[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006049076A1 - プラズマ処理方法およびプラズマ処理装置 - Google Patents

プラズマ処理方法およびプラズマ処理装置 Download PDF

Info

Publication number
WO2006049076A1
WO2006049076A1 PCT/JP2005/019778 JP2005019778W WO2006049076A1 WO 2006049076 A1 WO2006049076 A1 WO 2006049076A1 JP 2005019778 W JP2005019778 W JP 2005019778W WO 2006049076 A1 WO2006049076 A1 WO 2006049076A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
plasma processing
plasma
processing method
dielectric layer
Prior art date
Application number
PCT/JP2005/019778
Other languages
English (en)
French (fr)
Inventor
Tomohiro Okumura
Yuichiro Sasaki
Katsumi Okashita
Cheng-Guo Jin
Satoshi Maeshima
Hiroyuki Ito
Ichiro Nakayama
Bunji Mizuno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN200580037487XA priority Critical patent/CN101053066B/zh
Priority to US11/666,773 priority patent/US7858155B2/en
Priority to JP2006543245A priority patent/JP5080810B2/ja
Publication of WO2006049076A1 publication Critical patent/WO2006049076A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to a plasma processing method and a plasma processing apparatus, and more particularly to a method and apparatus for supplying plasma uniformly to a surface layer of a sample.
  • FIG. 12 shows a schematic configuration of a plasma processing apparatus used in a plasma driving method as a conventional impurity introduction method described in Patent Document 1.
  • a sample electrode 43 for placing a sample 42 made of a silicon substrate is provided in a vacuum vessel 41.
  • the gas supply device 44 and the pump 45 for depressurizing the inside of the vacuum vessel 41 are provided, and the inside of the vacuum vessel 41 can be maintained at a predetermined pressure.
  • Microwaves are radiated from the microwave waveguide 46 into the vacuum vessel 41 through the quartz plate 47 as a dielectric window.
  • a magnetic field microwave plasma (electron cyclotron resonance plasma) 49 is formed in the vacuum chamber 41 by the interaction between the microphone mouth wave and the DC magnetic field formed from the electromagnet 48.
  • a high frequency power source 51 is connected to the sample electrode 43 through a capacitor 50 so that the potential of the sample electrode 43 can be controlled.
  • the gas supplied from the gas supply device 44 is introduced into the vacuum container 41 from the gas introduction port 52 and exhausted from the exhaust port 53 to the pump 45.
  • a doping raw material gas introduced from the gas introduction port 52 for example, BH, is generated by the plasma consisting of the microwave waveguide 46 and the electromagnet 48.
  • Plasma is generated by the means, and boron ions in the plasma 49 are supplied to the surface of the sample 42 by the high frequency power source 51.
  • FIG. 13 shows a schematic configuration of a plasma doping apparatus used in a plasma doping method as a conventional impurity introduction method described in Patent Document 2.
  • a sample electrode 43 for placing a sample 42 made of a silicon substrate is provided in a vacuum vessel 41.
  • a gas supply device 44 for supplying an inert gas into the vacuum container 41 and a pump 45 for depressurizing the inside of the vacuum container 41 are provided, and the inside of the vacuum container 41 can be maintained at a predetermined pressure. Then, microwaves are radiated from the microwave waveguide 46 into the vacuum vessel 41 through the quartz plate 47 as the dielectric window.
  • a magnetic field microwave plasma (electron cyclotron resonance plasma) 49 is formed in the vacuum vessel 41 by the interaction between the microwave and the DC magnetic field formed from the electromagnet 48.
  • the sample electrode 43 is connected to a high-frequency power source 51 through a capacitor 50 so that the potential of the sample electrode 43 can be controlled.
  • an impurity solid 54 containing an impurity element such as boron is controlled on a high-frequency power source 57 provided on a solid holding table 55 and connected via a potential force capacitor 56 of the solid holding table 55.
  • the gas supplied from the gas supply unit 44 is introduced through the gas inlet 52 into the vacuum vessel 41 is exhausted from the exhaust port 53 to the pump 45 0
  • the plasma doping apparatus having such a configuration was introduced from the gas inlet 11
  • An inert gas for example, argon (Ar) is plasmatized by the plasma generating means including the microwave waveguide 46 and the electromagnet 48, and a part of the impurity element that has jumped out of the impurity solid 54 into the plasma by ionization is ionized.
  • the sample 42 is introduced into the surface.
  • a gate oxide film made of an oxide silicon film is formed on the surface of the sample 42, and a conductive layer to be a gate electrode is formed thereon by a CVD method or the like, and this is patterned to form a gate electrode.
  • the pattern is formed.
  • the sample 42 with the gate electrode formed in this manner is set in a plasma doping apparatus, and impurities are introduced in a self-aligned manner by using the gate electrode as a mask by the above-described method, and the MOS transistor is formed by forming the source and drain regions. Can be obtained. However, it is necessary to perform activation after introducing impurities by plasma doping.
  • the activation process is a process in which a layer into which impurities are introduced is heated using a method such as laser annealing or flash lamp annealing to make it active in a crystal. At this time, a shallow active layer can be obtained by effectively heating the very thin layer into which impurities are introduced.
  • a light source such as a laser or a lamp
  • the absorption rate of light irradiated by a light source such as a laser or a lamp is increased in the extremely thin layer into which the impurity is to be introduced. Processing to be performed is performed. This process is called pre-amorphization.
  • Non-Patent Document 1 In a plasma processing apparatus having the same configuration as the plasma processing apparatus described above, plasma such as He gas is generated, and ions such as He generated are applied to the substrate by a bias voltage. The substrate is accelerated and collided to destroy the crystal structure on the substrate surface and become amorphous, and has already been proposed by the present inventors (see, for example, Non-Patent Document 1).
  • Patent Document 1 US Patent No. 4912065
  • Patent Document 2 Japanese Patent Laid-Open No. 09-115851
  • Non-Patent Document 1 Y. Sasaki et al., "B2H6 Plasma Doping with In -situ He Pre- amorphyzation", 2004 Symposia on VLSI Technology and Circuits
  • the conventional method has a problem that it is difficult to form a uniform impurity introduction layer in the wafer surface as the diameter of the sample advances, in particular, as the diameter increases. It was. This not only makes it difficult to form an impurity-containing plasma so as to have a uniform distribution in the wafer surface, but also in the pre-amorphization process described above, the surface of the sample is non-uniformly formed with a uniform depth. It was very difficult to crystallize.
  • FIG. 10 shows a non-crystalline view of a silicon substrate having a diameter of 200 mm when the X-axis is taken from the top to the bottom of FIG. 12 in the conventional plasma doping apparatus shown in FIG. It is the result of measuring the thickness of the crystalline layer.
  • the thickness of the amorphous layer is extremely high near the outer edge of the sample substrate, particularly within the area of the outer edge of the substrate within 10 mm.
  • the thickness of the amorphous layer is the thickness of the amorphous silicon layer on the single crystal silicon substrate measured by ellipsometry.
  • plasma concentration occurs due to the edge effect at the outer peripheral edge of the substrate, and as a result, energy concentration occurs near the edge of the outer peripheral edge of the substrate, so that the plasma concentration is high and on the substrate surface. It is thought that it will reach and reap.
  • the present invention has been made in view of the above circumstances, and an object thereof is to improve the uniformity of plasma processing.
  • Another object of the present invention is to provide an amorphous film method and apparatus capable of improving the uniformity of the amorphous film processing.
  • Still another object of the present invention is to provide an impurity introducing method and apparatus capable of enhancing the in-plane uniformity of the amount of impurities introduced.
  • the plasma processing method of the present invention is characterized in that the surface of the sample is irradiated with plasma while adjusting the thickness of the ion sheath to be uniform on the surface of the sample.
  • the incident energy of the plasma incident on the sample is made uniform over the entire surface including the vicinity of the outer peripheral edge of the sample, so that it is possible to improve the uniformity of the plasma processing.
  • it is necessary to perform high-precision processing on a fine area in contrast to amorphous processing and driving processing that require consideration of the depth of surface force only on the surface It is possible to control in three dimensions including not only the uniformity but also the depth direction.
  • the potential V is in the plasma whose plasma potential (plasma potential) is V.
  • This charge layer is called a sheath
  • an electron sheath is called an electron sheath
  • an ion sheath is called an ion sheath.
  • the electrode (or the substrate surface) is floating in terms of direct current, the steady state is reached when the net current (DC component of the current) becomes zero. Therefore, the electrode (or substrate surface) is self-biased to a negative potential.
  • the self-bias voltage is V (Direct Current Voltage), the instantaneous maximum value and the maximum
  • V Peak to Peak Voltage
  • the electrostatic capacity force per unit area between the substrate and the pedestal is made slightly larger than the electrostatic capacity between the plasma and the pedestal via the dielectric ring, so that the central portion of the substrate and the substrate Reducing the difference in the thickness of the ion sheath in the periphery.
  • the excessive ion density in the periphery of the substrate can be reduced, or It is intended to make the thickness of the ion sheath elsewhere on the substrate uniform.
  • the plasma processing method of the present invention includes a method for amorphizing the surface of the sample.
  • An amorphization process for introducing a plasma to a predetermined depth from the sample surface and amorphizing the plasma-introduced region is a pretreatment for doping!
  • the impurity introduction depth can be controlled with high accuracy.
  • the plasma processing method of the present invention includes a method for introducing impurities into the surface of the sample.
  • Impurity introduction that is, doping treatment is determined in particular by the in-plane distribution of the sample and the energy state of the impurity at that position, so that high-precision uniformity can be obtained.
  • a sample is placed on a sample electrode in a vacuum vessel, the inside of the vacuum vessel is exhausted while supplying a raw material gas into the vacuum vessel, and a high frequency power is supplied to the plasma source.
  • Plasma is generated in the vacuum vessel, and a plasma is formed on the surface of the sample with a conductor ring having a surface approximately the same height as the surface of the sample so as to surround the outer peripheral edge of the sample. Including a method of irradiating the light.
  • a sample is placed on a sample electrode in a vacuum vessel, and the inside of the vacuum vessel is evacuated while supplying a gas from the gas supply device to the vacuum vessel.
  • plasma is generated in the vacuum container by supplying high frequency power to the plasma source, and the crystal layer on the surface of the sample is formed by supplying voltage to the sample electrode.
  • amorphous it is characterized in that it is amorphous with a conductor ring having a surface arranged at the same height as the surface of the sample outside the outer peripheral edge of the sample. .
  • the plasma processing method of the present invention includes a method in which the distance between the outer peripheral end of the sample and the inner peripheral end of the conductor ring is not less than lmm and not more than 10mm.
  • the plasma processing method of the present invention includes a method in which the difference between the height of the surface of the sample and the height of the conductor ring is not less than 0.00 lmm and not more than lmm.
  • the sample electrode has a layer structure of the first dielectric layer, the electrostatic adsorption electrode, the second dielectric layer, and the pedestal from the side near the sample, and The first dielectric layer, the electrostatic adsorption electrode, and the second dielectric layer protrude from the pedestal, and with the third dielectric layer provided between the conductor ring and the pedestal, voltage is applied to the pedestal. Including those to be applied.
  • the relative dielectric constant and thickness of the first dielectric layer are ⁇ 1 and dl, respectively
  • the relative dielectric constant and thickness of the second dielectric layer are ⁇ 2 and d 2 and the ratio of the third dielectric layer, respectively.
  • the capacitance between the pedestal and the substrate, and between the pedestal and the conductor ring can be made substantially the same.
  • the thickness of the ion sheath on the surface of the conductor ring becomes too small, the sheath electric field strength at the edge of the sample becomes larger than the sheath electric field strength at the center of the sample, and the processing speed at the edge of the sample increases.
  • a slight variation depending on the dielectric constant and thickness of the sample can be made to satisfy the above conditions by satisfying the above conditions.
  • the sample electrode has a layer structure of a first dielectric layer, an electrostatic adsorption electrode, a second dielectric layer, and a pedestal from the side near the sample,
  • the first dielectric layer, the electrostatic adsorption electrode, and the second dielectric layer protrude and the third dielectric layer is provided between the conductor ring and the pedestal.
  • a voltage may be applied to.
  • the relative dielectric constant and thickness of the first dielectric layer are ⁇ 1 and dl, respectively, and the relative dielectric constant and thickness of the second dielectric layer are ⁇ 2 and d 2, respectively.
  • Cc ⁇ lZdl force
  • Cd lZ (d2 X S2Z ⁇ 2, where SI is the surface area where the sample is exposed to plasma, and S2 is the surface area where the conductor ring is exposed to the plasma.
  • SI the surface area where the sample is exposed to plasma
  • S2 the surface area where the conductor ring is exposed to the plasma.
  • the electrostatic capacitance between the sample electrode and the substrate, and between the sample electrode and the conductor ring can be made substantially the same.
  • the thickness of the ion sheath on the surface of the conductor ring becomes too small, the sheath electric field strength at the edge of the sample becomes larger than the sheath electric field strength at the center of the sample, and the processing speed at the edge of the sample May be higher.
  • the plasma processing method of the present application includes a method in which plasma processing is performed in a state where a focus ring having a surface is disposed at a position higher than the surface of the sample by 1 mm or more outside the outer peripheral edge of the sample.
  • the plasma processing method of the present application includes a method in which the distance between the outer peripheral end of the sample and the inner peripheral end of the focus ring is not less than 1 mm and not more than 10 mm.
  • the plasma processing method of the present application includes a method in which the difference between the height of the surface of the sample and the height of the focus ring is not less than 1 mm and not more than 15 mm.
  • the sample is placed on a tray provided with a step portion for placing the sample in the vacuum vessel, and a source gas is supplied into the vacuum vessel. While evacuating the inside of the vacuum vessel and supplying high frequency power to the plasma source, the plasma inside the vacuum vessel is generated,
  • the plasma processing method of the present application includes a method in which the distance between the outer peripheral edge of the sample and the inner peripheral edge of the step portion is not less than lmm and not more than 10mm.
  • the plasma processing method of the present application includes a method in which the difference between the height of the surface of the sample and the height of the surface of the tray outside the stepped portion is 0.001 mm or more and lmm or less.
  • the plasma processing method of the present application includes one in which the sample is a silicon substrate and the tray is made of silicon.
  • the plasma processing method of the present application includes a plasma processing method in which the tray is pressed against the sample electrode.
  • the plasma processing method of the present application alternately repeats the step of generating plasma and the step of stopping the plasma and increasing the pressure in the vacuum vessel higher than the step of generating plasma. including.
  • the pressure force in the vacuum vessel in the process of stopping the plasma and making the pressure in the vacuum vessel higher than the step of generating plasma is more preferably not less than lOOPa and not more than lOOOPa.
  • the temperature of the substrate can be controlled more precisely.
  • the plasma processing apparatus of the present invention includes a vacuum vessel, a sample electrode placed in the vacuum vessel, on which a sample is placed, a gas supply device for supplying gas into the vacuum vessel, and the inside of the vacuum vessel
  • An auxiliary member is arranged on the periphery of the sample electrode so that the surface of the sample is irradiated with plasma while adjusting the plasma to have a uniform energy state on the surface of the sample.
  • the plasma processing apparatus of the present invention includes one in which the plasma is a plasma adjusted so as to make the surface of the sample amorphous.
  • the plasma introduces impurities into the surface of the sample. Including things that are adjusted to.
  • the sample electrode includes a projecting portion on which the sample is placed, and the auxiliary member is substantially flush with the surface of the sample so as to surround an outer peripheral end of the sample.
  • the plasma processing apparatus of the present invention includes an apparatus having a distance force S between 2 mm and 1 lmm between the outer peripheral end of the sample and the inner peripheral end of the conductor ring.
  • the plasma processing apparatus of the present invention includes an apparatus in which the difference between the height of the surface of the sample electrode and the height of the conductor ring is 0.001 mm or more and 2 mm or less.
  • the sample electrode has a layer structure of a first dielectric layer, an electrostatic adsorption electrode, a second dielectric layer, and a pedestal.
  • the pedestal force The first dielectric layer, the electrostatic adsorption electrode, and the second dielectric layer protrude, and the third dielectric layer is provided between the conductor ring and the pedestal. Including those that apply.
  • the relative dielectric constant and thickness of the first dielectric layer are ⁇ 1 and dl, respectively, and the relative dielectric constant and thickness of the second dielectric layer are ⁇ 2 and
  • Ca l / (dl / ⁇ l + d2 / ⁇ 2) is more than 0.5 times
  • Cb ⁇ 3Zd3 Including those that are 2 times or less.
  • the sample electrode has a layer structure of a first dielectric layer, an electrostatic adsorption electrode, a second dielectric layer, and a pedestal from the side near the sample, and Pedestal force
  • the first dielectric layer, the electrostatic adsorption electrode, and the second dielectric layer protrude, and the voltage is applied to the electrostatic adsorption electrode with the third dielectric layer provided between the conductor ring and the pedestal. Including those that apply.
  • the relative dielectric constant and thickness of the first dielectric layer are set to ⁇ 1, dl, where the relative dielectric constant and thickness of the second dielectric layer are ⁇ 2, d2, and the relative dielectric constant and thickness of the third dielectric layer are ⁇ 3, d3, respectively,
  • the plasma processing apparatus of the present invention includes an apparatus in which the sample electrode has a protrusion, and a focus ring is arranged so that the surface is located at least 1 mm higher than the surface of the protrusion of the sample electrode. .
  • the plasma processing apparatus of the present invention includes an apparatus having a distance force S between 2 mm and 1 lmm between the outer peripheral end of the sample and the inner peripheral end of the focus ring.
  • the difference between the height of the surface of the sample and the height of the focus ring is
  • the amount of impurities supplied can be controlled with high accuracy even in plasma doping using impurity plasma.
  • the plasma processing method of the present invention is to irradiate the surface of the sample with plasma while adjusting the thickness of the ion sheath to be uniform on the surface of the sample. It will be described in detail.
  • the plasma potential (plasma potential) is V.
  • Figure 1 shows an example of the current-voltage characteristics of the electrode (or substrate surface).
  • the electron mobility is much larger than the ion mobility, so a large electron current flows when the applied voltage is positive, whereas when the applied voltage is negative. A small ion current flows. Since the electrode (or the substrate surface) is floating in direct current, the steady state occurs when the net current (DC component of the current) becomes zero. Therefore, the electrode (or substrate surface) is self-biased to a negative potential.
  • FIG. 2 shows the appearance of the sheath near the substrate when no dielectric ring is provided (corresponding to FIG. 8).
  • B-1 indicates the boundary between the ion sheath and Baltaplasma.
  • Base 9 on board 9 6 a high frequency voltage is applied through the second dielectric layer 15, the electrostatic adsorption electrode 14, and the first dielectric layer 13. Therefore, a high frequency current flows between the substrate 9 and the plasma.
  • the dielectric ring 19 generally quartz glass having a relative dielectric constant power is used, and the thickness of the first dielectric layer 13 and the second dielectric layer 15 is approximately equal to the total thickness. Therefore, high-frequency current also flows between the pedestal 16 and the plasma via a very small capacitance per unit area.
  • the first and second dielectric layers generally used for electrostatic attraction are made of ceramics, and the relative dielectric constant thereof is larger than 4 and typically about 8 to 12. . If the surface of the substrate 9 and the surface of the dielectric ring 19 are the same, the thickness of the dielectric ring 19 is equal to the thickness of the first dielectric layer 13 and the second dielectric layer 19 by the thickness of the substrate 9. It becomes thicker than the total thickness of the dielectric layer 15. As described above, the electrostatic capacity per unit area between the substrate 9 and the pedestal 16 is larger than the electrostatic capacity between the plasma via the dielectric ring 19 and the pedestal 16.
  • the current per unit area flowing between the plasma and the substrate 9 is much larger than the current per unit area flowing between the plasma and the pedestal via the dielectric ring 19. Therefore, in the portion excluding the peripheral portion of the substrate 9, the ion sheath thickness increases as shown in FIG. 2, and the voltage drop in the ion sheath increases.
  • the boundary B-1 between the ion sheath and Baltaplasma is closer to the substrate periphery than in the center of the substrate. Since the potential of the substrate 9 is the same at the central portion and the peripheral portion, the electric field strength at the ion sheath at the peripheral portion of the substrate is eventually much higher than the electric field strength at the ion sheath at the central portion of the substrate. This leads to a phenomenon in which the energy force of ions incident on the substrate 9 in the peripheral portion of the substrate becomes larger than the ion energy incident on the substrate 9 in the central portion of the substrate. Velocity force It is considered that the result is that the speed becomes higher than the pre-amorphization processing speed at the center of the substrate.
  • FIG. 3 shows a case where the capacitance force per unit area between the substrate 9 and the pedestal 16 is slightly larger than the capacitance between the plasma via the dielectric ring 19 and the pedestal 16.
  • FIG. 4 shows a case where the capacitance per unit area between the substrate 9 and the pedestal 16 is slightly smaller than the capacitance between the plasma via the dielectric ring 19 and the pedestal 16. Show!
  • the focus ring used in the present invention is structurally similar to the focus ring in the dry etching technique, the effect of introduction is completely different.
  • Blair morphosis treatment is performed by causing inert gas ions in the plasma (which have almost no chemical reactivity) to collide with the substrate surface.
  • the elements constituting the substrate are hardly volatilized, and chemical reactions such as etching hardly occur (amorphization of the substrate surface occurs).
  • the plasma doping process is performed by causing ions having almost no chemical reactivity with silicon such as B in the plasma to collide with the substrate surface.
  • the elements constituting the substrate are hardly volatilized and chemical reaction such as etching hardly occurs (B ions remain in the substrate).
  • the present invention can reduce the excessive ion density at the periphery of the substrate by using a focus ring (dielectric ring) or the like in order to make the processing mainly based on the physical phenomenon uniform, or The thickness of the ion sheath in the periphery of the substrate and the other part of the substrate is made uniform. Therefore, the conductor ring, the focus ring, etc. used in the present invention are greatly different from the focus ring, etc., used in the conventional dry etching technique in terms of purpose and effect.
  • the dry etching technique has a so-called loading effect, and tends to increase the etching rate at the peripheral portion of the substrate.
  • the concentration of the etching reaction product is smaller than in the vicinity of other locations on the substrate, so that the concentration of the etchant (etching species represented by reactive halogen radicals) is conversely reduced. Higher than the vicinity of other places on the board (loading effect). This is the area around the board This is the reason why the etching rate is increased. In order to prevent this, the focus ring is also used for the conventional power.
  • the etching reaction product generated from the periphery of the substrate tends to stay near the periphery of the substrate, and the concentration of the etching reaction product near the periphery of the substrate and in the vicinity of other locations of the substrate.
  • the concentration of the etching reaction product is almost equal. Therefore, the etchant concentration in the vicinity of the peripheral portion of the substrate and the etchant concentration in the vicinity of other portions of the substrate are almost equal, and the etching rate distribution becomes uniform.
  • the focus ring used in the dry etching technology is intended to make the reactive particle concentration distribution uniform in order to make the chemical reaction main etching reaction uniform. The effect is quite different.
  • Embodiment 1 of the present invention will be described with reference to FIG. 5 to FIG.
  • a single-crystal silicon substrate as a sample is used for amorphization by irradiating plasma to a region on the surface layer of the substrate where the impurities should be introduced.
  • the amorphization process is performed in a state in which a conductive ring is disposed so as to surround the outer peripheral edge.
  • FIG. 5 shows a cross-sectional view of an amorphous substrate apparatus used in the amorphous substrate method of Embodiment 1 of the present invention.
  • this amorphization apparatus includes a vacuum vessel 1, a turbo molecular pump 3 as an exhaust device for exhausting the inside of the vacuum vessel 1, and a pressure regulating valve for controlling the pressure in the vacuum vessel 1.
  • coil 8 as a plasma source provided in the vicinity of the dielectric window 7 facing the sample electrode 6, coil 8 13. 13.
  • a high frequency power source 5 for supplying 56 MHz high frequency power
  • a sample electrode 6 It is composed of a high frequency power source 10 as a voltage source for supplying voltage.
  • 11 is a gas inlet and 12 is an exhaust.
  • FIG. 5 while introducing a predetermined gas from the gas supply device 2 into the vacuum vessel 1, exhausting is performed by the turbo molecular pump 3 as an exhaust device, and the inside of the vacuum vessel 1 is predetermined by the pressure regulating valve 4.
  • the high frequency power source 5 supplies 13.56 MHz high frequency power to the coil 8 provided in the vicinity of the dielectric window 7 facing the sample electrode 6, thereby generating inductively coupled plasma in the vacuum chamber 1.
  • Sample electrode 6 is provided with a high-frequency power source 10 for supplying high-frequency power, which is a voltage source for controlling the potential of the sample electrode 6 so that the substrate 9 as a sample has a negative potential with respect to the plasma. Function as.
  • the gas supplied from the gas supply device 2 is introduced into the vacuum container 1 from the gas introduction port 11. Further, the gas in the vacuum vessel 1 is exhausted from the exhaust port 12 to the pump 3.
  • FIG. 6 is a detailed cross-sectional view showing an enlarged view of a portion where the silicon substrate 9 is placed on the sample electrode 6.
  • the sample electrode 6 has a layer structure of a first dielectric layer 13, an electrostatic adsorption electrode 14, a second dielectric layer 15, and a pedestal 16 from the side close to the silicon substrate 9 as a sample.
  • the first dielectric layer 13, the electrostatic adsorption electrode 14, and the second dielectric layer 15 protrude from the pedestal 16.
  • a ring-shaped third dielectric layer 17 and a conductor ring 18 are provided around the protruding portion, and the third dielectric layer 17 is provided between the conductor ring 18 and the base 16.
  • the conductor ring 18 is disposed outside the outer peripheral edge of the silicon substrate 9 as a sample, and is configured to have a surface at a position substantially the same height as the surface of the silicon substrate 9.
  • a DC voltage is applied to the electrostatic adsorption electrode 14, and the silicon substrate 9 is adsorbed to the first dielectric layer 13 which is the surface of the protruding portion of the sample electrode 6, thereby precisely controlling the temperature of the silicon substrate 9. Being done! /
  • a gate electrode is formed on the surface of a silicon substrate as a sample. That is, a gate oxide film made of an oxide silicon film is formed on the surface of a single crystal silicon substrate, and a conductive layer to be a gate electrode is formed on the upper layer by a CVD method or the like, and this is patterned, A pattern of the gate electrode is formed.
  • FIG. 7 shows the thickness of the amorphous layer when a silicon substrate having a diameter of 200 mm is amorphous when the x-axis is taken in the direction from left to right in FIG. 5 or FIG. It is the result of measuring the thickness. As is apparent from Fig. 7, the uniformity of the amorphous layer is greatly improved to ⁇ 1.59%, without the amorphous layer becoming extremely high in the region near the outer edge of the substrate.
  • the variation of the thickness of the amorphous layer with respect to the measurement position was ⁇ 3.26%. This is because the distortion of the equipotential lines in the sheath region near the outer peripheral edge of the substrate 9 is alleviated, and the incident energy of ions incident on the substrate 9 is made uniform over the entire surface including the vicinity of the outer peripheral edge of the substrate 9. it is conceivable that.
  • the relative dielectric constant and thickness of the first dielectric layer 13 are ⁇ 1 and dl, respectively, and the relative dielectric constant and thickness of the second dielectric layer 15 are ⁇ 2 and d2, respectively.
  • the capacitances Ca and Cb per unit area between the conductive ring and the pedestal 16 be approximately the same.
  • the high-frequency impedance per unit area with the larger capacitance decreases, and the ion current density (ion current per unit area) flowing into the substrate 9 and the conductor ring 18 differs greatly.
  • the uniformity of the amorphous treatment is impaired. According to our experiments, good in-plane uniformity was ensured when Ca was 0.5 to 2 times that of Cb.
  • the distance A between the outer peripheral end of the substrate 9 and the inner peripheral end of the conductor ring 18 is 1.5 mm, but A is preferably 1 mm or more and 10 mm or less. If A is less than lmm, there is a possibility that the substrate 9 will ride on the conductor ring 18 due to a transport error during transport of the substrate, which is not preferable in that the transport margin is not sufficient. If A is larger than 10 mm, the thickness of the amorphous layer in the region near the outer peripheral edge of the substrate 9 is extremely increased. Ascending may occur, which is not preferable.
  • the diameter (typical length) of the substrate 9 is usually designed to be approximately lmm larger than the diameter (typical length) of the protruding portion of the sample electrode 6, the outer peripheral edge of the protruding portion of the sample electrode 6 and the conductor
  • the distance from the inner peripheral edge of the ring 18 is preferably 2 mm or more and 11 mm or less.
  • the difference B between the height of the surface of the substrate 9 and the height of the conductor ring 18 is set to 0.3 mm.
  • B is not less than 0.00 lmm and not more than lmm.
  • the same amorphous device as that used in the first embodiment is used.
  • a high-frequency voltage for controlling the ion energy was applied to the electrostatic adsorption electrode 14 instead of being applied to the pedestal 16 in FIG. Even in this case, it was confirmed that the uniformity of processing was improved.
  • the relative permittivity and thickness of the first dielectric layer are ⁇ 1 and dl, respectively, and the relative permittivity and thickness of the second dielectric layer are ⁇ 2 and d2, respectively.
  • the relative permittivity and thickness are ⁇ 3 and d3
  • the area of the electrostatic chucking electrode is Sl
  • the surface area of the conductive ring is S2
  • the capacitance between the electrostatic chucking electrode and the sample is ⁇ lXSlZdl.
  • the capacitance between the electroadsorption electrode and the conductor ring is lZ (d2Z ⁇ 2XSl + d3 / ⁇ 3XS2).
  • the ratio of the RF current flowing into the sample and the RF current flowing into the conductor ring is ⁇ lXSl / dl: l / (d2 / ⁇ 2XSl + d3 / ⁇ 3XS2).
  • Cc and Cd are significantly different, the high-frequency impedance per unit area with the larger capacitance decreases, and the ionic current flowing into the substrate and conductor ring The density (ion current per unit area) will be greatly different, which will impair the uniformity of the amorphous process. According to our experiments, good in-plane uniformity was ensured when Cc was 0.5 to 2 times Cd.
  • the same amorphous device as that used in Embodiment 1 was used.
  • the structure of the sample electrode 6 was as shown in the detailed sectional view of FIG.
  • the sample electrode 6 has a layer structure of a first dielectric layer 13, an electrostatic adsorption electrode 14, a second dielectric layer 15, and a pedestal 16 with a side force close to the substrate 9 as a sample.
  • the first dielectric layer 13, the electrostatic adsorption electrode 14, and the second dielectric layer 15 protrude from the base 16 force.
  • a dielectric ring 19 is provided around the protruding portion, and a dielectric focus ring 20 is provided on the dielectric ring 19.
  • the distance C between the outer peripheral edge of the substrate 9 and the inner peripheral edge of the focus ring is 6 mm.
  • the focus ring 20 is disposed outside the outer peripheral edge of the substrate 9 as a sample, and has a surface at a position 7 mm higher than the surface of the substrate 9.
  • the difference D between the height of the surface of the substrate 9 as a sample and the height of the focus ring 20 is 7 mm.
  • a direct current voltage is applied to the electrostatic adsorption electrode 14 in order to precisely control the temperature of the substrate 9 by adsorbing the substrate 9 to the first dielectric layer 13 which is the surface of the protruding portion of the sample electrode 6. .
  • the vacuum vessel 1 is evacuated from the exhaust port 12 while keeping the temperature of the sample electrode 6 at 25 ° C.
  • 800 W of high-frequency power to the coil 8 as a plasma source a plasma is generated in the vacuum chamber 1, and 200 W of high-frequency power is supplied to the base 16 of the sample electrode 6.
  • the crystal layer on the surface of the silicon substrate 9 could be made uniformly amorphous.
  • the uniformity of the amorphous layer does not increase extremely in the region near the outer peripheral edge of the substrate, and the uniformity is greatly improved. This is considered to be because the distortion of the equipotential lines was alleviated and the incident energy of ions incident on the substrate 9 was made uniform over the entire surface including the vicinity of the outer peripheral edge of the substrate 9.
  • the distance C between the outer peripheral end of the substrate 9 as a sample and the inner peripheral end of the focus ring 20 is preferably 1 mm or more and 10 mm or less. If it is less than 1 mm, the thickness of the amorphous layer at the outer peripheral edge of the substrate 9 may become too small, which is not preferable.
  • the thickness of the amorphous layer at the outer peripheral edge of the substrate 9 may be extremely increased, which is not preferable.
  • the diameter (representative length) of the substrate 9 is usually designed to be approximately 1 mm larger than the diameter (representative length) of the protruding part of the sample electrode 6, the outer peripheral edge of the protruding part of the sample electrode 6 and the focus It can be said that the distance from the inner peripheral edge of the ring 20 is preferably 2 mm or more and 11 mm or less.
  • the difference D between the height of the surface of the substrate 9 as the sample and the height of the focus ring 20 is preferably lmm or more and 15mm or less. If it is less than 1 mm, the thickness of the amorphous layer at the outer peripheral edge of the substrate 9 may be extremely increased, which is not preferable. Conversely, if it is larger than 15 mm, the thickness of the amorphous layer at the outer peripheral edge of the substrate 9 may become too small, which is not preferable. Since the thickness of the substrate is about lmm, it is desirable that the difference between the height of the surface of the protruding portion of the sample electrode 6 and the height of the focus ring 20 is 2 mm or more and 16 mm or less! /,! / ⁇ Yeah.
  • Embodiment 4 of the present invention will be described with reference to FIG.
  • a silicon tray 21 having a recess that matches the outer shape of the silicon substrate 9 as a sample is provided on the sample electrode 6, and the silicon substrate 9 is approximately the same height as the surface thereof. It is characterized by having a ring-shaped surface.
  • the same amorphous silicon device as that used in Embodiment 1 was used.
  • the structure of the sample electrode 6 was the configuration shown in the detailed cross-sectional view shown in FIG. In FIG. 10, a substrate 9 mounted on a silicon tray 21 is placed on a sample electrode 6.
  • the tray 21 may be always provided on the sample electrode 6, or the substrate 9 may be placed on the tray 21 in the atmosphere and transported to the sample substrate 6.
  • the thickness of the amorphous layer does not become extremely high in the region near the outer peripheral edge of the substrate, and the uniformity is greatly improved. This is considered to be because the distortion of the equipotential lines was alleviated and the incident energy of ions incident on the substrate 9 was made uniform over the entire surface including the vicinity of the outer peripheral edge of the substrate 9.
  • the distance E between the outer peripheral edge of the substrate 9 as a sample and the inner peripheral edge of the step portion is 1 mm, but E is preferably 1 mm or more and 10 mm or less. If E is less than lmm, the substrate 9 may climb on the outside of the stepped portion of the tray 21 due to a transport error when transporting the substrate, which is not preferable in that the transport margin is not sufficient. Further, when E is larger than 10 mm, the thickness of the amorphous layer in the region near the outer peripheral edge of the substrate 9 may be extremely increased, which is not preferable.
  • the difference F between the height of the surface of the substrate 9 as the sample and the height of the surface of the tray 21 outside the stepped portion is set to 0.4 mm. It is preferably at least lm m. It is difficult to design F to be 0.001 mm, and if it is larger than F force Slmm, the thickness of the amorphous layer in the region near the outer peripheral edge of the substrate 9 may be extremely decreased or increased. Yes, not preferred.
  • the tray 21 can be amorphous with the clamp ring 22 pressed against the sample electrode. This configuration allows tray 21 and sample electrode 6 And the temperature of the substrate 9 can be controlled more precisely.
  • the step of generating plasma and the step of stopping the plasma and increasing the pressure in the vacuum vessel higher than the step of generating plasma may be alternately repeated.
  • the heat accumulated in the substrate 9 in the plasma generation step is stopped in the step of stopping the plasma and raising the pressure in the vacuum vessel higher than that in the step of generating plasma.
  • Heat transfer through the gas flowing between the tray 21 and between the tray 21 and the sample electrode 6 makes it possible to escape to the sample electrode 6 side, and the temperature of the substrate 9 can be controlled more precisely.
  • the pressure force in the vacuum vessel is not less than lOOPa and not more than lOOOPa in the step of stopping the plasma and making the pressure in the vacuum vessel higher than the step of generating plasma. If it is less than lOOPa, it takes too much time to lower the temperature of the substrate 9 because the effect of releasing heat is small. On the other hand, if it is larger than lOOOPa, it takes too much time S to increase pressure and decrease Z.
  • the coil 8 may be planar, or a helicon wave plasma source, a magnetic neutral loop plasma source, a magnetic field microwave plasma source (electron cyclotron resonance plasma source) may be used, and in parallel. Use a flat plate plasma source.
  • an inert gas other than helium may be used, and at least one of neon, argon, krypton, and xenon (zenon) may be used.
  • neon, argon, krypton, and xenon (zenon) may be used.
  • the present invention is applied when processing samples of various other materials such as a polycrystalline silicon substrate and a compound semiconductor substrate such as GaAs. be able to.
  • the amorphous layer method and apparatus of the present invention can improve the uniformity of the amorphous layer process. It can be applied to applications such as semiconductor impurity doping, manufacturing thin film transistors used in liquid crystals, and surface modification of various materials.
  • FIG. 1 is an explanatory diagram showing the principle of the amorphization apparatus of the present invention.
  • FIG. 2 is an explanatory diagram showing the principle of the amorphous silicon device of the present invention.
  • FIG. 3 is an explanatory diagram showing the principle of the amorphous silicon device of the present invention.
  • FIG. 4 is an explanatory diagram showing the principle of the amorphization apparatus of the present invention.
  • FIG. 5 is a cross-sectional view showing the configuration of the amorphous silicon device used in Embodiment 1 of the present invention.
  • FIG. 6 is a detailed sectional view of the sample electrode in the first embodiment of the present invention.
  • FIG. 7 is a graph showing the result of measuring the thickness of the amorphous layer in the first embodiment of the present invention.
  • FIG. 8 is a detailed sectional view of the sample electrode in the first embodiment of the present invention.
  • FIG. 9 is a detailed cross-sectional view of the sample electrode according to Embodiment 3 of the present invention.
  • FIG. 10 is a detailed cross-sectional view of a sample electrode according to Embodiment 4 of the present invention.
  • FIG. 11 is a detailed sectional view of a sample electrode according to Embodiment 4 of the present invention.
  • FIG. 12 is a cross-sectional view showing the configuration of the plasma doping apparatus used in the conventional example
  • FIG. 13 is a cross-sectional view showing a configuration of a plasma doping apparatus used in a conventional example
  • FIG. 14 is a graph showing the results of measuring the thickness of an amorphous layer in a conventional example

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 非晶質化処理の均一性を高めることが可能なプラズマ処理方法および装置を提供する。  真空容器1内に、ガス供給装置2からガス導入口11を介して所定のガスを導入しつつ、排気装置としてのターボ分子ポンプ3により排気口12を介して排気を行い、調圧弁4により真空容器1内を所定の圧力に保つ。高周波電源5により13.56MHzの高周波電力を試料電極6に対向した誘電体窓7の近傍に設けられたコイル8に供給することにより、真空容器1内に誘導結合型プラズマを発生させる。試料電極6に高周波電力を供給するための高周波電源10が設けられており、これは、試料電極6の電位を制御する電圧源として機能する。試料電極6の構成を工夫することにより、シリコン基板9の表面の結晶層を均一に非晶質化することができた。

Description

プラズマ処理方法およびプラズマ処理装置
技術分野
[0001] 本発明は、プラズマ処理方法およびプラズマ処理装置に係り、特に試料の表面層 に対し均一にプラズマを供給する方法および装置に関するものである。
背景技術
[0002] 不純物を固体試料の表面に導入する技術としては、不純物をイオン化して低エネ ルギ一で固体中に導入するプラズマドーピング法が知られている(例えば、特許文献 1参照)。
[0003] 図 12は、前記特許文献 1に記載された従来の不純物導入方法としてのプラズマド 一ビング法に用いられるプラズマ処理装置の概略構成を示して 、る。図 12にお 、て 、真空容器 41内に、シリコン基板よりなる試料 42を載置するための試料電極 43が設 けられている。真空容器 41内に所望の元素を含むドーピング原料ガス、例えば B H
2 6 を供給す
るためのガス供給装置 44、真空容器 41内の内部を減圧するポンプ 45が設けられ、 真空容器 41内を所定の圧力に保つことができる。マイクロ波導波管 46より、誘電体 窓としての石英板 47を介して、真空容器 41内にマイクロ波が放射される。このマイク 口波と、電磁石 48から形成される直流磁場の相互作用により、真空容器 41内に有磁 場マイクロ波プラズマ(電子サイクロトロン共鳴プラズマ) 49が形成される。試料電極 4 3には、コンデンサ 50を介して高周波電源 51が接続され、試料電極 43の電位が制 御できるようになつている。なお、ガス供給装置 44から供給されたガスは、ガス導入 口 52から真空容器 41内に導入され、排気口 53からポンプ 45へ排気される。
[0004] この構成のプラズマ処理装置にぉ 、て、ガス導入口 52から導入されたドーピング原 料ガス、例えば B Hは、マイクロ波導波管 46及び電磁石 48から成るプラズマ発生
2 6
手段によってプラズマ化され、プラズマ 49中のボロンイオンが高周波電源 51によつ て試料 42の表面に供給される。
[0005] ところで、 B Hよりなるドーピング原料ガスのように、シリコン基板等の試料に供給さ れると電気的に活性となる不純物を含むガスは、一般に、人体に有害であったり、反 応性が高ぐ危険性が高いという問題がある。
[0006] また、プラズマドーピング法は、ドーピング原料ガスに含まれている物質の全てが試 料に導入される。 B Hよりなるドーピング原料ガスを例にとって説明すると、試料に
2 6
導入されたときに有効な不純物はボロンのみである力 水素も同時に試料中に導入 される。
[0007] 水素が試料中に導入されると、ェピタキシャル成長等、引き続き行なわれる熱処理 時に試料にお!、て格子欠陥が生じると!、う問題がある。
[0008] そこで、試料に導入されると電気的に活性となる不純物を含む不純物固体を真空 容器内に配置すると共に、真空容器内において希ガスのプラズマを発生させ、不活 性ガスのイオンにより不純物固体をスパッタリングすることにより、不純物固体力 不 純物を分離させ、分離された不純物を試料に供給する方法が提案されている (例え ば、特許文献 2参照)。図 13は、前記特許文献 2に記載された従来の不純物導入方 法としてのプラズマドーピング法に用いられるプラズマドーピング装置の概略構成を 示している。図 13において、真空容器 41内に、シリコン基板よりなる試料 42を載置 するための試料電極 43が設けられている。真空容器 41内に不活性ガスを供給する ためのガス供給装置 44、真空容器 41内の内部を減圧するポンプ 45が設けられ、真 空容器 41内を所定の圧力に保つことができる。そして、マイクロ波導波管 46より、誘 電体窓としての石英板 47を介して、真空容器 41内にマイクロ波が放射される。この マイクロ波と、電磁石 48から形成される直流磁場の相互作用により、真空容器 41内 に有磁場マイクロ波プラズマ(電子サイクロトロン共鳴プラズマ) 49が形成される。試 料電極 43〖こは、コンデンサ 50を介して高周波電源 51が接続され、試料電極 43の電 位が制御できるようになつている。また、不純物元素例えばボロンを含む不純物固体 54力 固体保持台 55上に設けられ、固体保持台 55の電位力 コンデンサ 56を介し て接続された高周波電源 57によって制御される。なお、ガス供給装置 44から供給さ れたガスは、ガス導入口 52から真空容器 41内に導入され、排気口 53からポンプ 45 へ排気される 0
[0009] このような構成のプラズマドーピング装置にぉ 、て、ガス導入口 11から導入された 不活性ガス、例えばアルゴン (Ar)は、マイクロ波導波管 46及び電磁石 48から成るプ ラズマ発生手段によってプラズマ化され、不純物固体 54からスパッタリングによりブラ ズマ中に飛び出した不純物元素の一部がイオン化され、試料 42の表面に導入され る。
通常、試料 42の表面に酸ィ匕シリコン膜からなるゲート酸ィ匕膜を形成し、この上層に CVD法等によりゲート電極となる導電性層を形成し、これをパターユングし、ゲート電 極のパターンを形成する。このようにしてゲート電極の形成された試料 42をプラズマ ドーピング装置にセットし、前述した方法によりゲート電極をマスクとして自己整合的 に不純物の導入がなされ、ソース'ドレイン領域を形成することにより MOSトランジス タが得られる。ただし、プラズマドーピング処理によって不純物を導入した後、活性化 処理を行う必要がある。活性化処理とは、不純物を導入した層を、レーザーァニール 、フラッシュランプアニールなどの方法を用いて加熱し、結晶中で活性な状態にする 処理をいう。このとき、不純物を導入した極薄い層を効果的に加熱することにより、浅 い活性ィ匕層を得ることができる。不純物を導入した極薄い層を効果的に加熱するに は、不純物を導入する前に、不純物を導入しょうとする極薄い層における、レーザー 、ランプなどの光源力 照射される光に対する吸収率を高めておく処理が行われる。 この処理はプレアモルファス化と呼ばれるもので、先に示したプラズマ処理装置と同 様の構成のプラズマ処理装置において、 Heガスなどのプラズマを発生させ、生じた Heなどのイオンをバイアス電圧によって基板に向けて加速して衝突させ、基板表面 の結晶構造を破壊して非晶質ィ匕するものであり、既に本件発明者らによって提案さ れている (例えば、非特許文献 1参照)。
特許文献 1:米国特許 4912065号公報
特許文献 2:特開平 09— 115851号公報
非特許文献 1 :Y. Sasaki et al. , "B2H6 Plasma Doping with In -situ He Pre― amorphyzation" , 2004 Symposia on VLSI Technology and Circuits
発明の開示
発明が解決しょうとする課題 [0011] ところで、近年の半導体装置の微細化および高集積化に伴い、不純物導入層は浅 くかつ微細に形成する必要があり、極めて高精度の深さおよび不純物濃度の制御が 必要となっている。このような状況の中で、従来の方式では、試料内、特に大口径ィ匕 が進む中でウェハ面内で均一な不純物導入層を形成するのは困難であると!/、う問題 があった。これは不純物を含むプラズマをウェハ面内に均一な分布を持つように形成 するのが困難であるのみならず、前述したプレアモルファス化工程において、試料の 表面を高精度に均一な深さで非晶質ィ匕するのは極めて困難であった。
[0012] 図 10は、図 12に示す従来のプラズマドーピング装置において、図 12の上から下に 向けて X軸をとつたときの、直径 200mmのシリコン基板を非晶質ィ匕した際の非晶質 層の厚さを測定した結果である。図 10から明らかなように、非晶質層の厚さは、試料 としての基板の外周端付近、とくに基板の外周端カゝら 10mm以内の領域で極度に高 くなつている。なお、非晶質層の厚さは、エリプソメトリ法によって測定した単結晶シリ コン基板上のアモルファスシリコン層の厚さである。
[0013] また非晶質層の厚さだけでなぐ非晶質層を形成した後、この非晶質層表面に不 純物プラズマを供給し、プラズマドーピングを行なう場合にも、同様に基板の外周端 近傍で不純物濃度が高く形成されていることがわ力つた。
[0014] これらはいずれも、基板の外周端においてエッジ効果により、プラズマ集中が起り、 これによつて基板の外周端のエッジ近傍でエネルギー集中が起ってプラズマ濃度が 高 、状態で基板表面に到達して ヽるものと考えられる。
[0015] 本発明は、前記実情に鑑みてなされたもので、プラズマ処理の均一性を高めること を目的とする。
[0016] また本発明は、非晶質ィ匕処理の均一性を高めることが可能な非晶質ィ匕方法および 装置を提供することを目的とする。
[0017] さらにまた本発明は、不純物導入量の試料面内均一性を高めることが可能な不純 物導入方法および装置を提供することを目的とする。 課題を解決するための手段
[0018] そこで本発明のプラズマ処理方法は、試料の表面でイオンシースの厚さが均一に なるように調整しつつ、前記試料の表面にプラズマを照射することを特徴とする。 [0019] この構成により、試料に入射するプラズマの入射エネルギーが試料の外周端付近 を含む全面に渡って均一化されるため、プラズマ処理の均一性を高めることが可能と なる。特に表面のみでなぐ表面力 の深さを考慮する必要のある非晶質ィ匕処理、ド 一ビング処理などに対して、微細領域に高精度の処理を行う必要がある場合に、面 内での均一性だけでなく深さ方向を含む 3次元での制御が可能となる。
[0020] この構成による作用を以下に詳述する。
[0021] すなわち、プラズマポテンシャル(プラズマの電位)が Vであるプラズマ中に電位 V
S P
の導体を挿入した場合、 V <Vの場合は導体周辺では負の電界が形成され、ィォ
P S
ンを引き寄せ電子を追い返すため (イオン密度) > (電子密度)となり、イオンだけによ つて構成される電荷層を生じる。逆に V >vの場合は電子だけによる電荷層が生じ
P S
る。
この電荷層をシース(Sheath)と呼び、電子によるものを電子シース、イオンによるも のをイオンシースと呼ぶ。
[0022] 一方、導体の代わりに絶縁体をプラズマ中に挿入すると、絶縁体 プラズマ間には 直流電流が流れ得ないので、単位時間に飛来する電子とイオンの数は等しくなけれ ばならない。しかし、一般に電子の速度はイオンの速度に比べて十分に速いので、 電子力 オンに比べてより多く絶縁体表面に到達する。したがって、表面では電子が 過剰となり、表面付近に負の電界を形成し、電子電流とイオン電流が等しくなるところ まで帯電が進行する。このようにして生じた負の電位をフローティングポテンシャルと いう。また、この場合に表面にはイオンシースが形成される。
[0023] 電極に高周波電力を印加することにより、シースの電位降下 V を大きくする(制御
SH
する)ことができる。電子の移動度はイオンの移動度よりもはるかに大きいため、印加 電圧が正のときは大きな電子電流が流れ込むのに対して、印加電圧が負の時は小さ なイオン電流が流れる。電極 (または基板表面)は直流的にはフローティングであるか ら、正味の電流 (電流の直流成分)がゼロになったところで定常状態となる。したがつ て、電極 (または基板表面)が負電位に自己バイアスされることになる。一般に、自己 バイアス電圧を V (Direct Current Voltage)、高周波電圧の瞬間最大値と最
DC
小値との差を V (Peak to Peak Voltage)と呼ぶ。電極に印加する高周波電力 を大きくすると、 V 及び V は増加する。
DC PP
[0024] 本発明においては、例えば基板と台座の間の単位面積当たりの静電容量力 誘電 体リングを介したプラズマと台座の間の静電容量よりも少しだけ大きくし、基板中央部 と基板周辺部のイオンシースの厚さの差を緩和する。
[0025] このようにして、基板と台座の間の単位面積当たりの静電容量と、誘電体リングを介 したプラズマと台座の間の静電容量との差を小さくし、プレアモルファス化処理の均 一性を高めることができる
上記構成によれば、物理現象主体の処理を均一化するために、フォーカスリング( 誘電体リング)等を用いることによって、基板周辺部の過剰なイオン密度を低減させ たり、あるいは、基板周辺部と基板の他の場所のイオンシースの厚さを均一化させる ものである。
[0026] また、本発明のプラズマ処理方法は、前記試料の表面を非晶質化する方法である ものを含む。
[0027] 試料表面カゝら所定の深さまでプラズマを導入し、このプラズマの導入された領域を 非晶質化する非晶質化処理は、ドーピングの前処理ある!ヽはドーピング中に実行さ れる場合、不純物の導入深さを高精度に制御することができる。
[0028] また、本発明のプラズマ処理方法は、前記試料の表面に不純物を導入する方法で あるものを含む。
[0029] 不純物の導入すなわちドーピング処理は特に、前記試料の面内分布およびその位 置での不純物のエネルギー状態で決定されるため、高精度の均一性を得ることがで きる。
[0030] また、本発明のプラズマ処理方法は、真空容器内の試料電極に試料を載置し、前 記真空容器内に原料ガスを供給しつつ真空容器内を排気し、プラズマ源に高周波 電力を供給することにより真空容器内にプラズマを発生させ、前記試料の外周端を 囲むように、試料の表面とほぼ同じ高さの表面をもつ導体リングを配置した状態で、 前記試料の表面にプラズマを照射する方法であるものを含む。
[0031] この構成により、試料の外周端へのプラズマの集中を回避することができるため、前 記試料の表面での面内分布を均一にすることができる。 [0032] 例えば、本発明の非晶質ィ匕方法は、真空容器内の試料電極に試料を載置し、ガス 供給装置より真空容器内にガスを供給しつつ真空容器内を排気し、真空容器内を所 定の圧力に制御しながら、プラズマ源に高周波電力を供給することにより真空容器内 にプラズマを発生させるとともに、試料電極に電圧を供給することによって、試料の表 面の結晶層を非晶質ィ匕するに際し、試料の外周端より外側に、試料の表面とほぼ同 じ高さの位置に表面をもつ導体リングを配置した状態で非晶質ィ匕することを特徴とす る。
[0033] この構成により、試料の外周端付近におけるシース領域の等電位線のゆがみが緩 和され、試料に入射するイオンの入射エネルギーが試料の外周端付近を含む全面 に渡って均一化されるため、非晶質ィ匕処理の均一性を高めることが可能となる。
[0034] また本発明のプラズマ処理方法は、前記試料の外周端と導体リングの内周端との 距離が lmm以上 10mm以下であるものを含む。
[0035] この構成により、基板搬送時のマージン確保と処理の均一性確保が両立できる。
[0036] また本発明のプラズマ処理方法は、試料の表面の高さと導体リングの高さの差が 0 . OOlmm以上 lmm以下であるものを含む。
[0037] この構成により、処理の均一性をより高めることが可能となる。
[0038] また本発明のプラズマ処理方法は、試料電極が、試料に近!ヽ側から第 1誘電体層 、静電吸着電極、第 2誘電体層、台座の層構造をなしており、かつ、台座から第 1誘 電体層、静電吸着電極、第 2誘電体層が突出しており、導体リングと台座との間に第 3誘電体層が設けられている状態で、台座に電圧を印加するものを含む。また、この 場合、第 1誘電体層の比誘電率および厚さをそれぞれ ε 1、 dl、第 2誘電体層の比 誘電率および厚さをそれぞれ ε 2、 d2、第 3誘電体層の比誘電率および厚さをそれ ぞれ ε 3、 d3としたとき、 Ca = l/ (dl/ ε l + d2/ ε 2)力 ^Cb = ε 3/d3の 0. 5倍 以上 2倍以下であるものを含む。
[0039] この構成により、台座と基板と、台座と導体リングとの間の静電容量をほぼ同程度に することができる。ここで両者の静電容量は同程度であるのが望ましぐ 0. 5倍に満た ないと導体リング表面におけるイオンシース厚が大きくなりすぎて、試料のエッジにお けるシース電界強度が試料の中央部におけるシース電界強度よりも小さくなり、試料 のエッジにおける処理速度が低くなることがある。一方 2倍を越えると導体リング表面 におけるイオンシース厚が小さくなりすぎて、試料のエッジにおけるシース電界強度 が試料の中央部におけるシース電界強度よりも大きくなり、試料のエッジにおける処 理速度が高くなることがある。なお、試料の誘電率や厚さによって若干の変動はある 力 上記条件を満たすように構成することにより均一に処理するための条件を満たす ようにすることができる。
[0040] また、本発明のプラズマ処理方法は、試料電極が、試料に近!ヽ側から第 1誘電体 層、静電吸着電極、第 2誘電体層、台座の層構造をなしており、かつ、台座力 第 1 誘電体層、静電吸着電極、第 2誘電体層が突出しており、導体リングと台座との間に 第 3誘電体層が設けられている状態で、静電吸着電極に電圧を印加してもよい。そし て、第 1誘電体層の比誘電率及び厚さをそれぞれ ε 1、 dl、第 2誘電体の比誘電率 及び厚さをそれぞれ ε 2、 d2、第 3誘電体の比誘電率及び厚さをそれぞれ ε 3、 d3、 試料がプラズマにさらされる面の面積を S I、導体リングがプラズマにさらされる面の 面積を S2としたとき、 Cc = ε lZdl力 Cd= lZ (d2 X S2Z ε 2 X S l + d3/ ε 3)の 0. 5倍以上 2倍以下であることを特徴とするものを含む。
[0041] この構成により、同様に試料電極と基板と、試料電極と導体リングとの間の静電容 量をほぼ同程度にすることができる。ここで両者の静電容量は同程度であるのが望ま しぐ 0. 5倍に満たないと導体リング表面のシース厚が大きくなりすぎて、試料のエツ ジにおけるシース電界強度が試料の中央部におけるシース電界強度よりも小さくなり 、試料のエッジにおける処理速度が低くなることがある。一方 2倍を越えると導体リン グ表面におけるイオンシース厚が小さくなりすぎて、試料のエッジにおけるシース電 界強度が試料の中央部におけるシース電界強度よりも大きくなり、試料のエッジにお ける処理速度が高くなることがある。なお、試料の誘電率や厚さによって若干の変動 はあるが、上記条件を満たすように構成することにより均一に処理するための条件を 満たすようにすることができる。
[0042] また本願のプラズマ処理方法は、試料の外周端より外側に、試料の表面よりも lm m以上高い位置に表面をもつフォーカスリングを配置した状態でプラズマ処理するよ うにしたものを含む。 [0043] この構成により、試料の外周端付近におけるフォーカスリングにプラズマを集中させ ることにより、シース領域の等電位線のゆがみが緩和され、試料に入射するイオンあ るいはプラズマの入射エネルギーが試料の外周端付近を含む全面に渡って均一化 されるため、非晶質ィ匕処理の均一性を高めることが可能となる。
[0044] また本願のプラズマ処理方法は、試料の外周端とフォーカスリングの内周端との距 離が lmm以上 10mm以下であるものを含む。
[0045] この構成により、基板搬送時のマージン確保と処理の均一性確保が両立できる。こ こでこの距離が lmmにみたないと、基板搬送が難しぐ 10mmを越えると等電位線 のゆがみ緩和効果を得るのが難しくなる。
[0046] また本願のプラズマ処理方法は、試料の表面の高さとフォーカスリングの高さの差 が lmm以上 15mm以下であるものを含む。
この構成により、処理の均一性をより高めることが可能となる。
[0047] また本願のプラズマ処理方法は、真空容器内の試料を載置するための段差部が設 けられたトレー上に、前記試料を載置し、前記真空容器内に原料ガスを供給しつつ 真空容器内を排気し、プラズマ源に高周波電力を供給することにより真空容器内〖こ プラズマを発生させ、
前記段差部の外側におけるトレーの表面の高さが、試料の表面とほぼ同じ高さに 位置するように調整しつつプラズマを前記試料の表面に照射するようにしたものを含 む。
[0048] この構成により、試料の外周端付近におけるシース領域の等電位線のゆがみが緩 和され、試料に入射するイオンの入射エネルギーが試料の外周端付近を含む全面 に渡って均一化されるため、非晶質ィ匕処理の均一性を高めることが可能となる。
[0049] また本願のプラズマ処理方法は、試料の外周端と段差部の内周端との距離が lm m以上 10mm以下であるものを含む。
[0050] この構成により、基板搬送時のマージン確保と処理の均一性確保が両立できる。
[0051] また本願のプラズマ処理方法は、試料の表面の高さと段差部の外側におけるトレー の表面の高さの差が 0. 001mm以上 lmm以下であるものを含む。
[0052] この構成により、処理の均一性をより高めることが可能となる。 [0053] また本願のプラズマ処理方法は、試料がシリコン基板であり、トレーがシリコン製で あるものを含む。
[0054] この構成により、基板の汚染を最小限に抑えることができる。
[0055] また本願のプラズマ処理方法はトレーを試料電極に押しつけた状態でプラズマ処 理するものを含む。
[0056] この構成により、試料電極を介して基板上の熱が効率よく放出されるようにすること ができ基板の温度をより精密に制御することが可能となる。
[0057] また本願のプラズマ処理方法は、プラズマを発生させる工程と、プラズマを停止さ せるとともに真空容器内の圧力を、プラズマを発生させる工程よりも高くした工程とを 交互に繰り返すようにしたものを含む。
[0058] この構成とすることにより、プラズマを発生させる工程によって基板に蓄積された熱 を、プラズマを停止させるとともに真空容器内の圧力を、プラズマを発生させる工程よ りも高くする工程において、試料電極側に逃がすことが可能となり、基板の温度をより 精密に制御することが可能となる。
[0059] この場合、プラズマを停止させるとともに真空容器内の圧力を、プラズマを発生させ るステップよりも高くする工程における真空容器内の圧力力 lOOPa以上 lOOOPa以 下であることがさらに望ましい。
[0060] この構成により、基板の温度をより精密に制御することが可能となる。
[0061] 本発明のプラズマ処理装置は、真空容器と、前記真空容器内に配置され、試料を 載置する試料電極と、前記真空容器内にガスを供給するガス供給装置と、前記真空 容器内を排気する排気装置と、前記真空容器内の圧力を制御する圧力制御装置と 、プラズマ源と、プラズマ源に高周波電力を供給する高周波電源と、前記試料電極 に電圧を供給する電圧源とを備え、前記試料の表面でプラズマが均一なエネルギー 状態をもつように調整しつつ、前記試料の表面にプラズマを照射するように、前記試 料電極の周縁に補助部材を配したことを特徴とする。
[0062] また、本発明のプラズマ処理装置は、前記プラズマは前記試料の表面を非晶質ィ匕 するように調整されたプラズマであるものを含む。
[0063] 本発明のプラズマ処理装置は、前記プラズマは前記試料の表面に不純物を導入 するように調整されるものを含む。
[0064] 本発明のプラズマ処理装置は、前記試料電極は前記試料を載置する突出部を具 備しており、前記補助部材は、前記試料の外周端を囲むように、試料の表面とほぼ 同じ高さの表面を持つように配置した導体リングであるものを含む。
[0065] この構成により、試料の外周端付近におけるシース領域の等電位線のゆがみが緩 和され、試料に入射するイオンの入射エネルギーが試料の外周端付近を含む全面 に渡って均一化されるため、非晶質ィ匕処理の均一性を高めることが可能となる。
[0066] 本発明のプラズマ処理装置は、前記試料の外周端と導体リングの内周端との距離 力 S 2mm以上 1 lmm以下であるものを含む。
[0067] この構成により、基板搬送時のマージン確保と処理の均一性確保が両立できる。
[0068] 本発明のプラズマ処理装置は、試料電極の表面の高さと導体リングの高さの差が 0 . OOlmm以上 2mm以下であるものを含む。
[0069] この構成により、処理の均一性をより高めることが可能となる。
[0070] 本発明のプラズマ処理装置は、試料電極が、試料に近!、側力ゝら第 1誘電体層、静 電吸着電極、第 2誘電体層、台座の層構造をなしており、かつ、台座力 第 1誘電体 層、静電吸着電極、第 2誘電体層が突出しており、導体リングと台座との間に第 3誘 電体層が設けられている状態で、台座に電圧を印加するものを含む。
[0071] また本発明のプラズマ処理装置は、第 1誘電体層の比誘電率および厚さをそれぞ れ ε 1、 dl、第 2誘電体層の比誘電率および厚さをそれぞれ ε 2、 d2、第 3誘電体層 の比誘電率および厚さをそれぞれ ε 3、 d3としたとき、 Ca= l/ (dl/ ε l + d2/ ε 2)が Cb = ε 3Zd3の 0. 5倍以上 2倍以下であるものを含む。
[0072] この構成により、基板の温度を精密に制御しつつ、処理の均一性を高めることが可 能となる。
[0073] また本発明のプラズマ処理装置、試料電極が、試料に近!ヽ側から第 1誘電体層、 静電吸着電極、第 2誘電体層、台座の層構造をなしており、かつ、台座力 第 1誘電 体層、静電吸着電極、第 2誘電体層が突出しており、導体リングと台座との間に第 3 誘電体層が設けられている状態で、静電吸着電極に電圧を印加するものを含む。
[0074] 本発明のプラズマ処理装置は、第 1誘電体層の比誘電率および厚さをそれぞれ ε 1、 dl、第 2誘電体層の比誘電率および厚さをそれぞれ ε 2、 d2、第 3誘電体層の比 誘電率および厚さをそれぞれ ε 3、 d3としたとき、 Cc = ε l/dl ^Cd= 1/ (d2/ ε 2 + d3/ ε 3)の 0. 5倍以上 2倍以下であるものを含む。
[0075] この構成により、基板の温度を精密に制御しつつ、処理の均一性を高めることが可 能となる。
[0076] 本発明のプラズマ処理装置は、前記試料電極が突出部を具備しており、試料電極 の突出部の表面よりも lmm以上高い位置に表面をもつようにフォーカスリングを配置 したものを含む。
[0077] この構成により、試料の外周端付近におけるシース領域の等電位線のゆがみが緩 和され、試料に入射するプラズマある ヽはイオンの入射エネルギーが試料の外周端 付近を含む全面に渡って均一化されるため、非晶質ィ匕処理の均一性を高めることが 可能となる。
[0078] 本発明のプラズマ処理装置は、試料の外周端とフォーカスリングの内周端との距離 力 S 2mm以上 1 lmm以下であるものを含む。
[0079] この構成により、基板搬送時のマージン確保と処理の均一性確保を両立することが できる。
[0080] 本発明のプラズマ処理装置は、試料の表面の高さとフォーカスリングの高さの差が
2mm以上 16mm以下であるものを含む。
[0081] この構成により、処理の均一性をより高めることが可能となる。
発明の効果
[0082] 以上説明してきたように、本発明のプラズマ処理方法およびプラズマ処理装置によ れば、処理の均一性を高め、高精度で信頼性の高いプラズマ処理を実現することが できる。
[0083] また、特に、不純物導入層を形成するに際し、非晶質ィ匕処理の均一性を高めること が可能となる。
[0084] さらにまた、不純物プラズマを用いたプラズマドーピングにお ヽても供給される不純 物量を高精度に制御することができる。
発明を実施するための最良の形態 [0085] 以下本発明の実施の形態について、説明するが、説明に先立ち、本発明の原理に ついて図面を参照しつつ詳細に説明する。
[0086] 本発明のプラズマ処理方法は、試料の表面でイオンシースの厚さが均一になるよう に調整しつつ、前記試料の表面にプラズマを照射するものであり、この構成による作 用を以下に詳述する。
[0087] すなわち、前述したように、プラズマポテンシャル(プラズマの電位)が Vであるプラ
s
ズマ中に電位 Vの導体を挿入した場合、 V <vの場合は導体周辺では負の電界 p P S
が形成され、イオンを引き寄せ電子を追い返すため (イオン密度) > (電子密度)とな り、イオンだけによつて構成される電荷層を生じる。逆に V >vの場合は電子だけに p S
よる電荷層が生じる。
[0088] 一方、導体の代わりに絶縁体をプラズマ中に挿入すると、絶縁体 プラズマ間には 直流電流が流れ得ないので、単位時間に飛来する電子とイオンの数は等しくなけれ ばならない。しかし、一般に電子の速度はイオンの速度に比べて断然速いので、電 子力 オンに比べてより多く絶縁体表面に到達する。したがって、表面では電子が過 剰となり、表面付近に負の電界を形成し、電子電流とイオン電流が等しくなるところま で帯電が進行する。このようにして負の電位であるフローティングポテンシャルが生じ るとともに、この場合に表面にはイオンシースが形成される。
[0089] 電極に高周波電力を印加することにより、シースの電位降下 V を大きくする(制御
SH
する)ことができる。電極 (または基板表面)の電流-電圧特性の一例を図 1に示す。 図 1からわ力るように、電子の移動度はイオンの移動度よりもはるかに大きいため、印 加電圧が正のときは大きな電子電流が流れ込むのに対して、印加電圧が負の時は 小さなイオン電流が流れる。電極 (または基板表面)は直流的にはフローティングで あるから、正味の電流 (電流の直流成分)がゼロになったところで定常状態となる。し たがって、電極 (または基板表面)が負電位に自己バイアスされることになる。電極に 印加する高周波電力を大きくすると、自己バイアス電圧 V 及び高周波電圧の瞬間
DC
最大値と最小値との差 V は増加する。
PP
[0090] 図 2に誘電体リングを設けない場合(図 8に相当)における基板近傍のシースの様 子を示す。 B— 1は、イオンシースとバルタプラズマの境界を示す。基板 9には台座 1 6から、第 2誘電体層 15、静電吸着電極 14、第 1誘電体層 13を介して高周波電圧が 印加される。したがって、基板 9とプラズマ間に高周波電流が流れる。一方、誘電体リ ング 19 (一般に、比誘電率力 程度の石英ガラスが用いられ、また、第 1誘電体層 13 と第 2誘電体層 15の厚さを合計した厚さにほぼ等 、厚さを有して ヽるため、単位面 積当たりの静電容量は極めて小さい)を介して、台座 16とプラズマ間にも高周波電流 が流れる。
[0091] なお、一般に静電吸着用に用いられている第 1及び第 2誘電体層は、セラミックス製 であり、その比誘電率は 4よりも大きぐ典型的には 8〜12程度である。また、基板 9の 表面と誘電体リング 19の表面の高さが同じ場合、基板 9の厚さの分だけ、誘電体リン グ 19の厚さは、第 1誘電体層 13の厚さと第 2誘電体層 15の厚さの合計よりも厚くなる 。以上述べたことから、基板 9と台座 16の間の単位面積当たりの静電容量は、誘電 体リング 19を介したプラズマと台座 16の間の静電容量よりも大きくなる。
[0092] その結果、プラズマと基板 9間に流れる単位面積当たりの電流は、誘電体リング 19 を介してプラズマと台座間に流れる単位面積当たりの電流よりもはるかに大きいもの となる。したがって、基板 9の周辺部を除く部分においては、図 2のようにイオンシース 厚が大きくなり、イオンシースにおける電圧降下が大きくなる。
[0093] 図 2より、基板周辺部において、イオンシースとバルタプラズマの境界 B— 1が、基 板中央部よりも近くなつていることがわかる。基板 9の電位は中央部と周辺部で一致 するから、結局、基板周辺部のイオンシースにおける電界強度は、基板中央部のィ オンシースにおける電界強度よりもはるかに高くなる。このことが、基板周辺部におけ る基板 9に入射するイオンのエネルギー力 基板中央部における基板 9に入射するィ オンのエネルギーよりも大きくなるという現象に繋がり、基板周辺部のブレアモルファ ス化処理速度力 基板中央部のプレアモルファス化処理速度よりも大きくなるという 結果を引き起こしているものと考えられる。
[0094] 本発明においては、図 3のイオンシースとバルタプラズマの境界 C 1が示すように 、基板中央部と基板周辺部のイオンシースの厚さの差が緩和される。図 3は、基板 9 と台座 16の間の単位面積当たりの静電容量力 誘電体リング 19を介したプラズマと 台座 16の間の静電容量よりも少しだけ大きい場合を示している。 [0095] 一方、図 4は、基板 9と台座 16の間の単位面積当たりの静電容量が、誘電体リング 19を介したプラズマと台座 16の間の静電容量よりも少しだけ小さ 、場合を示して!/ヽ る。
[0096] このように、基板 9と台座 16の間の単位面積当たりの静電容量と、誘電体リング 19 を介したプラズマと台座 16の間の静電容量との差を小さくすること力 プレアモルファ ス化処理の均一性を高めるのに重要であることを、我々は実験的に見いだすとともに 、適切なモデルを提示することができた。
[0097] このように、本発明で用いているフォーカスリングは、ドライエッチング技術における フォーカスリングと構造上の類似はあるものの、導入による効果は全く異なる。ブレア モルファス化処理は、プラズマ中の不活性ガスイオン (ィ匕学反応性をほとんど有しな い)を基板表面に衝突させることにより行われる。このとき、基板を構成する元素はほ とんど揮発せず、エッチングなどの化学反応はほとんど起きない(基板表面のァモル ファス化が起きる)。また、プラズマドーピング処理は、プラズマ中の Bなどのシリコンと の化学反応性をほとんど有しないイオンを基板表面に衝突させることにより行われる 。このとき、基板を構成する元素はほとんど揮発せず、エッチングなどの化学反応は ほとんど起きない(基板中に Bイオンなどが残存する)。これらは、いずれも物理的な 現象であり、ドライエッチング技術のような化学反応主体の現象ではな 、。
[0098] 本発明は、このような物理現象主体の処理を均一化するために、フォーカスリング ( 誘電体リング)等を用いることによって、基板周辺部の過剰なイオン密度を低減させ たり、あるいは、基板周辺部と基板の他の場所のイオンシースの厚さを均一化させる ものである。したがって、本発明で用いた導体リングやフォーカスリング等は、従来の ドライエッチング技術において用いられたフォーカスリング等とは目的及び効果の面 で大きく異なるものである。
[0099] これに対し、ドライエッチング技術にぉ 、ては、所謂ローデイング効果が生じ、基板 周辺部のエッチング速度が高くなる傾向がある。基板周辺部近傍においては、エツ チング反応生成物の濃度が基板の他の場所の近傍に比べて小さくなるため、逆にェ ッチャント (反応性のハロゲンラジカルに代表されるエッチング反応種)の濃度が基板 の他の場所の近傍に比べて高くなる(ローデイング効果)。このことが、基板周辺部の エッチング速度が高くなる理由である。これを防止する目的で、従来力もフォーカスリ ングが利用されている。フォーカスリングを導入することにより、基板周辺部から発生 するエッチング反応生成物が基板周辺部近傍に滞留しやすくなり、基板周辺部近傍 のエッチング反応生成物の濃度と、基板の他の場所の近傍におけるエッチング反応 生成物の濃度がほぼ等しくなる。したがって、基板周辺部近傍のエツチャント濃度と、 基板の他の場所の近傍におけるエツチャント濃度がほぼ等しくなり、エッチング速度 分布が均一化されると!ヽぅ効果を奏する。
[0100] このように、ドライエッチング技術において用いられていたフォーカスリングは、化学 反応主体のエッチング反応を均一化するために、反応性の粒子濃度分布の均一化 を図るためのものであり、作用効果がまったく異なる。
[0101] (実施の形態 1)
以下、本発明の実施の形態 1について、図 5乃至図 8を参照して説明する。
[0102] 本実施の形態では、不純物の導入に先立ち、基板の表面層の不純物を導入すベ き領域にプラズマを照射することにより、非晶質化するに際し、試料としての単結晶シ リコン基板の外周端を囲むように導電リングを配した状態で、非晶質化処理を行なう ようにしたことを特徴とするものである。
[0103] 図 5に、本発明の実施の形態 1の非晶質ィ匕方法で用いられる非晶質ィ匕装置の断面 図を示す。この非晶質化装置は、図 5に示すように、真空容器 1と、真空容器 1内を排 気する排気装置としてのターボ分子ポンプ 3と、真空容器 1内の圧力を制御する調圧 弁 4と、試料電極 6に対向した誘電体窓 7の近傍に設けられたプラズマ源としてのコィ ル 8と、コイル 8〖こ 13. 56MHzの高周波電力を供給する高周波電源 5と、試料電極 6 に電圧を供給する電圧源としての高周波電源 10とで構成されている。ここで 11はガ ス導入口であり、 12は排気口である。
[0104] 図 5において、真空容器 1内に、ガス供給装置 2から所定のガスを導入しつつ、排 気装置としてのターボ分子ポンプ 3により排気を行い、調圧弁 4により真空容器 1内を 所定の圧力に保つことができる。そして高周波電源 5により 13. 56MHzの高周波電 力を試料電極 6に対向した誘電体窓 7の近傍に設けられたコイル 8に供給すること〖こ より、真空容器 1内に誘導結合型プラズマを発生させることができる。また、試料電極 6に高周波電力を供給するための高周波電源 10が設けられており、これは、試料とし ての基板 9がプラズマに対して負の電位をもつように、試料電極 6の電位を制御する 電圧源として機能する。なお、ガス供給装置 2から供給されたガスは、ガス導入口 11 から真空容器 1内に導入される。また、真空容器 1内のガスは、排気口 12からポンプ 3へ排気される。
[0105] 図 6は、試料電極 6上にシリコン基板 9が載置されている部分を拡大表示した詳細 断面図である。図 6において、試料電極 6は、試料としてのシリコン基板 9に近い側か ら第 1誘電体層 13と、静電吸着電極 14と、第 2誘電体層 15と、台座 16の層構造をな しており、かつ、台座 16から第 1誘電体層 13、静電吸着電極 14、第 2誘電体層 15が 突出している。そして突出している部分の周辺に、リング状の第 3誘電体層 17、導体 リング 18が設けられており、導体リング 18と台座 16との間に第 3誘電体層 17が設け られている。なお、導体リング 18は、試料としてのシリコン基板 9の外周端より外側に 配置され、シリコン基板 9の表面とほぼ同じ高さの位置に表面をもつように構成されて いる。静電吸着電極 14には直流電圧が印加され、シリコン基板 9は試料電極 6の突 出部の表面である第 1誘電体層 13に吸着されることによりシリコン基板 9の温度が精 密に制御されるようになって!/、る。
[0106] まず非晶質化処理に先立ち、試料としてのシリコン基板表面に、ゲート電極を形成 する。すなわち、単結晶シリコン基板の表面に酸ィ匕シリコン膜からなるゲート酸ィ匕膜を 形成し、この上層に CVD法等によりゲート電極となる導電性層を形成し、これをバタ 一ユングし、ゲート電極のパターンを形成する。
[0107] このようにしてゲート電極の形成されたシリコン基板 9を試料電極 6に載置した後、 試料電極 6の温度を 25°Cに保ちながら、真空容器 1内を排気口 12から排気しつつ、 ガス導入口 11より真空容器 1内にヘリウムガスを 50SCcm供給し、調圧弁 4を制御し て真空容器 1内の圧力を lPaに保つ。
[0108] 次に、プラズマ源としてのコイル 8に高周波電力を 800W供給することにより、真空 容器 1内にプラズマを発生させるとともに、試料電極 6の台座 16に 200Wの高周波電 力を供給することにより、シリコン基板 9の表面の結晶層を非晶質ィ匕することができた [0109] 図 7は、図 5または図 6の左から右に向力う方向に x軸をとつたときの、直径 200mm のシリコン基板を非晶質ィ匕した際の非晶質層の厚さを測定した結果である。図 7から 明らかなように、非晶質層の厚さが基板の外周端付近の領域で極度に高くなることは なぐ均一性は ± 1. 59%へと大きく向上した。ちなみに導電リングを配置しない従来 の構造の非晶質ィヒ処理装置を用いた場合は非晶質層の厚さの測定位置に対する ばらつきは ± 3. 26%であった。これは、基板 9の外周端付近におけるシース領域の 等電位線のゆがみが緩和され、基板 9に入射するイオンの入射エネルギーが基板 9 の外周端付近を含む全面に渡って均一化されたためであると考えられる。
[0110] なお、第 1誘電体層 13の比誘電率および厚さをそれぞれ ε 1、 dl、第 2誘電体層 1 5の比誘電率および厚さをそれぞれ ε 2、 d2、第 3誘電体層 17の比誘電率および厚 さをそれぞれ ε 3、 d3としたとき、基板 9と台座 16の間の単位面積あたりの静電容量 は、 Ca = l/ (dl/ ε l + d2/ ε 2)、導体リング 18と台座 16の間の単位面積あたり の静電容量は、 Cb = ε 3Zd3と表わすことができる。本実施の形態においては、 Ca = 1. 2Cbとなるように、各誘電体層の比誘電率および厚さを選定した。このように導 電リングと台座 16との間の単位面積あたりの静電容量 Ca、 Cbは同程度とするのが望 ましい。 Caと Cbが大きく異なる場合は、静電容量の大きい方の単位面積あたりの高 周波インピーダンスが小さくなり、基板 9と導体リング 18に流入するイオン電流密度( 単位面積あたりのイオン電流)が大きく異なることとなり、非晶質ィ匕処理の均一性を損 なう原因となる。我々の実験によれば、 Caが Cbの 0. 5倍以上 2倍以下である場合に 、良好な面内均一性を確保することができた。
[0111] 比較のため、図 8のように、導体リングを設けることなく板 9の周辺に誘電体リング 19 を配置した構成において同様の実験を行ったところ、従来例と同様に、非晶質層の 厚さが基板の外周端付近の領域で極度に高くなり、均一性は ± 3. 31 %であった。
[0112] なお、本実施の形態においては、基板 9の外周端と導体リング 18の内周端との距 離 Aを 1. 5mmとしたが、 Aは lmm以上 10mm以下であることが望ましい。 Aが lmm 未満であると、基板搬送時に搬送誤差によって導体リング 18に基板 9が乗り上げる恐 れがあり、搬送マージンの確保が十分でない点において好ましくない。また、 Aが 10 mmよりも大きいと、基板 9の外周端付近の領域における非晶質層の厚さの極度な上 昇が生じる場合があり、好ましくない。基板 9の直径 (代表長さ)は、試料電極 6の突出 部の直径 (代表長さ)よりも約 lmm大きく設計されるのが通常であるから、試料電極 6 の突出部の外周端と導体リング 18の内周端との距離は、 2mm以上 11mm以下であ ることが望ましい。
[0113] また、本実施の形態においては、基板 9の表面の高さと導体リング 18の高さの差 B を、 0. 3mmとしたが、 Bは 0. OOlmm以上 lmm以下であることが望ましい。 Bを 0. 0 Olmmとすることは設計上困難であり、また、 Bが lmmより大きいと、基板 9の外周端 付近の領域における非晶質層の厚さの極度な低下または上昇が生じる場合があり、 好ましくない。基板の厚さは約 lmmであるから、試料電極 6の突出部の表面の高さと 導体リング 18の高さの差は、 0. OOlmm以上 2mm以下であることが望ましい。
[0114] (実施の形態 2)
次に、本発明の実施の形態 2について説明する。
[0115] 本実施の形態においては、実施の形態 1において用いたものと同様の非晶質ィ匕装 置を用いた。ただし、イオンエネルギーを制御するための高周波電圧を、図 8におけ る台座 16に印加するのではなぐ静電吸着電極 14に印加した。この場合においても 、処理の均一性の向上を確認することができた。
[0116] なおここで第 1誘電体層の比誘電率および厚さをそれぞれ ε 1、 dl、第 2誘電体層 の比誘電率および厚さをそれぞれ ε 2、 d2、第 3誘電体層の比誘電率および厚さを それぞれ ε 3、 d3とし、静電吸着電極の面積を Sl、導電リングの表面積を S2としたと き、静電吸着電極と試料間のキャパシタンスは、 ε lXSlZdlとなり、静電吸着電極 と導体リング間のキャパシタンスは、 lZ(d2Z ε 2XSl + d3/ ε 3XS2)となる。
[0117] したがって、試料に流れ込む RF電流と、導体リングに流れ込む RF電流の比は、 ε lXSl/dl:l/(d2/ ε 2XSl + d3/ ε 3XS2)となる。
[0118] 単位面積当たりでは、各々を Sl、 S2で割ればよいため、 ε lZdl:lZ(d2XS2 / ε 2XSl + d3/ ε 3)となる。
[0119] 本実施の形態においては、 Cc = l. lCdとなるように、各誘電体層の比誘電率およ び厚さを選定した。 Ccと Cdが大きく異なる場合は、静電容量の大きい方の単位面積 あたりの高周波インピーダンスが小さくなり、基板と導体リングに流入するイオン電流 密度 (単位面積あたりのイオン電流)が大きく異なることとなり、非晶質ィ匕処理の均一 性を損なう原因となる。我々の実験によれば、 Ccが Cdの 0. 5倍以上 2倍以下である 場合に、良好な面内均一性を確保することができた。
[0120] (実施の形態 3)
次に、本発明の実施の形態 3について、図 9を参照して説明する。
[0121] 本実施の形態においては、実施の形態 1において用いたものと同様の非晶質ィ匕装 置を用いた。ただし、試料電極 6の構造は、図 9に示す詳細断面図のような構成とし た。図 9において、試料電極 6は、試料としての基板 9に近い側力ゝら第 1誘電体層 13 、静電吸着電極 14、第 2誘電体層 15、台座 16の層構造をなしており、かつ、台座 16 力も第 1誘電体層 13、静電吸着電極 14、第 2誘電体層 15が突出している。突出して いる部分の周辺に、誘電体リング 19が設けられ、誘電体リング 19の上に誘電体製の フォーカスリング 20が設けられている。基板 9の外周端とフォーカスリングの内周端と の距離 Cは 6mmである。また、フォーカスリング 20は、試料としての基板 9の外周端 より外側に配置され、基板 9の表面よりも 7mm高い位置に表面をもっている。すなわ ち、試料としての基板 9の表面の高さとフォーカスリング 20の高さの差 Dは、 7mmで ある。また、基板 9を試料電極 6の突出部の表面である第 1誘電体層 13に吸着させる ことにより基板の温度を精密に制御するため、静電吸着電極 14には直流電圧が印 加される。
[0122] 基板 9を試料電極 6に載置した後、試料電極 6の温度を 25°Cに保ちながら、真空容 器 1内を排気口 12から排気しつつ、ガス導入口 11より真空容器 1内にヘリウムガスを 50SCcm供給し、調圧弁 4を制御して真空容器 1内の圧力を lPaに保つ。次に、ブラ ズマ源としてのコイル 8に高周波電力を 800W供給することにより、真空容器 1内にプ ラズマを発生させるとともに、試料電極 6の台座 16に 200Wの高周波電力を供給す ることにより、シリコン基板 9の表面の結晶層を均一に非晶質ィ匕することができた。
[0123] このように、非晶質層の厚さが基板の外周端付近の領域で極度に高くなることはな ぐ均一性が大きく向上したのは、基板 9の外周端付近におけるシース領域の等電位 線のゆがみが緩和され、基板 9に入射するイオンの入射エネルギーが基板 9の外周 端付近を含む全面に渡って均一化されたためであると考えられる。 [0124] なお、試料としての基板 9の外周端とフォーカスリング 20の内周端との距離 Cは、 1 mm以上 10mm以下であることが望ましい。 1mm未満である場合、基板 9の外周端 における非晶質層の厚さが小さくなりすぎる場合があり、好ましくない。逆に 10mmよ り大きい場合、基板 9の外周端における非晶質層の厚さの極度な上昇が生じることが あり、好ましくない。基板 9の直径 (代表長さ)は、試料電極 6の突出部の直径 (代表長 さ)よりも約 lmm大きく設計されるのが通常であるから、試料電極 6の突出部の外周 端とフォーカスリング 20の内周端との距離は、 2mm以上 11mm以下であることが望 ましいといえる。
[0125] また、試料としての基板 9の表面の高さとフォーカスリング 20の高さの差 Dは、 lmm 以上 15mm以下であることが好ましい。 lmm未満である場合、基板 9の外周端にお ける非晶質層の厚さの極度な上昇が生じることがあり、好ましくない。逆に 15mmより 大きい場合、基板 9の外周端における非晶質層の厚さが小さくなりすぎる場合があり 、好ましくない。基板の厚さは約 lmmであるから、試料電極 6の突出部の表面の高さ とフォーカスリング 20の高さの差は、 2mm以上 16mm以下であることが望まし!/、と!/ヽ える。
[0126] (実施の形態 4)
次に、本発明の実施の形態 4について、図 10を参照して説明する。
[0127] 本実施の形態においては、試料電極 6上に、試料としてのシリコン基板 9の外形に 符合する凹部を備えたシリコン製のトレー 21を設け、シリコン基板 9がその表面とほぼ 同じ高さのリング状表面をもつようにしたことを特徴とするものである。
[0128] 実施の形態 1において用いたものと同様の非晶質ィ匕装置を用いた。ただし、試料電 極 6の構造は、図 10に示す詳細断面図に示す構成とした。図 10において、試料電 極 6上に、シリコン製トレー 21に搭載された基板 9を載置する。トレー 21は、常時試料 電極 6上に設けておいてもよいし、大気中で基板 9をトレー 21上に載置して、試料基 板 6まで搬送するようにしてもょ ヽ。
[0129] 前者の場合、搬送系の構成が簡単になると!/ヽぅ利点がある。後者の場合、トレー 21 の消耗に伴ってトレー 21を交換する際に、真空容器 1を大気開放する必要がないと いう利点がある。また、トレーの内側に試料を載置すべく段差部が設けられており、段 差部の外側におけるトレーの表面の高さ力 試料の表面とほぼ同じ高さに位置するよ う、構成されている。
[0130] 基板 9を載せたトレー 21を試料電極 6に載置した後、試料電極 6の温度を 15°Cに 保ちながら、真空容器 1内を排気口 12から排気しつつ、ガス導入口 11より真空容器 1内にヘリウムガスを 50SCcm供給し、調圧弁 4を制御して真空容器 1内の圧力を lPa に保つ。次に、プラズマ源としてのコイル 8に高周波電力を 800W供給することにより 、真空容器 1内にプラズマを発生させるとともに、試料電極 6に 200Wの高周波電力 を供給することにより、シリコン基板 9の表面の結晶層を均一に非晶質ィ匕することがで きた。
[0131] このように、非晶質層の厚さが基板の外周端付近の領域で極度に高くなることはな ぐ均一性が大きく向上したのは、基板 9の外周端付近におけるシース領域の等電位 線のゆがみが緩和され、基板 9に入射するイオンの入射エネルギーが基板 9の外周 端付近を含む全面に渡って均一化されたためであると考えられる。
[0132] 本実施の形態においては、試料としての基板 9の外周端と段差部の内周端との距 離 Eを lmmとしたが、 Eは lmm以上 10mm以下であることが好ましい。 Eが lmm未 満であると、基板搬送時に搬送誤差によってトレー 21の段差部の外側に基板 9が乗 り上げる恐れがあり、搬送マージンの確保が十分でない点において好ましくない。ま た、 Eが 10mmよりも大きいと、基板 9の外周端付近の領域における非晶質層の厚さ の極度な上昇が生じる場合があり、好ましくない。
[0133] また、本実施の形態においては、試料としての基板 9の表面の高さと段差部の外側 におけるトレー 21の表面の高さの差 Fを 0. 4mmとしたが、 Fは 0. OOlmm以上 lm m以下であることが好ましい。 Fを 0. 001mmとすることは設計上困難であり、また、 F 力 Slmmより大きいと、基板 9の外周端付近の領域における非晶質層の厚さの極度な 低下または上昇が生じる場合があり、好ましくない。
[0134] また、試料がシリコン基板であり、トレーがシリコン製である場合を例示した力 この 構成により、基板の汚染を最小限に抑えることができる。
[0135] また、図 11に変形例を示すように、トレー 21をクランプリング 22で試料電極に押し つけた状態で非晶質ィ匕することも可能である。この構成により、トレー 21と試料電極 6 との熱伝導が向上し、基板 9の温度をより精密に制御することが可能となる。
[0136] また、プラズマを発生させる工程と、プラズマを停止させるとともに真空容器内の圧 力を、プラズマを発生させる工程よりも高くする工程とを交互に繰り返してもよい。この 構成とすることにより、プラズマを発生させる工程によって基板 9に蓄積された熱を、 プラズマを停止させるとともに真空容器内の圧力を、プラズマを発生させる工程よりも 高くする工程において、基板 9とトレー 21間、および、トレー 21と試料電極 6間に流れ 込んだガスを通じた熱伝達によって、試料電極 6側に逃がすことが可能となり、基板 9 の温度をより精密に制御することが可能となる。
[0137] この場合、プラズマを停止させるとともに真空容器内の圧力を、プラズマを発生させ る工程よりも高くする工程における真空容器内の圧力力 lOOPa以上 lOOOPa以下 であることが好ましい。 lOOPa未満だと、熱を逃がす効果が小さぐ基板 9の温度を下 げるのに時間が力かりすぎる。逆に lOOOPaより大きいと、圧力の増加 Z減少に時間 力 Sかかりすぎる。
[0138] 以上述べた本発明の実施の形態においては、本発明の適用範囲のうち、真空容 器の形状、プラズマ源の方式および配置等に関して様々なノ リエーシヨンのうちの一 部を例示したに過ぎない。本発明の適用にあたり、ここで例示した以外にも様々なバ リエーシヨンが考えられることは、いうまでもない。
[0139] 例えば、コイル 8を平面状としてもよぐあるいは、ヘリコン波プラズマ源、磁気中性 ループプラズマ源、有磁場マイクロ波プラズマ源 (電子サイクロトロン共鳴プラズマ源) を用いてもょ 、し、平行平板型プラズマ源を用いてもょ 、。
[0140] また、ヘリウム以外の不活性ガスを用いてもよぐネオン、アルゴン、クリプトンまたは キセノン (ゼノン)のうち少なくともひとつのガスを用いることができる。これらの不活性 ガスは、試料への悪影響が他のガスよりも小さ 、と 、う利点がある。
[0141] また、試料が単結晶シリコン基板である場合を例示したが、多結晶シリコン基板、 G aAsなどの化合物半導体基板など、他の様々な材質の試料を処理するに際して、本 発明を適用することができる。
産業上の利用可能性
[0142] 本発明の非晶質ィ匕方法および装置は、非晶質ィ匕処理の均一性を高めることが可 能であり、半導体の不純物ドーピング工程をはじめ、液晶などで用いられる薄膜トラ ンジスタの製造や、各種材料の表面改質等の用途にも適用できる。
図面の簡単な説明
[0143] [図 1]本発明の非晶質化装置の原理を示す説明図
[図 2]本発明の非晶質ィ匕装置の原理を示す説明図
[図 3]本発明の非晶質ィ匕装置の原理を示す説明図
[図 4]本発明の非晶質化装置の原理を示す説明図
[図 5]本発明の実施の形態 1で用いた非晶質ィ匕装置の構成を示す断面図
[図 6]本発明の実施の形態 1における試料電極の詳細断面図
[図 7]本発明の実施の形態 1における非晶質層の厚さを測定した結果を示すグラフ [図 8]本発明の実施の形態 1における試料電極の詳細断面図
[図 9]本発明の実施の形態 3における試料電極の詳細断面図
[図 10]本発明の実施の形態 4における試料電極の詳細断面図
[図 11]本発明の実施の形態 4における試料電極の詳細断面図
[図 12]従来例で用いたプラズマドーピング装置の構成を示す断面図
[図 13]従来例で用いたプラズマドーピング装置の構成を示す断面図
[図 14]従来例における非晶質層の厚さを測定した結果を示すグラフ
符号の説明
[0144] 1 真空容器
2 ガス供給装置
3 ターボ分子ポンプ
4 調圧弁
5 高周波電源
6 試料電極
7 誘電体窓
8 コイル
9 基板
10 高周波電源 ガス導入口 排気口

Claims

請求の範囲
[1] 試料の表面でイオンシースの厚さが均一になるように調整しつつ、前記試料の表面 にプラズマを照射するプラズマ処理方法。
[2] 請求項 1に記載のプラズマ処理方法であって、
前記プラズマは前記試料の表面を非晶質ィヒするように調整されるプラズマ処理方 法。
[3] 請求項 1に記載のプラズマ処理方法であって、
前記プラズマは前記試料の表面に不純物を導入するように調整されるプラズマ処 理方法。
[4] 請求項 1乃至 3の 、ずれかに記載のプラズマ処理方法であって、
真空容器内の試料電極に試料を載置し、前記真空容器内に原料ガスを供給しつ つ真空容器内を排気し、プラズマ源に高周波電力を供給することにより真空容器内 にプラズマを発生させ、
前記試料の外周端を囲むように、試料の表面とほぼ同じ高さの表面をもつ導体リン グを配置した状態で、前記試料の表面にプラズマを照射するプラズマ処理方法。
[5] 請求項 4記載のプラズマ処理方法であって、
前記試料の外周端と前記導体リングの内周端との距離が lmm以上 10mm以下で あるプラズマ処理方法。
[6] 請求項 4記載のプラズマ処理方法であって、
前記試料の表面の高さと前記導体リングの高さの差が 0. 001mm以上 lmm以下 であるプラズマ処理方法。
[7] 請求項 4記載のプラズマ処理方法であって、
前記試料電極が、前記試料に近い側から第 1誘電体層、静電吸着電極、第 2誘電 体層、台座の層構造をなしており、かつ、台座力 第 1誘電体層、静電吸着電極、第 2誘電体層が突出しており、導体リングと台座との間に第 3誘電体層が設けられてい る状態で、台座に電圧を印加するようにしたプラズマ処理方法。
[8] 請求項 7記載のプラズマ処理方法であって、
第 1誘電体層の比誘電率および厚さをそれぞれ ε 1、 dl、第 2誘電体層の比誘電 率および厚さをそれぞれ ε 2、 d2、第 3誘電体層の比誘電率および厚さをそれぞれ ε 3、 d3としたとき、 Ca= l/ (dl/ ε l + d2/ ε 2)力 ^Cb = ε 3/d3の 0. 5倍以上 2倍以下であるプラズマ処理方法。
[9] 請求項 4記載のプラズマ処理方法であって、
前記試料電極が、試料に近い側から第 1誘電体層、静電吸着電極、第 2誘電体層 、台座の層構造をなしており、かつ、台座力 第 1誘電体層、静電吸着電極、第 2誘 電体層が突出しており、導体リングと台座との間に第 3誘電体層が設けられている状 態で、静電吸着電極に電圧を印加するプラズマ処理方法。
[10] 請求項 9記載のプラズマ処理方法であって、
第 1誘電体の比誘電率及び厚さをそれぞれ ε 1、 dl、第 2誘電体の比誘電率及び 厚さをそれぞれ ε 2、 d2、第 3誘電体の比誘電率及び厚さをそれぞれ ε 3、 d3、試料 がプラズマにさらされる面の面積を S I、導体リングがプラズマにさらされる面の面積を S2としたとき、 Cc = ε lZdl力Cd= lZ (d2 X S2Z ε 2 X S l + d3/ ε 3) (DO. 5 倍以上 2倍以下であるプラズマ処理方法。
[11] 請求項 1乃至 3のいずれかに記載のプラズマ処理方法であって、
真空容器内の試料電極に試料を載置し、前記真空容器内に原料ガスを供給しつ つ真空容器内を排気し、プラズマ源に高周波電力を供給することにより真空容器内 にプラズマを発生させ、
前記試料の外周端より外側に、試料の表面よりも lmm以上高い位置に表面をもつ フォーカスリングを配置した状態でプラズマ処理するようにしたプラズマ処理方法。
[12] 請求項 11記載のプラズマ処理方法であって、
前記試料の外周端と前記フォーカスリングの内周端との距離が lmm以上 10mm以 下であるプラズマ処理方法。
[13] 請求項 11または 12に記載のプラズマ処理方法であって、
試料の表面の高さとフォーカスリングの高さの差が lmm以上 15mm以下であるプ ラズマ処理方法。
[14] 請求項 1乃至 3のいずれかに記載のプラズマ処理方法であって、
真空容器内の試料を載置するための段差部が設けられたトレー上に、前記試料を 載置し、前記真空容器内に原料ガスを供給しつつ真空容器内を排気し、プラズマ源 に高周波電力を供給することにより真空容器内にプラズマを発生させ、
前記段差部の外側におけるトレーの表面の高さが、試料の表面とほぼ同じ高さに 位置するように調整しつつプラズマを前記試料の表面に照射するようにしたプラズマ 処理方法。
[15] 請求項 14記載のプラズマ処理方法であって、
前記試料の外周端と前記段差部の内周端との距離が lmm以上 10mm以下である プラズマ処理方法。
[16] 請求項 14または 15に記載のプラズマ処理方法であって、
試料の表面の高さと段差部の外側における前記トレーの表面の高さの差が 0. 001 mm以上 lmm以下であるプラズマ処理方法。
[17] 請求項 14乃至 16のいずれかに記載のプラズマ処理方法であって、
試料がシリコン基板であり、トレーがシリコン製であるプラズマ処理方法。
[18] 請求項 14乃至 17のいずれかに記載のプラズマ処理方法であって、
前記トレーを試料電極に押しつけた状態でプラズマ処理するプラズマ処理方法。
[19] 請求項 14乃至 18のいずれかに記載のプラズマ処理方法であって、
プラズマを発生させる工程と、前記プラズマの発生を停止させる工程を交互に繰り 返し、
前記プラズマを停止させる工程では、前記真空容器内の圧力が、プラズマを発生さ せる工程におけるよりも高くなるようにしたプラズマ処理方法。
[20] 請求項 19に記載のプラズマ処理方法であって、
前記プラズマを停止させる工程では、プラズマを発生させる工程における前記真空 容器内の圧力との差が、 lOOPa以上 lOOOPa以下であるプラズマ処理方法。
[21] 真空容器と、
前記真空容器内に配置され、試料を載置する試料電極と、
前記真空容器内にガスを供給するガス供給装置と、
前記真空容器内を排気する排気装置と、
前記真空容器内の圧力を制御する圧力制御装置と、 プラズマ源と、プラズマ源に高周波電力を供給する高周波電源と、 前記試料電極に電圧を供給する電圧源とを備え、
前記試料の表面でプラズマが均一なエネルギー状態をもつように調整しつつ、前 記試料の表面にプラズマを照射するように、前記試料電極の周縁に補助部材を配し たプラズマ処理装置。
[22] 請求項 21に記載のプラズマ処理装置であって、
前記プラズマは前記試料の表面を非晶質ィ匕するように調整されたプラズマであるプ ラズマ処理装置。
[23] 請求項 21に記載のプラズマ処理装置であって、
前記プラズマは前記試料の表面に不純物を導入するように調整されるプラズマ処 理装置。
[24] 請求項 21乃至 23のいずれかに記載のプラズマ処理装置であって、
前記試料電極は前記試料を載置する突出部を具備しており、
前記補助部材は、前記試料の外周端を囲むように、試料の表面とほぼ同じ高さの 表面を持つように配置した導体リングであるプラズマ処理装置。
[25] 請求項 24に記載のプラズマ処理装置であって、
前記試料の外周端と前記導体リングの内周端との距離が 2mm以上 11mm以下で あるプラズマ処理装置。
[26] 請求項 24または 25に記載のプラズマ処理装置であって、
前記試料の表面の高さと前記導体リングの高さの差が 0. OOlmm以上 2mm以下 であるプラズマ処理装置。
[27] 請求項 21乃至 26のいずれかに記載のプラズマ処理装置であって、
前記試料電極が、前記試料に近い側から第 1誘電体層、静電吸着電極、第 2誘電 体層、台座の層構造をなしており、かつ、台座力 第 1誘電体層、静電吸着電極、第 2誘電体層が突出しており、導体リングと台座との間に第 3誘電体層が設けられ、台 座に電圧を印加するよう構成されているプラズマ処理装置。
[28] 請求項 27に記載のプラズマ処理装置であって、
前記第 1誘電体層の比誘電率および厚さをそれぞれ ε 1、 dl、第 2誘電体層の比 誘電率および厚さをそれぞれ ε 2、 d2、第 3誘電体層の比誘電率および厚さをそれ ぞれ ε 3、 d3としたとき、 Ca = l/ (dl/ ε l + d2/ ε 2)力 ^Cb = ε 3/d3の 0. 5倍 以上 2倍以下であることを特徴とするプラズマ処理装置。
[29] 請求項 21乃至 26のいずれかに記載のプラズマ処理装置であって、
前記試料電極が、試料に近い側から第 1誘電体層、静電吸着電極、第 2誘電体層 、台座の層構造をなしており、かつ、台座力 第 1誘電体層、静電吸着電極、第 2誘 電体層が突出しており、導体リングと台座との間に第 3誘電体層が設けられ、静電吸 着電極に電圧を印加するよう構成されているプラズマ処理装置。
[30] 請求項 29に記載のプラズマ処理装置であって、
前記第 1誘電体層の比誘電率及び厚さをそれぞれ ε 1、 dl、第 2誘電体層の比誘 電率及び厚さをそれぞれ ε 2、 d2、第 3誘電体の比誘電率及び厚さをそれぞれ ε 3、 d3、試料がプラズマにさらされる面の面積を S l、導体リングがプラズマにさらされる 面の面積を S2としたとき、 Cc = ε lZdl力Cd= lZ (d2 X S2Z ε 2 X S l + d3/ ε 3)の 0. 5倍以上 2倍以下であるプラズマ処理装置。
[31] 請求項 21乃至 23のいずれかに記載のプラズマ処理装置であって、
前記試料電極は前記試料を載置する突出部を具備しており、
前記補助部材は、前記試料電極に載置される前記試料の表面よりも lmm以上高 い位置に表面を持つように、前記試料を囲むように配置されたフォーカスリングである プラズマ処理装置。
[32] 請求項 31に記載のプラズマ処理装置であって、
前記試料の外周端と前記フォーカスリングの内周端との距離が 2mm以上 11mm以 下であるプラズマ処理装置。
[33] 請求項 30に記載のプラズマ処理装置であって、
前記試料の表面の高さと前記フォーカスリングの高さの差が 2mm以上 16mm以下 であるプラズマ処理装置。
PCT/JP2005/019778 2004-11-02 2005-10-27 プラズマ処理方法およびプラズマ処理装置 WO2006049076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200580037487XA CN101053066B (zh) 2004-11-02 2005-10-27 等离子体处理方法和等离子体处理设备
US11/666,773 US7858155B2 (en) 2004-11-02 2005-10-27 Plasma processing method and plasma processing apparatus
JP2006543245A JP5080810B2 (ja) 2004-11-02 2005-10-27 プラズマ処理方法およびプラズマ処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-319352 2004-11-02
JP2004319352 2004-11-02

Publications (1)

Publication Number Publication Date
WO2006049076A1 true WO2006049076A1 (ja) 2006-05-11

Family

ID=36319088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019778 WO2006049076A1 (ja) 2004-11-02 2005-10-27 プラズマ処理方法およびプラズマ処理装置

Country Status (4)

Country Link
US (1) US7858155B2 (ja)
JP (1) JP5080810B2 (ja)
CN (1) CN101053066B (ja)
WO (1) WO2006049076A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217830A1 (en) * 2006-10-03 2011-09-08 Panasonic Corporation Plasma doping method and apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095529A2 (en) * 2003-03-21 2004-11-04 Tokyo Electron Limited Method and apparatus for reducing substrate backside deposition during processing
JP4880033B2 (ja) * 2007-12-28 2012-02-22 パナソニック株式会社 半導体装置の製造方法
JP5424299B2 (ja) * 2008-12-16 2014-02-26 国立大学法人東北大学 イオン注入装置、イオン注入方法、及び半導体装置
JP2013026345A (ja) * 2011-07-19 2013-02-04 Toshiba Corp 半導体装置の製造方法
JP5970268B2 (ja) * 2012-07-06 2016-08-17 株式会社日立ハイテクノロジーズ プラズマ処理装置および処理方法
JP7018331B2 (ja) * 2018-02-23 2022-02-10 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP7402070B2 (ja) * 2019-06-20 2023-12-20 新光電気工業株式会社 静電チャック、基板固定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515945A (ja) * 1999-12-06 2003-05-07 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド プラズマドーピングシステムのためのドーズ量モニター
JP2004079820A (ja) * 2002-08-20 2004-03-11 Hitachi High-Technologies Corp プラズマ処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912065A (en) 1987-05-28 1990-03-27 Matsushita Electric Industrial Co., Ltd. Plasma doping method
US5711812A (en) 1995-06-06 1998-01-27 Varian Associates, Inc. Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes
JP3862305B2 (ja) 1995-10-23 2006-12-27 松下電器産業株式会社 不純物の導入方法及びその装置、並びに半導体装置の製造方法
US6159874A (en) * 1999-10-27 2000-12-12 Infineon Technologies North America Corp. Method of forming a hemispherical grained capacitor
TW200416801A (en) * 2003-01-07 2004-09-01 Tokyo Electron Ltd Plasma processing apparatus and focus ring
US8080479B2 (en) * 2007-01-30 2011-12-20 Applied Materials, Inc. Plasma process uniformity across a wafer by controlling a variable frequency coupled to a harmonic resonator
US7879731B2 (en) * 2007-01-30 2011-02-01 Applied Materials, Inc. Improving plasma process uniformity across a wafer by apportioning power among plural VHF sources
KR100855002B1 (ko) * 2007-05-23 2008-08-28 삼성전자주식회사 플라즈마 이온 주입시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515945A (ja) * 1999-12-06 2003-05-07 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド プラズマドーピングシステムのためのドーズ量モニター
JP2004079820A (ja) * 2002-08-20 2004-03-11 Hitachi High-Technologies Corp プラズマ処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217830A1 (en) * 2006-10-03 2011-09-08 Panasonic Corporation Plasma doping method and apparatus

Also Published As

Publication number Publication date
US20080258082A1 (en) 2008-10-23
CN101053066A (zh) 2007-10-10
CN101053066B (zh) 2012-02-01
JP5080810B2 (ja) 2012-11-21
US7858155B2 (en) 2010-12-28
JPWO2006049076A1 (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4979580B2 (ja) プラズマドーピング方法
US6213050B1 (en) Enhanced plasma mode and computer system for plasma immersion ion implantation
US8546273B2 (en) Methods and apparatus for forming nitrogen-containing layers
EP3007208A1 (en) Method of processing target object
TW201028804A (en) Substrate processing method
KR20160041764A (ko) 피처리체를 처리하는 방법
JP6108560B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20130323916A1 (en) Plasma doping method and apparatus
US10410874B2 (en) Plasma processing apparatus and method, and method of manufacturing semiconductor device using the same
US20200075313A1 (en) Oxide Removal From Titanium Nitride Surfaces
JPH11340149A (ja) プラズマ処理装置及びプラズマ処理方法
JP5080810B2 (ja) プラズマ処理方法およびプラズマ処理装置
JPH08115901A (ja) プラズマ処理方法およびプラズマ処理装置
US8071446B2 (en) Manufacturing method of semiconductor device and substrate processing apparatus
CN111096082A (zh) 基板处理装置、半导体装置的制造方法和记录介质
JP2004186402A (ja) プラズマ処理装置及びプラズマ処理方法
JP4193255B2 (ja) プラズマ処理装置及びプラズマ処理方法
KR101464867B1 (ko) 반도체 장치 제조 방법, 기판 처리 장치 및 기록 매체
US20080283507A1 (en) Plasma treatment apparatus and method of plasma treatment
JP4303662B2 (ja) プラズマ処理方法
JP5134223B2 (ja) 半導体装置の製造方法及び基板処理装置
CN109923648B (zh) 处理被处理体的方法
JP2002319577A (ja) プラズマ処理装置
WO2006104145A1 (ja) プラズマドーピング方法およびこれに用いられる装置
WO2010005070A1 (ja) プラズマ処理装置およびプラズマ処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580037487.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006543245

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11666773

Country of ref document: US