[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005122230A1 - 銅表面の処理方法及び銅パターン配線形成方法、並びに該方法を用いて作成された半導体装置 - Google Patents

銅表面の処理方法及び銅パターン配線形成方法、並びに該方法を用いて作成された半導体装置 Download PDF

Info

Publication number
WO2005122230A1
WO2005122230A1 PCT/JP2005/010223 JP2005010223W WO2005122230A1 WO 2005122230 A1 WO2005122230 A1 WO 2005122230A1 JP 2005010223 W JP2005010223 W JP 2005010223W WO 2005122230 A1 WO2005122230 A1 WO 2005122230A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
wiring
nitrogen
forming
hydrogen
Prior art date
Application number
PCT/JP2005/010223
Other languages
English (en)
French (fr)
Inventor
Akira Izumi
Masamichi Ishihara
Original Assignee
Kyushu Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004167891A external-priority patent/JP4765055B2/ja
Application filed by Kyushu Institute Of Technology filed Critical Kyushu Institute Of Technology
Priority to US11/569,144 priority Critical patent/US7825026B2/en
Publication of WO2005122230A1 publication Critical patent/WO2005122230A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1418Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/14181On opposite sides of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/777Metallic powder or flake

Definitions

  • the present invention provides a copper surface treatment method that forms a copper surface protective film that is easy to remove while reducing and removing copper surface contaminants, and removing the protective film from the copper surface on which the protective film is formed. And copper pattern wiring with low resistance when forming a direct-drawing pattern wiring using nano copper metal particles and nano copper metal particles prepared by using the processing method.
  • the present invention relates to a formation method and a semiconductor device manufactured using the method.
  • the copper surface is easily oxidized or immediately left in the air in the middle of the process, or when exposed to an oxidizing atmosphere, it is oxidized, and an intermediate treatment such as pickling must be performed during the subsequent process. Don't be.
  • the copper surface was washed at the beginning of the process and then continuously processed in a clean atmosphere to prevent copper surface oxidation.
  • the process must be interrupted during the process and left for a long time, or if it is exposed to an acidic atmosphere during the process, the copper surface must be re-cleaned again during the process. Often there was also.
  • Patent Document 1 relates to a method of manufacturing a semiconductor integrated circuit device having a buried wiring whose main conductive layer is copper.
  • an ammonia plasma processing process which is one of the processes adopted here, Patent Document 1 It has been suggested that a thin nitride layer is formed on the copper surface, which can suppress the formation of an oxide layer.
  • Several other methods using plasma have been proposed. However, in the case of the method using plasma, there is a problem that the possibility of so-called plasma damage cannot be denied.
  • Nano metal particles mean particles with a primary average particle size of SlOOnm or less, preferably 30nm or less. And a method for producing nano-sized particles having a uniform particle size by evaporating metal or the like, and can be dispersed in an organic solvent such as toluene. In addition, in order to stabilize the dispersibility for a long period of time, it is effective to add a dispersant, an antifoaming agent, etc., and a thermosetting resin such as phenol resin or epoxy resin can be added. It is effective to accelerate fusion and fusion between nanoparticles by cure shrinkage. Examples of the material include copper, silver, and gold. These fine particles have a great feature that they can be drawn directly by an ink jet method. In this method, nano metal particles are contained in an organic solvent, and a desired pattern is drawn by an inkjet method that is practically used in a printer.
  • Precious metals such as silver and gold are not easily oxidized, but copper is more easily oxidized than silver and gold.
  • heat treatment about 150-300 ° C
  • the copper surface is oxidized during the heat treatment.
  • Nano metal particles have a problem that the wiring resistance increases due to the formation of surface copper oxide because the proportion of atoms in the surface is large
  • Patent Document 6 In a technique that uses lithography by mixing with a resist in a direct drawing system such as an inkjet system, various low resistance copper coppers have been proposed.
  • Patent Document 6 is known.
  • the reductive heat treatment technology used here does not contain 4% or less of molecular (H) hydrogen.
  • Patent Document 1 JP 2002-110679 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-347241
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-176878
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-127503
  • Patent Document 5 Japanese Patent Laid-Open No. 11-26465
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-75999
  • the present invention forms a protective film that can be easily removed on the surface of copper without using plasma, and the following is performed from the copper surface on which the protective film is formed. It is an object of the present invention to provide a method for treating a copper surface for removing a protective film.
  • the present invention solves the problem of increased wiring resistance due to the formation of surface copper oxide when forming direct-drawing patterning wiring using nano-copper metal particles.
  • the purpose is to achieve resistance and enable mounting on a semiconductor.
  • a gas of a compound containing hydrogen and nitrogen is brought into contact with a heated catalyst body, and chemical species generated by the catalytic decomposition reaction are reacted with the copper surface. It is characterized by reducing and removing contaminants and forming a copper nitride film on the copper surface. The formed copper nitride film can be removed by heating.
  • the nano copper metal particle surface can be treated in the same manner.
  • the method for forming a copper pattern wiring of the present invention includes a step of forming a patterned wiring using nano copper metal particles on a substrate by a direct drawing method, and the wiring of the metal surface oxide film by atomic hydrogen. It is characterized by a process of reducing and / or removing organic substances. Further, according to the present invention, a patterning wiring can be formed using nano copper metal particles in which a copper nitride film is previously formed on the particle surface.
  • the semiconductor device of the present invention includes a semiconductor substrate through electrode that penetrates a semiconductor substrate having an LSI formation surface and connects the upper surface side and the back surface side, and LSI formation on the upper surface side of the semiconductor substrate.
  • the pattern wiring is directly connected to the multilayer wiring portion formed on the surface and / or the back surface rewiring formed on the back surface side of the semiconductor substrate using nano copper metal particles.
  • the wiring is formed by a drawing method, and the wiring is characterized in that the metal surface oxide film is reduced and / or organic substances are removed by atomic hydrogen.
  • a chemical species generated by the catalytic decomposition reaction of a compound containing hydrogen and nitrogen reacts with the copper surface to reduce and remove copper surface contaminants, or to easily remove copper on the copper surface.
  • a nitride protective film can be formed. Thereafter, the copper surface on which the protective film is formed is heated by calorie, so that the protective film is easily thermally decomposed and removed, and a clean copper surface can be obtained. Is provided.
  • the present invention reduction is performed under reduced pressure with atomic hydrogen (H) decomposed with a metal catalyst of the Hot-Wire method, so that the reduction activity is much higher than that of molecular hydrogen. Therefore, the reduction temperature can be lower. As a result, the present invention can be applied to the manufacture of semiconductor devices to achieve low resistance after patterning wiring drawing. Further, according to the present invention, when ammonia is used as a raw material, atomic H, NH, NH, N, etc. decomposed species decomposed with a hot-wire metal catalyst are reduced or nitrided under reduced pressure. Nitro
  • the present invention can be applied to the manufacture of a semiconductor device to achieve low resistance after patterning wiring drawing.
  • FIG. 1 is a schematic cross-sectional view of a reactor (one example) for carrying out the method of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the processing apparatus used as the copper wiring cleaning apparatus shown in FIG.
  • Figure 3 shows that Cu N was formed on the copper surface by the copper surface treatment with ammonia.
  • FIG. 4 is a graph showing the relationship between the amount of nitride produced on the copper surface and the copper surface treatment time with ammonia.
  • Fig. 5 shows the relationship between the N (ls) peak height and the ammonia treatment time in Cu N shown in Fig. 4.
  • FIG. 6 is a diagram showing an example in which the technology of the present invention for removing dirt and oxides from an organic solvent is applied to a semiconductor device.
  • FIG. 7 is a Cu (2p) photoelectron spectroscopic spectrum diagram before and after removal of atomic hydrogen of copper deposited on a silicon substrate by a sputtering method.
  • FIG. 8 is a graph showing the relationship between atomic hydrogen treatment time and the peak intensity of Cu-0 in FIG.
  • FIG. 9 is a diagram showing a C (ls) spectrum of a copper surface by photoelectron spectroscopy.
  • FIG. 10 is a graph showing the relationship between the atomic hydrogen treatment time and the peak intensity of each component force in FIG.
  • a gas of a compound containing hydrogen and nitrogen is brought into contact with a heated catalyst body, chemical species generated by the catalytic decomposition reaction are reacted with the copper surface, and copper surface contaminants are reduced and removed.
  • a copper nitride film is formed on the copper surface, and the formed copper nitride film is removed by heating.
  • the meaning of copper means copper or a substance partially containing copper. As long as copper is included, the same effect as in the case of pure copper can be obtained.
  • the nano copper metal particle surface can be similarly treated according to the present invention. That is, the copper nitride film can be formed as a protective film on the surface of the nanocopper metal particle by reacting the surface of the nanocopper metal particle with the chemical species generated by the catalytic decomposition reaction.
  • the compound containing hydrogen and nitrogen in addition to ammonia gas, for example, hydrazine, a mixture of ammonia and an inert gas can be used.
  • ammonia is preferably used.
  • the catalyst body of the present invention is preferably tungsten, rhenium, tantalum, molybdenum, vanadium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium, One material of aluminum, silicon, or carbon, a single oxide of these materials, a single nitride of these materials, or a single carbide of these materials (except carbon).
  • mixed materials or compound oxides with two or more kinds of force selected from these material forces nitrides of mixed crystals or compounds with two or more types of force selected from these material forces, or these materials (Excluding carbon) It may be any one of two or more selected mixed crystals or compound carbides.
  • the temperature of copper (the substrate described later) is 200 ° C or less when a protective film is deposited on the copper surface, and 300 ° C when the protective film on the copper surface is removed. C or higher is desirable.
  • the gas flow rate of the compound containing hydrogen and nitrogen such as ammonia gas, it is possible to select an arbitrary amount that does not cool copper or the catalyst body.
  • the temperature of the catalyst body is, for example, a temperature range of 1000 ° C force and 2200 ° C in the case of a tandastene catalyst body.
  • FIG. 1 is a schematic cross-sectional view of a protective film forming apparatus used in the present invention.
  • the reaction apparatus used in the method for forming a copper surface protective film of the present invention for example, the treatment apparatus described in Patent Document 2 can be used.
  • ammonia gas is fed into the reaction chamber from the gas inlet on the lower surface of the reaction chamber.
  • a heater is installed just above the reaction chamber, and there is a substrate holder in the reaction chamber directly below the heater, and the substrate is installed on the substrate holder with the deposition surface facing down.
  • a catalyst body having, for example, tungsten linear force is installed between the substrate and the gas inlet, and the inflowing gas is decomposed by heating the catalyst body to a high temperature.
  • Degradation products include active hydrogen, nitrogen, NH, NH, and other active species, which reduce or remove copper surface contaminants.
  • the shutter is for preventing the substrate from being attached until the decomposition reaction is stabilized.
  • the exhaust port is for discharging reaction residual gas.
  • the present invention removes stains and oxides due to an organic solvent on a copper wiring formed by a direct drawing method such as an ink jet method or a screen printing method at a low temperature of room temperature to 200 ° C. This will be explained below.
  • a copper wiring is formed by an inkjet method (or screen printing method).
  • Nano copper metal particles are contained in an organic solvent, and a desired pattern is drawn by the ink jet method that is used in printers. Thereafter, a heat treatment for evaporating the organic solvent is performed.
  • the circuit wiring can be formed by applying a nano paste containing nano copper metal particles in an organic solvent on the substrate by the screen printing method, followed by heating and baking. it can.
  • the present invention removes dirt and oxides from an organic solvent from a copper wiring formed by such a direct drawing method.
  • heat treatment for evaporating the organic solvent is performed, copper oxide is formed by surface oxidation of copper, which can also be removed by subsequent atomic hydrogen treatment.
  • this invention is applicable also when not performing the heat processing which evaporates an organic solvent.
  • the heat treatment is not performed, the organic solvent is contained, but the organic solvent can be removed by the subsequent atomic hydrogen treatment.
  • thermosetting resin when the thermosetting resin is contained in the nano paste, it is desirable to carry out over 200 ° C and the temperature range of the thermosetting resin.
  • the present invention can use nano-copper metal particles that have been pretreated to form a copper nitride film as a protective film before forming a copper wiring by an ink jet method (or screen printing method).
  • Patterning wiring is formed by a direct drawing method using nano-copper metal particles that have undergone such pretreatment.
  • a desired pattern is drawn by adding pretreated nano copper metal particles in an organic solvent.
  • the heat treatment for evaporating the organic solvent can be performed at this stage where the patterning wiring is performed, or the organic solvent is removed at the same time by performing the nitrogen removal treatment in the next stage.
  • Nitrogen removal treatment decomposes the copper nitride surface protective film by heating the formed patterning wiring to a temperature of 120 ° C or higher. At this time, at the same time as the nitride film is decomposed, the interface resistance can be reduced and the resistance can be lowered by sintering the wired particles.
  • a separate sintering process can be performed after the decomposition process of the copper nitride surface protective film, the sintering process is preferably performed in a reducing gas atmosphere such as atomic hydrogen at around 200 ° C.
  • FIG. 2 is a processing device showing an example different from FIG. 1 that can be used as a copper wiring cleaning device.
  • a raw material containing hydrogen such as hydrogen, ammonia, hydrazine or the like, is fed as a raw material for atomic hydrogen or ammonia-decomposing species through a cleaning gas supply mechanism.
  • a substrate heating mechanism such as a heater is installed immediately below the reaction chamber, and the sample (substrate) force is placed on the sample stage in the reaction chamber immediately above the heating mechanism with the deposition surface facing upward.
  • a catalyst body made of, for example, tungsten wire is installed between the shower head for diffusing the gas from the gas inlet and the sample, and the inflowing gas is decomposed by heating the catalyst body to a high temperature by the catalyst body heating mechanism.
  • atomic hydrogen or ammonia decomposing species are generated by a catalytic decomposition reaction with a heated catalyst. Copper interconnect oxides are removed by atomic hydrogen reduction, and organic contaminants can be removed by the formation of hydrocarbons by the reaction of atomic hydrogen and carbon.
  • a compound containing nitrogen which is a raw material of atomic hydrogen or ammonia decomposition species
  • a compound containing nitrogen for example, ammonia or hydrazine
  • atomic nitrogen is generated simultaneously with atomic hydrogen by bringing the compound gas into contact with a heated catalyst body, and the metal surface oxide film is reduced by atomic hydrogen and / or organic substances are removed.
  • the metal surface can be nitrided with atomic nitrogen.
  • the temperature of the catalyst body is, for example, a temperature range of 1000 ° C. to 2200 ° C. in the case of a tungsten catalyst body.
  • the raw material supply mechanism in FIG. 2 is for supplying, for example, hexamethyldisilazane silane used for depositing a SiN-based film, if necessary.
  • the vacuum system is for exhausting residual reaction gas.
  • a silicon LSI wafer on which pattern wiring using nano copper metal particles is formed as a sample (substrate) is placed on the sample stage. Then, in order to remove the contamination of the silicon LSI wafer formed with patterning wiring using nano copper metal particles, hydrogen gas is flowed in at a flow rate of 30 sccm for 10 minutes, and this treatment removes the contamination.
  • Example 1 [0032] Using the reaction apparatus shown in Fig. 1, a silicon LSI wafer in which copper wiring was performed by a damascene process was installed as a substrate in a substrate holder. The temperature of the substrate holder was heated to 60 ° C, the catalyst body of the tandastane wire was heated to 1600 ° C, and the pressure of the reaction chamber was set to 2.7 X 10 _5 Pa. First, in order to remove contamination of the silicon LSI substrate with copper wiring by the damascene process and to continuously form a protective film on the copper surface, ammonia gas was treated for 20 minutes by flowing ammonia gas at 50 sccm for 20 minutes. . By this treatment, the removal of contamination and the formation of a protective film on the copper surface from which contamination was removed were sequentially performed.
  • FIG. 3 shows a spectrum obtained by X-ray photoelectron spectroscopy (XPS) when the ammonia treatment time is 20 minutes.
  • the horizontal axis is the binding energy
  • the vertical axis is the photoelectron intensity.
  • FIG. 4 shows changes in the X-ray photoelectron spectroscopy (XPS) spectrum when the ammonia treatment time is changed.
  • Figure 4 shows the N (ls) peak in CuN.
  • Figure 5 shows the peak
  • the ammonia-treated silicon LSI substrate was taken out of the reaction chamber and allowed to stand at room temperature for 30 days. Changes in the copper surface protective film during the period were measured by X-ray photoelectron spectroscopy (XPS). As a result, the amount of oxide on the surface was 1/10 or less of the normal thickness. This shows that the copper protective film is stable around room temperature.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 6 is a diagram showing an example in which the technique of the present invention for removing dirt and oxides due to an organic solvent is applied to a semiconductor device.
  • the illustrated semiconductor device there is an LSI formation surface on the upper surface of the Si substrate.
  • a circuit (circuit element) is formed on the LSI forming surface.
  • the side on which this LSI forming surface is located is called the upper surface side, and the opposite side is called the back surface side. And on this The surface side is illustrated in the downward direction.
  • a semiconductor substrate (Si substrate) having an LSI formation surface is provided with a Si substrate through electrode that penetrates the Si substrate and connects the upper surface side and the back surface side.
  • a multilayer wiring portion (LSI upper surface rewiring) is formed on the LSI formation surface.
  • LSI upper surface post electrodes are formed there.
  • the post electrode is covered with a surface insulating layer made of, for example, a plastic mold, and a bump for external connection is provided at the tip.
  • the back surface of the Si substrate located on the upper side in the figure, the back surface of the Si substrate is ground so that the tip of the through electrode is exposed, and further, only Si is selectively etched, so that the semiconductor substrate is etched.
  • the tip of the penetrating electrode protrudes from the back surface.
  • a back surface insulating layer is applied until the through electrode is hidden.
  • Back surface rewiring is performed on the back surface insulating layer.
  • a protective film is applied on this redistribution. Furthermore, an opening is provided in the protective film on the bump forming part on the rewiring, and the bump is formed here.
  • a stacked semiconductor device is configured that includes bump electrodes for external connection on both the front surface side and the back surface side, and can be used by being stacked with other semiconductor devices.
  • the present invention can be applied to backside rewiring of such semiconductor devices or LSI topside rewiring to remove stains and oxides due to organic solvents.
  • FIG. 7 and FIG. 8 are diagrams showing copper surface cleaning (acid oxide) with atomic hydrogen.
  • FIG. 7 shows Cu (2P) photoelectron spectroscopy before and after removal of copper atomic hydrogen deposited on a silicon substrate by sputtering.
  • the horizontal axis shows the binding energy (eV), and the vertical axis shows the photoelectron intensity (arbitrary unit) as a relative value.
  • the atomic hydrogen treatment conditions were a tungsten catalyst temperature: 1700 ° C., a substrate temperature: 50 ° C., and a treatment time: 20 minutes. Before treatment, the peak due to Cu-0 appears on the high-bond energy side. It disappears completely by atomic hydrogen treatment.
  • Fig. 8 shows the relationship between the atomic hydrogen treatment time and the peak intensity of Cu-0 in Fig. 7. It turns out that Cu-0 can be removed by 1 minute treatment. Similar results are obtained with ammonia.
  • FIG. 9 and FIG. 10 are diagrams showing copper surface cleaning (carbon-based) with atomic hydrogen.
  • FIG. 3 is a diagram showing a C (ls) spectrum by photoelectron spectroscopy on a copper surface. High binding energy One side is caused by gas components originating from the CO system, and the low binding energy side is attached by dirt.
  • FIG. 10 is a graph showing the relationship between the atomic hydrogen treatment time and the peak intensity from each component in FIG. Atomic hydrogen can remove attached carbon. Although it appears that it has not been completely removed, the sample is transported through the atmosphere between the atomic hydrogen treatment device and the photoelectron spectroscopy device, so that carbon adheres to the sample. On the other hand, it is observed that the intensity of CO gas decreases. From this, this processing
  • the surface has the effect of preventing adsorption of CO-based gas.
  • the above results are the same as those obtained when atomic hydrogen is used. Similar results are obtained even when ammonia is used.
  • the substrate temperature is higher than the decomposition temperature of Cu N (about 120 ° C),
  • the surface becomes Cu, which is the same as when hydrogen is used. Below the decomposition temperature, the surface is nitrided and becomes Cu N, and if this is heated to the decomposition temperature, Cu
  • N decomposes and the surface becomes Cu, which is the same as when hydrogen is used.
  • Copper nano paste (NPC-J from Harima Kasei Co., Ltd.) with a primary average particle size of 5 nm obtained by gas evaporation method, and a wiring pattern with a width of 0.1 mm and a length of 100 mm on a polyimide substrate by inkjet method. Formed.
  • This sample is loaded into the substrate holder of the apparatus shown in Fig. 1, the substrate holder temperature is raised from 200 ° C to 250 ° C, the tungsten catalyst temperature is set to 1700 ° C, and the pressure in the reaction chamber is 2.7 X 10 _5 Set to Pa.
  • Hydrogen gas was flowed in at a flow rate of 50 sccm for 10 minutes and decomposed into atomic hydrogen on the tungsten catalyst to process the copper wiring pattern.
  • the force of the copper nanobase wiring was black before the treatment.
  • After the atomic hydrogen treatment it changed to a metallic copper color.
  • When conducting a continuity test using a resistance tester it showed a good conductivity of 3 X 10 _6 ⁇ 'cm .
  • a sample in which a wiring pattern was formed on a polyimide substrate in the same manner as in Example 5 was loaded into the substrate holder of the apparatus shown in Fig. 1, the substrate holder temperature was 50 ° C, and the tungsten catalyst body temperature was 1700 °. C, and the pressure in the reaction chamber was set to 2.7 X 10 _5 Pa. Ammonia gas was introduced for 20 minutes at a flow rate of 50 sccm, decomposed on the tungsten catalyst, and the copper wiring pattern was processed. So After that, the substrate holder temperature was raised from 200 ° C to 250 ° C, and the reaction was continued for 10 minutes.
  • the copper nanopaste wiring color was black, but after the ammonia treatment, it changed to a metallic copper color.
  • it showed good conductivity of 3 X 10 _6 ⁇ 'cm.
  • copper nanoparticles having a primary average particle size of 5 nm obtained by vapor evaporation in a platinum plate were placed in a nitriding treatment in the same manner as in Example 1. Then, copper nanoparticles having a nitrided surface were prepared. 100 parts by weight of these copper nanoparticles are mixed with 50 parts by weight of toluene and 10 parts by weight of dodecylamine, dispersed with ultrasound, and filtered using a polytetraethylene filter with a mesh size of 0.5 m, and the surface is nitrided. A copper nanoparticle paste was obtained.
  • a sample in which a wiring pattern was formed on a polyimide substrate in the same manner as in Example 5 was heat-treated at 250 ° C for 30 minutes in a reducing nitrogen gas atmosphere containing 5% hydrogen gas, so that the fineness of copper nanoparticles was obtained. Made.
  • the treated wiring had a dull metallic copper color, and when this copper wiring was subjected to a continuity test using a resistance tester, it did not show a very good conductivity of 7 X 10 _6 ⁇ 'cm.
  • the present invention it is possible to reduce and remove copper surface contaminants and to form a copper nitride protective film that can be easily removed on the copper surface. Thereafter, the protective film can be easily removed by heating the copper surface on which the protective film is formed. Moreover, according to the present invention, it is possible to form a protective film on the copper surface without changing the characteristics of the material on the substrate other than copper, for example, the dielectric constant of the dielectric. Therefore, for example, the present invention may be a very useful technique in the manufacturing process of a wiring material for a silicon integrated circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 反応室下部にガス流入口、上部に銅基板、その中間に1600°Cに加熱されたタングステン触媒体が設置されており、ガス流入口から導入されたアンモニアガスはタングステン触媒体で分解され、分解生成した化学種が銅基板表面と反応し、銅表面汚染物を還元除去し、かつ銅基板表面にCu3N薄膜が形成される。このCu3N膜は、銅の酸化防止膜の作用を有する。またこのCu3N膜は300°C以上に加熱すると熱分解して除去され、後に清浄な銅表面をもたらす。    

Description

明 細 書
銅表面の処理方法及び銅パターン配線形成方法、並びに該方法を用い て作成された半導体装置
技術分野
[0001] 本発明は、銅表面汚染物を還元除去すると同時に除去容易な銅表面保護膜を形 成し、かつ、この保護膜が形成された銅表面から保護膜を除去する銅表面の処理方 法及び該処理方法を用いて作成されたナノ銅金属粒子、及びナノ銅金属粒子を用 いた直描方式パターユング配線を形成するに際して、配線形成後の低抵抗ィ匕を図つ た銅パターン配線形成方法、並びに該方法を用いて作成された半導体装置に関す る。
背景技術
[0002] 銅表面は容易に酸化されやすぐプロセス途上で空気中に長時間放置したり、酸 化性雰囲気に触れると酸化されて、その後のプロセス中に酸洗などの中間処理をし なければならない。従来は、銅表面の酸化を防止するため、プロセスの最初に銅表 面の洗浄後、清浄雰囲気中で連続的にプロセスを行い、銅表面の酸化を阻止してき た。しかし、プロセス途上でプロセスを中断し、長時間放置せねばならない場合や、 プロセス途上で酸ィ匕性雰囲気に曝される場合には、プロセス途中で再度銅表面の再 洗浄を行う必要のあることもしばしばあつた。
[0003] カゝかる問題点を解決するための工夫も提案されている。例えば、特許文献 1は、銅 を主導電層とする埋め込み配線を有する半導体集積回路装置の製造方法に関する ものであるが、ここで採用される工程の一つであるアンモニアプラズマ処理工程にお いて、銅の表面に薄い窒化層が形成され、そのために酸ィ匕層の形成を抑制できるこ とが示唆されている。その他にもプラズマを用いる手法が幾つカゝ提案されている。し 力しながら、プラズマを用いる手法の場合は、いわゆるプラズマダメージが発生する 可能性を否定できな 、と 、う問題がある。
[0004] 一方、近年、ナノ金属粒子が開発されて!、る。ナノ金属粒子とは、一次平均粒子径 力 SlOOnm以下、好ましくは 30nm以下の粒子を言い、ガス中蒸発法 (不活性ガス中 で金属等を蒸発させて粒度が揃ったナノサイズ粒子を製造する方法)で調製すること ができ、トルエン等の有機溶剤に分散することができる。また、長期に分散性を安定 ィ匕させるためには、分散剤、消泡剤等を添加することが有効であり、フエノール榭脂 やエポキシ榭脂のような熱硬化性榭脂を添加しその硬化収縮によりナノ粒子間の融 合、融着を加速することが有効である。材料としては銅、銀、金等がある。これらの微 粒子はインクジェット方式で直接描画できることに大きな特長がある。有機溶媒中に ナノ金属粒子が含有されており、それをプリンターで実用されているインクジェット法 で所望のパターンを描く方法である。
[0005] 銀や金のような貴金属はもともと酸化されにくいが、銅の場合は銀や金と比較すると 酸化されやすい性質を持つ。配線パターン描画後は、有機溶媒を蒸発させ、さらに 銅粒子同士を付着させる熱処理(150〜300°C程度)が必要である。し力しながら、そ の熱処理中にも銅の表面は酸化されてしまう。ナノ金属粒子では表面部分の原子の 割合が大きいので、表面酸化銅形成により配線抵抗が大きくなるという問題点がある
[0006] また、熱処理だけでは有機溶媒を十分に取り除くことができな 、ため、銅配線の抵 抗率を下げられずに、配線として利用できないのが現状である。描画後の低抵抗ィ匕 に関して、特に銅ではまだ十分な解決法が見出されていない。
[0007] インクジェット方式等の直描方式ではなぐレジストに混合してリソグラフィを使う技術 においては、銅の低抵抗ィ匕は色々と提案されており、例えば、特許文献 6が知られて いる。ここで使っている還元熱処理技術は、 4%以下の分子状 (H )水素を含んだ不
2
活性ガス中(または真空中)で、 200〜450°Cの温度で行っている。このように、この 技術は、銅の微粒子は使用するものの、直描方式ではなぐ還元の温度が 200〜450 °Cと高くなつている。これだけ高温だと半導体の実装領域では使用することは困難で ある。
特許文献 1:特開 2002— 110679号公報
特許文献 2:特開 2003— 347241号公報
特許文献 3:特開 2001— 176878号公報
特許文献 4:特開 2004— 127503号公報 特許文献 5:特開平 11― 26465号公報
特許文献 6:特開 2002— 75999号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、係る問題点を解決するために、プラズマを用いることなぐ銅の表面に除 去が容易な保護膜を形成し、また、この保護膜が形成された銅表面から、次の工程 処理のために、保護膜を除去するための銅表面の処理方法を提供することにある。
[0009] また、本発明は、ナノ銅金属粒子を用いた直描方式パターユング配線を形成する に際して、表面酸化銅形成により配線抵抗が大きくなるという問題点を解決して、描 画後の低抵抗化を図り、半導体に実装可能にすることを目的としている。
課題を解決するための手段
[0010] 本発明の銅表面の処理方法は、水素及び窒素を含有する化合物の気体を加熱さ れた触媒体に接触させ、接触分解反応により生じた化学種を銅表面と反応させ、銅 表面汚染物を還元除去し、かつ銅表面に銅窒化物膜を形成することを特徴としてい る。形成されたこの銅窒化物膜は、加熱により除去することができる。この本発明の銅 表面の処理方法によって、ナノ銅金属粒子表面も同様に処理することができる。
[0011] 本発明の銅パターン配線形成方法は、基板上にナノ銅金属粒子を用いたパター- ング配線を直描方式により形成する工程と、該配線を原子状水素により金属表面酸 化膜の還元、及び又は、有機物の除去の処理をする工程と、力 成ることを特徴とし ている。また、本発明は、粒子表面に銅窒化物膜を予め形成したナノ銅金属粒子を 用いて、パターユング配線を形成することができる。
[0012] また、本発明の半導体装置は、 LSI形成面を備える半導体基板を貫通して、上面 側と裏面側を接続する半導体基板貫通電極を設け、かつ、この半導体基板の上面 側の LSI形成面の上に形成された多層配線部、或いはこの半導体基板の裏面側に 形成された裏面再配線のいずれか一方若しくはその両方に対して、そのパターニン グ配線を、ナノ銅金属粒子を用いた直描方式により形成し、該配線を原子状水素に より金属表面酸化膜の還元、及び又は有機物の除去の処理をしたことを特徴として いる。 発明の効果
[0013] 本発明によれば、水素及び窒素を含有する化合物の接触分解反応により生じる化 学種を銅表面と反応させ、銅表面汚染物を還元除去したり、銅の表面に除去容易な 銅窒化保護膜を形成させることができる。その後、保護膜が形成された銅表面をカロ 熱すること〖こよって、保護膜が容易に加熱分解除去され、清浄な銅表面を得ることが できるので、再洗浄を必要としない銅表面処理方法が提供される。また、本発明によ れば、銅以外の基板上の材料の特性、例えば、誘電体の誘電率を変化させることな ぐ銅表面に保護膜を形成することが可能となる。
[0014] また、本発明によれば、 Hot-Wire法の金属触媒で分解した原子状の水素(H)で、 減圧下で還元を行うので、その還元活性が分子状の水素より遥かに高ぐそのため に、還元温度はより低温で可能となる。これによつて、本発明は、半導体装置の製造 に適用して、パターニング配線描画後の低抵抗ィ匕を図ることが可能となる。更に、本 発明によれば、アンモニアを原料として用いる場合は、 Hot-Wire法の金属触媒で分 解した原子状の H、 NH、 NH、 N等の分解種が減圧下で還元又は窒化を行い、窒
2
化された銅表面は 120°C以上で分解するという反応を行うので、条件の選定により、 窒化又は還元を自由に行うことができる。これによつても、本発明は、半導体装置の 製造に適用して、パターユング配線描画後の低抵抗ィ匕を図ることが可能となる。 図面の簡単な説明
[0015] [図 1]図 1は本発明の方法を実施するための反応装置 (一例)の断面の概略図である
[図 2]図 2は銅配線洗浄装置として用いた処理装置の図 1とは別の例を示す断面の 概略図である。
[図 3]図 3はアンモニアによる銅表面処理により、 Cu Nが銅表面に生成したことを示す
3
X線光電子スペクトル図である。
[図 4]図 4は銅表面窒化物生成量とアンモニアによる銅表面処理時間との関係を示 す図である。
[図 5]図 5は図 4に示す Cu Nにおける N(ls)のピークの高さとアンモニア処理時間との
3
関係を示す図である。 [図 6]図 6は有機溶媒による汚れや酸ィ匕物を除去する本発明の技術を、半導体装置 に適用した例を示す図である。
[図 7]図 7はスパッタリング法でシリコン基板上に成膜した銅の原子状水素の除去前と 後の Cu(2p)光電子分光スペクトル図である。
[図 8]図 8は原子状水素処理時間と図 7の Cu-0のピーク強度の関係を示す図である
[図 9]図 9は銅表面の光電子分光法による C(ls)スペクトルを示す図である。
[図 10]図 10は原子状水素処理時間と図 9の各成分力ものピーク強度の関係を示す 図である。
発明を実施するための最良の形態
[0016] 本発明は、水素及び窒素を含有する化合物の気体を加熱された触媒体に接触さ せ、接触分解反応により生じた化学種を銅表面と反応させ、銅表面汚染物を還元除 去すると共に銅表面に銅窒化物膜を形成すること、及び、形成された該銅窒化物膜 を加熱により除去することを特徴とするものである。本発明において、銅の意味は、銅 または銅を一部に含む物質を意味する。銅を含む限り、純銅の場合と同様な効果が 得られる。また、本発明によりナノ銅金属粒子表面を同様に処理することができる。即 ち、ナノ銅金属粒子表面に、接触分解反応により生じた化学種を反応させて、ナノ銅 金属粒子表面に保護膜として銅窒化物膜を形成することができる。
[0017] 本発明において、水素及び窒素を含有する化合物としては、アンモニアガスの他に 、例えば、ヒドラジン、アンモニアと不活性ガスの混合物を用いることも可能である。特 にアンモニアが好ましく用いられる。
[0018] また、本発明の触媒体としては、好ましいのは、タングステン、レニウム、タンタル、 モリブデン、バナジウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラ ジゥム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素の いずれか 1つの材料、これら材料の単体の酸化物、これら材料の単体の窒化物、こ れら材料 (炭素を除く)の単体の炭化物である。あるいは、これらの材料力も選択され た 2種類以上力 なる混晶または化合物の酸ィ匕物、これらの材料力 選択された 2種 類以上力 なる混晶または化合物の窒化物、又は、これらの材料 (炭素を除く)から 選択された 2種類以上力 なる混晶または化合物の炭化物の何れか 1つであっても 良い。
[0019] また、反応に際して、銅 (後述の基板)の温度は、銅表面に保護膜を被着させる場 合には 200°C以下、銅表面の保護膜を除去する場合には、 300°C以上が望ましい。ァ ンモニァガス等の水素及び窒素を含有する化合物の気体の流量は、銅や触媒体を 冷却させない任意の量を選択することが可能である。触媒体の温度は、例えば、タン ダステン触媒体の場合は、 1000°C力 2200°Cの温度範囲が適当である。
[0020] 図 1は、本発明に用いた保護膜形成装置の断面の概略図である。本発明の銅表面 保護膜の形成方法に用いる反応装置としては、例えば、特許文献 2に記載の処理装 置を用いることができる。反応室の下面のガス流入口からは、例えば、アンモニアガ スを反応室内に送り込む。反応室外の直上部にはヒータを設置し、ヒータ直下の反応 室内に基板ホルダーがあり、基板は基板ホルダーに被着面を下に向けて設置されて いる。基板とガス流入口の中間に、例えばタングステン線力もなる触媒体を設置し、 該触媒体を高温に加熱して流入したガスを分解する。分解生成物には発生期の水 素、窒素や NH、 NH等の活性種があり、これが銅表面汚染物を還元除去したり、ま
2
た清浄な銅表面と反応し、銅窒化物を形成する。銅窒化物は 120°C以上で分解する ので、これ以上の温度では還元除去のみ進行する。シャッターは、上記分解反応が 安定ィ匕するまで、基板への被着を防止するためのものである。排気口は、反応残余 ガスを排出するためのものである。
[0021] また、本発明は、インクジェット法又はスクリーン印刷法等の直描方式で形成した銅 配線の有機溶媒による汚れや酸化物を、室温以上 200°C以下の低温で除去する。以 下、これについて、説明する。
[0022] (1)インクジェット法 (又はスクリーン印刷法)で銅配線を形成する。
有機溶媒中にナノ銅金属粒子が含有されており、それをプリンターで実用されてい るインクジェット法で所望のノターンを描く。その後、有機溶剤を蒸発させる熱処理が 行われる。或いは、スクリーン印刷法の場合は、有機溶媒中にナノ銅金属粒子を含 有させたナノペーストを、基板上にスクリーン印刷法で塗布した後、加熱焼成すること により、回路配線を形成することができる。 [0023] 本発明は、このような直描方式により形成された銅配線に対して、有機溶媒による 汚れや酸化物を除去する。有機溶剤を蒸発させる熱処理を行った場合、銅の表面酸 化によって酸化銅が形成されてしまうが、これも後の原子状水素処理によって除去が できる。或いは、本発明は、有機溶剤を蒸発させる熱処理を行わない場合にも適用 できる。熱処理を行わない場合は、有機溶剤を含有した状態になるが、後に行う原子 状水素処理によって有機溶媒の除去も可能となる。
[0024] (2)次に、銅配線洗浄装置中で原子状水素もしくはアンモニア分解種で銅酸ィ匕物お よび有機溶媒汚染物を除去する。このとき原子状水素を使用すると銅配線が還元、 クリーニングされ、アンモニア分解種を使用すると基板の温度が 120°C以下では窒素 化され、 120°C以上では窒化銅の分解により還元、クリーニングされる。銅表面が還 元、クリーニングされるとき同時に配線された粒子の焼結により界面抵抗を減少させ 低抵抗化することができる。銅窒化物表面保護膜の分解処理の後で別途焼結処理 を施すこともできる力 焼結処理は、 200°C付近で原子状水素などの還元ガス雰囲気 中で行うことが望ましい。また、ナノペーストに熱硬化性榭脂が含まれている場合には 、 200°Cと熱硬化性榭脂の温度範隨こかけて行うことが望ま 、。
[0025] また、本発明は、インクジェット法 (又はスクリーン印刷法)で銅配線を形成する前に 保護膜として銅窒化物膜を形成する前処理をしたナノ銅金属粒子を用いることがで きる。このような前処理をしたナノ銅金属粒子を用いて、パターニング配線を直描方 式により形成する。例えば、インクジェット法による場合は、前処理をしたナノ銅金属 粒子を有機溶媒中に含有させて所望のパターンを描く。有機溶剤を蒸発させる熱処 理は、パターユング配線をしたこの段階で行うこともできるし、或いは、次の段階の窒 素除去処理を行うことによって、同時に、有機溶媒は除去される。窒素除去処理は、 形成したパターユング配線を 120°C以上の温度に加熱することにより銅窒化物表面 保護膜を分解する。このとき窒化膜が分解されると同時に配線された粒子の焼結に より界面抵抗を減少させ低抵抗化することができる。銅窒化物表面保護膜の分解処 理の後で別途焼結処理を施すこともできるが、焼結処理は、 200°C付近で原子状水 素などの還元ガス雰囲気中で行うことが望ましい。
[0026] 図 2は、銅配線洗浄装置として用いることのできる図 1とは別の例を示す処理装置 の断面の概略図である。反応室の上面のガス流入口からは、原子状水素もしくはァ ンモユア分解種の原料として、水素、アンモニア、ヒドラジン等の水素を含んだ原料を 、クリーニングガス供給機構を通して送り込む。
[0027] 反応室外の直下部にはヒータ等の基板加熱機構を設置し、この加熱機構直上の反 応室内の試料ステージ上に、試料 (基板)力 被着面を上に向けて設置される。ガス 流入口からのガスを拡散させるシャワーヘッドと、試料の中間に、例えばタングステン 線からなる触媒体を設置し、該触媒体を触媒体加熱機構により高温に加熱して流入 したガスを分解する。これによつて、原子状水素もしくはアンモニア分解種が、加熱触 媒による接触分解反応により生成される。銅配線の酸化物は原子状水素の還元によ り取り除かれ、有機汚染物は原子状水素と炭素の反応により炭化水素が形成される ことで除去できる。
[0028] 原子状水素もしくはアンモニア分解種の原料である上述の水素を含む化合物とし て、窒素も含む化合物、例えば、アンモニア、ヒドラジンを用いることができる。この場 合、該化合物気体を加熱された触媒体に接触させることにより原子状水素と同時に 原子状窒素が発生し、原子状水素による金属表面酸化膜の還元、及び又は、有機 物の除去とともに、原子状窒素により金属表面の窒化処理を行うことができる。
[0029] 触媒体材料としては、図 1を参照して上述したような材料を用いることができる。また 、触媒体の温度は、例えば、タングステン触媒体の場合は、 1000°Cから 2200°Cの温 度範囲が適当である。
[0030] なお、図 2中の原料供給機構は、必要に応じて、例えば、 SiN系膜を堆積するため に用いられるへキサメチルジシラザンゃシラン等を供給するためのものである。また、 真空系は、反応残余ガスを排出するためのものである。
[0031] このような銅配線洗浄装置を用いて、試料 (基板)として、ナノ銅金属粒子を用いた パター-ング配線を形成したシリコン LSIゥエーハを、試料ステージに設置する。そし て、ナノ銅金属粒子を用いたパターユング配線を形成したシリコン LSIゥエーハの汚 染を除去するため、水素ガスを流量 30sccmで 10分間流入し、この処理により、汚染の 除去を行う。
実施例 1 [0032] 図 1に示す反応装置を用いて、基板として、ダマシン工程により銅配線を行ったシリ コン LSIゥエーハを、基板ホルダーに設置した。基板ホルダーの温度を 60°C、タンダス テン線の触媒体を 1600°Cに加熱し、反応室の圧力を 2.7 X 10_5Paに設定した。最初 、ダマシン工程により銅配線したシリコン LSI基板の汚染を除去し、かつ連続して銅表 面の保護膜を形成するため、アンモニアガス 50sccmを 20分間流入し、シリコン基板の アンモニアガス処理を行った。この処理により、汚染の除去と汚染の除去された銅表 面に保護膜形成が逐次的に行われた。
[0033] 図 3に、アンモニア処理時間 20分の場合の、 X線光電子分光法 (XPS)で得たスぺク トルを示す。横軸は結合エネルギー、縦軸は光電子強度である。銅のピークより結合 エネルギーが 0.8V高い Cu Nのピークが見られる。このことより、アンモニア処理により
3
Cu Nが生成していることがわ力る。
3
[0034] 図 4は、アンモニア処理時間を変えた場合の、 X線光電子分光法 (XPS)スペクトル の変化を示す。図 4には Cu Nにおける N(ls)のピークが現れている。図 5は、そのピー
3
クの高さとアンモニア処理時間との関係を示したものである。処理時間と共に Cu Nが
3 増加していることがわかる。
[0035] 次に、上記アンモニア処理をしたシリコン LSI基板を反応室から取り出した後、室温 で 30日間放置した。その間の銅表面保護膜の変化を、 X線光電子分光法 (XPS)によ り測定した。その結果、表面の酸化物量は、通常の厚さの 1/10以下であった。これよ り銅の保護膜が室温付近で安定であることがわかる。
実施例 2
[0036] 上記、放置後の銅保護膜被着シリコン LSI基板を,再度、前記反応室内に入れて、 真空中で熱処理を行った。 350°C、 150分処理すると、銅保護膜は完全に熱分解除 去されることが X線光電子分光法 (XPS)の測定結果からわかった。
実施例 3
[0037] 図 6は、有機溶媒による汚れや酸化物を除去する本発明の技術を、半導体装置に 適用した例を示す図である。図示の半導体装置において、 Si基板の上面に LSI形成 面がある。 LSI形成面には、回路(回路素子)が形成されている。図中、この LSI形成 面が位置する側を、上面側と称し、その反対側を裏面側と称している。そして、この上 面側を、下方向に向けて図示している。
[0038] LSI形成面を備える半導体基板 (Si基板)には、 Si基板を貫通して、上面側と裏面 側を接続する Si基板貫通電極が設けられている。この上面側(図中下側)において、 LSI形成面の上には、多層配線部 (LSI上面再配線)が形成される。さらに、この LSI 上面再配線上の所定位置に接続するために、そこに柱状の Cuポスト電極 (LSI上面 ポスト電極)を複数形成する。このポスト電極は、例えば、プラスチックモールドなどに よる表面絶縁層で覆うと共に、その先端には、外部接続用のバンプが設けられる。
[0039] 一方、図中上側に位置する Si基板の裏面側においては、貫通電極の先端が顔を 出すように Si基板の裏面を研削し、さらに、 Siだけを選択エッチングして、半導体基 板の裏面から貫通電極の先端を突出させる。この裏面上に、貫通電極が隠れるまで 裏面絶縁層を塗布する。この裏面絶縁層の上に、裏面再配線を実施する。この再配 線の上に、保護膜が塗布される。さらに、再配線上のバンプ形成部上の保護膜に開 口を設け、ここに、バンプを形成する。
[0040] これによつて、表面側と裏面側の両面に外部接続用のバンプ電極を備えて、他の 半導体装置等と積層して用いることのできる積層型半導体装置が構成される。本発 明は、このような半導体装置の裏面再配線、或いは LSI上面再配線に対して適用し て、有機溶媒による汚れや酸ィ匕物を除去することが可能となる。
実施例 4
[0041] 図 7及び図 8は、原子状水素による銅の表面洗浄 (酸ィ匕物)を示す図である。図 7は 、スパッタリング法でシリコン基板上に成膜した銅の原子状水素の除去前と後の Cu(2 P)光電子分光スペクトル図を示している。横軸は結合エネルギー(eV)を、縦軸は光 電子強度 (任意単位)を相対値で示している。原子状水素処理条件は、タングステン 触媒体温度: 1700°C、基板温度: 50°C、処理時間: 20分とした。処理前は高結合エネ ルギー側に Cu— 0によるピークが出現している力 原子状水素処理によってそれが 完全に消滅している。図 8は、原子状水素処理時間と図 7の Cu-0のピーク強度の関 係を示したものである。 1分の処理によって Cu-0の除去が可能であることがわ力る。 同様の結果はアンモニアを用いた場合でも得られて 、る。
[0042] 図 9及び図 10は、原子状水素による銅の表面洗浄 (炭素系)を示す図であり、図 9 は、銅表面の光電子分光法による C(ls)スペクトルを示す図である。高結合エネルギ 一側は CO系に起因したガス成分により、低結合エネルギー側は汚れなどによる付
2
着炭素に起因した成分である。図 10は、原子状水素処理時間と図 9の各成分からの ピーク強度の関係を示す図である。原子状水素により、付着炭素の除去は可能であ る。完全に除去できていないように見えるが、原子状水素処理装置と光電子分光装 置との間で大気を通して試料を搬送するため、その間に炭素が付着してしまうためで ある。一方、 CO系ガスの強度も減少する様子が観測される。これより、本処理によつ
2
て、表面に CO系ガスなどの吸着を防ぐ効果があるものと推測される。
2
[0043] 以上の結果は、原子状水素を用いた場合である力 同様の結果はアンモニアを用 いた場合でも得られている。基板の温度が Cu Nの分解温度以上(120°C程度)で、
3
アンモニアを使えば表面は Cuとなり水素を使用した場合と同じになる。分解温度以 下では、表面は窒化されて、ー且 Cu Nとなり、これを分解温度に加熱すれば、 Cu
3 3
Nが分解して表面は Cuとなり、水素を使用した場合と同じになる。
実施例 5
[0044] ガス中蒸発法で得られた一次平均粒子系が 5nmの銅ナノペースト (ハリマ化成製 の NPC— J)、インクジェット方式でポリイミド基板上に幅 0.1mm、長さ 100mmの配線パ ターンを形成した。この試料を、図 1の装置の基板ホルダーに装填し、基板ホルダー 温度を 200°Cから 250°C迄昇温し、タングステン触媒体温度を 1700°Cとし、反応室 の圧力を 2.7 X 10_5Paに設定した。水素ガスを流量 50sccmで 10分間流入し、タングス テン触媒上で原子状水素に分解し、銅配線パターンを処理した。処理前は銅ナノべ 一スト配線の色は黒色をしていた力 原子状水素処理後には、金属銅色に変化した 。また、抵抗測定用テスターにて導通試験を行ったところ、 3 X 10_6 Ω 'cmと良好な 導電性を示した。
実施例 6
[0045] 実施例 5と同様にしてポリイミド基板上に配線パターンを形成した試料を、図 1の装 置の基板ホルダーに装填し、基板ホルダー温度を 50°Cとし、タングステン触媒体温 度を 1700°Cとし、反応室の圧力を 2.7 X 10_5Paに設定した。アンモニアガスを流量 50 sccmで 20分間流入し、タングステン触媒上で分解し、銅配線パターンを処理した。そ の後、基板ホルダー温度を 200°Cから 250°C迄昇温し、反応を 10分間継続して処理 を行った。アンモニア処理前は、銅ナノペースト配線の色は黒色をしていた力 アン モ-ァ処理後は、金属銅色に変化した。また、抵抗測定用テスターにて導通試験を 行ったところ、 3 X 10_6 Ω ' cmと良好な導電性を示した。
実施例 7
[0046] シリコン基板上に配線された銅に換えて、白金製のプレートにガス中蒸発法で得ら れた一次平均粒子系が 5nmの銅ナノ粒子を入れ、実施例 1と同様に窒化処理を行 い、表面が窒化された銅ナノ粒子を調製した。この銅ナノ粒子 100重量部をトルエン 50重量部及びドデシルァミン 10重量部と混合し、超音波で分散し、更にメッシュサイ ズが 0. 5 mのポリテトラエチレンフィルターを用いてろ過し、表面が窒化された銅ナ ノ粒子ペーストを得た。これを用いて、インクジェット方式で幅 0.1mm、長さ 100mmの 配線パターンをポリイミド基板上に描画した。その後に真空中で 200°Cから 250°C迄 昇温し、 20分間、銅ナノ粒子表面に形成された窒化銅の熱分解及び該熱分解され たナノ銅粒子の緻密化処理を行った。処理後の銅配線は金属銅色であり、抵抗測定 用テスターにて導通試験を行ったところ、 3 X 10_6 Ω ' cmと良好な導電性を示した。 比較例 1
[0047] 実施例 5と同様にしてポリイミド基板上に配線パターンを形成した試料を、水素ガス を 5%含んだ還元性窒素ガス雰囲気中で 250°Cで 30分間熱処理し、銅ナノ粒子の 緻密化を行った。処理後の配線はくすんだ金属銅色をしており、この銅配線を抵抗 測定用テスターにて導通試験を行ったところ、 7 X 10_6 Ω ' cmとあまり良好な導電性 を示さなかった。
産業上の利用可能性
[0048] 本発明の実施により、銅表面汚染物を還元除去し、かつ銅の表面に除去容易な銅 窒化保護膜を形成させることができる。その後、保護膜が形成された銅表面を加熱 することによって、保護膜を容易に除去することができる。しかも、本発明によれば、 銅以外の基板上の材料の特性、例えば、誘電体の誘電率を変化させることなぐ銅 表面に保護膜を形成することが可能となる。従って、本発明は、例えば、シリコン集積 回路の配線材料の製造工程で、非常に有用な技術となる可能性がある。

Claims

請求の範囲
[1] 水素及び窒素を含有する化合物の気体を加熱された触媒体に接触させる工程と、 接触分解反応により生じた化学種を銅表面と反応させて、銅表面汚染物を還元除 去し、かつ銅表面に保護膜として銅窒化物膜を形成する工程と、
から成る銅表面の処理方法。
[2] 前記水素及び窒素を含有する化合物が、アンモニアである請求項 1に記載の銅表面 の処理方法。
[3] 前記触媒体が、タングステン、タンタル、モリブデン、バナジウム、レニウム、白金、トリ ゥム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、 ニッケル、クロム、アルミニウム、シリコン、炭素のいずれか 1つの材料、これら材料の 単体の酸化物、これら材料の単体の窒化物、これら材料 (炭素を除く)の単体の炭化 物、これらの材料力 選択された 2種類以上力もなる混晶または化合物の酸ィ匕物、こ れらの材料力 選択された 2種類以上力もなる混晶または化合物の窒化物、又は、こ れらの材料 (炭素を除く)力 選択された 2種類以上力 なる混晶または化合物の炭 化物の何れか 1つである請求項 1に記載の銅表面の処理方法。
[4] 形成された前記銅窒化物膜を加熱により除去する工程をさらに含む請求項 1に記載 の銅表面の処理方法。
[5] 基板上にナノ銅金属粒子を用いたパターニング配線を直描方式により形成する工程 と、
該配線を原子状水素により金属表面酸化膜の還元、及び又は、有機物の除去の 処理をする工程と、
前記処理工程と同時に、及び又は、その後に、加熱によりナノ銅金属粒子の緻密 化を行う工程と、
から成る銅パターン配線形成方法。
[6] 前記原子状水素が、水素を含有する化合物の気体を加熱された触媒体に接触させ ることにより生じる接触分解反応による原子状水素である請求項 5に記載の銅パター ン配線形成方法。
[7] 前記パターユング配線を形成する方法が、インクジェット方式である請求請 5に記載 の銅パターン配線形成方法。
[8] 水素を含有する前記化合物が窒素も含む化合物であり、該化合物の気体を加熱さ れた触媒体に接触させることにより原子状水素と同時に窒素を含む分解種を発生さ せ、原子状水素による金属表面酸化膜の還元、及び又は、有機物の除去とともに窒 素を含む分解種により金属表面の窒化処理を行う請求請 6に記載の銅パターン配線 形成方法。
[9] 基板上にナノ銅金属粒子を用いたパターニング配線を直描方式により形成する工程 と、
該配線を水素及び窒素を含有する化合物の気体を加熱された触媒体に接触させ 、接触分解反応により生じた化学種により窒化する工程と
該窒化された金属銅配線を熱分解する工程と、
前記熱分解する工程と同時に、及び又は、その後に、加熱によりナノ銅金属粒子の 緻密化を行う工程と、
から成る銅パターン配線形成方法。
[10] LSI形成面を備える半導体基板を貫通して、上面側と裏面側を接続する半導体基板 貫通電極を設け、かつ、この半導体基板の上面側の LSI形成面の上に形成された多 層配線部、或 、はこの半導体基板の裏面側に形成された裏面再配線の!/、ずれか一 方若しくはその両方に対して、適用される請求項 5に記載の銅パターン配線形成方 法。
[11] LSI形成面を備える半導体基板を貫通して、上面側と裏面側を接続する半導体基板 貫通電極を設け、かつ、この半導体基板の上面側の LSI形成面の上に形成された多 層配線部、或 、はこの半導体基板の裏面側に形成された裏面再配線の!/、ずれか一 方若しくはその両方に対して、
そのパター-ング配線を、ナノ銅金属粒子を用いた直描方式により形成し、 該配線を原子状水素により金属表面酸化膜の還元、及び又は有機物の除去の処 理をした、ことから成る半導体装置。
[12] 水素及び窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解 反応により生じたィ匕学種をナノ銅金属粒子表面と反応させて、ナノ銅金属粒子表面 に保護膜として銅窒化物膜を形成したナノ銅金属粒子。
水素及び窒素を含有する化合物の気体を加熱された触媒体に接触させ、接触分解 反応により生じたィ匕学種をナノ銅金属粒子表面と反応させて、ナノ銅金属粒子表面 に保護膜として銅窒化物膜を形成したナノ銅金属粒子を用いたパターニング配線を 直描方式により形成する工程と、
形成したパターユング配線を加熱することにより銅窒化物表面保護膜を分解し窒素 を除去する工程と、
前記窒素を除去する工程と同時に、及び又は、その後に、加熱によりナノ銅金属粒 子の緻密化を行う工程と、
から成る銅パターン配線形成方法。
PCT/JP2005/010223 2004-06-07 2005-06-03 銅表面の処理方法及び銅パターン配線形成方法、並びに該方法を用いて作成された半導体装置 WO2005122230A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/569,144 US7825026B2 (en) 2004-06-07 2005-06-03 Method for processing copper surface, method for forming copper pattern wiring and semiconductor device manufactured using such method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-167891 2004-06-07
JP2004167891A JP4765055B2 (ja) 2004-06-07 2004-06-07 銅表面の処理方法
JP2004-378965 2004-12-28
JP2004378965 2004-12-28

Publications (1)

Publication Number Publication Date
WO2005122230A1 true WO2005122230A1 (ja) 2005-12-22

Family

ID=35503363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010223 WO2005122230A1 (ja) 2004-06-07 2005-06-03 銅表面の処理方法及び銅パターン配線形成方法、並びに該方法を用いて作成された半導体装置

Country Status (2)

Country Link
US (1) US7825026B2 (ja)
WO (1) WO2005122230A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125744A1 (ja) * 2006-04-25 2007-11-08 Oki Electric Industry Co., Ltd. 両面電極構造の半導体装置及びその製造方法
WO2008110547A1 (en) * 2007-03-12 2008-09-18 Aixtron Ag Novel plasma system for improved process capability
WO2009054343A1 (ja) * 2007-10-22 2009-04-30 Hitachi Chemical Company, Ltd. 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
JP2020155495A (ja) * 2019-03-18 2020-09-24 キオクシア株式会社 半導体装置及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340517B2 (ja) 2003-10-30 2009-10-07 Okiセミコンダクタ株式会社 半導体装置及びその製造方法
CN101547567B (zh) * 2008-03-28 2011-03-02 富葵精密组件(深圳)有限公司 导电线路的制作方法
CN101949006B (zh) * 2010-07-16 2013-05-08 常州大学 氮化铜薄膜、氮化铜/铜以及铜二维有序阵列的制备方法
JP5243510B2 (ja) 2010-10-01 2013-07-24 富士フイルム株式会社 配線材料、配線の製造方法、及びナノ粒子分散液
CN102386326B (zh) * 2011-10-13 2013-10-16 复旦大学 一种用于高密度阻变存储的氮化铜阻变材料的制备方法
JP6057379B2 (ja) * 2013-01-31 2017-01-11 国立研究開発法人産業技術総合研究所 窒化銅微粒子およびその製造方法
US9523146B1 (en) * 2015-06-17 2016-12-20 Southwest Research Institute Ti—Si—C—N piston ring coatings
US11735548B2 (en) 2018-08-08 2023-08-22 Kuprion Inc. Electronics assemblies employing copper in multiple locations
US11890678B2 (en) 2021-10-25 2024-02-06 Honeywell Federal Manufacturing & Technologies, Llc Systems and methods for abrasive oxide removal in additive manufacturing processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056060A (ja) * 1996-08-09 1998-02-24 Hitachi Ltd 半導体装置の製造方法
JPH10308120A (ja) * 1997-05-02 1998-11-17 Ulvac Japan Ltd 金属ペーストの焼成方法
JP2001064794A (ja) * 1999-08-25 2001-03-13 Japan Science & Technology Corp 100ナノメーター未満の直径とアスペクト比が1を越えるように発達させた無機質微細ロッドおよび前記ロッドの製造方法。
JP2002026014A (ja) * 2000-07-07 2002-01-25 Seiko Epson Corp 配線の形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737221B2 (ja) * 1996-09-06 2006-01-18 英樹 松村 薄膜作成方法及び薄膜作成装置
JPH1126465A (ja) 1997-06-30 1999-01-29 Sharp Corp 導電体を銅導体の接続表面に接続する方法、集積回路、および、ビアを通って延びる電気的接続
US6492266B1 (en) * 1998-07-09 2002-12-10 Advanced Micro Devices, Inc. Method of forming reliable capped copper interconnects
US6245849B1 (en) * 1999-06-02 2001-06-12 Sandia Corporation Fabrication of ceramic microstructures from polymer compositions containing ceramic nanoparticles
JP4243401B2 (ja) 1999-12-21 2009-03-25 エルジー ディスプレイ カンパニー リミテッド 銅配線基板およびその製造方法ならびに液晶表示装置
JP2002075999A (ja) 2000-08-31 2002-03-15 Ulvac Japan Ltd 銅配線パターンの形成方法
JP2002110679A (ja) 2000-09-29 2002-04-12 Hitachi Ltd 半導体集積回路装置の製造方法
JP4370593B2 (ja) 2002-05-31 2009-11-25 独立行政法人科学技術振興機構 表面改質方法
US7137190B2 (en) 2002-10-03 2006-11-21 Hitachi Global Storage Technologies Netherlands B.V. Method for fabricating a magnetic transducer with a corrosion resistant layer on metallic thin films by nitrogen exposure
KR100483290B1 (ko) * 2002-12-14 2005-04-15 동부아남반도체 주식회사 반도체 소자의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056060A (ja) * 1996-08-09 1998-02-24 Hitachi Ltd 半導体装置の製造方法
JPH10308120A (ja) * 1997-05-02 1998-11-17 Ulvac Japan Ltd 金属ペーストの焼成方法
JP2001064794A (ja) * 1999-08-25 2001-03-13 Japan Science & Technology Corp 100ナノメーター未満の直径とアスペクト比が1を越えるように発達させた無機質微細ロッドおよび前記ロッドの製造方法。
JP2002026014A (ja) * 2000-07-07 2002-01-25 Seiko Epson Corp 配線の形成方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125744A1 (ja) * 2006-04-25 2007-11-08 Oki Electric Industry Co., Ltd. 両面電極構造の半導体装置及びその製造方法
US7884466B2 (en) 2006-04-25 2011-02-08 Oki Electric Industry Co., Ltd. Semiconductor device with double-sided electrode structure and its manufacturing method
CN101432870B (zh) * 2006-04-25 2011-08-10 冲电气工业株式会社 两面电极结构的半导体装置及其制造方法
WO2008110547A1 (en) * 2007-03-12 2008-09-18 Aixtron Ag Novel plasma system for improved process capability
US8308969B2 (en) 2007-03-12 2012-11-13 Aixtron, SE Plasma system for improved process capability
WO2009054343A1 (ja) * 2007-10-22 2009-04-30 Hitachi Chemical Company, Ltd. 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
JPWO2009054343A1 (ja) * 2007-10-22 2011-03-03 日立化成工業株式会社 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
JP5067426B2 (ja) * 2007-10-22 2012-11-07 日立化成工業株式会社 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
TWI425893B (zh) * 2007-10-22 2014-02-01 Hitachi Chemical Co Ltd 銅配線圖案形成方法以及該方法所使用的氧化銅粒子分散液
JP2020155495A (ja) * 2019-03-18 2020-09-24 キオクシア株式会社 半導体装置及びその製造方法
JP7210344B2 (ja) 2019-03-18 2023-01-23 キオクシア株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
US20070187812A1 (en) 2007-08-16
US7825026B2 (en) 2010-11-02

Similar Documents

Publication Publication Date Title
WO2005122230A1 (ja) 銅表面の処理方法及び銅パターン配線形成方法、並びに該方法を用いて作成された半導体装置
US9223203B2 (en) Microcontact printed films as an activation layer for selective atomic layer deposition
KR101697055B1 (ko) 금속 구리막 및 그 제조 방법, 금속 구리 패턴 및 그것을 이용한 도체 배선, 금속 구리 범프, 열전도로, 접합재, 및 액상(液狀) 조성물
JP3939735B2 (ja) 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
KR100775159B1 (ko) 집적회로의 생산 공정
US8183150B2 (en) Semiconductor device having silicon carbide and conductive pathway interface
CN106409656A (zh) 蚀刻方法和蚀刻装置
JP4205393B2 (ja) 微細配線パターンの形成方法
Yabuki et al. Synthesis of copper conductive film by low-temperature thermal decomposition of copper–aminediol complexes under an air atmosphere
US20010049181A1 (en) Plasma treatment for cooper oxide reduction
JP2004500711A (ja) 金属キレートインクを用いる薄膜導体の直接印刷
KR100850650B1 (ko) 금속입자의 고정 방법, 및 이 고정 방법을 각각 사용하는금속입자 함유 기판의 제조 방법, 탄소 나노튜브 함유기판의 제조 방법 및 반도체 결정성 로드 함유 기판의 제조방법
Potochnik et al. Selective copper chemical vapor deposition using Pd-activated organosilane films
Yang et al. Effect of formic acid vapor in situ treatment process on Cu low-temperature bonding
EP2204824A1 (en) Method of forming copper wiring pattern and copper oxide particle dispersion for use in the same
KR20100028287A (ko) 구리 나노입자의 저온 환원 소결을 위한 환원제 및 이를이용한 저온 소결 방법
JP3870273B2 (ja) 銅パターン配線形成方法及び該方法を用いて作成された半導体装置、並びにナノ銅金属粒子
Bayer et al. In-situ study of growth of carbon nanotube forests on conductive CoSi2 support
JPH10308120A (ja) 金属ペーストの焼成方法
JP2007180496A (ja) 金属シード層の製造方法
US20090258490A1 (en) Method for forming conductive film
TW201001549A (en) Surface treatment in semiconductor manufacturing
JP5764452B2 (ja) 金属構造体の製造方法、および金属構造体、ならびに金属部品
JP2006210758A (ja) 貫通電極を形成した半導体装置及びその製造方法
JP2005515300A (ja) 流体による化学的成膜における汚染防止

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11569144

Country of ref document: US

Ref document number: 2007187812

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11569144

Country of ref document: US