[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007069674A1 - 接合材とその製造方法、及びそれを用いたハニカム構造体 - Google Patents

接合材とその製造方法、及びそれを用いたハニカム構造体 Download PDF

Info

Publication number
WO2007069674A1
WO2007069674A1 PCT/JP2006/324908 JP2006324908W WO2007069674A1 WO 2007069674 A1 WO2007069674 A1 WO 2007069674A1 JP 2006324908 W JP2006324908 W JP 2006324908W WO 2007069674 A1 WO2007069674 A1 WO 2007069674A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding material
filler
thermal expansion
expansion coefficient
bonding
Prior art date
Application number
PCT/JP2006/324908
Other languages
English (en)
French (fr)
Inventor
Takahiro Tomita
Hiroki Fujita
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP20060834662 priority Critical patent/EP1964823A4/en
Priority to JP2007550217A priority patent/JP5469305B2/ja
Publication of WO2007069674A1 publication Critical patent/WO2007069674A1/ja
Priority to US12/138,076 priority patent/US8039086B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2448Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the adhesive layers, i.e. joints between segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24495Young's modulus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2265/00Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2265/04Permanent measures for connecting different parts of the filter, e.g. welding, glueing or moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/068Oxidic interlayers based on refractory oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a ceramic structure for joining a plurality of ceramic members, and particularly to a bonding material used for a honeycomb structure for joining a plurality of honeycomb segments integrally.
  • the honeycomb structure is used as a collection filter for exhaust gas, for example, to capture and remove particulate matter (particulates) contained in exhaust gas from a diesel engine or the like.
  • DPF particulate matter
  • a honeycomb structure for example, a plurality of cells that are partitioned and formed by porous partition walls made of silicon carbide (SiC) or the like and that serve as fluid flow paths are parallel to each other in the central axis direction.
  • the structure is arranged as described above.
  • the ends of the P-contacted cells are alternately plugged (in checkered pattern). That is, one end of one cell is open at the other end and the other end is sealed, and the other end adjacent to this is sealed at one end and the other end is open. is doing.
  • the exhaust gas that has flowed into a predetermined cell (inflow cell) from one end is allowed to pass through a porous partition wall, thereby adjacent to the inflow cell (outflow cell).
  • the exhaust gas can be purified by allowing the particulate matter in the exhaust gas to be trapped by the partition when passing through the partition and passing through the partition.
  • Each of the honeycomb structures having such a divided structure has a shape that constitutes a part of the entire structure, and a shape that constitutes the entire structure by being assembled in a direction perpendicular to the central axis.
  • a honeycomb structure satisfying either the Young's modulus of the bonding layer material between the honeycomb segments is 20% or less of the honeycomb segment material, or the material strength of the bonding layer is smaller than the material strength of the honeycomb segment. (Use of a low Young's modulus bonding material) is disclosed (see Patent Document 2).
  • Patent Document 1 Japanese Patent No. 3121497
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-190916
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to form a bonding layer having a high Young's modulus and to reduce the expansion. Therefore, the deformation of the honeycomb segment due to the generated thermal stress can be suppressed by the bonding layer, and the generation filter for exhaust gas that can reduce the occurrence of defects such as cracks, especially in the exhaust gas of diesel engines.
  • An object of the present invention is to provide a bonding material that can be suitably used in the production of a diesel particulate filter (DPF) that collects particulate matter (particulates).
  • DPF diesel particulate filter
  • a bonding material having a Young's modulus after curing of 20% or more of the article to be joined and an average linear thermal expansion coefficient after curing of 70% or less of the article to be joined.
  • the average thermal expansion coefficient of the filler having an average linear thermal expansion coefficient of 50% or less of the object to be bonded is 2.5 ⁇ 10 _6 ⁇ ⁇ _ 1 or less of [1] to [4] Bonding material in any one.
  • the filler having an average linear thermal expansion coefficient of 50% or less of the object to be joined is cordierite
  • the average linear thermal expansion coefficient is 50% or less of the object to be joined, and the Young's modulus is 100G.
  • the filler having an average linear thermal expansion coefficient of 50% or less of an object to be joined and a Young's modulus of 100 GPa or more is selected from the group consisting of cordierite, aluminum titanate, and zirconium phosphate.
  • a method for producing a bonding material comprising a step of obtaining a paste-like bonding material composition by mixing and kneading the matrix according to any one of [12].
  • [0029] A ceramic structure produced by bonding a plurality of ceramic members with the bonding material according to any one of [1] to [: 14].
  • At least one filler selected from the group consisting of cordierite, j3-spodumene, amorphous silica, aluminum titanate, and zirconium phosphate;
  • Silicon carbide alumina, quartz, aluminum nitride, B C, mullite, SiA10N, silicon nitride
  • Talc my strength, and at least one filler selected from the group consisting of glass flakes, and a bonding material composition comprising two or more fillers and a matrix.
  • a bonding material composition comprising at least one filler selected from the group consisting of cordierite, aluminum titanate, and zirconium phosphate, and a matrix.
  • Fig. 1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention (the entire cross-sectional shape cut by a plane perpendicular to the central axis is circular).
  • FIG. 2 is a front view of a part of another embodiment of the honeycomb structure of the present invention (the entire cross-sectional shape cut by a plane perpendicular to the central axis is square) viewed from the end surface side.
  • FIG. 3 is a perspective view schematically showing a honeycomb segment used in another embodiment of the honeycomb structure of the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • the bonding material according to the present invention is a bonded body in which two or more objects to be bonded are integrated via a bonding material layer, and the Young's modulus of the bonding material layer is 20% or more of the objects to be bonded ( More preferably, the average linear thermal expansion coefficient is 70% or less (more preferably 1% or more and 65% or less) of the workpiece. [0037] Thereby, the bonding material of the present invention is less susceptible to thermal stress and thermal deformation generated between the honeycomb segments as compared with a conventional bonding material (for example, see Patent Document 2), such as a lower Young's modulus.
  • a conventional bonding material for example, see Patent Document 2
  • the new Young's modulus can be used to suppress thermal stress and thermal deformation that occur between honeycomb segments and to ensure sufficient bonding strength between honeycomb segments.
  • a sound honeycomb segment bonded body can be obtained, which can contribute to improvement in productivity and quality of the honeycomb structure.
  • the bonding material of the present invention has an average linear thermal expansion of 3 ⁇ 10 _6 ⁇ ⁇ _1 less beam preferably coefficients, 2.5 ⁇ 10 _6 ⁇ ⁇ _1 or less, more preferably, 2 ⁇ 0 ⁇ 1 ⁇ 10 _6 ⁇ ⁇ _1 more it is preferable that the 0 ⁇ 10 _6 ⁇ ⁇ _1 or less). This is because the smaller the thermal expansion coefficient of the bonding material, the easier it is to suppress thermal stress and thermal deformation that occur between the honeycomb segments.
  • the bonding material of the present invention is obtained by curing a bonding material composition containing a filler and a matrix as main components and containing an additive such as an organic binder and water.
  • the proportion of the filler in the bonding material composition is preferably 10 to 95% by volume (more preferably 20 to 90% by volume), and the proportion of the matrix preferably 5 to 90% by volume (more preferably 10 to 80% by volume).
  • the bonding material of the present invention comprises a filler having an average linear thermal expansion coefficient of 50% or less of the object to be bonded (hereinafter referred to as filler (1)) and a filler having a Young's modulus of lOOGPa or higher (hereinafter referred to as filler). It may be obtained from a bonding material composition mainly composed of two or more fillers and a matrix.
  • the bonding material of the present invention has a filler having an average linear thermal expansion coefficient of 50% or less of that to be bonded and a Young's modulus of lOOGPa or more (hereinafter referred to as filler (3)) and matrix force. It is preferably obtained from a mainly composed bonding material composition.
  • the bonding material of the present invention has an average linear thermal expansion coefficient of the filler (1) and the filler (3) is, 2.5 ⁇ 10 _6 ⁇ ⁇ _1 or less (more preferably, 2.0 ⁇ 10 _6 ⁇ ⁇ _1 less, more preferably, it is preferable that 0.01 ⁇ 10 _6 ⁇ ⁇ _1 more 1.5 ⁇ 10 _6 ⁇ ⁇ _1 below).
  • the filler (1) used in the present invention is at least one selected from the group consisting of cordierite, ⁇ -spodumene, amorphous silica, aluminum titanate, and zirconium phosphate ( More preferably, it is preferably about:!
  • the filler (2) used in the present invention includes silicon carbide, alumina, quartz, aluminum nitride, BC, mullite, SiAlON, silicon nitride, zirconia, cordierite, aluminum titanate.
  • the filler (1) used in the present invention contains the plate-like particles such as boron nitride, talc, my strength, and glass flakes, so that the bonding material (cured bonding material composition) of the present invention is used. Improves mechanical properties.
  • the filler (3) used in the present invention is preferably at least one selected from the group consisting of cordierite, aluminum titanate, and zirconium phosphate. Therefore, specifically, the bonding material composition constituting the bonding material of the present invention is at least selected from the group consisting of cordierite, -spodumene, amorphous silica, aluminum titanate, and zirconium phosphate.
  • the shape of the fillers (1) to (3) used in the present invention is not limited to any shape such as a spherical shape, a plate shape, an irregular shape such as a crushed material, a fibrous shape, or a needle shape. Although it is not limited, it is preferable that it is indeterminate like a crushed material from the viewpoint of cost, and from the viewpoint of the strength of the bonded material after curing, it is a shape with a high aspect ratio such as plate shape, needle shape, fiber shape, etc. To the health aspect that is preferred From the consideration, a plate shape is more preferable. Furthermore, it is preferable that the average particle size of the fillers (1) to (3) used in the present invention is 0.01 zm or more and 100 xm or less. A distribution in which a normal distribution exists may be used.
  • colloidal silica colloidal alumina, which is preferably an inorganic adhesive, Ethyl silicate, water glass, silica polymer, aluminum phosphate, bentonite, and the like are examples.
  • colloidal silica is more preferable. This is because it is excellent in adhesive strength, compatibility with fillers, chemical stability, heat resistance, and the like.
  • the filler (1) and the filler (2) or the filler (3) are mixed, and an organic binder (for example, a methyl cell port) is mixed in some cases. (MC), carboxymethyl cellulose (CMC), etc.), a foamed resin and a dispersant. Further, as a matrix, an inorganic adhesive (eg, colloidal silica), and in some cases, water is mixed and mixed in a mixer. By performing kneading for a predetermined time, a paste-like bonding material composition can be produced.
  • an organic binder for example, a methyl cell port
  • the bonding temperature with the objects to be bonded is 1000 ° C or lower (more preferably, 50 ° C or higher and 900 ° C or lower, It is preferably 100 ° C or more and 800 ° C or less) from the viewpoint that sufficient strength and bonding state can be exhibited. Even if it exceeds 1000 ° C, it can be joined without any problem, but it is not preferable because it is difficult to obtain desired properties (Young's modulus, thermal expansion coefficient, etc.).
  • the honeycomb structure 1 of the present invention has a plurality of cells 5 that are partitioned and formed by the porous partition walls 6 and are formed in the direction of the central axis of the honeycomb structure 1. It has a structure that is arranged in parallel to each other, each has a shape that forms part of the entire structure, and is assembled by being assembled in a direction perpendicular to the central axis of the honeycomb structure 1.
  • a plurality of honeycomb segments 2 having a shape that constitutes a structure are integrally bonded by a bonding material layer 9 formed from the bonding material of the present invention.
  • the honeycomb segment bonded body 10 is constituted.
  • the overall cross-sectional shape cut along a plane perpendicular to the central axis of the honeycomb structure 1 is circular, elliptical, triangular, square, It is ground to have other shapes, and the outer peripheral surface is covered with the coating material 4.
  • particulate matter (particulates) including soot discharged from the diesel engine can be captured by disposing the honeycomb structure 1 in an exhaust system of the diesel engine.
  • each honeycomb segment 2 has a shape constituting a part of the entire structure of the honeycomb structure 1 (honeycomb segment bonded body 10) (see FIG. 1). It has a shape that constitutes the entire structure when assembled in a direction perpendicular to the central axis of 1 (see Fig. 1).
  • the cells 5 are arranged so as to be parallel to each other in the direction of the central axis of the two-cam structure 1, and adjacent ends of the cells 5 are alternately sealed with the fillers 7. .
  • the left end side in Figs. 3 and 4 is open, while the right end side is sealed with the filler 7, and another cell 5 adjacent thereto is sealed.
  • the force at which the left end side is sealed with the filler 7 is open on the right end side. Due to such plugging, as shown in FIG. 2, the end face of the honeycomb segment 2 has a pine pattern.
  • FIG. 4 shows a case where the left side of the honeycomb segment 2 is an exhaust gas inlet, and the exhaust gas is opened without being plugged and has a cell 5 (inflow cell) force. Flow into.
  • the exhaust gas flowing into the cell 5 (inflow cell) passes through the porous partition wall 6 and flows out from the other cell 5 (outflow cell).
  • particulate matter (particulates) containing soot in the exhaust gas is captured by the partition walls 6. In this way, exhaust gas can be purified.
  • particulate matter containing particulates (particulates) containing soot accumulates over time inside the honeycomb segment 2 and the pressure loss increases. Therefore, regeneration for burning soot and the like is performed.
  • the honeycomb segment 2 having a square cross section as a whole, it may be a triangle, a hexagon or the like.
  • the cross-sectional shape of cell 5 may be triangular, hexagonal, circular, elliptical, or any other shape.
  • the bonding material layer 9 is formed from the bonding material of the present invention, and is applied to the outer peripheral surface of the honeycomb segment 2 to function to bond the honeycomb segments 2.
  • the bonding material layer 9 may be applied to the outer peripheral surface of each honeycomb segment 2 that is in contact with P, but only between the corresponding outer peripheral surfaces between the adjacent honeycomb segments 2. You may go. Such application to only one side of the corresponding surface is preferable because the amount of the bonding material layer 9 used can be saved.
  • the thickness of the bonding material layer 9 is determined in consideration of the bonding force between the two cam segments 2, and is appropriately selected within the range of 0.5 to 3. Omm, for example.
  • the material of the honeycomb segment 2 used in the present embodiment includes silicon carbide (SiC), silicon carbide (SiC) as an aggregate and silicon (Si) as a binder from the viewpoint of strength and heat resistance.
  • the honeycomb segment 2 is prepared, for example, by appropriately selecting from the above-mentioned materials, and binders such as methenoresenorelose, hydroxypropoxynoresenorelose, hydroxyethenoresenorelose, force carboxymethylcellulose, polybulu alcohol, etc. Then, water as a surfactant and a solvent is added to form a plastic clay, and the clay is extruded to have the shape described above, and then dried by microwaves, hot air, etc. This can be done by sintering.
  • binders such as methenoresenorelose, hydroxypropoxynoresenorelose, hydroxyethenoresenorelose, force carboxymethylcellulose, polybulu alcohol, etc. Then, water as a surfactant and a solvent is added to form a plastic clay, and the clay is extruded to have the shape described above, and then dried by microwaves, hot air, etc. This can be done by sintering.
  • the same material as that of the honeycomb segment 2 can be used.
  • the plugging with the filler 7 is performed by immersing the end face of the honeycomb segment 2 in the slurry-like filler 7 in a state where the cells 5 that are not plugged are masked. This can be done by filling the cell 5.
  • Filler 7 may be filled before firing or after firing after forming the two-cam segment 2, but the firing process is completed once after firing. Therefore, it is preferable.
  • a paste-like bonding material composition is applied to the outer peripheral surface of the honeycomb segment 2 to form a bonding material layer 9, and a predetermined three-dimensional shape (honeycomb structure) is formed.
  • a plurality of honeycomb segments 2 are assembled so that the overall structure of the body 1 is obtained, and after crimping in this assembled state, they are dried by heating. In this way, a joined body in which a plurality of honeycomb segments 2 are joined in a body-like manner is produced. Thereafter, the joined body is polished into the above-described shape, and the outer peripheral surface is covered with the coating material 4 and dried by heating. In this way, the honeycomb structure 1 shown in FIG. 1 is manufactured.
  • the coating material 4 the same material as the bonding material layer 9 can be used.
  • the thickness of the coating material 4 is appropriately selected within a range of, for example, 0.:! To 5 mm.
  • honeycomb segment raw material SiC powder and metal Si powder were mixed at a mass ratio of 80:20, and a pore former, an organic binder, a surfactant and water were added thereto to produce a plastic clay.
  • This clay is extruded and dried to form a square with a partition wall thickness of 310 zm, a cell density of approximately 46.5 cells / cm 2 (300 cells / square inch), a cross-section of 35 mm square, length force SI A 52 mm honeycomb segment molded body was obtained.
  • both end faces of the cells were sealed so that the end faces had a checkered pattern. In other words, sealing was performed so that adjacent cells were sealed at opposite ends.
  • the matrix ratio in the bonding material composition is filler A in the column “Integral integral ratio of filler in bonding material composition” in Table 1. And Fila B total 100.
  • the “Others” column in Table 1 dispersant, foaming resin and organic binder were added externally to the total of all fillers and matrices.
  • the bonding material composition No. 1 is coated on the outer wall surface of the honeycomb segment so as to have a thickness of about 1 mm to form a bonding material layer, and a process of placing another honeycomb segment thereon is repeated, Fabricate a honeycomb segment laminate consisting of 16 honeycomb segments combined in 4 x 4, join the whole by applying pressure from outside, etc., then dry at 140 ° C for 2 hours As a result, a joined honeycomb segment assembly was obtained.
  • the outer periphery of the obtained bonded honeycomb segment assembly was cut into a cylindrical shape, and then the outer peripheral surface was coated with a coating material and dried and cured at 700 ° C. for 2 hours to obtain a honeycomb structure.
  • the Young's modulus, average thermal expansion coefficient, and porosity of the bonding material portion (cured bonding material composition) in the obtained honeycomb structure were determined by cutting the bonding material portion of the honeycomb structure into a predetermined shape. The sample was cut out and Young's modulus was measured from the load-displacement curve in a three-point bending test according to JIS R1601, the average linear thermal expansion coefficient according to JIS R1618, and the porosity was measured by Archimedes method. The results are shown in Table 2.
  • the honeycomb structure is heated to 550 ° C for 2 hours in an electric furnace, brought to a uniform temperature (450 ° C), taken out to room temperature, and the thermal shock resistance is evaluated by the presence or absence of cracks in the honeycomb structure.
  • Table 2 “O” means no cracking, and “X” means cracking.
  • This test evaluates the thermal shock resistance based on the presence or absence of cracks in the honeycomb structure under the condition that the particulates accumulated for filter regeneration are burned and the temperature at the center stop of the honeycomb is 1000 ° C.
  • means no cracking
  • X means cracking.
  • honeycomb structures were produced in the same manner as in Example 1 except that the bonding material in Example 1 was changed to bonding material compositions Nos. 2 to 11 shown in Table 1. Further, in Comparative Example 1 and Comparative Example 2, honeycomb structures were produced in the same manner as in Example 1 except that the bonding material compositions No. 12 and No. 13 were changed.
  • the honeycomb structures (Examples 2 to 11: Comparative Example 1 and Comparative Example 2) thus obtained were evaluated and tested in the same manner as in Example 1. . The results are shown in Table 2.
  • Comparative Example 1 since the linear thermal expansion coefficient of the bonding material / the linear thermal expansion coefficient of the workpiece was greater than 70%, crack force was generated after various tests. In Comparative Example 2, since the Young's modulus of the bonding material and the Young's modulus of the object to be bonded were less than 20%, a sample to be used for a test after the bad bonding state could not be produced.
  • the bonding material of the present invention is used when producing a collection filter for exhaust gas, particularly a diesel particulate filter (DPF) that collects particulate matter (particulate) in exhaust gas from a diesel engine. It can be used suitably.
  • DPF diesel particulate filter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)

Abstract

 硬化後の接合材層のヤング率が被接合物の20%以上であり、且つ硬化後の平均線熱膨張係数が被接合物の70%以下である接合材である。この接合材は、発生する熱応力によるハニカムセグメントの変形を接合層で抑制することができ、クラック等の欠陥の発生を低減することができる排ガス用の捕集フィルタ、中でも、ディーゼルエンジンの排ガス中の粒子状物質(パティキュレート)等を捕集するディーゼルパティキュレートフィルタ(DPF)の作製時に好適に用いることができる。

Description

明 細 書
接合材とその製造方法、及びそれを用いたハニカム構造体
技術分野
[0001] 本発明は、セラミックス部材の複数を接合するセラミックス構造体、特に、ハニカムセ グメントの複数を一体的に接合するハニカム構造体に用いられる接合材に関する。 背景技術
[0002] ハニカム構造体が、排ガス用の捕集フィルタとして、例えば、ディーゼルエンジン等 力 の排ガスに含まれている粒子状物質 (パティキュレート)を捕捉して除去するため に、ディーゼルパティキュレートフィルタ(DPF)として、ディーゼルエンジンの排気系 等に組み込まれて用いられている。
[0003] このようなハニカム構造体は、例えば、炭化珪素(SiC)等からなる多孔質の隔壁に よって区画、形成された流体の流路となる複数のセルが中心軸方向に互いに並行す るように配設された構造を有している。また、 P 接したセルの端部は、交互に(市松模 様状に)目封じされている。すなわち、一のセルは、一方の端部が開口し、他方の端 部が目封じされており、これと隣接する他のセルは、一方の端部が目封じされ、他方 の端部が開口している。
[0004] このような構造とすることにより、一方の端部から所定のセル (流入セル)に流入させ た排ガスを、多孔質の隔壁を通過させることによって流入セルに隣接したセル (流出 セル)を経由して流出させ、隔壁を通過させる際に排ガス中の粒子状物質 (パティキ ュレート)を隔壁に捕捉させることによって、排ガスの浄化をすることができる。
[0005] このようなハニカム構造体(フィルタ)を長期間継続して使用するためには、フィルタ を再生させる必要がある。すなわち、フィルタ内部に経時的に堆積したパティキユレ ートによる圧力損失の増大を取り除くため、フィルタ内部に堆積したパティキュレート を燃焼させて除去する必要がある。このフィルタ再生時には大きな熱応力が発生し、 この熱応力がハニカム構造体にクラックや破壊等の欠陥を発生させるという問題があ つた。このような熱応力に対する耐熱衝撃性の向上の要請に対応して、複数のハニ カムセグメントを接合材層によって一体的に接合することによって熱応力を分散、緩 和する機能を持たせた分割構造のハニカム構造体が提案され、その耐熱衝撃性を ある程度改善することができるようになった。このような分割構造のハニカム構造体は 、それぞれが全体構造の一部を構成する形状を有するとともに、中心軸に対して垂 直な方向に組み付けられることによって全体構造を構成することになる形状を有する 複数のハニカムセグメントが、接合材層によって一体的に接合されて、中心軸に対し て垂直な平面で切断した全体の断面形状が円形等の所定の形状となるように成形さ れた後、その外周面がコーティング材により被覆された構造となっている。
[0006] しかし、近年、フィルタはさらに大型化の要請が高まり、再生時に発生する熱応力も 増大することになり、上述の欠陥を防止するため、構造体としての耐熱衝撃性の向上 が強く望まれるようになった。中でも、複数のハニカムセグメントを一体的に接合する ための接合材層には、優れた応力緩和機能と接合強度とを実現することによって耐 熱衝撃性に優れたハニカム構造体を実現することが望まれている。
[0007] このような問題に対応して、シール材 (接合材層)に、無機繊維や有機バインダーを 添加することにより、乾燥硬化の過程でのマイグレーションの発生を抑制し、上述の 欠陥の発生を抑制して、耐久性を向上させることを企図したセラミック構造体 (ハニ力 ム構造体)が開示されている (特許文献 1参照)。
[0008] また、ハニカムセグメント間の接合層材質のヤング率をハニカムセグメント材質の 20 %以下、又は接合層の材料強度がハニカムセグメントの材料強度より小さくすること のいずれか一方を満足させるハニカム構造体 (低ヤング率接合材の使用)が開示さ れている(特許文献 2参照)。
[0009] し力 ながら、特許文献 1に開示されたセラミックス構造体 (ノ、二カム構造体)に用い られるシール材 (接合材層)において、構成する無機繊維と有機バインダーとが相互 に絡み合うことにより実現した均一な組織では、セグメント/接合材層界面の接合強 度の確保と接合材層自体の応力緩和機能の確保との両立が難しいという問題があつ た。
[0010] また、特許文献 2で開示された接合層を形成する接合材の低ヤング率化は、ハニカ ムセグメント間で発生する熱応力や熱変形を緩和する点で有効であるが、低ヤング 率化のために、接合材を高気孔率化すると、ハニカムセグメント間の接合強度が不十 分となり、健全なハニカムセグメント接合体を得ることができないという問題点があった
[0011] 特許文献 1 :特許第 3121497号公報
特許文献 2 :特開 2001— 190916号公報
発明の開示
[0012] 本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とす るところは、高ヤング率の接合層を形成するとともに、低膨張化を図ることができるた め、発生する熱応力によるハニカムセグメントの変形を接合層で抑制することができ、 クラック等の欠陥の発生を低減することができる排ガス用の捕集フィルタ、中でも、デ イーゼルエンジンの排ガス中の粒子状物質 (パティキュレート)等を捕集するディーゼ ルパティキュレートフィルタ(DPF)の作製時に好適に用いることができる接合材を提 供することにある。
[0013] 上記目的を達成するため、本発明によって、下記の接合材とその製造方法、及び それを用レ、たハニカム構造体が提供される。
[0014] [1] 硬化後のヤング率が被接合物の 20%以上であり、且つ硬化後の平均線熱膨 張係数が被接合物の 70%以下である接合材。
[0015] [2] 前記平均線熱膨張係数が、 3 X 10— ^K—1以下である前記 [1]に記載の接合 材。
[0016] [3] 平均線熱膨張係数が被接合物の 50%以下のフィラーと、ヤング率が lOOGPa 以上のフィラーとの 2種以上のフィラー及びマトリックスから主に構成された接合材組 成物によって形成される前記 [1]又は [2]に記載の接合材。
[0017] [4] 前記ヤング率が lOOGPa以上のフィラーに、板状粒子を含む前記 [1]〜[3]の いずれかに記載の接合材。
[0018] [5] 前記平均線熱膨張係数が被接合物の 50%以下のフィラーの平均熱膨張係数 力 2. 5 Χ 10_6·Κ_ 1以下である前記 [1]〜[4]のいずれかに記載の接合材。
[0019] [6] 前記平均線熱膨張係数が被接合物の 50%以下のフィラーが、コージエライト、
-スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリン酸ジルコニウムからな る群から選択された少なくとも 1種以上である前記 [1]〜 [5]のレ、ずれかに記載の接 合材。
[0020] [7] 前記ヤング率が lOOGPa以上のフイラ一力 炭化珪素、アルミナ、石英、窒化ァ ノレミニゥム、 B C、ムライト、 SiAl〇N、窒化珪素、ジルコユア、コージエライト、チタン
4
酸アルミニウム、リン酸ジルコニウム、窒化ホウ素、タルク、マイ力、及びガラスフレーク 力 なる群から選択された少なくとも 1種以上である前記 [1]〜[6]のいずれかに記 載の接合材。
[0021] [8] 平均線熱膨張係数が被接合物の 50%以下であり、且つヤング率が lOOGPa 以上のフィラー及びマトリックスから主に構成された接合材組成物によって形成され る前記 [ 1 ]又は [ 2]に記載の接合材。
[0022] [9] 前記平均線熱膨張係数が被接合物の 50%以下であり、且つヤング率が 100G
Pa以上のフィラーの平均熱膨張係数力 2. 5 Χ 10_6·Κ_ 1以下である前記 [8]に記 載の接合材。
[0023] [10] 前記平均線熱膨張係数が被接合物の 50%以下であり、且つヤング率が 100 GPa以上のフィラーが、コージエライト、チタン酸アルミニウム、及びリン酸ジルコニゥ ムからなる群から選択された少なくとも 1種以上である前記 [8]又は [9]に記載の接合 材。
[0024] [11] 前記マトリックス力 S、無機接着剤である前記 [1]〜[: 10]のいずれかに記載の 接合材。
[0025] [12] 前記無機接着剤が、コロイダルシリカである前記 [11]に記載の接合材。
[0026] [13] 被接合物との接合温度が、 1000°C以下である前記 [1]〜[: 12]のいずれかに 記載の接合材。
[0027] [14] ハニカムセグメントの接合に用いる [1]〜[: 13]のいずれかに記載の接合材。
[0028] [15] 前記 [3]〜[: 10]のいずれかに記載のフィラー、及び前記 [3]、 [8]、 [11]〜[
12]のいずれかに記載のマトリックスを混合し、混練を行うことにより、ペースト状の接 合材組成物を得る工程を含む、接合材の製造方法。
[0029] [16] 前記 [1]〜[: 14]のいずれかに記載の接合材で、複数のセラミックス部材を接 合して作製されたセラミックス構造体。
[0030] [17] 前記 [1]〜[: 14]のいずれかに記載の接合材で、複数のハニカムセグメントを 接合して作製されたハニカム構造体。
[0031] [18] コージヱライト、 j3 -スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリ ン酸ジルコニウムからなる群から選択された少なくとも 1種以上のフィラーと、
炭化珪素、アルミナ、石英、窒化アルミニウム、 B C、ムライト、 SiA10N、窒化珪素
4
、ジルコユア、コージヱライト、チタン酸アルミニウム、リン酸ジルコニウム、窒化ホウ素
、タルク、マイ力、及びガラスフレークからなる群から選択された少なくとも 1種以上の フィラーとの 2種以上のフィラー、及びマトリックスを含む接合材組成物。
[0032] [19] コージエライト、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から 選択された少なくとも 1種以上のフィラー、及びマトリックスを含む接合材組成物。 図面の簡単な説明
[0033] [図 1]本発明のハニカム構造体の一の実施の形態(中心軸に対して垂直な平面で切 断した全体の断面形状が円形)を模式的に示す斜視図である。
[図 2]本発明のハニカム構造体の他の実施の形態(中心軸に対して垂直な平面で切 断した全体の断面形状が正方形)の一部を端面側から見た正面図である。
[図 3]本発明のハニカム構造体の他の実施の形態に用いられるハニカムセグメントを 模式的に示す斜視図である。
[図 4]図 3における A— A線断面図である。
符号の説明
[0034] 1 :ハニカム構造体、 2 :ハニカムセグメント、 4 :コーティング材、 5 :セル、 6 :隔壁、 7 : 充填材、 9 :接合材層、 10 :ハニカムセグメント接合体。
発明を実施するための最良の形態
[0035] 以下、本発明の接合材を具体的な実施形態に基づき詳細に説明するが、本発明 は、これに限定されて解釈されるものではなぐ本発明の範囲を逸脱しない限りにお いて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。
[0036] 本発明に係る接合材は、二つ以上の被接合物が、接合材層を介して一体化されて なる接合体において、接合材層のヤング率が被接合物の 20%以上(より好ましくは、 25%以上 200%以下)であり、且つ平均線熱膨張係数が被接合物の 70%以下(より 好ましくは、 1 %以上 65%以下)である。 [0037] これにより、本発明の接合材は、従来の接合材 (例えば、特許文献 2参照)と比較し て、低ヤング率化のように、ハニカムセグメント間で発生する熱応力や熱変形を緩和 するのとは異なり、新たに高ヤング率化することにより、ハニカムセグメント間で発生す る熱応力や熱変形を抑制するとともに、ハニカムセグメント間の接合強度を十分に確 保することができるため、健全なハニカムセグメント接合体を得ることができ、しいては 、ハニカム構造体の生産性や品質の向上に寄与することができる。
[0038] また、本発明の接合材は、平均線熱膨張係数を 3Χ10_6·Κ_1以下はり好ましくは 、 2.5Χ10_6·Κ_1以下、更に好ましくは、 0·1Χ10_6·Κ_1以上 2· 0Χ10_6·Κ_1以 下)にすることが好ましい。これは、接合材の熱膨張係数が小さいほど、ハニカムセグ メント間で発生する熱応力や熱変形を抑制しやすくなるからである。
[0039] 尚、本発明の接合材は、フィラーとマトリックスが主成分であり、有機バインダーや水 等の添加物を含有する接合材組成物を硬化することにより得られる。接合材組成物 中に占めるフィラーの割合は、 10〜95体積% (より好ましくは、 20〜90体積%)であ ることが好ましぐマトリックスの割合は、 5〜90体積% (より好ましくは、 10〜80体積 %)であることが好ましい。
[0040] 更に、本発明の接合材は、平均線熱膨張係数が被接合物の 50%以下のフィラー( 以下、フィラー(1)と呼称する)と、ヤング率が lOOGPa以上のフィラー(以下、フイラ 一 (2)と呼称する)との 2種類以上のフィラー及びマトリックスから主に構成された接合 材組成物から得られてもよレヽ。
[0041] このとき、本発明の接合材が得られる接合材組成物中のフィラーの体積分率は、フ イラ一(1) :フィラー(2)=5:95〜95:5(ょり好ましくは、 10: 90〜90: 10)であること が好ましい。
[0042] また、本発明の接合材は、平均線熱膨張係数が被接合物の 50%以下であり、且つ ヤング率が lOOGPa以上のフィラー(以下、フィラー(3)と呼称する)及びマトリックス 力 主に構成された接合材組成物から得られることが好ましい。
[0043] このとき、本発明の接合材は、フィラー(1)及びフィラー(3)の平均線熱膨張係数が 、 2.5Χ10_6·Κ_1以下(より好ましくは、 2.0Χ10_6·Κ_1以下、更に好ましく、 0.01 Χ10_6·Κ_1以上 1.5Χ10_6·Κ_1以下)であることが好ましい。これは、接合材を構 成する材料 (フイラ一及びマトリックス)の特性が接合材の特性に反映されるため、接 合材の平均線熱膨張係数を 3 X lCT^K—1以下とするためにはフイラ一の平均線熱 膨張係数はそれよりもやや低い値 2. 5 X 10— ^K—1以下が必要であるからである。
[0044] ここで、本発明で用いるフィラー(1)は、コージエライト、 β -スポジュメン、非晶質シリ 力、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から選択された少なくと も 1種以上(より好ましくは、:!〜 2種程度)であることが好ましい。
[0045] また、本発明で用いるフィラー(2)は、炭化珪素、アルミナ、石英、窒化アルミニウム 、 B C、ムライト、 SiAl〇N、窒化珪素、ジルコニァ、コージエライト、チタン酸アルミ二
4
ゥム、リン酸ジルコニウム、窒化ホウ素、タルク、マイ力、及びガラスフレークからなる群 力も選択された少なくとも 1種以上であることが好ましい。特に、本発明で用いるフイラ 一(2)は、窒化ホウ素、タルク、マイ力、ガラスフレークのような板状粒子を含有させる ことにより、本発明の接合材 (硬化後の接合材組成物)における機械的特性を向上さ せること力 Sできる。
[0046] 更に、本発明で用いるフィラー(3)は、コージエライト、チタン酸アルミニウム、及びリ ン酸ジルコニウムからなる群から選択された少なくとも 1種以上であることが好ましい。 したがって、具体的には、本発明の接合材を構成する接合材組成物としては、コー ジェライト、 -スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリン酸ジルコ ニゥムからなる群から選択された少なくとも 1種以上のフィラーと、炭化珪素、アルミナ 、石英、窒化アルミニウム、 B C、ムライト、 SiAl〇N、窒化珪素、ジルコユア、コージェ
4
ライト、チタン酸アルミニウム、リン酸ジノレコニゥム、窒化ホウ素、タルク、マイ力、及び ガラスフレークからなる群から選択された少なくとも 1種以上のフィラーとの 2種以上の フィラー、及びマトリックスを含むものである力 \あるいは、コージエライト、チタン酸ァ ルミ二ゥム、及びリン酸ジルコニウムからなる群から選択された少なくとも 1種以上のフ イラ一、及びマトリックスを含むものであることが好ましレ、。
[0047] 尚、本発明で用いるフィラー(1)〜(3)の形状は、球状、板状、破砕物のような不定 形、繊維状、針状等、どのような形状であっても特に限定されないが、コスト面から破 砕物のような不定形であることが好ましぐまた硬化後の接合材の強度の観点から、 板状、針状、繊維状等のアスペクト比の高い形状であることが好ましぐ健康面への 配慮から板状であることがさらに好ましい。更に、本発明で用いるフィラー(1)〜(3) の平均粒径は、 0. 01 z m以上 100 x m以下であることが好ましぐその粒度分布は 正規分布であっても、 2つ以上の正規分布が存在する分布でもよい。
[0048] 本発明で用いるマトリックスは、フィラー粒子同士および被接合物とフイラ一間を適 度に接着する必要があるため、無機接着剤であることが好ましぐコロイダルシリカ、コ ロイダルアルミナ、ェチルシリケート、水ガラス、シリカポリマー、リン酸アルミニウム、 ベントナイト、などが例としてあげられる力 特に、コロイダルシリカであることがより好 ましい。これは、接着力、フィラーとのなじみやすさ、化学的安定性、耐熱性等に優れ ているからである。
[0049] 次に、本発明の接合材の製造方法は、上記フィラー(1)及び上記フィラー(2)、又 は上記フィラー(3)を混合し、場合によって、有機バインダー(例えば、メチルセル口 ース(MC)、カルボキシメチルセルロース(CMC)等)、発泡樹脂及び分散剤を加え 、更に、マトリックスとして、無機接着剤(例えば、コロイダルシリカ等)、場合によって は、水を混合し、ミキサーにて、所定時間の混練を行うことにより、ペースト状の接合 材組成物を製造することができる。
[0050] また、本発明の接合材を用いて被接合物同士を接合させる際、被接合物との接合 温度が、 1000°C以下(より好ましくは、 50°C以上 900°C以下、さらに好ましくは 100 °C以上 800°C以下)であることが、十分な強度や接合状態を発現できるという観点か ら望ましレ、。 1000°Cを超過した場合であっても問題なく接合させることができるが、 所望の特性 (ヤング率や熱膨張係数など)が得られ難くなるため、好ましくない。
[0051] 次に、本発明の接合材を適用したハニカム構造体の構造の一例を具体的に説明 する。
本発明のハニカム構造体 1は、図 1及び図 2に示すように、多孔質の隔壁 6によって 区画、形成された流体の流路となる複数のセル 5がハニカム構造体 1の中心軸方向 に互いに並行するように配設された構造を有し、それぞれが全体構造の一部を構成 する形状を有するとともに、ハニカム構造体 1の中心軸に対して垂直な方向に組み付 けられることによって全体構造を構成することになる形状を有する複数のハニカムセ グメント 2が、本発明の接合材から形成された接合材層 9によって一体的に接合され たハニカムセグメント接合体 10として構成されてなるものである。
[0052] ここで、接合材層 9によるハニカムセグメント 2の接合の後、ハニカム構造体 1の中心 軸に対して垂直な平面で切断した全体の断面形状が円形、楕円形、三角形、正方 形、その他の形状となるように研削加工され、外周面がコーティング材 4によって被覆 される。このハニカム構造体 1を DPFとして用いる場合、ディーゼルエンジンの排気 系等に配置することにより、ディーゼルエンジンから排出されるスートを含む粒子状物 質 (パティキュレート)を捕捉することができる。
[0053] また、図 1においては、一つのハニカムセグメント 2においてのみ、セル 5及び隔壁 6 を示している。それぞれのハニカムセグメント 2は、図 3、 4に示すように、ハニカム構 造体 1 (ハニカムセグメント接合体 10) (図 1参照)の全体構造の一部を構成する形状 を有するとともに、ハニカム構造体 1 (図 1参照)の中心軸に対して垂直な方向に組み 付けられることによって全体構造を構成することになる形状を有している。セル 5はハ 二カム構造体 1の中心軸方向に互いに並行するように配設されており、隣接してレ、る セル 5におけるそれぞれの端部が交互に充填材 7によって目封じされている。
[0054] 所定のセル 5 (流入セル)においては、図 3、 4における左端部側が開口している一 方、右端部側が充填材 7によって目封じされており、これと隣接する他のセル 5 (流出 セル)においては、左端部側が充填材 7によって目封じされる力 右端部側が開口し ている。このような目封じにより、図 2に示すように、ハニカムセグメント 2の端面が巿松 模様状を呈するようになる。このような複数のハニカムセグメント 2が接合されたハニカ ム構造体 1を排ガスの排気系内に配置した場合、排ガスは図 4における左側から各 ハニカムセグメント 2のセル 5内に流入して右側に移動する。
[0055] 図 4においては、ハニカムセグメント 2の左側が排ガスの入口となる場合を示し、排 ガスは、 目封じされることなく開口してレ、るセル 5 (流入セル)力 ハニカムセグメント 2 内に流入する。セル 5 (流入セル)に流入した排ガスは、多孔質の隔壁 6を通過して他 のセル 5 (流出セル)から流出する。そして、隔壁 6を通過する際に排ガス中のスート を含む粒子状物質 (パティキュレート)が隔壁 6に捕捉される。このようにして、排ガス の浄化を行うことができる。このような捕捉によって、ハニカムセグメント 2の内部には スートを含む粒子状物質 (パティキュレート)が経時的に堆積して圧力損失が大きくな るため、スート等を燃焼させる再生が行われる。なお、図 2〜4には、全体の断面形状 が正方形のハニカムセグメント 2を示すが、三角形、六角形等の形状であってもよい。 また、セル 5の断面形状も、三角形、六角形、円形、楕円形、その他の形状であって ちょい。
[0056] 図 2に示すように、接合材層 9は、本発明の接合材から形成されており、ハニカムセ グメント 2の外周面に塗布されて、ハニカムセグメント 2を接合するように機能する。接 合材層 9の塗布は、 P 接しているそれぞれのハニカムセグメント 2の外周面に行って もよいが、隣接したハニカムセグメント 2の相互間においては、対応した外周面の一 方に対してだけ行ってもよい。このような対応面の片側だけへの塗布は、接合材層 9 の使用量を節約できる点で好ましい。接合材層 9の厚さは、ノ、二カムセグメント 2の相 互間の接合力を勘案して決定され、例えば、 0. 5〜3. Ommの範囲で適宜選択され る。
[0057] 本実施の形態に用いられるハニカムセグメント 2の材料としては、強度、耐熱性の観 点から、炭化珪素(SiC)、炭化珪素 (SiC)を骨材としてかつ珪素 (Si)を結合材として 形成された珪素 炭化珪素系複合材料、窒化珪素、コージエライト、ムライト、アルミ ナ、スピネル、炭化珪素 コージエライト系複合材、珪素 炭化珪素複合材、リチウ ムアルミニウムシリケート、チタン酸アルミニウム、 Fe Cr— A1系金属からなる群から 選択される少なくとも一種力 構成された物を挙げることができる。中でも、炭化珪素 (SiC)又は珪素—炭化珪素系複合材料力 構成されてなるものが好ましい。
[0058] ハニカムセグメント 2の作製は、例えば、上述の材料から適宜選択したものに、メチ ノレセノレロース、ヒドロキシプロポキシノレセノレロース、ヒドロキシェチノレセノレロース、力ノレ ボキシメチルセルロース、ポリビュルアルコール等のバインダー、界面活性剤、溶媒と しての水等を添加して、可塑性の坏土とし、この坏土を上述の形状となるように押出 成形し、次いで、マイクロ波、熱風等によって乾燥した後、焼結することにより行うこと ができる。
[0059] セル 5の目封じに用いる充填材 7としては、ハニカムセグメント 2と同様な材料を用い ることができる。充填材 7による目封じは、 目封じをしないセル 5をマスキングした状態 で、ハニカムセグメント 2の端面をスラリー状の充填材 7に浸漬することにより開口して レ、るセル 5に充填することにより行うことができる。充填材 7の充填は、ノ、二カムセグメ ント 2の成形後における焼成前に行っても、焼成後に行ってもよいが、焼成前に行うこ との方が、焼成工程が 1回で終了するため好ましい。
[0060] 以上のようなハニカムセグメント 2の作製の後、ハニカムセグメント 2の外周面にぺー スト状の接合材組成物を塗布し、接合材層 9を形成し、所定の立体形状 (ハニカム構 造体 1の全体構造)となるように複数のハニカムセグメント 2を組み付け、この組み付 けた状態で圧着した後、加熱乾燥する。このようにして、複数のハニカムセグメント 2 がー体的に接合された接合体が作製される。その後、この接合体を上述の形状に研 削加工し、外周面をコーティング材 4によって被覆し、加熱乾燥する。このようにして、 図 1に示すハニカム構造体 1が作製される。コーティング材 4の材質としては、接合材 層 9と同様のものを用いることができる。コーティング材 4の厚さは、例えば、 0. :!〜 5 mmの範囲で適宜選択される。
実施例
[0061] 以下、本発明を実施例によってさらに具体的に説明するが、本発明は、これらの実 施例によっていかなる制限を受けるものではない。
[0062] (実施例 1)
(ハニカムセグメントの作製)
ハニカムセグメント原料として、 SiC粉末及び金属 Si粉末を 80 : 20の質量割合で混 合し、これに造孔材、有機バインダー、界面活性剤及び水を添加して、可塑性の坏 土を作製した。この坏土を押出成形し、乾燥して隔壁の厚さが 310 z m、セル密度が 約 46. 5セル/ cm2 (300セル/平方インチ)、断面が一辺 35mmの正四角形、長さ 力 SI 52mmのハニカムセグメント成形体を得た。このハニカムセグメント成形体を、端 面が市松模様状を呈するように、セルの両端面を目封じした。すなわち、隣接するセ ルが、互いに反対側の端部で封じられるように目封じを行った。 目封じ材としては、ハ 二カムセグメント原料と同様な材料を用いた。セルの両端面を目封じし、乾燥させた 後、大気雰囲気中約 400°Cで脱脂し、その後、 Ar不活性雰囲気、約 1450°Cで焼成 して、 SiC結晶粒子を Siで結合させた、多孔質構造を有するハニカムセグメントを得 [0063] (接合材組成物の調製)
表 1に示す条件で、フィラー A及び Z又はフィラー Bを混合したものに、分散剤、発 泡樹脂及び有機バインダー(CMC)を添加し、更にマトリックスとしてコロイダルシリカ を混合し、ミキサーにて 30分間混練を行い、種類及び組成比の異なるペースト状の 接合材組成物 (接合材組成物 No.:!〜 13)をそれぞれ得た。尚、このときの接合材 組成物中の全フイラ一の割合は表 1の「接合材組成物中のフイラ一体積分率」欄のフ イラ一 Aとフイラ一 Bの合計である。例えば、接合材組成物 No. 1の場合は、 50%で あり、また、接合材組成物中のマトリックスの割合は、表 1の「接合材組成物中のフイラ 一体積分率」欄のフィラー Aとフイラ一 Bの合計を 100から除したものである。例えば、 接合材組成物 No. 1の場合は、 50%である。また、表 1の「その他」の欄、分散剤、発 泡樹脂及び有機バインダーは、全フイラ一およびマトリックスの合計に対し、外配で添 加した。
[0064] (ハニカム構造体の作製)
ハニカムセグメントの外壁面に、厚さ約 lmmとなるように接合材組成物 No. 1をコ 一ティングして接合材層を形成し、その上に別のハニカムセグメントを載置する工程 を繰り返し、 4 X 4に組み合わされた 16個のハニカムセグメントからなるハニカムセグ メント積層体を作製し、適宜、外部より圧力をカ卩えるなどして、全体を接合させた後、 1 40°C、 2時間乾燥してハニカムセグメント接合体を得た。得られたハニカムセグメント 接合体の外周を円筒状に切断後、その外周面をコーティング材で塗布し、 700°C、 2 時間、乾燥硬化させ、ハニカム構造体を得た。
[0065] (接合材層 (硬化後の接合材組成物)の評価)
得られたハニカム構造体の中の接合材部分 (硬化後の接合材組成物)のヤング率 、平均熱膨張係数、気孔率は、ハニカム構造体の接合材部分を切断して所定の形 状のサンプノレを切り出し、 JIS R1601に準じた 3点曲げ試験における荷重-変位曲 線よりヤング率を、 JIS R1618に順じた平均線熱膨張係数を、アルキメデス法により 気孔率をそれぞれ測定した。その結果を表 2に示す。
[0066] (ハニカム接合体の評価)
得られたハニカム構造体の接合状態、急速加熱試験 (バーナースポーリング試験 B -sp)、急速冷却試験(電気炉スポーリング試験 E— sp)及びエンジン試験(E/G試 験)をそれぞれ行った。その結果を表 2に示す。
[0067] (1)接合状態
接合'硬化後の接合部の状態を目視観察するとともに、接合強度を手の感触で観 測した。尚、表 2の表示では、〇の場合、強固な接合状態でクラックや欠陥が無い状 態であり、 Xの場合、簡単にはがれるあるいは外れる程度の接合状態、もしくはクラッ クゃ欠陥が多い状態を意味する。
[0068] (2)「B— sp」試験 [バーナースポーリング試験(急速加熱試験)]
ハニカム構造体にバーナーで加熱した空気を流すことにより中心部分と外側部分と の温度差をつくり、ハニカム構造体のクラックの発生しない温度により耐熱衝撃性を 評価する試験(温度が高いほど耐熱衝撃性が高レ、)である。尚、表 2の表示では、〇 の場合、クラック発生なし、 Xの場合、クラック発生ありを意味する。
[0069] (3)「E— sp」試験 [電気炉スポーリング試験(急速冷却試験) ]
ハニカム構造体を電気炉にて 550°C X 2h加熱し、均一な温度(450°C)にした後、 室温に取り出し、ハニカム構造体のクラック発生の有無により耐熱衝撃性を評価する 試験である。尚、表 2の表示では、〇の場合、クラック発生なし、 Xの場合、クラック発 生ありを意味する。
[0070] (4)「EZG」試験 [エンジン試験 1000。C]
フィルター再生のために堆積したパーティキュレートを燃焼させ、ハニカム中心止部 の温度が 1000°Cとなる条件にて、ハニカム構造体のクラックの有無により耐熱衝撃 性を評価する試験である。尚、表 2の表示では、〇の場合、クラック発生なし、 Xの場 合、クラック発生ありを意味する。
[0071] (実施例 2〜: 11、比較例 1及び比較例 2)
実施例 2〜: 11は、実施例 1において、接合材を、表 1に示す接合材組成物 No. 2 〜11に変えたこと以外、実施例 1と同様に、ハニカム構造体を作製した。また、比較 例 1及び比較例 2は、接合材組成物 No. 12及び No. 13に変えたこと以外は実施例 1と同様に、ハニカム構造体を作製した。それぞれ得られたハニカム構造体 (実施例 2〜: 11、比較例 1及び比較例 2)について、実施例 1と同様の評価及び試験を行った 。その結果を表 2に示す。
[表 1]
接 フイラ一種 マ卜り フイラ一 フィラー フィラーの 接合材組 その他 [質量%] ム ックス のヤン の平均 平均線熱 成物中の
材 種 グ率 線熱膨 膨張係数 フィラーの
組 [GPa] 張係数 /被接着 体積分率
成 物の平均 [%]
物 線熱膨張
No 係数 [%]
1 A:SiC コロイ A:400 A:4.5 A:100 A:25 分散剤: 0.15
B:コ一ジェ ダルシ B:100 B:1.2 B:27 B:25 発泡樹脂: 0.5 ライ卜 リカ 有機バインダー: 0.1
2 A:SiC nロイ A:400 A:4.5 A:100 A:25 分散剤: 0.15
B:コ一ジェ ダルシ B:100 B:1.2 B:27 B:25 有機バインダー: 0.1 ライ卜 リカ
3 A:SiC コ□ィ A:400 A:4.5 A: 100 A:25 分散剤 :0.15
B:非晶質 ダルシ B:60 B:1.1 B:24 B:25 発泡樹脂: 0.5 シリカ リカ 有機バインダ一: 0.1
4 A:SiC 3□ A:400 A:4.5 A:100 A:25 分散剤 :0.15
B:チタン酸 ダルシ B:120 B:2.0 B:50 B:25 発泡樹脂: 0.5 アルミ二 リカ 有機バインダー: 0.1 ゥム
5 A:SiC nロイ A:400 A:4.5 A:100 A:25 分散剤 :0.15
B:リン酸ジ ダルシ B:130 B:1.8 B:40 B:25 発泡樹脂: 0.5 ルコニゥ リカ 有機バインダー: 0.1 ム
6 A:アルミナ コ□ィ A:300 A:8 A:180 A:15 分散剤 :0.15
B:コ一ジェ ダルシ B:100 B:1.2 B:27 B:35 発泡樹脂: 0.5 ライ卜 リカ 有機バインダー 0.1 フ A:石英 コ□ィ A:250 A: 10 A :220 A:10 分散剤 :0.15
B:コ一ジェ ダルシ B:100 B:1.2 B:27 B:40 発泡樹脂: 0.5 ライ卜 リカ 有機バインダ一:0.1
8 A:なし 3□ィ A:- A:- A: - A:- 分散剤: 0.15
B:コ一ジェ ダルシ B:150 B:1.2 B:27 B:50 発泡樹脂: 0.5 ライ卜 リカ 有機バインダー: 0.1
9 A1マイ力 =1 p -f A: 180 A:9.3 A :200 A:5 分散剤 :0.15
B:コ一ジェ ダルシ B:100 B:1.2 B:27 B:45 発泡樹脂: 0.5 ライ卜 リカ 有機バインダー: 0.1
10 A:タルク コ ィ A: 170 A:7.8 A:170 A:5 分散剤 :0.15
B:コ一ジェ ダルシ B:100 B:1.2 B:27 B:45 発泡樹脂: 0.5 ライ卜 リカ 有機バインダー: 0.1
11 A1:SiC =1□ィ A1 :400 A1 :4.5 A1:100 A1:24 分散剤 :0.15
A2:タルク ダルシ A2:170 A2:7.8 A2:170 A2:1 発泡樹脂: 0.5 B:コ一ジェ リカ B:100 B:1.2 B:27 B:25 有機バインダー: 0.1 ライ卜
12 A:SiC n P - A:400 A:4.5 A: 100 A: 50 分散剤: 0.15
B:なし ダルシ B: - B:- B: - B:- 発泡樹脂: 0.5
リカ 有機バインダー 0.1
13 A:なし コロイ A:_ A:- A: - A: - 分散剤: 0.15
B:コージェ ダルシ B:150 B:1.2 B:27 B:50 発泡樹脂: 5 ライ卜 り力 有機バインダー: 0.1 ] 接 接合材 接合材 接合材 接合材 接 B-sp E-sp E/G
のヤン の平均 の熱膨 の気孔 試験
材 グ率/被 線熱膨 張係数 率 状 [°c]
組 接着物 張係数 [ X 1 0— 6
成 のヤン /被接
物 グ率 [%] 着物の
No. 平均線
熱膨張
係数 [%]
実施例 1 1 67 44 2 42 o 1000 〇 〇 実施例 2 2 75 44 2 43 〇 900 〇 〇 実施例 3 3 63 40 1.8 40 〇 800 〇 〇 実施例 4 4 67 50 2.2 42 〇 700 〇 〇 実施例 5 5 70 50 2.3 41 〇 800 〇 〇 実施例 6 6 58 50 2.3 39 〇 700 〇 〇 実施例 7 フ 25 55 2.5 38 〇 700 〇 〇 実施例 8 8 40 33 1 .5 44 〇 600 〇 〇 実施例 9 9 45 60 2.1 45 〇 800 〇 〇 実施例 1 0 1 0 43 60 2.7 42 〇 900 〇 〇 実施例 1 1 1 1 64 64 2.9 38 〇 700 〇 〇 比較例 1 1 2 80 90 4 43 〇 500 X X 比較例 2 1 3 2 33 1.5 87 X pS 験 試 験 不可 不可 不可
[0074] (考察:実施例:!〜 11、比較例 1及び比較例 2)
表 2の結果から、実施例:!〜 11は、接合材のヤング率が被接合物の 20%以上、か つ、接合材の平均線熱膨張係数が被接合物の 70%以下であるため、各種試験後、 ハニカム構造体にクラックは見られなかった。
[0075] 一方、比較例 1は、接合材の線熱膨張係数/被接合物の線熱膨張係数が 70%より 大きいため、各種試験後、クラック力発生した。また、比較例 2は、接合材のヤング率 Ζ被接合物のヤング率が 20%未満であるため、接合状態が悪ぐ以降の試験に供 する試料が作製できなかった。
産業上の利用可能性
[0076] 本発明の接合材は、排ガス用の捕集フィルタ、中でも、ディーゼルエンジンの排ガ ス中の粒子状物質 (パティキュレート)等を捕集するディーゼルパティキュレートフィル タ(DPF)の作製時に好適に用いることができる。

Claims

請求の範囲
[1] 硬化後のヤング率が被接合物の 20%以上であり、且つ硬化後の平均線熱膨張係 数が被接合物の 70%以下である接合材。
[2] 前記平均線熱膨張係数が、 3 X 10_6·Κ_ 1以下である請求項 1に記載の接合材。
[3] 平均線熱膨張係数が被接合物の 50%以下のフィラーと、ヤング率が lOOGPa以上 のフイラ一との 2種以上のフィラー及びマトリックスから主に構成された接合材組成物 によって形成される請求項 1又は請求項 2に記載の接合材。
[4] 前記ヤング率が lOOGPa以上のフィラーに、板状粒子を含む請求項:!〜 3のいず れか 1項に記載の接合材。
[5] 前記平均線熱膨張係数が被接合物の 50%以下のフィラーの平均熱膨張係数が、
2. 5 X 10— ^K—1以下である請求項 1〜4のいずれかに記載の接合材。
[6] 前記平均線熱膨張係数が被接合物の 50%以下のフィラーが、コ一ジエライト、 e - スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリン酸ジルコニウムからなる 群から選択された少なくとも 1種以上である請求項 1〜5のいずれかに記載の接合材
[7] 前記ヤング率が lOOGPa以上のフイラ一力 炭化珪素、アルミナ、石英、窒化アルミ 二ゥム、 B C、ムライト、 SiAl〇N、窒化珪素、ジルコユア、コージエライト、チタン酸ァ
4
ノレミニゥム、リン酸ジルコニウム、窒化ホウ素、タノレク、マイ力、及びガラスフレークから なる群から選択された少なくとも 1種以上である請求項 1〜6のいずれかに記載の接 合材。
[8] 平均線熱膨張係数が被接合物の 50%以下であり、且つヤング率が lOOGPa以上 のフイラ一及びマトリックスから主に構成された接合材組成物によって形成される請 求項 1又は 2に記載の接合材。
[9] 前記平均線熱膨張係数が被接合物の 50%以下であり、且つヤング率が lOOGPa 以上のフィラーの平均熱膨張係数力 2. 5 Χ 10_6 ·Κ_1以下である請求項 8に記載 の接合材。
[10] 前記平均線熱膨張係数が被接合物の 50%以下であり、且つヤング率が lOOGPa 以上のフィラーが、コージエライト、チタン酸アルミニウム、及びリン酸ジルコニウムから なる群から選択された少なくとも 1種以上である請求項 8又は 9に記載の接合材。
[11] 前記マトリックスが、無機接着剤である請求項 1〜: 10のいずれかに記載の接合材。
[12] 前記無機接着剤が、コロイダルシリカである請求項 11に記載の接合材。
[13] 被接合物との接合温度が、 1000°C以下である請求項 1〜: 12のいずれかに記載の 接合材。
[14] ハニカムセグメントの接合に用いる請求項 1〜: 13のいずれかに記載の接合材。
[15] 請求項 3〜10のいずれかに記載のフィラー、及び請求項 3、 8、及び 11〜12のい ずれかに記載のマトリックスを混合し、混練を行うことにより、ペースト状の接合材組成 物を得る工程を含む、接合材の製造方法。
[16] 請求項 1〜: 14のいずれかに記載の接合材で、複数のセラミックス部材を接合して作 製されたセラミックス構造体。
[17] 請求項 1〜: 14のいずれかに記載の接合材で、複数のハニカムセグメントを接合して 作製されたハニカム構造体。
[18] コージエライト、 β -スポジュメン、非晶質シリカ、チタン酸アルミニウム、及びリン酸ジ ルコニゥムからなる群から選択された少なくとも 1種以上のフィラーと、
炭化珪素、アルミナ、石英、窒化アルミニウム、 B C、ムライト、 SiA10N、窒化珪素
4
、ジルコニァ、コージエライト、チタン酸アルミニウム、リン酸ジルコニウム、窒化ホウ素
、タルク、マイ力、及びガラスフレークからなる群から選択された少なくとも 1種以上の フィラーとの 2種以上のフィラー、及び
マトリックス
を含む接合材組成物。
[19] コージヱライト、チタン酸アルミニウム、及びリン酸ジルコニウムからなる群から選択さ れた少なくとも 1種以上のフィラー、及び
マトリックス
を含む接合材組成物。
PCT/JP2006/324908 2005-12-14 2006-12-14 接合材とその製造方法、及びそれを用いたハニカム構造体 WO2007069674A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20060834662 EP1964823A4 (en) 2005-12-14 2006-12-14 BONDING MATERIAL, METHOD FOR MANUFACTURING THE SAME, AND BEEF NEST STRUCTURE OBTAINED WITH SAID MATERIAL
JP2007550217A JP5469305B2 (ja) 2005-12-14 2006-12-14 接合材とその製造方法、及びそれを用いたハニカム構造体
US12/138,076 US8039086B2 (en) 2005-12-14 2008-06-12 Bonding material, process for producing the same, and honeycomb structure made with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-360634 2005-12-14
JP2005360634 2005-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/138,076 Continuation US8039086B2 (en) 2005-12-14 2008-06-12 Bonding material, process for producing the same, and honeycomb structure made with the same

Publications (1)

Publication Number Publication Date
WO2007069674A1 true WO2007069674A1 (ja) 2007-06-21

Family

ID=38162976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324908 WO2007069674A1 (ja) 2005-12-14 2006-12-14 接合材とその製造方法、及びそれを用いたハニカム構造体

Country Status (5)

Country Link
US (1) US8039086B2 (ja)
EP (1) EP1964823A4 (ja)
JP (1) JP5469305B2 (ja)
KR (1) KR20080073792A (ja)
WO (1) WO2007069674A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179526A (ja) * 2006-12-25 2008-08-07 Ngk Insulators Ltd 接合体及びその製造方法
WO2008117611A1 (ja) * 2007-03-26 2008-10-02 Ngk Insulators, Ltd. 接合材組成物及びその製造方法並びに接合体及びその製造方法
EP2105425A1 (en) * 2008-03-27 2009-09-30 Ibiden Co., Ltd. Honeycomb structure
EP2174921A1 (en) * 2007-07-26 2010-04-14 NGK Insulators, Ltd. Bonding material for honeycomb structure and honeycomb structure utilizing the material
US20100300053A1 (en) * 2007-12-17 2010-12-02 Alary Jean-Andre Ceramic honeycomb structures
EP2915792A2 (en) 2014-03-04 2015-09-09 NGK Insulators, Ltd. Honeycomb structure
EP2915791A2 (en) 2014-03-04 2015-09-09 NGK Insulators, Ltd. Honeycomb structure
US9518485B2 (en) 2010-11-29 2016-12-13 Corning Incorporated Honeycomb structure comprising an outer cement skin and a cement therefor
JP2017082195A (ja) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 樹脂組成物、接合体及び半導体装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073792A (ko) 2005-12-14 2008-08-11 니뽄 가이시 가부시키가이샤 접합재와 그 제조 방법 및 그것을 이용한 허니컴 구조체
WO2007111056A1 (ja) * 2006-03-28 2007-10-04 Ngk Insulators, Ltd. ハニカム構造体及びその製造方法
EP2008985B1 (en) * 2006-03-30 2015-06-24 NGK Insulators, Ltd. Bonded element and honeycomb sutructure using the same
US8956436B2 (en) 2006-06-30 2015-02-17 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
EP1939261B1 (en) 2006-12-25 2010-03-31 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
CA2745034C (en) 2008-12-15 2014-01-21 Unifrax I Llc Ceramic honeycomb structure skin coating
EP2671857B1 (en) * 2011-02-04 2021-10-13 NGK Insulators, Ltd. Honeycomb structure in silicon carbide material, and electric-heating type catalyst carrier
US10526249B2 (en) * 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10443461B2 (en) * 2013-04-03 2019-10-15 Dinex A/S Honey comb assembly
US9504944B2 (en) * 2013-06-06 2016-11-29 Porvair Plc Bn or Y2O3 coated ceramic filters used in filtration of aluminum—lithium alloys and reactive alloys
JP6231910B2 (ja) * 2014-03-14 2017-11-15 日本碍子株式会社 目封止ハニカム構造体
CN108911717B (zh) * 2018-08-20 2021-04-13 福建省德化县昱晟工艺品有限责任公司 一种具有良好抗热震性能的陶瓷制备方法
CN109437876B (zh) * 2018-09-25 2021-07-27 天津大学 一种陶瓷旋流片组分及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121497B2 (ja) 1994-07-14 2000-12-25 イビデン株式会社 セラミック構造体
JP2001190916A (ja) 2000-01-13 2001-07-17 Ngk Insulators Ltd ハニカム構造体
WO2003048072A1 (fr) 2001-12-06 2003-06-12 Ngk Insulators, Ltd. Corps de structure en nid d'abeilles et son procede de fabrication
JP2005154202A (ja) 2003-11-26 2005-06-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法、並びに接合材

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2637675A (en) * 1952-03-07 1953-05-05 Glidden Co Process for preparing laminated bodies of cellulosic materials and product
US2933552A (en) * 1955-06-06 1960-04-19 Champion Spark Plug Co Composite glass seal
US4090881A (en) * 1976-06-30 1978-05-23 The Babcock & Wilcox Company High temperature refractory adhesive
JP2505261B2 (ja) * 1988-09-29 1996-06-05 日本碍子株式会社 セラミック熱交換体およびその製造法
EP1382445B1 (en) 1996-01-12 2013-04-24 Ibiden Co., Ltd. A method of manufacturing a filter for purifying exhaust gas
ES2321331T3 (es) * 1999-09-29 2009-06-04 Ibiden Co., Ltd. Filtro de nido de abeja y conjunto de filtros ceramicos.
EP2322648A1 (en) * 2000-09-26 2011-05-18 Duke University RNA aptamers and methods for identifying the same
JP4246425B2 (ja) 2001-10-15 2009-04-02 日本碍子株式会社 ハニカムフィルター
JP3893049B2 (ja) * 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
EP1724448B2 (en) 2002-02-05 2013-11-20 Ibiden Co., Ltd. Honeycomb filter for purifyng exhaust gases, adhesive, coating material, and manufacturing method of honeycomb filter for purifying exhaust gases
US7309370B2 (en) * 2002-02-05 2007-12-18 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination
JP4246475B2 (ja) 2002-04-26 2009-04-02 日本碍子株式会社 ハニカム構造体の製造方法
JP4082953B2 (ja) * 2002-07-31 2008-04-30 太平洋セメント株式会社 低熱膨張セラミックス接合体
EP1495791B1 (en) * 2002-09-13 2013-03-06 Ibiden Co., Ltd. Filter
JP2004261623A (ja) * 2003-01-08 2004-09-24 Ngk Insulators Ltd ハニカム構造体
US7147804B2 (en) * 2003-01-24 2006-12-12 E. I. Du Pont De Nemours And Company Terminal electrode compositions for multilayer ceramic capacitors
JP4267947B2 (ja) 2003-03-19 2009-05-27 日本碍子株式会社 ハニカム構造体
JP4408203B2 (ja) * 2003-05-12 2010-02-03 日本碍子株式会社 ハニカム構造体の製造方法
JP2005035839A (ja) * 2003-07-15 2005-02-10 Taiheiyo Cement Corp 低熱膨張セラミックス接合体
EP1686108B1 (en) * 2003-11-12 2011-09-14 NGK Insulators, Ltd. Honeycomb structure
US20070082174A1 (en) * 2004-03-23 2007-04-12 Ngk Insulators, Ltd. Honeycomb structure and method for manufacturing the same
US8663545B2 (en) 2004-03-31 2014-03-04 Ngk Insulators, Ltd. Method of manufacturing honeycomb structure and honeycomb structure
WO2005105705A1 (ja) 2004-04-30 2005-11-10 Ngk Insulators, Ltd. ハニカム構造体及びその製造方法
WO2006103811A1 (ja) * 2005-03-28 2006-10-05 Ibiden Co., Ltd. ハニカム構造体
JP5037809B2 (ja) * 2005-10-25 2012-10-03 日本碍子株式会社 ハニカム構造体
KR20080073792A (ko) 2005-12-14 2008-08-11 니뽄 가이시 가부시키가이샤 접합재와 그 제조 방법 및 그것을 이용한 허니컴 구조체
EP1806329A3 (en) * 2006-01-05 2008-09-03 Asahi Glass Company, Limited Composition for ceramic bonding and ceramic bonded article
JP5367363B2 (ja) 2006-03-24 2013-12-11 日本碍子株式会社 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121497B2 (ja) 1994-07-14 2000-12-25 イビデン株式会社 セラミック構造体
JP2001190916A (ja) 2000-01-13 2001-07-17 Ngk Insulators Ltd ハニカム構造体
WO2003048072A1 (fr) 2001-12-06 2003-06-12 Ngk Insulators, Ltd. Corps de structure en nid d'abeilles et son procede de fabrication
JP2005154202A (ja) 2003-11-26 2005-06-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法、並びに接合材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1964823A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179526A (ja) * 2006-12-25 2008-08-07 Ngk Insulators Ltd 接合体及びその製造方法
WO2008117611A1 (ja) * 2007-03-26 2008-10-02 Ngk Insulators, Ltd. 接合材組成物及びその製造方法並びに接合体及びその製造方法
EP2174921A4 (en) * 2007-07-26 2011-03-30 Ngk Insulators Ltd ADHESIVE MATERIAL FOR A WAVE STRUCTURE AND THIS USING WAVE STRUCTURE
EP2174921A1 (en) * 2007-07-26 2010-04-14 NGK Insulators, Ltd. Bonding material for honeycomb structure and honeycomb structure utilizing the material
US8101270B2 (en) 2007-07-26 2012-01-24 Ngk Insulators, Ltd. Bonding material for honeycomb structure and honeycomb structure utilizing the material
US20100300053A1 (en) * 2007-12-17 2010-12-02 Alary Jean-Andre Ceramic honeycomb structures
US7851403B2 (en) 2008-03-27 2010-12-14 Ibiden Co., Ltd. Honeycomb structure
EP2105425A1 (en) * 2008-03-27 2009-09-30 Ibiden Co., Ltd. Honeycomb structure
US9518485B2 (en) 2010-11-29 2016-12-13 Corning Incorporated Honeycomb structure comprising an outer cement skin and a cement therefor
EP2915792A2 (en) 2014-03-04 2015-09-09 NGK Insulators, Ltd. Honeycomb structure
EP2915791A2 (en) 2014-03-04 2015-09-09 NGK Insulators, Ltd. Honeycomb structure
US9567885B2 (en) 2014-03-04 2017-02-14 Ngk Insulators, Ltd. Honeycomb structure
US9574473B2 (en) 2014-03-04 2017-02-21 Ngk Insulators, Ltd. Honeycomb structure
JP2017082195A (ja) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 樹脂組成物、接合体及び半導体装置

Also Published As

Publication number Publication date
US8039086B2 (en) 2011-10-18
EP1964823A1 (en) 2008-09-03
JP5469305B2 (ja) 2014-04-16
EP1964823A4 (en) 2010-08-04
US20080248238A1 (en) 2008-10-09
JPWO2007069674A1 (ja) 2009-05-28
KR20080073792A (ko) 2008-08-11

Similar Documents

Publication Publication Date Title
WO2007069674A1 (ja) 接合材とその製造方法、及びそれを用いたハニカム構造体
JP5485546B2 (ja) 接合体、ハニカムセグメント接合体、及びそれを用いたハニカム構造体
JP5367363B2 (ja) 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体
JP4927710B2 (ja) ハニカム構造体
EP2644580B1 (en) Honeycomb structure
JP5244619B2 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
WO2001023069A1 (fr) Filtre en nid d'abeilles et ensemble de filtres ceramiques
JP4997068B2 (ja) 接合体及びその製造方法
JP5103378B2 (ja) ハニカム構造体
JP4890857B2 (ja) ハニカム構造体
JP4997064B2 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
JP5478243B2 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
JP4434076B2 (ja) ハニカム構造体
JP5318753B2 (ja) 接合体及びその製造方法並びに接合材組成物及びその製造方法
JPWO2008096569A1 (ja) Dpf用ハニカムセグメント接合体及び該接合体用接合材組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087016755

Country of ref document: KR