[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006106832A1 - 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法 - Google Patents

露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2006106832A1
WO2006106832A1 PCT/JP2006/306675 JP2006306675W WO2006106832A1 WO 2006106832 A1 WO2006106832 A1 WO 2006106832A1 JP 2006306675 W JP2006306675 W JP 2006306675W WO 2006106832 A1 WO2006106832 A1 WO 2006106832A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
exposure
immersion area
immersion
Prior art date
Application number
PCT/JP2006/306675
Other languages
English (en)
French (fr)
Inventor
Yoshiki Kida
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/887,344 priority Critical patent/US9239524B2/en
Priority to EP06730623A priority patent/EP1865539A4/en
Priority to KR1020077018572A priority patent/KR101197071B1/ko
Priority to JP2007512860A priority patent/JP4605219B2/ja
Publication of WO2006106832A1 publication Critical patent/WO2006106832A1/ja
Priority to US14/757,542 priority patent/US20160124317A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • Exposure condition determination method determination method, exposure method and exposure apparatus, and device manufacturing method
  • the present invention relates to a method for determining exposure conditions when exposing a substrate through a liquid, an exposure method, an exposure apparatus, and a device manufacturing method.
  • the pattern formed on the mask is projected and exposed onto a photosensitive substrate.
  • An exposure apparatus is used.
  • This exposure apparatus has a mask stage that can move while holding a mask, and a substrate stage that can move while holding a substrate, and exposes the mask pattern onto the substrate while sequentially moving the mask stage and the substrate stage.
  • miniaturization of patterns formed on a substrate is required in order to increase the density of devices.
  • an immersion exposure apparatus that exposes a substrate through liquid in an immersion region formed on the substrate as disclosed in Patent Document 1 below. Has been devised.
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • an immersion exposure apparatus it is important to form an immersion area in a desired state. If the immersion area is not formed in the desired state, for example, if the liquid in the immersion area formed on the substrate leaks out from the substrate, it may affect peripheral equipment or the environment where the exposure apparatus is located ( Humidity, cleanliness, etc.) fluctuate, exposure accuracy including pattern overlay accuracy on the substrate deteriorates, or various measurement accuracy using interferometers deteriorates, etc. Various inconveniences can occur. Therefore, in order to prevent such inconvenience, it is desirable to determine in advance optimum exposure conditions that can form the liquid immersion region in a desired state, and to expose the substrate based on the determined exposure conditions. . Therefore, it is desired to devise a method capable of determining the optimum exposure conditions when exposing the substrate through the liquid in the immersion area formed on the substrate.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a method for determining an exposure condition when exposing a substrate through a liquid in an immersion region. Another object of the present invention is to provide an exposure method and an exposure apparatus for exposing a substrate based on the determined exposure conditions, and a device manufacturing method.
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • exposure light (EL) is irradiated onto the substrate (P) via the liquid (LQ) in the liquid immersion region (LR) formed on the substrate (P). Then, the exposure condition when the substrate (P) is exposed is determined, and the state of the immersion area (LR) formed on the surface of a predetermined object (P, 64, etc.) is determined by the object (P 64, etc.) and a step of detecting while changing at least one of the immersion conditions when forming the immersion region (LR) and a step of determining the exposure conditions based on the detection result A method for determining conditions is provided. According to the first aspect of the present invention, it is possible to determine an optimum exposure condition when exposing the substrate through the liquid in the immersion area.
  • an exposure method for exposing the substrate (P) based on the exposure condition determined by the determination method of the above aspect According to the second aspect of the present invention, the substrate can be satisfactorily exposed based on optimum exposure conditions.
  • a device manufacturing method using the exposure method of the above aspect there is provided a device manufacturing method using the exposure method of the above aspect.
  • a device can be manufactured using an exposure method that can satisfactorily expose the substrate.
  • a substrate (PL, LSI) and a liquid (LQ) are interposed between the substrate (
  • the immersion space (LR) is formed by filling the predetermined space (K1) between the optical member (PL, LSI) and the substrate (P) with the liquid (LQ).
  • the moving conditions of the object (P, 64, etc.) where the immersion area (LR) is formed and the immersion area (LR) are formed between the mechanism (1) and the optical component (PL, LSI).
  • An exposure apparatus (EX) is provided that includes a detection device (30) that detects the state of the immersion region (LR) while changing at least one of the immersion conditions.
  • the optimum exposure condition when the substrate is exposed for example, via the liquid from the state of the immersion area detected by changing at least one of the movement condition and the immersion condition. Can be obtained.
  • a device manufacturing method using the exposure apparatus of the above aspect there is provided a device manufacturing method using the exposure apparatus of the above aspect.
  • a device can be manufactured using an exposure apparatus that can determine the optimum exposure conditions.
  • FIG. 1 is a schematic block diagram that shows one embodiment of an exposure apparatus.
  • FIG. 2 is a diagram for explaining a first embodiment of a method for determining exposure conditions.
  • FIG. 3 is a plan view of the substrate of FIG.
  • FIG. 4 is a diagram for explaining a moving condition of a substrate.
  • FIG. 5 is a diagram for explaining a second embodiment of a method for determining exposure conditions.
  • FIG. 6 is a diagram for explaining a third embodiment of a method for determining exposure conditions.
  • FIG. 7 is a diagram for explaining a fourth embodiment of a method for determining exposure conditions.
  • FIG. 8 is an enlarged cross-sectional view of the main part of FIG.
  • FIG. 9 is a flowchart showing an example of a microdevice manufacturing process.
  • FIG. 1 is a schematic block diagram showing the exposure apparatus EX.
  • an exposure apparatus EX has a mask stage MST that can move while holding a mask M and a substrate holder PH that holds a substrate P, and a substrate stage PST that can move the substrate holder PH that holds the substrate P.
  • an illumination optical system IL that illuminates the mask M held on the mask stage MST with the exposure light EL
  • a projection optical system PL that projects an image of the pattern of the mask M illuminated with the exposure light EL onto the substrate P.
  • a control device CONT that controls the overall operation of the exposure apparatus EX.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus.
  • an immersion mechanism 1 is provided for filling the optical path space K1 of the exposure light EL near the image plane of the projection optical system PL with the liquid LQ.
  • the liquid immersion mechanism 1 is provided in the vicinity of the optical path space K1, and is provided in the nozzle member 70 having the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ, the supply pipe 13, and the nozzle member 70.
  • the nozzle member 70 is located above the substrate P (substrate stage PST) disposed facing the projection optical liquid PL, and at least of the plurality of optical elements constituting the projection optical system PL. It is closest to the image plane and is formed in an annular shape to surround the final optical element LS 1.
  • the exposure apparatus EX of the present embodiment includes an immersion region of a liquid LQ that is larger than the projection region AR and smaller than the substrate P on a part of the substrate P including the projection region AR of the projection optical system PL.
  • the local liquid immersion method is used to form LR locally.
  • at least the pattern image of the mask M is transferred to the substrate P, and while it is closest to the image plane of the projection optical system PL! ⁇ ⁇ Exposure light EL between the final optical element LSI and the substrate P placed on the image plane side of the projection optical system PL Of the mask M by irradiating the substrate P with exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ filled in the optical path space K1.
  • the control device CONT supplies a predetermined amount of liquid LQ using the liquid supply device 11 of the liquid immersion mechanism 1 and collects a predetermined amount of liquid LQ using the liquid recovery device 21. Fill and form a liquid LQ immersion region LR locally on the substrate P.
  • exposure apparatus EX a scanning exposure apparatus (a so-called scanning stepper) that exposes a pattern formed on mask M onto substrate P while moving mask M and substrate P synchronously in the respective scanning directions. )
  • V in the horizontal plane, the synchronous movement direction (scanning direction) of the mask M and the substrate P in the Y-axis direction, and in the horizontal plane in the direction perpendicular to the Y-axis direction (in this example, projection optics)
  • the direction parallel to the optical axis AX of the system PL) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the 0 X, ⁇ ⁇ , and ⁇ Z directions, respectively.
  • the “substrate” includes a substrate such as a semiconductor wafer coated with a film such as a photosensitive material (resist) or a protective film.
  • the “mask” includes a reticle on which a device pattern to be projected on a substrate is reduced.
  • the illumination optical system IL includes an exposure light source, an optical integrator that equalizes the illuminance of the light beam emitted from the exposure light source, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and an exposure It has a field stop to set the illumination area on the mask M with light EL.
  • the predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
  • Illumination optical system IL force Dew light emitted EL such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) emitted from mercury lamps Light), vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
  • ArF excimer laser light is used.
  • Pure water is used as the liquid LQ. Pure water is not only ArF excimer laser light, but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248nm). Can also be transmitted.
  • DUV light far ultraviolet light
  • Mask stage MST is movable while holding mask M.
  • the mask stage MST holds the mask M by vacuum suction (or electrostatic suction).
  • the mask stage MST is in a plane perpendicular to the optical axis AX of the projection optical system PL with the mask M held by the drive of the mask stage drive device MST D including the linear motor controlled by the control device CONT.
  • a movable mirror 91 is provided on the mask stage MST.
  • a laser interferometer 92 is provided at a position facing the movable mirror 91! The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the ⁇ Z direction (including rotation angles in the ⁇ X and ⁇ Y directions in some cases) are measured in real time by the laser interferometer 92.
  • the measurement result of the laser interferometer 92 is output to the control device CONT. Based on the measurement result of the laser interferometer 92, the control device CONT drives the mask stage drive device MSTD and controls the position of the mask M held by the mask stage MST.
  • the movable mirror 91 may include not only a plane mirror but also a corner cube (retlet reflector), and instead of fixing the movable mirror 91, for example, the end surface (side surface) of the mask stage MST is formed by mirror processing. A reflective surface may be used.
  • the mask stage MST may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,722,034).
  • the projection optical system PL projects an image of the pattern of the mask M onto the substrate ⁇ at a predetermined projection magnification ⁇ , and is composed of a plurality of optical elements, which are optical tubes PI C Is retained.
  • the projection optical system PL is a reduction system having a projection magnification j8 of, for example, 1 Z4, 1/5, or 1Z8, and a reduced image of the pattern of the mask M is projected on the projection area AR conjugate with the illumination area described above.
  • the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a reflective refractive system that includes a reflective optical element and a refractive optical element.
  • the final optical element LS1 closest to the image plane of the projection optical system PL is exposed from the lens barrel PK.
  • the substrate stage PST has a substrate holder PH that holds the substrate P, and is movable on the base member BP on the image plane side of the projection optical system PL.
  • the substrate holder PH holds the substrate P by vacuum suction, for example.
  • a recess 96 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the recess 96. Then, the upper surface 97 of the substrate stage PST other than the recess 96 is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. This is because, during the exposure operation of the substrate P, a part of the liquid immersion region LR described above protrudes from the surface of the substrate P and is formed on the upper surface 97.
  • the upper surface 97 of the substrate stage PST for example, a predetermined region surrounding the substrate P (including a range where the liquid immersion region LR protrudes) may be substantially the same as the surface of the substrate P.
  • the optical path space K1 on the image plane side of the projection optical system PL can be continuously filled with the liquid LQ (that is, the immersion area LR can be satisfactorily maintained)
  • the upper surface 97 of the substrate stage PST and the substrate holder PH can be provided.
  • the substrate holder PH may be formed integrally with a part of the substrate stage PST.
  • the substrate holder PH and the substrate stage PST are configured separately, and the substrate holder PH is formed by, for example, vacuum suction. Is fixed in the recess 96.
  • the substrate stage PST is XY on the base member BP in a state where the substrate P is held via the substrate holder PH by driving the substrate stage driving device PSTD including a linear motor controlled by the control device CONT. It can move two-dimensionally in the plane and can rotate in the ⁇ Z direction. Furthermore, the substrate stage PST can also be moved in the Z-axis direction, the 0 X direction, and the ⁇ Y direction. Therefore, the upper surface of the substrate P supported by the substrate stage PST can move in directions of six degrees of freedom in the X axis, Y axis, Z axis, 0 X, ⁇ Y, and ⁇ Z directions.
  • the control device CONT can adjust the moving speed, moving distance, and moving direction of the substrate stage PST by controlling the substrate stage driving device PSTD.
  • a movable mirror 93 is provided on the side surface of the substrate stage PST.
  • a laser interferometer 94 is provided at a position facing the movable mirror 93.
  • the position and rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 94.
  • the exposure apparatus EX includes a focus leveling detection system that detects surface position information of the surface of the substrate P supported by the substrate stage PST.
  • the focus / leveling detection system detects surface position information (position information in the Z-axis direction and inclination information in the ⁇ X and ⁇ Y directions) of the upper surface of the substrate P.
  • the measurement result of the laser interferometer 94 is output to the control device CONT.
  • the detection result of the focus leveling detection system is also output to the control device CONT.
  • the control device CONT drives the substrate stage drive device PSTD based on the detection result of the focus / leveling detection system, and controls the focus position (Z position) and tilt angle ( ⁇ X, ⁇ ⁇ ) of the substrate P.
  • the surface of the substrate P is adjusted to the image plane of the projection optical system PL, and the position control of the substrate P in the X-axis direction, the Y-axis direction, and the ⁇ Z direction is performed based on the measurement result of the laser interferometer 94.
  • the laser interferometer 94 may be provided to face the moving mirror 93, or the position of the substrate stage PST in the Z-axis direction, and ⁇ X and ⁇ Y make it possible to measure direction rotation information.
  • Details of the exposure apparatus equipped with a laser interferometer capable of measuring the position of the substrate stage PST in the Z-axis direction are disclosed in, for example, Japanese Patent Publication No. 2001-510577 (corresponding international publication No. 1999Z28790 pamphlet).
  • a reflecting surface formed by mirror-processing a part (side surface, etc.) of the substrate stage PST may be used.
  • the focus leveling detection system measures the position information of the substrate P in the Z-axis direction at each of the plurality of measurement points, so that the tilt information (rotation of the substrate P in the ⁇ X and ⁇ Y directions)
  • the plurality of measurement points may be set at least partially within the immersion area LR (or projection area AR), or all of the measurement points may be in the immersion area LR. It may be set outside.
  • the laser interferometer 94 can measure the position information of the substrate P in the Z-axis, ⁇ X and ⁇ Y directions
  • the position information in the Z-axis direction can be measured during the exposure operation of the substrate P.
  • the position control of the substrate P in the Z-axis, ⁇ X and 0 Y directions is performed using the measurement result of the laser interferometer 94 at least during the exposure operation without the need to provide a focus / repelling detection system. Even so,
  • the liquid supply device 11 of the liquid immersion mechanism 1 includes a tank that stores the liquid LQ, a pressure pump, a temperature adjustment device that adjusts the temperature of the liquid LQ to be supplied, and a filter unit that removes foreign matter in the liquid LQ. .
  • One end of a supply pipe 13 is connected to the liquid supply device 11, and the other end of the supply pipe 13 is in contact with the nozzle member 70.
  • the liquid supply operation of the liquid supply device 11 is controlled by the control device CONT.
  • the control device CONT can adjust the liquid supply amount per unit time from the supply port 12 by controlling the liquid supply device 11.
  • the tank, pressurization pump, temperature adjustment mechanism, filter unit, etc. of the liquid supply device 11 are all equipped with the exposure equipment EX. Also good.
  • the liquid recovery device 21 of the liquid immersion mechanism 1 includes a vacuum system such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, and a tank that stores the recovered liquid LQ. ⁇ .
  • a vacuum system such as a vacuum pump
  • a gas-liquid separator that separates the recovered liquid LQ and gas
  • a tank that stores the recovered liquid LQ. ⁇ .
  • One end of a recovery pipe 23 is connected to the liquid recovery apparatus 21, and the other end of the recovery pipe 23 is connected to a nozzle member 70.
  • the liquid recovery operation of the liquid recovery device 21 is controlled by the control device CONT.
  • the control device CONT can adjust the liquid recovery amount per unit time via the recovery rod 22 by controlling the liquid recovery device 21.
  • the vacuum system, gas-liquid separator, tank, etc. of the liquid recovery device 21 may be replaced with facilities such as a factory where the exposure device EX is installed, which is not necessarily provided with the exposure device EX.
  • the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ are formed on the lower surface 70A of the nozzle member 70.
  • the lower surface 70A of the nozzle member 70 is set substantially parallel to the XY plane, and when the substrate stage PST is disposed facing the projection optical system PL (final optical element LSI), the upper surface 97 and Z or the substrate The position is set so that a predetermined gap is formed with the surface of P.
  • the nozzle member 70 is an annular member provided so as to surround at least the side surface of the final optical element LSI.
  • the supply port 12 is provided on the lower surface 70A of the nozzle member 70 on the final optical element LSI (projection) of the projection optical system PL.
  • a plurality of optical systems PL are provided so as to surround the optical axis AX).
  • the recovery port 22 is provided on the lower surface 7 OA of the nozzle member 70 on the outer side of the supply port 12 with respect to the final optical element LSI, and is provided so as to surround the final optical element LS 1 and the supply port 12.
  • the form of the nozzle member (nozzle mechanism) is not limited to the above-described one. Nozzle member (nozzle mechanism) disclosed in Japanese Patent No. 6,962,253) may be used.
  • the lower surface 70A of the nozzle member 70 is set to substantially the same height (Z position) as the lower end surface (exit surface) of the projection optical system PL !,
  • the lower surface 70A of the nozzle member 70 may be set closer to the image plane side (substrate side) than the lower end surface of the projection optical system PL.
  • a part (lower end portion) of the nozzle member 70 may be provided so as to be buried under the projection optical system PL (final optical element LSI) so as not to block the exposure light EL.
  • the supply port 12 is provided on the lower surface 70A of the nozzle member 70.
  • the supply port 12 is provided on the inner side surface (inclined surface) of the nozzle member 70 facing the side surface of the final optical element LSI of the projection optical system PL. 12 may be provided.
  • the control device CONT supplies a predetermined amount of the liquid LQ onto the substrate P using the liquid supply device 11, and collects a predetermined amount of the liquid LQ on the substrate P using the liquid recovery device 21.
  • the optical path space K1 of the exposure light EL between the projection optical system PL and the substrate P is filled with the liquid LQ
  • the liquid LQ immersion region LR is locally formed on the substrate P.
  • the control device CONT drives each of the liquid supply device 11 and the liquid recovery device 21.
  • the liquid LQ is sent from the liquid supply device 11 under the control of the control device CONT, the liquid LQ sent from the liquid supply device 11 flows through the supply pipe 13 and then the supply flow path of the nozzle member 70.
  • the light is supplied from the supply port 12 to the optical path space K1 on the image plane side of the projection optical system PL. Further, when the liquid recovery device 21 is driven under the control device CONT, the liquid LQ on the image plane side of the projection optical system PL flows into the recovery flow path of the nozzle member 70 via the recovery port 22, and the recovery pipe After flowing through 23, the liquid is recovered by the liquid recovery device 21.
  • the control device CONT determines the exposure condition.
  • the controller CONT detects the state of the immersion area LR while moving the object with the immersion area LR formed on the surface of a predetermined object (for example, the substrate P). (Observation), and based on the detection result (observation result), determine the exposure conditions.
  • the control device CONT changes at least one of the movement condition when moving the object and the immersion condition when forming the immersion area LR.
  • the state of the immersion region LR is detected (observed) using a predetermined detection device (hereinafter also referred to as an observation device). Furthermore, the control device CONT detects the immersion area LR using the detection device. The result is stored in a memory (storage device) (not shown) inside or outside the exposure apparatus EX in association with the movement condition and the Z or immersion condition at the time of detection. The control device CONT can display the detection result or the stored information on a display device (display) (not shown).
  • FIG. 2 is a diagram showing a state in which the state of the liquid immersion region LR is observed using the observation apparatus 30.
  • the observation device 30 observes the state of the liquid immersion region LR formed on the surface of a predetermined object.
  • the liquid crystal formed on the surface of the substrate P for manufacturing a device is used.
  • the control device CONT holds the substrate P on the substrate stage PST (substrate holder PH), and the immersion mechanism 1 on the surface of the substrate P held on the substrate stage PST 1 Is used to form the liquid LQ immersion area LR.
  • the liquid immersion mechanism 1 is a liquid immersion area on the substrate P by filling the optical path space K1 between the substrate P and the surface of the substrate P with the final optical element LSI through which the exposure light EL passes with the liquid LQ. Form LR. Then, the controller CONT moves the substrate P by driving the substrate stage PST in a state where the immersion region LR is formed on the surface of the substrate P, and uses the observation device 30 to move the state of the immersion region LR. Observe.
  • an observation device 30 is provided with a light projecting unit 31 that emits detection light La, and a predetermined position with respect to the detection light La emitted from the light projecting unit 31, and receives the detection light La. And possible light receiver 32.
  • the light projecting unit 31 irradiates the surface of the substrate P with the detection light La from an oblique direction.
  • the light receiving unit 32 is provided at a position where the reflected light of the detection light La irradiated on the surface of the substrate P by the light projecting unit 31 can be received.
  • FIG. 3 is a plan view of the surface of the substrate P when the state of the immersion region LR is observed.
  • the detection light La is irradiated to each of a plurality of predetermined positions on the surface of the substrate P.
  • the plurality of detection lights La emitted from the light projecting unit 31 are applied to the vicinity of the edge (end) LG of the liquid immersion region LR formed on the substrate P.
  • the light projecting unit 31 irradiates each of a plurality of positions near the edge LG of the liquid immersion area LR on the surface of the substrate P so as to surround the liquid immersion area LR. That is, the optical paths of the plurality of detection lights La emitted from the light projecting unit 31 are set so as to surround the liquid immersion area LR.
  • the plane of the detection light La irradiated on the surface of the substrate P The visual shape is a slit shape.
  • the control device CONT forms the liquid immersion area LR on the surface of the substrate P in a state where the detection light La is emitted from the light projecting unit 31.
  • each of the plurality of detection lights La is outside the edge LG of the immersion region LR on the surface of the substrate P. It will be irradiated at a position that is a predetermined distance away. That is, when the immersion area LR is formed in a desired state, each of the plurality of detection lights La emitted from the light projecting unit 31 is not irradiated to the liquid LQ in the immersion area LR, and the liquid LQ It is provided so as to reach the light receiving part 32 without going through.
  • the optical paths of the plurality of detection lights La irradiated near the edge LG of the immersion region LR irradiation positions on the substrate P
  • the liquid LQ cannot be held between the final optical element LSI and the substrate P, and the liquid LQ filled in the optical path space K1 leaks or the liquid immersion area LR is preset (desired (desired) If the position of the edge LG of the liquid immersion area LR relative to the optical path space K1 changes and the position of the edge LG changes, the liquid LQ intervenes in the optical path of the detection light La.
  • the light receiving state of the light receiving unit 32 differs between the state in which the detection light La is irradiated on the liquid LQ and the state in which the liquid LQ is not irradiated.
  • the observation device 30 can observe the state of the liquid immersion region LR with respect to the optical path space K1 using the light projecting unit 31 and the light receiving unit 32. Then, the control device CONT can determine whether or not the liquid LQ has leaked from the optical path space K1 by observing the position of the edge LG of the liquid immersion area LR with respect to the optical path space K1 using the observation device 30. it can.
  • control device CONT is based on the light reception result of the light receiving unit 32 when the light projecting unit 31 irradiates the detection light La in the vicinity of the edge LG of the liquid immersion area LR! It is possible to observe the state of the immersion region LR including leakage of liquid LQ filled with K1.
  • the control device CONT determines from the optical path space K1 based on the light reception result of the light receiving unit 32.
  • the direction of the leaking liquid LQ can be observed.
  • the plurality of detection lights La are distributed in a rectangular shape on the substrate P.
  • the detection light La may be distributed in substantially the same shape (circular shape in FIG. 3) as the outer shape of the immersion region LR.
  • the shape of the detection light La on the substrate P is a slit shape, but the shape is not limited to this, and other shapes such as a circular shape may be used.
  • the detection light La does not necessarily have to be irradiated so as to surround the liquid immersion area LR.
  • the detection light La may be irradiated only on both sides of the liquid immersion area LR in the scanning direction (Y direction).
  • the control device CONT moves the substrate P by driving the substrate stage PST while the immersion area LR is formed on the surface of the substrate P using the immersion mechanism 1.
  • the state of the immersion region LR is observed using the observation device 30.
  • the control device CONT changes the immersion region LR using the observation device 30 while changing at least one of the movement condition when moving the substrate P and the immersion condition when forming the immersion region LR.
  • the moving condition of the substrate P includes at least one of the moving speed, moving distance, and moving direction of the substrate P.
  • the liquid immersion condition includes at least one of the liquid supply amount per unit time from the supply port 12 on the substrate P (optical path space K1) and the liquid recovery amount per unit time via the recovery port 22. .
  • the control device CONT can change the moving condition of the substrate P held by the substrate stage PST by controlling the substrate stage driving device PSTD, and forms the liquid immersion region LR by controlling the liquid immersion mechanism 1.
  • the immersion conditions can be changed.
  • FIG. 4 shows the projection optical system PL and the immersion region LR and the substrate P when the substrate P is moved with the immersion region LR formed on the surface of the substrate P in order to determine the exposure conditions. It is a diagram schematically showing the positional relationship. For example, as shown by an arrow yl in FIG. 4, the control device CONT moves the optical axis AX (projection area AR) of the projection optical system PL and the substrate P relative to each other while using the observation device 30. Observe the state of region LR.
  • AX projection area AR
  • the control device CONT determines, for example, the moving speed when moving the substrate P (substrate stage PST) in the Y-axis direction under the movement locus indicated by the arrow yl in FIG.
  • the state of the immersion region LR is observed using the observation device 30 while changing each of the liquid supply amount per unit time from the supply port 12 when forming the immersion region LR.
  • the control device CONT controls the substrate stage drive device PSTD to change the moving speed of the substrate P (substrate stage PST), for example, 400, 450, 500, 550, 600, 650, 700 mm / sec.
  • the liquid supply rate per unit time from the supply port 12 is set to 200, 250, 300, 350, 400, 450, 500 ml / min, for example, by controlling the liquid immersion mechanism 1.
  • the state of the immersion region LR is observed under each moving speed condition and liquid supply amount condition.
  • the movement trajectory of the substrate P (substrate stage PST) indicated by the arrow yl in FIG. 4 is an example of the movement trajectory when the substrate P is moved in order to manufacture a device.
  • each of the plurality of shot areas S1 to S21 set in a matrix on the substrate P is exposed. That is, in this embodiment, when observing the immersion region LR to determine the exposure conditions, the control device CONT has the same movement locus as that when the substrate P is exposed to manufacture a device.
  • the substrate P is moved, and the immersion area LR is observed while changing the moving speed and the liquid supply amount per unit time at that time.
  • the state of the immersion region LR may change depending on the moving speed of the substrate P (substrate stage PST). For example, the substrate P (substrate stage PST) is moved while the optical path space K1 between the projection optical system PL and the substrate P is filled with the liquid LQ and the liquid immersion region LR is formed on the substrate P.
  • the liquid LQ in the immersion area LR may be pulled by the moving substrate P and leak from the optical path space K1.
  • a state where a gas portion is formed in the optical path space K1 hereinafter, referred to as “liquid running out state” as appropriate
  • bubbles may be generated in the liquid LQ.
  • the control device CONT changes the moving speed of the substrate P (substrate stage PST) and observes the state of the liquid immersion area LR using the observation device 30, so that, for example, the liquid LQ leaks, the liquid runs out, etc. It is possible to determine the moving speed, that is, the optimum moving speed as high as possible over the range of no inconvenience!
  • the state of the liquid immersion region LR may change according to the amount of liquid supplied from the supply port 12 per unit time. For example, if the liquid supply amount per unit time is excessively increased, the liquid LQ may leak from the optical path space K1. On the other hand, if the liquid supply amount per unit time is small, a liquid outage condition may occur. Therefore, the control device CONT By observing the state of the immersion area LR using the observation device 30 while changing the amount of liquid supplied from the supply port 12 per unit time, inconveniences such as leakage of liquid LQ and running out of liquid may not occur. An optimum liquid supply rate per unit time can be determined.
  • the detection light La is irradiated in the vicinity of the edge LG of the liquid immersion region LR as in the present embodiment, it is difficult to determine whether or not the force has caused the liquid shortage.
  • the mask M having a predetermined pattern is held on the mask stage MST, and the mask M is illuminated with the exposure light EL.
  • the pattern image of the mask M is projected onto the substrate P via the projection optical system PL and the liquid LQ in the immersion area LR, and after the substrate P is processed, the pattern shape formed on the substrate P is observed. By doing so, it is possible to determine whether or not the liquid has run out.
  • the observation device 30 irradiates the object (substrate P) where the liquid immersion area LR is formed with the detection light La via the liquid LQ, so that the liquid immersion area LR is out of liquid. It may be detected.
  • the detection light La irradiated so as to surround the liquid immersion area LR
  • the light receiving section 32 cannot receive the detection light La via the liquid LQ. Can be used to detect the state of the immersion region LR.
  • the force for observing the immersion region LR while changing both the moving speed of the substrate P (substrate stage PST) and the amount of liquid supplied per unit time Substrate P (substrate stage PST)
  • the liquid immersion area LR is observed while changing either the moving speed or the liquid supply amount per unit time. Based on the observation results, the moving speed of the substrate P (substrate stage PST) and the per unit time Either one of the liquid supply amounts may be determined.
  • the movement condition of the substrate P includes the movement distance of the substrate P (substrate stage PST). Then, there is a possibility that the state of the liquid immersion region LR changes depending on the moving distance of the substrate P (substrate stage PST).
  • a predetermined direction (Y-axis direction) with respect to the optical path space K1 When moving the substrate P (substrate stage PST) to a predetermined direction (Y-axis direction), the substrate P (substrate stage PST) The longer the moving distance, the more difficult it is to hold the liquid LQ between the projection optical system PL and the substrate P, compared to the case where the moving distance is short, and the liquid LQ may leak from the optical path space K1. Get higher.
  • control device CONT changes the movement distance of the substrate P (substrate stage PST) in a predetermined direction (Y-axis direction) and observes the state of the liquid immersion region LR using the observation device 30 to change the liquid LQ. It is possible to determine the optimum moving distance condition (for example, the maximum movable distance) that does not cause inconvenience such as leakage.
  • the moving condition of the substrate P includes the moving direction of the substrate P (substrate stage PST). Then, there is a possibility that the state of the immersion region LR changes depending on the moving direction of the substrate P (substrate stage PST). As indicated by the arrow yl in FIG. 4, the control device CONT tilts the substrate P (substrate stage PST) with respect to the projection optical system PL with respect to the X axis direction, the Y axis direction, and the X axis (Y axis).
  • the liquid LQ may leak, a liquid breakage may occur, or bubbles may be generated in the liquid LQ.
  • the control device CONT changes the moving direction (movement locus) of the substrate P (substrate stage PST) and observes the state of the liquid immersion region LR using the observation device 30 to detect leakage of the liquid LQ, etc. It is possible to determine the optimum movement direction (movement locus) of the substrate P (substrate stage PST) without causing any inconvenience.
  • the liquid immersion condition when forming the liquid immersion region LR includes the amount of liquid recovered per unit time via the recovery port 22. Then, there is a possibility that the state of the immersion region LR changes depending on the liquid recovery amount per unit time. For example, if the amount of recovered liquid per unit time is excessively increased, problems such as running out of liquid may occur. On the other hand, if the amount of liquid recovered per unit time is small, the liquid LQ may leak from the optical path space K1. Therefore, the control device CONT changes the amount of liquid recovered per unit time via the recovery port 22 while observing the state of the immersion area LR using the observation device 30 to obtain the optimal liquid per unit time. The amount recovered can be determined.
  • the moving condition and the immersion condition are included.
  • the controller CONT exposes the substrate P for manufacturing a device based on the determined exposure conditions.
  • the control device CONT forms an immersion region LR on the substrate P based on the determined immersion condition, and moves the substrate P based on the determined movement condition, while the projection optical system PL.
  • the substrate P is exposed by irradiating the exposure light EL onto the substrate P through the liquid LQ in the immersion region LR.
  • the observation device 30 is used to observe the state of the immersion region LR while changing the movement condition of the substrate P and the immersion condition when forming the Z or immersion region LR. Based on the observation results, the exposure conditions including the movement conditions and immersion conditions of the substrate P are determined. By exposing the substrate P based on the determined exposure conditions, the liquid LQ The substrate P can be exposed satisfactorily while suppressing the occurrence of inconvenience such as leakage and running out of liquid.
  • the observation apparatus 30 of the present embodiment can be used as an oblique incidence type focus / leveling detection system that detects surface position information of the surface of the substrate P.
  • a grazing incidence type focus' leveling detection system can be used.
  • FIG. 5 is a perspective view showing the second embodiment.
  • the observation device 40 is provided so as to correspond to the plurality of light projecting units 41 8 to 4111 and the light projecting units 41 A to 41H provided outside the substrate stage!
  • a plurality of light receiving parts 42A to 42H are provided.
  • the light projecting parts 41A to 41H and the light receiving parts 42A to 42H are fixed to a predetermined fixing member provided at a position away from the substrate stage PST.
  • the observation device 40 emits detection light La from each of the light projecting units 41A to 41H, which is substantially parallel to the XY plane, that is, substantially parallel to the surface of the substrate P and the upper surface 97 of the substrate stage PST. .
  • the plurality of detection lights La emitted from each of the light projecting units 41A to 41H are applied to the vicinity of the edge LG of the liquid LQ immersion region LR formed on the substrate P.
  • the observation device 40 irradiates the detection light La to each of a plurality of positions near the edge LG of the liquid immersion region LR from a plurality of directions different from each other by the light projecting units 41A to 41H.
  • the light projecting units 41A and 41B irradiate the vicinity of the edge LG of the liquid immersion region LR with the detection light La from a direction substantially parallel to the X-axis direction.
  • the light projecting units 41E and 4IF radiate the detection light La from a direction substantially parallel to the Y-axis direction.
  • the light projecting units 41C and 41D irradiate the detection light La to the edge LG of the liquid immersion area LR in the tilt direction with respect to the X-axis (Y-axis) direction, and the light projecting units 41G and 41H
  • the light portions 41C and 41D are also irradiated with the detection light La from a different inclination direction from the emitted detection light La. That is, the optical paths of the plurality of detection lights La emitted from the light projecting units 41A to 41H are set so as to surround the liquid immersion region LR.
  • the two detection lights La emitted from each of the light projecting units 41A and 41B are irradiated so as to irradiate near the edges LG on both sides of the liquid immersion area LR across the liquid immersion area LR. This is provided.
  • the two detection lights La emitted from each of the light projecting parts 41C and 41D are irradiated to the vicinity of the edges LG on both sides of the liquid immersion area LR, and emitted from each of the light projecting parts 41E and 41F.
  • the two detection lights La are applied to the edges LG near both sides of the immersion area LR, and the two detection lights La emitted from the light projecting parts 41G and 41H are both sides of the immersion area LR. It is set to irradiate each near the edge LG.
  • the optical path of the detection light La is located at a position away from the edge LG of the immersion region LR by a predetermined distance. Is set. That is, when the liquid immersion area LR is formed in a desired state, the detection light La emitted from each of the light projecting units 41A to 41H is not irradiated to the liquid LQ in the liquid immersion area LR, and does not pass through the liquid LQ. In order to reach the light receiving parts 42A to 42H,
  • the pair (two) of the detection lights La irradiated from the same direction among the plurality of detection lights La are applied to the vicinity of the edges LG on both sides of the liquid immersion region LR, respectively. Because the optical path of multiple detection lights La is set so as to surround the liquid immersion area LR. Liquid immersion area LR force The direction of the flowing liquid LQ can also be detected.
  • the control device CONT can observe the state of the immersion region LR including the leakage of the liquid LQ based on the light reception results of the light receiving units 42A to 42H.
  • the control device CONT uses the observation device 40 to change the immersion region LR while changing at least one of the movement conditions when moving the substrate P (substrate stage PST) and the immersion conditions when forming the immersion region LR. And the optimum exposure condition can be determined based on the observation result.
  • the force that irradiates the substrate P with a pair of detection lights La from four different directions including the X-axis and Y-axis directions is not limited to this, and is not limited to this, but not more than 3, or not less than 5
  • the detection light La may be irradiated from each direction, and the direction may not include the X-axis or Y-axis direction.
  • the number of detection lights La irradiated from the same direction is not limited to two, and may be one or three or more.
  • an image sensor 50 as an observation device is provided on the side surface of the nozzle member 70.
  • the imaging element 50 is provided so as to face the substrate P, and the position of the edge LG of the liquid immersion area LR with respect to the optical path space K1 can be observed.
  • a plurality of imaging elements 50 are provided side by side in the circumferential direction of the side surface of the nozzle member 70.
  • the control device CONT can observe the state of the immersion region LR including the leakage of the liquid LQ.
  • the controller CONT uses the moving conditions for moving the substrate P (substrate stage PST) and the immersion conditions for forming the immersion area LR. While changing at least one of the above, the imaging area 50 can be used to image the immersion area LR, and the state of the immersion area LR can be observed based on the imaging result.
  • the control device CONT can determine the optimum exposure condition based on the observation result.
  • the imaging element 50 is not limited to the force fixed to the nozzle member 70, and may be fixed to another member such as a support member that supports the projection optical system PL.
  • the liquid immersion region LR is formed on the substrate P for manufacturing the device.
  • the state of the immersion region LR may change depending on the surface conditions of the object on which the immersion region LR is formed.
  • the surface condition of the object includes a contact angle condition for the liquid LQ on the surface of the object. If the surface condition of the object on which the immersion area LR is formed when determining the exposure conditions is different from the surface condition of the substrate P on which the immersion area LR is formed when performing exposure for manufacturing a device, Even if the substrate P is subjected to immersion exposure based on the determined exposure conditions, the state of the immersion region LR during the immersion exposure of the substrate P may not be maintained in a desired state.
  • the surface condition of the object on which the immersion region LR is formed when determining the exposure conditions and the surface of the substrate P on which the immersion region LR is formed when performing exposure for manufacturing the device If the conditions are almost the same, the optimum exposure condition can be determined based on the observation result of the state of the immersion region LR formed on the surface of the object. Therefore, the optimum exposure condition can be determined based on the observation result when the state of the immersion region LR formed on the surface of the object having a surface condition substantially equivalent to the surface condition of the substrate P is observed.
  • a dummy substrate which is set to a surface condition substantially equal to the surface condition of the substrate P and can be held on the substrate stage PST (substrate holder PH) can be mentioned.
  • a part of the upper surface 97 of the substrate stage PST may be set to a surface condition substantially equal to the surface of the substrate P, and the liquid immersion region LR formed on the upper surface 97 may be observed.
  • the immersion region LR when the state of the immersion region LR is detected, the immersion region LR is formed on the surface so that the movement locus indicated by the arrow yl in FIG. Object (substrate While moving the P, etc., at least one of the movement conditions of the substrate P and the immersion conditions when forming the immersion area LR may be changed. After the movement, at least one of the movement condition and the liquid immersion condition may be changed, and the substrate P may be moved again along the movement locus based on the changed condition. This is because the optimum exposure conditions may differ depending on the position on the substrate P (shot area).
  • the state of the liquid immersion region LR may be detected over the entire movement trajectory, but a part of the movement trajectory (one of the shot regions S1 to S21 expected to be different from the optimum exposure condition, for example). It is also possible to detect the state of the immersion area LR only by Further, when detecting the state of the immersion region LR, the substrate P does not necessarily have to move along its movement locus, for example, the shot region near the center of the substrate P and a part of the immersion region LR are not in the substrate. The substrate P may be moved so that the shot area near the outer periphery that protrudes outward is moved relative to the projection area AR (immersion area LR).
  • the object may be placed on a different movable member (for example, a measurement stage described later) to detect the state of the liquid immersion area LR.
  • the number of forces using the plurality of detection lights La or the image sensor 50 is not limited to the above, and may be arbitrary, or the number may be one.
  • the exposure apparatus EX shown in FIG. 7 includes a substrate stage PST that holds the substrate P and a measurement stage KST that is equipped with a measuring instrument that performs measurements related to the exposure process and that can move independently of the substrate stage PST. I have.
  • the measurement stage KST is equipped with a reference member with a reference mark and Z or various photoelectric sensors.
  • the measuring stage KST is provided with an observation device 60 that can observe the state of the immersion region LR.
  • Observation device 60 Is provided inside the measurement stage KST. Details of the measurement stage KST are disclosed in, for example, Japanese Patent Application Laid-Open No. 11-135400 (corresponding international publication No. 1999Z23692), Japanese Patent Application Laid-Open No. 2000-164504 (corresponding US Pat. No. 6,897,963). ing.
  • FIG. 8 is a cross-sectional view showing the vicinity of the observation device 60.
  • an opening 64K is formed on the measurement stage KST, and a transparent member 64 is disposed in the opening 64K.
  • the transparent member 64 is made of, for example, a glass plate.
  • the upper surface 65 of the transparent member 64 is a flat surface.
  • the upper surface 98 other than the opening 64K on the measurement stage KST is also a flat surface.
  • the upper surface 98 of the measurement stage KST and the upper surface 65 of the transparent member 64 disposed in the opening 64K are provided so as to be substantially the same height (level), and the upper surface 98 of the measurement stage KST is The upper surface 65 of the transparent member 64 is included.
  • the upper surface 98 of the measurement stage KST and the upper surface 65 of the transparent member 64 have surface conditions (contact angles) that are substantially the same as those of the substrate P. Note that only a part of the upper surface 98 of the measurement stage KST, for example, a predetermined region surrounding the transparent member 64 (including the formation range of the liquid immersion region LR) may be substantially the same as the surface 65 of the transparent member 64. Further, at least a part of the upper surface 98 of the measurement stage KST, which is substantially the same height as the surface 65 of the transparent member 64, may not have the surface condition substantially equivalent to that of the substrate P. In this case, the transparent member 64 having the surface 65 that has substantially the same surface condition as that of the substrate P may have a size that is equal to or larger than the immersion region LR.
  • the upper surface 98 of the measurement stage KST including the upper surface 65 of the transparent member 64 and the upper surface 97 of the substrate stage PST can be arranged at substantially the same height position (Z position).
  • the positional information of the measurement stage KST in the 6 degrees of freedom direction can be measured by, for example, a laser interferometer. .
  • an internal space 66 connected to the opening 64 K is formed.
  • the observation device 60 is arranged in the internal space 66 of the measurement stage KST.
  • the observation device 60 includes an optical system 61 disposed on the lower side of the transparent member 64, and an image pickup device 63 configured by a CCD or the like.
  • the image sensor 63 can acquire an optical image (image) of the liquid immersion area LR via the transparent member 64 and the optical system 61.
  • the image sensor 63 converts the acquired image into an electric signal and outputs the signal (image information) to the control device CONT.
  • the observation device 60 has an adjustment mechanism 62 that can adjust the focal position of the optical system 61. Also see
  • the observation device 60 has a visual field capable of observing the entire immersion area LR.
  • the observation device 60 can observe the state of the liquid immersion region LR from below the liquid immersion region LR via the transparent member 64.
  • the entire observation device 60 may be arranged inside the measurement stage KST.
  • some of the optical elements constituting the optical system 61 and Z or the image sensor 63 may be included in the measurement stage KST. It's arranged outside of you.
  • the adjustment mechanism 62 may be omitted.
  • the control device CONT moves the transparent member 64 (measurement stage KST) in a state where the liquid immersion region LR is formed on the upper surface 65 of the transparent member 64, and uses the observation device 60 to adjust the liquid immersion region LR. Observe the condition. For example, the state of the liquid immersion region LR is observed with the observation device 60 while causing the measurement stage KST to perform a pseudo scanning operation. In the present embodiment, the observation device 60 observes the state of the liquid immersion region LR from below through the transparent member 64, and the liquid LQ leaks, the liquid runs out, and the bubbles generated in the liquid LQ Each can be observed.
  • the controller CONT uses the image sensor 63 to change the immersion area while changing at least one of the moving condition when moving the transparent member 64 (measurement stage KST) and the immersion condition when forming the immersion area LR.
  • the LR can be imaged, and the state of the immersion area LR can be observed based on the imaging result. Then, the control device CONT can determine the optimum exposure condition based on the observation result.
  • the measurement stage KST prior to the detection of the state of the immersion region LR, the measurement stage KST is disposed opposite to the projection optical system PL by exchanging with the substrate stage PST, and then the immersion mechanism 1 performs the final operation.
  • the optical path space K1 between the optical element LSI and the transparent member 64 may be filled with the liquid LQ to form the liquid immersion area LR, or the liquid immersion area LR on the upper surface 97 (including the surface of the substrate P).
  • the substrate stage PST on which the liquid crystal is formed and the measurement stage KST are in contact (or approached) and are driven in a predetermined direction so that the immersion area LR is moved to the final optical element LSI (and the nozzle member 70) of the projection optical system PL.
  • the substrate stage PST may be moved to the measurement stage KST while being maintained (held). In the latter case, it is preferable to move the immersion area LR with the upper surface 97, 98 set to approximately the same height (Z position) on the substrate stage PST and the measurement stage KST.
  • the observation device 60 is not limited to the imaging method.
  • the observation apparatus 60 since the observation apparatus 60 is not mounted on the measurement stage KST, at least a part of the upper surface 98 of the measurement stage KST may be set to a surface condition substantially equivalent to that of the substrate P.
  • the measurement stage KST is arranged opposite to the projection optical system PL, and the liquid immersion area LR is formed on the upper surface 98 thereof.
  • the measurement stage KST is arranged opposite to the projection optical system PL, and the liquid immersion area LR is formed on the upper surface 98 thereof.
  • it is disclosed in any one of the first to third embodiments described above. What is necessary is just to observe the state of the immersion region LR using an observation device.
  • a plurality of regions having different surface conditions may be set on the upper surface 98 of the measurement stage KST.
  • the upper surface 98 of the measurement stage KST by coating the upper surface 98 of the measurement stage KST or by providing the aforementioned dummy substrate or transparent member 64 on the measurement stage KST, at least a part of the upper surface 98 of the measurement stage KST is almost the same as the substrate P.
  • the surface conditions should be equivalent.
  • the observation device 60 may be provided on the substrate stage PST. Further, as described above, the state of the liquid immersion region LR may change depending on the contact angle of the liquid LQ on the surface of the object where the liquid immersion region LR is formed. The state of the immersion region LR may be observed while changing the contact angle of the member surface with the liquid LQ. This is effective when each of the substrates P having different surface conditions is exposed. In order to determine the optimum exposure conditions prior to the exposure operation, the transparent member 64 having the same surface conditions as that of the different substrates P is used. If the condition of the immersion area LR is detected after replacement.
  • the control device CONT determines the optimum exposure condition based on the observation result of the observation device stored in the memory.
  • the observation result of the observation device Based on this, for example, the operator may determine the optimum exposure condition.
  • the observation result of the observation device may be displayed on a display device, and the operator may determine optimum exposure conditions based on the display result.
  • the optimal exposure condition cannot be determined by the control device CONT, or when the determined optimal exposure condition is abnormal, for example, a warning may be displayed on the display device.
  • the optimum exposure condition is determined by detecting the state of the immersion region LR while changing the above-described movement conditions, in particular, the movement speed of the substrate P (scanning speed of the substrate at the time of scanning exposure). At that time, the determined exposure condition (including the scanning speed) may be different from the initial value set in the control device CONT.
  • the liquid immersion area LR is in a state where the liquid LQ that is filled in the optical path space K1 leaks (that is, whether or not the liquid LQ leaks and Z or the leakage direction), the liquid runs out, and As a means of detecting information related to at least one of the bubbles in the liquid LQ! / But not limited to this, for example, at least one of the position, size and shape of the immersion area LR Try to detect it instead of or together with the information.
  • acceleration may be included as the moving condition described above, and the flow rate, pressure, and the like of the liquid LQ during supply and Z or recovery may be included as the liquid immersion condition described above. Good.
  • the liquid LQ If a gas injection mechanism (gas seal mechanism) is installed to suppress leakage of the liquid, the state of the immersion area LR is monitored while changing the flow rate and Z or flow rate of the injected gas as the immersion condition. Even if you want to observe at ⁇ .
  • a gas injection mechanism gas seal mechanism
  • the liquid LQ in each of the above embodiments is pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and has no adverse effects on the photoresist, optical elements (lenses), etc. on the substrate P.
  • pure water has no adverse effects on the environment, and since the impurity content is extremely low, it can be expected to clean the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. .
  • the exposure apparatus may have an ultrapure water production device.
  • the refractive index n of pure water (water) for exposure light EL with a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of exposure light EL.
  • lZn that is, the wavelength is shortened to about 134 nm to obtain a high resolution.
  • the numerical aperture of the projection optical system PL can be increased further, and the resolution is improved in this respect as well.
  • the optical element LSI is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL, for example, aberration (spherical aberration, coma aberration, etc.) are adjusted by this lens. It can be carried out.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate (such as a cover plate) used for adjusting the optical characteristics of the projection optical system PL. Or it may be a plane parallel plate that can transmit the exposure light EL.
  • the structure of the liquid immersion mechanism 1 including the nozzle member 70 is not limited to the above-described structure.
  • European Patent Publication No. 1420 298, International Publication No. 2004Z055803, International Publication No. 2004/057590, International Publication No. Those described in the publication No. 2005Z029559 can be used.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • the liquid LQ may be filled at least between the surface.
  • the projection optical system of the above-described embodiment is disclosed in International Publication No. 2004Z019128 pamphlet that fills the optical path space on the image plane side of the tip optical element (LSI) with liquid.
  • LSI tip optical element
  • the liquid LQ in each of the above embodiments is water (pure water), but may be a liquid other than water.
  • the light source of the exposure light EL is an F laser
  • the F laser Light penetrates water
  • PFPE fluorine-based fluids
  • fluorine-based oils such as fluorine-based oils
  • the portion that comes into contact with the liquid LQ is made lyophilic by, for example, forming a thin film with a substance having a small molecular structure including fluorine.
  • the liquid LQ is stable against the photoresist applied to the projection optical system PL and the substrate P, which is transparent to the exposure light EL and has a refractive index as high as possible (for example, Cedar). Oil) is also possible [0091]
  • the liquid LQ may have a refractive index of about 1.6 to 1.8.
  • the optical element LSI may be formed of a material having a refractive index higher than that of quartz or fluorite and having a material (eg, 1.6 or more).
  • the liquid LQ various liquids such as a supercritical fluid can be used.
  • the liquid immersion region LR may be formed by supplying the liquid LQ having substantially the same temperature as the temperature of the substrate P. As a result, thermal deformation of the substrate P due to a temperature difference from the liquid LQ can be prevented.
  • the positional information of the mask stage MST, the substrate stage PST, and the measurement stage KST is measured using an interferometer system (92, 94, etc.).
  • an encoder system that detects a scale (diffraction grating) provided in each stage may be used.
  • a hybrid system that includes both an interferometer system and an encoder system, and calibrate the measurement results of the encoder system using the measurement results of the interferometer system.
  • the position control of the stage may be performed by switching between the interferometer system and the encoder system or using both.
  • the substrate P in each of the above embodiments is used not only for a semiconductor wafer for manufacturing a semiconductor device but also for a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an exposure apparatus.
  • Mask or reticle master synthetic quartz, silicon wafer, etc. are applied.
  • the exposure apparatus EX in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that performs the mask exposure of the mask M by moving the mask M and the substrate P synchronously, the mask is used.
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary (for example, a refraction type that does not include a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P still in a substantially stationary state, The present invention can also be applied to a stitch type batch exposure apparatus that uses a projection optical system to partially expose a reduced pattern on the substrate P while partially overlapping the first pattern.
  • the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved. Even in these types of exposure apparatuses, the optimum exposure conditions for the immersion exposure can be obtained effectively according to the present invention.
  • the exposure apparatus provided with the projection optical system PL has been described as an example.
  • an exposure apparatus and an exposure method that do not use the projection optical system PL are applied to the present invention. Can do.
  • the projection optical system PL is not used as described above, the exposure light is irradiated onto the substrate through an optical member such as a mask or a lens, and the liquid is applied to a predetermined space between the optical member and the substrate. An immersion area is formed.
  • the present invention relates to JP-A-10-163099 and JP-A-10-214783 (corresponding US Pat. No. 6,590,634), JP-T 2000-505958 (corresponding US Pat. No. 5). , 969, 441) / US Patent No. 6, 208, 407, etc.
  • Applicable to twin-stage type exposure apparatus having multiple substrate stages In this case, the optimum exposure condition may be obtained by detecting the state of the immersion area using each of the plurality of substrate stages! However, it is also possible to detect the state of the immersion area using only a part of the plurality of substrate stages and obtain the optimum exposure conditions!
  • an exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate ⁇ is employed, but the present invention is disclosed in JP-A-6-124873, Liquid immersion in which exposure is performed with the entire surface of the substrate to be exposed immersed in the liquid as disclosed in JP-A-10-303114 and US Pat. No. 5,825,043. It is also applicable to exposure equipment.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto the substrate P.
  • An exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging device It can be widely applied to exposure devices for manufacturing devices (CCD), micromachines, MEMS, DNA chips, reticles or masks.
  • CCD compact computer
  • MEMS micromachines
  • DNA chips DNA chips
  • reticles or masks masks.
  • force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern') is formed on a light-transmitting substrate.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern'
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • a DMD Digital Micro-mirror Device
  • a non-light emitting image display element spatial light modulator
  • an exposure apparatus (lithography system) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. ) Can also be applied to the present invention.
  • JP-T-2004-519850 corresponding US Pat. No. 6,611,316
  • two mask patterns are combined on the substrate via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure.
  • the exposure apparatus EX of the present embodiment has various mechanical subsystems including the respective constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus.
  • the exposure equipment is manufactured at a temperature and It is desirable to perform in a clean room where the degree of leanness is controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, Step 203 of manufacturing a substrate as a base material, a step of exposing the mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, a heating (curing) of the developed substrate, and an etching step
  • the substrate is manufactured through a step 204 including a substrate processing process, a device assembly step (including processing processes such as a dicing process, a bonding process, and a knocking process) 205, an inspection step 206, and the like.
  • the present invention it is possible to determine the optimum exposure condition when exposing the substrate through the liquid in the immersion area, and to satisfactorily expose the substrate based on the determined exposure condition. it can. Therefore, the present invention relates to an exposure method and apparatus for manufacturing a wide range of products such as semiconductor elements, liquid crystal display elements or displays, thin film magnetic heads, CCDs, micromachines, MEMS, DNA chips, and reticles (masks). Extremely useful.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 基板(P)の表面に形成される液浸領域(LR)の状態を、基板(P)の移動条件及び液浸領域(LR)を形成するときの液浸条件の少なくとも一方を変えつつ検出し、その検出結果に基づいて露光条件を決定する。

Description

露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方 法
技術分野
[0001] 本発明は、液体を介して基板を露光するときの露光条件の決定方法、露光方法及 び露光装置、並びにデバイス製造方法に関するものである。
本願は、 2005年 3月 30日に出願された特願 2005— 098047号に基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 半導体デバイス、液晶表示デバイス等のマイクロデバイス (電子デバイスなど)の製 造工程の一つであるフォトリソグラフイエ程では、マスク上に形成されたパターンを感 光性の基板上に投影露光する露光装置が用いられる。この露光装置は、マスクを保 持して移動可能なマスクステージと、基板を保持して移動可能な基板ステージとを有 し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを基板に 露光するものである。マイクロデバイスの製造においては、デバイスの高密度化のた めに、基板上に形成されるパターンの微細化が要求されている。この要求に応えるた めに露光装置の更なる高解像度化が望まれて!/、る。その高解像度化を実現するた めの手段の一つとして、下記特許文献 1に開示されているような、基板上に形成され た液浸領域の液体を介して基板を露光する液浸露光装置が案出されている。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] 液浸露光装置にお!、ては、液浸領域を所望状態に形成することが重要である。液 浸領域が所望状態に形成されず、例えば基板上に形成された液浸領域の液体が基 板上から漏出すると、周辺機器等に影響を与えたり、あるいは露光装置の置かれて いる環境 (湿度、クリーン度等)が変動し、基板上でのパターン重ね合わせ精度等を 含む露光精度が劣化したり、あるいは干渉計等を使った各種計測精度が劣化する等 の様々な不都合が生じる可能性がある。したがって、そのような不都合を未然に防止 するために、液浸領域を所望状態に形成できるような最適な露光条件を予め決定し 、その決定された露光条件に基づいて基板を露光することが望ましい。そのため、基 板上に形成された液浸領域の液体を介して基板を露光するときの最適な露光条件を 決定することができる方法の案出が望まれる。
[0004] 本発明はこのような事情に鑑みてなされたものであって、液浸領域の液体を介して 基板を露光するときの露光条件を決定する方法を提供することを目的とする。また、 その決定された露光条件に基づ!、て基板を露光する露光方法及び露光装置、並び にデバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、基板 (P)上に形成された液浸領域 (LR)の液体 (L Q)を介して基板 (P)上に露光光 (EL)を照射して基板 (P)を露光するときの露光条 件を決定する方法であって、所定の物体 (P、 64等)の表面に形成される液浸領域( LR)の状態を、物体 (P、 64等)の移動条件及び液浸領域 (LR)を形成するときの液 浸条件の少なくとも一方を変えつつ、検出するステップと、検出結果に基づいて露光 条件を決定するステップと、を有する露光条件の決定方法が提供される。本発明の 第 1の態様によれば、液浸領域の液体を介して基板を露光するときの最適な露光条 件を決定することができる。
[0007] 本発明の第 2の態様に従えば、上記態様の決定方法で決定された露光条件に基 づいて基板 (P)を露光する露光方法が提供される。本発明の第 2の態様によれば、 最適な露光条件に基づいて基板を良好に露光することができる。
[0008] 本発明の第 3の態様に従えば、上記態様の露光方法を用いるデバイス製造方法が 提供される。本発明の第 3の態様によれば、基板を良好に露光できる露光方法を用 V、てデバイスを製造することができる。
[0009] 本発明の第 4の態様に従えば、光学部材 (PL、 LSI)と液体 (LQ)とを介して基板( P)を露光する露光装置において、光学部材 (PL、 LSI)と基板 (P)との間の所定空 間 (K1)を液体 (LQ)で満たして液浸領域 (LR)を形成する液浸機構 ( 1)と、光学部 材 (PL、 LSI)との間に液浸領域 (LR)が形成される物体 (P、 64等)の移動条件、及 び液浸領域 (LR)を形成するときの液浸条件の少なくとも一方を変えつつ、液浸領域 (LR)の状態を検出する検出装置 (30)と、を備える露光装置 (EX)が提供される。本 発明の第 4の態様によれば、移動条件と液浸条件との少なくとも一方を変えて検出さ れる液浸領域の状態から、例えば液体を介して基板を露光するときの最適な露光条 件を求めることが可能となる。
[0010] 本発明の第 5の態様に従えば、上記態様の露光装置を用いるデバイス製造方法が 提供される。本発明の第 5の態様によれば、最適な露光条件を求めることが可能な露 光装置を用いてデバイスを製造することができる。
図面の簡単な説明
[0011] [図 1]露光装置の一実施形態を示す概略構成図である。
[図 2]露光条件の決定方法の第 1実施形態を説明するための図である。
[図 3]図 2の基板を上方力も見た平面図である。
[図 4]基板の移動条件を説明するための図である。
[図 5]露光条件の決定方法の第 2実施形態を説明するための図である。
[図 6]露光条件の決定方法の第 3実施形態を説明するための図である。
[図 7]露光条件の決定方法の第 4実施形態を説明するための図である。
[図 8]図 7の要部拡大断面図である。
[図 9]マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0012] 1…液浸機構、 11· ··液体供給装置、 12…供給口、 21· ··液体回収装置、 22· ··回収 口、 30…観察装置、 31· ··投光部、 32· ··受光部、 40…観察装置、 41Α〜41Η· ··投 光部、 42Α〜42Η…受光部、 50…観察装置 (撮像素子)、 60…観察装置、 63· ··撮 像素子、 64…透明部材、 EL…露光光、 Κ1· ··光路空間、 KST…計測ステージ、 La …検出光、 LG…エッジ、 LQ…液体、 LR…液浸領域、 LSI…最終光学素子 (光学 部材)、 P…基板、 PL…投影光学系、 PST…基板ステージ、 PSTD…基板ステージ 駆動装置
発明を実施するための最良の形態
[0013] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。
[0014] <露光装置 >
まず、露光装置の一実施形態について図 1を参照しながら説明する。図 1は、露光 装置 EXを示す概略構成図である。図 1において、露光装置 EXは、マスク Mを保持し て移動可能なマスクステージ MSTと、基板 Pを保持する基板ホルダ PHを有し、基板 Pを保持した基板ホルダ PHを移動可能な基板ステージ PSTと、マスクステージ MST に保持されているマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 ELで照 明されたマスク Mのパターンの像を基板 P上に投影する投影光学系 PLと、露光装置 EX全体の動作を統括制御する制御装置 CONTとを備えている。
[0015] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 投影光学系 PLの像面近傍における露光光 ELの光路空間 K1を液体 LQで満たすた めの液浸機構 1を備えている。液浸機構 1は、光路空間 K1の近傍に設けられ、液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22を有するノズル部材 70 と、供給管 13、及びノズル部材 70に設けられた供給口 12を介して液体 LQを供給す る液体供給装置 11と、ノズル部材 70に設けられた回収口 22、及び回収管 23を介し て液体 LQを回収する液体回収装置 21とを備えている。ノズル部材 70は、投影光学 液 PLと対向して配置される基板 P (基板ステージ PST)の上方にお 、て、投影光学 系 PLを構成する複数の光学素子のうち、少なくとも投影光学系 PLの像面に最も近 Vヽ最終光学素子 LS 1を囲むように環状に形成されて!、る。
[0016] また、本実施形態の露光装置 EXは、投影光学系 PLの投影領域 ARを含む基板 P 上の一部に、投影領域 ARよりも大きく且つ基板 Pよりも小さい液体 LQの液浸領域 L Rを局所的に形成する局所液浸方式を採用している。露光装置 EXは、少なくともマ スク Mのパターン像を基板 Pに転写して 、る間、投影光学系 PLの像面に最も近!ヽ最 終光学素子 LSIと、投影光学系 PLの像面側に配置された基板 Pとの間の露光光 EL の光路空間 Klを液体 LQで満たし、投影光学系 PLと光路空間 K1に満たされた液 体 LQとを介してマスク Mを通過した露光光 ELを基板 Pに照射することによって、マス ク Mのパターン像を基板 Pに投影露光する。制御装置 CONTは、液浸機構 1の液体 供給装置 11を使って液体 LQを所定量供給するとともに、液体回収装置 21を使って 液体 LQを所定量回収することで、光路空間 K1を液体 LQで満たし、基板 P上に液体 LQの液浸領域 LRを局所的に形成する。
[0017] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとをそれぞれの走査方向に 同期移動しつつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツバ)を使用する場合を例にして説明する。以下の説明にお V、て、水平面内にぉ 、てマスク Mと基板 Pとの同期移動方向(走査方向)を Y軸方向 、水平面内において Y軸方向と直交する方向(本例では投影光学系 PLの光軸 AXと 平行な方向)を Z軸方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向 をそれぞれ、 0 X、 Θ Υ 及び Θ Z方向とする。なお、ここでいう「基板」は半導体ゥェ ハ等の基材上に感光材 (レジスト)、保護膜などの膜を塗布したものを含む。「マスク」 は基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。
[0018] 照明光学系 ILは、露光用光源、露光用光源から射出された光束の照度を均一化 するオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集 光するコンデンサレンズ、リレーレンズ系、及び露光光 ELによるマスク M上の照明領 域を設定する視野絞り等を有している。マスク M上の所定の照明領域は照明光学系 I Lにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射出される露 光光 ELとしては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrFェ キシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波 長 193nm)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いら
2
れる。本実施形態にぉ ヽては ArFエキシマレーザ光が用いられる。
[0019] 本実施形態においては、液体 LQとして純水が用いられている。純水は、 ArFェキ シマレーザ光のみならず、例えば、水銀ランプ力 射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能であ る。 [0020] マスクステージ MSTは、マスク Mを保持して移動可能である。マスクステージ MST は、マスク Mを真空吸着 (又は静電吸着)により保持する。マスクステージ MSTは、制 御装置 CONTにより制御されるリニアモータ等を含むマスクステージ駆動装置 MST Dの駆動により、マスク Mを保持した状態で、投影光学系 PLの光軸 AXに垂直な平 面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微少回転可能である。 マスクステージ MST上には移動鏡 91が設けられている。また、移動鏡 91に対向す る位置にはレーザ干渉計 92が設けられて!/、る。マスクステージ MST上のマスク Mの 2次元方向の位置、及び θ Z方向の回転角(場合によっては Θ X、 θ Y方向の回転角 も含む)はレーザ干渉計 92によりリアルタイムで計測される。レーザ干渉計 92の計測 結果は制御装置 CONTに出力される。制御装置 CONTは、レーザ干渉計 92の計 測結果に基づ 、てマスクステージ駆動装置 MSTDを駆動し、マスクステージ MSTに 保持されて 、るマスク Mの位置制御を行う。
[0021] なお、レーザ干渉計 92はその一部(例えば、光学系)のみ、移動鏡 91に対向して 設けるようにしてもよい。また、移動鏡 91は平面鏡のみでなくコーナーキューブ (レト 口リフレクタ)を含むものとしてもよいし、移動鏡 91を固設する代わりに、例えばマスク ステージ MSTの端面 (側面)を鏡面加工して形成される反射面を用いてもよい。さら にマスクステージ MSTは、例えば特開平 8— 130179号公報 (対応米国特許第 6, 7 21 , 034号)に開示される粗微動可能な構成としてもよい。
[0022] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率 βで基板 Ρに投影 するものであって、複数の光学素子で構成されており、それら光学素子は鏡筒 PI C 保持されている。本実施形態において、投影光学系 PLは、投影倍率 j8が例えば 1 Z4、 1/5,あるいは 1Z8の縮小系であり、前述の照明領域と共役な投影領域 AR にマスク Mのパターンの縮小像を形成する。なお、投影光学系 PLは縮小系、等倍系 及び拡大系のいずれでもよい。また、投影光学系 PLは、反射光学素子を含まない屈 折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反 射屈折系のいずれであってもよい。また、本実施形態においては、投影光学系 PLを 構成する複数の光学素子のうち、投影光学系 PLの像面に最も近い最終光学素子 L S 1は鏡筒 PKより露出して 、る。 [0023] 基板ステージ PSTは、基板 Pを保持する基板ホルダ PHを有し、投影光学系 PLの 像面側において、ベース部材 BP上で移動可能である。基板ホルダ PHは、例えば真 空吸着等により基板 Pを保持する。基板ステージ PST上には凹部 96が設けられてお り、基板 Pを保持するための基板ホルダ PHは凹部 96に配置されている。そして、基 板ステージ PSTのうち凹部 96以外の上面 97は、基板ホルダ PHに保持された基板 P の表面とほぼ同じ高さ(面一)になるような平坦面となっている。これは、基板 Pの露光 動作時、前述の液浸領域 LRの一部が基板 Pの表面からはみ出して上面 97に形成さ れるためである。なお、基板ステージ PSTの上面 97の一部、例えば基板 Pを囲む所 定領域 (液浸領域 LRがはみ出す範囲を含む)のみ、基板 Pの表面とほぼ同じ高さと してもよい。また、投影光学系 PLの像面側の光路空間 K1を液体 LQで満たし続ける ことができる(即ち、液浸領域 LRを良好に保持できる)ならば、基板ステージ PSTの 上面 97と基板ホルダ PHに保持された基板 Pの表面とに段差があってもよい。さらに 、基板ホルダ PHを基板ステージ PSTの一部と一体に形成してもよいが、本実施形態 では基板ホルダ PHと基板ステージ PSTとを別々に構成し、例えば真空吸着などによ つて基板ホルダ PHを凹部 96内に固定している。
[0024] 基板ステージ PSTは、制御装置 CONTにより制御されるリニアモータ等を含む基 板ステージ駆動装置 PSTDの駆動により、基板 Pを基板ホルダ PHを介して保持した 状態で、ベース部材 BP上で XY平面内で 2次元移動可能及び θ Z方向に微小回転 可能である。更に基板ステージ PSTは、 Z軸方向、 0 X方向、及び Θ Y方向にも移動 可能である。したがって、基板ステージ PSTに支持された基板 Pの上面は、 X軸、 Y 軸、 Z軸、 0 X、 θ Y,及び θ Z方向の 6自由度の方向に移動可能である。制御装置 CONTは、基板ステージ駆動装置 PSTDを制御することにより、基板ステージ PST の移動速度、移動距離、及び移動方向を調整可能である。
[0025] 基板ステージ PSTの側面には移動鏡 93が設けられている。また、移動鏡 93に対 向する位置にはレーザ干渉計 94が設けられて 、る。基板ステージ PST上の基板 Pの 2次元方向の位置、及び回転角はレーザ干渉計 94によりリアルタイムで計測される。 また、図 1には示されていないが、露光装置 EXは、基板ステージ PSTに支持されて いる基板 Pの表面の面位置情報を検出するフォーカス'レべリング検出系を備えてい る。フォーカス'レべリング検出系は、基板 Pの上面の面位置情報 (Z軸方向の位置情 報、及び θ X及び θ Y方向の傾斜情報)を検出する。レーザ干渉計 94の計測結果は 制御装置 CONTに出力される。フォーカス'レべリング検出系の検出結果も制御装 置 CONTに出力される。制御装置 CONTは、フォーカス'レべリング検出系の検出 結果に基づいて、基板ステージ駆動装置 PSTDを駆動し、基板 Pのフォーカス位置( Z位置)及び傾斜角( Θ X、 Θ Υ)を制御して基板 Pの表面を投影光学系 PLの像面に 合わせ込むとともに、レーザ干渉計 94の計測結果に基づいて、基板 Pの X軸方向、 Y軸方向、及び Θ Z方向における位置制御を行う。
[0026] なお、レーザ干渉計 94はその一部(例えば、光学系)のみを移動鏡 93に対向して 設けてもよいし、基板ステージ PSTの Z軸方向の位置、及び Θ X、 Θ Y方向の回転情 報をも計測可能としてよ 、。基板ステージ PSTの Z軸方向の位置を計測可能なレー ザ干渉計を備えた露光装置の詳細は、例えば特表 2001— 510577号公報 (対応国 際公開第 1999Z28790号パンフレット)に開示されている。さらに、移動鏡 93を基 板ステージ PSTに固設する代わりに、例えば基板ステージ PSTの一部 (側面など)を 鏡面加工して形成される反射面を用いてもよ!ヽ。
[0027] また、フォーカス'レべリング検出系はその複数の計測点でそれぞれ基板 Pの Z軸方 向の位置情報を計測することで、基板 Pの Θ X及び Θ Y方向の傾斜情報(回転角)を 検出するものであるが、この複数の計測点はその少なくとも一部が液浸領域 LR (又 は投影領域 AR)内に設定されてもよいし、あるいはその全てが液浸領域 LRの外側 に設定されてもよい。さらに、例えばレーザ干渉計 94が基板 Pの Z軸、 θ X及び θ Y 方向の位置情報を計測可能であるときは、基板 Pの露光動作中にその Z軸方向の位 置情報が計測可能となるようにフォーカス'レペリング検出系を設けなくてもよぐ少な くとも露光動作中はレーザ干渉計 94の計測結果を用いて Z軸、 θ X及び 0 Y方向に 関する基板 Pの位置制御を行うようにしてもょ 、。
[0028] 次に、液浸機構 1について説明する。液浸機構 1の液体供給装置 11は、液体 LQ を収容するタンク、加圧ポンプ、供給する液体 LQの温度を調整する温度調整装置、 及び液体 LQ中の異物を取り除くフィルタユニット等を備えている。液体供給装置 11 には供給管 13の一端部が接続されており、供給管 13の他端部はノズル部材 70に接 続されて!ヽる。液体供給装置 11の液体供給動作は制御装置 CONTにより制御され る。制御装置 CONTは、液体供給装置 11を制御することで、供給口 12からの単位 時間当たりの液体供給量を調整可能である。なお、液体供給装置 11のタンク、加圧 ポンプ、温度調整機構、フィルタユニット等は、その全てを露光装置 EXが備えている 必要はなぐ露光装置 EXが設置される工場等の設備を代用してもよい。
[0029] 液浸機構 1の液体回収装置 21は、真空ポンプ等の真空系、回収された液体 LQと 気体とを分離する気液分離器、及び回収した液体 LQを収容するタンク等を備えて ヽ る。液体回収装置 21には回収管 23の一端部が接続されており、回収管 23の他端部 はノズル部材 70に接続されて 、る。液体回収装置 21の液体回収動作は制御装置 C ONTにより制御される。制御装置 CONTは、液体回収装置 21を制御することで、回 収ロ 22を介した単位時間当たりの液体回収量を調整可能である。なお、液体回収 装置 21の真空系、気液分離器、タンク等は、その全てを露光装置 EXが備えている 必要はなぐ露光装置 EXが設置される工場等の設備を代用してもよい。
[0030] 液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22はノズル部材 70 の下面 70Aに形成されている。ノズル部材 70の下面 70Aは、 XY平面と実質的に平 行に設定され、投影光学系 PL (最終光学素子 LSI)と対向して基板ステージ PSTが 配置されるときにその上面 97及び Z又は基板 Pの表面との間に所定のギャップが形 成されるようにその位置が設定されている。ノズル部材 70は、少なくとも最終光学素 子 LSIの側面を囲むように設けられた環状部材であって、供給口 12は、ノズル部材 70の下面 70Aにおいて、投影光学系 PLの最終光学素子 LSI (投影光学系 PLの光 軸 AX)を囲むように複数設けられている。また、回収口 22は、ノズル部材 70の下面 7 OAにおいて、最終光学素子 LSIに対して供給口 12よりも外側に設けられており、最 終光学素子 LS 1及び供給口 12を囲むように設けられて 、る。
[0031] なお、ノズル部材 (ノズル機構)の形態は、上述のものに限られず、例えば国際公開 第 2004Z086468号パンフレツ卜(対応米国公開 2005,0280791A1)、特開 200 4— 289126号公報(対応米国特許第 6, 962, 253号)などに開示されているノズル 部材 (ノズル機構)を用いてもよい。具体的には、本実施形態ではノズル部材 70の下 面 70Aが投影光学系 PLの下端面 (射出面)とほぼ同じ高さ (Z位置)に設定されて!、 る力 例えばノズル部材 70の下面 70Aを投影光学系 PLの下端面よりも像面側(基 板側)に設定してもよい。この場合、ノズル部材 70の一部(下端部)を、露光光 ELを 遮らないように投影光学系 PL (最終光学素子 LSI)の下側まで潜り込ませて設けて もよい。また、本実施形態ではノズル部材 70の下面 70Aに供給口 12を設けているが 、例えば投影光学系 PLの最終光学素子 LSIの側面と対向するノズル部材 70の内 側面 (傾斜面)に供給口 12を設けてもよい。
[0032] そして、制御装置 CONTは、液体供給装置 11を使って基板 P上に液体 LQを所定 量供給するとともに、液体回収装置 21を使って基板 P上の液体 LQを所定量回収す ることで、投影光学系 PLと基板 Pとの間の露光光 ELの光路空間 K1を液体 LQで満 たし、基板 P上に液体 LQの液浸領域 LRを局所的に形成する。液体 LQの液浸領域 LRを形成する際、制御装置 CONTは、液体供給装置 11及び液体回収装置 21のそ れぞれを駆動する。制御装置 CONTの制御のもとで液体供給装置 11から液体 LQ が送出されると、その液体供給装置 11から送出された液体 LQは、供給管 13を流れ た後、ノズル部材 70の供給流路を介して、供給口 12より投影光学系 PLの像面側の 光路空間 K1に供給される。また、制御装置 CONTのもとで液体回収装置 21が駆動 されると、投影光学系 PLの像面側の液体 LQは回収口 22を介してノズル部材 70の 回収流路に流入し、回収管 23を流れた後、液体回収装置 21に回収される。
[0033] <露光条件の決定方法の第 1実施形態 >
次に、基板 P上に形成された液浸領域 LRの液体 LQを介して基板 P上に露光光 EL を照射して基板 Pを露光するときの露光条件を決定する方法について説明する。本 実施形態においては、制御装置 CONTが露光条件を決定する場合を例にして説明 する。露光条件を決定する際には、制御装置 CONTは、所定の物体 (例えば、基板 Pなど)の表面に液浸領域 LRを形成した状態でその物体を移動しつつ液浸領域 LR の状態を検出 (観察)し、その検出結果 (観察結果)に基づ!、て露光条件を決定する 。液浸領域 LRの状態を検出 (観察)する際には、制御装置 CONTは、物体を移動す るときの移動条件及び液浸領域 LRを形成するときの液浸条件の少なくとも一方を変 えつつ、所定の検出装置 (以下では観察装置とも呼ぶ)を用いて液浸領域 LRの状態 を検出 (観察)する。さらに制御装置 CONTは、検出装置による液浸領域 LRの検出 結果を、その検出時における移動条件及び Z又は液浸条件と対応付けて、露光装 置 EX内または外部の不図示のメモリ(記憶装置)に格納する。また、制御装置 CON Tは不図示の表示装置 (ディスプレイ)上にその検出結果あるいはその収納された情 報を表示可能となっている。
[0034] 図 2は、観察装置 30を用いて液浸領域 LRの状態を観察して 、る状態を示す図で ある。観察装置 30は、所定の物体の表面に形成された液浸領域 LRの状態を観察す るものであって、本実施形態においては、デバイスを製造するための基板 Pの表面に 形成された液浸領域 LRの状態を観察する。液浸領域 LRの状態を観察する際、制 御装置 CONTは、基板ステージ PST (基板ホルダ PH)に基板 Pを保持させ、その基 板ステージ PSTに保持された基板 Pの表面に液浸機構 1を用いて液体 LQの液浸領 域 LRを形成する。液浸機構 1は、基板 Pとその基板 Pの表面に対向し、露光光 ELが 通過する最終光学素子 LSIとの間の光路空間 K1を液体 LQで満たすことによって、 基板 P上に液浸領域 LRを形成する。そして、制御装置 CONTは、基板 Pの表面に液 浸領域 LRを形成した状態で、基板ステージ PSTを駆動することによって基板 Pを移 動しつつ、観察装置 30を用いて液浸領域 LRの状態を観察する。
[0035] 図 2において、観察装置 30は、検出光 Laを射出する投光部 31と、投光部 31から 射出された検出光 Laに対して所定の位置に設けられ、検出光 Laを受光可能な受光 部 32とを備えている。投光部 31は、検出光 Laを、基板 Pの表面に対して斜め方向か ら照射するようになっている。受光部 32は、投光部 31によって基板 Pの表面に照射さ れた検出光 Laの反射光を受光可能な位置に設けられている。
[0036] 図 3は、液浸領域 LRの状態が観察されているときの基板 Pの表面の平面図である。
図 3に示すように、検出光 Laは、基板 Pの表面の複数の所定位置のそれぞれに照射 される。本実施形態においては、投光部 31から射出された複数の検出光 Laは、基 板 P上に形成された液浸領域 LRのエッジ (端部) LG近傍に照射される。投光部 31 は、液浸領域 LRを囲むように、基板 Pの表面における液浸領域 LRのエッジ LG近傍 の複数位置のそれぞれに検出光 Laを照射する。すなわち、投光部 31から射出され た複数の検出光 Laの光路は、液浸領域 LRを囲むように設定されている。なお本実 施形態においては、図 3に示すように、基板 Pの表面に照射された検出光 Laの平面 視における形状はスリット状となっている。
[0037] 制御装置 CONTは、投光部 31より検出光 Laを射出した状態で、基板 Pの表面に 液浸領域 LRを形成する。ここで、基板 P上の液浸領域 LRが所望状態 (所望の大きさ 及び形状)であるとき、複数の検出光 Laのそれぞれは、基板 Pの表面のうち液浸領域 LRのエッジ LGより外側に所定距離離れた位置に照射されるようになって ヽる。すな わち、液浸領域 LRが所望状態で形成されているとき、投光部 31より射出された複数 の検出光 Laのそれぞれは、液浸領域 LRの液体 LQに照射されず、液体 LQを介さな いで受光部 32に到達するように設けられている。つまり、予め設定されている液浸領 域 LRの目標形状又は大きさに応じて、液浸領域 LRのエッジ LG近傍に照射される 複数の検出光 Laの光路 (基板 P上での照射位置)のそれぞれが設定されている。
[0038] したがって、最終光学素子 LSIと基板 Pとの間に液体 LQを保持できず、光路空間 K1に満たされた液体 LQが漏れたり、液浸領域 LRが予め設定されて ヽる所定 (所望 )の大きさ以上になって光路空間 K1に対する液浸領域 LRのエッジ LGの位置が変 動した場合、検出光 Laの光路上に液体 LQが介在してしまう。検出光 Laが液体 LQ に照射される状態と照射されない状態とでは、受光部 32の受光状態が異なる。例え ば、検出光 Laが液体 LQに照射されると、受光部 32で受光できな力つたり、受光部 3 2での受光位置が大きく異なったりする。したがって、観察装置 30は、投光部 31と受 光部 32とを用いて、光路空間 K1に対する液浸領域 LRの状態を観察することができ る。そして、制御装置 CONTは、観察装置 30を用いて光路空間 K1に対する液浸領 域 LRのエッジ LGの位置を観察することによって、光路空間 K1から液体 LQが漏れ た力否かを判断することができる。このように、制御装置 CONTは、投光部 31によつ て液浸領域 LRのエッジ LG近傍に検出光 Laを照射したときの受光部 32の受光結果 に基づ!/ヽて、光路空間 K1に満たされた液体 LQの漏れを含む液浸領域 LRの状態を 観察することができる。
[0039] また、本実施形態においては、複数の検出光 Laは液浸領域 LRを囲むように照射 されるため、制御装置 CONTは、受光部 32の受光結果に基づいて、光路空間 K1か ら漏れる液体 LQの方向を観察することができる。なお、本実施形態では基板 P上で 複数の検出光 Laを矩形状に分布させるものとしているが、これに限らず、例えば液 浸領域 LRの外形とほぼ同一形状(図 3では円形状)に検出光 Laを分布させてもよい 。また、基板 P上での検出光 Laの形状をスリット状としているが、これに限らず、例え ば、円形状など他の形状でもよい。
[0040] なお、検出光 Laは、必ずしも液浸領域 LRを囲むように照射する必要はなぐ例え ば走査方向(Y方向)に関して液浸領域 LRの両側だけに照射するようにしてもよい。
[0041] 制御装置 CONTは、露光条件を決定するために、液浸機構 1を用いて基板 Pの表 面に液浸領域 LRを形成した状態で、基板ステージ PSTを駆動して基板 Pを移動し つつ、観察装置 30を用いて液浸領域 LRの状態を観察する。このとき、制御装置 CO NTは、基板 Pを移動するときの移動条件、及び液浸領域 LRを形成するときの液浸 条件の少なくとも一方を変えつつ、観察装置 30を用いて液浸領域 LRを観察する。こ こで、基板 Pの移動条件とは、基板 Pの移動速度、移動距離、及び移動方向の少なく とも 1つを含む。また、液浸条件とは、基板 P上 (光路空間 K1)に対する供給口 12か らの単位時間当たりの液体供給量、及び回収口 22を介した単位時間当たりの液体 回収量の少なくとも一方を含む。制御装置 CONTは、基板ステージ駆動装置 PSTD を制御することによって基板ステージ PSTに保持された基板 Pの移動条件を変えるこ とができ、液浸機構 1を制御することによって液浸領域 LRを形成するときの液浸条件 を変えることができる。
[0042] 図 4は、露光条件を決定するために、基板 Pの表面に液浸領域 LRを形成した状態 で基板 Pを移動したときの投影光学系 PL及び液浸領域 LRと基板 Pとの位置関係を 模式的に示した図である。制御装置 CONTは、図 4中、例えば矢印 ylで示すように 、投影光学系 PLの光軸 AX (投影領域 AR)と基板 Pとを相対的に移動しつつ、観察 装置 30を用いて液浸領域 LRの状態を観察する。
[0043] 制御装置 CONTは、露光条件を決定するために、図 4の矢印 ylで示す移動軌跡 のもとで、例えば基板 P (基板ステージ PST)を Y軸方向に移動するときの移動速度と 、液浸領域 LRを形成するときの供給口 12からの単位時間当たりの液体供給量との それぞれを変えつつ、観察装置 30を用いて液浸領域 LRの状態を観察する。制御装 置 CONTは、基板ステージ駆動装置 PSTDを制御して、基板 P (基板ステージ PST) の移動速度を、例えば 400、 450, 500、 550, 600、 650, 700mm/sec.のそれぞれ に設定するとともに、液浸機構 1を制御して、供給口 12からの単位時間当たりの液体 供給量を、例えば 200、 250, 300、 350, 400、 450, 500ml/min.のそれぞれに設 定しつつ、それぞれの移動速度条件及び液体供給量条件のもとで、液浸領域 LRの 状態を観察する。
[0044] ここで、図 4の矢印 ylで示す基板 P (基板ステージ PST)の移動軌跡は、デバイスを 製造するために基板 Pを移動するときの移動軌跡の一例であって、基板 Pの露光動 作時には、基板 P上にマトリクス状に設定された複数のショット領域 S1〜S21のそれ ぞれが露光される。すなわち、本実施形態においては、露光条件を決定するために 液浸領域 LRを観察するときには、制御装置 CONTは、デバイスを製造するために基 板 Pを露光するときの移動軌跡と同じ移動軌跡で基板 Pを移動し、そのときの移動速 度及び単位時間当たりの液体供給量のそれぞれを変えつつ、液浸領域 LRを観察 する。
[0045] 液浸領域 LRの状態は、基板 P (基板ステージ PST)の移動速度に応じて変化する 可能性がある。例えば、投影光学系 PLと基板 Pとの間の光路空間 K1を液体 LQで満 たして基板 P上に液浸領域 LRを形成した状態にぉ ヽて、基板 P (基板ステージ PST )の移動速度を高めると、液浸領域 LRの液体 LQが、移動する基板 Pに引っ張られて 光路空間 K1より漏れる可能性がある。また、移動速度によっては、光路空間 K1に気 体部分が形成される状態 (以下、適宜「液切れ状態」と称する)が生じる可能性もある 。また、移動速度によっては、液体 LQ中に気泡が生成される可能性もある。一方で、 デバイス生産性向上などの観点から、基板 P (基板ステージ PST)の移動速度は高!ヽ ほうが望ましい。そこで、制御装置 CONTは、基板 P (基板ステージ PST)の移動速 度を変えつつ、液浸領域 LRの状態を観察装置 30を用いて観察することによって、 例えば液体 LQの漏れ、液切れ等の不都合が生じな!/ヽ範囲にぉ ヽて可能な限り高!ヽ 移動速度、すなわち最適な移動速度を決定することができる。
[0046] また、液浸領域 LRの状態は、供給口 12からの単位時間当たりの液体供給量に応 じて変化する可能性がある。例えば、単位時間当たりの液体供給量を過剰に高める と、液体 LQが光路空間 K1より漏れる可能性がある。一方、単位時間当たりの液体供 給量が少ないと、液切れ状態等が生じる可能性がある。そこで、制御装置 CONTは 、供給口 12からの単位時間当たりの液体供給量を変えつつ、液浸領域 LRの状態を 観察装置 30を用いて観察することによって、液体 LQの漏れ、液切れ等の不都合が 生じないような最適な単位時間当たりの液体供給量を決定することができる。
[0047] なお本実施形態のように、液浸領域 LRのエッジ LG近傍に検出光 Laを照射する構 成においては、液切れ状態が生じた力否かを判断することは困難である力 本実施 形態においてはデバイスを製造するための基板 Pの表面に液浸領域 LRを形成して いるため、マスクステージ MSTに所定のパターンを有するマスク Mを保持し、マスク Mを露光光 ELで照明してマスク Mのパターン像を投影光学系 PL及び液浸領域 LR の液体 LQを介して基板 P上に投影し、その基板 Pを現象処理した後、基板 P上に形 成されたパターン形状を観察することによって、液切れ状態が生じたカゝ否かを判断す ることがでさる。
[0048] また、観察装置 30が、液浸領域 LRが形成されて ヽる物体 (基板 P)上にも液体 LQ を介して検出光 Laを照射して、液浸領域 LRの液切れ状態を検出するようにしてもよ い。この場合、液浸領域 LRを囲むように照射されている検出光 Laと異なり、液浸領 域 LRに液切れが生じると、液体 LQを介して受光部 32で検出光 Laを受光できなくな ることを利用して、液浸領域 LRの状態を検知することができる。
[0049] またここでは、基板 P (基板ステージ PST)の移動速度及び単位時間当たりの液体 供給量の両方を変えつつ、液浸領域 LRの観察を行っている力 基板 P (基板ステー ジ PST)の移動速度及び単位時間当たりの液体供給量のいずれか一方を変えつつ 、液浸領域 LRの観察を行い、その観察結果に基づいて、基板 P (基板ステージ PST )の移動速度及び単位時間当たりの液体供給量のいずれか一方を決定するようにし てもよい。
[0050] また、上述のように、基板 P (基板ステージ PST)の移動条件には、基板 P (基板ステ ージ PST)の移動距離も含まれる。そして、基板 P (基板ステージ PST)の移動距離 に応じて、液浸領域 LRの状態が変化する可能性がある。例えば、投影光学系 PLと 基板 Pとの間の光路空間 K1を液体 LQで満たして基板 P上に液浸領域 LRを形成し た状態において、光路空間 K1に対して所定方向 (Y軸方向)に基板 P (基板ステージ PST)を移動する場合、所定方向(Y軸方向)に関する基板 P (基板ステージ PST)の 移動距離が長いほうが、移動距離が短い場合に比べて、投影光学系 PLと基板 Pとの 間に液体 LQを保持しておくことが困難となり、液体 LQが光路空間 K1より漏れる可 能性が高くなる。そこで、制御装置 CONTは、基板 P (基板ステージ PST)の所定方 向 (Y軸方向)に関する移動距離を変えつつ、液浸領域 LRの状態を観察装置 30を 用いて観察することによって、液体 LQの漏れ等の不都合が生じないような最適な移 動距離条件 (例えば、最大移動可能距離)を決定することができる。
[0051] また、上述のように、基板 P (基板ステージ PST)の移動条件には、基板 P (基板ステ ージ PST)の移動方向も含まれる。そして、基板 P (基板ステージ PST)の移動方向 に応じて、液浸領域 LRの状態が変化する可能性がある。図 4の矢印 ylで示すように 、制御装置 CONTは、投影光学系 PLに対して基板 P (基板ステージ PST)を、 X軸 方向、 Y軸方向、及び X軸 (Y軸)に対して傾斜方向のそれぞれの方向に移動するが 、基板 P (基板ステージ PST)の移動方向(移動軌跡)によっては、液体 LQが漏れた り、液切れ状態が生じたり、あるいは液体 LQ中に気泡が生成される可能性がある。ま た、基板 P (基板ステージ PST)の移動方向(移動軌跡)に応じて、光路空間 K1に対 して液体 LQが漏れる方向が変化する可能性がある。そこで、制御装置 CONTは、 基板 P (基板ステージ PST)の移動方向(移動軌跡)を変えつつ、液浸領域 LRの状 態を観察装置 30を用いて観察することによって、液体 LQの漏れ等の不都合が生じ な 、ような基板 P (基板ステージ PST)の最適な移動方向(移動軌跡)を決定すること ができる。
[0052] また、上述のように、液浸領域 LRを形成するときの液浸条件には、回収口 22を介 した単位時間当たりの液体回収量も含まれる。そして、単位時間当たりの液体回収量 に応じて、液浸領域 LRの状態が変化する可能性がある。例えば、単位時間当たりの 液体回収量を過剰に高めると、液切れ等の不都合が生じる可能性がある。一方、単 位時間当たりの液体回収量が少ないと、液体 LQが光路空間 K1より漏れる可能性が ある。そこで、制御装置 CONTは、回収口 22を介した単位時間当たりの液体回収量 を変えつつ、液浸領域 LRの状態を観察装置 30を用いて観察することによって、最 適な単位時間当たりの液体回収量を決定することができる。
[0053] そして、観察装置 30による観察結果に基づいて、移動条件及び液浸条件を含む 最適な露光条件を決定した後、制御装置 CONTは、決定された露光条件に基づい て、デバイスを製造するための基板 Pを露光する。制御装置 CONTは、決定された 液浸条件に基づいて基板 P上に液浸領域 LRを形成するとともに、決定された移動条 件に基づ ヽて基板 Pを移動しつつ、投影光学系 PLと液浸領域 LRの液体 LQとを介 して基板 P上に露光光 ELを照射することによって、基板 Pを露光する。
[0054] 以上説明したように、基板 Pの移動条件及び Z又は液浸領域 LRを形成するときの 液浸条件に応じて、液体 LQの漏れ及び Z又は液切れ等を含む液浸領域 LRの状態 が変化する可能性があるが、基板 Pの移動条件及び Z又は液浸領域 LRを形成する ときの液浸条件を変えつつ液浸領域 LRの状態を観察装置 30を使って観察し、その 観察結果に基づ ヽて、基板 Pの移動条件及び液浸条件を含む露光条件を決定する ようにしたので、その決定された露光条件に基づいて基板 Pを露光することにより、液 体 LQの漏れ、液切れ等の不都合の発生を抑制しつつ、基板 Pを良好に露光するこ とがでさる。
[0055] なお、本実施形態の観察装置 30を、基板 Pの表面の面位置情報を検出する斜入 射方式のフォーカス'レべリング検出系として用いることができる。換言すれば、露光 条件を決定するために液浸領域 LRを観察するときに、斜入射方式のフォーカス'レ ベリング検出系を用いることができる。
[0056] <露光条件の決定方法の第 2実施形態 >
次に、第 2実施形態について説明する。なお、本実施形態では観察装置の構成が 上述の実施形態と異なるので、以下では観察装置のみ説明するとともに、上述の実 施形態と同一又は同等の構成部分についてはその説明を簡略若しくは省略する。
[0057] 図 5は第 2実施形態を示す斜視図である。図 5に示すように、観察装置 40は、基板 ステージ!^丁の外側に設けられた複数の投光部41八〜4111、及びそれら投光部 41 A〜41Hに対応するように設けられた複数の受光部 42A〜42Hを備えて 、る。これ ら投光部 41A〜41H、及び受光部 42A〜42Hは基板ステージ PSTとは離れた位置 に設けられた所定の固定部材などに固定されている。
[0058] 観察装置 40は、投光部 41A〜41Hのそれぞれより、 XY平面にほぼ平行、すなわ ち基板 Pの表面及び基板ステージ PSTの上面 97とほぼ平行な検出光 Laを射出する 。投光部 41A〜41Hのそれぞれから射出された複数の検出光 Laは、基板 P上に形 成された液体 LQの液浸領域 LRのエッジ LG近傍に照射される。観察装置 40は、こ れら投光部 41A〜41Hによって、互いに異なる複数の方向から、液浸領域 LRのェ ッジ LG近傍の複数位置のそれぞれに検出光 Laを照射している。具体的には、複数 設けられた投光部 41A〜41Hのうち、投光部 41A、 41Bは X軸方向にほぼ平行な 方向から液浸領域 LRのエッジ LG近傍に対して検出光 Laを照射し、投光部 41E、 4 IFは Y軸方向にほぼ平行な方向から検出光 Laを照射する。また、投光部 41C、 41 Dは、 X軸 (Y軸)方向に対して傾斜方向力 液浸領域 LRのエッジ LGに対して検出 光 Laを照射し、投光部 41G、 41Hは、投光部 41C、 41D力も射出された検出光 Laと は異なる傾斜方向から検出光 Laを照射する。すなわち、各投光部 41A〜41Hから 射出される複数の検出光 Laの光路は、液浸領域 LRの周りを囲むように設定されて いる。
[0059] また、投光部 41A、 41Bのそれぞれから射出された 2つの検出光 Laは、液浸領域 L Rを挟んでその液浸領域 LRの両側のエッジ LG近傍のそれぞれに照射されるよう〖こ 設けられている。同様に、投光部 41C、 41Dのそれぞれから射出された 2つの検出 光 Laは、液浸領域 LRの両側のエッジ LG近傍のそれぞれに照射され、投光部 41E 、 41Fのそれぞれから射出された 2つの検出光 Laは、液浸領域 LRの両側のエッジ L G近傍のそれぞれに照射され、投光部 41G、 41Hのそれぞれカゝら射出された 2つの 検出光 Laは、液浸領域 LRの両側のエッジ LG近傍のそれぞれに照射されるように設 けられている。
[0060] 基板 P上の液浸領域 LRが所望状態 (所望の大きさ及び形状)であるとき、検出光 L aの光路は、液浸領域 LRのエッジ LGより外側に所定距離離れた位置に設定されて いる。すなわち、液浸領域 LRが所望状態で形成されているとき、投光部 41A〜41H のそれぞれより射出された検出光 Laは、液浸領域 LRの液体 LQに照射されず、液体 LQを介さな 、で受光部 42A〜42Hに到達するように設けられて 、る。
[0061] また、複数の検出光 Laのうち同一方向から照射される一対(2つ)の検出光 Laは、 液浸領域 LRの両側のエッジ LG近傍のそれぞれに照射されており、本実施形態に お!、ては、液浸領域 LRを囲むように複数の検出光 Laの光路が設定されて 、るので 、液浸領域 LR力 流出する液体 LQの方向を検出することもできる。
[0062] 制御装置 CONTは、受光部 42A〜42Hの受光結果に基づいて、液体 LQの漏れ を含む液浸領域 LRの状態を観察することができる。制御装置 CONTは、基板 P (基 板ステージ PST)を移動するときの移動条件及び液浸領域 LRを形成するときの液浸 条件の少なくとも一方を変えつつ、観察装置 40を用いて液浸領域 LRを観察し、その 観察結果に基づ 、て、最適な露光条件を決定することができる。
[0063] なお本実施形態のように、液浸領域 LRのエッジ LG近傍に検出光 Laを照射する構 成においては、液切れ状態が生じた力否かを判断することは困難である力 例えば 前述した複数の検出光 Laと異なる少なくとも 1つの検出光 Laある ヽはその複数の検 出光 Laの一部を、投影光学系 PLと基板 Pとの間の光路空間 K1に対して基板 Pの表 面とほぼ平行に照射することにより、その検出光 Laに対応して設けられた受光部の 受光結果に基づいて、液切れが生じた力否かを観察することができる。また、本実施 形態では X軸及び Y軸方向を含む異なる 4つの方向からそれぞれ一対の検出光 La を基板 P上に照射するものとした力 これに限らず、 3つ以下、又は 5つ以上の方向か らそれぞれ検出光 Laを照射してもよ ヽし、その方向が X軸又は Y軸方向を含まなくて もよい。さらに、同一方向から照射する検出光 Laは 2つに限られるものでなぐ 1つ又 は 3つ以上でもよい。
[0064] <露光条件の決定方法の第 3実施形態 >
次に、第 3実施形態について図 6を参照しながら説明する。なお、本実施形態では 観察装置の構成が上述の各実施形態と異なるので、以下では観察装置のみ説明す るとともに、上述の各実施形態と同一又は同等の構成部分については同一の符号を 付してその説明を省略する。図 6において、ノズル部材 70の側面には、観察装置とし ての撮像素子 50が設けられている。撮像素子 50は、基板 Pと対向するように設けら れており、光路空間 K1に対する液浸領域 LRのエッジ LGの位置を観察することがで きる。撮像素子 50は、ノズル部材 70の側面の周方向に複数並んで設けられている。
[0065] 制御装置 CONTは、撮像素子 50の撮像結果に基づ ヽて、液体 LQの漏れを含む 液浸領域 LRの状態を観察することができる。制御装置 CONTは、基板 P (基板ステ ージ PST)を移動するときの移動条件、及び液浸領域 LRを形成するときの液浸条件 の少なくとも一方を変えつつ、撮像素子 50を用いて液浸領域 LRを撮像し、その撮像 結果に基づいて、液浸領域 LRの状態を観察することができる。そして、制御装置 CO NTは、その観察結果に基づいて、最適な露光条件を決定することができる。
[0066] なお、撮像素子 50はノズル部材 70に固定されている力 これに限られず、例えば 投影光学系 PLを支持する支持部材などの他の部材に固定されていてもよい。
[0067] また、第 1〜第 3実施形態においては、露光条件を決定するときに、デバイスを製造 するための基板 P上に液浸領域 LRを形成して ヽる。液浸領域 LRが形成される物体 の表面条件に応じて、液浸領域 LRの状態が変化する可能性がある。ここで、物体の 表面条件とは、物体の表面の液体 LQに対する接触角条件を含む。露光条件を決定 するときに液浸領域 LRが形成される物体の表面条件と、デバイスを製造するための 露光を行うときに液浸領域 LRが形成される基板 Pの表面条件とが異なる場合、決定 された露光条件に基づ ヽて基板 Pを液浸露光しても、基板 Pの液浸露光中における 液浸領域 LRの状態を所望状態に維持できない可能性がある。そこで、露光条件を 決定するときには、デバイスを製造するための基板 P (あるいは同等の表面条件を有 する基板)上に液浸領域 LRを形成し、その液浸領域 LRを観察したときの観察結果 に基づ!/、て露光条件を決定することで、最適な露光条件を決定することができる。
[0068] なお、露光条件を決定するときに液浸領域 LRが形成される物体の表面条件と、デ バイスを製造するための露光を行うときに液浸領域 LRが形成される基板 Pの表面条 件とがほぼ同等であれば、その物体の表面に形成された液浸領域 LRの状態の観察 結果に基づいて最適な露光条件を決定することができる。したがって、基板 Pの表面 条件とほぼ同等の表面条件を有する物体の表面に形成された液浸領域 LRの状態 を観察したときの観察結果に基づいて、最適な露光条件を決定することができる。そ のような物体としては、例えば基板 Pの表面条件とほぼ等しい表面条件に設定され、 基板ステージ PST (基板ホルダ PH)に保持可能なダミー基板が挙げられる。あるい は、基板ステージ PSTの上面 97の一部を基板 Pの表面とほぼ同等の表面条件に設 定し、その上面 97上に形成された液浸領域 LRを観察するようにしてもよい。
[0069] また、上記第 1〜第 3実施形態では液浸領域 LRの状態を検出するとき、図 4中に矢 印 ylで示される移動軌跡となるように、表面に液浸領域 LRが形成される物体 (基板 Pなど)を移動している途中で、その基板 Pの移動条件、及び液浸領域 LRを形成す るときの液浸条件の少なくとも一方を変更してもよいが、その移動軌跡で基板 Pを移 動した後に移動条件と液浸条件との少なくとも一方を変更し、この変更後の条件のも とで再度その移動軌跡で基板 Pを移動することとしてもよい。これは、基板 P上の位置 (ショット領域)に応じて最適な露光条件が異なり得るためである。この場合、その移 動軌跡の全域にわたって液浸領域 LRの状態を検出してもよ 、が、例えば最適な露 光条件が異なると予想される移動軌跡の一部(ショット領域 S1〜S21の一部)のみで 液浸領域 LRの状態を検出することとしてもよい。また、液浸領域 LRの状態を検出す るとき、必ずしもその移動軌跡で基板 Pを移動しなくてもよぐ例えば基板 Pの中央付 近のショット領域と、液浸領域 LRの一部が基板外にはみ出る外周付近のショット領域 とがそれぞれ投影領域 AR (液浸領域 LR)と相対移動されるように基板 Pを移動する こととしてちよい。
[0070] さらに、上記第 1〜第 3実施形態では表面に液浸領域 LRが形成される物体 (基板 P 、ダミー基板など)を基板ステージ PSTに載置するものとした力 基板ステージ PSTと は異なる可動部材 (例えば、後述の計測ステージなど)にその物体を載置して液浸領 域 LRの状態を検出することとしてもよい。また、上記第 1〜第 3実施形態では複数の 検出光 La又は撮像素子 50を用いるものとした力 その数は上述に限られるものでは なく任意でよいし、その数を 1つとしてもよい。
[0071] <露光条件の決定方法の第 4実施形態 >
次に、第 4実施形態について図 7を参照しながら説明する。なお、本実施形態では 基板ステージ PSTとは別の計測ステージ KSTに観察装置を設ける点が上述の各実 施形態と異なるので、以下では観察装置のみ説明するとともに、上述の各実施形態 と同一又は同等の構成部分については同一の符号を付してその説明を省略する。 図 7に示す露光装置 EXは、基板 Pを保持する基板ステージ PSTと、露光処理に関 する計測を行う計測器を搭載し、基板ステージ PSTとは独立して移動可能な計測ス テージ KSTとを備えている。計測ステージ KSTには、基準マークが形成された基準 部材及び Z又は各種の光電センサが搭載されている。そして、計測ステージ KSTに は、液浸領域 LRの状態を観察可能な観察装置 60が設けられている。観察装置 60 は計測ステージ KSTの内部に設けられている。なお、計測ステージ KSTの詳細は、 例えば特開平 11— 135400号公報 (対応国際公開第 1999Z23692号)、特開 20 00— 164504号公報 (対応米国特許第 6, 897, 963号)等に開示されている。
[0072] 図 8は観察装置 60近傍を示す断面図である。図 8において、計測ステージ KST上 には開口部 64Kが形成されており、その開口部 64Kには透明部材 64が配置されて いる。透明部材 64は例えばガラス板によって構成されている。透明部材 64の上面 6 5は平坦面である。また、計測ステージ KST上のうち開口部 64K以外の上面 98も平 坦面である。そして、計測ステージ KSTの上面 98と、開口部 64Kに配置された透明 部材 64の上面 65とはほぼ同じ高さ(面一)になるように設けられており、計測ステー ジ KSTの上面 98は透明部材 64の上面 65を含んだ構成となっている。そして、計測 ステージ KSTの上面 98及び透明部材 64の上面 65は、基板 Pとほぼ同等の表面条 件 (接触角)となっている。なお、計測ステージ KSTの上面 98の一部、例えば透明部 材 64を囲む所定領域 (液浸領域 LRの形成範囲を含む)のみ、透明部材 64の表面 6 5とほぼ同じ高さとしてもよい。また、透明部材 64の表面 65とほぼ同じ高さとなる、計 測ステージ KSTの上面 98の少なくとも一部を、基板 Pとほぼ同等の表面条件としなく てもよい。この場合、表面 65が基板 Pとほぼ同等の表面条件となる透明部材 64を、 液浸領域 LRと同程度以上の大きさとすることとしてもよい。
[0073] また、透明部材 64の上面 65を含む計測ステージ KSTの上面 98と、基板ステージ PSTの上面 97とは、ほぼ同じ高さ位置(Z位置)となるように配置できる。図示してい ないが、計測ステージ KSTの 6自由度方向(X軸、 Y軸、 Z軸、 0 Χ、 Θ ΥΑΧ θ Ζ方 向)の位置情報は、例えばレーザ干渉計によって計測可能となっている。
[0074] 計測ステージ KSTには、開口部 64Κに接続する内部空間 66が形成されている。
観察装置 60は、計測ステージ KSTの内部空間 66に配置されている。観察装置 60 は、透明部材 64の下側に配置された光学系 61と、 CCD等によって構成されている 撮像素子 63とを備えている。撮像素子 63は、液浸領域 LRの光学像 (画像)を透明 部材 64及び光学系 61を介して取得可能である。撮像素子 63は、取得した画像を電 気信号に変換し、その信号 (画像情報)を制御装置 CONTに出力する。また、観察 装置 60は、光学系 61の焦点位置を調整可能な調整機構 62を有している。また、観 察装置 60は、液浸領域 LRの全体を観察可能な視野を有している。このように、観察 装置 60は、液浸領域 LRの状態を、透明部材 64を介して、液浸領域 LRの下方から 観察可能である。なお観察装置 60の全部が計測ステージ KSTの内部に配置されて いてもよいが、例えば光学系 61を構成する複数の光学素子のうち一部の光学素子 及び Z又は撮像素子 63等が計測ステージ KSTの外側に配置されて 、てもよ 、。ま た、調整機構 62が省略された構成であってもよい。
[0075] 制御装置 CONTは、透明部材 64の上面 65に液浸領域 LRを形成した状態で、透 明部材 64 (計測ステージ KST)を移動しつつ、観察装置 60を使って液浸領域 LRの 状態を観察する。例えば、計測ステージ KSTに擬似的にスキャン動作を行わせつつ 、観察装置 60で液浸領域 LRの状態を観察する。本実施形態においては、観察装置 60は、液浸領域 LRの状態を、透明部材 64を介して下方から観察しており、液体 LQ の漏れ、液切れ、及び液体 LQ中に生成された気泡のそれぞれを観察可能である。 制御装置 CONTは、透明部材 64 (計測ステージ KST)を移動するときの移動条件、 及び液浸領域 LRを形成するときの液浸条件の少なくとも一方を変えつつ、撮像素子 63を用いて液浸領域 LRを撮像し、その撮像結果に基づいて、液浸領域 LRの状態 を観察することができる。そして、制御装置 CONTは、その観察結果に基づいて、最 適な露光条件を決定することができる。
[0076] なお、本実施形態では液浸領域 LRの状態の検出に先立ち、基板ステージ PSTと の交換で計測ステージ KSTを投影光学系 PLと対向して配置した後で、液浸機構 1 によって最終光学素子 LSIと透明部材 64との間の光路空間 K1を液体 LQで満たし て液浸領域 LRを形成してもよいし、あるいは、上面 97 (基板 Pの表面を含む)上に液 浸領域 LRが形成された基板ステージ PSTと、計測ステージ KSTとを接触 (又は接近 )させた状態で所定方向に駆動して、液浸領域 LRを投影光学系 PLの最終光学素子 LSI (及びノズル部材 70)との間に維持 (保持)しつつ基板ステージ PSTから計測ス テージ KSTに移動することとしてもよい。後者では、基板ステージ PSTと計測ステー ジ KSTとでその上面 97、 98をほぼ同じ高さ(Z位置)に設定した状態で液浸領域 LR の移動を行うことが好まし ヽ。
[0077] また、本実施形態では観察装置 60が撮像方式に限られるものではない。さらに、本 実施形態では観察装置 60を計測ステージ KSTに搭載しな 、で、計測ステージ KST の上面 98の少なくとも一部を基板 Pとほぼ同等の表面条件とするだけでもよい。この 場合、投影光学系 PLと対向して計測ステージ KSTを配置してその上面 98に液浸領 域 LRを形成し、例えば上述の第 1〜第 3実施形態のいずれか 1つに開示された観察 装置を用いてその液浸領域 LRの状態を観察すればよい。さらに、計測ステージ KS Tの上面 98に表面条件が異なる複数の領域を設定することとしてもよい。また、計測 ステージ KSTの上面 98にコーティングを施す、あるいは、前述のダミー基板又は透 明部材 64を計測ステージ KSTに設けることで、計測ステージ KSTの上面 98の少な くとも一部を基板 Pとほぼ同等の表面条件とすればよい。
[0078] なお、観察装置 60を基板ステージ PSTに設けてもょ 、。また、上述したように、液 浸領域 LRが形成される物体表面における液体 LQの接触角に応じて液浸領域 LR の状態が変化する可能性があるので、透明部材 64を交換して、透明部材表面の液 体 LQとの接触角を変えつつ、液浸領域 LRの状態を観察するようにしてもよい。これ は、表面条件が異なる基板 Pをそれぞれ露光するときに有効であり、その露光動作に 先立つ最適な露光条件の決定のために、その異なる基板 Pとそれぞれ表面条件が ほぼ同等の透明部材 64を交換して用いて液浸領域 LRの状態を検出すればょ 、。
[0079] なお、上述の各実施形態においては、前述のメモリに格納された観察装置の観察 結果に基づいて、制御装置 CONTが最適な露光条件を決定しているが、観察装置 の観察結果に基づいて、例えばオペレータが最適な露光条件を決定するようにして もよい。例えば、観察装置の観察結果を表示装置に表示し、その表示結果に基づい て、オペレータが最適な露光条件を決定するようにしてもょ 、。
[0080] さらに、制御装置 CONTは最適な露光条件を決定できない、あるいは、その決定し た最適な露光条件が異常であるとき、例えば表示装置に警告を表示することとしても よい。また、上記各実施形態において前述の移動条件、特に基板 Pの移動速度 (走 查露光時における基板の走査速度)を変えながら液浸領域 LRの状態を検出して最 適な露光条件を決定するとき、その決定された露光条件 (走査速度を含む)が制御 装置 CONT内に設定されている初期値と異なる可能性がある。この場合は、その決 定された露光条件 (特に走査速度)に基づいて露光光 ELの強度、発振周波数、及 び走査方向(Y軸方向)に関する投影領域 ARの幅の少なくとも 1つを調整して、走査 露光による基板上の各ショット領域の露光量が最適となるように露光量制御を行うこと が好ましい。
[0081] なお、上記各実施形態では液浸領域 LRの状態として、光路空間 K1に満たされる 液体 LQの漏れ (即ち、液体 LQの漏出の有無、及び Z又は漏れ方向)、液切れ、及 び液体 LQ中の気泡の少なくとも 1つに関連する情報を検出するものとして!/ヽるが、こ れに限らず、例えば液浸領域 LRの位置、大きさ、及び形状の少なくとも 1つを、その 情報の代わりに、あるいはその情報と一緒に検出するようにしてもょ 、。
[0082] さらに、上記各実施形態では前述の移動条件として加速度を含むものとしてもよい し、前述の液浸条件として供給時及び Z又は回収時の液体 LQの流速、圧力などを 含むちのとしてちよい。
[0083] また、上述の第 1〜第 4の各実施形態において、例えば特開 2004— 289126号公 報 (対応米国特許第 6, 952, 253号)などに開示されているように、液体 LQの漏れ だしを抑えるための気体噴射機構 (ガスシール機構)が搭載されている場合には、液 浸条件として噴射される気体の流量及び Z又は流速を変えつつ液浸領域 LRの状態 を観察装置で観察するようにしてもょ ヽ。
[0084] 上述したように、上記各実施形態における液体 LQは純水である。純水は、半導体 製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジスト、光学素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響が ないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 P Lの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なおェ 場等力 供給される純水の純度が低い場合には、露光装置が超純水製造器を持つ ようにしてもよい。
[0085] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0086] 上記各実施形態では、投影光学系 PLの先端に光学素子 LSIが取り付けられてお り、このレンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等 )の調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子とし ては、投影光学系 PLの光学特性の調整に用いる光学プレート (カバープレートなど) であってもよ 、。あるいは露光光 ELを透過可能な平行平面板であってもよ 、。
[0087] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かないように堅固に固定してもよい。なお、ノズル部材 70を 含む液浸機構 1の構造は、上述の構造に限られず、例えば、欧州特許公開第 1420 298号公報、国際公開第 2004Z055803号公報、国際公開第 2004/057590号 公報、国際公開第 2005Z029559号公報に記載されて 、るもの用いることができる
[0088] なお、上記各実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満た されているが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り付けた 状態で少なくともその表面との間に液体 LQを満たしてもよい。
[0089] また、上述の実施形態の投影光学系は、先端の光学素子 (LSI)の像面側の光路 空間を液体で満たしている力 国際公開第 2004Z019128号パンフレットに開示さ れて!ヽるように、先端の光学素子のマスク側の光路空間も液体で満たす投影光学系 を採用することちできる。
[0090] なお、上記各実施形態の液体 LQは水(純水)であるが、水以外の液体であってもよ い、例えば、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過し
2 2
ないので、液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル(
2
PFPE)、フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接 触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成 することで親液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する 透過性があってできるだけ屈折率が高ぐ投影光学系 PL及び基板 P表面に塗布され ているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である [0091] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。更に、 石英あるいは蛍石よりも屈折率が高!、(例えば 1. 6以上)材料で光学素子 LSIを形 成してもよい。液体 LQとして、種々の液体、例えば、超臨界流体を用いることも可能 である。また、上記各実施形態では基板 Pの温度とほぼ同じ温度の液体 LQを供給し て液浸領域 LRを形成することとしてもよい。これにより、液体 LQとの温度差による基 板 Pの熱変形などを防止することができる。
[0092] なお、上記各実施形態では干渉計システム(92、 94など)を用いてマスクステージ MST、基板ステージ PST、及び計測ステージ KSTの各位置情報を計測するものと したが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出す るエンコーダシステムを用いてもよい。この場合、干渉計システムとエンコーダシステ ムの両方を備えるハイブリッドシステムとし、干渉計システムの計測結果を用いてェン コーダシステムの計測結果の較正(キャリブレーション)を行うことが好まし 、。また、 干渉計システムとェンコーダシステムとを切り替えて用いる、あるいはその両方を用い て、ステージの位置制御を行うようにしてもよい。
[0093] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)等が適用される。
[0094] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。
[0095] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。こ れらの方式の露光装置においても本発明に従って液浸露光の際の最適な露光条件 を有効に求めることができる。
[0096] また、上記各実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明し てきたが、投影光学系 PLを用いない露光装置及び露光方法を本発明に適用するこ とができる。このように投影光学系 PLを用いない場合であっても、露光光はマスク又 はレンズなどの光学部材を介して基板に照射され、そのような光学部材と基板との間 の所定空間に液浸領域が形成される。
[0097] また、本発明は、特開平 10— 163099号公報及び特開平 10— 214783号公報( 対応米国特許第 6, 590, 634号)、特表 2000— 505958号公報 (対応米国特許第 5, 969, 441号)ある!/ヽ ίま米国特許第 6, 208, 407号など【こ開示されて!ヽるような複 数の基板ステージを備えたツインステージ型の露光装置にも適用できる。この場合、 複数の基板ステージをそれぞれ用いて液浸領域の状態を検出して最適な露光条件 を求めるようにしてもよ!、し、複数の基板ステージの一部のみを用いて液浸領域の状 態を検出して最適な露光条件を求めるようにしてもよ!、。
[0098] また、上述の実施形態においては、投影光学系 PLと基板 Ρとの間に局所的に液体 を満たす露光装置を採用しているが、本発明は、特開平 6— 124873号公報、特開 平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されているような露 光対象の基板の表面全体が液体中に浸力つて 、る状態で露光を行う液浸露光装置 にも適用可能である。
[0099] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。 [0100] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 む)を用いてもよい。
[0101] また、国際公開第 2001Z035168号パンフレットに開示されているように、干渉縞 を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパターンを露 光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。
[0102] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に 開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合 成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ同時に二重露光 する露光装置にも本発明を適用することができる。
[0103] なお、本国際出願で指定又は選択された国の法令で許容される限りにおいて、上 記各実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び 米国特許の開示を援用して本文の記載の一部とする。
[0104] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。
[0105] 半導体デバイス等のマイクロデバイスは、図 9に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光した基 板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などの基板処 理プロセスを含むステップ 204、デバイス組み立てステップ(ダイシング工程、ボンデ イング工程、ノ ッケージ工程などの加工プロセスを含む) 205、検査ステップ 206等を 経て製造される。
産業上の利用可能性
[0106] 本発明によれば、液浸領域の液体を介して基板を露光するときの最適な露光条件 を決定することができ、決定された露光条件に基づいて基板を良好に露光することが できる。それゆえ、本発明は、例えば半導体素子、液晶表示素子又はディスプレイ、 薄膜磁気ヘッド、 CCD,マイクロマシン、 MEMS, DNAチップ、レチクル(マスク)の ような広範囲な製品を製造するための露光方法及び装置に極めて有用となる。

Claims

請求の範囲
[1] 基板上に形成された液浸領域の液体を介して前記基板上に露光光を照射して前 記基板を露光するときの露光条件を決定する方法であって、
所定の物体の表面に形成される液浸領域の状態を、前記物体の移動条件及び前 記液浸領域を形成するときの液浸条件の少なくとも一方を変えつつ、検出するステツ プと、
前記検出結果に基づいて露光条件を決定するステップとを有することを特徴とする 露光条件の決定方法。
[2] 前記物体は、前記基板である又は前記基板とほぼ同等の表面条件を有する請求 項 1記載の決定方法。
[3] 前記露光光は、光学部材を介して前記基板上に照射され、前記液浸領域は、前記 物体と該物体の表面に対向し前記露光光が通過する光学部材との間の所定空間を 液体で満たすことによって前記物体上に液浸領域が形成され、前記液浸領域の状 態は、前記所定空間に満たされた液体の漏れを含む請求項 1又は 2記載の決定方 法。
[4] 前記液浸領域の端部を検出して前記液体の漏出の有無を判断する請求項 3記載 の決定方法。
[5] 前記液浸領域の位置、大きさ及び形状の少なくとも 1つに関連する情報を検出して 前記液体の漏出の有無を判断する請求項 3又は 4記載の決定方法。
[6] 前記所定空間に対する前記液浸領域のエッジの位置を検出することによって前記 液体の漏出の有無を判断する請求項 3〜5のいずれか一項記載の決定方法。
[7] 前記液浸領域を介して検出光を受光することによって前記液浸領域の状態を検出 することを特徴とする請求項 1〜6のいずれか一項記載の決定方法。
[8] 前記液浸領域のエッジ近傍に検出光を照射し、該検出光に対して所定の位置に 設けられた受光部の受光結果に基づいて前記液浸領域の状態を検出する請求項 1
〜7の 、ずれか一項記載の決定方法。
[9] 前記検出光を前記物体の表面に照射する請求項 7又は 8記載の決定方法。
[10] 前記検出光を前記物体の表面とほぼ平行に照射する請求項 7又は 8記載の決定 方法。
[11] 前記液浸領域を撮像し、該撮像結果に基づいて前記液浸領域の状態を検出する 請求項 1〜 10の 、ずれか一項記載の決定方法。
[12] 前記液浸領域の状態は、少なくとも前記液浸領域に対して前記物体側から検出さ れる請求項 1〜11の!ヽずれか一項記載の決定方法。
[13] 前記物体はその表面の少なくとも一部に光透過部を有し、前記液浸領域の状態は
、前記光透過部を介して検出される請求項 1〜12のいずれか一項記載の決定方法
[14] 前記液浸領域の状態は、少なくとも前記物体の移動中に検出されることを特徴とす る請求項 1〜 13の 、ずれか一項記載の決定方法。
[15] 前記物体の移動条件は、該物体の移動速度、移動距離、及び移動方向の少なくと も 1つを含む請求項 1〜14のいずれか一項記載の決定方法。
[16] 前記液浸条件は、単位時間当たりの液体供給量及び液体回収量の少なくとも一方 を含む請求項 1〜 15の 、ずれか一項記載の決定方法。
[17] 請求項 1〜請求項 16の 、ずれか一項記載の決定方法で決定された露光条件に基 づ ヽて前記基板を露光する露光方法。
[18] 請求項 17記載の露光方法を用いるデバイス製造方法。
[19] 光学部材と液体とを介して基板を露光する露光装置において、
前記光学部材と前記基板との間の所定空間を液体で満たして液浸領域を形成す る液浸機構と、
前記光学部材との間に前記液浸領域が形成される物体の移動条件、及び前記液 浸領域を形成するときの液浸条件の少なくとも一方を変えつつ、前記液浸領域の状 態を検出する検出装置と、を備える露光装置。
[20] 前記検出結果を格納するメモリをさらに備えることを特徴とする請求項 19記載の露 光装置。
[21] 前記検出結果に基づいて、前記液体を介して前記基板を露光するときの露光条件 を決定する制御装置をさらに備えることを特徴とする請求項 19又は 20記載の露光装 置。
[22] 前記物体は、前記基板である又は前記基板とほぼ同等の表面条件を有することを 特徴とする請求項 19〜21のいずれか一項記載の露光装置。
[23] 前記検出装置は、前記所定空間に満たされる液体の漏れに関連する情報を検出 することを特徴とする請求項 19〜22のいずれか一項記載の露光装置。
[24] 前記検出装置は、前記液浸領域を介して検出光を受光することを特徴とする請求 項 19〜23のいずれか一項記載の露光装置。
[25] 前記検出装置は、前記液浸領域を撮像することを特徴とする請求項 19〜24のい ずれか一項記載の露光装置。
[26] 前記検出装置は、少なくとも前記液浸領域に対して前記物体側からその状態を検 出することを特徴とする請求項 19〜25のいずれか一項記載の露光装置。
[27] 前記検出装置は、少なくとも前記物体の移動中に前記液浸領域の状態を検出する ことを特徴とする請求項 19〜26のいずれか一項記載の露光装置。
[28] 前記物体の移動条件は、前記物体の移動速度、移動距離、及び移動方法の少な くとも 1つを含むことを特徴とする請求項 19〜27のいずれか一項記載の露光装置。
[29] 前記液浸条件は、単位時間当たりの液体供給量及液体回収量の少なくとも一方を 含むことを特徴とする請求項 19〜28のいずれか一項記載の露光装置。
[30] 請求項 19〜請求項 29のいずれか一項記載の露光装置を用いるデバイス製造方 法。
PCT/JP2006/306675 2005-03-30 2006-03-30 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法 WO2006106832A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/887,344 US9239524B2 (en) 2005-03-30 2006-03-30 Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
EP06730623A EP1865539A4 (en) 2005-03-30 2006-03-30 METHOD FOR DETERMINING EXPOSURE CONDITIONS, EXPOSURE METHOD, EXPOSURE DEVICE, AND DEVICE PRODUCTION APPARATUS
KR1020077018572A KR101197071B1 (ko) 2005-03-30 2006-03-30 노광 조건의 결정 방법, 노광 방법 및 노광 장치, 그리고디바이스 제조 방법
JP2007512860A JP4605219B2 (ja) 2005-03-30 2006-03-30 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
US14/757,542 US20160124317A1 (en) 2005-03-30 2015-12-23 Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-098047 2005-03-30
JP2005098047 2005-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/887,344 A-371-Of-International US9239524B2 (en) 2005-03-30 2006-03-30 Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
US14/757,542 Division US20160124317A1 (en) 2005-03-30 2015-12-23 Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region

Publications (1)

Publication Number Publication Date
WO2006106832A1 true WO2006106832A1 (ja) 2006-10-12

Family

ID=37073388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306675 WO2006106832A1 (ja) 2005-03-30 2006-03-30 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法

Country Status (5)

Country Link
US (2) US9239524B2 (ja)
EP (1) EP1865539A4 (ja)
JP (1) JP4605219B2 (ja)
KR (1) KR101197071B1 (ja)
WO (1) WO2006106832A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300771A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び露光条件の決定方法
JP2010219510A (ja) * 2009-02-19 2010-09-30 Asml Netherlands Bv リソグラフィ装置、リソグラフィ装置の制御方法及びデバイス製造方法
US20140362354A1 (en) * 2011-12-08 2014-12-11 Nikon Corporation Information calculation method, exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US10627721B2 (en) 2015-10-01 2020-04-21 Asml Netherlands B.V. Lithography apparatus, and a method of manufacturing a device
US12070951B2 (en) 2020-10-14 2024-08-27 Canon Kabushiki Kaisha Liquid discharge apparatus, imprint apparatus, and detection method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8953141B2 (en) * 2007-12-21 2015-02-10 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with asymmetric acceleration profile of substrate table to maintain meniscus of immersion liquid
EP2264529A3 (en) * 2009-06-16 2011-02-09 ASML Netherlands B.V. A lithographic apparatus, a method of controlling the apparatus and a method of manufacturing a device using a lithographic apparatus
JP5457384B2 (ja) * 2010-05-21 2014-04-02 東京エレクトロン株式会社 液処理装置及び液処理方法
WO2016020121A1 (en) * 2014-08-07 2016-02-11 Asml Netherlands B.V. Lithography apparatus and method of manufacturing a device
JP2018146810A (ja) * 2017-03-07 2018-09-20 オリンパス株式会社 光学系、浸液保持器、観察装置
CN113939730A (zh) * 2019-05-13 2022-01-14 荷语布鲁塞尔自由大学 用于颗粒表征的方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207696A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及びデバイス製造方法
WO2005010962A1 (ja) * 2003-07-28 2005-02-03 Nikon Corporation 露光装置及びデバイス製造方法、並びに露光装置の制御方法
JP2005057278A (ja) * 2003-07-31 2005-03-03 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2005098047A (ja) 2003-09-02 2005-04-14 Dooei Gaiso Kk 開放防止柵
WO2005076321A1 (ja) * 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
JP2005259789A (ja) * 2004-03-09 2005-09-22 Nikon Corp 検知システム及び露光装置、デバイス製造方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US6721034B1 (en) * 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
JP3484684B2 (ja) 1994-11-01 2004-01-06 株式会社ニコン ステージ装置及び走査型露光装置
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
KR20030096435A (ko) * 1996-11-28 2003-12-31 가부시키가이샤 니콘 노광장치 및 노광방법
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
KR100512450B1 (ko) 1996-12-24 2006-01-27 에이에스엠엘 네델란즈 비.브이. 두개의물체홀더를가진이차원적으로안정화된위치설정장치와이런위치설정장치를구비한리소그래픽장치
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
US6020964A (en) 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
US6897963B1 (en) * 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
JP4264676B2 (ja) 1998-11-30 2009-05-20 株式会社ニコン 露光装置及び露光方法
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP4714403B2 (ja) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
JP4117530B2 (ja) * 2002-04-04 2008-07-16 セイコーエプソン株式会社 液量判定装置、露光装置、および液量判定方法
CN100462844C (zh) 2002-08-23 2009-02-18 株式会社尼康 投影光学系统、微影方法、曝光装置及使用此装置的方法
CN101470360B (zh) * 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
JP3977324B2 (ja) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
KR100967835B1 (ko) 2002-12-13 2010-07-05 코닌클리케 필립스 일렉트로닉스 엔.브이. 층상 스폿 조사 방법 및 장치에서의 액체 제거
EP1584089B1 (en) 2002-12-19 2006-08-02 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004086468A1 (ja) 2003-02-26 2004-10-07 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
KR101915914B1 (ko) * 2003-05-28 2018-11-06 가부시키가이샤 니콘 노광 방법, 노광 장치, 및 디바이스 제조 방법
JP2005019616A (ja) * 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
US7061578B2 (en) * 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
EP3048485B1 (en) 2004-08-03 2017-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006237422A (ja) 2005-02-28 2006-09-07 Canon Inc 液浸露光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207696A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及びデバイス製造方法
WO2005010962A1 (ja) * 2003-07-28 2005-02-03 Nikon Corporation 露光装置及びデバイス製造方法、並びに露光装置の制御方法
JP2005057278A (ja) * 2003-07-31 2005-03-03 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2005098047A (ja) 2003-09-02 2005-04-14 Dooei Gaiso Kk 開放防止柵
WO2005076321A1 (ja) * 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
JP2005259789A (ja) * 2004-03-09 2005-09-22 Nikon Corp 検知システム及び露光装置、デバイス製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865539A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300771A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び露光条件の決定方法
JP2010219510A (ja) * 2009-02-19 2010-09-30 Asml Netherlands Bv リソグラフィ装置、リソグラフィ装置の制御方法及びデバイス製造方法
US8405817B2 (en) 2009-02-19 2013-03-26 Asml Netherlands B.V. Lithographic apparatus, a method of controlling the apparatus and a device manufacturing method
US20140362354A1 (en) * 2011-12-08 2014-12-11 Nikon Corporation Information calculation method, exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US20170307984A1 (en) 2011-12-08 2017-10-26 Nikon Corporation Information calculation method, exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US10642159B2 (en) 2011-12-08 2020-05-05 Nikon Corporation Information calculation method, exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US10942457B2 (en) 2011-12-08 2021-03-09 Nikon Corporation Information calculation method, exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US11360394B2 (en) 2011-12-08 2022-06-14 Nikon Corporation Information calculation method, exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US10627721B2 (en) 2015-10-01 2020-04-21 Asml Netherlands B.V. Lithography apparatus, and a method of manufacturing a device
US12070951B2 (en) 2020-10-14 2024-08-27 Canon Kabushiki Kaisha Liquid discharge apparatus, imprint apparatus, and detection method
JP7565747B2 (ja) 2020-10-14 2024-10-11 キヤノン株式会社 液体吐出装置及びインプリント装置

Also Published As

Publication number Publication date
US20100002206A1 (en) 2010-01-07
US9239524B2 (en) 2016-01-19
US20160124317A1 (en) 2016-05-05
JP4605219B2 (ja) 2011-01-05
JPWO2006106832A1 (ja) 2008-09-11
EP1865539A1 (en) 2007-12-12
KR101197071B1 (ko) 2012-11-06
EP1865539A4 (en) 2011-09-07
KR20070115889A (ko) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4888388B2 (ja) 露光方法、露光装置、及びデバイス製造方法
JP4605219B2 (ja) 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
JP5194799B2 (ja) 露光方法、露光装置、及びデバイス製造方法
JP5239337B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP4872916B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2006101120A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP4488006B2 (ja) 露光装置及びデバイス製造方法
JP2011082573A (ja) 露光装置及び露光方法、デバイス製造方法
KR20080026082A (ko) 노광장치 및 방법, 노광장치의 메인터넌스 방법 및디바이스 제조방법
US8638422B2 (en) Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
WO2006080427A1 (ja) 露光方法、露光装置、及びデバイス製造方法
JP4544303B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2007287824A (ja) 露光装置及びデバイス製造方法
WO2006006565A1 (ja) 露光装置及びデバイス製造方法
WO2008075742A1 (ja) メンテナンス方法、露光方法及び露光装置、並びにデバイス製造方法
JP4992718B2 (ja) 解析方法、露光方法及びデバイス製造方法
JP2006310587A (ja) 露光装置及びデバイス製造方法
JP2008205460A (ja) 決定方法、評価方法、露光方法、評価装置、液浸露光装置、及びデバイス製造方法
JP2008243912A (ja) 露光装置、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077018572

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007512860

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730623

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887344

Country of ref document: US