記各実施形態では第 1、第 2マスク Ml、 M2の移動中に検出システム 30によ る第 1、第 2ァライメントマーク RM1、 RM2の検出を行うものとした力 第 1、第 2マスク Ml、 M2を静止させた状態で第 1、第 2ァライメントマーク RM1、 RM2の検出を行つ てもよい。また、上記各実施形態では第 1、第 2パターン PA1、 PA2による基板の二 重露光を行うものとした力 3つ以上のパターンを用いる多重露光を行ってもょ 、。 なお、上述の各実施形態において、例えば国際公開第 99Z49504号パンフレット ,特開 2004— 289126号 (対応米国特許公開第 2004Z0165159号公報)等に開 示されているような液浸法を適用してもよい。すなわち、第 1、第 2露光領域 AR1、 A R2を覆うように、液浸システムを用いて液体の液浸領域を基板 P上に形成し、その液 体を介して第 1、第 2露光光 EL1、 EL2を基板 P上に照射するようにしてもよい。液浸 システムは、例えば、投影光学系 PLの終端光学素子と基板 Pとの間の露光光の光路 の近傍に設けられ、その光路に対して液体を供給するための供給口を有する供給部 材及び液体を回収するための回収口を有する回収部材を有し得る。なお、液浸シス テムは、その一部(例えば、液体供給部材及び Z又は液体回収部材)が露光装置に 設けられている必要はなぐ例えば露光装置が設置される工場等の設備を代用して もよい。また、液浸システムの構造は、上述の構造に限られず、例えば、欧州特許公 開第 1420298号公報、国際公開第 2004Z055803号パンフレット、国際公開第 2 004Z057590号パンフレット、国際公開第 2005,029559号パンフレット(対応米 国特許公開第 2006Z0231206号)、国際公開第 2004,086468号パンフレツ卜( 対応米国特許公開第 2005Z0280791号)、特開 2004— 289126号公報(対応米 国特許第 6,952,253号)などに記載されているものを用いることができる。液浸露光 装置の液浸機構及びその付属機器にっ 、て、指定国または選択国の法令が許す範 囲において上記の米国特許又は米国特許公開などの開示を援用して本文の記載の 一部とする。
[0169] 液浸法に用いる液体としては、水(純水)を用いてもよいし、水以外のもの、例えば 過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体、ある 、はセダー 油などを用いてもよい。また、液体としては、水よりも露光光に対する屈折率が高い液 体、例えば屈折率が 1. 6〜1. 8程度のものを使用してもよい。ここで、純水よりも屈 折率が高い(例えば 1. 5以上)の液体 LQとしては、例えば、屈折率が約 1. 50のイソ プロパノール、屈折率が約 1. 61のグリセロール(グリセリン)といった C H結合ある いは O—H結合を持つ所定液体、へキサン、ヘプタン、デカン等の所定液体 (有機溶 剤)、あるいは屈折率が約 1. 60のデカリン (Decalin:Decahydronaphthalene)などが挙 げられる。また、液体 LQは、これら液体のうち任意の 2種類以上の液体を混合したも のでもよいし、純水にこれら液体の少なくとも 1つを添加(混合)したものでもよい。さら に、液体 LQは、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_等の塩基又は酸を添カロ
4 4
(混合)したものでもよ 、し、純水に A1酸ィ匕物等の微粒子を添カ卩(混合)したものでも よい。なお、液体 LQとしては、光の吸収係数が小さぐ温度依存性が少なぐ投影光 学系 PL、及び Z又は基板 Pの表面に塗布されている感光材 (又はトップコート膜ある いは反射防止膜など)に対して安定なものであることが好ましい。液体 LQとして、超 臨界流体を用いることも可能である。また、基板 Pには、液体から感光材ゃ基材を保 護するトップコート膜などを設けることができる。また、終端光学素子 FLを、例えば石 英(シリカ)、あるいは、フッ化カルシウム(蛍石)、フッ化バリウム、フッ化ストロンチウム 、フッ化リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成しても よいし、石英や蛍石よりも屈折率が高い(例えば 1. 6以上)材料で形成してもよい。屈 折率が 1. 6以上の材料としては、例えば、国際公開第 2005Z059617号パンフレツ トに開示される、サファイア、二酸ィ匕ゲルマニウム等、あるいは、国際公開第 2005Z 059618号パンフレットに開示される、塩化カリウム(屈折率は約 1. 75)等を用いるこ とがでさる。
[0170] 液浸法に用いる場合、例えば、国際公開第 2004Z019128号パンフレット (対応 米国特許公開第 2005Z0248856号)に開示されているように、終端光学素子の像 面側の光路に加えて、終端光学素子の物体面側の光路も液体で満たすようにしても よい。さらに、終端光学素子の表面の一部 (少なくとも液体との接触面を含む)又は全 部に、親液性及び Z又は溶解防止機能を有する薄膜を形成してもよい。なお、石英 は液体との親和性が高ぐかつ溶解防止膜も不要であるが、蛍石は少なくとも溶解防 止膜を形成することが好まし 、。
[0171] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみな らず、矩形など他の形状でもよい。
[0172] また、本発明は、例えば特開平 10— 163099号公報、特開平 10— 214783号公 報(対応する米国特許 6, 341 , 007, 6, 400, 441, 6, 549, 269及び 6, 590,634 号)、特表 2000— 505958号公報(対応する米国特許 5, 969, 441号)などに開示 されているような複数の基板ステージを備えたマルチステージ型の露光装置にも適 用できる。マルチステージ型の露光装置に関して、指定国及び選択国の国内法令が 許す限りにおいて、上記米国特許の開示を援用して本文の記載の一部とする。
[0173] 更に、例えば特開平 11— 135400号公報 (対応する国際公開第 1999Z23692 号パンフレット)、特開 2000— 164504号公報(対応する米国特許 6,897,963号)に 開示されているように、基板を保持する基板ステージと、計測部材 (例えば、基準マ ークが形成された基準部材、及び Z又は各種の光電センサ)を搭載した計測ステー ジとを備えた露光装置にも本発明を適用することができる。基板ステージと計測ステ ージの両方を備える露光装置では、空間像計測器 162を含む複数の計測部材の全 部あるいは一部を計測ステージに設けてもよ!、。
[0174] 上記各実施形態では、第 1及び第 2パターンを形成するために第 1及び第 2マスク Ml、 M2を用いたが、これらに代えて、可変のパターンを生成する電子マスク(可変 成形マスク、アクティブマスク、あるいはパターンジェネレータとも呼ばれる)を用いる ことができる。この電子マスクとして、例えば非発光型画像表示素子 (空間光変調器: Spatial Light Modulator (SLM)とも呼ばれる)の一種である DMD (Deformable Micr o— mirror Device又は Digital Micro-mirror Device)を用い得る。 DMDは、所定の電 子データに基づ!、て駆動する複数の反射素子 (微小ミラー)を有し、複数の反射素子 は、 DMDの表面に 2次元マトリックス状に配列され、かつ素子単位で駆動されて露 光光を反射、偏向する。各反射素子はその反射面の角度が調整される。 DMDの動 作は、制御装置 30により制御され得る。制御装置 30は、基板 P上に形成すべき第 1 ノターン及び第 2パターンに応じた電子データ (パターン情報)に基づ!/、てそれぞれ の DMDの反射素子を駆動し、照明系 ILにより照射される露光光を反射素子でバタ ーン化する。 DMDを使用することにより、パターンが形成されたマスク(レチクル)を 用いて露光する場合に比べて、ノターンが変更されたときに、マスクの交換作業及び マスクステージにおけるマスクの位置合わせ操作が不要になるため、多重露光を一 層効率よく行うことができる。なお、電子マスクを用いる露光装置では、マスクステー ジを設けず、基板ステージによって基板を X軸及び Y軸方向に移動するだけでもよ ヽ 。また、基板上での第 1、第 2パターンの像の相対位置を調整するため、例えばァク チユエータなどによって、第 1、第 2パターンをそれぞれ生成する 2つの電子マスクの 相対位置を調整してもよいが、 2つの電子マスクの少なくとも一方で、パターンを生成 するタイミングを調整する、あるいは電子マスクでのパターン生成位置をずらしてもよ い。なお、 DMDを用いた露光装置は、例えば特開平 8— 313842号公報、特開 200 4— 304135号公報、米国特許第 6,778,257号公報に開示されている。指定国また は選択国の法令が許す範囲において米国特許第 6,778,257号公報の開示を援用 して本文の記載の一部とする。
[0175] 上記各実施形態では干渉計システムを用いてマスクステージ及び基板ステージの 位置情報を計測するものとしたが、これに限らず、例えば基板ステージの上面に設け られるスケール(回折格子)を検出するエンコーダシステムを用いてもよ!、。この場合 、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステムとし、干渉 計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キヤリブレー シヨン)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを切り替え て用いる、あるいはその両方を用いて、基板ステージの位置制御を行うようにしてもよ い。
[0176] 上記各実施形態では、露光光 ELとして ArFエキシマレーザ光を発生する光源装 置として、 ArFエキシマレーザを用いたが、例えば、国際公開第 1999Z46835号パ ンフレット(対応米国特許第 7,023,610号)に開示されているように、 DFB半導体レ 一ザ又はファイバーレーザなどの固体レーザ光源、ファイバーアンプなどを有する光 増幅部、及び波長変換部などを含み、波長 193nmのパルス光を出力する高調波発 生装置を用いてもよい。さらに、上記実施形態では、第 1、第 2照明領域と、第 1、第 2 露光領域がそれぞれ矩形状であるものとしたが、他の形状、例えば円弧状、台形状、 平行四辺形状、あるいは菱形状などでもよい。
[0177] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、マイクロマシン、 MEMS, DNAチップ、撮像素子 (C CD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0178] 本願明細書に掲げた種々の米国特許及び米国特許出願公開については、特に援 用表示をしたもの以外についても、指定国または選択国の法令が許す範囲において それらの開示を援用して本文の一部とする。
[0179] 以上のように、本願実施形態の露光装置 EXは、本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及び クリーン度等が管理されたクリーンルームで行うことが望ましい。
[0180] 半導体デバイス等のマイクロデバイスは、図 23〖こ示すよう〖こ、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する露光工程及び露 光した基板の現像工程を含む基板処理ステップ 204、デバイス組み立てステップ (ダ イシング工程、ボンディング工程、ノ ッケージ工程などの加工プロセスを含む) 205、 検査ステップ 206等を経て製造される。
産業上の利用可能性
本発明によれば、基板の多重露光を正確に且つ高!、効率で実現することができる 。このため、液晶表示素子やマイクロマシンなどに使用される高密度で複雑な回路パ ターンを有するデバイスを高いスループットで生産することができる。それゆえ、本発 明は、我国の半導体産業を含む精密機器産業の発展に著しく貢献するであろう。

Claims

請求の範囲
[1] 基板を露光する露光装置であって、
第 1パターンからの第 1露光光を第 1露光領域に照射して該第 1露光領域に前記第 1パターンの像を形成可能であり、前記第 1パターンと異なる第 2パターン力もの第 2 露光光を第 2露光領域に照射して該第 2露光領域に前記第 2パターンの像を形成可 能な光学システムと、
前記光学システムの少なくとも一部を介して検出光を受光する受光装置を有し、前 記第 1露光領域に形成される前記第 1パターンの像と前記第 2露光領域に形成され る前記第 2パターンの像とで前記基板上の所定領域を多重露光する動作の少なくと も一部と並行して、前記光学システムの少なくとも一部を介して前記第 1パターンの 像と前記基板との位置関係に関する情報、並びに前記第 2パターンの像と前記基板 との位置関係に関する情報を取得する検出システムとを備えた露光装置。
[2] 前記検出システムは、前記第 1パターンの像と前記第 2パターンの像と前記基板との 位置関係に関する情報を取得する請求項 1記載の露光装置。
[3] 前記検出システムで取得した情報に基づいて、前記第 1パターンの像と前記第 2パ ターンの像と前記基板上の所定領域との位置関係を調整しつつ、前記基板上の所 定領域を多重露光する請求項 1記載の露光装置。
[4] 前記第 1パターンと前記第 2パターンとを各走査方向に移動するとともに、前記基板 を走査方向に移動しつつ、前記基板上の所定領域を多重露光する請求項 1記載の 露光装置。
[5] 前記受光装置は、前記第 1パターンと所定位置関係で形成された第 1マーク、及び 前記第 2パターンと所定位置関係で形成された第 2マークの少なくとも一方力 の光 を検出光として、前記光学システムの少なくとも一部を介して受光する請求項 1記載 の露光装置。
[6] 前記受光装置は、前記第 1露光光及び前記第 2露光光の少なくとも一方と同じ波 長の検出光を受光する請求項 1記載の露光装置。
[7] 前記受光装置は、前記第 1露光光及び前記第 2露光光の少なくとも一方を検出光 として受光する請求項 6記載の露光装置。
[8] 前記光学システムは、前記第 1パターンからの前記第 1露光光と前記第 2パターン からの前記第 2露光光とが入射するとともに、前記第 1露光光の少なくとも一部と前記 第 2露光光の少なくとも一部とを前記第 1露光領域と前記第 2露光領域とにそれぞれ 照射可能な光学素子を有し、
前記受光装置は、前記光学素子から前記第 1露光領域及び前記第 2露光領域とは 異なる領域に向かう、前記第 1露光光及び前記第 2露光光の少なくとも一方を受光す る請求項 7記載の露光装置。
[9] 前記光学素子は、偏光分離光学素子を含む請求項 8記載の露光装置。
[10] 前記検出システムは、前記第 1、第 2露光光とは別の検出光を照射する照射装置を 有し、前記受光装置は、前記照射装置からの前記検出光を前記光学システムの少な くとも一部を介して受光する請求項 1記載の露光装置。
[11] 前記光学システムは、前記第 1パターンからの前記第 1露光光が入射する第 1入射 面と前記第 2パターンからの前記第 2露光光が入射する第 2入射面とを有し、前記第
1露光光の少なくとも一部と前記第 2露光光の少なくとも一部とを前記第 1露光領域と 前記第 2露光領域とにそれぞれ照射可能な光学素子を有し、
前記照射装置は、前記光学素子に向けて前記検出光を照射し、前記受光装置は
、前記第 1入射面からの前記検出光、及び前記第 2入射面からの前記検出光の少な くとも一方を受光する請求項 10記載の露光装置。
[12] 前記光学素子は、偏光分離光学素子を含む請求項 11記載の露光装置。
[13] 前記第 1パターンを前記第 1露光光に対して所定の走査方向に移動可能な第 1移 動装置と、
前記第 2パターンを前記第 2露光光に対して所定の走査方向に移動可能な第 2移 動装置と、
前記基板上の所定領域を前記第 1露光領域及び前記第 2露光領域に対して所定 の走査方向に移動可能な基板移動装置とを備え、
前記第 1、第 2移動装置による前記第 1パターン及び前記第 2パターンの各走査方 向への移動と、前記基板移動装置による前記基板の走査方向への移動とを同期し 、つつ前記基板上の所定領域を多重露光する請求項 1〜 12の 、ずれか一項 記載の露光装置。
[14] 基板を露光する露光装置であって、
第 1パターン力もの第 1露光光が入射するとともに、前記第 1パターンと異なる第 2パ ターンからの第 2露光光が入射する光学素子を有し、該光学素子からの前記第 1露 光光の少なくとも一部と前記第 2露光光の少なくとも一部とを第 1露光領域と第 2露光 領域とにそれぞれ照射して、前記第 1露光領域と前記第 2露光領域とに前記第 1バタ ーンの像と前記第 2パターンの像とをそれぞれ形成可能な光学システムと、
前記光学素子から前記第 1露光領域及び前記第 2露光領域とは異なる領域に向か う光を検出光として受光する受光装置を有する検出システムとを備え、
前記第 1露光領域に形成される前記第 1パターンの像と前記第 2露光領域に形成 される前記第 2パターンの像とで前記基板上の所定領域を多重露光する露光装置。
[15] 前記受光装置の受光面は、前記基板と光学的に共役な位置又はその近傍に配置 されて ヽる請求項 14記載の露光装置。
[16] 前記第 1パターンと前記第 2パターンとを各走査方向に移動するとともに、前記基板 を走査方向に移動しつつ、前記基板上の所定領域を多重露光する請求項 14記載 の露光装置。
[17] 前記受光装置は、前記第 1露光光及び前記第 2露光光の少なくとも一方と同じ波 長の検出光を受光する請求項 14記載の露光装置。
[18] 前記受光装置は、前記第 1パターンと所定位置関係で形成された第 1マーク、及び 前記第 2パターンと所定位置関係で形成された第 2マークの少なくとも一方力 の光 を検出光として、前記光学素子を介して受光する請求項 14記載の露光装置。
[19] 前記検出システムは、前記受光装置の受光面に前記光学素子を介して形成される 前記第 1マークの像と前記第 2マークの像との位置関係に基づいて、前記第 1パター ンの像と前記第 2パターンの像との位置関係、及び前記第 1パターンと前記第 2バタ ーンとの位置関係の少なくとも一方に関する情報を取得する請求項 18記載の露光 装置。
[20] 前記第 1パターンとともに前記第 1マークを所定の走査方向に移動し、前記第 2バタ ーンとともに前記第 2マークを所定の走査方向に移動し、 前記検出システムは、前記第 1マークの像が前記受光面上の第 1の位置に形成さ れるタイミングと、前記第 2マークの像が前記受光面上の第 2の位置に形成されるタイ ミングとに基づいて、前記第 1パターンの像と前記第 2パターンの像との位置関係、及 び前記第 1パターンと前記第 2パターンとの位置関係の少なくとも一方に関する情報 を取得する請求項 19記載の露光装置。
[21] 前記第 1マークは前記走査方向に沿って複数形成され、前記第 2マークは前記走 查方向に沿って複数形成されている請求項 19記載の露光装置。
[22] 前記受光装置は、前記光学素子に入射した前記第 1、第 2露光光のうち、前記第 1 露光領域及び前記第 2露光領域とは異なる領域に向かう前記第 1露光光及び前記 第 2露光光の少なくとも一方の一部を検出光として受光する請求項 14記載の露光装 置。
[23] 前記光学素子は、前記第 1露光光が入射する第 1入射面と前記第 2露光光が入射 する第 2入射面とを有し、
前記検出システムは、前記光学素子に向けて前記第 1、第 2露光光とは別の検出 光を照射するとともに、前記受光装置で、前記光学素子の前記第 1入射面からの前 記検出光、及び前記光学素子の前記第 2入射面からの前記検出光の少なくとも一方 を受光する請求項 14記載の露光装置。
[24] 前記検出システムは、前記第 1、第 2露光光と異なる波長の検出光を前記光学素子 に向けて照射する請求項 23記載の露光装置。
[25] 前記受光装置は、前記第 1入射面と、前記第 1パターンと所定位置関係で形成され た第 1マークとを介した検出光、及び前記第 2入射面と、前記第 2パターンと所定位 置関係で形成された第 2マークとを介した検出光の少なくとも一方を受光する請求項
23記載の露光装置。
[26] 前記検出システムは、前記第 1入射面からの検出光を受光する第 1受光器と、前記 第 2入射面力 の検出光を受光する第 2受光器とを有し、
前記第 1受光器の第 1受光面に前記第 1マークを介して照射される前記検出光、及 び前記第 2受光器の第 2受光面に前記第 2マークを介して照射される前記検出光に 基づいて、前記第 1パターンの像と前記第 2パターンの像との位置関係、及び前記第 1パターンと前記第 2パターンとの位置関係の少なくとも一方に関する情報を取得す る請求項 25記載の露光装置。
[27] 前記第 1パターンとともに前記第 1マークを所定の走査方向に移動し、前記第 2バタ ーンとともに前記第 2マークを所定の走査方向に移動し、
前記検出システムは、前記第 1マークの像が前記第 1受光面上の第 1の位置に形 成されるタイミングと、前記第 2マークの像が前記第 2受光面上の第 2の位置に形成さ れるタイミングとに基づいて、前記第 1パターンの像と前記第 2パターンの像との位置 関係、及び前記第 1パターンと前記第 2パターンとの位置関係の少なくとも一方に関 する情報を取得する請求項 26記載の露光装置。
[28] 前記第 1マークは前記走査方向に沿って複数形成され、前記第 2マークは前記走 查方向に沿って複数形成されて!/、る請求項 27記載の露光装置。
[29] 前記受光装置の出力に基づいて、前記第 1パターン及び前記第 2パターンの少な くとも一方の位置情報を取得する請求項 14〜28のいずれか一項記載の露光装置。
[30] 前記受光装置の出力に基づいて、前記第 1パターンと前記第 2パターンとの位置関 係に関する情報を取得する請求項 14〜28のいずれか一項記載の露光装置。
[31] 前記受光装置の出力に基づいて、前記第 1露光領域に形成される前記第 1パター ンの像の位置情報、及び前記第 2露光領域に形成される前記第 2パターンの像の位 置情報の少なくとも一方を取得する請求項 14〜28のいずれか一項記載の露光装置
[32] 前記受光装置の出力に基づいて、前記第 1パターン及び前記第 2パターンの少な くとも一方の位置を調整する請求項 14〜28のいずれか一項記載の露光装置。
[33] 前記受光装置の出力に基づいて、前記第 1露光領域に形成される前記第 1パター ンの像と前記第 2露光領域に形成される前記第 2パターンの像との位置関係を調整 する請求項 14〜28の 、ずれか一項記載の露光装置。
[34] 前記検出システムの検出動作は、前記基板上の所定領域の多重露光を開始する 前に実行される請求項 14〜28のいずれか一項記載の露光装置。
[35] 前記検出システムの検出動作は、前記基板上の所定領域を多重露光する動作の 少なくとも一部と並行して実行される請求項 14〜28のいずれか一項記載の露光装 置。
[36] 前記光学素子は、前記第 1露光光及び前記第 2露光光それぞれの光路を分岐す る分岐光学素子を含む請求項 14〜28のいずれか一項記載の露光装置。
[37] 前記光学素子は、前記第 1露光光及び前記第 2露光光のそれぞれを第 1偏光状態 の露光光と第 2偏光状態の露光光とに分離する偏光分離光学素子を含む請求項 14 〜28の 、ずれか一項記載の露光装置。
[38] 前記光学システムは、
前記第 1パターンからの前記第 1露光光を前記光学素子へ導く第 1光学系と、 前記第 2パターンからの前記第 2露光光を前記光学素子へ導く第 2光学系と、 前記光学素子からの前記第 1露光光及び前記第 2露光光のそれぞれを前記第 1露 光領域及び前記第 2露光領域のそれぞれへ導く第 3光学系と有する請求項 14〜28 の!、ずれか一項記載の露光装置。
[39] 前記第 1パターンを前記第 1露光光に対して所定の走査方向に移動可能な第 1移 動装置と、
前記第 2パターンを前記第 2露光光に対して所定の走査方向に移動可能な第 2移 動装置と、
前記基板上の所定領域を前記第 1露光領域及び前記第 2露光領域に対して所定 の走査方向に移動可能な基板移動装置とを備え、
前記第 1、第 2移動装置による前記第 1パターン及び前記第 2パターンの各走査方 向への移動と、前記基板移動装置の走査方向への移動とを同期して行いつつ前記 基板上の所定領域を多重露光する請求項 14〜28のいずれか一項記載の露光装置
[40] 基板を露光する露光装置であって、
第 1パターン力もの第 1露光光が入射するとともに、第 1パターンと異なる第 2パター ンからの第 2露光光が入射する偏光分離光学素子と、
前記第 1パターンに関連する第 1マークと前記第 2パターンに関連する第 2マークを 前記偏光分離光学素子を介して検出することで第 1及び第 2マークの位置を検出す る検出システムとを備え、 前記偏光分離光学素子からの前記第 1露光光及び前記第 2露光光を第 1露光領 域及び第 2露光領域にそれぞれ照射して、第 1露光領域及び第 2露光領域に前記第
1パターンの像及び前記第 2パターンの像をそれぞれ形成して前記基板上の所定領 域を多重露光する露光装置。
[41] 前記第 1露光光と前記第 2露光光とが異なる方向から前記偏光分離光学素子に入 射し、前記偏光分離光学素子から出射する前記第 1露光光の一部と前記第 2露光光 の一部とが同一方向に向かう請求項 40記載の露光装置。
[42] さらに、前記検出システムの検出結果に基づいて前記第 1パターンの像及び前記 第 2パターンの像の少なくとも一方の位置を調整する制御装置を備える請求項 40記 載の露光装置。
[43] さらに、前記第 1パターンの像及び前記第 2パターンの像を検出する検出器を備え
、前記制御装置は前記検出器と前記検出システムの検出結果とを関連付ける請求 項 41記載の露光装置。
[44] さらに、前記第 1露光領域及び前記第 2露光領域に前記第 1パターンの像及び前 記第 2パターンの像を投影するとともに、前記偏光分離光学素子を含む投影光学系 を備える請求項 40記載の露光装置。
[45] 前記基板上に液浸領域を形成し、該液浸領域の液体を介して多重露光が行われ る請求項 40記載の露光装置。
[46] 請求項 1〜45のいずれか一項記載の露光装置を用いて基板を露光することと、 露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
[47] 基板を露光する露光方法であって、
光学システムを介して第 1パターン力 の第 1露光光を第 1露光領域に照射して第 1 露光領域に前記第 1パターンの像を形成しつつ、前記光学システムを介して前記第 1パターンと異なる第 2パターン力 の第 2露光光を第 2露光領域に照射して第 2露光 領域に前記第 2パターンの像を形成することによって、前記第 1パターンの像と前記 第 2パターンの像とで前記基板上の所定領域を多重露光することと、
前記多重露光の動作の少なくとも一部と並行して、前記光学システムの少なくとも 一部を介して前記第 1パターンの像と前記基板との位置関係に関する情報、並びに 前記第 2パターン像と前記基板との位置関係に関する情報を取得することを含む露 光方法。
[48] 前記取得した情報に基づいて、前記第 1パターンの像と前記第 2パターンの像と前 記基板上の所定領域との位置関係を調整しつつ、前記基板上の所定領域を多重露 光する請求項 47記載の露光方法。
[49] 前記第 1パターンと前記第 2パターンとをそれぞれ所定方向に移動するとともに、前 記基板をそれらの所定方向に対応する方向に移動しつつ、前記基板上の所定領域 を多重露光する請求項 47記載の露光方法。
[50] 前記第 1パターンと所定位置関係で形成された第 1マーク、及び前記第 2パターン と所定位置関係で形成された第 2マークの少なくとも一方力 の光を検出光として、 前記光学システムの少なくとも一部を介して受光する請求項 47記載の露光方法。
[51] 前記第 1露光領域と前記第 2露光領域とが重なるように、前記第 1パターンからの第
1露光光と前記第 2パターンからの第 2露光光を照射する請求項 47記載の露光方法
[52] 基板を露光する露光方法であって、
光学素子を介して第 1パターンからの第 1露光光を第 1露光領域に照射して第 1露 光領域に前記第 1パターンの像を形成しつつ、前記光学素子を介して前記第 1バタ ーンと異なる第 2パターン力 の第 2露光光を第 2露光領域に照射して第 2露光領域 に前記第 2パターンの像を形成することによって、前記第 1パターンの像と前記第 2パ ターンの像とで前記基板上の所定領域を多重露光することと、
前記光学素子から前記第 1露光領域及び前記第 2露光領域とは異なる領域に向か う光を検出光として受光することを含む露光方法。
[53] 前記第 1パターンと前記第 2パターンとをそれぞれ所定方向に移動するとともに、前 記基板をそれらの所定方向に対応する方向に移動しつつ、前記基板上の所定領域 を多重露光する請求項 52記載の露光方法。
[54] 前記検出光が、前記第 1パターンと所定位置関係で形成された第 1マーク、及び前 記第 2パターンと所定位置関係で形成された第 2マークの少なくとも一方力 の光で ある請求項 52記載の露光方法。
[55] 前記第 1マークの像と前記第 2マークの像との位置関係に基づいて、前記第 1バタ ーンの像と前記第 2パターンの像との位置関係、及び前記第 1パターンと前記第 2パ ターンとの位置関係の少なくとも一方に関する情報を取得する請求項 54記載の露光 方法。
[56] 前記第 1パターンとともに前記第 1マークを所定の走査方向に移動し、前記第 2バタ ーンとともに前記第 2マークを所定の走査方向に移動し、前記第 1マークの像が第 1 の位置に形成されるタイミングと、前記第 2マークの像が第 2の位置に形成されるタイ ミングとに基づいて、前記第 1パターンの像と前記第 2パターンの像との位置関係、及 び前記第 1パターンと前記第 2パターンとの位置関係の少なくとも一方に関する情報 を取得する請求項 55記載の露光方法。
[57] 基板を露光する露光方法であって、
第 1パターンからの第 1露光光と、第 1パターンと異なる第 2パターンからの第 2露光 光とを偏光分離光学素子に入射することと、
前記第 1パターンに関連する第 1マークと前記第 2パターンに関連する第 2マークと を前記偏光分離光学素子を介した検出光で検出することで第 1及び第 2マークの位 置を検出することと、
前記偏光分離光学素子からの第 1露光光と第 2露光光とを第 1露光領域と第 2露光 領域とにそれぞれ照射して、前記第 1露光領域と前記第 2露光領域とに前記第 1バタ ーンの像と前記第 2パターンの像とをそれぞれ形成して前記基板上の所定領域を多 重露光することを含む露光方法。
[58] 前記第 1及び第 2マークの位置を検出しながら、前記第 1パターンの像と前記第 2パ ターンの像とで前記基板上の所定領域を多重露光する請求項 57記載の露光方法。
[59] さらに、前記検出された第 1及び第 2マークの位置に基づいて、前記第 1パターン の像と前記第 2パターンの像の少なくとも一方の位置を調整することを含む請求項 57 記載の露光方法。
[60] 前記多重露光の前に、前記第 1及び第 2マークの像を、前記第 1露光領域と前記第 2露光領域が形成される第 1位置で検出しつつ、前記偏光分離光学素子を介した検 出光が向かう第 2位置で検出することと、前記第 1位置で検出された位置情報と前記 第 2位置で検出された位置情報とを対応付けることを含む請求項 57記載の露光方 法。
[61] 前記偏光分離光学素子により、前記第 1露光光と前記第 2露光光とを前記第 1位置 と前記第 2位置に向かう光に分離する請求項 60記載の露光方法。
[62] 前記基板上に液浸領域を形成し、該液浸領域の液体を介して多重露光が行われ る請求項 57記載の露光方法。
[63] デバイス製造方法であって、
請求項 47〜62のいずれか一項記載の方法により基板を露光することと、 露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
PCT/JP2007/052777 2006-02-16 2007-02-15 露光装置、露光方法及びデバイス製造方法 WO2007094431A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07714307A EP1986224A4 (en) 2006-02-16 2007-02-15 EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
US12/222,583 US20080316453A1 (en) 2006-02-16 2008-08-12 Exposure apparatus, exposure method, and method for producing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006039926 2006-02-16
JP2006-039926 2006-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/222,583 Continuation US20080316453A1 (en) 2006-02-16 2008-08-12 Exposure apparatus, exposure method, and method for producing device

Publications (1)

Publication Number Publication Date
WO2007094431A1 true WO2007094431A1 (ja) 2007-08-23

Family

ID=38371608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052777 WO2007094431A1 (ja) 2006-02-16 2007-02-15 露光装置、露光方法及びデバイス製造方法

Country Status (5)

Country Link
US (1) US20080316453A1 (ja)
EP (1) EP1986224A4 (ja)
KR (1) KR20080103564A (ja)
TW (1) TW200745783A (ja)
WO (1) WO2007094431A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040732A (ja) * 2008-08-05 2010-02-18 Nuflare Technology Inc 描画装置及び描画方法
US8264666B2 (en) * 2009-03-13 2012-09-11 Nikon Corporation Exposure apparatus, exposure method, and method of manufacturing device
JP2013251423A (ja) * 2012-06-01 2013-12-12 Mitsubishi Heavy Ind Ltd 発光素子の保護膜の作製方法及び装置

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078454A (ja) 1983-10-05 1985-05-04 Nippon Kogaku Kk <Nikon> 投影露光装置
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
US4666273A (en) 1983-10-05 1987-05-19 Nippon Kogaku K. K. Automatic magnification correcting system in a projection optical apparatus
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
JPH0465603A (ja) 1990-07-05 1992-03-02 Nikon Corp アライメント方法,露光装置,並びに位置検出方法及び装置
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
US5646413A (en) 1993-02-26 1997-07-08 Nikon Corporation Exposure apparatus and method which synchronously moves the mask and the substrate to measure displacement
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
JPH10232497A (ja) * 1997-02-20 1998-09-02 Nikon Corp 露光装置
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1149504A (ja) 1997-07-29 1999-02-23 Toshiba Eng Co Ltd 廃活性炭と水との分離装置
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
JPH11195602A (ja) 1997-10-07 1999-07-21 Nikon Corp 投影露光方法及び装置
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000021742A (ja) * 1998-06-30 2000-01-21 Canon Inc 露光方法および露光装置
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
US6235438B1 (en) 1997-10-07 2001-05-22 Nikon Corporation Projection exposure method and apparatus
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
JP2001297976A (ja) * 2000-04-17 2001-10-26 Canon Inc 露光方法及び露光装置
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP2003045797A (ja) * 2001-05-04 2003-02-14 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法、およびそれによって製造されるデバイス
US6608681B2 (en) 1992-12-25 2003-08-19 Nikon Corporation Exposure method and apparatus
US20040019128A1 (en) 2002-07-25 2004-01-29 Ai Kondo Curable white ink
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
US20040107011A1 (en) 2002-10-09 2004-06-03 Giovanni Moselli Arrangement for controlling operation of fuel cells in electric vehicles
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
JP2004519850A (ja) * 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
US20040165159A1 (en) 2002-11-12 2004-08-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US20050020685A1 (en) 2003-06-12 2005-01-27 Skonezny Paul M. Process for recovery of 6-aminopenicillanic acid from an aqueous discharge stream
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
US20060121364A1 (en) 2003-05-06 2006-06-08 Nikon Corporation Projection optical system, exposure apparatus, and exposure method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969855B2 (ja) * 1998-07-02 2007-09-05 キヤノン株式会社 露光方法および露光装置
CN1294455C (zh) * 2001-11-27 2007-01-10 Asml荷兰有限公司 成像设备
US7177012B2 (en) * 2004-10-18 2007-02-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7394080B2 (en) * 2004-12-23 2008-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Mask superposition for multiple exposures
US7924406B2 (en) * 2005-07-13 2011-04-12 Asml Netherlands B.V. Stage apparatus, lithographic apparatus and device manufacturing method having switch device for two illumination channels

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666273A (en) 1983-10-05 1987-05-19 Nippon Kogaku K. K. Automatic magnification correcting system in a projection optical apparatus
JPS6078454A (ja) 1983-10-05 1985-05-04 Nippon Kogaku Kk <Nikon> 投影露光装置
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
JPH0465603A (ja) 1990-07-05 1992-03-02 Nikon Corp アライメント方法,露光装置,並びに位置検出方法及び装置
US5493403A (en) 1990-07-05 1996-02-20 Nikon Corporation Method and apparatus for the alignment of a substrate
US6608681B2 (en) 1992-12-25 2003-08-19 Nikon Corporation Exposure method and apparatus
US5646413A (en) 1993-02-26 1997-07-08 Nikon Corporation Exposure apparatus and method which synchronously moves the mask and the substrate to measure displacement
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
US6400441B1 (en) 1996-11-28 2002-06-04 Nikon Corporation Projection exposure apparatus and method
US6549269B1 (en) 1996-11-28 2003-04-15 Nikon Corporation Exposure apparatus and an exposure method
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
JPH10232497A (ja) * 1997-02-20 1998-09-02 Nikon Corp 露光装置
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1149504A (ja) 1997-07-29 1999-02-23 Toshiba Eng Co Ltd 廃活性炭と水との分離装置
JPH11195602A (ja) 1997-10-07 1999-07-21 Nikon Corp 投影露光方法及び装置
US6235438B1 (en) 1997-10-07 2001-05-22 Nikon Corporation Projection exposure method and apparatus
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
JP2000021742A (ja) * 1998-06-30 2000-01-21 Canon Inc 露光方法および露光装置
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2001297976A (ja) * 2000-04-17 2001-10-26 Canon Inc 露光方法及び露光装置
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP2004519850A (ja) * 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
JP2003045797A (ja) * 2001-05-04 2003-02-14 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法、およびそれによって製造されるデバイス
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
US20040019128A1 (en) 2002-07-25 2004-01-29 Ai Kondo Curable white ink
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20040107011A1 (en) 2002-10-09 2004-06-03 Giovanni Moselli Arrangement for controlling operation of fuel cells in electric vehicles
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20040165159A1 (en) 2002-11-12 2004-08-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US20060121364A1 (en) 2003-05-06 2006-06-08 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US20050020685A1 (en) 2003-06-12 2005-01-27 Skonezny Paul M. Process for recovery of 6-aminopenicillanic acid from an aqueous discharge stream
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US20060231206A1 (en) 2003-09-19 2006-10-19 Nikon Corporation Exposure apparatus and device manufacturing method
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1986224A4 *

Also Published As

Publication number Publication date
EP1986224A4 (en) 2012-01-25
TW200745783A (en) 2007-12-16
US20080316453A1 (en) 2008-12-25
EP1986224A1 (en) 2008-10-29
KR20080103564A (ko) 2008-11-27

Similar Documents

Publication Publication Date Title
US8027020B2 (en) Exposure apparatus, exposure method, and method for producing device
JP5321722B2 (ja) 露光装置、露光方法及びデバイス製造方法
US7932994B2 (en) Exposure apparatus, exposure method, and method for producing device
WO2007094414A1 (ja) 露光装置、露光方法及びデバイス製造方法
WO2007094470A1 (ja) 露光装置、露光方法及びデバイス製造方法
US7872730B2 (en) Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US20070242254A1 (en) Exposure apparatus and device manufacturing method
US20080013062A1 (en) Exposure apparatus, exposure method, and device manufacturing method
US8982322B2 (en) Exposure apparatus and device manufacturing method
WO2007123189A1 (ja) 露光装置及び露光方法並びにデバイスの製造方法
JP2007201457A (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2006106832A1 (ja) 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
WO2007094431A1 (ja) 露光装置、露光方法及びデバイス製造方法
WO2007066679A1 (ja) 露光装置、露光方法、投影光学系及びデバイス製造方法
JP2007281169A (ja) 投影光学系、露光装置及び露光方法、並びにデバイス製造方法
WO2007000995A1 (ja) 露光装置及び方法、並びにデバイス製造方法
JP4957281B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2008277589A (ja) 露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007714307

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022498

Country of ref document: KR