[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006006697A1 - 圧縮機の摺動部材 - Google Patents

圧縮機の摺動部材 Download PDF

Info

Publication number
WO2006006697A1
WO2006006697A1 PCT/JP2005/013107 JP2005013107W WO2006006697A1 WO 2006006697 A1 WO2006006697 A1 WO 2006006697A1 JP 2005013107 W JP2005013107 W JP 2005013107W WO 2006006697 A1 WO2006006697 A1 WO 2006006697A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin
film
intermediate layer
Prior art date
Application number
PCT/JP2005/013107
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Shibuya
Toshihisa Shimo
Hidetaka Hayashi
Hirohiko Yoshida
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to EP05760153A priority Critical patent/EP1785627A4/en
Priority to US11/632,025 priority patent/US20080248269A1/en
Publication of WO2006006697A1 publication Critical patent/WO2006006697A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • F04B27/0886Piston shoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0856Sulfides
    • F05C2203/086Sulfides of molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/10Polyimides, e.g. Aurum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/14Self lubricating materials; Solid lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/18Filler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a sliding member of a compressor excellent in heat resistance, wear resistance, chemical resistance, and the like.
  • polyaryl ketone resins such as polyether ether ketone resin and polyether ketone resin have high mechanical strength, heat resistance, flame resistance, wear resistance, chemical resistance, and resistance. Excellent hydrolyzability. For this reason, it is used in a wide range of fields, mainly aircraft parts, automobile parts, and electrical / electronic parts.
  • One example is a swash plate of a compressor described in JP-A-2002-39062, and a sliding layer containing a polyetheretherketone resin is formed on the surface of the substrate.
  • polyaryl ketone resins are hardly soluble in solvents due to their excellent chemical resistance. Therefore, it is difficult to form a resin layer by applying a coating composition in which polyaryl ketone resin is dissolved to a substrate.
  • Japanese Patent Application Laid-Open No. 2000-96203 discloses a method in which a polyether ether ketone resin is sprayed onto a base material by a high speed oxygen fuel (HVOF) process.
  • HVOF high speed oxygen fuel
  • polyether ether ketone resin heated to 340 ° C is propelled at high speed toward the substrate by the HVOF process, and the polyether ether ketone resin is deposited on the surface of the substrate.
  • residual stress may be generated on the surface of the base material, and it is necessary to reduce the residual stress after thermal spraying.
  • polyaryl ketone resins are difficult to adhere to metal by themselves, it is difficult to laminate them on a metal substrate. Therefore, in electronic circuit board equipment that needs to be laminated on copper foil or aluminum foil, in order to make use of the heat resistance as a crystalline resin with a high melting point, the polyaryl ketone resin and the metal have good adhesion and heat resistance. Attention has been focused on mixtures with polyetherimide resins.
  • JP-A-59-115353 discloses that the above mixture and copper foil exhibit good adhesion and are useful for circuit board substrates. Further, JP-A-2002-212314, JP-A-3514667, JP-A-2002-144436 disclose a laminate of a printed wiring board or a metal body using the above mixture, a manufacturing method thereof, and a heat-fusible insulating sheet. Is disclosed.
  • the present invention has been made in view of the above circumstances, and provides a sliding member having a surface layer containing a polyaryl ketone resin having excellent adhesion to a metal base material even when formed at a low temperature. Objective.
  • the inventors of the present invention include a resin composition composed of a thermoplastic polyimide resin and a polyaryl ketone resin between a metal base material and a surface layer containing a polyaryl ketone resin. It has been found that the above problem can be solved by providing an intermediate layer, and the present invention has been completed based on this finding.
  • the sliding member of the present invention comprises a metal base material and at least one surface of the base material. And a second resin composition comprising a polyarylketone resin formed on the intermediate layer and a middle layer composed of a first resin composition containing a monoketone resin. And a surface layer made of a material.
  • the surface layer preferably further contains a solid lubricant.
  • the surface layer preferably contains not more than 400 parts by mass of the solid lubricant when the second resin composition is 100 parts by mass.
  • the solid lubricant preferably contains at least one of polytetrafluoroethylene, graphite, and molybdenum disulfide.
  • the polyimide resin is a polyether imide resin having a repeating unit represented by structural formula (1) and structural formula (2), and the polyaryl ketone resin is structural formula (3). It is preferably a polyether ether ketone resin represented by:
  • the use of an intermediate layer containing a resin composition composed of a thermoplastic polyimide resin and a polyaryl ketone resin allows adhesion to a metal substrate even when formed at a low temperature.
  • a sliding member having a surface layer containing a poly (aryl ketone) resin excellent in the above can be obtained.
  • a surface layer containing a polyaryl ketone resin can be formed on the base material even if a kind of metal that cannot be used due to problems such as deterioration of the metal base material due to high temperature is used.
  • a conventional sliding member in which a surface layer containing a polyaryl ketone resin is provided alone on a metal base material has excellent sliding characteristics.
  • the sliding member when the surface layer contains a solid lubricant, the sliding member has further excellent sliding characteristics.
  • the sliding member of the present invention includes a metal base material, an intermediate layer formed on at least one surface of the base material, and a surface layer formed on the intermediate layer.
  • Metal base materials include iron, chromium, nickel, zinc, aluminum, aluminum alloy, magnesium, magnesium alloy, titanium, titanium alloy, copper, silver, gold, brass, brass, bronze, pig iron, carbon Steel, stainless steel, superalloy (examples include NCF 800, NCF 600). Also, iron or carbon steel with zinc, tin, chromium, nickel, zinc and aluminum, etc. can be used. Of these, iron, pig iron, stainless steel, carbon steel, carbon steel with zinc plating, and carbon steel with zinc-aluminum plating are preferable from the viewpoint of high rigidity and low cost. . Further, stainless steel is more preferable from the viewpoint of preventing generation of flaws.
  • Stainless steels come in various alloy compositions, for example, SUS 301, SUS 301 L, SUS 302, SUS 302B, SUS 303, SUS 303 Se, SUS 304, SUS 304 L, SUS 304; SUS 304 J 2, S US 305 s SUS 309 S, SUS 3 10 S N SUS 3 16, SUS 316 L, SUS 31 7, SUS 321, SUS 329 ⁇ 1, SU S 329 J 3 L, SUS 329 J 4L, SUS 347, SUS 403, SUS 4 05, SUS 41 0, SUS 430, SUS 434, SUS 436 L, SUS 4 36 J 1 L, SUS 444, SUS 447 J 1, SUS 304 cul, SUS X M7, SUSXM27, SUS XM 15 J1, SUS 630, SUS 631, SUH409, SUH2 1 and SUH409L.
  • the shape of the substrate is not particularly limited, and examples thereof include a flat body, a disk body, a curved body, a hemisphere, a corrugated body, a cylinder, and a tube.
  • the flat body is easy to process, and examples of the flat body include a single wafer and a continuous belt (coil).
  • the substrate is a sliding part of the compressor.
  • the sliding member having the sliding layer of the present invention can be used as a sliding member for a compressor.
  • the sliding member can be used for a swash plate of a swash plate compressor.
  • the sliding member can be used for a compressor.
  • the swash plate and the swash plate of the swash plate compressor slide with each other in the dry state with no lubricating oil in the initial operation. Even when sliding in such a very severe dry state, it is desirable not to cause seizure or wear. Therefore, by using the sliding member of the present invention having excellent sliding characteristics in a swash plate compressor of a swash plate compressor, the conditions required for the swash plate compressor can be sufficiently satisfied.
  • a slide bearing that supports the drive shaft of the compressor.
  • the compression chamber and the suction pressure region are supported in one piece by the drive shaft of the Biston compressor, and the drive shaft is rotatably supported by the housing of the Biston compressor and is rotated synchronously with the drive shaft.
  • a rotary valve that can open and close the gas passage between the two and the biston of a Biston compressor.
  • the base material is a sliding member of a compressor, for example, iron, steel, aluminum, aluminum alloy containing Mg, Cu, Zn, Si, Mn, etc., copper, Zn, A1, Sn, M A copper alloy containing n or the like is preferable.
  • the thickness of the substrate is not particularly limited, but if it is about 0.01 to 50 mm, more preferably 0.05 to 20 mm, and still more preferably 0.1 to 15 mm, the sliding portion Suitable as a material.
  • the base material may be subjected to a surface treatment on the surface on which the intermediate layer is formed.
  • the surface treatment can be performed by various methods.
  • Examples of the treated surface include a surface that has been subjected to treatment such as rolling, heat treatment, and pickling (for example, JIS G0203-2000, JIS G4305-1999, AISI standard). No. 1, No. 2 D, No. 2B), etc., as well as polished surfaces (for example, No. 3, No. 4, # 240, # 320, # 400), cold-rolled and brightened surface (for example, BA specified in the above standard), polished surface (for example, hairline, specified in the above standard, etc.)
  • Examples include HL, No. 7 which is a vibration meaning a non-aligned finish, and No.
  • the ten-point average roughness (R Z ) of the surface roughness parameter specified in JISB 0601-1994 is preferably in the range of 0.01 to 80 ⁇ m, more preferably 0. 4 to 20 ⁇ .
  • Rz is 0.01 m or more, adhesion to the intermediate layer is good, and when Rz is 80 or less, the effect on the surface layer unevenness is small.
  • the maximum height (Ry) of the surface roughness parameter specified in JISB 0601-1994 is usually in the range of 0.01 to 100; m, and preferably in the range of 0.5 to 25 111.
  • Ry 0.01 ⁇ m or more, the adhesive strength between the substrate surface and the intermediate layer is good, and when it is 100 ⁇ ⁇ or less, the influence on the unevenness of the surface layer is small.
  • the arithmetic mean roughness (Ra) of the surface roughness parameter specified in JISB 0601-1994 for the substrate is usually in the range of 0.001 to 10 ⁇ , preferably 0.05 to 2. The range is 5 ⁇ .
  • These surface roughness (R z, Ry, R) specified in JISB 0601—1994 a) can be measured using a commercially available surface roughness measuring device (for example, a surface roughness measuring device, model SE3-FK, manufactured by Kosaka Laboratory Ltd.).
  • the intermediate layer is composed of a first resin composition containing a thermoplastic polyimide resin and a polyaryl ketone resin.
  • the thermoplastic polyimide resin used in the intermediate layer is a thermoplastic resin containing aromatic nucleus bonds and imide bonds in its structural units. Specific examples include polyetherimide resins and aromatic polyamideimide resins. However, it is not particularly limited. Specifically, the following structural formula (1)
  • an amorphous one is preferable, and a polyetherimide having a repeating unit represented by the structural formula (1) or (2) is more preferable.
  • the method for producing the polyetherimide resin is not particularly limited.
  • the amorphous polyetherimide resin having the repeating unit represented by the structural formula (1) is 4, 4, or 1
  • Amorphous polyetherimide resin having a repeating unit represented by the above structural formula (2) as a polycondensate of isopropylidenebis (p-phenyleneoxy) diphthalic dianhydride and m-phenylenediamine Is synthesized by a known method as a polycondensate of 4,4 ′-[isopropylidenebis (p-phenyleneoxy) diphthalic dianhydride and p-phenylenediamine.
  • the polyether imide resin used in the present invention may contain other monomer units having a copolymerizable group such as an amide group, an ester group, and a sulfonyl group as necessary.
  • the thermoplastic polyimide resin can be used singly or in combination of two or more.
  • the polyarylketone resin used for the intermediate layer is a thermoplastic resin containing aromatic nucleus bonds and ketone bonds in its structural unit.
  • Typical examples thereof include polyether ketone (glass transition temperature: 157 ° C, crystal Melting peak temperature: 373 ° C), polyetheretherketone (glass transition temperature: 143 ° C, crystal melting peak temperature: 334 ° C), polyetheretherketoneketone (glass transition temperature: 153 ° C, crystal melting peak) (Temperature: 370 ° C), etc., and may contain other repeating units having a copolymerizable structure or group such as a bifuel structure or a sulfonyl group, if necessary.
  • a polyether ether ketone having a repeating unit represented by the formula is preferably used.
  • Polyether ether ketones having this repeating unit are commercially available under the trade names “PEEK151 G”, “PEEK381G”, “PEEK450G”, etc., manufactured by Victorex. All of these have a glass transition temperature of 143 ° C and a crystal melting peak temperature of 334 ° C.
  • polyaryl ketone resin can be used individually by 1 type or in combination of 2 or more types.
  • the resin composition comprising the above-mentioned thermoplastic polyimide resin and polyarylketone resin has good compatibility with each other, and the modulus of elasticity is moderately lowered under low temperature conditions of 400 ° C or less, and fluidity suitable for adhesion. Indicates. Therefore, the intermediate layer containing the resin composition comprising the thermoplastic polyimide resin and the polyarylketone resin adheres well to the metal substrate. Furthermore, since the crystallinity of the polyaryl ketone resin is increased by heating at 200 ° C or higher, the properties unique to polyaryl ketone resin are well expressed. In addition, the use of a base material (described above) whose surface has been roughened by surface treatment results in higher adhesion strength.
  • the resin composition exhibiting the above properties preferably has a mass ratio of the thermoplastic polyimide resin to the polyaryl ketone resin of 95: 5 to 5:95.
  • a mass ratio of the thermoplastic polyimide resin to the polyaryl ketone resin of 95: 5 to 5:95.
  • the mass ratio of the thermoplastic polyimide resin to the crystalline polyaryl ketone resin is preferably 80:20 to 55:45. That is, when the total of the thermoplastic polyimide resin and the crystalline polyarylketone resin is 100% by mass, if the thermoplastic polyimide resin is 80% by mass or less, the crystallinity of the intermediate layer is high. The crystallization speed is fast and the heat resistance is good. Also 55 mass. /. If it is above, volume shrinkage (dimensional change) accompanying crystallization of the crystalline polyaryl ketone resin is difficult to increase, and reliability in adhesion to a metal substrate can be obtained.
  • the surface layer is formed on the intermediate layer and includes a second resin composition containing a polyaryl ketone resin.
  • a polyaryl ketone resin used for the surface layer the same polyaryl ketone resin (described above) as the polyaryl ketone resin used for the intermediate layer can be used.
  • the polyaryl ketone resin may be the same type of polyaryl ketone resin as the intermediate layer or a different type of poly aryl ketone resin, but the surface layer has the above structure. It is preferable to use a polyether ether ketone having a repeating unit represented by the formula (3).
  • the surface layer may contain a resin component other than the polyaryl ketone resin, and when the resin component (second resin composition) constituting the surface layer is 100% by mass, the polyaryl ketone resin The content is preferably 50% by mass or more, more preferably 60% by mass or more.
  • a surface layer containing 50% by mass or more of poly (aryl ketone) resin is excellent in heat resistance, flame retardancy, wear resistance, chemical resistance, and so on.
  • the first resin composition may contain a resin component other than the thermoplastic polyimide resin and the polyaryl ketone resin.
  • the second resin composition may contain a resin component other than the polyaryl ketone resin.
  • the surface layer may further be a layer containing a solid lubricant.
  • a surface layer containing a solid lubricant has excellent sliding properties.
  • Solid lubricants include fluorine compounds such as fluororesin, graphite fluoride and calcium fluoride, layered structures such as graphite and talc, soft metals such as Pb, Ag and Cu, and their compounds, etc. Any material usually used as a lubricant may be used.
  • titanium oxide, tungsten carbide, boron nitride, melamine cyanurate, etc. can be used.
  • a fluororesin if it is a synthetic polymer containing a fluorine atom in the molecule, It is not limited, A well-known thing can be used.
  • PTFE polytetrafluoroethylene
  • one (CFs CF 2) - and single [CF (CF 3) CF 2] have a repeating structural unit represented by one, preferably one (CF 2 CF2) over 99 to 80 mass 0/0 as one [CF (CF 3 ) CF 2] consists of a 1 to 20 mass 0/0 using, tetrafurfuryl O b ethylene one to Kisafuruo port propylene copolymer (FEP);
  • FEP tetrafurfuryl O b ethylene one to Kisafuruo port propylene copolymer
  • one in the molecule CF 2 C F2) one contact Yopi -[CF (OCm F 2m + i) CF 2 ] 1 (where m is a positive integer in the range of 1
  • (CH 2 CH2) a repeating structural unit represented by a, preferably one (CF 2 CF 2) - and 90 to 74 weight 0/0 One (CH 2 CH 2) - 10 ⁇ 26 mass 0 Tetrafluoroethylene-ethylene copolymer (ETFE) consisting of / 0 ;
  • EFE Tetrafluoroethylene-ethylene copolymer
  • (e) Repeated structure represented by one (CFC 1 CF 2 ) and one (CH 2 CH 2 ) — in the molecule
  • these fluororesins include those containing repeating structural units based on other monomers within a range that does not impair the essential properties of the resin. Examples of other monomers include tetrafluoroethylene
  • CF 2 CF [OCF 2 CF (CFs)] n OCF 2 (CF 2 ) P Y (wherein Y represents Cl, Br, or I, n represents an integer of 0 to 5, and p represents an integer of 0 to 2).
  • the amount of repeating structural units based on other monomers is 50% by mass or less, preferably ⁇ 01-45% by mass of the polymer.
  • fluororesins preferably, (a) polytetrafluoroethylene (PTFE), (b) tetrafluoroethylene-hexafluoroethylene propylene copolymer (FEP), (c) tetrafluoro It is selected from ethylene monoperfluoroalkyl butyl ether copolymer (PFA) and (d) tetrafluoroethylene monoethylene copolymer (ETFE), more preferably (a) PTFE.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoroethylene propylene copolymer
  • ETFE tetrafluoroethylene monoethylene copolymer
  • the molecular weight of the fluororesin is not particularly limited, but in the case of PTFE that melts, one having a melt viscosity of 1 million Pa ⁇ s or less at 380 ° C is preferable. These fluororesins may be used alone or in combination of two or more.
  • the fluororesin may be a molding powder or a fine powder for a solid lubricant.
  • Examples of commercially available polytetrafluoroethylene include Teflon 7 J and TLP-10 manufactured by Mitsui's DuPont Fluorochemical Co., Ltd., Fullon G 163 manufactured by Asahi Glass Co., Ltd., Polyflon Ml 5 and Lubron manufactured by Daikin Industries L 5 etc. are mentioned.
  • Examples of the graphite used in the present invention include natural flake graphite, natural earth graphite, artificial graphite, pyrolytic graphite, and the like, preferably natural flake graphite and artificial graphite.
  • Natural scaly graphite is a natural graphite that contains most of its appearance in the form of plates, scaly, leaves, and needles.
  • the artificial graphite is preferably one obtained by pulverizing a lump obtained by firing a carbon source such as a mixture of coatus and pitch at a high temperature, or a type having high crystallinity produced by vapor phase growth.
  • Pyrolytic graphite is obtained by calcination of a carbon source such as Kotas at a high temperature of about 3 000 ° C.
  • the average particle size of graphite used in the present invention is 1 to 100 ⁇ m, preferably 4 to 80 ⁇ , preferably 5 to 60 ⁇ m, as measured by a laser diffraction method. Further preferred.
  • the average particle size is 100 m or less, it is easy to obtain uniform dispersion in the resin component and good molded film appearance, and if it is l zm or more, the powder is mixed during compounding and kneading. Handling problems such as scattering are unlikely to occur, and when melt kneading using an extruder, problems such as unstable measurement due to poor biting into the screw and deterioration of take-up performance due to unstable shape of the extrudate are unlikely to occur. ,.
  • the amount of ash in the graphite used in the present invention is preferably small, usually 2% by mass or less, and more preferably 0.05 to 1% by mass. If it is in the range of 2% by mass or less, it is difficult for the resin component to be thermally deteriorated during processing when used in a resin component. Further, it is preferable that the volatile content in graphite is small, and it is usually 2% by mass or less, preferably 1% by mass or less. If it is in the range of 2% by mass or less, foaming is reduced during melt-kneading with the resin component.
  • Examples of these commercially available graphite products include CPB-3 (natural flake graphite) of Chuetsu Graphite Industries Co., Ltd., CPB-30, CPB-3000, CP of Nippon Graphite Industries Co., Ltd., CP, CPB, T Examples include “T i mr e xKS-44” (artificial graphite) manufactured by imca 1.
  • Transition metal sulfides may also be used.
  • the transition metal sulfide include molybdenum disulfide, tungsten disulfide, and the like, and a powder is preferable in order to disperse it in the resin of the intermediate layer and Z or the surface layer.
  • the average particle diameter of this is 0.1 to 20 Aim, and preferably 0.3 to 11 ⁇ m .
  • the average particle size is 0.1 ⁇ m or more, handling traps due to powder scattering are less likely to occur during melting and kneading with the resin component, and when it is 20 ⁇ or less, poor dispersion in the resin component And film appearance defects are difficult to occur.
  • molypden disulfide powder examples include Mori powder A (average particle size 0.5 ⁇ ), moly powder ⁇ (average particle size 3 ⁇ ), and moly powder C (average particle size 0.3 to 0) manufactured by Nippon Graphite Industries Co., Ltd. 4 ⁇ ) and MOS manufactured by Sumiko Lubricant Co., Ltd.
  • tungsten disulfide examples include Tanmic A (average particle size ⁇ ⁇ ) and Tanmic ⁇ (average particle size 0.6 ⁇ ) manufactured by Nippon Lubricant Co., Ltd. Further, hexagonal boron nitride (h— ⁇ ) may be used.
  • the hexagonal boron nitride is preferably a powder in order to be dispersed in the intermediate layer resin and the Z or surface layer resin.
  • the average particle size of this is from 0.01 to 100, preferably from 0.1 to 20 ⁇ , more preferably from 3 to 15 ⁇ . Average particle size is 0.1 ⁇ m or more Therefore, when melt-kneading with the resin component, handling trouble due to powder scattering or the like is unlikely to occur, and when it is 100 ⁇ or less, poor dispersion in the resin component and poor film appearance are unlikely to occur. .
  • the specific surface area is 0.1 to 10 O m 2 / g, preferably 1 to 2 O m 2 / g. If the specific surface area is not less than 0.1 lm 2 / g and not more than 100 m 2 / g, poor dispersion is unlikely to occur.
  • hexagonal boron nitride examples are those sold by Mizushima Alloy Iron Co., Ltd., GE Specialty Materials Japan Co., Ltd., etc., and can be used.
  • At least one of polytetrafluoroethylene, graphite, and molybdenum disulfide is preferable.
  • the surface layer may contain 400 parts by mass or less of the solid lubricant when the second resin composition is 100 parts by mass.
  • the solid lubricant contained is preferably 100 parts by mass or less, more preferably 5 to 55 parts by mass, and still more preferably 10 to 45 parts by mass. When the amount of the solid lubricant is within this range, the lubrication characteristics are improved without impairing the adhesion to the metal base material.
  • the solid lubricant may be included in the intermediate layer. At this time, the solid lubricant only needs to be included to such an extent that the properties of the intermediate layer are not impaired.
  • the resin composition (the total of the thermoplastic polyimide resin and the polyaryl ketone resin) is 100 parts by mass, It is preferable that 400 parts by mass or less of the solid lubricant is contained.
  • the solid lubricant contained is preferably 100 parts by mass or less, more preferably 5 to 55 parts by mass, and still more preferably 10 to 45 parts by mass. When the amount of the solid lubricant is within this range, the lubrication characteristics are improved without impairing the adhesion to the metal base material. Further, when the solid lubricant is at most 100 parts by mass, it is possible to suppress a significant decrease in workability that can occur when the unused part of the intermediate layer generated in the production process is recycled.
  • At least one of the intermediate layer and the surface layer is preferably a layer containing an inorganic filler.
  • an inorganic filler known materials can be used, for example, fillers such as clay, glass, alumina, silica, aluminum nitride, silicon nitride, graphite, fibers such as glass fiber garamide fiber, carbon fiber, Inorganic scale-like (plate-like) powder, for example, synthetic my strength, natural my strength (mascopait, phlogopa) Sinter, etc. Salts (for example, flaky magnesium potassium titanate, flaky lithium potassium titanate, etc.).
  • inorganic slabs such as synthetic slabs, natural slabs, baked synthetic slabs and natural mics, boehmite, tanolec, ilite, kaolinite, montmorillonite, vermiculite, smectite, etc. Powder, plate-like alumina, and flaky titanate are preferable, and synthetic strength and natural strength are more preferable.
  • inorganic fillers can be used alone or in combination of two or more.
  • the inorganic filler is preferably in the form of a plate and has an average particle size of about 0.01 to 20 ⁇ m ⁇ , preferably 0.1 to 21011, and more preferably 1 to: ⁇ .
  • a ⁇ , average aspect ratio (particle size Z thickness) of about 1 to 30 and preferably 30 or more is suitably used.
  • the inorganic filler may be one that has been surface treated with a surface treatment agent.
  • the surface treatment agent include silane coupling agents such as amino silane, epoxy silane, bur silane, silane compounds having an attaxy oxy group or a methacryl oxy group, linear, branched or branched silicon atoms having 1 to 30 carbon atoms. Examples include alkoxysilanes having one or two cyclic hydrocarbon groups bonded thereto, titanate coupling agents, aluminate coupling agents, zirconate coupling agents, and the like.
  • the amount of the surface treatment agent used is usually in the range of 0.1 to 8 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the inorganic filler.
  • the surface treatment method For example, a wet method in which the inorganic filler and the surface treatment agent are brought into contact with each other in a solution in which the surface treatment agent is dissolved, and then the solvent is removed, and the solution in which the surface treatment agent is dissolved and the inorganic filler are sprayed, stirred, etc.
  • the semi-wet method in which the solvent is removed, the resin is treated with the inorganic filler and the surface treatment agent or a small amount of solvent.
  • an integral blend method in which a chemical agent is mixed and stirred. From the viewpoint of efficiently attaching the surface treatment agent to the surface of the inorganic filler, the wet method and semi-wet method are preferred. That's right.
  • the concentration of the surface treating agent in the solvent can be about 0.1 to 80% by mass.
  • the solvent for example, isopropyl alcohol, ethanol, methanol, hexane and the like that are easy to remove are preferable.
  • This solvent may contain a small amount of water or a small amount of an acid component that promotes hydrolysis.
  • the inorganic filler and the surface treatment agent diluted or not diluted with a solvent are contact-mixed, then left in the air for several hours to several days, and then contacted with moisture in the air for hydrolysis. It is recommended to evaporate and remove the solvent used.
  • This evaporation removal process involves hydrolysis reaction of alkoxysilyl groups and dehydration condensation reaction of the generated hydroxysilyl groups with hydroxyl groups on the surface of the inorganic filler, and removal of the generated alcohol and used solvent under normal pressure. Or under reduced pressure, it is usually carried out at about 80 to 1550 ° C, preferably 1100 to 1300 ° C.
  • the treatment time is usually about 4 to 20 hours, preferably 24 to 10 hours.
  • the same inorganic filler may be used for the intermediate layer and the surface layer, or different ones may be used.
  • the intermediate layer preferably contains 100 parts by mass or less of 100 parts by mass of the first resin composition.
  • the inorganic filler is less than 100 parts by mass, the brittleness of the intermediate layer is lowered and moderate elasticity is exhibited.
  • the inorganic filler is 10 parts by mass or more, when the sliding member of the present invention is cut by shearing or the like, peeling between the base material and the intermediate layer that occurs in the cut part is reduced, and linear expansion occurs. A coefficient falls and the volume change of each layer reduces.
  • a more preferable amount of the inorganic filler added is 10 to 55 parts by mass, and more preferably 15 to 45 parts by mass when the resin composition is 100 parts by mass.
  • the surface layer preferably contains not more than 100 parts by mass of an inorganic filler when the second resin composition is 100 parts by mass.
  • the inorganic filler is 100 parts by mass or less, the brittleness of the surface layer is lowered and moderate elasticity is exhibited.
  • the addition of an inorganic filler improves the hardness of the surface layer (pencil hardness), reduces the linear expansion coefficient, and reduces the volume change of each layer.
  • a more preferable amount of the inorganic filler added is 10 to 40 parts by mass, more preferably 15 to 33 parts by mass when the polyaryl ketone resin is 100 parts by mass.
  • the thickness of the intermediate layer and the surface layer is not particularly limited. When the thickness of the intermediate layer is 0.1 to 800 im, the metal base material and the surface layer can be satisfactorily adhered. When the thickness of the surface layer is 1 to 100 m, a sliding member having excellent adhesion and excellent sliding characteristics is obtained. If both the intermediate layer and the surface layer have a thickness of 10 to 2 ⁇ , they can be easily molded in the production process (described later).
  • the ratio of the thickness of the intermediate layer and the surface layer is preferably 1/99 to 9 9/1, more preferably 10 to 90 to 90/10.
  • the intermediate layer and the surface layer are formed separately, and then, when the two are stacked and bonded to a metal substrate, the thickness ratio is within the above range. It is difficult for the layer to be attracted to the thicker layer by static electricity, making it difficult to align and causing troubles.
  • each layer can be stably molded within the range of the thickness ratio described above. .
  • the sliding member of the present invention by providing the intermediate layer, the metal base material and the surface layer containing the polyarylketone resin are in good contact.
  • the sliding properties and the conventional sliding member formed with a layer containing ruketone resin are also improved.
  • an inorganic filler when added, the linear expansion coefficient is lowered, so that the adhesion is further improved, and peeling from the base material that occurs during sliding can be suppressed.
  • the intermediate layer and the surface layer formed in a desired shape are placed on a metal base material and bonded (laminated) to form. It is desirable that
  • a resin composition (polyether imide resin is used as component ( ⁇ ) and polyaryl ketone resin as component ( ⁇ )) and additives such as inorganic fillers as necessary (With component (C)) are mixed by a known method to obtain a mixture.
  • a resin composition polyether imide resin is used as component ( ⁇ ) and polyaryl ketone resin as component ( ⁇ )
  • additives such as inorganic fillers as necessary (With component (C)
  • (C) component ratio and (C) component ratio to (B) may be the same or different);
  • the polyaryl ketone resin (B) and, if necessary, an additive such as a solid lubricant (as component (D)) are mixed by a known method. Get.
  • an additive such as a solid lubricant (as component (D))
  • At least one of the components is mixed with a mixture in which (D) component is mixed and dispersed at a high concentration and other (B) component to be blended, or the above mixture and other ( B) A method of mixing and dispersing a mixture of component (D) with a low concentration in component (D);
  • each component can be separately supplied to a uniaxial melt kneader or a biaxial melt kneader and mixed, and each component can be mixed using a melt kneader having a plurality of supply units. Can be sequentially fed to the melt-kneader. Also, after premixing them in advance using a mixer such as a hench / mixer (trade name), super mixer, ribbon blender, tumbler, etc., it is supplied to the melt-kneader. It can also be melt-kneaded at a temperature of 3 40 ° (: to 4 30 ° C.
  • ком ⁇ онентs such as (C) component inorganic filler, (D) component solid lubricant, etc., (A) component and Z or (B) component as a base resin with high concentration (typical content A master patch mixed in the range of 10 to 60% by mass) is prepared separately, and the concentration is adjusted and mixed with the resin used, and then mechanically blended using a kneader extruder or the like.
  • a method of preparing a master batch and mixing it is preferable from the viewpoint of dispersibility and workability.
  • the mixture may be formed into a desired shape following the mixing and dispersing process, and is extruded into a strand or sheet and pressed to be suitable for forming a pellet, granule, powder, etc. It may be obtained in a conventional form.
  • Examples of the method for forming the intermediate layer and the surface layer include known methods such as injection molding, extrusion molding, compression molding, and calendar molding.
  • a film-shaped resin composition extruded from a die having a rectangular or similar shape to the end of the extruded portion, specifically a die for film extrusion such as a T die or an I die is brought into contact with the cooling body.
  • Extrusion casting method, calendar method, etc. which can be cooled by cooling, can be adopted, and although not particularly limited, films such as T-die and I-die are used from the standpoints of film formability and stable productivity.
  • An extrusion casting method using an extrusion die and a cooling body is preferred.
  • the surface material is made of metal, rubber, fiber, and the like, and the form includes a roll, a belt, a seamless belt, and the like.
  • a roll as the cooling body because the cooling device is simple and easy to handle.
  • a resin composition melted from an extruder is fed into a die through a conduit, extruded into a film form from the tip of the die, and sandwiched between a cooling metal roll and a rubber roll and fixed in a film form. Cooled and continued It is wound around the metal roll side, cooled, and sent to a scraper. If necessary, the film is cooled by another roll or cooling air between the metal roll and the scraper.
  • the molding temperature in the extrusion casting method is appropriately adjusted depending on the flow characteristics and film-forming properties of the composition, but is generally at or above the glass transition temperature or melting point and below 430 ° C, preferably 3400 to 4 0 0. C, more preferably 3500 to 390 ° C.
  • the surface temperature of a cooling body such as a roll is usually a glass transition temperature of the resin component constituting each layer or a temperature below the melting point.
  • the surface temperature of the cooling body is usually in the range of about 30 to 1 75 ° C, preferably 90 to 165 ° C.
  • the temperature is 30 ° C or higher, it is possible to prevent the moisture in the air from freezing and adhering to the surface of the cooling body.
  • the temperature is 175 ° C or lower, the shape formed by contact with the cooling body It can be prevented from changing.
  • the surface temperature of the cooling body is usually in the range of about 30 to 15 5 ° C, preferably 90 to 14 1 ° C.
  • the shape formed by contact with the cooling body It can be prevented from changing. It can be measured by a contact method in which a thermocouple or temperature indicator is brought into contact with the upper surface of the cooling body, a non-contact method using light or electromagnetic waves such as an infrared thermometer.
  • the preferable range of the surface temperature of the cooling body can be controlled by appropriately selecting the temperature control mechanism of the cooling body and the temperature of the heat medium such as circulating refrigerant such as oil and water.
  • the method for laminating the base material, the intermediate layer and the surface layer when producing the laminate of the present invention is not particularly limited.
  • the base material and the intermediate layer and surface layer that have been formed in advance into a film are simultaneously or separately heated and heated and heated by contact with infrared rays, hot air, etc. Method;
  • the resin composition constituting the intermediate layer and the resin composition constituting the surface layer are melt-kneaded in separate extruders, laminated in separate dies or multilayer dies, and extruded into a film to be cooled. Place it directly on the substrate surface and add it together with the substrate.
  • the metal substrate may be in the form of a continuous coil, a strip or a cut plate, and the intermediate layer and the surface layer may also be provided in the form of continuous wound or cut sheets.
  • the metal parts processed into sliding parts such as a compressor, may be sufficient.
  • the processing temperature at the time of laminating each layer is 200 to 400 ° C. When the temperature is 400 ° C. or lower, deterioration of the metal base material can be reduced. If it is 200 ° C. or higher, the crystallinity of the polyarylketone resin contained in the surface layer and the intermediate layer is enhanced, and the properties unique to the polyarylketone resin are exhibited well.
  • the processing temperature is set to 2500 ° C. or less, the quenched iron will not be annealed. Further, in the case of a base material made of an aluminum alloy, if the processing temperature is set to 2500 ° C. or lower, a decrease in the hardness of the base material can be suppressed.
  • the solvent may not be used in the step of laminating the base material, the intermediate layer, and the surface layer.
  • adverse environmental impacts are reduced.
  • the number of processes can be reduced.
  • the sliding member of the present invention is not limited to the above embodiment, and other configurations may be added to the extent that the characteristics are not impaired.
  • titanium oxide, barium sulfate, calcium carbonate, alumina, oxide Kei-containing iron oxide, inorganic particles such as chromium oxide, zinc sulfide (Z n S) and silver sulfide (A g 2 S) sulfur-containing metal compound such as such as Extreme pressure agents, dyes, pigments and other colorants, surfactants, dispersants, antioxidants, flame retardants, heat stabilizers, antistatic agents, leveling agents, antifoaming agents and epoxy resins, phenol
  • the surface layer and Z or the intermediate layer may contain any or all of a resin, a melamine resin, a cross-linking agent such as a polyfunctional isocyanate, and the like.
  • a silane coupling agent such as aminosilane or epoxy.
  • the sliding member of the present invention includes a layer containing the same component as the intermediate layer and the surface layer, or a layer composed of other components between the intermediate layer and the surface layer, as long as the gist of the present invention is not exceeded. Have It may be a thing.
  • the Example of the sliding member of this invention is described with a comparative example.
  • metal substrates A1 to A9 Nine kinds of metal substrates A1 to A9 were prepared. Each substrate will be described below.
  • Base material Al made of stainless steel plate with a thickness of 0.4 mm (SUS 304), Base material A 2 made of stainless steel plate with a thickness of 0.4 mm (SUS 301), Stainless steel plate with a thickness of 0.5 mm A base material A 3 that is (SUS 304) and a base material A 4 that is a stainless steel plate (SUS 3 1 6) with a thickness of 0.3 mm were prepared.
  • the surface roughness parameters of the base materials A 1 to A 4 are as shown in Table 1 and Table 2.
  • Substrate A 5 that is a 4 mm thick pig iron plate
  • Substrate A 6 that is a 6 mm thick pig iron plate
  • a 7 that is a 10 mm thick pig iron plate
  • an aluminum plate that is 8 mm thick
  • Aluminium-silicon alloy plate 6mm thick (A4043; silicon content 5.5%)
  • a base material A9 which is The base materials A5 to A9 are surface treated by shot blasting, and the surface roughness parameters of the surface treated surfaces of the base materials A5 to A9 are as shown in Table 3 and Table 4. It is.
  • Films S :! to S 1 3 for intermediate layers were produced by the following procedure.
  • PEEK- 1 melting point
  • PEEK- 1 melting point
  • 2 88 kg ( 40% by mass based on the total mass of PE I-1, PEI-2 and PEEK-1).
  • As a filler 2.8 kg of synthetic strength (average particle size: 6 ⁇ , aspect ratio: 25) (PE I-1, PE I-2, and PEEK-1 total 100 mass) 38.9 parts by mass with respect to the parts, hereinafter abbreviated as “filler C l”).
  • the resin composition and the filler were kneaded at a set temperature of 380 ° C. by a twin-screw extruder with side feed, extruded into a strand, and cut into pellets.
  • This pellet was dried with hot air at 1 80 ° C for 12 hours, then extruded into a film at 380 ° C using a single-screw extruder with a 4 Omm ⁇ diameter connected to a T-die, and a set temperature of 160 ° C. was brought into contact with the surface of a metal cast whose temperature was adjusted with the circulating oil of No. 1, and pressed from the opposite side with a silicone rubber roll to form a quenching film, thereby obtaining a film S 1 for an intermediate layer having a thickness of 100 zm. .
  • PE I- 1 a 4. 4 kg (PE I- 1 and PEEK- 1 of total mass to 5 5 wt 0 /.), PE I- 2 a O kg, the PEEK- 1 3. 6 kg (PE I — 45% by mass with respect to the total mass of 1 and PEEK— 1), and the filler C 1 was changed to O kg, and the surface treatment strength (filler C 2) produced by the following method was changed to 2 Film S 2 was added in the same manner as Film S 1 except that kg was added (25 parts by mass with respect to 100 parts by mass of PE I _1 and PEEK-1) and the film thickness was 35 ⁇ m. Got.
  • the surface treatment My power was produced by the following method.
  • Commercially available synthetic strength (average particle size: 10 ⁇ m, aspect ratio: 20) xyltrimethoxysilane (2 kg) surface treatment agent dissolved in 160 g of isopropyl alcohol with a water content of about 3% by mass ( (Reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) 40 g (2 parts by mass with respect to 100 parts by mass of synthetic my strength) is sprinkled with 200 g of a 20% by mass solution, and is supplied with a Henschel mixer while supplying nitrogen. Stir and mix for minutes. This mixture was spread on a stainless steel vat and left in the room for 4 days. Then, 120 ° C Heat-treated in a oven for 48 hours, cooled to room temperature, and surface-treated with My power. This operation was repeated 10 times to obtain about 20 kg of surface treatment strength (hereinafter abbreviated as “filler C 2”).
  • PE I- 1 a 3. 04 kg (PE I- 1, PEI- 2 and PEEK- 40 mass 0/0 to total weight of 1), PE I- 2 to 1. 9 kg (PE I- 1, PE I- 2 and 25 weight 0/0 relative to the total mass of P EEK- 1), the PEEK- 1 2. 66 kg (PE I- 1, PE I- 2 and PEEK- 1 of total mass to 35 by mass 0/0), also a filler C 1 was changed to 0 kg, the filler C 2 2. 4 kg (PE I- 1, to PEI-2 and PEEK- 1 a total of 100 parts by weight 31.6 (Mass part) Film S 3 was obtained in the same manner as film S 1 except that the film thickness was 80 im and the film thickness was 80 im.
  • PE I- 1 a 3. 28 kg (PE I- 1, PEI- 2 and PEEK- 40 mass 0/0 to total weight of 1), ⁇ ⁇ - 2 of 2. 87 kg (PE I- 1, PE I- 2 and PEEK- 35 mass 0/0 relative to the total weight of 1), PEEK- 1 to 2. 05 kg (PE I- 1, the total weight to 25 mass PE I- 2 and P EEK- 1 %)
  • the filler C 1 was changed to 0 kg, and the surface treatment My force (filler C 3) produced by the following method was changed to 1.8 kg (PE I—1, PEI—2, and P EEK— Film S 4 was obtained in the same manner as in film S 1 except that the film thickness was 50 ⁇ .
  • PE I- 1 a 4. 4 kg (PE I- 1 and PEEK- 5 5 mass 0/0 relative to the total weight of 1), PE I- 2 to 0 kg, the PEEK- 1 3. 6 kg (PE I — 45% by mass of 1 and PEEK—1), and change filler C 1 to O kg and filler C 3 to 2 kg (PE I_1, PE I—2 and PEEK — 25 parts by mass with respect to 100 parts by mass in total of 1)
  • the film S 6 was obtained in the same manner as in the film S 1 except that the film thickness was 28 ⁇ m.
  • PE I- 1 a 3. 2 kg (PE I- 1, PEI- 2 and PEEK- 40 mass 0/0 relative to the total weight of 1), ⁇ ⁇ - 2 to 2. 4 kg (PE I- 1, PE I- 2 Contact Yopi P EEK- 30 mass 0/0 relative to the total weight of 1), PEEK- 1 to 2.30 to 4 kg (PE I- 1, the total weight of PE I- 2 and PEEK- 1 )
  • filler C 1 is changed to 0 kg
  • filler C 3 is 2 kg (25 parts by mass for 100 parts by mass of PE I-1, PE I 1-2 and PEEK-1). Then, except that the film thickness was 24 ⁇ , the same operation as film S 1 was performed to obtain film S 7.
  • PE I—1 PE I—1, PE I—2 and PE EK- 30 mass 0/0 relative to the total weight of 1
  • PE I- 2 PE I- 1, PEI- 2 and total mass to 30 parts by weight of P EEK- 1
  • PEEK- 1 4 kg 50% by mass with respect to the total mass of PE I-1, PEI-2 and PEK-1) was used.
  • filler C 2 as a filler (15 parts by mass with respect to 100 parts by mass of PE I-1, PE I-2 and PEEK-1) and polytetrafluoro as a solid lubricant
  • Solid lubricant D 2 “Special CP” average particle diameter measurement value under a microscope is 6 m, hereinafter abbreviated as “solid lubricant D 2”) lkg (PE 10 parts by mass for 100 parts by mass of I-1, PE I-2 and PEEK-1)
  • the above resin composition, filler and solid lubricant were kneaded at a set temperature of 390 ° C. by a twin screw extruder with side feed, extruded into a strand, and cut into a lettuce. This pellet was dried with hot air at 1 80 ° C for 12 hours, and then the film S 8 was obtained by the same procedure as for film S 1 except that the extrusion temperature was 390 ° C and the film thickness was 50. .
  • PE I- 1 a 3 kg (PE I- 1, PE I- 2 and PE EK- 30 mass 0/0 relative to the total weight of 1)
  • the PE I-2 3 kg PE I- 1, PEI-2 and PEEK- 30 mass 0/0 relative to the total weight of 1)
  • ⁇ ££ 1: -1 to 4 kg PE I- 1, the total weight of the PEI-2 and PE EK- 1 40% by mass.
  • Film S9 was obtained by the same procedure as film S1, except that the film thickness was 50 ⁇ am.
  • PE I- 1 a 5. 5 kg (PE I- 1 and PEEK- 5 5 mass 0/0 relative to the total weight of 1), the PE I-2 O kg, PEEK- 1 to 4, 5 kg (PE I — 45% by mass with respect to the total mass of 1 and PEEK—1, and the filler C 1 is changed to O kg.
  • the filler C 1 is changed to O kg
  • the filler C 3 is lkg (10 parts by mass for 100 parts by mass of PE I-1, PE I-2 and PE EK ⁇ 1)
  • solid lubricant D 0.5 kg (5 parts by mass for a total of 100 parts by mass of PEI—1, PE I—2 and P EEK—1)
  • 1 kg of solid lubricant D2 PE I—1, PE I—2 and PEEK —10 parts by mass with respect to 100 parts by mass in total of 1
  • Film S 11 was obtained in the same manner as film S 1 except that the film thickness was 30 ⁇ .
  • Films ⁇ 1 to ⁇ 1 3 and film TR1 for the surface layer were produced by the following procedure.
  • This pellet was dried with hot air at 180 ° C for 12 hours, then extruded into a film at 390 ° C using a single-screw extruder with a diameter of 4 Omm ⁇ connected to a T die, and a set temperature of 130 ° C.
  • the film was brought into contact with the surface of a metal cast roll whose temperature was adjusted with the circulating oil of No. 1 and pressed from the opposite side with a silicone rubber roll to form a rapidly cooled film, thereby obtaining a Finolem® 1 having a thickness of about 1 10 ⁇ m.
  • PEEK-1 was changed to 7.6 kg (100 parts by mass)
  • filler C1 was changed to 0 kg
  • filler C2 was changed to 2.4 kg (31.6 parts by mass per 100 parts by weight of PEEK-1) )
  • the same operation as film T 1 was performed to obtain Finolem T 2.
  • PEEK-1 was changed to 7.5 kg (100 parts by mass), filler C 1 was changed to 0 kg, and filler C 3 was changed to 2.5 kg (33.3 parts by mass relative to 100 parts by mass of PEEK-1)
  • the same procedure as in Film 1 was performed except that the film thickness was changed to 50 ⁇ to obtain Finolem® 5.
  • PEEK-1 was changed to 8.33 kg (100 parts by mass)
  • filler C 1 was changed to ⁇ kg
  • solid lubricant D 2 was changed to 1.67 kg (20 parts by mass with respect to 100 parts by mass of PEEK-1)
  • Film ⁇ 7 was obtained in the same manner as film T1, except that the film thickness was changed to 100 ⁇ .
  • PEEK-1 was changed to 10 kg and filler C 1 was changed to O kg (ie, only PEEK-1 was used), and the film thickness was changed to 50 ⁇ without using a twin-screw extruder. Otherwise, the same operation as film T1 was performed to obtain film T9.
  • PEEK-1 was changed to 10 kg (100 parts by mass), filler C1 was changed to 0 kg, and solid lubricant D1 was added to 2.5 kg (25 parts by mass with respect to 100 parts by mass of PEEK-1).
  • Film ⁇ 10 was obtained by the same operation as film ⁇ 1 except that the thickness was changed to 60 ⁇ .
  • PEEK-1 is changed to 10 kg (100 parts by mass)
  • filler C1 is changed to 0 kg
  • filler C3 is changed to 1 kg (10 parts by mass with respect to 100 parts by mass of PEEK-1)
  • solid lubricant 01 2 ⁇ (20 parts by mass with respect to 100 parts by mass of PEEK-1)
  • 1 kg of solid lubricant D2 (10 parts by mass with respect to 100 parts by mass of PEEK-1) and a thickness of 40 ⁇
  • film ⁇ ⁇ ⁇ 1 1 was obtained in the same manner as film ⁇ 1.
  • PEEK-1 is changed to 10 kg (100 parts by mass)
  • filler C1 is changed to 0 kg
  • filler C3 is changed to 0.5 kg (5 parts by mass with respect to 100 parts by mass of PEEK-1)
  • solid Lubricant D 2 0.5 kg (5 parts by mass with respect to 100 parts by mass PEEK-1)
  • Polytetrafluoroethylene resin Polyflon TFEL-5, manufactured by Daikin Industries, Ltd.
  • Solid lubricant D 3 Abbreviated 2 kg (20 parts by mass with respect to 100 parts by mass of PEEK-1), except that the thickness was set to 70. Obtained.
  • Film TR 1 was prepared in the same manner as film ⁇ 9 except that the thickness was changed to 11 ⁇ . [Production of laminated film]
  • Laminated films ST1 to ST6 were produced by the following procedure.
  • PE I-1 As a resin composition, 2.8 kg of PE I-1 (28 mass% with respect to the total mass of PE I-1, PE I-2 and PEEK-1) and 3 kg of PE I-2 (PE I-1) , PE I _2 and PEEK- 30 mass 0/0 relative to the total weight of 1), PEEK- 1 to 4. 2 kg (PE I- 1, PE total mass of I-2 and PEEK- 1 to 42 wt% ) , Using. Further, 2.5 kg of filler C 2 (25 parts by mass with respect to 100 parts by mass in total of PE I-1, PE I— ⁇ and PEEK-1) was added.
  • the resin composition and the filler were kneaded at a set temperature of 380 ° C using a twin screw extruder with side feed, extruded into a strand shape, and cut into pellets.
  • This pellet was dried with hot air at 180 for 8 hours and extruded as an intermediate layer from a multi-hold type die (set temperature 390 ° C) connected to a single screw extruder with a diameter of 30 mm ⁇ set at 390 ° C. It was.
  • PEEK-1 pellets were dried with hot air at 80 ° C for 8 hours and then connected to a multi-screw hold die (set temperature: 390 ° C) connected to a single screw extruder with a 40 mm ⁇ diameter set to 390 ° C.
  • extrusion coextrusion
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the intermediate layer to the surface layer was 16:84.
  • the intermediate layer side of this laminated film was quenched with a 125 ° C casting roll, and a silicone rubber roll was pressed against the surface layer side. Furthermore, the silicone rubber roll was cooled by pressing a hard chrome plating roll, which was cooled with water of about 35 ° C, installed on the opposite side of the metal roll, and then wound up.
  • the thickness Saga 50 ⁇ ⁇ of the laminated film was the ejection amount and the line speed of the molten resin from the extruder.
  • the cross-section of the obtained laminated film ST 1 was observed under a microscope and the thickness of each layer was measured.
  • the thickness of the intermediate layer was 8 ⁇ , and the thickness of the surface layer was 42; um. To.
  • PE I- 1 a 6 kg (PE I _ 1 and PEEK- 60 mass 0/0 to total weight of 1), PEEK- 1 to 4 kg (PEI-1 and PE EK - 1 of 40% by mass with respect to the total mass).
  • 1.5 kg of filler C 3 (15 parts by mass for 100 parts by mass of PE I-1 and PEEK-1) and 1.5 kg of solid lubricant D1 (PEI-1 and PEEK-1 15 parts by mass for 100 parts by mass in total).
  • the resin composition, filler and solid lubricant were kneaded at a set temperature of 390 ° C.
  • pellets were dried in hot air at 180 ° C for 8 hours and extruded as an intermediate layer from a multi-hold type die (set temperature 390 ° C) connected to a single screw extruder with a diameter of 30 mm ⁇ set at 390 ° C. .
  • the intermediate layer and the surface layer were coextruded in the same procedure as for the laminated film ST 1 to obtain a laminated film AST 2.
  • the discharge amount of the molten resin and the line speed were adjusted so that the thickness ratio of the intermediate layer to the surface layer was 14:86 and the thickness of the laminated film was 105 ⁇ ⁇ .
  • the cross section of the obtained laminated film ST 2 was observed with a microscope and the thickness of each layer was measured.
  • the thickness of the intermediate layer was 15 ⁇ , and the thickness of the surface layer was 90 ⁇ . .
  • PE I- 1 a 6 kg (PE I- 1, PE I- 2 and PE EK- 60 mass 0/0 relative to the total weight of 1), the PE I-2 1. 5 kg ( PE I- 1. PE I _2 and PEEK- 15 mass 0/0 relative to the total weight of 1), PEEK- 1 to a 2. 5 kg (PE I- 1, the total mass of the PE I-2 and PEEK- 1 25% by mass) was used.
  • 1.5 kg of filler C3 PE I—1, PE I—2 And 15 parts by mass for 100 parts by mass of PEEK-1) and 1 kg of solid lubricant D 2 (10 parts by mass for 100 parts by mass of PE I-1, PE I-2 and PEEK-1) Added.
  • the resin composition, the filler, and the solid lubricant were kneaded at a set temperature of 390 ° C. using a twin screw extruder with a side feed, extruded into a strand shape, and cut into pellets.
  • the pellets were dried with hot air at 1 80 for 8 hours and extruded as an intermediate layer from a multi-hold type die (set temperature 390 ° C) connected to a single-screw extruder with a diameter of 30 mm ⁇ set at 390 ° C. .
  • This pellet was dried with hot air at 180 ° C for 8 hours, and extruded as a surface layer from the above multi-hold die (set temperature 390 ° C) connected to a single-screw extruder with a diameter of 30 mm set at 90 ° C. .
  • the intermediate layer and the surface layer were coextruded in the same procedure as for the laminated film ST 1 to obtain a laminated film ST3.
  • the discharge amount of the molten resin and the line speed were adjusted so that the thickness ratio of the intermediate layer to the surface layer was 43:57 and the thickness of the laminated film was 70 ⁇ .
  • the cross-section of the obtained laminated film ST 3 was observed with a microscope and the thickness of each layer was measured.
  • the thickness of the intermediate layer was 40 im, and the thickness of the surface layer was 30 ⁇ . .
  • the intermediate layer and the surface layer were coextruded in the same procedure as for the laminated film ST 1 to obtain a laminated film ST 4.
  • the discharge amount of the molten resin and the line speed were adjusted so that the thickness ratio of the intermediate layer to the surface layer was 24:76 and the thickness of the laminated film was 34 / m.
  • the thickness of the intermediate layer was 8 ⁇ and the thickness of the surface layer was 26 ⁇ .
  • ⁇ ⁇ — 1 is 5.8 kg (58 mass to the total mass of PE I— 1 and PEEK— 1. / 0 ), PEEK-1 is 4.2 kg (PE 1— 1 and PEEK — 42% by mass based on the total mass of 1). Also, 1.5 kg of filler C3 (15 parts by mass with respect to 100 parts by mass of PE I-1 and PEEK-1), and 1 kg of solid lubricant D1 (of PE I-1 and PEEK-1) 10 parts by mass for 100 parts by mass in total).
  • the resin composition, filler and solid lubricant were kneaded at a set temperature of 390 ° C using a twin screw extruder with side feed, extruded into a strand, and cut into pellets. This pellet was dried with hot air at 180 ° C for 8 hours, and an intermediate layer was formed from a multi-hold type die (set temperature 390 ° C) connected to a single screw extruder with a diameter of 30 mm ⁇ set at 390 ° C. Extruded.
  • the intermediate layer and the surface layer were coextruded in the same procedure as for the laminated film ST 1 to obtain a laminated film ST 5.
  • the discharge amount of the molten resin and the line speed were adjusted so that the thickness ratio of the intermediate layer to the surface layer was 14:86 and the thickness of the laminated film was 105 ⁇ .
  • the cross-section of the resulting laminated film ST 5 was magnified and observed with a microscope, and the thickness of each layer was measured.
  • the thickness of the intermediate layer was 15 ⁇ , and the thickness of the surface layer was 90 / zm. there were.
  • PE I- 1 a 6 kg (PE I- 1, PE I- 2 and PE EK- 60 mass 0/0 relative to the total weight of 1), PE I- 2 to 1. 5 kg (PE I _ 1, PE I- 2 and PEEK- 1 5 mass 0/0 relative to the total weight of 1), PEEK- 1 to 2. 5 kg (PE I- 1, PEI _ 2 and P EEK- 1 of the total weight 25% by mass).
  • 1.5 kg of filler C 3 (15 parts by mass for 100 parts by mass of PE I-1, PE I-2 and PEEK-1) and 1 kg of solid lubricant D2 (PE I— 1, 10 parts by mass with respect to 100 parts by mass in total of PE I-2 and PEEK-1).
  • the resin, composition, filler and solid lubricant were kneaded at a set temperature of 390 ° C. using a twin screw extruder with side feed, extruded into a strand, and pressed to form a pellet.
  • the pellets were dried with hot air at 180 for 8 hours and extruded as an intermediate layer from a multi-hold type die (set temperature: 390 ° C) connected to a single screw extruder with a diameter of 30 mm ⁇ set at 390 ° C.
  • the intermediate layer and the surface layer were coextruded in the same procedure as for the laminated film ST 1 to obtain a laminated film ST6.
  • the amount of molten resin discharged and the line speed were adjusted so that the thickness ratio of the intermediate layer to the surface layer was 57:43, and the thickness of the laminated film was 70 ⁇ .
  • the cross section of the obtained laminated film was observed with a microscope and the thickness of each layer was measured.
  • the thickness of the intermediate layer was 40 / zm and the thickness of the surface layer was 30 ⁇ .
  • the above (4) was degreased by black mouth form cleaning.
  • (1) to (9) above the surface dirt and foreign matter were removed with a wiping paper soaked with a small amount of ethanol before overlaying.
  • the front and back foreign objects are confirmed by visual inspection, and a small amount of ethanol is infiltrated.
  • the foreign matter was wiped off using a bing cloth (“Microstar CP” manufactured by Teijin Ltd.), and then a visual inspection was performed again to confirm that the foreign matter was removed, and then overlapping was performed.
  • Sample 2 was obtained by performing the same press molding as Sample 1 except that the base material was A2, the intermediate layer film was changed to S2, and the surface layer film was changed to T2.
  • the thickness of each layer of Sample 2 was a base material of 0.4 mm, an intermediate layer of 33 ⁇ , and a surface layer of 38 ⁇ m.
  • Sample 3 was obtained by performing the same press molding as Sample 1 except that the substrate was A3, the intermediate layer film was changed to S3, and the surface layer film was changed to T3.
  • the thickness of each layer of Sample 3 was a base material of 0.5 mm, an intermediate layer of 76 / m, and a surface layer of 27 m.
  • Sample 4 was obtained by performing the same press molding as Sample 1 except that the intermediate layer film was changed to S4 and the surface layer film was changed to T4.
  • the thickness of each layer was a base material of 0.4 mm, an intermediate layer of 46 ⁇ , and a surface layer of 66 ⁇ .
  • Sample 5 was obtained by performing the same press molding as Sample 1 except that the base material was A4, the intermediate layer film was changed to S5, and the surface layer film was changed to T5.
  • the thickness of each layer was a base material of 0.3 mm, an intermediate layer of 45 ⁇ , and a surface layer of 47 zm.
  • Sample 6 was obtained by performing the same press molding as Sample 1 except that the intermediate layer film was changed to S6 and the surface layer film was changed to T6.
  • the thickness of each layer was a base material of 0.4 mm, an intermediate layer of 24 ⁇ m, and a surface layer of 55 m.
  • Sample 7 was obtained by performing the same press molding as Sample 1 except that the intermediate layer film was changed to S7 and the surface layer film was changed to T7.
  • the thickness of each layer was a base material of 0.4 mm, an intermediate layer of 20 ⁇ m, and a surface layer of 96 ⁇ m.
  • Sample 8 was obtained by performing the same press molding as Sample 1 except that the substrate was A2, the intermediate layer film was changed to S8, and the surface layer film was changed to T8.
  • the thickness of each layer was 0.4 mm for the base material, 45 111 for the intermediate layer, and 31 / m for the surface layer.
  • Sample 1 was obtained by performing the same press molding as Sample 1 except that the surface layer film was not used.
  • the thickness of each layer was 0.4 mm for the base material and 96 ⁇ m for the intermediate layer.
  • Sample 3 was obtained by performing the same press molding as Sample 1 except that the intermediate layer film was not used and the surface layer film was changed to TR1.
  • the thickness of each layer was 0.4 mm for the base material and 106 ⁇ for the surface layer. Since the substrate and TR 1 were poorly bonded, no other evaluation was performed.
  • Sample 9 was obtained by press molding in the same manner as Sample 1, except that the maximum set temperature holding time was changed to 30 minutes.
  • the thickness of each layer was a base material of 0.4 mm, an intermediate layer of 6 ⁇ , and a surface layer of 39 ⁇ m.
  • Sample 10 was obtained by performing the same operation as Sample 9 with the laminated film as ST2.
  • the thickness of each layer was a base material of 0.4 mm, an intermediate layer of 1 1 ⁇ ⁇ , and a surface layer of 86 ⁇ m.
  • the laminated film was set as ST 3, and the same operation as in sample 9 was performed to obtain sample 11.
  • the thickness of each layer was a base material of 0.4 mm, an intermediate layer of 35 ⁇ , and a surface layer of 26 ⁇ .
  • the above (3 ') was degreased by black mouth form cleaning.
  • surface dirt and foreign matter were removed with a wiping paper soaked with a small amount of ethanol before overlapping.
  • (3 ') above removes dust and foreign matter on the surface using a rubber blower, and (1) to (8) above confirm that there are foreign objects on the front and back by visual inspection before overlaying. Then, the foreign matter was wiped off using the above-mentioned wiping cloth soaked with a small amount of ethanol, and then a visual inspection was performed again, and it was confirmed that the foreign matter had been removed.
  • the substrate was 4 mm, the intermediate layer 46 / im, and the surface layer 45 / zm.
  • Sample 13 was obtained by performing the same press molding as Sample 12 except that the substrate was A6, the intermediate layer film was changed to S10, and the surface layer film was changed to T10.
  • the thickness of each layer of Sample 1 3 was 6 mm for the base material, 20 m for the intermediate layer, and 56 m for the surface layer.
  • Sample 14 was obtained by performing the same press molding as Sample 12 except that the substrate was A6, the intermediate layer film was changed to S11, and the surface layer film was changed to T11.
  • the thickness of each layer was 6 mm for the base material, 26 ⁇ m for the intermediate layer, and 35 m for the surface layer.
  • Sample 15 was obtained by performing the same press molding as Sample 12.
  • the thickness of each layer was 8 mm for the base material, 24 ⁇ m for the intermediate layer, and 55 m for the surface layer.
  • Sample 16 was obtained by performing the same press molding as Sample 12 except that the base material was A6, the intermediate layer film was changed to S13, and the surface layer film was changed to T13.
  • the thickness of each layer was a substrate 6 mm, an intermediate layer 35 / zm, and a surface layer 64 ⁇ .
  • the base material is A6, the intermediate layer film S9 and the surface layer film T9 are changed to the laminated film ST4, and the intermediate layer of the laminated film is stacked so that the intermediate layer is in contact with the base material A6.
  • Sample 17 was obtained by press-molding in the same manner as Sample 12 except that the maximum temperature set at the time was changed to 250 ° C and the maximum set temperature holding time was changed to 30 minutes.
  • the thickness of each layer was a substrate 6 mm, an intermediate layer 5 ⁇ , and a surface layer 21 ⁇ .
  • Sample 18 was obtained in the same manner as Sample 17 except that the substrate was changed to A5 and the laminated film was changed to ST5.
  • the thickness of each layer was 4 mm for the base material, 10 ⁇ m for the intermediate layer, and 85 ⁇ m for the surface layer.
  • Sample 1 9 was obtained in the same manner as Sample 17 except that the laminated film was changed to ST6.
  • the thickness of each layer was a substrate 6 mm, an intermediate layer 34 ⁇ m, and a surface layer 26 m.
  • Sample 20 was obtained in the same manner as Sample 17 except that the base material was changed to A8, the laminated film was changed to ST5, and the preset maximum temperature during press molding was changed to 240 ° C.
  • the thickness of each layer was 8 mm for the base material, 1 l ⁇ m for the intermediate layer, and 85 m for the surface layer.
  • Sample 21 was obtained in the same manner as Sample 20, except that the substrate was changed to A9 and the laminated film was changed to ST6.
  • the thickness of each layer is 6mm for the base material, 35 ⁇ m for the intermediate layer, and 25 ⁇ m for the surface layer.
  • a shearing made by Ikuno Machinery Co., Ltd. (blade span approx. 100 mm, stepping type) is used. 3 pieces were cut into strips having a width of 3 cm and a length of 20 cm, and the presence or absence of delamination at the ends of the long sides was visually observed, and evaluated according to the following 4 ranks.
  • the peeling occurrence state of the cutting edge on the fixed blade side and the cutting edge on the movable blade side are different, the peeling state of the edge having the larger peeling length or width is evaluated. The state of peeling at the cut end of the remaining part after the cutting was also observed, and if the length and width of the peeling were large, this was regarded as the evaluation result.
  • the maximum peel width is more than 0.5 mm and less than 1 mm.
  • Samples 1 to 2 whose thickness of the substrate exceeds l mm cannot be cut by shearing, so three parallel straight cuts with a spacing of 2 cm are made on the sliding layer with a cutter knife. Furthermore, near the center of these straight lines, three straight cuts with a spacing of 2 cm in the direction perpendicular to the straight lines were made in parallel, and the state of peeling was visually observed. In addition, the tip of the cutter knife was inserted into the cut portion and an attempt was made to peel off the cut portion. The presence or absence of delamination at the cuts was visually observed, and the evaluation was divided into the following four ranks.
  • Rank 2 The maximum peel width of the cut is more than 0.5 mm and less than 1 mm.
  • Rank 3 Peeling occurs across the entire cut and the peel width is at least partially greater than 1 mm.
  • Rank 4 After cutting with a cutter knife, during the conditioning for 2 days at room temperature, peeling gradually spreads beyond the cut width lmm from the cut, and at least 10% of the laminated surface peels off.
  • Samples 1 to 11 and Sample 1 'and Sample 3 with a substrate thickness of lmm or less were cut into strips with a width of 3 cm and a length of 20 cm by the above shearing, and the length of the sliding layer Make a straight cut with a force knives knife at a position of 5 mm inward from the ends of both sides of the 20 cm side, and 3 cm in length at a position of about 3 to 5 cm inward from one side of the 3 cm length.
  • a cut was made with a cutter knife almost in parallel with the side of the plate, and at that position, a break was made in the thickness direction of the base material repeatedly to produce a peel location for peel strength measurement, which was used as a test piece.
  • cellophane tape with a width of 18 mm was applied to the peeled part to provide a pulling allowance.
  • cut 18 mm wide cellophane tape (Nichipan cellophane tape “CT405A—18”) to a length of approximately 33 cm, leaving approximately 1.5 cm at both ends, with the adhesive side facing in the center. Folded and bonded together, and both ends were pasted to the peeled part, making a 18mni width and a length of about 15cm.
  • the peeled portion was stretched by pulling it in a direction perpendicular to the surface of the sample with a sliding layer or the above-mentioned taper tape from the peeled portion.
  • the tensile strength was measured with a tester at a speed of 50 mm / min, and the peel strength was measured.
  • Spreading operation When the film was torn inside, it was judged that the peel strength was stronger than the material strength, and it was judged that the material was broken (abbreviated as “material breakage”).
  • the static friction coefficient and dynamic friction coefficient were measured according to J IS K7 1 25— 1 987.
  • the pencil hardness was measured according to JI S K331 2-1 994.
  • the surface roughness parameters defined in JIS B0601-1994 were measured.
  • the measured parameters are 10-point average roughness (Rz), maximum height (Ry), and arithmetic average roughness (Ra).
  • Agent D2 [parts by mass] 1-1-1-10-1 layer
  • Agent D2 [parts by mass]-1 10 thickness [jU m] 42 90 30
  • Agent D2 [parts by mass]--10-10 Thickness [im] 26 90 30 90 30
  • Samples 1 to 21 are more excellent in sliding characteristics than Sample 1 ′ having only the intermediate layer.
  • sliding members containing solid lubricants (Dl, D2, D3) in the intermediate layer and Z or surface layer have low static friction coefficient and dynamic friction coefficient, and showed excellent sliding characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compressor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の摺動部材は、金属製の基材と、該基材の少なくとも一面に形成され、熱可塑性ポリイミド樹脂およびポリアリールケトン樹脂からなる樹脂組成物を含む中間層と、該中間層の上に形成されポリアリールケトン樹脂を含む表面層と、を有することを特徴とする。本発明の摺動部材は、低温で形成することが可能であるため、基材の劣化が抑制され、また、基材との密着性に優れたポリアリールケトン樹脂を含む表面層を有する摺動部材である。

Description

圧縮機の摺動部材 技術分野
本発明は、 耐熱性、 耐摩耗性、 耐薬品性などに優れた圧縮機の摺動部材に関す る。 技術背景
熱可塑性樹脂の中でも、 ポリエーテルエーテルケトン榭脂ゃポリエーテルケト ン榭脂などのポリアリールケトン樹脂は、 高い機械的強度をもち、 耐熱性、 難燃 性、 耐摩耗性、 耐薬品性、 耐加水分解性などに優れている。 そのため、 航空機部 品、 自動車部品、 電気 ·電子部品を中心に、 幅広い分野で採用されている。
その一例が、 特開 2002— 39062公報に記載の圧縮機の斜板であって、 基材の表面にはポリエーテルエーテルケトン樹脂を含む摺動層が形成されている。 しかしながら、 ポリアリールケトン樹脂は、 その優れた耐薬品性のため、 溶剤に ほとんど溶解しない。 そのため、 ポリアリ一ルケトン榭脂を溶解した塗料組成物 を基材に塗布して樹脂層を形成することは困難である。
そこで、 特開 2000— 96203公報には、 高速度酸素燃料 (HVOF) プ ロセスによりポリエーテルエーテルケトン樹脂を基材に溶射する方法が開示され ている。 この方法では、 340°Cに加熱されたポリエーテルエーテルケトン樹脂 が HVOFプロセスにより基材に向かって高速で推進し、 基材表面にポリエーテ ルエーテルケトン樹脂を堆積させる。 この際、 基材の表面には、 残留応力が発生 することがあり、 溶射後に残留応力を緩和する処理が必要となる。
また、 シート状のポリアリ一ルケトン樹脂と基材とを積層させて密着させると いう方法もある。 ところが、 ポリアリールケトン樹脂は、 その優れた耐熱性のた め、 融点が高く (ポリエーテルエーテルケトン樹脂の融点は 334°C) 溶融し難 い。 そのため、 ポリアリールケトン樹脂のシート等を基材に密着させて樹脂層を 形成するには、 シートにポリアリ一ルケトン榭脂の融点以上の高温を加える必要 があり、 温度によっては基材が劣化 (具体的には、 焼入れされた鉄やアルミユウ ムの焼鈍による硬度の低下).する虞がある。 また、 原料の加熱や樹脂層形成後の 冷却に時間がかかるため、 生産効率が低くなる。
さらに、 工業材料: 66〜69, Vo l . 48, No. 5 (2000) に記載 の静電粉体法を用いても、 基材の表面温度は 400°C程度まで上昇するため、 上 記問題点を回避できない。
また、 ポリアリールケトン樹脂は、 単独では金属と密着しにくいので、 金属製 の基材への積層が困難であった。 そこで、 銅箔やアルミニウム箔への積層が必要 な電子回路板機材において、 融点が高い結晶性樹脂としての耐熱性を生かすため に、 ポリアリールケトン樹脂と、 金属との密着が良好で耐熱性を有するポリエー テルイミド樹脂との混合物が注目されてきた。
特開昭 59 - 115353号公報には、 上記混合物と銅箔とが良好な接着性を 示し、 回路板基材に有用であることが開示されている。 さらに、 特開 2002— 212314公報、 特許第 3514667号公報、 特開 2002— 144436 公報には、 上記混合物を用いたプリント配線基板や金属体との積層体およびその 製造方法や熱融着性絶縁シートが開示されている。
し力 しながら、 上記混合物は、 耐アルカリ性などの耐薬品性、 耐摩耗性、 摺動 性に限界があるため、 機械部品、 自動車部品などの分野では必ずしも十分ではな く、 用途に限界があった。 発明の開示
本発明は、 上記事情に鑑みなされたもので、 低温で形成しても、 金属製の基材 との密着性に優れたポリアリ一ルケトン樹脂を含む表面層をもつ摺動部材を提供 することを目的とする。
本発明者等は、 種々鋭意検討を重ねた結果、 金属製の基材と、 ポリアリールケ トン樹脂を含む表面層と、 の間に、 熱可塑性ポリイミド榭脂およびポリアリール ケトン樹脂からなる樹脂組成物を含む中間層を設けることにより、 上記課題を解 決し得ることを見出し、 この知見に基づいて本発明を完成するに至った。
すなわち、 本発明の摺動部材は、 金属製の基材と、 該基材の少なくとも一面に 形成され、 熱可塑性ポリイミ ド樹脂おょぴポリア!)一ルケトン樹脂を含む第一樹 脂組成物からなる中聞層と、 該中間層の上に形成されポリアリ一ルケトン樹脂を 含む第二樹脂組成物からなる表面層と、 を有することを特徴とする。
前記表面層は、 さらに、 固体潤滑剤を含むのが好ましい。 この際、 前記表面層 は、 前記第二樹脂組成物を 1 0 0質量部としたときに前記固体潤滑剤を 4 0 0質 量部以下含むのが好ましい。 また、 前記固体潤滑剤は、 ポリテトラフルォロェチ レン、 黒鉛、 およぴニ硫化モリブデンのうちの少なくとも 1種を含むのが好まし レ、。
また、 前記ポリイミ ド樹脂は、 構造式 (1 ) およぴノまたは構造式 (2 ) で表 される繰り返し単位を有するポリエーテルイミ ド樹脂であり、 前記ポリアリール ケトン樹脂は、 構造式 (3 ) で表されるポリエーテルエーテルケトン樹脂である のが好ましい。
[化 1 ]
Figure imgf000004_0001
Figure imgf000004_0002
本発明の摺動部材では、 熱可塑性ポリイミド樹脂およびポリアリールケトン樹 脂からなる榭脂組成物を含む中間層を用いたことで、 低温で形成しても、 金属製 の基材との密着性に優れたポリアリ一ルケトン樹脂を含む表面層をもつ摺動部材 が得られる。 その結果、 高温による金属製基材の劣化等の問題のために使用でき なかった種類の金属を用いても、 基材にポリアリールケトン榭脂を含む表面層を 形成することができる。
そして、 中間層をもつことにより、 金属製の基材にポリアリールケトン樹脂を 含む表面層を単独で設けた従来の摺動部材ょりも優れた摺動特性を有する。 また、 表面層が固体潤滑剤を含むことにより、 さらに優れた摺動特性をもつ摺動部材と なる。 発明を実施のするための最良の形態
以下に、 本発明の摺動部材を実施するための最良の形態を説明する。
本発明の摺動部材は、 金属製の基材と、 基材の少なくとも一面に形成された中 間層と、 中間層の上に形成された表面層と、 を有する。
本発明に使用する基材は、 金属製であれば特に限定はない。 金属製の基材とし ては、 鉄、 クロム、 ニッケル、 亜鉛、 アルミニウム、 アルミニウム合金、 マグネ シゥム、 マグネシウム合金、 チタン、 チタン合金、 銅、 銀、 金、 黄銅、 真鍮、 青 銅、 铸鉄、 炭素鋼、 ステンレス鋼、 超合金 (例として、 NCF 800、 NCF 6 00) などが挙げられる。 また、 鉄や炭素鋼に亜鉛、 錫、 クロム、 ニッケル、 亜 鉛とアルミニウムなどのメツキを施したものも使用することができる。 これらの うちで、 剛性が高く、 安価であるという観点から、 好ましくは、 鉄、 錶鉄、 ステ ンレス鋼、 炭素鋼、 亜鉛メツキを施した炭素鋼、 亜鉛一アルミニウムメツキを施 した炭素鋼である。 さらに、 鲭を生じにくいという観点から、 より好ましくはス テンレス鋼である。 ステンレス鋼としては、 種々の合金組成のものがあり、 たと えば、 SUS 301、 SUS 301 L、 SUS 302、 SUS 302B、 SUS 303、 SUS 303 S e、 SUS 304、 SUS 304 L, SUS 304】 1、 SUS 304 J 2, S US 305 s SUS 309 S, SUS 3 10 SN SUS 3 16、 SUS 316 L, SUS 31 7, SUS 321、 SUS 329】 1、 SU S 329 J 3 L, SUS 329 J 4L, SUS 347、 SUS 403、 SUS 4 05、 SUS 41 0、 SUS 430、 SUS 434、 SUS 436 L, SUS 4 36 J 1 L, SUS 444, SUS 447 J 1 , SUS 304 c u l、 SUS X M7、 SUSXM27、 S U S XM 15 J 1, SUS 630、 SUS 631、 S UH409、 SUH 2 1および SUH409 Lなどが挙げられる。 さらに、 これ らのステンレス鋼に圧延や熱処理を加えたものなども使用することができる。 また、 基材の形状は特に限定されないが、 たとえば、 平面体、 円板体、 曲面体、 半球体、 波板体、 筒体、 管体、 などが挙げられる。 これらのうち、 加工が容易な のは平面体であり、 平面体としては、 たとえば、 枚葉体、 連続した帯状体 (コィ ル) などが挙げられる。
基材として特に好ましいのは、 圧縮機の摺動部品である。 すなわち、 本発明の 摺動層を有する摺動部材は、 圧縮機の摺動部材とすることができる。 たとえば、 摺動部材は、 斜板式圧縮機の斜板に用いることができる。 また、 摺動部材は、 圧 縮機のシユーに用いることができる。 斜板式圧縮機の斜板とシユーとは、 運転初 期に潤滑油がないドライ状態で相互に摺動する場合がある。 このような非常に厳 しいドライ状態で摺動する場合であっても、 焼き付きや摩耗などを起こさないこ とが望まれる。 そこで、 摺動特性に優れる本発明の摺動部材を斜板式圧縮機の斜 板ゃシユー等に用いることで、 斜板式圧縮機に要求される条件を十分に満たすこ とができる。
上記の他、 圧縮機の駆動軸を支持するすべり軸受にも用いることができる。 ま た、 ビストン式圧縮機の駆動軸に一体的に軸支されると共に駆動軸をビストン圧 縮機のハウジングに回転可能に枢支され駆動軸と同期回転することで圧縮室と吸 入圧力領域との間のガス通路を開閉可能とするロータリバルブや、 ビストン式圧 縮機のビストンに用いることもできる。
基材が圧縮機の摺動部材であれば、 たとえば、 鉄や鋼、 アルミニウムや Mg、 Cu、 Z n、 S i、 Mn等を含むアルミェゥム合金、 銅や Z n、 A 1、 S n、 M n等を含む銅合金などが好ましい。
また、 基材の厚さに特に限定はないが、 0. 01〜50mm程度、 より好まし くは 0. 05〜20mm、 さらに好ましくは 0. 1〜 15 mmであれば、 摺動部 材として好適である。
基材は、 中間層が形成される面に表面処理を施してもよい。 表面処理は種々の 方法により行うことができ、 処理された表面としては、 たとえば、 圧延、 熱処理、 酸洗などの処理を施された表面 (たとえば、 J I S G0203— 2000、 J I S G4305— 1999、 A I S I規格等に規定される N o . 1, No. 2 D、 No. 2B) 、 さらに、 研磨された表面 (たとえば、 上記規格等に規定され る No. 3、 No. 4、 # 240、 # 320、 #400) 、 冷間圧延と光輝処理 を施された表面 (たとえば、 上記規格等に規定される BA) 、 研磨を施された表 面 (たとえば、 上記規格等に規定される、 ヘアラインを意味する HL、 無方向へ ァライン研磨仕上げを意味するバイブレーションである No. 7、 鏡面仕上げで ある No. 8) などが挙げられる。 また、 他の表面処理法としては、 ブラスト法 によるショットブラストやビーズプラスト、 プラス ト法による梨地肌仕上げ、 ブ ライ ト仕上げ、 化学発色、 エンボス、 エッチング、 下地とは異なる金属によるメ ツキ仕上げ (たとえば、 金、 銀、 銅、 アルミニウム、 クロム等によるメツキ) な どが挙げられる。
これらのうちで、 さらに、 J I S B 0601— 1994に規定される表面粗 さパラメータの十点平均粗さ (RZ) が 0. 01〜80 μ mの範囲のものが好ま しく、 さらに好ましくは 0. 4〜20 μπιのものである。 Rzが 0. 01 m以 上であると、 中間層との接着が良好となり、 R zが 80 以下であると、 表面 層の凹凸に対する影響が小さレ、。
また、 J I S B 0601— 1994に規定される表面粗さパラメータの最大 高さ (Ry) は、 通常 0. 01〜: 100 ; mの範囲であり、 好ましくは、 0. 5 〜25 111である。 Ryが 0. 01 μ m以上であると、 基材表面と中間層との間 の接着強度が良好となり、 100 ^πι以下であれば、 表面層の凹凸に対する影響 が小さい。
同様に、 基材の J I S B 0601 - 1994に規定される表面粗さパラメ一 タの算術平均粗さ (Ra) は、 通常 0. 001〜10 μπιの範囲であり、 好まし くは 0. 05〜2. 5 μπιの範囲である。
これら J I S B 0601— 1994に規定される表面粗さ (R z、 Ry、 R a) は市販の表面粗さ測定装置 (一例として、 小坂研究所株式会社製、 表面粗さ 測定装置、 型式 SE3- FK等) を使用して測定することができる。
中間層は、 熱可塑性ポリイミ ド樹脂およびポリアリールケトン樹脂を含む第一 樹脂組成物からなる。 中間層に使用する熱可塑性ポリイミド榭脂は、 その構造単 位に芳香核結合およびイミ ド結合を含む熱可塑性樹脂であり、 具体例として、 ポ リエーテルィミ ド樹脂おょぴ芳香族ポリアミドィミド樹脂などが挙げられるが、 特に限定されるものではない。 具体的には、 下記構造式 (1)
[化 2]
Figure imgf000008_0001
で表される繰り返し単位を有するポリエーテルィミド (ゼネラルエレクトリツ ク社製 「U 1 t eml 000」 (ガラス転移温度 T g = 216 °C) 、 「U 1 t e ml 010」 (Tg = 216°C) ) 、 下記構造式 ( 2 )
[化 3]
Figure imgf000008_0002
で表される繰り返し単位を有するポリエーテルィミ ド (ゼネラルエレクトリツ ク社製 「U 1 t emCRS 5001」 (Tg = 226°C) ) が挙げられ、 そのほ かの具体例として、 ゼネラルエレク トリック社製 「U 1 t e mXH 6050」 (Tg = 247°C) 、 三井化学株式会社製 「オーラム P L 500 AM」 (T g = 258 °C) 、 などが挙げられる。 これらのうちで、 好ましくは非晶性のものであ り、 さらに好ましくは、 上記構造式 (1) または (2) で表される繰り返し単位 を有するポリエーテルイミドである。
ポリエーテルイミ ド樹脂の製造方法は特に限定されるものではないが、 通常、 上記構造式 (1) で表される繰り返し単位を有する非晶性ポリエーテルイミド榭 脂は、 4, 4, 一[イソプロピリデンビス (p—フエ二レンォキシ) ジフタル酸二 無水物と m—フエ二レンジァミンとの重縮合物として、 また上記構造式 (2) で 表される繰り返し単位を有する非晶性ポリエーテルイミド樹脂は、 4, 4' 一 [ィ ソプロピリデンビス (p—フエ二レンォキシ) ジフタル酸二無水物と p—フエ二 レンジァミンとの重縮合物として公知の方法によって合成される。
また、 本発明で用いるポリエーテルイミ ド樹脂は、 必要に応じてアミ ド基、 ェ ステル基、 スルホニル基など共重合可能な基を有する他の単量体単位を含むもの であってもかまわない。 なお、 熱可塑性ポリイミ ド榭脂は、 1種類を単独でまた は 2種類以上を組み合わせて用いることができる。
中間層に使用するポリアリールケトン樹脂は、 その構造単位に芳香核結合およ ぴケトン結合を含む熱可塑性榭脂であり、 その代表例としては、 ポリエーテルケ トン (ガラス転移温度: 157°C、 結晶融解ピーク温度: 373°C) 、 ポリエー テルエーテルケトン (ガラス転移温度: 143°C、 結晶融解ピーク温度: 334 °C) 、 ポリエーテルエーテルケトンケトン (ガラス転移温度: 153°C、 結晶融 解ピーク温度: 370°C) 等があり、 また、 必要に応じてビフエエル構造、 スル ホニル基など共重合可能な構造や基を有する他の繰り返し単位を含むものであつ ても構わない。 本発明においては、 下記構造式 (3) [化 4] 二 v
Figure imgf000010_0001
で表される繰り返し単位を有するポリエーテルエーテルケトンが好適に使用さ れる。 この繰り返し単位を有するポリエーテルエーテルケトンは、 ビクトレック ス社製の商品名 「PEEK151 G」 、 「PEEK381G」 、 「PEEK45 0G」 などとして市販されている。 これらはいずれもガラス転移温度 143°C、 結晶融解ピーク温度 334°Cのものである。 なお、 ポリアリールケトン樹脂は、 1種を単独または 2種類以上を組み合わせて用いることができる。
上記した熱可塑性ポリイミド樹脂およびポリアリ一ルケトン樹脂からなる樹脂 組成物は、 互いに相溶性がよく、 また、 400°C以下の低温の条件下で弾性率が 適度に低下し、 接着に適切な流動性を示す。 そのため、 熱可塑性ポリイミ ド樹脂 およびポリアリ一ルケトン榭脂からなる樹脂組成物を含む中間層と金属製の基材 とが良好に接着する。 さらに、 ポリアリールケトン樹脂の結晶性は、 200°C以 上の加熱により高まるため、 ポリアリ一ルケトン榭脂特有の性質が良好に発現す る。 また、 表面処理により表面が粗面化された基材 (前述) を用いれば、 接着強 度がより大きくなる。
上記のような性質を示す樹脂組成物は、 熱可塑性ポリイミド樹脂とポリアリー ルケトン樹脂との質量比が 95 : 5〜5 : 95であるのが好ましい。 すなわち、 熱可塑性ポリイミ ド榭脂とポリアリ一ルケトン樹脂との合計を 100質量%とし たときに、 熱可塑性ポリイミ ド樹脂が 95質量%以下であれば、 ポリアリ一ルケ トン樹脂がもつ優れた耐熱性や低い吸水性を発揮させることができる。 また、 5 質量%以上であれば、 中間層と金属製の基材との接着性が良好となる。 より好ま しい比は、 熱可塑性ポリイミド樹脂とポリアリ一ルケトン樹脂との質量比が 95 : 5〜45 : 55、 さらに好ましくは 85 : 15〜50 : 50である。
特に、 ポリアリ一ルケトン樹脂として結晶性のポリアリ一ルケトン樹脂を使用 する場合、 熱可塑性ポリイミド樹脂と結晶性ポリアリールケトン樹脂との質量比 が 8 0 : 2 0〜5 5 : 4 5であるのが好ましい。 すなわち、 熱可塑性ポリイミ ド 樹脂と結晶性ポリアリ一ルケトン樹脂との合計を 1 0 0質量%としたときに、 熱 可塑性ポリイミ ド樹脂が 8 0質量%以下であれば、 中間層の結晶性が高くなり、 結晶化速度も速く、 耐熱性が良好である。 また、 5 5質量。/。以上であれば、 結晶 性のポリアリールケトン樹脂の結晶化に伴う体積収縮 (寸法変化) が大きくなり にくく、 金属製の基材との接着性において信頼性が得られる。
表面層は、 中間層の上に形成され、 ポリアリールケトン樹脂を含む第二樹脂組 成物からなる。 表面層に使用するポリアリールケトン樹脂は、 中間層に使用する ポリアリールケトン樹脂と同様なポリアリールケトン樹脂 (前述) を使用するこ とができる。 この際、 ポリアリールケトン樹脂は、 中間層と同じ種類のポリアリ 一ルケトン樹脂を使用してもよいし、 異なる種類のポリアリ一ルケトン樹脂を使 用してもよいが、 表面層においては、 上記構造式 (3 ) で表される繰り返し単位 を有するポリエーテルエーテルケトンを使用することが好ましい。
また、 表面層は、 ポリアリールケトン榭脂以外の樹脂成分を含んでもよく、 表 面層を構成する樹脂成分 (第二樹脂組成物) を 1 0 0質量%としたときに、 ポリ ァリールケトン樹脂を 5 0質量%以上含むのが好ましく、 さらに好ましくは 6 0 質量%以上である。 ポリアリ一ルケトン榭脂を 5 0質量%以上含む表面層は、 耐 熱性、 難燃性、 耐摩耗性、 耐薬品性、 などに優れる。
なお、 上記の第一樹脂組成物は、 熱可塑性ポリイミド樹脂おょぴポリアリール ケトン樹脂以外の樹脂成分を含んでもよい。 同様に、 第二樹脂組成物は、 ポリア リールケトン樹脂以外の樹脂成分を含んでもよい。
表面層は、 さらに、 固体潤滑剤を含む層であってもよい。 固体潤滑剤を含む表 面層は、 摺動特性に優れる。 固体潤滑剤としては、 フッ素樹脂やフッ化黒鉛、 フ ッ化カルシウムなどのフッ素化合物、 黒鉛やタルクなどの層状構造物、 P b、 A g、 C u等の軟質金属やその化合物、 など、 固体潤滑剤として通常用いられてい るものであればよい。 その他にも、 酸化チタン、 炭化タングステン、 窒化ホウ素、 メラミンシァヌレート等が使用できる。
フッ素樹脂としては、 分子中にフッ素原子を含有する合成高分子であれば特に 限定されず、 公知のものを使用することができる。 このようなものとして、 たと えば、 (a) 分子内に一 (CF2 CF2 ) —で表わされる繰り返し構造単位を有 するポリテトラフルォロエチレン (PTFE) ; (b) 分子内に一 (CFs CF 2 ) —および一 〔CF (CF3 ) CF2 〕 一で表わされる繰り返し構造単位を有 し、 好ましくは、 一 (CF2 CF2 ) ー99〜80質量0 /0と一 〔CF (CF3 ) CF2 〕 一 1〜20質量0 /0とからなる、 テトラフルォロエチレン一へキサフルォ 口プロピレン共重合体 (FEP) ; (c) 分子内に一 (CF2 C F2 ) 一おょぴ - [CF (OCm F2m+i) CF2 〕 一 (式中、 mは 1〜1 6の範囲、 好ましくは 1〜10の範囲の正の整数) で表される繰り返し構造単位を有し、 好ましくは、 - (CF2 C F2 ) — 99〜92質量0 /0と一 〔CF (OCm F2m+i) CF2 〕 - 1〜 8質量%とからなる、 テトラフルォロェチレン一パーフルォ口アルキルビニ ルエーテル共重合体 (PFA) ; (d) 分子内に一 (CF2 CF2 ) —および一
(CH2 CH2 ) 一で表される繰り返し構造単位を有し、 好ましくは、 一 (CF 2 CF2 ) — 90〜74質量0 /0と、 一 (CH2 CH2 ) — 10〜26質量0 /0とか らなる、 テトラフルォロエチレン—エチレン共重合体 (ETFE) ; (e) 分子 内に一 (CFC 1 CF2 ) 一おょぴー (CH2 CH2 ) —で表される繰り返し構 造単位を有するクロ口トリフルォロエチレン一エチレン共重合体; (f ) 分子内 に一 (CF2 CH2 ) 一で表わされる繰り返し構造単位を有するポリフッ化ビニ リデン (PVDF) ;等が挙げられ、 さらに、 これらフッ素樹脂は、 この樹脂の 本質的な性質を損なわない範囲で他のモノマーに基づく繰り返し構造単位を含ん でいるものも挙げられる。 上記他のモノマーとしては、 テトラフルォロエチレン
(ただし、 PFA、 FEPおよび ETFEを除く。 ) 、 へキサフルォロプロピレ ン (ただし、 FEPを除く。 ) 、 パーフルォロアルキルビュルエーテル (ただし PFAを除く。 ) 、 パーフルォロアルキルエチレン (アルキル基の炭素数 1〜1 6) 、 パーフルォロアルキルァリルエーテル (アルキル基の炭素数 1〜 16) 、 および、 式: CF2 =CF [OCF2 CF (CFs ) ] n OCF2 (CF2 ) P Y (式中、 Yは C l、 B r、 もしくは I、 nは 0〜5の整数、 pは 0〜 2の整数 を表す。 ) で示される化合物が挙げられる。 他のモノマーに基づく繰り返し構造 単位の量は、 重合体の 50質量%以下、 好ましくは、 ◦. 01〜45質量%でぁ る。
これらフッ素樹脂のうちで、 好ましくは、 (a) ポリテトラフルォロエチレン (PTFE) 、 (b) テトラフノレォロエチレン一へキサフノレオ口プロピレン共重 合体 (FEP) 、 (c) テトラフルォロエチレン一パーフルォロアルキルビュル エーテル共重合体 (PFA) 、 (d) テトラフルォロエチレン一エチレン共重合 体 (ETFE) より選ばれるものであり、 さらに好ましくは、 (a) PTFEで ある。
上記フッ素樹脂の分子量は特に限定されないが、 特に溶融する PTFEの場合 には、 溶融粘度が 380°Cにおいて 100万 P a · s以下のものが好ましい。 こ れらのフッ素樹脂は、 単独で用いても 2種以上を併用してもよい。
上記フッ素樹脂は、 成形用の粉末であっても固体潤滑材用の微粉末であつても よい。 ポリテトラフルォロエチレンの市販品としては、 たとえば三井 'デュポン フロロケミカル株式会社製のテフロン 7 Jや TLP— 10、 旭硝子株式会社製の フルオン G 163、 ダイキン工業株式会社製のポリフロン Ml 5やルブロン L 5 等が挙げられる。
本発明で使用される黒鉛としては、 天然鱗片状黒鉛、 天然土状黒鉛、 人造黒鉛、 熱分解黒鉛等が挙げられ、 好ましくは、 天然鱗片状黒鉛、 人造黒鉛である。 天然 鱗片状黒鉛は、 外見が板状、 うろこ状、 葉状、 針状を呈するものを大部分含む天 然産の黒鉛である。 人造黒鉛はコータスとピッチの混合物等の炭素源を高温で焼 成して得られる塊状物を粉砕して得られるものや気相成長により製造される結晶 化度の高いタイプのものが好ましい。 熱分解黒鉛は、 コータス等の炭素源を約 3 000°Cの高温で焼成して黒鉛化して得られるものである。 これら、 天然鱗片状 黒鉛、 人造黒鉛、 熱分解黒鉛は、 天然土状黒鉛に比べ二酸化珪素、 珪酸塩化合物 等の灰分や不純物、 揮発分が少なく、 耐熱性、 潤滑性に優れており、 また、 樹脂 中に配合した場合にも榭脂劣化が起こりにくい。 また、 本発明で使用される黒鉛 の平均粒径は、 レーザー回折法により測定した平均粒径が 1〜 100 μ mであり、 4〜80 μηιのものが好ましく、 5〜60 μ mのものがさらに好ましい。
平均粒径が 100 m以下であれば樹脂成分中での均一分散や良好な成形フィ ルム外観が得やすく、 l zm以上であれば、 樹脂成分への配合や混練時に粉体の 飛散等のハンドリングトラブルが起こりにくく、 押出機等を用いて溶融混練する 場合、 スクリューへのかみこみ不良による計量不安定や、 押出物の形状不安定に よる引き取り性悪化などの問題が起きにくレ、。
本発明に使用する黒鉛中の灰分量は少ない方が好ましく、 通常 2質量%以下、 さらに好ましくは、 0. 05〜1質量%である。 2質量%以下の範囲であれば、 榭脂成分中に配合して使用する際、 加工時の樹脂成分の熱劣化が起こりにくレ、。 また、 黒鉛中の揮発分は少ない方が好ましく、 通常 2質量%以下、 好ましくは 1質量%以下である。 2質量%以下の範囲であれば、 樹脂成分との溶融混練時に 発泡が少なくなる。
これらの黒鉛の市販品の例としては、 株式会社中越黒鉛工業所の C P B— 3 (天然鱗片状黒鉛) , CPB-30, CPB— 3000、 日本黒鉛工業株式会社 の CP、 特 CP、 CPB、 T i m c a 1社製 「T i mr e xKS— 44」 (人造 黒鉛) 等が挙げられる。
また、 遷移金属硫化物を用いてもよい。 遷移金属硫化物としては、 二硫化モリ ブデン、 二硫化タングステンなどが挙げられ、 中間層の樹旨、 および Zまたは表 面層の樹脂中に分散させるために、 粉体であることが好ましい。 このものの平均 粒径は、 0. 1〜20 Aimであり、 好ましくは、 0. 3〜 1 1 μ mである。 平均 粒径が 0. 1 μ m以上であれば、 樹脂成分との溶融混練時に、 粉体の飛散等によ るハンドリングトラプルが起こりにくく、 20 πι以下であれば、 樹脂成分中へ の分散不良やフィルム外観不良が起こりにくレ、。
二硫化モリプデン粉末の具体例として、 日本黒鉛工業株式会社製モリパゥダー A (平均粒径 0. 5 μηα) 、 モリパウダー Β (平均粒径 3 μπι) 、 モリパウダー C (平均粒径 0. 3〜0. 4 μπι) 、 住鉱潤滑剤株式会社製 MO S等が挙げられ る。 二硫化タングステンの具体例として、 日本潤滑剤株式会社製タンミック A (平均粒径 Ι μηι) 、 タンミック Β (平均粒径 0. 6 μπι) 等が挙げられる。 また、 六方晶窒化硼素 (h— ΒΝ) を用いてもよい。 六方晶窒化硼素は、 中間 層の樹脂、 および Zまたは表面層の樹脂中に分散させるために、 粉体であること が好ましい。 このものの平均粒径は 0. 0 1〜100 、 好ましくは、 0. 1 〜20 μηι、 より好ましくは 3〜1 5 μπι、 である。 平均粒径が 0. 1 μ m以上 であれば、 樹脂成分との溶融混練時に、 粉体の飛散等によるハンドリングトラブ ルが起こりにくく、 1 0 0 μ πι以下であれば、 樹脂成分中への分散不良やフィル ム外観不良が起こりにくい。 比表面積は、 0 . 1〜1 0 O m 2 / g、 好ましくは、 1 ~ 2 O m 2 / gである。 比表面積が 0 . l m2 / g以上、 および 1 0 0 m2 / g以下であれば分散不良が起こりにくレ、。
六方晶窒化硼素の具体例として、 水島合金鉄株式会社、 G Eスペシャルティ · マテリアルズ.ジャパン株式会社等より販売されているものがあり、 使用可能で ある。
上記の中でも、 ポリテトラフルォロエチレン、 黒鉛、 および二硫化モリブデン のうちの少なくとも 1種であるのが好ましい。
また、 表面層は、 第二樹脂組成物を 1 0 0質量部としたときに前記固体潤滑剤 を 4 0 0質量部以下含むとよい。 含まれる固体潤滑剤は、 1 0 0質量部以下が好 ましく、 より好ましくは、 5〜5 5質量部、 さらに好ましくは 1 0〜4 5質量部 である。 固体潤滑剤の量がこの範囲にあれば、 金属製の基材との密着性を損なう ことなく潤滑特性が向上する。
なお、 固体潤滑剤は、 中間層に含まれてもよい。 この際、 固体潤滑剤は、 中間 層の特性を損なわない程度に含まれればよく、 樹脂組成物 (熱可塑性ポリイミ ド 樹脂とポリアリールケトン樹脂との合計) を 1 0 0質量部としたときに、 固体潤 滑剤を 4 0 0質量部以下含むとよい。 含まれる固体潤滑剤は、 1 0 0質量部以下 が好ましく、 より好ましくは、 5〜5 5質量部、 さらに好ましくは 1 0〜4 5質 量部である。 固体潤滑剤の量がこの範囲にあれば、 金属製の基材との密着性を損 なうことなく潤滑特性が向上する。 また、 固体潤滑剤が 1 0 0質量部以下であれ ば、 製造工程において発生する中間層の未使用部をリサイクルして用いる際に起 こりうる加工性の著しい低下を抑制できる。
また、 中間層および表面層の少なくともいずれか一方は、 無機充填材を含む層 であるのが好ましい。 無機充填材としては、 公知のものを使用することができ、 たとえば、 クレー、 ガラス、 アルミナ、 シリカ、 窒化アルミユウム、 窒化珪素、 黒鉛などの充填材、 ガラス繊維ゃァラミド繊維、 炭素繊維などの繊維、 無機鱗片 状 (板状) 粉体、 たとえば、 合成マイ力、 天然マイ力 (マスコパイト、 フロゴパ ィト、 セリサイト、 スゾライト等) 、 焼成された合成マイ力や天然マイ力、 ベー マイト、 タルク、 イライ ト、 カオリナイト、 モンモリ口ナイ ト、 バーミキユラィ ト、 スメクタイト、 板状アルミナ、 鱗片状チタン酸塩 (たとえば、 鱗片状チタン 酸マグネシウムカリウム、 鱗片状チタン酸リチウムカリウム等) などが挙げられ る。 これらのなかで、 合成マイ力、 天然マイ力、 焼成された合成マイ力や天然マ イカ、 ベーマイ ト、 タノレク、 イライ ト、 カオリナイ ト、 モンモリロナイト、 バー ミキユラィト、 スメクタイトなどの無機鱗片状 (板状) 粉体、 板状アルミナ、 鱗 片状チタン酸塩が好ましく、 合成マイ力、 天然マイ力がより好ましい。 これらの 無機充填材は 1種類を単独でまたは 2種類以上を組み合わせて用いることができ る。
この無機充填材の形状としては、 板状が好ましく、 平均粒径が 0 . 0 1〜 2 0 Ο μ πι程度、 好ましくは 0 . 1〜2 0 111、 より好ましくは、 1〜: ί Ο μ πι、 平 均アスペク ト比 (粒径 Z厚み) は 1〜3 0程度、 好ましくは 3 0以上のものが好 適に用いられる。
また、 無機充填材は、 表面処理剤により表面処理されたものを用いてもよい。 表面処理剤としては、 アミノシラン、 エポキシシラン、 ビュルシラン、 アタリ口 キシ基またはメタクリ口キシ基を有するシラン化合物などのシランカツプリング 剤、 珪素原子に炭素数 1〜3 0の範囲の直鎖、 分岐または環状の炭化水素基が 1 または 2個結合したアルコキシシラン、 チタネート系カップリング剤、 アルミネ ート系カップリング剤、 ジルコネートカップリング剤などが挙げられる。 表面処 理剤の使用量は、 通常、 無機充填材 1 0 0質量部に対して 0 . 1〜8質量部、 好 ましくは 0 . 5〜 3質量部の範囲である。
表面処理の方法としては、 既知の種々の方法が適用できる。 たとえば、 表面処 理剤を溶解した溶液中で無機充填材と表面処理剤を接触させた後、 溶媒を除去す る湿式法、 表面処理剤を溶解した溶液と無機充填材とを噴霧、 撹拌等の方法によ り接触させて、 無機充填材表面に表面処理剤をまぶした後、 溶媒を除去する半湿 式法、 樹脂と無機充填材および表面処理剤または少量の溶媒に溶解させた表面処 理剤を混合撹拌するインテグラルプレンド法などが挙げられる。 無機充填材剤表 面に効率よく表面処理剤を付着させるという観点から、 湿式法、 半湿式法が好ま しい。
溶媒中の表面処理剤の濃度は、 0 . 1〜8 0質量%程度の濃度とすることがで きる。 溶媒としては、 たとえば、 イソプロピルアルコール、 エタノール、 メタノ ール、 へキサン等の除去しやすいものが好ましい。 この溶媒は、 少量の水や加水 分解を促進する少量の酸成分を含むものであってもよい。
上記表面処理方法により、 無機充填材と、 溶媒に希釈しまたは希釈しない表面 処理剤とを接触混合した後、 数時間から数日間空気中に放置し、 空気中の水分と 接触させて加水分解を起こさせるとともに、 使用した溶媒を蒸発除去することが 推奨される。
この蒸発除去の処理は、 アルコキシシリル基の加水分解反応や生成したヒドロ キシシリル基を無機充填材表面のヒドロキシル基と脱水縮合反応させ、 かつ、 発 生したアルコールや使用した溶媒除去のため、 常圧下ないし減圧下に、 通常、 8 0〜 1 5 0 °C程度、 好ましくは 1 0 0〜 1 3 0 °Cにて行なう。 処理時間は通常 4 〜 2 0 0時間程度であり、 好ましくは 2 4〜 1 0◦時間である。 なお、 上記無機 充填材は、 中間層と表面層とで同じものを使用しても良いし、 異なるものを使用 しても良い。
中間層には、 第一樹脂組成物を 1 0 0質量部としたときに 1 0 0質量部以下含 むのが好ましい。 無機充填材が 1 0 0質量部以下であると、 中間層の脆性は低く なり適度な弾性を示す。 一方、 無機充填材が 1 0質量部以上であると、 本発明の 摺動部材をシャーリング等により切断する際に切断部に発生する基材と中間層と の剥離が少なくなり、 かつ、 線膨張係数が低下し各層の体積変化が低減する。 よ り好ましい無機充填材の添加量は、 樹脂組成物を 1 0 0質量部としたとき 1 0〜 5 5質量部、 さらに好ましくは 1 5〜4 5質量部である。
また、 表面層には、 第二樹脂組成物を 1 0 0質量部としたときに無機充填材を 1 0 0質量部以下含むのが好ましい。 無機充填材が 1 0 0質量部以下であると、 表面層の脆性は低くなり適度な弾性を示す。 また、 無機充填材の添加により、 表 面層の硬度 (鉛筆硬度) が向上し、 かつ、 線膨張係数が低下し各層の体積変化が 低減する。 より好ましい無機充填材の添加量は、 ポリアリ一ルケトン樹脂を 1 0 0質量部としたとき 1 0〜 4 0質量部、 さらに好ましくは 1 5〜 3 3質量部であ る。
中間層おょぴ表面層は、 その厚さに特に限定はない。 中間層の厚さが 0 . 1〜 8 0 0 i mであれば、 金属製の基材と表面層とを良好に密着させることができる。 表面層の厚さが 1〜 1 0 0 0 mであれば、 密着性に優れ、 また、 摺動特性に優 れた摺動部材となる。 そして、 中間層と表面層のいずれも、 その厚さが 1 0〜2 Ο Ο μ πιであれば、 製造工程 (後述) において成形が容易である。
中間層と表面層との厚さの比率は、 1 / 9 9〜 9 9 / 1であるのが好ましく、 より好ましくは 1 0ノ9 0〜9 0 / 1 0の範囲である。 後述の製造工程において、 中間層と表面層とを別々に成形し、 その後、 両者を重ね合わせて金属製の基材に 接着する際、 厚さの比率が上記の範囲であれば、 薄い方の層が、 静電気により厚 い方の層に引き寄せられて位置合わせがしづらくなつたり、 シヮが生じるという トラブルが起こりにくい。 また、 中間層と表面層を合わせて共押出により積層さ せて成形し、 冷却前または冷却後に基材と接着する場合に、 上記厚さ比率の範囲 であれば、 各層が安定して成形できる。
なお、 本発明の摺動部材では、 中間層を設けることにより、 金属製の基材とポ リアリールケトン樹脂を含む表面層とが良好に密着するが、 さらに、 基材の表面 に直接ポリアリ一ルケトン樹脂を含む層を形成した従来の摺動部材ょりも摺動特 性も向上する。 また、 無機充填材を添加した場合には、 線膨張係数が低くなるた め、 さらに密着性が向上し、 摺動時に生じる基材からの剥離を抑制できる。
本発明の摺動部材を構成する中間層および表面層の製造方法としては、 所望の 形状に成形した中間層と表面層とを金属製の基材に載置して接着 (積層) して形 成する方法が望ましい。
中間層を成形するには、 はじめに、 樹脂組成物 (ポリエーテルイミ ド榭脂を (Α) 成分、 ポリアリールケトン樹脂を (Β ) 成分とする) と必要に応じて無機 充填材などの添加剤 ( (C ) 成分とする) とを公知の方法で混合し、 混合物を得 る。 混合の組み合わせの例として、
• (Α) 成分、 (Β ) 成分と (C ) 成分の 3成分を同時に混合、 分散させる 方法;
• (Α) 成分と (Β ) 成分をあらかじめ混合し、 この混合物に (C ) 成分を 混合、 分散させる方法;
• (A) 成分または (B) 成分に、 (C) 成分をあらかじめ混合分散させて、
(A) 成分と (C) 成分の混合物または (B) 成分と (C) 成分の混合物を調製 し、 次いで (A) 成分と (C) 成分の混合物に (B) 成分を混合するか、 あるい は (B) 成分と (C) 成分の混合物に (A) 成分を混合する方法;
• (A) 成分および (B) 成分それぞれに (C) 成分を混合分散させた混合 物を調製し、 これらの混合物を混合する方法 (この場合 (A) 成分に対する
(C) 成分の比率と (B) に対する (C) 成分の比率は同じでも異なっていても よい) ;
•複数種の (A) 成分および Zまたは複数種の (B) 成分を使用する場合、 これらのうちの少なくとも 1種に、 高濃度に (C) 成分を混合分散させた混合物 と、 配合すべき他の (A) 成分および/または (B) 成分を混合するか、 あるい は上記混合物と、 配合すべき他の (A) 成分および/または (B) 成分に低濃度 に (C) 成分を混合分散させた混合物を混合分散させる方法;
などが挙げられる。
また、 表面層を成形するには、 はじめに、 ポリアリールケトン樹脂 (B) と必 要に応じて固体潤滑剤などの添加物 ( (D) 成分とする) とを公知の方法で混合 し、 混合物を得る。 混合の組み合わせの例として、
• (B) 成分と (D) 成分の 2成分を同時に混合、 分散させる方法;
• (B) 成分に、 高濃度に (D) 成分を混合分散させた混合物をあらかじめ 調製し、 この混合物に (B) 成分を混合、 分散させる方法;
• (B) 成分に (D) 成分を異なる濃度に混合分散させた複数種の混合物を あら力 じめ調製し、 これらの混合物を混合する方法;
•複数種の (B) 成分および/または複数種の (D) 成分を使用する場合、
(B) 成分の少なくとも 1種に、 高濃度に (D) 成分を混合分散させた混合物と、 配合すべき他の (B) 成分を混合するか、 あるいは上記混合物と、 配合すべき他 の (B) 成分に低濃度に (D) 成分を混合分散させた混合物を混合、 分散させる 方法;
などが挙げられる。 混合、 分散の方法としては、 各成分をそれぞれ別々に単軸溶融混練機や二軸溶 融混練機に供給して混合することもでき、 複数の供給部を有する溶融混練機を用 いて各成分を逐次的に溶融混練機に供給することもできる。 また、 あらかじめへ ンシェ^/ミキサー (商品名) 、 スーパーミキサー、 リボンプレンダー、 タンブラ 一などの混合機を利用してそれらを予備混合した後、 溶融混練機に供給して、 具 体的には 3 4 0 ° (:〜 4 3 0 °Cの温度で溶融混練することもできる。 また、 目的に より、 水性媒体や有機溶媒に分散せしめて湿式法により混合することも可能であ る。 さらに、 (C ) 成分の無機充填材ゃ (D) 成分の固体潤滑剤などの各種添加 剤を、 (A) 成分および Zまたは (B ) 成分をベース樹脂として高濃度 (代表的 な含有量としては 1 0〜6 0質量%程度) に混合したマスターパッチを別途作製 しておき、 これを使用する樹脂に濃度を調整して混合し、 ニーダーゃ押出機等を 用いて機械的にブレンドする方法などが挙げられる。 上記混合方法の中では、 マ スターバッチを作製し、 混合する方法が分散性や作業性の点から好ましい。
混合物は、 混合、 分散の工程に引き続いて所望の形状に成形してもよく、 また、 ー且ストランドないしはシート状に押し出され、 力ッティングされてペレツト、 顆粒、 粉体などの成形加工に適した従来の形態で得てもよい。
中間層および表面層の成形方法としては、 射出成形法、 押出成形法、 圧縮成形 法、 カレンダー成形法等の公知の方法が挙げられる。 たとえば、 押出部先端の断 面形状が長方形や長方形類似形状のダイ、 具体的には Tダイ、 Iダイなどフィル ム押出用のダイより押出されたフィルム状の樹脂組成物を冷却体に接触させて冷 却する押出キャスト法、 カレンダ一法等を採用することができ、 特に限定される ものではないが、 フィルムの製膜性、 安定生産性等の面から、 Tダイや Iダイな どフィルム押出用のダイスと冷却体を用いる押出キャスト法が好ましい。 上記冷 却体としては、 表面の材質が金属やゴム、 繊維などよりなり、 形態はロールやべ ルト、 シームレスベルトなどが挙げられる。
これらのうちで、 冷却装置が単純で取り扱い易いという理由から、 冷却体とし てロールを用いることが好ましい。 その一例として、 押出機より溶融した樹脂組 成物が導管を経てダイに送り込まれ、 ダイの先端よりフィルム状に押出され、 冷 却用の金属ロールとゴムロールに挟まれてフィルム状に形状固定 ·冷却され、 続 いて、 金属ロール側に巻き付いて冷却されて、 卷き取り機に送られる。 フィルム は必要に応じて、 金属ロールと卷き取り機の間にさらに他のロールや、 冷却エア 一により冷却される。
押出キャスト法での成形温度は、 組成物の流動特性や製膜性等によって適宜調 整されるが、 概ねガラス転移温度ないしは融点以上、 4 3 0 °C以下、 好ましくは、 3 4 0〜4 0 0。C、 さらに好ましくは 3 5 0〜3 9 0 °Cである。
ロール等の冷却体の表面温度は、 通常、 各層を構成する樹脂成分のガラス転移 温度ないしは融点以下の温度である。 中間層を形成する場合、 冷却体の表面温度 は、 通常 3 0〜1 7 5 °C程度、 好ましくは 9 0〜1 6 5 °Cの範囲である。 3 0 °C 以上であると、 冷却体表面に空気中の水分が凍つて付着することを避けることが でき、 1 7 5 °C以下であると、 冷却体との接触により形成された形状が変化する ことを防ぐことができる。 表面層を形成する場合、 冷却体の表面温度は、 通常 3 0〜1 5 5 °C程度、 好ましくは 9 0〜 1 4 1 °Cの範囲である。 3 0 °C以上である と、 冷却体表面に空気中の水分が凍って付着することを避けることができ、 1 5 5 °C以下であると、 冷却体との接触により形成された形状が変化することを防ぐ ことができる。 冷却体上面に熱電対や温度指示体を接触させる接触法、 赤外線温 度計など光や電磁波を用いる非接触法などで測定することができる。
冷却体の表面温度の好適範囲は、 冷却体の温度制御機構や、 オイル、 水などの 循環冷媒等熱媒体の温度を適切に選択することにより制御することができる。 本発明の積層体を製造する際の基材、 中間層および表面層の積層方法は、 特に 限定されないが、 たとえば、
•基材と、 あらかじめフィルム状に成形した中間層と表面層と、 を重ね合わ せて圧力をかけながら加熱して積層する方法 (プレス成形) ;
•基材と、 あらかじめフィルム状に成形した中間層と表面層と、 を同時にま たは別々に加熱ロール接触や赤外線、 熱風などにより加熱した後に重ね合わせ、 ロールやプレスにより圧力をかけて密着させる方法;
•中間層を構成する樹脂組成物と、 表面層を構成する樹脂 成物をそれぞれ 別々の押出機で溶融混練してそれぞれ別々のダイまたは多層のダイ内で積層し、 フィルム状に押し出して冷却せずにそのまま基材表面に載せて、 基材とともに加 熱プレスまたは加熱ロールに挟んで積層する方法;
•中間層と表面層を積層フィルムとして押し出してー且冷却した後、 基材と 加熱プレスまたは加熱ロールに挟んで積層する方法;
などが挙げられる。
金属製の基材としては、 連続したコイル、 帯板やカットされた板の状態でよく、 中間層および表面層も、 それぞれ連続した巻きやカツトされた枚葉の形態で供し てよい。 また、 圧縮機などの摺動部品に加工された金属製部品であってもよい。 また、 各層を積層する際の加工温度が、 2 0 0〜4 0 0 °Cであるのが望ましレ、。 4 0 0 °C以下であれば、 金属製の基材の劣化を低減できる。 2 0 0 °C以上であれ ば、 表面層および中間層に含まれるポリアリ一ルケトン樹脂の結晶性が高まるた め、 ポリアリールケトン樹脂特有の性質が良好に発現する。 特に、 鉄を主成分と する基材では、 加工温度を 2 5 0 °C以下とすれば、 焼入れされた鉄が焼鈍される ことがない。 また、 アルミニウム合金からなる基材では、 加工温度を 2 5 0 °C以 下とすれば、 基材の硬度の低下を抑制することができる。
上記方法によれば、 基材と中間層と表面層とを積層する工程においては、 溶剤 を用いなくてよい。 そのため、 環境への悪影響が低減される。 また、 塗布工程や 焼成工程などが必要ないため、 工程数が少なくて済む。
なお、 本発明の摺動部材は、 上記の実施の形態に限定されるものではなく、 そ の特性を損なわない程度に、 他の構成を追加してもよい。 たとえば、 酸化チタン、 硫酸バリウム、 炭酸カルシウム、 アルミナ、 酸化ケィ素、 酸化鉄、 酸化クロム等 の無機粒子、 硫化亜鉛 (Z n S ) や硫化銀 (A g 2 S ) 等の硫黄含有金属化合物 等の極圧剤、 染料、 顔料などの着色剤、 界面活性剤、 分散剤、 酸化防止剤、 難燃 剤、 熱安定剤、 帯電防止剤、 レべリング剤、 消泡剤およびエポキシ樹脂、 フエノ ール樹脂、 メラミン樹脂、 多官能イソシァネート等の架橋剤、 などのうち何れか または全ての添加剤を、 表面層および Zまたは中間層が含有してもよい。 また、 基材と中間層との接着向上のため、 アミノシラン、 エポキシ等のシランカツプリ ング剤などの使用も可能である。
また、 本発明の摺動部材は、 本発明の趣旨を超えない範囲で、 中間層と表面層 との間に、 中間層と表面層と同じ成分を含む層や、 他の成分よりなる層を有する ものであってもよい。 以下に、 本発明の摺動部材の実施例を比較例とともに説明する。
[金属製基材の作製]
A 1〜 A 9までの 9種類の金属製基材を準備した。 以下にそれぞれの基材につ いて説明する。
[基材 A 1〜A4]
厚さが 0. 4mmのステンレス鋼板 (SUS 304) である基材 Al、 厚さが 0. 4 mmのステンレス鋼板 (SUS 301) である基材 A 2、 厚さが 0. 5 m mのステンレス鋼板 (SUS 304) である基材 A 3、 厚さが 0. 3 mmのステ ンレス鋼板 (SUS 3 1 6) である基材 A 4、 を準備した。 なお、 上記基材 A 1 〜A 4の表面粗さパラメータは、 表 1および表 2に示す通りである。
[基材 A5〜A9]
厚さ 4 mmの铸鉄板である基材 A 5、 厚さ 6 mmの铸鉄板である基材 A 6、 厚 さ 10 mmの鎵鉄板である基材 A 7、 厚さ 8 mmのアルミニウム板 (J I S H 4000— 1 999に示された A 1 100 ;珪素含有量 0. 7%) である基材 A 8、 厚さ 6mmのアルミニウム—珪素合金板 (同、 A4043 ;珪素含有量 5. 5%) である基材 A9、 を準備した。 なお、 基材 A5〜A9は、 ショットブラス トにより表面処理されており、 上記基材 A 5〜A 9の表面処理された面の表面粗 さパラメータは、 表 3およぴ表 4に示す通りである。
[中間層の作製]
以下の手順で、 中間層用のフィルム S:!〜 S 1 3を作製した。
[フイノレム S 1]
樹脂組成物として、 非晶性ポリエーテルィミド榭脂 (ゼネラルエレクトリック 社製 「U 1 t e m 1 000」 ガラス転移温度 T g = 2 1 6°C、 以下 「P E I _ 1」 と略記) を 2. 0 16 k g (PE I— 1、 P E I— 2および P E E K— 1の 合計質量に対し 28質量0 /0) 、 ポリエーテルィミ ド樹脂 (ゼネラルエレクトリツ ク社製 「U l t emCRS 5001」 Tg = 226°C、 以下 「PE I— 2」 と略 記) を 2. 304 k g (PE I— 1、 PE I—2および PEEK— 1の合計質量 に対し 32質量0 /0) 、 ポリエーテルエーテルケトン樹脂 (ビタ トレックス社製 「PEEK450G」 Tg = 143°C、 融点 Tm= 334°C、 以下 「PEEK— 1」 と略記) を 2. 88 k g (PE I— 1、 P E I— 2および P E E K— 1の合 計質量に対し 40質量%) 、 用いた。 また、 充填材として、 合成マイ力 (平均粒 径: 6 μπι、 ァスぺクト比: 25) を 2. 8 k g (PE I— 1、 PE I— 2およ び PEEK— 1の合計 100質量部に対し 38. 9質量部、 以下 「充填材 C l」 と略記) 添加した。 上記樹脂組成物および充填材を、 サイドフィード付きの二軸 押出機により設定温度 380°Cで混練し、 ストランド状に押出し、 カッティング してペレツ トとした。
このペレッ トを、 1 80 °Cで 12時間熱風乾燥した後、 Tダイを接続した口径 4 Omm ψの単軸押出機を使用し、 380°Cにてフィルム状に押出し、 設定温度 160°Cの循環オイルにて温度調節された金属キャス トロールの表面に接触させ、 その反対側からシリコーンゴムロールにて押しつけて急冷製膜することにより、 厚さ 100 zmの中間層用のフィルム S 1を得た。
[フィルム S 2]
PE I— 1を 4. 4 k g (PE I— 1および PEEK— 1の合計質量に対し 5 5質量0/。) 、 PE I— 2を O k g、 PEEK— 1を 3. 6 k g (PE I— 1およ び PEEK— 1の合計質量に対し 45質量%) 、 また、 充填材 C 1を O k gに変 更し、 下記の方法により作製した表面処理マイ力 (充填材 C 2) を 2 k g (PE I _ 1および PEEK— 1の合計 100質量部に対し 25質量部) 添加し、 フィ ルム厚さを 35 μ mとした他は、 フィルム S 1と同様の操作を行い、 フィルム S 2を得た。
なお、 上記表面処理マイ力は、 以下の方法により作製した。 市販の合成マイ力 (平均粒子径: 10 μ m、 ァスぺクト比: 20) 2 k gに、 水分約 3質量%のィ ソプロピルアルコール 1 60 gに溶解した表面処理剤へキシルトリメ トキシシラ ン (東京化成工業株式会社製、 試薬グレード) 40 g (合成マイ力 100質量部 に対して 2質量部) を溶解して得た 20質量%溶液 200 gを振りかけ、 窒素を 供給しながらヘンシェルミキサーにより 10分間撹拌混合した。 この混合物を、 ステンレス製のバットに広げて室内にて 4日間放置した。 その後、 120°Cのォ ーブン中で 48時間加熱処理し、 室温まで冷却し、 マイ力に表面処理を行った。 この操作を 1 0回繰り返して、 約 20 k gの表面処理マイ力 (以下 「充填材 C 2」 と略記) を得た。
[フイノレム S 3]
PE I— 1を 3. 04 k g (PE I— 1、 P E I— 2および P E E K— 1の合 計質量に対し 40質量0 /0) 、 PE I— 2を 1. 9 k g (PE I— 1、 PE I— 2 および P EEK— 1の合計質量に対し 25質量0 /0) 、 PEEK— 1を 2. 66 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 35質量0 /0) 、 また、 充填材 C 1を 0 k gに変更し、 充填材 C 2を 2. 4 k g (PE I— 1、 P E I— 2および PEEK— 1の合計 100質量部に対し 31. 6質量部) 添カロし、 フィルム厚さを 80 imとした他は、 フィルム S 1と同様の操作を行い、 フィル ム S 3を得た。
[フィルム S 4]
PE I— 1を 3. 28 k g (PE I— 1、 P E I— 2および P E E K— 1の合 計質量に対し 40質量0 /0) 、 ΡΕ Ι— 2を 2. 87 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 35質量0 /0) 、 PEEK— 1を 2. 05 k g (PE I— 1、 PE I— 2および P EEK— 1の合計質量に対し 25質量 %) 、 また、 充填材 C 1を 0 k gに変更し、 下記の方法により作製した表面処理 マイ力 (充填材 C 3) を 1. 8 k g (PE I— 1、 P E I— 2および P EEK— 1の合計 100質量部に対し 22質量部) 添加し、 フィルム厚さを 50 μπιとし た他は、 フィルム S 1と同様の操作を行い、 フィルム S 4を得た。
なお、 上記表面処理マイ力は、 以下の方法により作製した。 市販の合成マイ力
(平均粒子径: 6 μ m、 ァスぺクト比: 25) 2 k gに、 水分約 3質量。 /0のィソ プロピルアルコール 1 60 gに溶解した表面処理剤フヱ-ルトリメ トキシシラン
(東京化成工業株式会社製、 試薬グレード) 40 g (合成マイ力 100質量部に 対して 2質量部) を溶解して得た 20質量%溶液 200 gを振りかけ、 窒素を供 給しながらヘンシェルミキサーにより 10分間撹拌混合した。 この混合物を、 ス テンレス製のバットに広げて室内にて 4日間放置した。 その後、 1 20°Cのォー ブン中で 48時間加熱処理し、 室温まで冷却し、 マイ力に表面処理を行った。 同 様の操作を 30回繰り返して、 約 60 k gの表面処理マイ力 (以下 「充填材 C 3」 と略記) を得た。
[フイノレム S 5]
PE I— 1を 2. 25 k g (PE I—1、 P E I— 2および P E E K— 1の合 計質量に対し 30質量0 /o) 、 ΡΕ Ι— 2を 2. 25 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 30質量0 /o) 、 PEEK— 1を 3. O k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 40質量0 /0) 、 また、 充填材 C 1を 0 k gに変更し、 充填材 C 3を 2. 5 k g (PE I _ 1、 P E I— 2および PEEK— 1の合計 100質量部に対し 33. 3質量部) 添カロし、 フィルム厚さを 50 μ mとした他は、 フィルム S 1と同様の操作を行い、 フィル ム S 5を得た。
[フイノレム S 6]
PE I— 1を 4. 4 k g (PE I— 1および PEEK— 1の合計質量に対し 5 5質量0 /0) 、 PE I— 2を 0 k g、 PEEK— 1を 3. 6 k g (PE I— 1およ ぴ PEEK— 1の合計質量に対し 45質量%) 、 また、 充填材 C 1を O k gに変 更し、 充填材 C 3を 2 k g (PE I _1、 PE I—2および PEEK— 1の合計 100質量部に対し 25質量部) 添加し、 フィルム厚さを 28 μ mとした他は、 フィルム S 1と同様の操作を行い、 フィルム S 6を得た。
[フィルム S 7]
PE I— 1を 3. 2 k g (PE I— 1、 P E I— 2および P E E K— 1の合計 質量に対し 40質量0 /0) 、 ΡΕ Ι— 2を 2. 4 k g (PE I— 1、 PE I— 2お ょぴ P EEK— 1の合計質量に対し 30質量0 /0) 、 PEEK— 1を 2. 4 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 30質量%) 、 また、 充填材 C 1を 0 k gに変更し、 充填材 C 3を 2 k g (PE I— 1、 PE I 一 2および PEEK— 1の合計 100質量部に対し 25質量部) 添加し、 フィル ム厚さを 24 μπιとした他は、 フィルム S 1と同様の操作を行い、 フィルム S 7 を得た。
[フィルム S 8]
樹脂組成物として、 PE I— 1を 3 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 30質量0 /0) 、 PE I— 2を 3 k g (PE I— 1、 P E I— 2および P EEK— 1の合計質量に対し 30質量部) 、 PEEK— 1を 4 k g (PE I— 1、 P E I— 2および P EEK— 1の合計質量に対し 40質量 %) 、 用いた。 また、 充填材として充填材 C 2を 1. 5 k g (PE I— 1、 PE I— 2および PEEK— 1の合計 100質量部に対し 1 5質量部) 、 固体潤滑剤 としてポリテトラフルォロエチレン樹脂 (旭硝子株式会社製 「フルオン PTFE L— 169 J」 、 以下 「固体潤滑剤 D 1」 と略記) を 1. 5 k g (PE I— 1、 PE I— 2および PEEK— 1の合計 100質量部に対し 15質量部) 、 および 鱗片状黒鉛 (日本黒鉛株式会社製 「特 CP」 顕微鏡下での平均粒径測定値は 6 m、 以下 「固体潤滑剤 D 2」 と略記) を l k g (PE I— 1、 PE I— 2および PEEK- 1の合計 100質量部に対し 10質量部) 添カ卩した。 上記榭脂組成物、 充填材および固体潤滑剤を、 サイドフィード付きの二軸押出機により設定温度 3 90°Cで混練してストランド状に押出し、 カッティングして レツトとした。 このペレッ トを 1 80 °C 1 2時間熱風乾燥した後、 押出温度を 390 °Cとし、 フィルム厚さを 50 とした他は、 フィルム S 1と同様の手順により、 フィル ム S 8を得た。
[フィルム S 9]
樹脂組成物として、 PE I— 1を 3 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 30質量0 /0) 、 PE I—2を 3 k g (PE I— 1、 P E I—2および PEEK— 1の合計質量に対し 30質量0 /0) 、 卩££1:ー 1を4 k g (PE I— 1、 P E I— 2および P E EK— 1の合計質量に対し 40質量 %) 、 用いた。 これらのペレットを充分撹拌混合して、 1 80°Cで 8時間乾燥し たのち、 口径 4 Omm φの単軸押出機に供給した。
フィルム厚さを 50 ^amとした他は、 フィルム S 1と同様の手順により、 フィ ルム S 9を得た。
[フィルム S 10]
PE I— 1を 5. 5 k g (PE I— 1および PEEK— 1の合計質量に対し 5 5質量0 /0) 、 PE I—2を O k g、 PEEK— 1を 4、 5 k g (PE I— 1およ び PEEK— 1の合計質量に対し 45質量%) 、 また、 充填材 C 1を O k gに変 更し、 固体潤滑剤 D 1を 0. 5 k g (PE I— 1および PEEK— 1の合計 10 0質量部に対し 5質量部) 、 固体潤滑剤 D 2を 0. 5 k g (PE I— 1および P EEK— 1の合計 100質量部に対し 5質量部) 添加し、 二軸押出温度と単軸押 出温度を 390°C、 および厚さを 25 /zmとした他は、 フィルム S 1と同様の操 作によりフィルム S 10を得た。
[フィルム S 1 1]
卩£ 1ー 1を31 § (PE I— 1、 PE I—2および PEEK— 1の合計質量 に対し 30質量0 /0) 、 PE I— 2を 3 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 30質量0 /0) 、 PEEK— 1を 4 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 40質量。 /0) 、 また、 充填材 C 1を O k gに変更し、 充填材 C 3を l k g (PE I— 1、 PE I— 2および PE EK~ 1の合計 100質量部に対し 10質量部) 、 固体潤滑剤 D 1を 0. 5 k g (P E I— 1、 PE I— 2および P EEK— 1の合計 100質量部に対し 5質量 部) 、 固体潤滑剤 D2を l k g (PE I— 1、 PE I— 2および PEEK— 1の 合計 1 00質量部に対し 1 0質量部) 添加し、 フィルム厚さを 30 μπιとした他 は、 フィルム S 1と同様の操作によりフィルム S 1 1を得た。
[フィルム S 1 2]
?£ 1ー 1を41 § (ΡΕ Ι— 1、 PE I—2および PEEK— 1の合計質量 に対し 40質量0 /0) 、 PE I— 2を 3 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 30質量0 /0) 、 PEEK— 1を 3 k g (PE I— 1、 ?£ 1ー2ぉょび?££ ー 1の合計質量に対し30質量%) 、 また、 充填材 C 1を O k gに変更し、 充填材 C 3を 1. 5 k g (PE I— 1、 PE I— 2および PEEK- 1の合計 1 00質量部に対し 1 5質量部) 、 固体潤滑剤 D 1を 1. 5 k g (PE I— 1、 PE I— 2および PEEK— lの合計 1 00質量部に対し 1 5質量部) 添加し、 二軸押出温度と単軸押出温度を 390°C、 およびフィルム厚 さを 28 / mとした他は、 フィルム S 1と同様の操作を行い、 フィルム S 12を 得た。
[フイノレム S 13]
PE I— 1を 3 k g (PE I— 1、 P E I— 2および P E EK— 1の合計質量 に対し 30質量0 /0) 、 PE I—2を 3 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 30質量0 /0) 、 PEEK— 1を 4 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 40質量%) 、 また、 充填材 C 1を 0 k gに変更し、 充填材 C 3を 2. 5 k g (PE I— 1、 PE I— 2および PEEK— 1の合計 100質量部に対して 25質量部) 添加し、 二軸押出と単軸 押出の温度を 390°C、 フィルム厚さを 40 μπιとした他は、 フィルム S 1と同 様の操作を行い、 フィルム S 13を得た。
[表面層の作製]
以下の手順で、 表面層用のフィルム Τ 1〜Τ 1 3、 およびフィルム TR 1を作 製した。
[フィルム Τ 1]
7. 2 k gの PEEK— 1 (100質量部) に、 充填材 C 1を 2. 8 k g (1 00質量部の PEEK— 1に対し 38. 9質量部) 添加し、 サイドフィード付き 二軸押出機を用いて設定温度 390°Cで混練し、 ストランド状に押出し、 カッテ ィングしてペレツトとした。
このペレッ トを、 180°Cで 1 2時間熱風乾燥した後、 Tダイを接続した口径 4 Omm ψの単軸押出機を使用し、 390°Cにてフィルム状に押出し、 設定温度 130°Cの循環オイルにて温度調節された金属キャストロールの表面に接触させ、 その反対側からシリコーンゴムロールにて押しつけて急冷製膜することにより、 厚さ約 1 10 μ mのフイノレム Τ 1を得た。
[フィルム T 2]
PEEK— 1を 7. 6 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 充填材 C 2を 2. 4 k g (100質量部の PEEK— 1に対し 3 1. 6質量部) 添カ卩し、 フィルム厚さを 40 imとした以外は、 フィルム T 1と同様の操作を行 い、 フイノレム T 2を得た。
[フィルム T 3]
充填材 C 1を 0 k gに変更し (すなわち PEEK— 1のみを使用) 、 二軸押出 機による混練を行わず、 フィルム厚さを 30 μπιとした以外は、 フィルム T 1と 同様の操作を行い、 フィルム Τ 3を得た。 [フィルム T 4]
PEEK— 1を 8. 2 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 充填材 C 3を 1. 8 k g (100質量部の PEEK— 1に対し 22質量部) 添カロ し、 フィルム厚さを 70 /itnとした以外は、 フィルム T 1と同様の操作を行い、 フィルム T 4を得た。
[フィルム T 5]
PEEK— 1を 7. 5 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 充填材 C 3を 2. 5 k g (100質量部の PEEK— 1に対し 33. 3質量部) 添加し、 フィルム厚さを 50 μπιとした以外は、 フィルム Τ 1と同様の操作を行 い、 フイノレム Τ 5を得た。
[フィルム Τ 6]
充填材 C 1を 0 k gに変更し、 固体潤滑剤 D 1を 2 k g (100質量部の P E EK_ 1に対し 25質量部) 添加し、 フィルム厚さを 60 μηιとした以外は、 フ イルム T 1と同様の操作を行い、 フィルム Τ 6を得た。
[フイノレム Τ 7]
PEEK— 1を 8. 33 k g (100質量部) 、 充填材 C 1を◦ k gに変更し、 固体潤滑剤 D 2を 1. 67 k g (1 00質量部の P E E K— 1に対し 20質量 部) 添加し、 フィルム厚さを 100 μπιとした以外は、 フィルム T 1と同様の操 作を行い、 フィルム Τ 7を得た。
[フィルム Τ 8]
PEEK— 1を 1 0 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 充 填材 C 3を l k g (100質量部の PEEK— 1に対し 10質量部) 、 固体潤滑 剤01を2 (PEEK— 1 100質量部に対し 20質量部) 、 および固体 潤滑剤 D 2を l k g (PEEK- 1 100質量部に対し 10質量部) 添加し、 フィルム厚さを 35 μ mとした以外は、 フィルム T 1と同様の操作を行い、 フィ ルム T 8を得た。
[フィルム T 9]
PEEK— 1を 10 k g、 充填材 C 1を O k gに変更 (すなわち PEEK— 1 のみを使用) し、 二軸押出機による混棟を行わず、 フィルム厚さを 50 μηιとし たほかは、 フィルム T 1と同様の操作を行い、 フィルム T9を得た。
〔フィルム T 10]
PEEK— 1を 10 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 固 体潤滑剤 D 1を 2. 5 k g (100質量部の PEEK— 1に対し 25質量部) 添 加し、 厚さを 60 μπχに変更した以外は、 フィルム Τ 1と同様の操作によりフィ ルム Τ 10を得た。
[フィルム Τ 1 1 ]
PEEK— 1を 10 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 充 填材 C 3を 1 k g (100質量部の PEEK— 1に対し 10質量部) 、 固体潤滑 剤01を2 § (1 00質量部の PEEK— 1に対し 20質量部) 、 固体潤滑剤 D2を 1 k g (1 00質量部の PEEK— 1に対し 10質量部) 添加し、 厚さを 40 μπιとしたほかは、 フィルム Τ 1と同様の操作によりフィルム Τ 1 1を得た。
[フィルム Τ 1 2]
Τ 1と同様の操作を行いフィルム T 1 PEEK— 1を 1 0 k g (1 00質量 部) 、 充填材 C 1を 0 k gに変更し、 充填材 C 3を 1. 5 k g (100質量部の PEEK— 1に対し 1 5質量部) 、 固体潤滑剤 D 1を 2 k g (100質量部の P EEK— 1に対し 20質量部) 添カ卩し、 厚さを 60 μηιとしたほかは、 フィルム 2を得た。
[フィルム T 1 3]
PEEK— 1を 1 0 k g (100質量部) 、 充填材 C 1を 0 k gに変更し、 充 填材 C 3を 0. 5 k g (100質量部の PEEK— 1に対し 5質量部) 、 固体潤 滑剤 D 2を 0. 5 k g (1 00質量部の PEEK— 1に対し 5質量部) 、 ポリテ トラフルォロエチレン樹脂 (ダイキン工業株式会社製ポリフロン TFEL— 5、 以下 「固体潤滑剤 D 3」 と略記) 2 k g (100質量部の PEEK— 1に対して 20質量部) を添カ卩し、 厚さを 70 としたほかは、 フィルム T 1と同様の操 作を行い、 フィルム T 13を得た。
[フィルム TR 1]
厚さを 1 1 Ο μπιに変更した以外は、 フィルム Τ 9と同様の操作によりフィル ム TR 1を作製した。 [積層フィルムの作製]
以下の手順で、 積層フィルム ST 1〜ST6を作製した。
〔積層フィルム ST 1]
樹脂組成物として、 PE I— 1を 2. 8 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 28質量%) 、 PE I— 2を 3 k g (PE I— 1、 PE I _2および PEEK— 1の合計質量に対し 30質量0 /0) 、 PEEK— 1を 4. 2 k g (PE I— 1、 PE I—2および PEEK— 1の合計質量に対し 42 質量%) 、 用いた。 また、 充填材 C 2を 2. 5 k g (PE I— 1、 PE I—≥お よび PEEK— 1の合計 100質量部に対し 25質量部) 添加した。 上記樹脂組 成物および充填材を、 サイドフィード付き二軸押出機を用いて設定温度 380°C で混練し、 ス トランド状に押出し、 カッティングしてペレットとした。 このペレ ットを 180でで 8時間熱風乾燥し、 390 °Cに設定した口径 30 mm φの単軸 押出機を接続したマルチマ二ホールド式のダイ (設定温度 390°C) より中間層 として押し出した。
また、 PEEK— 1のペレツトを 1 80°Cで 8時間熱風乾燥したのち 390°C に設定した口径 40 mm ψの単軸押出機を接続した上記マルチマユホールドダイ (設定温度 390°C) より表面層として中間層と同時に押し出し (共押出) 、 中 間層と表面層とが積層した積層フィルム ST 1を得た。
この際、 中間層と表面層の厚さ比が 16 : 84となるように溶融樹脂の吐出量 を調整した。 この積層フィルムの中間層側を 125°Cのキャスティングロールに て急冷し、 表面層側にシリコーンゴムロールを押し当てた。 さらに、 金属ロール の反対側に設置された約 35 °Cの水で冷却される硬質クロムメッキロ一ルを押し つけてシリコーンゴムロールを冷却し、 その後、 巻き取った。 積層フィルムの厚 さが 50 μιηとなるように、 押出機からの溶融樹脂の吐出量とライン速度を調整 した。
なお、 得られた積層フィルム ST 1の断面を顕微鏡により拡大して観察し、 各 層の厚さを測定したところ、 中間層の厚さは 8 μπι、 表面層の厚さは 42 ;umで あつに。
[積層フィルム ST 2] 樹脂組成物として、 PE I— 1を 6 k g (PE I _ 1および PEEK— 1の合 計質量に対し 60質量0 /0) 、 PEEK— 1を 4 k g (P E I— 1および P E EK — 1の合計質量に対し 40質量%) 、 用いた。 また、 充填材 C 3を 1. 5 k g (PE I— 1および PEEK— 1の合計 100質量部に対し 15質量部) 、 固体 潤滑剤 D1を 1. 5 k g (P E I— 1および PEEK— 1の合計 100質量部に 対し 15質量部) 添加した。 樹脂組成物、 充填材および固体潤滑剤を、 サイドフ イード付きの二軸押出機を用いて設定温度 390°Cで混練してストランド状に押 出し、 カッティングしてペレットとした。 このペレットを 180°Cで 8時間熱風 乾燥し、 390°Cに設定した口径 30 mm φの単軸押出機を接続したマルチマ二 ホールド式のダイ (設定温度 390 °C) より中間層として押し出した。
また、 10 k gの PEEK— 1 (100質量部) に、 充填材 C 3を 0. 8 k g (100質量部の PEEK— 1に対し 8質量部) 、 固体潤滑剤 D 1を 2. 5 k g (100質量部の PEEK— 1に対し 25質量部) 添加し、 サイドフィード付き の二軸押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 カツ ティングしてペレットとした。 このペレットを 180°Cで 8時間熱風乾燥し、 3 90°Cに設定した口径 40 mm φの単軸押出機を接続した上記マルチマ二ホール ドダイ (設定温度 390 °C) より表面層として押し出した。
積層フィルム ST 1と同様の手順で、 中間層と表面層とを共押出し、 積層フィ ル AST 2を得た。 この際、 中間層と表面層の厚さ比が 14 : 86、 積層フィル ムの厚さが 105 ^ηιとなるように溶融樹脂の吐出量とライン速度を調整した。 なお、 得られた積層フィルム ST 2の断面を顕微鏡により拡大して観察し、 各 層の厚さを測定したところ、 中間層の厚さは 15 μπι、 表面層の厚さは 90 μπι であった。
[積層フィルム ST3]
樹脂組成物として、 PE I— 1を 6 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 60質量0 /0) 、 PE I—2を 1. 5 k g (PE I— 1. PE I _2および PEEK— 1の合計質量に対し 15質量0 /0) 、 PEEK— 1を 2. 5 k g (PE I— 1、 PE I—2および PEEK— 1の合計質量に対し 25 質量%) を用いた。 また、 充填材 C3を 1. 5 k g (PE I— 1、 PE I— 2お よび PEEK— 1の合計 100質量部に対し 15質量部) 、 固体潤滑剤 D 2を 1 k g (PE I— 1、 PE I— 2および PEEK— 1の合計 100質量部に対し 1 0質量部) 添加した。 樹脂組成物、 充填材および固体潤滑剤を、 サイドフィード 付きの二軸押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 カッティングしてぺレットとした。 このペレットを 1 80でで 8時間熱風乾燥し、 390°Cに設定した口径 30 mm φの単軸押出機を接続したマルチマ二ホールド 式のダイ (設定温度 390°C) より中間層として押し出した。
また、 1 O k gの PEEK— 1 (100質量部) に、 充填材 C 3を 1. O k g (1 00質量部の PEEK— 1に対し 10質量部) 、 固体潤滑剤 D 1を 2 k g (1 00質量部の PEEK— 1に対し 20質量部) 、 固体潤滑剤 D 2を 1 k g (1 00質量部の PEEK— 1に対し 10質量部) 添カ卩し、 サイドフィード付き の二軸押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 カツ ティングしてペレットとした。 このペレットを 180°Cで 8時間熱風乾燥し、 3 90°Cに設定した口径 30 mm φの単軸押出機を接続した上記マルチマ二ホール ドダイ (設定温度 390°C) より表面層として押し出した。
積層フィルム ST 1と同様の手順で、 中間層と表面層とを共押出し、 積層フィ ルム ST3を得た。 この際、 中間層と表面層の厚さ比が 43 : 57、 積層フィル ムの厚さが 70 μπιとなるように溶融樹脂の吐出量とライン速度を調整した。 なお、 得られた積層フィルム ST 3の断面を顕微鏡により拡大して観察し、 各 層の厚さを測定したところ、 中間層の厚さは 40 i m、 表面層の厚さは 30 μπι であった。
[積層フィルム S Τ 4]
樹脂組成物として、 PE I— 1を 3. 5 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 35質量0 /o) 、 PE I—2を 3 k g (PE I— 1、 PE I— 2および PEEK— 1の合計質量に対し 30質量0 /0) 、 PEEK— 1を 3. 5 k g (PE I— 1、 ?£ 1—2ぉょび?££1:ー 1の合計質量に対し35 質量%) 、 用いた。 これらのペレットを充分混合攪拌した後、 1 80°Cで 8時間 熱風乾燥し、 390°Cに設定した口径 30 mm φの単軸押出機を接続したマルチ マ二ホールド式のダイ (設定温度 390°C) より中間層として押し出した。 また、 10 k gの PEEK— 1 (100質量部) に、 充填材 C 3を l k g (1 00質量部の PEEK— 1に対し 10質量部) 、 固体潤滑剤 D 1を 2 k g (10 0質量部の P EEK— 1に対し 20質量部) 、 固体潤滑剤 D 2を 0. 5 k g (1 00質量部の PEEK- 1に対し 5質量部) 添カ卩し、 サイドフィ一ド付きの二軸 押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 カッテイン グしてペレットとした。 このペレットを 180°Cで 8時間熱風乾燥し、 390。C に設定した口径 30 mm φの単軸押出機を接続した上記マルチマ-ホールドダイ (設定温度 390°C) より表面層として押し出した。
積層フィルム ST 1と同様の手順で、 中間層と表面層とを共押出し、 積層フィ ルム ST 4を得た。 この際、 中間層と表面層の厚さ比が 24 : 76、 積層フィル ムの厚さが 34 / mとなるように溶融樹脂の吐出量とライン速度を調整した。 なお、 得られた積層フィルム ST4の断面を顕微鏡により拡大して観察し、 各 層の厚さを測定したところ、 中間層の厚さは 8 μπι、 表面層の厚さは 26 μΐηで あった。
[積層フィルム ST 5]
樹脂組成物として、 ΡΕ Ι— 1を 5. 8 k g (PE I— 1および PEEK— 1 の合計質量に対し 58質量。 /0) 、 PEEK- 1を 4. 2 k g (PE 1— 1および PEEK— 1の合計質量に対し 42質量%) 用いた。 また、 充填材 C3を 1. 5 k g (PE I— 1および PEEK— 1の合計 100質量部に対し 15質量部) 、 および固体潤滑剤 D 1を 1 k g (PE I— 1および PEEK— 1の合計 100質 量部に対し 10質量部) 添加した。 樹脂組成物、 充填材および固体潤滑剤を、 サ ィドフィード付きの二軸押出機を用いて設定温度 390°Cで混練してストランド 状に押出し、 カッティングしてペレットとした。 このペレットを 180°Cで 8時 間熱風乾燥し、 390°Cに設定した口径 30 mm φの単軸押出機を接続したマル チマ二ホールド式のダイ (設定温度 390°C) より中間層として押し出した。 また、 1 O k gの PEEK— 1 (100質量部) に、 固体潤滑剤 D 1を 2. 5 k g (100質量部の PEEK— 1に対し 25質量部) 添加し、 サイドフィード 付きの二軸押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 カッティングしてべレットとした。 このペレットを 180でで 8時間熱風乾燥し、 390°Cに設定した口径 40 mm φの単軸押出機を接続した上記マルチマ二ホー ルドダイ (設定温度 390°C) より表面層として押し出した。
積層フィルム ST 1と同様の手順で、 中間層と表面層とを共押出し、 積層フィ ルム ST 5を得た。 この際、 中間層と表面層の厚さ比が 14 : 86、 積層フィル ムの厚さが 105 μπιとなるように溶融樹脂の吐出量とライン速度を調整した。 なお、 得られた積層フィルム ST 5の断面を顕微鏡により拡大して観察し、 各 層の厚さを測定したところ、 中間層の厚さは 1 5 μπι、 表面層の厚さは 90 /zm であった。
[積層フィルム ST 6]
樹脂組成物として、 PE I— 1を 6 k g (PE I— 1、 PE I— 2および PE EK— 1の合計質量に対し 60質量0 /0) 、 PE I— 2を 1. 5 k g (PE I _ 1、 PE I— 2および PEEK— 1の合計質量に対し 1 5質量0 /0) 、 PEEK— 1を 2. 5 k g (PE I— 1、 P E I _ 2および P EEK— 1の合計質量に対し 25 質量%) 、 用いた。 また、 充填材 C 3を 1. 5 k g (PE I—1、 PE I— 2お よび PEEK— 1の合計 100質量部に対し 1 5質量部) 、 固体潤滑剤 D2を 1 k g (PE I— 1、 PE I— 2および PEEK— 1の合計 100質量部に対し 1 0質量部) 添加した。 樹脂,組成物、 充填材および固体潤滑剤をサイドフィード付 きの二軸押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 力 ッティングしてべレットとした。 このペレットを 180でで 8時間熱風乾燥し、 390°Cに設定した口径 30 mm φの単軸押出機を接続したマルチマ二ホールド 式のダイ (設定温度 390°C) より中間層として押し出した。
また、 1 O k gの PEEK— 1 (100質量部) に、 充填材 C 3を 0. 5 k g (100質量部の PEEK— 1に対し 5質量部) 、 固体潤滑剤 D 1を 2 k g (1 00質量部の P EEK— 1に対し 20質量部) と固体潤滑剤 D 2を 0. 5 k g (100質量部の PEEK— 1に対し 5質量部) 添加し、 サイドフィード付きの 二軸押出機を用いて設定温度 390°Cで混練してストランド状に押出し、 カッテ ィングしてペレツトとした。 このペレットを 180°Cで 8時間熱風乾燥し、 39 0°Cに設定した口径 30 mm φの単軸押出機を接続したマルチマ二ホールドダイ (設定温度 390°C) より表面層として押し出した。 積層フィルム ST 1と同様の手順で、 中間層と表面層とを共押出し、 積層フィ ルム ST6を得た。 この際、 中間層と表面層の厚さ比が 57 : 43、 積層フィル ムの厚さが 70 μιηとなるように溶融樹脂の吐出量とライン速度を調整した。 なお、 得られた積層フィルムの断面を顕微鏡により拡大して観察し、 各層の厚 さを測定したところ、 中間層の厚さは 40 /zm、 表面層の厚さは 30 μιηであつ た。
[摺動部材の作製]
上記フィルム S 1〜S 1 3、 丁 1〜丁 1 3ぉょび3丁 1〜3丁 6を用いて、 試 料 1〜21までの摺動部材を作製した。 また、 比較のために、 試料 1, および試 料 3' を作製した。 以下に作製手順を示す。
[試料 1 ]
下記の順番に重ね合わせたものを、 高性能高温真空プレス成形機 (北川精機株 式会社製成型プレス 「VH 1— 1 747」 ) 内にセットし、 設定最高温度 360 °C、 設定最高温度保持時間 20分、 設定圧力 9. 7MP a (下記 (4) と (5) との間での圧力は約 3. 9MP a) にてプレス成形し、 基材と摺動層 (中間層お よぴ表面層) とからなる試料 1を得た。
( 1 ) 両面を 35 μ mの銅箔で覆った一辺が約 30 c mの正方形で、 厚さ 1. 6mmのクッション紙 (三菱製紙株式会社製 「RAボード RABN0016」 ) . (2) —辺が約 30 c mの正方形で、 厚さ 2mmのステンレス鋼板、 (3) 縦 3 0 cm, 横 25 cmの長方形で、 厚さ 50 μηιのポリイミ ドフィルム (宇部興産 株式会社製 「ユーピレックス 50 S」 ) 、 (4) 一辺が 22 cmの正方形に加工 した基材 Al、 (5) —辺が 24 cmの正方形に加工したフィルム S 1 (中間 層) 、 (6) —辺が 24 c mの正方形に加工したフィルム T 1 (表面層) 、
(7) 上記 (3) と同様のポリイミドフィルム、 (8) 上記 (2) と同様のステ ンレス板、 (9) 上記 (1) と同様のクッション紙。
上記 (4) は、 クロ口ホルム洗浄により脱脂を行った。 また、 上記 (1) 〜 (9) は、 重ね合わせる前に少量のエタノールをしみこませたワイビング紙で表 面の汚れや異物を取り除いた。 さらに、 上記 (3) 〜 (7) は、 重ね合わせる前 に、 目視検査により表裏の異物を確認し、 少量のエタノールをしみこませたワイ ビングクロス (帝人株式会社製 「ミクロスター CP」 ) を用いてその異物を拭き 取った後、 再度目視検査を行い、 異物が除去できたことを確認した後に重ね合わ せた。
試料 1の断面を顕微鏡にて観察し、 各層の厚さを測定したところ、 基材 0. 4 mm、 中間層 96 μΐη、 表面層 1 07 mであった。
[試料 2]
基材を A 2とし、 中間層用フィルムを S 2、 表面層用フィルムを T 2に変更し た以外は、 試料 1と同様のプレス成形を行い、 試料 2を得た。 試料 2の各層の厚 さは、 基材 0. 4mm、 中間層 33 μηι、 表面層 38 μ mであった。
[試料 3]
基材を A 3とし、 中間層用フィルムを S 3、 表面層用フィルムを T 3に変更し た以外は、 試料 1と同様のプレス成形を行い、 試料 3を得た。 試料 3の各層の厚 さは、 基材 0. 5mm、 中間層 76 / m、 表面層 27 mであった。
[試料 4]
中間層用フィルムを S 4、 表面層用フィルムを T 4に変更した以外は、 試料 1 と同様のプレス成形を行い、 試料 4を得た。 各層の厚さは、 基材 0. 4mm、 中 間層 46 μπι、 表面層 66 μιηであった。
[試料 5 ]
基材を A 4とし、 中間層用フィルムを S 5、 表面層用フィルムを T 5に変更し た以外は、 試料 1と同様のプレス成形を行い、 試料 5を得た。 各層の厚さは、 基 材 0. 3mm、 中間層 45 μηι、 表面層 47 zmであった。
[試料 6 ]
中間層用フィルムを S 6、 表面層用フィルムを T 6に変更した以外は、 試料 1 と同様のプレス成形を行い、 試料 6を得た。 各層の厚さは、 基材 0. 4mm、 中 間層 24 μ m、 表面層 55 mであった。
[試料 7 ]
中間層用フィルムを S 7、 表面層用フィルムを T 7に変更した以外は、 試料 1 と同様のプレス成形を行い、 試料 7を得た。 各層の厚さは、 基材 0. 4mm、 中 間層 20 μ m、 表面層 96 ^ mであった。 [試料 8]
基材を A 2とし、 中間層用フィルムを S 8、 表面層用フィルムを T 8に変更し た以外は、 試料 1と同様のプレス成形を行い、 試料 8を得た。 各層の厚さは、 基 材 0. 4mm、 中間層 45 111、 表面層 31 /mであった。
[試料 1 ' ]
表面層用フィルムを使用しない点以外は、 試料 1と同様のプレス成形を行い、 試料 1, を得た。 各層の厚さは、 基材 0. 4mm、 中間層 96 μ mであった。
[試料 3' ]
中間層用フィルムを使用せず、 表面層用フィルムを TR 1に変更した以外は、 試料 1と同様のプレス成形を行い、 試料 3' を得た。 各層の厚さは、 基材 0. 4 mm、 表面層 106 μπιであった。 基材と TR 1とが接着不良であったため、 そ の他の評価は行わなかった。
[試料 9]
中間層用フィルム S 1と表面層用フィルム Τ 1を積層フィルム ST 1に変更し、 積層フィルムの中間層が基材 A 1に接触するように重ね、 プレス積層時の設定最 高温度を 250°C, 設定最高温度保持時間を 30分に変更したほかは、 試料 1と 同様の操作によりプレス成形し、 試料 9を得た。 各層の厚さは、 基材 0. 4mm、 中間層 6 μπι、 表面層 39 μ mであった。
[試料 10 ]
積層フィルムを ST2とし、 試料 9と同様の操作を行い試料 10を得た。 各層 の厚さは、 基材 0. 4mm、 中間層 1 1 ^ηι、 表面層 86 ^ mであった。
[試料 1 1 ]
積層フィルムを ST 3とし、 試料 9と同様の操作を行い試料 1 1を得た。 各層 の厚さは、 基材 0. 4mm、 中間層 35 μπι、 表面層 26 μιηであった。
[試料 1 2]
下記の順番に重ね合わせたものを、 上記高性能高温真空プレス成形機内にセッ トし、 設定最高温度 360°C、 設定最高温度保持時間 30分、 設定圧力 5. 2M P a (下記 (3, ;) と (4' ) との間での圧力は約 3. 9MP a) にてプレス成 形し、 試料 1 2を得た。 (1, ) 一辺が約 30 cmの正方形で、 厚さ 1. 5 mmのステンレス鋼板 (2 , ) 両面を 35 の銅箔で覆った一辺が約 20 cmの正方形で、 厚さ 1. 6m mの上記クッション紙、 ( 3 ' ) —辺が 1 6 c mの正方形に加工した基材 A 5、
(4' ) 一辺が 18 cmの正方形に加工したフィルム S 9 (中間層) 、 (5, ) —辺が 18 c mの正方形に加工したフィルム T 9 (表面層) 、 (6, ) 一辺が 2 0 cmの正方形で厚さ 50 μηιの上記ポリイミドフィルム、 (7, ) 厚さ 125 μπιのポリイミ ドフィルム (東レ ·デュポン株式会社製 「カプトン 500Η」 ) 、
(8, ) 上記 (6' ) と同様のポリイミ ドフィルム、 (9, ) 一辺が 20 cmの 正方形で厚さ 5 mmのステンレス板 (SUS 304) 、 (10, ) 一辺が 18 c mの正方形で上記 ( 1, ) と同様のクッシヨン紙。
上記 (3' ) は、 クロ口ホルム洗浄により脱脂を行った。 また、 上記 (1' ) 〜 (10' ) は、 重ね合わせる前に少量のエタノールをしみこませたワイビング 紙で表面の汚れや異物を取り除いた。 さらに、 上記 (3' ) は表面の埃や異物を ゴム製ブロア一を用いて除去し、 上記 (1, ) 〜 (8, ) は、 重ね合わせる前に、 目視検查により表裏の異物を確認し、 少量のエタノールをしみこませた上記ワイ ビングクロスを用いてその異物をふき取った後、 再度目視検查を行い、 異物が除 去できたことを確認した後に重ね合わせた。
試料 12の断面を顕微鏡にて観察し、 各層の厚さを測定したところ、 基材 4m m、 中間層 46 /im、 表面層 45 /zmであった。
[試料 1 3]
基材を A6とし、 中間層用フィルムを S 1 0、 表面層用フィルムを T 10に変 更した以外は、 試料 1 2と同様のプレス成形を行い、 試料 1 3を得た。 試料 1 3 の各層の厚さは、 基材 6mm、 中間層 20 m、 表面層 56 mであった。
[試料 14]
基材を A 6とし、 中間層用フィルムを S 1 1、 表面層用フィルムを T 1 1に変 更した以外は、 試料 1 2と同様のプレス成形を行い、 試料 14を得た。 各層の厚 さは、 基材 6mm、 中間層 26 ^m、 表面層 35 mであった。
[試料 1 5]
基材を A 7とし、 中間層用フィルムを S 1 2、 表面層用フィルムを T 12に変 更した以外は、 試料 1 2と同様のプレス成形を行い、 試料 1 5を得た。 各層の厚 さは、 基材 8mm、 中間層 24 ^m、 表面層 55 mであった。
[試料 16]
基材を A6とし、 中間層用フィルムを S 13、 表面層用フィルムを T 1 3に変 更した以外は、 試料 1 2と同様のプレス成形を行い、 試料 1 6を得た。 各層の厚 さは、 基材 6mm、 中間層 35 /zm、 表面層 64 μπιであった。
[試料 1 7 ]
基材を A 6とし、 中間層用フィルム S 9と表面層用フィルム T 9を積層フィル ム ST 4に変更し、 積層フィルムの中間層が基材 A 6に接触するように重ね、 プ レス積層時の設定最高温度を 250°C、 設定最高温度保持時間を 30分に変更し たほかは、 試料 1 2と同様の操作によりプレス成形し、 試料 1 7を得た。 各層の 厚さは、 基材 6mm、 中間層 5 μΐη、 表面層 21 μπιであった。
[試料 18]
基材を A 5、 積層フィルムを ST 5に変更した他は、 試料 1 7と同様の操作を 行い試料 18を得た。 各層の厚さは、 基材 4mm、 中間層 10 μ m、 表面層 85 μ mであった。
[試料 1 9 ]
積層フィルムを S T 6に変更した他は、 試料 1 7と同様の操作を行い試料 1 9 を得た。 各層の厚さは、 基材 6mm、 中間層 34 ^m、 表面層 26 mであった。
[試料 20]
基材を A 8、 積層フィルムを ST 5に、 またプレス成形時の設定最高温度を 2 40°Cに変更した他は、 試料 1 7と同様の操作を行い試料 20を得た。 各層の厚 さは、 基材 8mm、 中間層 1 l ^m、 表面層 85 mであった。
[試料 21 ]
基材を A 9、 積層フィルムを ST 6に変更した他は、 試料 20と同様の操作を 行い試料 21を得た。 各層の厚さは、 基材 6mm、 中間層 35 ^m、 表面層 25 μ mであつに。
[評価]
上記試料、 また、 各試料に使用した基材およびフィルムについての種々の測定 値および評価は、 以下のようにして行った。 ここで、 フィルムの押出機からの流 れ方向を縦方向、 その直交方向を横方向と呼ぶ。
[シャーリング時の端部剥離]
基材の厚さが l mm以下の試料 1〜1 1および試料 1 ' 、 試料 3 ' については、 生野機械株式会社製のシャーリング (刃渡り約 1 0 0 0 mm、 足踏み式) を用い、 積層体を幅 3 c m、 長さ 2 0 c mの短冊状に 3枚切断し、 長辺端部に生じる剥離 の有無を目視にて観察し、 以下の 4ランクに分けて評価した。 なお、 固定刃側の 切断端部と可動刃側の切断部の剥離発生状態が異なる場合は、 剥離の長さや幅が 大きい方の端部の剥離状態を評価し、 さらに、 上記短冊状試験片切断後の残りの 部分の切断端部剥離状態も観察し、 剥離の長さや幅が大きければ、 そのものを評 価結果とした。
ランク 1 :端部の剥離が生じていないか、 または、 剥離幅の最大値が 0 . 5 mm^ 。
ランク 2 :剥離幅の最大値が 0 . 5 mm超かつ 1 mm以下。
ランク 3 :剥がれが端部全体に生じており、 剥離幅は少なくとも部分的 に 1 mm超。
ランク 4 : シャーリングによる切断後、 室温にて 2日間状態調節中に、 剥がれが端部から剥離幅 1 mmを超えて徐々に広がり、 積層面の少なくとも 1 0 %が剥離する状態。
また、 基材の厚さが l mmを超える試料 1 2〜試料 2 1については、 シヤーリ ングにて切断できないので、 カッターナイフにより摺動層に 2 c m間隔の平行な 直線状の切れ目を 3本入れ、 さらに、 それらの直線の中心付近に、 それらの直線 と直角方向に 2 c m間隔の直線状の切れ目を平行に 3本入れ、 剥離の状態を目視 にて観察した。 また、 切れ目の部分にカッターナイフの先端を差し込んで、 切れ 目部分の剥離を試みた。 切れ目部分に生じる剥離の有無を目視にて観察し、 以下 の 4ランクに分けて評価した。
ランク 1 :切れ目の剥離が生じていないか、 または、 剥離幅の最大値が 0 . 5 mm以 Γ ο
ランク 2 :切れ目の剥離幅の最大値が 0 . 5 mm超かつ 1 mm以下。 ランク 3 :剥がれが切れ目全体に生じており、 剥離幅は少なくとも部分 的に 1 mm超。
ランク 4 :カッターナイフによる切断後、 室温にて 2日間状態調節中に、 剥がれが切れ目部分から剥離幅 lmmを超えて徐々に広がり、 積層面の少なくと も 10%が剥離する状態。
[剥離強度]
基材の厚さが lmm以下の試料 1〜1 1および試料 1 ' 、 試料 3, については、 上記シャーリングにより、 幅 3 cm、 長さ 20 cmの短冊状に切断し、 摺動層の 長さ 20 c mの両辺端部より内側に 5 mmの位置に力ッターナイフで直線の切り 込みを作製し、 さらに、 長さ 3 cmの片方の辺より内側に約 3〜5 cmの位置に 長さ 3 cmの辺にほぼ並行にカッターナイフで切れ目を作製し、 その位置で基材 の厚さ方向に繰り返し折り曲げて剥離強度測定用の剥離箇所を作製し、 試験片と した。
また、 基材の厚さが lmmを超える試料 1 2〜試料 21については、 摺動層に カッターナイフにより 2 cm間隔の平行な直線状の切れ目を 5本入れ、 さらに、 それらの直線の端部から 2〜 3 cmの位置に、 それらの直線と直角方向に直線状 の切れ目を 1本入れ、 切れ目の部分にカッターナイフの先端を差し込んで、 剥離 箇所の作製を試みた。 剥離箇所の作製中に摺動層が折れたり破断したものは材料 強度より剥離強度が強いと判断し、 材料破壊 (表中 「材破」 と表示する) と判断 した。
さらに、 接着強度測定の目的で、 剥離部分の摺動層を引っ張るために、 幅 18 mmのセロハンテープを剥離部分に貼り付けて、 引っ張り代を設けた。 具体的に は、 幅 18mmのセロハンテープ (二チパンセロハンテープ 「CT405A— 1 8」 ) を長さ約 33 cmに切り取り、 両端部約 1. 5 cmを残して粘着面を内側 にして中央で 2つ折りにして貼り合わせ、 両端部を、 上記剥離部分に貼り付け、 幅 18mni、 長さ約 1 5 c mの引っ張り代とした。
剥離箇所から摺動層ないしは上記セ口ハンテープで試料の面と垂直な方向に引 つ張り、 剥離箇所を広げた。 剥離箇所が広がったものは、 引っ張り.試験機にて 5 0mm/分の速度で 1 80度方向に引っ張り、 剥離強度を測定した。 広げる操作 中にフィルムが破れたものは材料強度より剥離強度が強いと判断し、 材料破壊 ( 「材破」 と略記する。 ) と判断した。
[摩擦係数測定]
J I S K7 1 25— 1 987に準じ、 静摩擦係数と動摩擦係数を測定した。
[鉛筆硬度]
J I S K331 2— 1 994に準じ、 鉛筆硬度を測定した。
[積層体に使用した基材の表面粗さ]
小坂研究所株式会社製表面粗さ測定装置 「SE 3— FK」 を使用し、 J I S B0601 - 1 994に規定される表面粗さパラメータを測定した。 測定したパ ラメータは、 十点平均粗さ (R z) 、 最大高さ (Ry) 、 算術平均粗さ (Ra) である。
[耐溶剤性]
各試料を室温にて 8時間クロロホルム中に浸漬し、 表面外観の変化を目視にて 観察し、 未浸漬の試料と比較して、 以下の 5ランクに分けて評価した。
ランク 1 :外観変化が無い。
ランク 2 :表面の光沢が変化する。
ランク 3 :表面荒れが部分的に生じる。
ランク 4 :表面荒れが全体に生じる。
ランク 5 :少なくとも部分的に溶解する。
評価結果を表 1〜表 4に示す。
[表 1 ]
試料 1 2 3 4 5 6 7 8 1' 3' 略号 A1 A2 A3 A1 A4 A1 A1 A2 A1 A1 種類 SUS304 SUS301 SUS304 SUS304 SUS316 SUS304 SUS304 SUS301 SUS304 SUS304 基 厚さ [mm] 0.4 0.4 0.5 0.4 0.3 0.4 0.4 0.4 0.4 0.4 材
表 Ra [jt/ m] 0.18 0.08 0.17 0.18 0.07 0.18 0.18 0.08 0.18 0.18 囟
Ry [ m] 1.5 1.0 1.67 1.5 1.87
粗 1.5 1.5 1 1.5 1.5 さ R∑ [ m] 1.4 0.92 1.37 1.4 1.15 1.4 1.4 0.92 1.4 1.4
略号 S1 S2 S3 S4 S5 S6 S7 S8 S1 一 厚さ [ m] 100 35 80 50 50 28 24 50 100 一 樹 PEI- 1 [質量 %] 28 55 40 40 30 55 40 30 28 ― 脂
組 PEI-2 [質量 %] 32 ― 25 35 30 ― 30 30 32 一 成
中 物 PEEK— 1 [質量%] 40 45 35 25 40 45 30 40 40 ― 間
層 C1 [質量部] 38.9 - - ― ― 一 ― 一 38.9
充 - 填 C2 [質量部] 一 25 31.6 一 - 一 - 15 ― - 材
C3 [質量部] ― 一 ― 22 33.3 25 25 ― 一 ― 潤 D [質量部] 一 一 一 一
摺 - ― ― 15 一 一 滑
動 剤 D2 [質量部] 一 - 一 一 - 一 - 10 - 一 層
略号 T1 T2 T3 T4 T5 T6 T7 T8 - TR1 厚さ C m] 110 40 30 70 50 60 100 35 一 110
PEEK— 1 [質量 %] 100 100 100 100 100 100 100 00 一 100
C [質量部] 38.9 ― ― 一 - - 一 - 一 ― 充
面填 C2 [質量部] ― 31.6 一 ― - - - - - - 層材
C3 [質量部] - - 一 22 33.3 ― - 10 ― 一
D1 [質量部] 一 ― ― - ― 25 - 20 一 潤 - 滑 D2 [質量部] ' ― 一 一 ― ― 一 20 10 一 一 剤
D3 [質量部] 一 - ― - - - 一 ― - 一 積層温度 [°c]—保持時間 [分] 360-20 360-20 360-20 360-20 360-20 360-20 360-20 360-20 360-20 360-20 中間層 [ / m] Θ6 33 76 46 45 24 20 45 96 ― 厚
表面層 [jU m] 107 38 27 66 47 55 96 31
さ - 106 摺 表面層 中間層 47/53 46/54 74/26 41/59 49/51 30/70 17/83 59/41 100/0 0/100 動 切断端部の剥離状態 1 1 2 1 1 1 1 1 1 , 4 部
材基材と中間層との剥離強度 材破 材破 材破 材破 材破 材破 材破 材破 材破 不良 の
特 静摩擦係数 0.235 0.233 0.242 0.237 0.235 0.194 0.224 0.197 0.338 ― 性
動摩擦係数 0.163 0.165 0.173 0.162 0.168 0.158 0.173 0.156 0.205 ― 鉛筆硬度 H H F H H H H H F 一 耐溶剤性 1 1 1 1 1 1 1 1 2 一 g¾料 9 10 11 略号 A1 A1 A1 種類 SUS304 SUS304 SUS304 基 厚さ [mm] 0:4 0.4 0.4 材
表 Ra [ / m] 0.18 0.18 0.18
Ry [〃m] 1.5 1.5 粗 1.5 さ Rz [ju m] 1.4 1.4 1.4 略号 ST1 ST2 ST3 厚さ [ jU m] 50 105 70 厚さ [/i m] 8 15 40 樹 PEI- 1 [質量%] 28 60 60 脂
組 P曰一 2 [質量 ¾] 30 - 15 成
物 PEEK— 1 [質量 %] 42 40 25 中
間 C1 [質量部] - - - 層充
填 C2 [質量部] 25 - -
C3 [質量部] - 15 15 摺
動 潤 D 1 [質量部] ― 15 - 層
剤 D2 [質量部] - 一 10 厚さ [jU m] 42 90 30
PEEK- 1 [質量%] 100 100 100
C1 [質量部] - - 一 充
填 C2 [質量部] - - - 面
層 C3 [質量部] - 8 10
D 1 [質量部] - 25 20 潤
滑 D2 [質量部] - 一 10 剤
D3 [質量部] - ― - 積層温度 [°c]一保持時間 [分] 250-30 250-30 250-30
中間層 [jU m] 6 11 35 厚 表面層 [ m] 39 86 26 さ
表面層 /中間層 13/87 11 /89 57/43 摺
動 切断端部の剥離状態 2 1 1 部
材基材と中間層との剥離強度 材破 材破 材破 の
特 静摩擦係数 0.243 0.185 0.183 性
動摩擦係数 0.174 0,163 0.161 鉛筆硬度 F H H 耐溶剤性 . 1 . 1 1 [表 3]
Figure imgf000047_0001
[表 4 ]
試料 ' 17 18 19 20 21 略号 A6 A5 A6 A8 A9 種類 錶鉄 錶鉄 AI AI合金 基 ί¥さ [mm] 6 4 6 8 6 材
表 Ra [ i m] 0.56 1.07 0.56 0.74 0.85 由
Ry [jU m] 5.8
粗 11.1 5.8 7.5 9.1 さ Rz [// m] 4.9 8.5 4.9 6.1 7.2 略号 ST4 ST5 ST6 ST5 ST6 厚さ [jU m] 34 105 70 105 70 厚さ [jU m] 8 15 40 15 40 樹 P曰一 1 [質量? 4] 35 58 60 58 60 脂
組 PEI— 2 [質量 %] 30 - 15 - 15 成
物 PEEK— 1 [質量?! 35 42 25 42 25 中
間 C1 [質量部] 一 ― - 一 一 層充
填 C2 [質量部] - - 一 一 -
G3 [質量部] - 15 15 15 15 摺
動 D1 [質量部] - 10 一 10 - 層
剤 D2 [質量部] - - 10 - 10 厚さ [ i m] 26 90 30 90 30
PEEK— 1 [質量 %] 100 100 100 100 100
C1 [質量部] ― - - - - 充
表填 C2 [質量部] 一 - - - - 面
層 C3 [質量部] 10 ― 5 - 5
D1 [質量部] 20 25 20 25 20 潤
滑 D2 [質量部] 5 - 5 - 5 剤
D3 [質量部] - 一 - - - 積層温度 [°c]一保持時間 [分] 250-30 250-30 250-30 240-30 240-30
中間層 [ i m] 5 10 34 11 35 厚
表面層 [ i m] 21 85 26 85 25 さ
11/89 54/46 摺 表面層 中間層 19/81 1 1/89 57/43 動 切断端部の剥離状態 1 1 1 1 1 部
材基材と中間層との剥離強度 材破 材破 材破 材破 材破 の
特 静摩擦係数 0.244 0.186 0.183 0.184 0.183 性
動摩擦係数 0.174 0.163 0.164 0.164 0.165 鉛筆硬度 F H H H H 耐溶剤性 1 1 1 1 1 中間層と表面層とからなる摺動層をもつ試料 1〜21は、 表面層のみをもつ試 料 3' よりも、 金属製の基材と摺動層 (中間層) との密着性が優れる (剥離強度 が強い) 。 さらに、 プレス成形の際の設定温度を 250°C以下としても、 基材と 中間層との密着性に優れた摺動部材が得られた (試料 9〜1 1、 17〜21) 。 試料 9〜1 1、 17〜21では、 低温でのプレス成形により、 プレス成形の熱に よる基材の強度の劣化を良好に防止することができた。
また、 試料 1〜21は、 中間層のみをもつ試料 1' よりも、 摺動特性に優れる。 さらに、 中間層および Zまたは表面層に固体潤滑剤 (Dl、 D2、 D 3) を含む 摺動部材は、 静摩擦係数おょぴ動摩擦係数が低く、 優れた摺動特性を示した。

Claims

請求の範囲
1 . 金属製の基材と、
該基材の少なくとも一面に形成され、 熱可塑性ポリイミド榭脂およびポリアリ 一ルケトン樹脂を含む第一樹脂組成物からなる中間層と、
該中間層の上に形成されポリアリ一ルケトン樹脂を含む第二樹脂組成物からな る表面層と、
を有することを特徴とする圧縮機の摺動部材。
2 . 前記表面層は、 前記第二樹脂組成物を 1 0 0質量部としたときに前記固体 潤滑剤を 4 0 0質量部以下含む請求の範囲第 1項記載の圧縮機の摺動部材。
3 . 前記固体潤滑剤は、 ポリテトラフルォロエチレン、 黒鉛、 および二硫化モ リブデンのうちの少なくとも 1種を含む請求の範囲第 2項記載の圧縮機の摺動部 材。
4 . 前記中間層は、 前記第一樹脂組成物を 1 0 0質量部としたときに無機充填 材を 1 0 0質量部以下含む請求の範囲第 1項記載の圧縮機の摺動部材。
5 . 前記表面層は、 前記第二樹脂組成物を 1 0 0質量部としたときに無機充填 材を 1 0 0質量部以下含む請求の範囲第 1項記載の圧縮機の摺動部材。
6 . 前記無機充填材が、 マイ力である請求の範囲第 4項または第 5項記載の圧 縮機の摺動部材。
7 . 前記ポリイミド樹脂が、 構造式 (1 ) およびノまたは構造式 (2 ) で表さ れる繰り返し単位を有するポリエーテルィミ ド樹脂であり、
前記ポリアリールケトン樹脂は、 構造式 (3 ) で表されるポリエーテルエーテ ルケトン樹脂である請求の範囲第 1項記載の圧縮機の摺動部材。 [化 1
Figure imgf000051_0001
… )
Figure imgf000051_0002
8. 前記樹脂組成物は、 前記熱可塑性ポリイミド榭脂と前記ポリアリ一ルケト ン樹脂との質量比が 95 : 5-5 : 95である請求の範囲第 1項記載の圧縮機の 摺動部材。
9. 前記樹脂組成物は、 前記熱可塑性ポリイミド樹脂と前記ポリアリ一ルケト ン樹脂との質量比が 95 : 5〜45 : 55である請求の範囲第 1項記載の圧縮機 の摺動部材。 .
10. 前記中間層の厚さが、 0. 1〜800 μιηであり、 前記表面層の厚さが 1 ~1000 u mである請求の範囲第 1項記載の圧縮機の摺動部材。
1 1. 前記中間層と前記表層との厚さの比率が、 1Z99〜99Z1の範囲で ある請求の範囲第 1項記載の圧縮機の摺動部材。
1 . 前記摺動部材は、 斜板式圧縮機の斜板である請求の範囲第 1項記載の圧 縮機の摺動部材。
13. 前記摺動部材は、 圧縮機のシユーである請求の範囲第 1項記載の圧縮機の 摺動部材。
14. 請求の範囲第 1項〜第 13項のいずれか 1項に記載の前記摺動部材を有す る圧縮機。
PCT/JP2005/013107 2004-07-09 2005-07-08 圧縮機の摺動部材 WO2006006697A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05760153A EP1785627A4 (en) 2004-07-09 2005-07-08 SLIDER OF A COMPRESSOR
US11/632,025 US20080248269A1 (en) 2004-07-09 2005-07-08 Slide Member for Compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004203871 2004-07-09
JP2004-203871 2004-07-09
JP2005-034522 2005-02-10
JP2005034522A JP4701735B2 (ja) 2004-07-09 2005-02-10 摺動部材

Publications (1)

Publication Number Publication Date
WO2006006697A1 true WO2006006697A1 (ja) 2006-01-19

Family

ID=35784031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013107 WO2006006697A1 (ja) 2004-07-09 2005-07-08 圧縮機の摺動部材

Country Status (4)

Country Link
US (1) US20080248269A1 (ja)
EP (1) EP1785627A4 (ja)
JP (1) JP4701735B2 (ja)
WO (1) WO2006006697A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178745A1 (fr) 2012-06-01 2013-12-05 Galderma Research & Development Compositions topiques de type gel aqueux sous forme de suspension homogène d'un principe actif de la classe des rétinoïdes contenant au moins une silice hydrophobe
US10670074B2 (en) 2014-08-22 2020-06-02 Ntn Corporation Method for producing semispherical shoe for swash plate compressor and injection molding die
WO2021193609A1 (ja) * 2020-03-24 2021-09-30 三菱ケミカル株式会社 繊維強化複合材および接合体

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784829B2 (ja) * 2006-06-16 2011-10-05 株式会社豊田自動織機 摺動部材の製造方法および摺動部材
JP4910630B2 (ja) * 2006-10-26 2012-04-04 凸版印刷株式会社 情報記録媒体の製造方法
JP4844367B2 (ja) * 2006-11-30 2011-12-28 株式会社豊田自動織機 球冠状シュー
JP2009079111A (ja) * 2007-09-26 2009-04-16 Daikin Ind Ltd 摺動部材
JP5321943B2 (ja) * 2008-03-03 2013-10-23 Ntn株式会社 斜板式コンプレッサの斜板および斜板式コンプレッサ
JP2010037451A (ja) * 2008-08-06 2010-02-18 Daikin Ind Ltd 摺動部材
DE102008055194A1 (de) * 2008-12-30 2010-07-08 Federal-Mogul Wiesbaden Gmbh Gleitelement
JP5401196B2 (ja) * 2009-07-30 2014-01-29 三菱アルミニウム株式会社 熱交換器用フィン材
FR2967199B1 (fr) * 2010-11-10 2013-11-01 Vallourec Mannesmann Oil & Gas France Procede de revetement d'un composant tubulaire filete, composant tubulaire filete et joint resultant
US9388009B2 (en) * 2010-11-24 2016-07-12 Asahi Glass Co., Ltd. Sliding member for sheet-shaped recording material detachment, seal ring for automobile, and seal ring and sliding member for industrial gas compressor
EP2875169A4 (en) * 2012-07-23 2016-04-06 Emerson Climate Technologies ANTI-WEAR COATINGS FOR COMPRESSOR WEAR SURFACES
GB2521004B (en) * 2013-12-06 2020-03-25 Mahle Int Gmbh Bearing element and method for manufacturing a bearing element
TWI613940B (zh) * 2014-03-31 2018-02-01 Jx Nippon Mining & Metals Corp 附載體之銅箔、印刷配線板、積層體、電子機器及印刷配線板之製造方法
JP6400419B2 (ja) * 2014-10-02 2018-10-03 Ntn株式会社 斜板式コンプレッサ用半球シューの射出成形金型
SG11201803917XA (en) * 2015-11-09 2018-06-28 Vetco Gray Inc Powder coating compositions for reducing friction and wear in high temperature high pressure applications
JP6483596B2 (ja) * 2015-12-15 2019-03-13 信越ポリマー株式会社 高耐熱・高摺動性フィルムの製造方法
GB2552997B (en) * 2016-08-19 2022-01-05 Mahle Int Gmbh Sliding component and method
ES2813051T3 (es) 2017-05-03 2021-03-22 Kaeser Kompressoren Se Compresor helicoidal con revestimiento de varias capas de los tornillos de rotor
JP6709302B2 (ja) * 2019-02-14 2020-06-10 信越ポリマー株式会社 高耐熱・高摺動性フィルム
JP7177541B1 (ja) 2021-12-23 2022-11-24 三協オイルレス工業株式会社 プレス金型部品用摺動部材

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115353A (ja) 1982-12-09 1984-07-03 アモコ、コ−ポレ−ション 回路板基材及び/又は電気コネクタ−の製造に有用な組成物
JP2000153575A (ja) 1998-11-20 2000-06-06 Kawasaki Steel Corp フッ素樹脂被覆金属板の製造方法およびこの製造に適するフッ素樹脂用接着剤の塗布、乾燥方法
JP2000200950A (ja) 1999-01-05 2000-07-18 Mitsubishi Plastics Ind Ltd フレキシブルプリント配線基板およびその製造方法
JP2000277875A (ja) 1999-03-26 2000-10-06 Mitsubishi Plastics Ind Ltd 表面平滑配線板およびその製造方法
EP1176310A2 (en) 2000-07-26 2002-01-30 Kabushiki Kaisha Toyota Jidoshokki PEEK compressor coating
JP2002053749A (ja) * 2000-08-10 2002-02-19 Mitsubishi Plastics Ind Ltd 耐熱性樹脂組成物及びこれよりなる耐熱性フィルムまたはシート並びにこれを基材とする積層板
JP2002144436A (ja) 2000-11-09 2002-05-21 Mitsubishi Plastics Ind Ltd 耐熱性樹脂成形体と金属体との接合方法及びその接合体
JP2002180964A (ja) * 2000-12-12 2002-06-26 Toyota Industries Corp 圧縮機の摺動部品及び圧縮機
JP2002212314A (ja) 2001-01-22 2002-07-31 Mitsubishi Plastics Ind Ltd ポリアリールケトン系樹脂フィルム及びそれを用いてなる金属積層体
EP1310674A2 (en) 2001-11-07 2003-05-14 Kabushiki Kaisha Toyota Jidoshokki Coating for swash plate compressor
JP3514667B2 (ja) 1999-06-30 2004-03-31 三菱樹脂株式会社 熱融着性絶縁シート

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062874B2 (ja) * 1985-12-02 1994-01-12 エヌティエヌ株式会社 ポリエ−テルケトン樹脂組成物
JPH06240273A (ja) * 1993-02-17 1994-08-30 Ntn Corp 摺動材用ポリイミド系樹脂組成物
DK137493D0 (da) * 1993-12-08 1993-12-08 Danfoss As Hydraulisk stempelmotor
US6367981B1 (en) * 1998-08-24 2002-04-09 Nsk Ltd. Retainer and rolling bearing having the same
JP3762123B2 (ja) * 1998-12-21 2006-04-05 日本放送協会 マルチ投射型スクリーン
US7581734B1 (en) * 2000-05-01 2009-09-01 Schlumberger Technology Corporation Peek coated seal surfaces
US6569816B2 (en) * 2000-08-18 2003-05-27 Ntn Corporation Composition having lubricity and product comprising the composition
KR100391307B1 (ko) * 2001-06-04 2003-07-16 한라공조주식회사 고체 윤활 피막 형성방법
JP2003065341A (ja) * 2001-08-23 2003-03-05 Koyo Seiko Co Ltd 転がり軸受
US8846586B2 (en) * 2009-05-15 2014-09-30 University Of Florida Research Foundation, Inc. Articles having low coefficients of friction, methods of making the same, and methods of use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115353A (ja) 1982-12-09 1984-07-03 アモコ、コ−ポレ−ション 回路板基材及び/又は電気コネクタ−の製造に有用な組成物
JP2000153575A (ja) 1998-11-20 2000-06-06 Kawasaki Steel Corp フッ素樹脂被覆金属板の製造方法およびこの製造に適するフッ素樹脂用接着剤の塗布、乾燥方法
JP2000200950A (ja) 1999-01-05 2000-07-18 Mitsubishi Plastics Ind Ltd フレキシブルプリント配線基板およびその製造方法
JP2000277875A (ja) 1999-03-26 2000-10-06 Mitsubishi Plastics Ind Ltd 表面平滑配線板およびその製造方法
JP3514667B2 (ja) 1999-06-30 2004-03-31 三菱樹脂株式会社 熱融着性絶縁シート
EP1176310A2 (en) 2000-07-26 2002-01-30 Kabushiki Kaisha Toyota Jidoshokki PEEK compressor coating
JP2002039062A (ja) * 2000-07-26 2002-02-06 Toyota Industries Corp 圧縮機
JP2002053749A (ja) * 2000-08-10 2002-02-19 Mitsubishi Plastics Ind Ltd 耐熱性樹脂組成物及びこれよりなる耐熱性フィルムまたはシート並びにこれを基材とする積層板
US20030186068A1 (en) 2000-08-10 2003-10-02 Kouichirou Taniguchi Heat resistant resin composition, a heat resistant film or sheet thereof and a laminate comprising the film or the sheet as a susbstrate
JP2002144436A (ja) 2000-11-09 2002-05-21 Mitsubishi Plastics Ind Ltd 耐熱性樹脂成形体と金属体との接合方法及びその接合体
JP2002180964A (ja) * 2000-12-12 2002-06-26 Toyota Industries Corp 圧縮機の摺動部品及び圧縮機
US20020104432A1 (en) 2000-12-12 2002-08-08 Toshihisa Shimo Compressor and sliding member thereof
JP2002212314A (ja) 2001-01-22 2002-07-31 Mitsubishi Plastics Ind Ltd ポリアリールケトン系樹脂フィルム及びそれを用いてなる金属積層体
EP1369450A1 (en) 2001-01-22 2003-12-10 Mitsubishi Plastics Inc. Polyaryl ketone resin film and laminates therof with metal
EP1310674A2 (en) 2001-11-07 2003-05-14 Kabushiki Kaisha Toyota Jidoshokki Coating for swash plate compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178745A1 (fr) 2012-06-01 2013-12-05 Galderma Research & Development Compositions topiques de type gel aqueux sous forme de suspension homogène d'un principe actif de la classe des rétinoïdes contenant au moins une silice hydrophobe
US10670074B2 (en) 2014-08-22 2020-06-02 Ntn Corporation Method for producing semispherical shoe for swash plate compressor and injection molding die
WO2021193609A1 (ja) * 2020-03-24 2021-09-30 三菱ケミカル株式会社 繊維強化複合材および接合体

Also Published As

Publication number Publication date
JP2006045493A (ja) 2006-02-16
US20080248269A1 (en) 2008-10-09
EP1785627A1 (en) 2007-05-16
EP1785627A4 (en) 2012-07-11
JP4701735B2 (ja) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2006006697A1 (ja) 圧縮機の摺動部材
JP7443553B2 (ja) 液晶ポリマーフィルム、フレキシブル銅張積層板及び液晶ポリマーフィルムの製造方法
JP4980205B2 (ja) コンデンサ用フィルムの製造方法
KR20170039080A (ko) 수지 파우더, 그 제조 방법, 복합체, 성형체, 세라믹스 성형체의 제조 방법, 금속 적층판, 프린트 기판 및 프리프레그
TWI836248B (zh) 膜、包覆電線被覆材料、可撓性印刷電路基板用膜、及積層體
WO2013088964A1 (ja) 樹脂組成物及び成形品
WO2021095662A1 (ja) 非水系分散液、積層体の製造方法及び成形物
WO2006006508A1 (ja) 積層体
WO2021112164A1 (ja) 分散液、分散液の製造方法及び成形物
TWI840479B (zh) 乾式粉末及乾式粉末之製造方法
WO2022149551A1 (ja) テトラフルオロエチレン系ポリマー組成物の製造方法、組成物、金属張積層体および延伸シート
WO2021241547A1 (ja) 分散液の製造方法
WO2021157507A1 (ja) 積層体の製造方法及び液状組成物
WO2023013569A1 (ja) シートの製造方法、積層シートの製造方法およびシート
JP2006008986A (ja) 熱可塑性樹脂フィルム及びその製造方法
JP2023028091A (ja) 組成物及び積層体の製造方法
WO2022019252A1 (ja) 粉体組成物及び複合粒子
WO2020241607A1 (ja) 液状組成物
JP2006103237A (ja) 金属積層体
JP2022098733A (ja) テトラフルオロエチレン系ポリマーの組成物、該組成物を含む液状組成物、およびシート
JP5907282B2 (ja) 樹脂組成物及び成形品
WO2021095656A1 (ja) 粉体組成物、フィルム、及びフィルムの製造方法
TW202311422A (zh) 片材
JP2006198993A (ja) 熱可塑性樹脂積層体
WO2023189794A1 (ja) 金属張積層板及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005760153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005760153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005760153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632025

Country of ref document: US