[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005108516A1 - 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法 - Google Patents

絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法 Download PDF

Info

Publication number
WO2005108516A1
WO2005108516A1 PCT/JP2005/008222 JP2005008222W WO2005108516A1 WO 2005108516 A1 WO2005108516 A1 WO 2005108516A1 JP 2005008222 W JP2005008222 W JP 2005008222W WO 2005108516 A1 WO2005108516 A1 WO 2005108516A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
insulating film
formula
following general
general formula
Prior art date
Application number
PCT/JP2005/008222
Other languages
English (en)
French (fr)
Inventor
Masahiro Akiyama
Hisashi Nakagawa
Takahiko Kurosawa
Atsushi Shiota
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to EP05737241A priority Critical patent/EP1746139A4/en
Priority to KR1020067025860A priority patent/KR101168452B1/ko
Priority to CN2005800146286A priority patent/CN1950473B/zh
Publication of WO2005108516A1 publication Critical patent/WO2005108516A1/ja
Priority to US11/580,959 priority patent/US7736748B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02351Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a composition for forming an insulating film and a method for producing the same, and a silica-based insulating film and a method for forming the same, and more particularly, to an insulating film that can be suitably used for an interlayer insulating film in a semiconductor device.
  • the present invention relates to a film-forming composition and a method for producing the same, and a silica-based insulating film and a method for forming the same.
  • silica (SiO 2) film formed by a vacuum process such as a CVD method has been frequently used as an interlayer insulating film in a semiconductor element or the like.
  • a more uniform film thickness has been introduced.
  • an interlayer insulating film For the purpose of forming an interlayer insulating film, a coating-type insulating film called a SOG (Spin on Glass) film, which is mainly composed of a hydrolysis product of tetraalkoxylan, has been used. Also, with the high integration of semiconductor devices and the like, an interlayer insulating film having a low relative dielectric constant, which is mainly composed of polyorganosiloxane called organic SOG, has been developed.
  • SOG Spin on Glass
  • a CMP (Chemical Mechanical Planarization) step for flattening an insulating layer and various cleaning steps are performed. Therefore, in order to be applied to an interlayer insulating film, a protective film, and the like of a semiconductor device, it is required to have a mechanical strength and a chemical solution resistance enough to withstand erosion by a chemical solution in addition to the dielectric constant characteristics.
  • a composition comprising a mixture of fine particles obtained by condensing alkoxysilane in the presence of ammonia and a basic partial hydrolyzate of alkoxysilane (Japanese Unexamined Patent Application Publication No. No. 263045, Japanese Patent Application Laid-Open No. 5-315319), and a coating solution obtained by condensing a basic hydrolyzate of polyalkoxysilane in the presence of ammonia ( Japanese Patent Application Laid-Open Nos. 11-340219 and 11-340220 have been proposed.
  • the materials obtained by these methods are not suitable for industrial production because the properties of the reaction products are not stable and the coatings have large variations in relative permittivity, crack resistance, mechanical strength, adhesion, etc. Was unsuitable for
  • the organometallic silane bonding property is determined by a method using an organic silicate polymer obtained by producing a carbon bridge-containing silane oligomer and then subjecting it to hydrolysis and condensation (
  • An object of the present invention is to suitably use it in a semiconductor device or the like where high integration and multi-layering are desired, have a low relative dielectric constant, mechanical strength, storage stability, and a chemical solution.
  • An object of the present invention is to provide an insulating film forming composition capable of forming an insulating film having excellent resistance and the like, and a method for producing the same.
  • Another object of the present invention is to provide a silica-based insulating film having a low relative dielectric constant and excellent in mechanical strength, storage stability, chemical solution resistance, and the like, and a method for forming the same.
  • composition for forming an insulating film of the present invention comprises:
  • Component (B) The structural force of the main chain is represented by one (Si—CH), and the following general formula (4)
  • (A) component a group of compounds represented by the following general formulas (1) to (3): a hydrolyzed condensate obtained by hydrolyzing and condensing at least one selected silani conjugate.
  • R represents a hydrogen atom, a fluorine atom or a monovalent organic group
  • R 1 represents a monovalent organic group
  • a represents an integer of 1-2.
  • R 2 represents a monovalent organic group.
  • R 3 to R 6 are the same or different, each represents a monovalent organic group, b and c are the same or different, and represent a number of 0 to 2, R 7 is an oxygen atom, a phenylene group Or— (CH)-
  • a group represented by 2 m (where m is an integer of 1 to 6), and d represents 0 or 1. )
  • R 8 represents a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • R 9 and R 1C> are the same or different and represent a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • RU to R ′′ are the same or different and represent a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • the above-mentioned component (A) is added to 100 parts by weight of the component (A) in terms of 100% by weight of a complete hydrolyzed condensate of component (A).
  • Component (B) can be from 1 to 1000 parts by weight.
  • the structure represented by the following general formula (4) is 5 to 20 mol%.
  • the structure represented by the following general formula (5) is 5 to 20 mol%
  • the structure represented by the following general formula (6) is 20 to 50 mol%
  • the structure represented by the following general formula (7) is The structure represented can be 30-60 mol%.
  • the component (B) may have a polystyrene-equivalent weight average molecular weight of 700 to 10,000.
  • the component (B) is a molecule other than a silicon atom present in a molecule represented by the general formulas (4) to (7). Including the silicon atom Can do it.
  • the hydrolysis and condensation can be performed in the presence of a basic catalyst, an acidic catalyst, or a metal chelate catalyst.
  • the basic catalyst can be a nitrogen-containing compound represented by the following general formula (8).
  • X 1 , X 2 , X 3 , and X 4 are the same or different and are each selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group, an aryl group, and an arylalkyl group.
  • Y represents a halogen atom or a monovalent to tetravalent aionic group, and a represents an integer of 1 to 4.
  • the method for producing an insulating film forming composition of the present invention is a method for producing an insulating film forming composition comprising a hydrolysis condensate and an organic solvent.
  • Component (B) The structural force of the main chain is represented by one (Si—CH), and the following general formula (4)
  • (A) component a group of compounds represented by the following general formulas (1) to (3): a step of hydrolyzing and condensing at least one selected silani conjugate to obtain the hydrolyzed condensate. .
  • R represents a hydrogen atom, a fluorine atom or a monovalent organic group
  • R 1 represents a monovalent organic group
  • a represents an integer of 1-2.
  • R 2 represents a monovalent organic group.
  • R 3 to R 6 are the same or different, each is a monovalent organic group, b and c are the same or different, and each represents 0 to 2, R 7 is an oxygen atom, a phenylene group or — (CH) — represented by
  • R 8 represents a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • R 9 and R 1Q are the same or different and represent a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • R n to R ′′ are the same or different and represent a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • the component (B) is added to 100 parts by weight of the component (A),
  • the hydrolysis and condensation can be performed in the presence of a basic catalyst, an acidic catalyst, or a metal chelate catalyst.
  • the basic catalyst can be a nitrogen-containing compound represented by the following general formula (8).
  • X 1 , X 2 , X 3 , and X 4 are the same or different and are each selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group, an aryl group, and an arylalkyl group.
  • Y represents a halogen atom or a monovalent to tetravalent aionic group, and a represents an integer of 1 to 4.
  • the method for forming a silica-based insulating film of the present invention comprises:
  • composition for forming an insulating film of the present invention to a substrate to form a coating film, and subjecting the coating film to at least one kind of curing treatment selected from heating, electron beam irradiation, ultraviolet irradiation, and oxygen plasma. Performing the following.
  • the silica-based insulating film according to the present invention is obtained by the above-described method for forming a silica-based insulating film of the present invention.
  • the film-forming composition of the present invention contains a hydrolyzed condensate obtained by hydrolyzing and condensing the component (A) in the presence of the component (B).
  • a hydrolyzed condensate obtained by hydrolyzing and condensing the component (A) in the presence of the component (B).
  • the component (A) At the same time, hydrolysis is caused to form silanol groups (—Si—OH), and at the same time, formation of silanol groups by hydrolysis proceeds in the component (B).
  • This silanol group can cause a condensation reaction to form a Si—O—Si bond.
  • the hydrolysis-condensation reaction essentially proceeds, but depending on the structure of the component (B), the component (B) Most of the silanol groups present in the polymer may not be condensed and may be present as they are, resulting in poor storage stability.In the case of an insulating film, the presence of the silanol groups and the adsorption of moisture to the silanol groups This results in an insulating film having a very high dielectric constant.
  • the component (B) has a structure represented by the general formula (4), a structure represented by the general formula (5), By having the structure represented by 6) and the structure represented by the general formula (7), condensation with the component (A) is maintained until storage stability is maintained and a low dielectric constant can be achieved.
  • the reaction can be allowed to proceed, and a high molecular weight hydrolyzable condensate having a tertiary structure and a high degree of branching can be obtained. Therefore, an insulating film having a small relative dielectric constant can be formed by using the insulating film forming composition of the present invention.
  • the hydrolytic condensate has a structure in which the component (B) forms a chemical bond with the polysiloxane derived from the component (A), and is incorporated in the tertiary structure. Therefore, by using the composition for forming an insulating film of the present invention, it is possible to form an insulating film having high mechanical strength, excellent adhesion and chemical solution resistance, and having no layer separation in the film.
  • the step of hydrolyzing and condensing the component (A) in the presence of the component (B) includes a step of hydrolyzing under relatively mild conditions. Since a decomposed condensate can be obtained, control of the reaction is easy.
  • the method for forming a silica-based insulating film of the present invention a step of applying the above-described composition for forming an insulating film of the present invention to a substrate to form a coating film; Irradiation, ultraviolet irradiation, and oxygen plasma force.
  • the obtained silica-based insulating film is excellent in relative dielectric constant, mechanical strength, adhesion, and chemical resistance, and has no phase separation in the film.
  • composition for forming a film comprises a hydrolyzed condensate obtained by hydrolyzing and condensing the component (A) in the presence of the component (B) (hereinafter referred to as “specific hydrolysis”). Condensate ”) and an organic solvent.
  • specific hydrolysis a hydrolyzed condensate obtained by hydrolyzing and condensing the component (A) in the presence of the component (B)
  • Condensate a hydrolyzed condensate obtained by hydrolyzing and condensing the component (A) in the presence of the component (B) (hereinafter referred to as “specific hydrolysis”). Condensate ”) and an organic solvent.
  • the component (A) includes a compound represented by the following general formula (1) (hereinafter, referred to as “compound 1”), a compound represented by the following general formula (2) (hereinafter, referred to as “compound 2”) and Group strength of a compound represented by the following general formula (3) (hereinafter, referred to as "compound 3”): at least one selected silani conjugate.
  • compound 1 a compound represented by the following general formula (1)
  • compound 2 a compound represented by the following general formula (2)
  • compound 3 Group strength of a compound represented by the following general formula (3)
  • R represents a hydrogen atom, a fluorine atom or a monovalent organic group
  • R 1 represents a monovalent organic group
  • a represents an integer of 1-2.
  • R 2 represents a monovalent organic group.
  • R 3 to R 6 are the same or different, each represents a monovalent organic group, b and c are the same or different, and represent a number of 0 to 2, R 7 is an oxygen atom, a phenylene group Or— (CH)-
  • a group represented by 2 m (where m is an integer of 1 to 6), and d represents 0 or 1. )
  • examples of the monovalent organic group represented by R and R 1 include an alkyl group, an alkyl group, and an aryl group.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group, and preferably have 1 to 5 carbon atoms, and these alkyl groups may be chain-like or branched.
  • examples of the aryl group include a butyl group and an aryl group.
  • examples of the aryl group include a phenyl group, a naphthyl group, a methylphenyl group, an ethylphenyl group, a chlorophenyl group, a bromophenyl group, and a fluorophenyl group. There are things to mention.
  • compound 1 examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri-propoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, methyltri-sec butoxysilane, methyltri-tert-butoxysilane, Methyl triphenoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri- n -propoxysilane, ethynoletriisopropoxysilane, ethynoretic n-butoxysilane, ethyltri-sec butoxysilane, ethyl-tert-butoxysilane, ethyltriphenoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltri-n-propoxysilane, methyl
  • Particularly preferred compounds as compound 1 include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-isopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and vinyltriethoxysilane.
  • Methoxy silane vinyl triethoxy silane, phenyl trimethoxy silane, phenyl triethoxy silane, dimethyl dimethoxy silane, dimethino reethoxy silane, jetinoresmethoxy silane, jetino reethoxy silane, diphenyl dimethoxy silane, diphenyl Nilgetoxysilane and the like.
  • examples of the monovalent organic group for R 2 include the same groups as the monovalent organic groups exemplified as R, in the general formula (1).
  • compound 2 examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-isopropoxysilane, tetra-n-butoxysilane, tetra-sec butoxysilane, tetra-tert-butoxysilane, tetraphenoxysilane, and the like.
  • particularly preferred compounds include tetramethoxysilane and tetraethoxysilane. These may be used alone or in combination of two or more.
  • examples of the monovalent organic group represented by R 3 to R 6 include the same groups as the monovalent organic groups exemplified as R 1 and R 1 in the general formula (1).
  • compound 3 a compound represented by the formula (3) wherein R 7 is — (CH 2) 1
  • Compounds include bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, and bis (trimethoxysilyl) methane.
  • 2- (tree tert butoxysilyl) ethane bis (dimethoxymethylsilyl) methane, bis (diethoxymethylsilyl) methane, bis (di-n-propoxymethylsilyl) methane, bis (diisopropoxymethylsilyl) methane, bis ( Di-n-butoxymethylsilyl) methane, bis (di-sec-butoxymethylsilyl) methane, bis (di-tert-butoxymethylsilyl) methane, 1,2-bis (dimethoxymethylsilyl) ethane, 1,2-bis (di- Ethoxymethylsilyl) ethane, 1,2-bis (di-n-propoxymethylsilyl) ethane, 1,2-bis (di-iso-propoxymethylsilyl) ethane, 1,2-bis (di-n-butoxymethyl) Cyril) etane, 1
  • the component (B) will be described.
  • the main chain is represented by — (Si—CH) —
  • a polycarbosilane having a structure represented by the following general formula (7) and a structure represented by the following general formula (7) (hereinafter referred to as “compound 4” t).
  • the component (B) can condense with the component (A) to form a Si—O—Si bond.
  • R 8 represents a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • R 9 and R 1C> are the same or different and represent a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • R n to R ′′ are the same or different and represent a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, and an acyloxy group.
  • the alkoxy group includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and the like
  • the acyloxy group includes an acetoxy group, a benzyloxy group, and the like.
  • the structure represented by the general formula (4) is preferably 5 to 20 mol% (more preferably 5 to 15 mol%), and preferably (5) structure force to 20 mole 0/0 (more preferably 5 to 10 mol 0/0) represented by a, preferably the structure represented by the general formula (6) is 20 to 50 mol% ( more preferably 25 to 45 mol%), preferably structures 30 to 60 mole 0/0 (more preferably 35 to 50 mole 0/0 represented by the above following general formula (7)) Ru der.
  • the component (B) may not include a silicon atom other than the silicon atoms present in the structures represented by the general formulas (4) to (7) in the molecule.
  • the abundance ratio of each of the above structures in the component (B) can be identified, for example, from the result of 29 Si-NMR spectrum analysis.
  • the mixing ratio of the component (A) and the component (B) is 100% by weight of the completely hydrolyzed condensate of the component (A).
  • the amount of component (B) is preferably from 1 to: LOOO parts by weight, more preferably from 5 to 200 parts by weight, and still more preferably from 5 to 200 parts by weight. If the component (B) is less than 1 part by weight, sufficient chemical resistance may not be exhibited after film formation, and if it exceeds 1000 parts by weight, a low dielectric constant of the film is achieved. It may not be possible.
  • the weight average molecular weight in terms of polystyrene of the component (B) is preferably from 700 to 10,000, more preferably from 750 to 5,000, more preferably from 750 to 3,000. Even better. If the weight average molecular weight in terms of polystyrene of the component (B) exceeds 10,000, layer separation may occur with the component (A), and a uniform film may not be formed.
  • the presence of (C) a basic catalyst and (B) component using compound 4 as (B) component By hydrolyzing and condensing the component (A), the hydrolysis and condensation of the component (B) and the polysiloxane derived from the component (A) can be advanced together with the hydrolysis and condensation of the components (A). it can.
  • the resulting hydrolysis-condensation product is obtained by incorporating the polymer having the component (B) (polycarbosilane) as a core into the tertiary structure of the polysiloxane derived from the component (A) (hydrolyzable group-containing silane monomer).
  • composition for forming an insulating film of the present invention contains the above-mentioned hydrolyzed condensate, the insulating material having a smaller relative dielectric constant, excellent mechanical strength, adhesion and chemical resistance, and having no phase separation in the film. A membrane can be obtained.
  • Examples of the (C) basic catalyst according to the present invention include methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, and N-propylmethanol.
  • N-butylethanolamine N-methylethanolamine, N-ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethyl Propanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutamate Nolamine, N-ethylbutanolamine, N-propylbutanolamine, N-butylbutanolamine, N, N-dimethylmethanolamine, N, N-getylmethanolamine, N, N-dipropyl Methanolamine, N, N-dibutylmethanolamine, N, N-dimethylethanolamine, N, N-getylethanolamine, N, N-dipropylethanolamine, N, N-dibutylethanolamine, N, N-dimethylpropanolamine, N, N-dibutylethanolamine, N, N-dimethylpropanolamine
  • the (C) basic catalyst is particularly preferably a nitrogen-containing compound represented by the following general formula (5) (hereinafter, also referred to as compound 5).
  • X 1 , X 2 , X 3 , and X 4 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms (preferably a methyl group, an ethyl group, a propyl group, a butyl group).
  • Hexyl group a hydroxyalkyl group (preferably a hydroxyethyl group), an aryl group (preferably a phenyl group), an arylalkyl group (preferably a phenylmethyl group), and Y represents a halogen atom ( It preferably represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a monovalent to tetravalent aionic group (preferably a hydroxy group, etc.), and a represents an integer of 1 to 4.
  • compound 5 include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-iso-propylammonium hydroxide, water To tetra-n-butylammonium oxide, tetra-iso-butylammonium hydroxide, tetra-tert-butylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetrahydroxide Petit Ammo , Hydroxyl tetraoctyl ammonium, hydroxyl tetranonyl ammonium, tetradecyl ammonium hydroxide, tetraundecyl ammonium hydroxide, tetradodecyl ammonium hydroxide, Tetramethylammonium bromide, t
  • hydroxyl-tetramethylammonium particularly preferred are hydroxyl-tetramethylammonium, hydroxyl-tetraethylammonium, hydroxyl-n-propylammonium, and hydroxide-n-butylammonium.
  • Tetramethylammonium bromide tetramethylammonium salt, tetraethylammonium bromide, tetraethylammonium bromide, n-propylammonium bromide It is tetra n-propylammonium.
  • One or more of the compounds 5 may be used at the same time.
  • the amount of the basic catalyst (C) to be used is usually 0.0001 to 1 mol, preferably 0.001 to 1 mol, per 1 mol of the component (A) (total amount of the components 1 to 3). 0.1 mole.
  • the specific hydrolysis-condensation product is obtained by hydrolyzing and condensing component (A) in the presence of component (B) and basic catalyst (C).
  • component (A) can be hydrolyzed in a state where component (A) and component (B) are dissolved in an organic solvent.
  • organic solvent that can be used in this case include methanol , Ethanol, n -propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, and other alcoholic solvents; ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4 Pentanediol, 2-methyl-2,4 pentanediol, 2,5 hexanediol, 2,4 heptanediol, 2-ethylenol 1,3-hexanediol, diethylene glycol, dipropylene glycolone, triethylene glycol, tripropylene glycol, etc.
  • Polyhydric alcohol solvents such as ethylene glycolone monomethinoleatenole, ethylene glycolonelemonoechinoleatene, ethylene glycolonele monopropynoleatene, ethylene glycolone monobutynoateatenole, etc.
  • Partial d Ether solvents ethyl ether, i-propyl ether, n -butyl ether, n-xyl ether, 2-ethylhexyl ether, dioxolane, 4-methyldioxolane, dioxane, dimethyldioxane, ethylene glycol monomethyl enoate ether, ethylene glycidyl Kono regime Chino les ether Honoré, ethylene glycol Honoré monomethyl E Chino les ether, ether solvents such as ethylene glycol Jefferies chill ether; acetone, main Chiruechiruketon, methyl-n - propyl ketone, methyl-n- butyl ketone, Jechiru ketone, methyl-i Buchiruketon, Methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-xyl ketone, di-but
  • the concentration of the total amount of component (B) and component (A) in the organic solvent is preferably 130% by weight.
  • the reaction temperature in the hydrolytic condensation is 0 to 100 ° C, preferably 20 to 80 ° C, and the reaction time is
  • each component is not particularly limited !, but, for example, the component (A) and the component (B) may be added to a liquid obtained by adding a basic catalyst (C) to an organic solvent. Add the added one by one! / Preferable method
  • the weight average molecular weight in terms of polystyrene of the obtained specific hydrolysis condensate is usually 1,5.
  • 500,000 force S preferred ⁇ 2,000 200,000 force S preferred ⁇ , 2, More preferably, it is 000-100,000. If the weight-average molecular weight in terms of polystyrene of the specific hydrolysis-condensation product is less than 1,500, the desired relative permittivity may not be obtained.On the other hand, if it exceeds 500,000, the in-plane uniformity of the coating film may be obtained. May be inferior.
  • Examples of the organic solvent contained in the composition for forming an insulating film of the present invention include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents, aliphatic hydrocarbon solvents, aromatic solvents, and solvents.
  • Group strength of halogen solvent At least one selected from the group consisting of halogen solvents is used.
  • alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, and 2-methyl.
  • Ethylene glycolone 1,2-propylene glycol, 1,3-butylene glycolone, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, 2,4 heptanediol, 2-ethyl-1,3
  • Polyhydric alcohol solvents such as hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol;
  • Ketone solvents include acetone, methylethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, getyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n xyl ketone, and di-ketone.
  • i-butyl ketone trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, 2hexanone, methylcyclohexanone, 2,4 pentanedione, acetonylacetone, diacetone alcohol, acetophenone, fenchone And ketone solvents.
  • ketone solvents may be used at the same time.
  • amide solvents include ⁇ , ⁇ dimethylimidazolidinone, ⁇ -methylformamide
  • Examples include nitrogen-containing solvents such as ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylformamide, ⁇ , ⁇ ⁇ ethylformamide, acetoamide, ⁇ -methylacetoamide, ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylacetamide, ⁇ -methylpropionamide, and ⁇ -methylpyrrolidone. These amide solvents may be used alone or in combination of two or more.
  • Examples of the ether solvent system include ethyl ether, i-propyl ether, and n -butyl ether.
  • ester solvents examples include getyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolataton, ⁇ -valerolatane, ⁇ -propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, and n-pentyl acetate.
  • Examples of the aliphatic hydrocarbon solvents include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4 trimethylpentane, n-octane, i-o Examples thereof include aliphatic hydrocarbon solvents such as butane, cyclohexane, and methylcyclohexane. One or more of these aliphatic hydrocarbon solvents may be used at the same time.
  • aromatic hydrocarbon solvents examples include benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, getylbenzene, ibutylbenzene, and the like.
  • Aromatic hydrocarbon solvents such as triethylbenzene, di-propylbenzene, n-amylnaphthalene and the like can be mentioned.
  • halogen-containing solvent include halogen-containing solvents such as dichloromethane, chloroform, chlorofluorocarbon, chlorobenzene, and dichlorobenzene.
  • an organic solvent having a boiling point of less than 150 ° C as an alcohol-based solvent, a ketone-based solvent, or an ester-based solvent. It is desirable to use two or more species simultaneously.
  • organic solvents may be the same as those used for synthesizing the specific hydrolysis condensate, or may be replaced with a desired organic solvent after the synthesis of the specific hydrolysis condensate is completed. Talk about this.
  • Components such as an organic polymer and a surfactant may be further added to the composition for forming an insulating film of the present invention.
  • these additives may be added to a solvent in which the components (A) and (B) are mixed or dissolved before the components are mixed.
  • Examples of the organic polymer include a polymer having a sugar chain structure, a vinylamide polymer, a (meth) acrylic polymer, an aromatic vinyl compound polymer, a dendrimer, a polyimide, a polyamic acid, a polyarylene, a polyamide, and a polyamide.
  • Examples include quinoxaline, polyoxadiazole, fluorine-based polymers, and polymers having a polyalkylene oxide structure.
  • Examples of the polymer having a polyalkylene oxide structure include a polymethylene oxide structure, a polyethylene oxide structure, a polypropylene oxide structure, a polytetramethylene oxide structure, and a polybutylene oxide structure.
  • polyoxymethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene ethylene phenyl ether, polyoxyethylene sterol ether, polyoxyethylene lanolin derivative, and alkylphenol formalin condensate Ether type compounds such as ethylene oxide derivatives, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene Fatty acid alcohols, such as ether amide sulfates, polyethylene glycol fatty acid esters, ethylene glycol Call fatty acid esters, fatty Monoguriseri de, polyglycerol fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, ether-ester type compounds such as sucrose fatty acid esters and the like can ani gel.
  • Ether type compounds such as
  • Examples of the polyoxyethylene polyoxypropylene block copolymer include compounds having the following block structures.
  • 1 represents a number of 1 to 90
  • m represents a number of 10 to 99
  • n represents a number of 0 to 90.
  • polyoxyethylene alkyl ether polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene anolequinolate ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid Ether-type compounds such as esters and polyoxyethylene sorbitol fatty acid esters can be mentioned as more preferred examples.
  • polyoxyethylene alkyl ether polyoxyethylene polyoxypropylene block copolymer
  • polyoxyethylene polyoxypropylene anolequinolate ester polyoxyethylene glycerin fatty acid ester
  • polyoxyethylene sorbitan fatty acid Ether-type compounds such as esters and polyoxyethylene sorbitol fatty acid esters
  • One or more of the aforementioned organic polymers may be used simultaneously.
  • the surfactant examples include a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like. Further, a fluorine-based surfactant, a silicone-based surfactant, Examples thereof include polyalkylene oxide-based surfactants and poly (meth) acrylate-based surfactants, and preferred examples include fluorine-based surfactants and silicone-based surfactants.
  • the amount of the surfactant to be used is generally 0.000001 to 1 part by weight based on 100 parts by weight of the obtained polymer. These may be used alone or in combination of two or more.
  • the method for forming a film (insulating film) of the present invention includes a step of applying a film-forming composition to a substrate to form a coating film, and a step of subjecting the coating film to a heat treatment.
  • the substrate on which the film-forming composition is applied includes Si, SiO, SiN, SiC, SiCN, etc.
  • a coating method such as spin coating, dipping, roll coating, or spraying is used.
  • the solvent is removed to form a coating film.
  • a dry film thickness of 0.05 to 2.5 / ⁇ can be formed with a single coating, and a coating film with a thickness of 0.1 to 5 can be formed with a double coating.
  • the obtained coating film is subjected to a curing treatment to form a silica-based film.
  • Examples of the curing treatment include heating, electron beam irradiation, ultraviolet irradiation, and plasma treatment.
  • the coating film is heated at 80 ° C under an inert atmosphere or under reduced pressure.
  • a hot plate, an oven, a furnace, or the like can be used, and the heating can be performed under an inert atmosphere or under reduced pressure.
  • heating may be performed stepwise, or an atmosphere such as nitrogen, air, oxygen, or reduced pressure may be selected. Through such steps, a silica-based film can be manufactured.
  • silica-based film Since the silica-based film of the present invention has a low dielectric constant and excellent surface flatness, it is particularly excellent as an interlayer insulating film for semiconductor devices such as LSI, system LSI, DRAM, SDRAM, RDRAM, and D-RDRAM.
  • Protective film such as an etching stopper film, a surface coat film of a semiconductor element, an intermediate layer in a semiconductor manufacturing process using a multilayer resist, an interlayer insulating film of a multilayer wiring board, a protective film and an insulating film for a liquid crystal display element, etc. It can be used preferably.
  • the composition for forming a film is coated on an 8-inch silicon wafer by a spin coating method, dried on a hot plate at 90 ° C for 3 minutes, and then dried at 200 ° C for 3 minutes in a nitrogen atmosphere. Under a reduced pressure (vacuum atmosphere) at 420 ° C. in a vertical furnace for 1 hour.
  • An aluminum electrode pattern was formed on the obtained film by a vapor deposition method, and a sample for measuring relative permittivity was prepared. With respect to the sample, the relative dielectric constant of the film was measured by a CV method at a frequency of 100 kHz using an HP16451B electrode and an HP4284A precision LCR meter manufactured by Yokogawa Hewlett-Packard Co., Ltd.
  • a barco-pitch type indenter was attached to a micro hardness tester (Nanoindentator XP) manufactured by MTS, and the universal hardness of the obtained insulating film was determined.
  • the elastic modulus was measured by a continuous stiffness measuring method.
  • the film-forming composition stored at 40 ° C for 30 days is applied to the substrate by spin coating, and the substrate is placed on a hot plate at 90 ° C for 3 minutes and then at 200 ° C in a nitrogen atmosphere for 3 minutes. Was dried, and further baked for 1 hour in a vertical furnace at 420 ° C. under a reduced pressure of 50 mTorr.
  • This The film thickness of the coating film thus obtained was measured at 50 points within the coating film surface using an optical film thickness meter (Rectolph Technologies, Spectrum Laser 200).
  • the film thickness of the obtained film was measured, and the storage stability was evaluated based on the film thickness increase rate determined by the following equation.
  • Film thickness increase rate (%) ((Film thickness after storage) (Film thickness before storage)) ⁇ (Film thickness before storage) X 100 A: Film growth rate is 4% or less.
  • the 8-inch wafer on which the silica-based film was formed was immersed in a 0.2% dilute hydrofluoric acid aqueous solution for 1 minute at room temperature, and the change in the thickness of the silica-based film before and after immersion was observed. If the residual film ratio defined below is 99% or more, it is judged that the chemical resistance is good.
  • Remaining film ratio (%) (Film thickness after immersion) ⁇ (Film thickness before immersion) X 100
  • the residual film ratio is 99% or more.
  • the residual film ratio is less than 99%.
  • the cross section of the insulating film was cut for observation by a focused ion beam method, and the appearance was examined at 18,000 times using a TEM. The judgment result is shown as follows.
  • reaction solution containing a hydrolyzed condensate having a weight average molecular weight of 55,000 in terms of polystyrene.
  • reaction solution containing a hydrolyzed condensate having a weight average molecular weight of 55,000 in terms of polystyrene.
  • reaction solution containing a hydrolyzed condensate having a weight average molecular weight in terms of polystyrene of 40,000.
  • reaction solution containing a hydrolyzed condensate having a weight average molecular weight in terms of polystyrene of 40,000.
  • After cooling the reaction solution to room temperature 658.38 g of propylene glycol monopropyl ether and 10.98 g of a 20% aqueous acetic acid solution were added.
  • the reaction solution was concentrated under reduced pressure until the solid content concentration became 10%, to obtain Composition 3 for film formation.
  • reaction solution containing a hydrolyzed condensate having a polystyrene-equivalent weight average molecular weight of 2,400, and 528.59 g of propylene glycol monoethyl ether was added thereto.
  • the reaction solution was concentrated under reduced pressure until the solid content concentration became 10%, to obtain a composition 4 for film formation.
  • reaction solution containing a hydrolyzed condensate having a weight average molecular weight in terms of polystyrene of 48,000.
  • reaction solution was cooled to room temperature, 621.86 g of propylene glycol monobutyl ether and 20.95 g of a 20% acetic acid aqueous solution were added.
  • the reaction solution was concentrated under reduced pressure until the solid content concentration became 10%, to obtain composition 6 for film formation.
  • reaction solution containing a hydrolyzed condensate having a weight average molecular weight of 2,800 in terms of polystyrene, and 572.70 g of propylene glycol monoethyl ether was added. Until cooled. The reaction solution was concentrated under reduced pressure until the solid content became 10%, to obtain a composition 8 for film formation.
  • Comparative Example 1 is an example in which the polycarbosilane of Example 1 was replaced with another polycarbosilane. According to a comparison between Comparative Example 1 and Example 1, the present invention was applied to Example 1. By using the polycarbosilane having the structure described above, a film-forming composition having high chemical resistance and excellent storage stability can be obtained.
  • Comparative Example 2 shows the case where the hydrolysis condensation reaction was performed in the absence of polycarbosilane. However, deterioration of the chemical resistance was observed, and the hydrolysis condensation was performed in the presence of polycarbosilane. Show that it is useful to combine
  • Comparative Example 3 is a case where only polycarbosilane having the structure of the present application was subjected to hydrolysis and condensation reaction. However, since the relative dielectric constant was high, the storage stability was further inferior, and the silane compound was not used. It is shown that hydrolytic condensation in the presence of silane is useful.
  • Comparative Example 4 the hydrolysis-condensation products obtained in Comparative Examples 2 and 3 were mixed to form a film-forming composition. Phase separation was confirmed by cross-sectional observation of the membrane, which indicates that it is useful to carry out the hydrolytic condensation of the silani conjugate in the presence of polycarbosilane.
  • the silica-based film obtained by the present invention is excellent in mechanical strength, low in relative dielectric constant, and also excellent in chemical resistance and storage stability. Can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

明 細 書
絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およ びその形成方法
技術分野
[0001] 本発明は、絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜お よびその形成方法に関し、さらに詳しくは、半導体素子における層間絶縁膜などに好 適に用いることができる絶縁膜形成用組成物およびその製造方法、ならびにシリカ系 絶縁膜およびその形成方法に関する。
背景技術
[0002] 従来、半導体素子などにおける層間絶縁膜として、 CVD法などの真空プロセスに より形成されたシリカ(SiO )膜が多用されている。そして、近年、より均一な膜厚を有
2
する層間絶縁膜を形成することを目的として、 SOG (Spin on Glass)膜と呼ばれる テトラアルコキシランの加水分解生成物を主成分とする塗布型の絶縁膜も使用される ようになつている。また、半導体素子などの高集積ィ匕に伴い、有機 SOGと呼ばれるポ リオルガノシロキサンを主成分とする低比誘電率の層間絶縁膜の開発も行なわれて いる。
[0003] し力しながら、半導体素子などのさらなる高集積ィ匕ゃ多層化に伴い、より優れた導 体間の電気絶縁性が要求されており、したがって、保存安定性が良好で、より低比誘 電率で、より機械的強度に優れる層間絶縁膜が求められるようになつている。
[0004] また、半導体装置の製造過程では、絶縁層を平坦ィ匕するための CMP (Chemical Mechanical Planarization)工程や、各種洗浄工程が行なわれる。そのため、半導 体装置の層間絶縁膜や保護膜などに適用するためには、誘電率特性の他に機械的 強度や薬液による侵食に耐えられる程の薬液耐性を有することも求められている。
[0005] 低比誘電率の材料としては、アンモニアの存在下にアルコキシシランを縮合して得 られる微粒子とアルコキシシランの塩基性部分加水分解物との混合物カゝらなる組成 物(特開平 5— 263045号公報、特開平 5— 315319号公報)や、ポリアルコキシシラ ンの塩基性加水分解物をアンモニアの存在下で縮合することにより得られた塗布液( 特開平 11— 340219号公報、特開平 11— 340220号公報)が提案されている。しか しながら、これらの方法で得られる材料は、反応の生成物の性質が安定せず、塗膜 の比誘電率、クラック耐性、機械的強度、密着性などのバラツキも大きいため、工業 的生産には不向きであった。
[0006] また、ポリカルボシラン溶液とポリシロキサン溶液を混合することにより塗布液を調製 し、低誘電率絶縁膜を形成する方法 (特開 2001— 127152号公報、特開 2001— 3 45317号公報)が提案されている力 この方法では、カルボシランとポリシロキサンの ドメインが不均一な状態で塗膜中にそれぞれ分散してしまうという問題があった。
[0007] また、有機金属シランィ匕合物力もカーボンブリッジ含有シランオリゴマーを製造した 後、加水分解縮合して得られる有機シリケート重合体を用いる方法(
WO2002-098955)も提案されている力 この方法で得られる材料は、反応生成物の 安定性が悪く長期保管に向力ない材料であり、カロえて、基板への密着性が悪いとい う問題点があった。
[0008] さらに、高分岐なポリカルボシランを加水分解縮合して得られる低誘電率絶縁膜の 形成方法 (US- 6,807,041)も提案されているが、ポリマーを基板に塗布後、アンモ- ァによるエージング処理、トリメチルシリルイ匕処理、 500°Cの高温キュア等のプロセス 処理が必要であり、実用プロセスには不向きな材料であつた。
発明の開示
[0009] 本発明の目的は、高集積ィ匕および多層化が望まれている半導体素子などにおい て好適に用いることができ、低比誘電率であり、機械的強度、保存安定性および薬 液耐性などにも優れた絶縁膜を形成することができる絶縁膜形成用組成物およびそ の製造方法を提供することにある。
[0010] 本発明の他の目的は、低比誘電率であり、機械的強度、保存安定性および薬液耐 性などにも優れたシリカ系絶縁膜およびその形成方法を提供することにある。
[0011] 本発明の絶縁膜形成用組成物は、
(B)成分;主鎖が一(Si— CH ) 一で表される構造力 なり、かつ、下記一般式 (4)
2
で表される構造、下記一般式 (5)で表される構造、下記一般式 (6)で表される構造 および下記一般式(7)で表される構造を有するポリカルボシランの存在下、 (A)成分;下記一般式( 1)〜(3)で表される化合物の群力 選ばれた少なくとも 1種 のシランィ匕合物を加水分解縮合して得られた加水分解縮合物と、
有機溶媒と、を含む。
R Si (OR1) (1)
a 4— a
(式中、 Rは水素原子、フッ素原子または 1価の有機基を示し、 R1は 1価の有機基を 示し、 aは 1〜2の整数を示す。 )
Si (OR2) (2)
4
(式中、 R2は 1価の有機基を示す。 )
R3 (R40) Si- (R?) -Si (OR5) R6 · · · (3)
b 3-b d 3-c c
(式中、 R3〜R6は同一または異なり、それぞれ 1価の有機基を示し、 bおよび cは同 一または異なり、 0〜2の数を示し、 R7は酸素原子、フエ-レン基または—(CH ) -
2 m で表される基(ここで、 mは 1〜6の整数である)を示し、 dは 0または 1を示す。)
[化 1]
Figure imgf000005_0001
… · · (4)
[化 2]
Figure imgf000005_0002
… · · (5)
(式中、 R8は、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基 からなる群より選ばれる基を示す。 ) [化 3]
Figure imgf000006_0001
… · · (6)
(式中、 R9および R1C>は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基 、アルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[化 4]
Figure imgf000006_0002
(式中、 RU〜R "は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基、ァ ルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[0013] ここで、上記本発明の絶縁膜形成用組成物にぉ 、て、前記 (A)成分を (A)成分の 完^ 311水分解縮合物に換算した 100重量部に対して、前記 (B)成分が 1〜 1000重 量部であることができる。
[0014] ここで、上記本発明の絶縁膜形成用組成物にぉ 、て、前記 (B)成分の分子中にお いて、下記一般式 (4)で表される構造が 5〜20モル%であり、下記一般式(5)で表さ れる構造が 5〜20モル%であり、下記一般式(6)で表される構造が 20〜50モル% であり、下記一般式(7)で表される構造が 30〜60モル%であることができる。
[0015] ここで、上記本発明の絶縁膜形成用組成物にぉ 、て、前記 (B)成分のポリスチレン 換算重量平均分子量が 700〜10, 000であることができる。
[0016] ここで、上記本発明の絶縁膜形成用組成物において、前記 (B)成分が、分子中に 前記一般式 (4)〜(7)で表される構造に存在するケィ素原子以外のケィ素原子を含 まないことができる。
[0017] ここで、上記本発明の絶縁膜形成用組成物において、前記加水分解縮合は、塩基 性触媒、酸性触媒、または金属キレート触媒の存在下で行なうことができる。この場 合、前記塩基性触媒は、下記一般式 (8)で表される含窒素化合物であることができる
(X'X^ N) Y (8)
a
(式中、 X1, X2, X3, X4は同一または異なり、それぞれ水素原子、炭素数 1〜20の アルキル基、ヒドロキシアルキル基、ァリール基、およびァリールアルキル基からなる 群より選ばれる基を示し、 Yはハロゲン原子または 1〜4価のァ-オン性基を示し、 a は 1〜4の整数を示す。 )
[0018] 本発明の絶縁膜形成用組成物の製造方法は、加水分解縮合物および有機溶媒を 含む絶縁膜形成用組成物の製造方法であって、
(B)成分;主鎖が一(Si— CH ) 一で表される構造力 なり、かつ、下記一般式 (4)
2
で表される構造、下記一般式 (5)で表される構造、下記一般式 (6)で表される構造 および下記一般式(7)で表される構造を有するポリカルボシランの存在下、
(A)成分;下記一般式( 1)〜(3)で表される化合物の群力 選ばれた少なくとも 1種 のシランィ匕合物を加水分解縮合して前記加水分解縮合物を得る工程を含む。
R Si (OR1) (1)
a 4— a
(式中、 Rは水素原子、フッ素原子または 1価の有機基、 R1は 1価の有機基、 aは 1 〜2の整数を示す。 )
Si (OR2) (2)
4
(式中、 R2は 1価の有機基を示す。 )
R3 (R40) Si- (R7) -Si (OR5) R6 · · · (3)
b 3-b d 3-c c
(式中、 R3〜R6は同一または異なり、それぞれ 1価の有機基、 bおよび cは同一また は異なり、 0〜2の数を示し、 R7は酸素原子、フエ-レン基または—(CH ) —で表さ
2 m れる基(ここで、 mは 1〜6の整数である)、 dは 0または 1を示す。) [化 5]
Figure imgf000008_0001
… · · (4)
[化 6]
Figure imgf000008_0002
… · · (5)
(式中、 R8は、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基 からなる群より選ばれる基を示す。 )
[化 7]
Figure imgf000008_0003
… · · (6)
(式中、 R9および R1Qは、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基 、アルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。)
Figure imgf000009_0001
(式中、 Rn〜R "は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基、ァ ルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[0020] ここで、上記本発明の絶縁膜形成用組成物の製造方法にぉ 、て、前記 (A)成分を
(A)成分の完 卩水分解縮合物に換算した 100重量部に対して、前記 (B)成分が 1
〜 1000重量部であることができる。
[0021] ここで、上記本発明の絶縁膜形成用組成物の製造方法にぉ 、て、前記加水分解 縮合は、塩基性触媒、酸性触媒、または金属キレート触媒の存在下で行なわれること ができる。この場合、前記塩基性触媒は、下記一般式 (8)で表される含窒素化合物 であることができる。
(X'X^ N) Y (8)
a
(式中、 X1, X2, X3, X4は同一または異なり、それぞれ水素原子、炭素数 1〜20の アルキル基、ヒドロキシアルキル基、ァリール基、およびァリールアルキル基からなる 群より選ばれる基を示し、 Yはハロゲン原子または 1〜4価のァ-オン性基を示し、 a は 1〜4の整数を示す。 )
[0022] 本発明のシリカ系絶縁膜の形成方法は、
上記本発明の絶縁膜形成用組成物を基板に塗布し、塗膜を形成する工程と、 前記塗膜について、加熱、電子線照射、紫外線照射、および酸素プラズマから選 ばれる少なくとも 1種の硬化処理を行なう工程と、を含む。
[0023] 本発明に係るシリカ系絶縁膜は、上記本発明のシリカ系絶縁膜の形成方法により 得られる。
[0024] 本発明の膜形成用組成物によれば、(B)成分の存在下、(A)成分を加水分解縮 合して得られた加水分解縮合物を含む。この加水分解縮合においては、(A)成分が 、加水分解を起こしシラノール基(-Si— OH)を形成すると同時に、(B)成分内にも 加水分解によるシラノール基の生成が進行する。このシラノール基が縮合反応を起こ して Si— O— Si結合を形成することが可能である。(B)成分がシラノール基を有する 、あるいは、加水分解によってシラノール基が発生する場合、この加水分解縮合反応 は本質的には進行するが、(B)成分の構造によっては、(B)成分中に存在するシラノ ール基の大部分が縮合を起こさずにそのまま存在することもあり、保存安定性が悪く 、さらに絶縁膜にした場合には、シラノール基の存在およびシラノール基に水分が吸 着することで、誘電率の非常に高い絶縁膜となってしまう。し力しながら、本発明の膜 形成用組成物によれば、(B)成分が上記一般式 (4)で表される構造、上記一般式(5 )で表される構造、上記一般式 (6)で表される構造および上記一般式(7)で表される 構造を有することにより、保存安定性が良好に保たれ、低誘電率が達成できる程度 にまで、(A)成分との縮合反応を進行させることが可能であり、三次構造的に分岐度 の高ぐ分子量の大きい加水分解性縮合物が得られる。したがって、本発明の絶縁 膜形成用組成物を用いることにより、比誘電率が小さな絶縁膜を形成することができ る。
[0025] また、この加水分解縮合物は、(B)成分が、(A)成分に由来するポリシロキサンと化 学的結合を形成し、三次構造内に取り込まれた構造を有する。このため、本発明の 絶縁膜形成用組成物を用いることにより、機械的強度が高ぐ密着性および薬液耐 性に優れ、かつ膜中の層分離がない絶縁膜を形成することができる。
[0026] 本発明の膜形成用組成物の製造方法によれば、(B)成分の存在下、(A)成分を加 水分解縮合する工程を含むことにより、比較的穏和な条件にて加水分解縮合物を得 ることができるため、反応の制御が容易である。
[0027] 本発明のシリカ系絶縁膜の形成方法によれば、上記本発明の絶縁膜形成用組成 物を基板に塗布し、塗膜を形成する工程と、前記塗膜について、加熱、電子線照射 、紫外線照射、および酸素プラズマ力 選ばれる少なくとも 1種の硬化処理を行なう 工程と、を含む。これにより、得られるシリカ系絶縁膜は、比誘電率力 、さぐ機械的 強度、密着性、および薬液耐性に優れ、かつ膜中の相分離がない。
発明を実施するための最良の形態 [0028] 以下に、本発明について具体的に説明する。
[0029] 1.膜形成用組成物およびその製造方法
本発明に係る膜形成用組成物 (絶縁膜形成用組成物)は、(A)成分を、(B)成分 の存在下で加水分解し、縮合した加水分解縮合物 (以下、「特定加水分解縮合物」と いう)と、有機溶媒とを含む。以下、各成分について説明する。
[0030] 1. 1. (A)成分
(A)成分は、下記一般式(1)で表される化合物 (以下、「化合物 1」という)、下記一 般式 (2)で表される化合物(以下、「化合物 2」 、う)および下記一般式 (3)で表され る化合物(以下、「化合物 3」という)の群力 選ばれた少なくとも 1種のシランィ匕合物で ある。
R SKOR1) (1)
a 4— a
(式中、 Rは水素原子、フッ素原子または 1価の有機基を示し、 R1は 1価の有機基を 示し、 aは 1〜2の整数を示す。 )
Si (OR2) (2)
4
(式中、 R2は 1価の有機基を示す。 )
R3 (R40) Si- (R7) -Si (OR5) R6 · · · (3)
b 3-b d 3-c c
(式中、 R3〜R6は同一または異なり、それぞれ 1価の有機基を示し、 bおよび cは同 一または異なり、 0〜2の数を示し、 R7は酸素原子、フエ-レン基または—(CH ) -
2 m で表される基(ここで、 mは 1〜6の整数である)を示し、 dは 0または 1を示す。)
[0031] 1. 1. 1.化合物 1
前記一般式(1)において、 R, R1で表される 1価の有機基としては、アルキル基、 ァルケ-ル基、ァリール基、などを挙げることができる。ここで、アルキル基としては、メ チル基、ェチル基、プロピル基、ブチル基などが挙げられ、好ましくは炭素数 1〜5で あり、これらのアルキル基は鎖状でも、分岐していてもよい。前記一般式(1)において 、ァルケ-ル基としては、ビュル基、ァリル基などが挙げられる。また、前記一般式(1 )において、ァリール基としては、フエ-ル基、ナフチル基、メチルフエ-ル基、ェチル フエ-ル基、クロロフヱ-ル基、ブロモフヱ-ル基、フルオロフヱ-ル基などを挙げるこ とがでさる。 化合物 1の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチ ルトリー n—プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリー n—ブトキ シシラン、メチルトリ一 sec ブトキシシラン、メチルトリ一 tert ブトキシシラン、メチル トリフエノキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリー n—プロポキシシラン、ェチノレトリイソプロポキシシラン、ェチノレトリー n—ブトキシシラ ン、ェチルトリー sec ブトキシシラン、ェチルトリー tert ブトキシシラン、ェチルトリ フエノキシシラン、 n—プロピルトリメトキシシラン、 n—プロピルトリエトキシシラン、 n— プロピルトリ一 n—プロポキシシラン、 n—プロピルトリイソプロポキシシラン、 n—プロピ ルトリ一 n—ブトキシシラン、 n—プロピルトリ一 sec ブトキシシラン、 n—プロピルトリ —tert—ブトキシシラン、 n—プロピルトリフエノキシシラン、イソプロピルトリメトキシシ ラン、イソプロピルトリエトキシシラン、イソプロピルトリ一 n—プロポキシシラン、イソプロ ピルトリイソプロポキシシラン、イソプロピルトリ一 n—ブトキシシラン、イソプロピルトリ一 sec ブトキシシラン、イソプロピルトリ一 tert ブトキシシラン、イソプロピルトリフエノ キシシラン、 n—ブチルトリメトキシシラン、 n—ブチルトリエトキシシラン、 n—ブチルトリ n プロポキシシラン、 n ブチルトリイソプロポキシシラン、 n ブチルトリー n ブト キシシラン、 n ブチルトリー sec ブトキシシラン、 n ブチルトリー tert ブトキシシ ラン、 n ブチルトリフエノキシシラン、 sec ブチルトリメトキシシラン、 sec ブチルイ ソトリエトキシシラン、 sec ブチルトリー n プロボキシシラン、 sec ブチルトリイソプ ロポキシシラン、 sec ブチルトリー n ブトキシシラン、 sec ブチルトリー sec ブト キシシラン、 sec ブチルトリー tert ブトキシシラン、 sec ブチルトリフエノキシシラ ン、 tert—ブチルトリメトキシシラン、 tert ブチルトリエトキシシラン、 tert—ブチルト n プロポキシシラン、 tert ブチルトリイソプロポキシシラン、 tert ブチルトリー n ブトキシシラン、 tert ブチルトリー sec ブトキシシラン、 tert ブチルトリー tert —ブトキシシラン、 tert—ブチルトリフエノキシシラン、フエニルトリメトキシシラン、フエ ニルトリエトキシシラン、フエニルトリー n—プロポキシシラン、フエニルトリイソプロポキ シシラン、フエニルトリー n—ブトキシシラン、フエニルトリー sec ブトキシシラン、フエ ニルトリ一 tert—ブトキシシラン、フエニルトリフエノキシシラン、ビニルトリメトキシシラ ン、ビニルトリエトキシシラン、ビニルトリ一 n—プロポキシシラン、ビニルトリイソプロボ キシシラン、ビニルトリ一 n—ブトキシシラン、ビニルトリ一 sec ブトキシシラン、ビニル トリ一 tert—ブトキシシラン、ビニルトリフエノキシシラン、トリメトキシシラン、トリエトキシ シラン、トリ一 n—プロポキシシラン、トリイソプロポキシシラン、トリ一 n—ブトキシシラン 、トリー sec ブトキシシラン、トリー tert ブトキシシラン、トリフエノキシシラン、ジメチ ノレジメトキシシラン、ジメチノレジェトキシシラン、ジメチノレジ n プロポキシシラン、ジ メチノレジイソプロポキシシラン、ジメチノレジ n—ブトキシシラン、ジメチノレジ sec— ブトキシシラン、ジメチノレジ tert ブトキシシラン、ジメチノレジフエノキシシラン、ジェ チノレジメトキシシラン、ジェチノレジェトキシシラン、ジェチノレジ n プロポキシシラン 、ジェチノレジイソプロポキシシラン、ジェチノレジ n ブトキシシラン、ジェチノレジ s ec ブトキシシラン、ジェチノレジ tert ブトキシシラン、ジェチノレジフエノキシシラン 、ジー n プロピノレジメトキシシラン、ジー n プロピノレジェトキシシラン、ジー n プロ ピノレジ n プロポキシシラン、ジー n プロピノレジイソプロポキシシラン、ジー n—プ ロピルジー n ブトキシシラン、ジー n プロピルジー sec ブトキシシラン、ジー n— プロピルジー tert ブトキシシラン、ジー n プロピルジーフエノキシシラン、ジィソプ 口ピノレジメトキシシラン、ジイソプロピルジェトキシシラン、ジイソプロピルジー n プロ ポキシシラン、ジイソプロピノレジイソプロポキシシラン、ジイソプロピノレジ n ブトキシ シラン、ジイソプロピルジー sec ブトキシシラン、ジイソプロピルジー tert ブトキシ シラン、ジイソプロピルジフエノキシシラン、ジ n—ブチルジメトキシシラン、ジー n— ブチノレジェトキシシラン、ジー n—ブチノレジ n プロポキシシラン、ジー n—ブチノレ ジイソプロボキシシラン、ジー n—ブチルジー n ブトキシシラン、ジー n—ブチルジー sec ブトキシシラン、ジー n—ブチルジー tert ブトキシシラン、ジー n—ブチルジ ーフエノキシシラン、ジー sec ブチルジメトキシシラン、ジー sec ブチルジェトキシ シラン、ジー sec ブチノレジ n プロポキシシラン、ジー sec ブチノレジイソプロボ キシシラン、ジー sec ブチルジー n ブトキシシラン、ジー sec ブチルジー sec— ブトキシシラン、ジー sec ブチルジー tert ブトキシシラン、ジー sec ブチルジー フエノキシシラン、ジー tert—ブチルジメトキシシラン、ジー tert ブチルジェトキシシ ラン、ジー tert—ブチルジー n プロポキシシラン、ジー tert ブチルジイソプロポキ シシラン、ジー tert—ブチルジー n ブトキシシラン、ジー tert—ブチルジー sec ブ トキシシラン、ジー tert—ブチルジー tert ブトキシシラン、ジー tert—ブチルジーフ エノキシシラン、ジフエ二ルジメトキシシラン、ジフエ二ルジーエトキシシラン、ジフエ二 ノレジー n プロポキシシラン、ジフエニノレジイソプロポキシシラン、ジフエニノレジ n— ブトキシシラン、ジフエ二ルジー sec ブトキシシラン、ジフエ二ルジー tert ブトキシ シラン、ジフエ-ルジフエノキシシラン、ジビュルジメトキシシランが挙げられる。これら は、 1種あるいは 2種以上を同時に使用してもよい。
[0033] 化合物 1として特に好ましいィ匕合物は、メチルトリメトキシシラン、メチルトリエトキシシ ラン、メチルトリー n プロポキシシラン、メチルトリー iso プロポキシシラン、ェチルト リメトキシシラン、ェチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシ シラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、ジメチルジメトキシシラ ン、ジメチノレジェトキシシラン、ジェチノレジメトキシシラン、ジェチノレジェトキシシラン、 ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシランなどである。
[0034] 1. 1. 2.化合物 2
一般式(2)において、 R2の 1価の有機基としては、前記一般式(1)において R, と して例示した 1価の有機基と同様の基を挙げることができる。
[0035] 化合物 2の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラー n— プロボキシシラン、テトラー iso プロボキシシラン、テトラー n ブトキシラン、テトラー sec ブトキシシラン、テトラ一 tert ブトキシシラン、テトラフエノキシシランなどを挙 げることができ、特に好ましい化合物としてはテトラメトキシシラン、テトラエトキシシラ ンが挙げられる。これらは、 1種あるいは 2種以上を同時に使用してもよい。
[0036] 1. 1. 3.化合物 3
一般式(3)において、 R3〜R6の 1価の有機基としては、前記一般式(1)において R , R1として例示した 1価の有機基と同様の基を挙げることができる。
[0037] 一般式(3)において、 d=0の化合物としては、へキサメトキシジシラン、へキサエト キシジシラン、へキサフエノキシジシラン、 1, 1, 1, 2, 2—ペンタメトキシー2—メチル ジシラン、 1, 1, 1, 2, 2—ペンタエトキシ 2—メチルジシラン、 1, 1, 1, 2, 2—ペン タフエノキシ 2—メチルジシラン、 1, 1, 1, 2, 2—ペンタメトキシ 2—ェチルジシラ ン、 1, 1, 1, 2, 2—ペンタエトキシ一 2—ェチルジシラン、 1, 1, 1, 2, 2—ペンタフェ ノキシ 2—ェチルジシラン、 1, 1, 1, 2, 2—ペンタメトキシ一 2—フエ-ルジシラン、 1, 1, 1, 2, 2—ペンタエトキシ— 2—フエ-ルジシラン、 1, 1, 1, 2, 2—ペンタフエノ キシ 2—フエ二ルジシラン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジメチルジシラン、 1, 1, 2, 2—テトラエトキシー 1, 2—ジメチノレジシラン、 1, 1, 2, 2—テトラフエノキシ —1, 2—ジメチノレジシラン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジェチノレジシラン、 1 , 1, 2, 2—テトラエトキシー 1, 2—ジェチノレジシラン、 1, 1, 2, 2—テトラフエノキシ - 1, 2—ジェチルジシラン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジフエ二ルジシラン 、 1, 1, 2, 2—テトラエトキシ 1, 2—ジフエ二ルジシラン、 1, 1, 2, 2—テトラフエノ キシー 1, 2—ジフエ二ルジシラン、 1, 1, 2—トリメトキシー 1, 2, 2—トリメチルジシラ ン、 1, 1, 2—卜リエ卜キシ— 1, 2, 2—卜リメチルジシラン、 1, 1, 2—卜リフエノキシ—1 , 2, 2— HJメチノレジシラン、 1, 1, 2—卜!;メ卜キシー 1, 2, 2— HJェチノレジシラン、 1, 1, 2—卜リエ卜キシ— 1, 2, 2—卜リエチルジシラン、 1, 1, 2—卜リフエノキシ—1, 2, 2 卜リエチノレジシラン、 1, 1, 2—卜!;メ卜キシー 1, 2, 2—卜!;フ ニノレジシラン、 1, 1, 2 —卜リエ卜キシ— 1, 2, 2—卜リフエ-ルジシラン、 1, 1, 2—卜リフエノキシ—1, 2, 2—卜 リフエ二ルジシラン、 1, 2—ジメトキシ 1, 1, 2, 2—テトラメチルジシラン、 1, 2—ジ エトキシー 1, 1, 2, 2—テトラメチルジシラン、 1, 2—ジフエノキシー 1, 1, 2, 2—テト ラメチルジシラン、 1, 2—ジメトキシ 1, 1, 2, 2—テトラェチルジシラン、 1, 2—ジェ トキシー 1, 1, 2, 2—テトラェチルジシラン、 1, 2—ジフエノキシー 1, 1, 2, 2—テトラ ェチルジシラン、 1, 2—ジメトキシ 1, 1, 2, 2—テトラフヱ二ルジシラン、 1, 2—ジェ トキシー 1, 1, 2, 2—テトラフエ二ルジシラン、 1, 2—ジフエノキシー 1, 1, 2, 2—テト ラフヱ-ルジシランなどを挙げることができる。
[0038] これらのうち、へキサメトキシジシラン、へキサェトキシジシラン、 1, 1, 2, 2—テトラメ トキシー 1, 2—ジメチノレジシラン、 1, 1, 2, 2—テトラエトキシー 1, 2—ジメチノレジシラ ン、 1, 1, 2, 2—テトラメトキシー 1, 2—ジフエ二ルジシラン、 1, 2—ジメトキシ 1, 1 , 2, 2—テトラメチルジシラン、 1, 2—ジエトキシー 1, 1, 2, 2—テトラメチルジシラン 、 1, 2—ジメトキシ 1, 1, 2, 2—テトラフエ二ルジシラン、 1, 2—ジエトキシ 1, 1, 2, 2—テトラフエ-ルジシランなどを、好ましい例として挙げることができる。
[0039] さらに、化合物 3として、一般式(3)において、 R7がー(CH ) 一で表される基の化 合物としては、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ
—n—プロポキシシリル)メタン、ビス(トリー iso プロポキシシリル)メタン、ビス(トリー n—ブトキシシリル)メタン、ビス(トリ一 sec ブトキシシリル)メタン、ビス(トリ一 tert— ブトキシシリル)メタン、 1, 2—ビス(トリメトキシシリル)ェタン、 1, 2—ビス(トリエトキシ シリル)ェタン、 1, 2—ビス(トリ一 n—プロポキシシリル)ェタン、 1, 2—ビス(トリ一 iso プロポキシシリル)ェタン、 1, 2—ビス(トリー n—ブトキシシリル)ェタン、 1, 2—ビス (トリー sec ブトキシシリル)ェタン、 1, 2—ビス(トリー tert ブトキシシリル)ェタン、
1— (ジメトキシメチルシリル)— 1— (トリメトキシシリル)メタン、 1— (ジエトキシメチルシ リル)— 1— (トリエトキシシリル)メタン、 1 (ジ— n—プロポキシメチルシリル)— 1— ( トリ— n—プロポキシシリル)メタン、 1— (ジ— iso プロポキシメチルシリル)— 1— (トリ —iso プロポキシシリル)メタン、 1— (ジ— n—ブトキシメチルシリル)— 1— (トリ— n ブトキシシリル)メタン、 1—(ジ sec ブトキシメチルシリル) 1 (トリー sec ブ トキシシリル)メタン、 1—(ジ tert ブトキシメチルシリル)ー1 (トリー tert ブトキ シシリル)メタン、 1— (ジメトキシメチルシリル)—2— (トリメトキシシリル)ェタン、 1— ( ジエトキシメチルシリル) 2—(トリエトキシシリル)ェタン、 1 (ジー n プロポキシメ チルシリル)—2— (トリ— n—プロポキシシリル)ェタン、 1— (ジ— iso プロポキシメ チルシリル)ー2—(トリー iso プロポキシシリル)ェタン、 1—(ジ—n—ブトキシメチル シリル) - 2- (トリ— n—ブトキシシリル)ェタン、 1— (ジ— sec ブトキシメチルシリル
) - 2- (トリー sec ブトキシシリル)ェタン、 1—(ジ tert ブトキシメチルシリル)
2- (トリー tert ブトキシシリル)ェタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジ エトキシメチルシリル)メタン、ビス(ジ n—プロポキシメチルシリル)メタン、ビス(ジー iso プロポキシメチルシリル)メタン、ビス(ジ一 n—ブトキシメチルシリル)メタン、ビス (ジ sec ブトキシメチルシリル)メタン、ビス(ジ tert ブトキシメチルシリル)メタ ン、 1, 2—ビス(ジメトキシメチルシリル)ェタン、 1, 2—ビス(ジエトキシメチルシリル) ェタン、 1, 2—ビス(ジ一 n—プロポキシメチルシリル)ェタン、 1, 2—ビス(ジ一 iso— プロポキシメチルシリル)ェタン、 1, 2—ビス(ジ—n—ブトキシメチルシリル)ェタン、 1
, 2—ビス(ジ— sec ブトキシメチルシリル)ェタン、 1, 2—ビス(ジ— tert ブトキシメ チルシリル)ェタン、 1, 2—ビス(トリメトキシシリル)ベンゼン、 1, 2—ビス(トリエトキシ シリル)ベンゼン、 1, 2—ビス(トリ— n—プロポキシシリル)ベンゼン、 1, 2—ビス(トリ —iso プロポキシシリル)ベンゼン、 1, 2—ビス(トリー n—ブトキシシリル)ベンゼン、 1, 2—ビス(トリ— sec ブトキシシリル)ベンゼン、 1, 2—ビス(トリ— tert ブトキシシ リル)ベンゼン、 1, 3 ビス(トリメトキシシリル)ベンゼン、 1, 3 ビス(トリエトキシシリ ル)ベンゼン、 1 , 3 ビス(トリ— n—プロポキシシリル)ベンゼン、 1, 3 ビス(トリ— is o プロポキシシリル)ベンゼン、 1, 3 ビス(トリー n—ブトキシシリル)ベンゼン、 1, 3 ビス(トリー sec ブトキシシリル)ベンゼン、 1, 3 ビス(トリー tert ブトキシシリル) ベンゼン、 1, 4 ビス(トリメトキシシリル)ベンゼン、 1, 4 ビス(トリエトキシシリル)ベ ンゼン、 1, 4 ビス(トリ— n—プロポキシシリル)ベンゼン、 1, 4 ビス(トリ— iso プ ロポキシシリル)ベンゼン、 1, 4 ビス(トリー n—ブトキシシリル)ベンゼン、 1, 4 ビス (トリ— sec ブトキシシリル)ベンゼン、 1, 4 ビス(トリ— tert ブトキシシリル)ベン ゼンなど挙げることができる。
[0040] これらのうち、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、 1, 2— ビス(トリメトキシシリル)ェタン、 1, 2—ビス(トリエトキシシリル)ェタン、 1— (ジメトキシ メチルシリル)— 1— (トリメトキシシリル)メタン、 1― (ジエトキシメチルシリル)— 1— (ト リエトキシシリル)メタン、 1— (ジメトキシメチルシリル)—2— (トリメトキシシリル)ェタン 、 1—(ジエトキシメチルシリル) 2—(トリエトキシシリル)ェタン、ビス(ジメトキシメチ ルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、 1, 2—ビス(ジメトキシメチルシ リル)ェタン、 1, 2—ビス(ジエトキシメチルシリル)ェタン、 1, 2—ビス(トリメトキシシリ ル)ベンゼン、 1 , 2 ビス(トリエトキシシリル)ベンゼン、 1, 3 ビス(トリメトキシシリル )ベンゼン、 1, 3 ビス(トリエトキシシリル)ベンゼン、 1, 4 ビス(トリメトキシシリル) ベンゼン、 1, 4 ビス(トリエトキシシリル)ベンゼンなどを好ましい例として挙げること ができる。前記化合物 1〜3は、 1種あるいは 2種以上を同時に使用してもよい。
[0041] 化合物 1〜3で表される化合物を加水分解、部分縮合させる際に、一般式(1)〜(3 )において I^O—、 R20—、 R40—および R50—で表される基 1モル当たり、 0. 1〜1 00モルの水を用いることが好ましい。なお、本発明において完^ 3口水分解縮合物と は、縮合物成分中 I^O—、 R —、 R40—および R50—で表される基が 100%加水 分解して OH基となり、完全に縮合したものを示す。 1. 2. (B)成分
次に (B)成分について説明する。(B)成分は、主鎖が—(Si— CH ) —で表される
2
構造 (ここで、 Xは 2以上の数である)からなり、かつ、下記一般式 (4)で表される構造 、下記一般式 (5)で表される構造、下記一般式 (6)で表される構造および下記一般 式(7)で表される構造を有するポリカルボシラン (以下「化合物 4」 t 、う)である。 (B) 成分は、前記 (A)成分と縮合して、 Si— O— Si結合を形成することができる。
[化 9]
Figure imgf000018_0001
… · · (4)
[化 10]
Figure imgf000018_0002
… · · (5)
(式中、 R8は、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基 からなる群より選ばれる基を示す。 )
[化 11]
Figure imgf000018_0003
… · · (6)
(式中、 R9および R1C>は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基 、アルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[化 12]
Figure imgf000019_0001
(式中、 Rn〜R "は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基、ァ ルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
R8〜R13において、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブ トキシ基などを挙げることができ、ァシロキシ基としては、ァセトキシ基、ベンジルォキ シ基などを挙げることができる。
[0043] (B)成分の分子中において、好ましくは上記一般式 (4)で表される構造が 5〜20モ ル% (より好ましくは 5〜15モル%)であり、好ましくは上記一般式(5)で表される構造 力 〜 20モル0 /0 (より好ましくは 5〜10モル0 /0)であり、好ましくは上記一般式(6)で 表される構造が 20〜50モル% (より好ましくは 25〜45モル%)であり、好ましくは上 記一般式(7)で表される構造が 30〜60モル0 /0 (より好ましくは 35〜50モル0 /0)であ る。上記一般式 (4)〜(7)で表される各構造が上記範囲内にあると、加水分解による シラノール基の生成およびシラノール基の縮合反応の制御がし易ぐ目的とする分岐 度および目的とする分子量を有するポリマーを得ることが容易となる。
[0044] (B)成分は、前記一般式 (4)〜(7)で表される構造に存在するケィ素原子以外のケ ィ素原子を分子中に含まなくてもよ 、。
[0045] (B)成分中の上記各構造の存在比は、例えば 29Si— NMRスペクトル解析結果か ら同定することがでさる。
[0046] (A)成分と (B)成分の混合比としては、(A)成分の完全加水分解縮合物 100重量 部に対して、(B)成分が 1〜: LOOO重量部であることが好ましぐ特に 5〜200重量部 であることがより好ましぐ 5〜: L00重量部であることがさらに好ましい。(B)成分が 1重 量部未満である場合には、膜形成後に十分な薬液耐性を発現することができない場 合があり、また 1000重量部を越えると膜の低誘電率ィ匕を達成できない場合がある。
[0047] (B)成分のポリスチレン換算重量平均分子量は、 700〜10, 000であることが好ま しく、 750〜5, 000であること力 Sより好ましく、 750〜3, 000であること力 Sさらに好まし い。(B)成分のポリスチレン換算重量平均分子量が 10, 000を超えると、(A)成分と 層分離を起こし、均一な膜を形成しないことがある。
[0048] 本発明の膜形成用組成物に含まれる加水分解縮合物を製造する際に、(B)成分と して化合物 4を用いて、(C)塩基性触媒および (B)成分の存在下、(A)成分を加水 分解縮合することにより、(A)成分同士の加水分解縮合とともに、(B)成分と (A)成 分に由来するポリシロキサンとの加水分解縮合を進行させることができる。これにより 、得られる加水分解縮合物は、(B)成分 (ポリカルボシラン)を核とするポリマーが、 ( A)成分 (加水分解基含有シランモノマー)に由来するポリシロキサンの三次構造内 に取り込まれた構造を有する。本発明の絶縁膜形成用組成物が上記加水分解縮合 物を含むことにより、比誘電率がより小さぐ機械的強度、密着性および薬液耐性が 非常に優れ、かつ膜中の相分離がない絶縁膜を得ることができる。
[0049] 1. 3. (C)塩基性触媒
本発明の膜形成用組成物に含まれる加水分解縮合物を製造する際、(C)塩基性 触媒を使用することにより、得られる加水分解縮合物の分子構造に存在する分子鎖 の分岐度を高くすることができ、かつ、その分子量をより大きくすることができる。これ により、上述した構造を有する加水分解縮合物を得ることができる。
[0050] 本発明に係る(C)塩基性触媒としては、例えば、メタノールァミン、エタノールァミン 、プロパノールァミン、ブタノールァミン、 N—メチルメタノールァミン、 N—ェチルメタ ノールァミン、 N—プロピルメタノールァミン、 N—ブチルメタノールァミン、 N—メチル エタノールァミン、 N—ェチルエタノールァミン、 N—プロピルエタノールァミン、 N— ブチルエタノールァミン、 N—メチルプロパノールァミン、 N—ェチルプロパノールアミ ン、 N—プロピルプロパノールァミン、 N—ブチルプロパノールァミン、 N—メチルブタ ノールァミン、 N—ェチルブタノールァミン、 N—プロピルブタノールァミン、 N—ブチ ルブタノールァミン、 N, N—ジメチルメタノールァミン、 N, N—ジェチルメタノールァ ミン、 N, N—ジプロピルメタノールァミン、 N, N—ジブチルメタノールァミン、 N, N— ジメチルエタノールァミン、 N, N—ジェチルエタノールァミン、 N, N—ジプロピルェ タノールァミン、 N, N—ジブチルエタノールァミン、 N, N—ジメチルプロパノールアミ ン、 N, N—ジェチルプロパノールァミン、 N, N—ジプロピルプロパノールァミン、 N, N—ジブチルプロパノールァミン、 N, N—ジメチルブタノールァミン、 N, N—ジェチ ルブタノールァミン、 N, N—ジプロピルブタノールァミン、 N, N—ジブチルブタノ一 ルァミン、 N—メチルジメタノールァミン、 N—ェチルジメタノールァミン、 N—プロピル ジメタノールァミン、 N—ブチルジメタノールァミン、 N—メチルジェタノールァミン、 N ーェチルジェタノールァミン、 N—プロピルジエタノールァミン、 N—ブチルジェタノ ールァミン、 N—メチルジプロパノールァミン、 N—ェチルジプロパノールァミン、 N— プロピルジプロパノールァミン、 N—ブチルジプロパノールァミン、 N—メチルジブタノ ールァミン、 N—ェチルジブタノールアミン、 N—プロピルジブタノールアミン、 N—ブ チルジブタノールアミン、 N— (アミノメチル)メタノールァミン、 N— (アミノメチル)エタ ノールァミン、 N— (アミノメチル)プロパノールァミン、 N— (アミノメチル)ブタノールァ ミン、 N— (アミノエチル)メタノールァミン、 N— (アミノエチル)エタノールァミン、 N— ( アミノエチル)プロパノールァミン、 N— (アミノエチル)ブタノールァミン、 N— (アミノプ 口ピル)メタノールァミン、 N— (ァミノプロピル)エタノールァミン、 N— (ァミノプロピル) プロパノールァミン、 N— (ァミノプロピル)ブタノールァミン、 N— (アミノブチル)メタノ ールァミン、 N— (アミノブチル)エタノールァミン、 N— (アミノブチル)プロパノールァ ミン、 N— (アミノブチル)ブタノールァミン、メトキシメチルァミン、メトキシェチルァミン 、メトキシプロピルァミン、メトキシブチルァミン、エトキシメチルァミン、エトキシェチル ァミン、エトキシプロピルァミン、エトキシブチルァミン、プロポキシメチルァミン、プロボ キシェチルァミン、プロポキシプロピルァミン、プロポキシブチルァミン、ブトキシメチ ルァミン、ブトキシェチルァミン、ブトキシプロピルァミン、ブトキシブチルァミン、メチ ルァミン、ェチルァミン、プロピルァミン、ブチルァミン、 N, N—ジメチルァミン、 N, N —ジェチルァミン、 N, N—ジプロピルァミン、 N, N—ジブチルァミン、トリメチルァミン 、トリエチルァミン、トリプロピルァミン、トリブチルァミン、テトラメチルアンモ -ゥムハイ ドロキサイド、テトラエチルアンモ -ゥムハイドロキサイド、テトラプロピルアンモ-ゥム ハイドロキサイド、テトラプチルアンモニゥムハイドロキサイド、テトラメチルエチレンジ エチレンジァミン、メチルアミノメチルァミン、メチルアミノエチルァミン、メチルアミノプ 口ピルァミン、メチルアミノブチルァミン、ェチルアミノメチルァミン、ェチルアミノエチ ルァミン、ェチルァミノプロピルァミン、ェチルアミノブチルァミン、プロピルアミノメチ ルァミン、プロピルアミノエチルァミン、プロピルアミノプロピルァミン、プロピルアミノブ チルァミン、ブチルアミノメチルァミン、ブチルアミノエチルァミン、ブチルァミノプロピ ルァミン、ブチルアミノブチルァミン、ピリジン、ピロール、ピぺラジン、ピロリジン、ピぺ リジン、ピコリン、モルホリン、メチルモルホリン、ジァザビシクロオクラン、ジァザビシク ロノナン、ジァザビシクロウンデセン、アンモニア、水酸化ナトリウム、水酸化カリウム、 水酸化バリウム、水酸ィ匕カルシウムなどを挙げることができる。
[0051] (C)塩基性触媒としては、特に、下記一般式 (5)で表される含窒素化合物(以下、 化合物 5とも 、う)であることが好まし 、。
[0052] (X'X^ N) Y (5)
a
前記一般式 (5)において、 X1, X2, X3, X4は同一または異なり、それぞれ水素原子 、炭素数 1〜20のアルキル基 (好ましくはメチル基、ェチル基、プロピル基、ブチル基 、へキシル基など)、ヒドロキシアルキル基 (好ましくはヒドロキシェチル基など)、ァリー ル基 (好ましくはフエニル基など)、ァリールアルキル基 (好ましくはフエニルメチル基 など)を示し、 Yはハロゲン原子 (好ましくはフッ素原子、塩素原子、臭素原子、ヨウ素 原子など)、 1〜4価のァ-オン性基 (好ましくはヒドロキシ基など)を示し、 aは 1〜4の 整数を示す。
[0053] 化合物 5の具体例としては、水酸ィ匕テトラメチルアンモ-ゥム、水酸化テトラエチル アンモ-ゥム、水酸化テトラー n—プロピルアンモ-ゥム、水酸化テトラー iso—プロピ ルアンモニゥム、水酸化テトラー n—ブチルアンモニゥム、水酸化テトラー iso—ブチ ルアンモニゥム、水酸化テトラー tert—ブチルアンモニゥム、水酸化テトラペンチルァ ンモ-ゥム、水酸化テトラへキシルアンモ-ゥム、水酸化テトラへプチルアンモ -ゥム 、水酸ィ匕テトラオクチルアンモ-ゥム、水酸ィ匕テトラノニルアンモ-ゥム、水酸化テトラ デシルアンモニゥム、水酸化テトラウンデシルアンモニゥム、水酸化テトラドデシルァ ンモ-ゥム、臭化テトラメチルアンモ-ゥム、塩ィ匕テトラメチルアンモ-ゥム、臭化テトラ ェチルアンモ-ゥム、塩化テトラエチルアンモ-ゥム、臭化テトラー n—プロピルアン モ-ゥム、塩化テトラ— n—プロピルアンモ-ゥム、臭化テトラ— n—ブチルアンモ-ゥ ム、塩化テトラ— n—ブチルアンモ-ゥム、水酸化へキサデシルトリメチルアンモ-ゥ ム、臭化— n—へキサデシルトリメチルアンモ-ゥム、水酸化—n—ォクタデシルトリメ チルアンモ-ゥム、臭化一 n—ォクタデシルトリメチルアンモ-ゥム、塩化セチルトリメ チルアンモ-ゥム、塩化ステアリルトリメチルアンモ-ゥム、塩化ベンジルトリメチルァ ゥム、塩化トリデシルメチルアンモ-ゥム、テトラプチルアンモ -ゥムハイドロジェンサ ルフェート、臭化トリブチルメチルアンモ-ゥム、塩化トリオクチルメチルアンモ-ゥム、 塩化トリラウリルメチルアンモ-ゥム、水酸化べンジルトリメチルアンモ-ゥム、臭化べ ンジルトリェチルアンモ-ゥム、臭化べンジルトリブチルアンモ-ゥム、臭化フエ-ルト リメチルアンモ-ゥム、コリン等を好ましい例として挙げることができる。これらのうち特 に好ましくは、水酸ィ匕テトラメチルアンモ-ゥム、水酸ィ匕テトラェチルアンモ-ゥム、水 酸化テトラー n—プロピルアンモ-ゥム、水酸化テトラー n—ブチルアンモ-ゥム、臭 化テトラメチルアンモ-ゥム、塩ィ匕テトラメチルアンモ-ゥム、臭化テトラェチルアンモ ユウム、塩ィ匕テトラェチルアンモ-ゥム、臭化テトラ一 n—プロピルアンモ-ゥム、塩ィ匕 テトラー n—プロピルアンモ-ゥムである。前記の化合物 5は、 1種あるいは 2種以上を 同時に使用してもよい。
[0054] 上述した (C)塩基性触媒の使用量は、(A)成分 (ィ匕合物 1〜3の総量) 1モルに対し て通常 0. 0001〜1モル、好ましくは 0. 001〜0. 1モルである。
[0055] 1. 4.特定加水分解縮合物の製造方法
特定加水分解縮合物は、上記 (B)成分および (C)塩基性触媒の存在下に、上記( A)成分を加水分解縮合することにより得られる。
[0056] ここで、 (A)成分および (B)成分を有機溶媒に溶解させた状態で、 (A)成分を加水 分解することができる。この場合に使用可能な有機溶媒としては、例えば、メタノール 、エタノール、 n—プロパノール、 i—プロパノール、 n—ブタノール、 iーブタノール、 se cーブタノール、 tーブタノール等のアルコール系溶媒;エチレングリコール、 1, 2—プ ロピレングリコール、 1, 3 ブチレングリコール、 2, 4 ペンタンジオール、 2 メチル - 2, 4 ペンタンジオール、 2, 5 へキサンジオール、 2, 4 ヘプタンジオール、 2 ーェチノレー 1, 3 へキサンジオール、ジエチレングリコール、ジプロピレングリコーノレ 、トリエチレングリコール、トリプロピレングリコールなどの多価アルコール系溶媒;ェチ レングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、ェチレ ングリコーノレモノプロピノレエーテノレ、エチレングリコーノレモノブチノレエーテノレなどの多 価アルコール部分エーテル系溶媒;ェチルエーテル、 i プロピルエーテル、 n—ブ チルエーテル、 n キシルエーテル、 2—ェチルへキシルエーテル、ジォキソラン、 4ーメチルジォキソラン、ジォキサン、ジメチルジォキサン、エチレングリコールモノメ チノレエーテノレ、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレモノェチノレ エーテル、エチレングリコールジェチルエーテルなどのエーテル系溶媒;アセトン、メ チルェチルケトン、メチルー n—プロピルケトン、メチルー n—ブチルケトン、ジェチル ケトン、メチルー iーブチルケトン、メチルー n ペンチルケトン、ェチルー n ブチル ケトン、メチルー n キシルケトン、ジー iーブチルケトン、トリメチルノナノン、シクロ ペンタノン、シクロへキサノン、シクロへプタノン、シクロォクタノン、 2—へキサノン、メ チルシクロへキサノン、 2, 4 ペンタンジオン、ァセトニルアセトン、ジアセトンアルコ ール、などのケトン系溶媒が挙げられる。
[0057] 有機溶媒中における (B)成分および (A)成分の合計量の濃度は 1 30重量%で あることが好ましい。
[0058] 加水分解縮合における反応温度は 0 100°C、好ましくは 20 80°C、反応時間は
30〜: L000分、好ましくは 30 180分である。
[0059] 各成分の添加順としては、特に限定されな!、が、例えば有機溶媒に (C)塩基性触 媒を添加した液に、 (A)成分および (B)成分をそれぞれ有機溶媒に添加したものを 逐次添加して!/ヽく方法が好ま
[0060] 得られた特定加水分解縮合物のポリスチレン換算重量平均分子量は、通常、 1, 5
00 500, 000であるの力 S好まし <、 2, 000 200, 000であるの力 Sより好まし <、 2, 000-100, 000であるのがさらに好ましい。特定加水分解縮合物のポリスチレン換 算重量平均分子量が 1, 500未満であると、 目的とする比誘電率が得られない場合 があり、一方、 500, 000を超えると、塗膜の面内均一性が劣る場合がある。
[0061] 1. 5.有機溶媒
本発明の絶縁膜形成用組成物に含まれる有機溶媒としては、アルコール系溶媒、 ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒、脂肪族炭化水素系 溶媒、芳香族系溶媒および含ハロゲン溶媒の群力 選ばれた少なくとも 1種が挙げら れる。
[0062] アルコール系溶媒としては、メタノール、エタノール、 n—プロパノール、 i—プロパノ ール、 n—ブタノール、 iーブタノール、 sec ブタノール、 tーブタノール、 n—ペンタノ ール、 i—ペンタノール、 2—メチルブタノール、 sec ペンタノール、 t—ペンタノール 、 3—メトキシブタノール、 n—へキサノール、 2—メチルペンタノール、 sec へキサノ ール、 2 ェチルブタノール、 sec へプタノール、 3 へプタノール、 n—ォクタノー ル、 2 ェチルへキサノール、 sec—ォクタノール、 n ノ-ルアルコール、 2, 6 ジメ チルー 4一へプタノール、 n—デカノール、 sec ゥンデシルアルコール、トリメチルノ ニノレアノレコーノレ、 sec テトラテンノレァノレコーノレ、 sec ヘプタテシノレアノレコーノレ、フ ルフリルアルコール、フエノール、シクロへキサノール、メチルシクロへキサノール、 3, 3, 5—トリメチルシクロへキサノール、ベンジルアルコール、ジアセトンアルコールなど のモノアルコール系溶媒;
エチレングリコーノレ、 1, 2 プロピレングリコール、 1 , 3 ブチレングリコーノレ、 2, 4 ペンタンジオール、 2—メチルー 2, 4 ペンタンジオール、 2, 5 へキサンジォー ル、 2, 4 ヘプタンジオール、 2 ェチルー 1 , 3 へキサンジオール、ジエチレング リコーノレ、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコールな どの多価アルコール系溶媒;
エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 エチレングリコーノレモノプロピノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、 エチレングリコーノレモノへキシノレエーテノレ、エチレングリコーノレモノフエ-ノレエーテノレ 、エチレングリコーノレモノー 2—ェチルブチノレエーテル、ジエチレングリコーノレモノメ チノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノ プロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコーノレ モノへキシノレエーテル、プロピレングリコーノレモノメチノレエーテル、プロピレングリコー ルモノェチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコ ーノレモノブチノレエーテノレ、ジプロピレングリコールモノメチルエーテル、ジプロピレン グリコールモノェチルエーテル、ジプロピレングリコールモノプロピルエーテルなどの 多価アルコール部分エーテル系溶媒;などを挙げることができる。これらのアルコー ル系溶媒は、 1種あるいは 2種以上を同時に使用してもよ 、。
[0063] ケトン系溶媒としては、アセトン、メチルェチルケトン、メチルー n—プロピルケトン、メ チルー n—ブチルケトン、ジェチルケトン、メチルー iーブチルケトン、メチルー n—ぺ ンチルケトン、ェチルー n—ブチルケトン、メチルー n キシルケトン、ジー iーブチ ルケトン、トリメチルノナノン、シクロペンタノン、シクロへキサノン、シクロへプタノン、シ クロォクタノン、 2 へキサノン、メチルシクロへキサノン、 2, 4 ペンタンジオン、ァセ トニルアセトン、ジアセトンアルコール、ァセトフエノン、フェンチョンなどのケトン系溶 媒を挙げることができる。これらのケトン系溶媒は、 1種あるいは 2種以上を同時に使 用してちょい。
[0064] アミド系溶媒としては、 Ν,Ν ジメチルイミダゾリジノン、 Ν—メチルホルムアミド
Ν, Ν ジメチルホルムアミド、 Ν, Ν ジェチルホルムアミド、ァセトアミド、 Ν—メチ ルァセトアミド、 Ν, Ν ジメチルァセトアミド、 Ν—メチルプロピオンアミド、 Ν—メチル ピロリドンなどの含窒素系溶媒を挙げることができる。これらのアミド系溶媒は、 1種あ るいは 2種以上を同時に使用してもよ 、。
[0065] エーテル溶媒系としては、ェチルエーテル、 i—プロピルエーテル、 n—ブ
チルエーテル、 n キシルエーテル、 2—ェチルへキシルエーテル、ジォキソラン、 4ーメチルジォキソラン、ジォキサン、ジメチルジォキサン、エチレングリコールモノメ チノレエーテノレ、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレモノェチノレ エーテノレ、エチレングリコーノレジェチノレエーテノレ、エチレングリコーノレモノ ブチノレエーテノレ、エチレングリコーノレモノー n キシノレエーテノレ、エチレングリコー ノレモノフエニノレエーテノレ、エチレングリコーノレモノー 2—ェチノレブチノレエーテノレ、ェチ レングリコールジブチノレエ一テル、ジエチレングリコーノレモノメチノレエーテル、ジェチ レングリコールジメチノレエーテル、ジエチレングリコーノレモノェチノレエーテル、ジェチ レングリコーノレジェチノレエーテノレ、ジエチレングリコーノレモノ ブチノレエーテノレ、 ジエチレングリコールジ ブチノレエーテノレ、ジエチレングリコールモノ へキ シルエーテル、エトキシトリグリコール、テトラエチレングリコールジー n—ブチルエー テノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコーノレモノェチノレエー テル、プロピレングリコールモノプロピルエーテル、プロピレングリコーノレモノブチノレエ 一テル、ジプロピレングリコーノレモノメチノレエーテル、ジプロピレングリコーノレモノェチ ルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、 2—メチ ルテトラヒドロフラン、ジフエ-ルエーテル、ァ-ソールなどのエーテル系溶媒を挙げ ることができる。これらのエーテル系溶媒は、 1種あるいは 2種以上を同時に使用して ちょい。
エステル系溶媒としては、ジェチルカーボネート、プロピレンカーボネート、酢酸メ チル、酢酸ェチル、 γ ブチロラタトン、 γ バレロラタトン、酢酸 η プロピル、酢酸 i プロピル、酢酸 n—ブチル、酢酸 iーブチル、酢酸 sec ブチル、酢酸 n ペンチル 、酢酸 sec ペンチル、酢酸 3—メトキシブチル、酢酸メチルペンチル、酢酸 2 ェチ ルブチル、酢酸 2—ェチルへキシル、酢酸ベンジル、酢酸シクロへキシル、酢酸メチ ルシクロへキシル、酢酸 n ノエル、ァセト酢酸メチル、ァセト酢酸ェチル、酢酸ェチ レングリコーノレモノメチノレエーテノレ、酢酸エチレングリコーノレモノェチノレエーテノレ、酢 酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノェチルェ 一テル、酢酸ジエチレングリコールモノー n—ブチルエーテル、酢酸プロピレングリコ ールモノメチルエーテル、酢酸プロピレングリコールモノェチルエーテル、酢酸プロピ レングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル 、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエ チルエーテル、ジ酢酸ダリコール、酢酸メトキシトリグリコール、プロピオン酸ェチル、 プロピオン酸 n—ブチル、プロピオン酸 iーァミル、シユウ酸ジェチル、シユウ酸ジー n ーブチル、乳酸メチル、乳酸ェチル、乳酸 n—ブチル、乳酸 n—ァミル、マロン酸ジェ チル、フタル酸ジメチル、フタル酸ジェチルなどのエステル系溶媒を挙げることができ る。これらのエステル系溶媒は、 1種あるいは 2種以上を同時に使用してもよい。
[0067] 脂肪族炭化水素系溶媒としては、 n ペンタン、 i ペンタン、 n—へキサン、 i一へ キサン、 n—ヘプタン、 i—ヘプタン、 2, 2, 4 トリメチルペンタン、 n オクタン、 iーォ クタン、シクロへキサン、メチルシクロへキサンなどの脂肪族炭化水素系溶媒を挙げる ことができる。これらの脂肪族炭化水素系溶媒は、 1種あるいは 2種以上を同時に使 用してちょい。
[0068] 芳香族炭化水素系溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、ェチ ルベンゼン、トリメチルベンゼン、メチルェチルベンゼン、 n—プロピルベンセン、 i— プロピルベンセン、ジェチルベンゼン、 i ブチルベンゼン、トリェチルベンゼン、ジー i—プロピルベンセン、 n—アミルナフタレンなどの芳香族炭化水素系溶媒を挙げるこ とができる。これらの芳香族炭化水素系溶媒は、 1種あるいは 2種以上を同時に使用 してもよい。含ハロゲン溶媒としては、ジクロロメタン、クロ口ホルム、フロン、クロ口ベン ゼン、ジクロロベンゼン、などの含ハロゲン溶媒を挙げることができる。
[0069] 本発明においては、沸点が 150°C未満の有機溶媒を使用することが望ましぐ溶剤 種としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤が特に望ましぐさら にそれらを 1種あるいは 2種以上を同時に使用することが望ま 、。
[0070] これらの有機溶媒は、特定加水分解縮合物の合成に用いたものと同じものであつ てもよいし、特定加水分解縮合物の合成が終了した後に溶剤を所望の有機溶媒に 置換することちでさる。
[0071] 1. 6.その他の添加物
本発明の絶縁膜形成用組成物には、さらに有機ポリマーや界面活性剤などの成分 を添加してもよい。また、これらの添加物は、(A)成分および (B)成分を混合する前 の各成分が溶解もしくは分散された溶剤中に添加されて 、てもよ 、。
[0072] 1. 6. 1.有機ポリマー
有機ポリマーとしては、例えば、糖鎖構造を有する重合体、ビニルアミド系重合体、 (メタ)アクリル系重合体、芳香族ビニル化合物系重合体、デンドリマー、ポリイミド,ポ リアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジァゾール、フッ 素系重合体、ポリアルキレンオキサイド構造を有する重合体などを挙げることができる [0073] ポリアルキレンオキサイド構造を有する重合体としては、ポリメチレンオキサイド構造 、ポリエチレンオキサイド構造、ポリプロピレンオキサイド構造、ポリテトラメチレンォキ サイド構造、ポリブチレンォキシド構造などが挙げられる。
[0074] 具体的には、ポリオキシメチレンアルキルエーテル、ポリオキシエチレンアルキルェ 一テル、ポリオキシェテチレンアルキルフエニルエーテル、ポリオキシエチレンステロ ールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフエノールホルマリン縮 合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリ マー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどのエーテル型 化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン 脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシェチレ ン脂肪酸アル力ノールアミド硫酸塩などのエーテルエステル型化合物、ポリエチレン グリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリ ド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール 脂肪酸エステル、ショ糖脂肪酸エステルなどのエーテルエステル型化合物などを挙 げることができる。
[0075] ポリオキシチレンポリオキシプロピレンブロックコポリマーとしては、下記のようなブロ ック構造を有する化合物が挙げられる。
[0076] 一(X' ) — (Υ' ) 一
1 m
- (χ' ) — (Υ' ) (Xリ ー
1 m n
(式中、 X' は— CH CH O で表される基を、 Ύ' は— CH CH (CH ) Ο で表
2 2 2 3 される基を示し、 1は 1〜90、 mは 10〜99、 nは 0〜90の数を示す。)
[0077] これらの中で、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシ プロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンァノレキノレエ一 テル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂 肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、などのエーテル型 化合物をより好ましい例として挙げることができる。前述の有機ポリマーは、 1種あるい は 2種以上を同時に使用しても良い。 [0078] 1. 6. 2.界面活性剤
界面活性剤としては、たとえば、ノニオン系界面活性剤、ァニオン系界面活性剤、 カチオン系界面活性剤、両性界面活性剤などが挙げられ、さらには、フッ素系界面 活性剤、シリコーン系界面活性剤、ポリアルキレンォキシド系界面活性剤、ポリ (メタ) アタリレート系界面活性剤などを挙げることができ、好ましくはフッ素系界面活性剤、 シリコーン系界面活性剤を挙げることができる。
[0079] 界面活性剤の使用量は、得られる重合体 100重量部に対して、通常、 0. 00001 〜1重量部である。これらは、 1種あるいは 2種以上を同時に使用しても良い。
[0080] 2.膜の形成方法
本発明の膜 (絶縁膜)の形成方法は、膜形成用組成物を基材に塗布し、塗膜を形 成する工程と、前記塗膜に加熱処理を行なう工程と、を含む。
[0081] 膜形成用組成物が塗布される基材としては、 Si、 SiO、 SiN、 SiC、 SiCN等の Si
2
含有層が挙げられる。膜形成用組成物を基材に塗布する方法としては、スピンコート 、浸漬法、ロールコート法、スプレー法などの塗装手段が用いられる。基材に膜形成 用組成物を塗布した後、溶剤を除去し塗膜を形成する。この際の膜厚は、乾燥膜厚 として、 1回塗りで厚さ 0. 05〜2. 5 /ζ πι、 2回塗りでは厚さ 0. 1〜5. の塗膜を 形成することができる。その後、得られた塗膜に対して、硬化処理を施すことでシリカ 系膜を形成することができる。
[0082] 硬化処理としては、加熱あるいは電子線照射あるいは紫外線照射あるいはプラズ マ処理等を挙げることができる。
[0083] 加熱により硬化を行なう場合は、この塗膜を不活性雰囲気下または減圧下で 80°C
〜450°Cに加熱する。この際の加熱方法としては、ホットプレート、オーブン、ファー ネスなどを使用することができ、加熱雰囲気としては、不活性雰囲気下または減圧下 で行なうことができる。
[0084] また、上記塗膜の硬化速度を制御するため、必要に応じて、段階的に加熱したり、 あるいは窒素、空気、酸素、減圧などの雰囲気を選択したりすることができる。このよう な工程により、シリカ系膜の製造を行なうことができる。
[0085] 3.シリカ系膜 (シリカ系絶縁膜) 本発明のシリカ系膜は、低誘電率であり、かつ表面平坦性に優れるため、 LSI,シ ステム LSI、 DRAM, SDRAM, RDRAM, D— RDRAMなどの半導体素子用層 間絶縁膜として特に優れており、かつ、エッチングストッパー膜、半導体素子の表面 コート膜などの保護膜、多層レジストを用いた半導体作製工程の中間層、多層配線 基板の層間絶縁膜、液晶表示素子用の保護膜や絶縁膜などに好適に用いることが できる。
[0086] 4.実施例
以下、本発明を、実施例を挙げてさらに具体的に説明する。本発明は以下の実施 例に限定されるものではない。なお、実施例および比較例中の「部」および「%」は、 特記しない限り、それぞれ重量部および重量%であることを示して!/ヽる。
[0087] 4. 1.評価方法
各種の評価は、次のようにして行った。
[0088] 4. 1. 1.比誘電率測定
8インチシリコンウェハ上に、スピンコート法を用いて膜形成用組成物を塗布し、ホッ トプレート上にて 90°Cで 3分間、次いで窒素雰囲気下 200°Cで 3分間乾燥し、さらに 50mTorrの減圧下 (真空雰囲気) 420°Cの縦型ファーネスで 1時間焼成した。得ら れた膜に、蒸着法によりアルミニウム電極パターンを形成し、比誘電率測定用サンプ ルを作成した。該サンプルについて、周波数 100kHzの周波数で、横河'ヒューレット パッカード (株)製、 HP16451B電極および HP4284Aプレシジョン LCRメータを用 Vヽて CV法により当該膜の比誘電率を測定した。
[0089] 4. 1. 2.絶縁膜の硬度および弾性率 (ヤング率)評価
MTS社製超微少硬度計 (Nanoindentator XP)にバーコピッチ型圧子 を取り付け、得られた絶縁膜のユニバーサル硬度を求めた。また、弾性率は連続剛 性測定法により測定した。
[0090] 4. 1. 3.保存安定性
40°Cで 30日保存した膜形成用組成物を、スピンコート法を用いて基材に塗布し、 ホットプレート上にて 90°Cで 3分間、次いで窒素雰囲気下 200°Cで 3分間基板を乾 燥し、さらに 50mTorrの減圧下にて 420°Cの縦型ファーネスで 1時間焼成した。この ようにして得られた塗膜の膜厚を、光学式膜厚計 (Rudolph Technologies社製、 S pectra Laser200)を用いて塗膜面内で 50点測定した。得られた膜の膜厚を測定 し、下式により求めた膜厚増加率により、保存安定性を評価した。
膜厚増加率 (%) = ( (保存後の膜厚) (保存前の膜厚)) ÷ (保存前の膜厚) X 100 A:膜厚増加率が 4%以下である。
B:膜厚増加率が 4%を超える。
[0091] 4. 1. 4.薬液耐性
シリカ系膜が形成された 8インチウェハを、室温で 0. 2%の希フッ酸水溶液中に 1 分間浸潰し、浸漬前後のシリカ系膜の膜厚変化を観察した。下記に定義する残膜率 が 99%以上であれば、薬液耐性が良好であると判断する。
残膜率 (%) = (浸漬後の膜の膜厚) ÷ (浸漬前の膜の膜厚) X 100
A:残膜率が 99%以上である。
B:残膜率が 99%未満である。
[0092] 4. 1. 5.膜の相分離有無の確認
絶縁膜の断面を、集束イオンビーム法で観察用にカ卩ェし、 TEMを用いて 18000 倍にて外観を調べた。判断結果を以下のようにして示す。
A:断面の形状観察では、均一な塗膜が得られている。
B:塗膜に海島状のドメイン相分離が確認される。
[0093] 4. 2.膜形成用組成物の製造
4. 2. 1.実施例 1
コンデンサーを備えた石英製フラスコ中に、 40%メチルァミン水溶液 2. 58g、超純 水 178. 16g、およびエタノール 435. 34gを秤取り、 60。Cで攪拌した。次いで、メチ ルトリメトキシシラン 41. 07g、テトラエトキシシラン 26. 92g、および下記表 1に示され る各構造を下記の割合で有するポリカルボシラン(9) (Mw= l, 300) 15. 93gをカロ えた後、 60°Cで 6時間攪拌し、ポリスチレン換算重量平均分子量 45, 000の加水分 解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプ 口ピルエーテル 613. 50gおよび 20%酢酸水溶液 22. 96gを加えた。この反応液を 固形分濃度が 10%となるまで減圧下で濃縮し、膜形成用組成物 1を得た。 [表 1]
Figure imgf000033_0001
… · · (9)
[0094] 4. 2. 2.実施例 2
コンデンサーを備えた石英製フラスコ中に、 20%水酸ィ匕テトラプロピルアンモ-ゥム 水溶液 52. 15g、超純水 81. 5g、およびイソプロノ V—ル 470. 36gを秤取り、 60。C で攪拌した。次いで、メチルトリメトキシシラン 26. 24g、テトラプロボキシシラン 50. 9 3g、および下記表 2に示される各構造を下記の割合で有するポリカルボシラン(10) ( Mw=840) 18. 82gをカ卩えた後、 60°Cで 4時間攪拌し、ポリスチレン換算重量平均 分子量 55, 000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、 プロピレングリコールモノプロピルエーテル 551. 86gおよび 20%酢酸水溶液 35. 4 2gを加えた。この反応液を固形分濃度が 10%となるまで減圧下で濃縮し、膜形成用 組成物 2を得た。
[表 2]
Figure imgf000033_0002
· · · · · do)
[0095] 4. 2. 3.実施例 3
コンデンサーを備えた石英製フラスコ中に、 25%水酸ィ匕テトラメチルアンモ -ゥム 水溶液 5. 80g、超純水 110. 30g、およびエタノール 548. 08gを秤取り、 60。Cで攪 拌した。次いで、ジメチルジメトキシシラン 5. 70g、メチルトリメトキシシラン 16. 15g、 テトラメトキシシラン 10. 83g、および下記表 3に示される各構造を下記の割合で有す るポリカルボシラン(11) (Mw= l, 050) 3. 14gを連続的に 1時間かけて加えた後、 さらに 60°Cで 2時間攪拌し、ポリスチレン換算重量平均分子量 40, 000の加水分解 縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロ ピルエーテル 658. 38gおよび 20%酢酸水溶液 10. 98gを加えた。この反応液を固 形分濃度が 10%となるまで減圧下で濃縮し、膜形成用組成物 3を得た。
[表 3]
Figure imgf000034_0001
· · · · · (ID
[0096] 4. 2. 4.実施例 4
コンデンサーを備えた石英製フラスコ中で、メチルトリメトキシシラン 58. 04g、テトラ メトキシシラン 16. 22g、および下記表 4に示される各構造を下記の割合で有するポリ カノレボシラン(12) (Mw= l, 480) 95. 27gを、プロピレングリコーノレモノェチノレエー テル 425. 50gに溶解させた後、スリーワンモーターで攪拌して溶液の温度を 55°Cに 安定させた。次に、シユウ酸 0. 44gを溶解させたイオン交換水 104. 83gを 1時間か けて溶液に添加した。その後、 55°Cで 3時間反応させ、ポリスチレン換算重量平均分 子量 2, 400の加水分解縮合物を含む反応液を得た後、プロピレングリコールモノエ チルエーテル 528. 59gをカ卩え、反応液を室温まで冷却した。この反応液を固形分 濃度が 10%となるまで減圧下で濃縮し、膜形成用組成物 4を得た。
[表 4]
Figure imgf000034_0002
· · · · · (12)
[0097] 4. 2. 5.実施例 5 コンデンサーを備えた石英製フラスコ中で、メチルトリメトキシシラン 82. 14g、テトラ メトキシシラン 38. 34g、および下記表 5に示される各構造を下記の割合で有するポリ カルボシラン(13) (Mw=840) 25. 10gをプロピレングリコールモノェチルエーテル 385. 65gに溶解させた。次に、イオン交換水 89. 85gを溶液に加え、室温で 1時間 攪拌した。その後テトラキス (ァセチルァセトナート)チタン 0. 071gをプロピレングリコ ールモノェチルエーテル 42. 85gに溶解したものを添カ卩し、温度 50°Cで 3時間反応 させ、ポリスチレン換算重量平均分子量 1, 650の加水分解縮合物を含む反応液を 得た後、プロピレングリコールモノェチルエーテル 518. 35gを加え、反応液を室温ま で冷却した。この反応液を固形分濃度が 10%となるまで減圧下で濃縮し、膜形成用 組成物 5を得た。
[表 5]
Figure imgf000035_0001
…… (13)
4. 2. 6.比較例 1
コンデンサーを備えた石英製フラスコ中に、 40%メチルァミン水溶液 2. 36g、超純 水 162. 57g、およびエタノール 459. 29gを秤取り、 80。Cで攪拌した。次いで、メチ ルトリメトキシシラン 41. 07g、テトラエトキシシラン 26. 92g、および下記表 6に示され る各構造を下記の割合で有するポリカルボシラン(14) (Mw= l, 200) 2. 36gをカロ えた後、 80°Cで 8時間攪拌し、ポリスチレン換算重量平均分子量 48, 000の加水分 解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプ 口ピルエーテル 621. 86gおよび 20%酢酸水溶液 20. 95gを加えた。この反応液を 固形分濃度が 10%となるまで減圧下で濃縮し、膜形成用組成物 6を得た。
[表 6] 構造 丄十 r 十 V r 十 V
\ CH=ノ ノ
比率(モル%) 4 0 6 0
· · · · · (14)
[0099] 4. 2. 7.比較例 2
コンデンサーを備えた石英製フラスコ中に、 20%水酸ィ匕テトラプロピルアンモ-ゥム 水溶液 58. 75g、超純水 91. 82g、およびイソプロノ V—ル 439. 2gを秤取り、 60。C で攪拌した。次いで、メチルトリメトキシシラン 37. 48gおよびテトラプロボキシシラン 7 2. 75gをカ卩えた後、 60°Cで 6時間攪拌し、ポリスチレン換算重量平均分子量 60, 00 0の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコ ールモノプロピルエーテル 531. 02gおよび 20%酢酸水溶液 39. 90gを加えた。こ の反応液を固形分濃度が 10%となるまで減圧下で濃縮し、膜形成用組成物 2を得た
[0100] 4. 2. 8.比較例 3
コンデンサーを備えた石英製フラスコ中で、下記表 7に示される各構造を下記の割 合で有するポリカルボシラン(15) (Mw=840) 125. 49gを、プロピレングリコールモ ノエチルエーテル 487. 33gに溶解させた後、スリーワンモーターで攪拌して溶液の 温度を 55°Cに安定させた。次に、シユウ酸 0. 36gを溶解させたイオン交換水 88. 63 gを 1時間かけて溶液に添加した。その後、 55°Cで 3時間反応させ、ポリスチレン換算 重量平均分子量 2, 800の加水分解縮合物を含む反応液を得た後、プロピレングリコ ールモノェチルエーテル 572. 70gを加え、反応液を室温まで冷却した。この反応液 を固形分濃度が 10%となるまで減圧下で濃縮し、膜形成用組成物 8を得た。
[表 7]
Figure imgf000036_0001
· · · · · (15)
[0101] 4. 2. 9.比較例 4
比較例 2で得られた固形分濃度 10%の絶縁膜形成用組成物 70gに、比較例 3で 得られた固形分濃度 10%の絶縁膜形成用組成物 30gを加え、 25°Cで 1時間攪拌し た。これにより、膜形成用組成物 9を得た。
[0102] 4. 3.評価結果
実施例 1〜5および比較例 1〜4で得られた膜形成用組成物 1〜9を用いて、比誘 電率、弾性率、硬度、薬液耐性、保存安定性および断面観察結果について評価を 行った。評価結果を表 8に示す。
[0103] [表 8]
Figure imgf000037_0001
[0104] 表 8により明らかなように、実施例 1〜5によれば、比較例 3, 4に比較して、低い比 誘電率を有し、弾性率および硬度が向上した膜の形成が可能であることが確認され た。また、実施例 1〜5の膜形成用組成物によれば、比較例 3, 4の膜形成用組成物 と比較して、保存安定性が良い。
[0105] また、比較例 1は実施例 1のポリカルボシランを別のポリカルボシランに代えた例で あるが、比較例 1と実施例 1との比較によれば、実施例 1において本発明の構造を有 するポリカルボシランを用いることにより、薬液耐性が高くかつ保存安定性に優れた 膜形成用組成物を得ることができる。
[0106] さらに、比較例 2はポリカルボシランの非存在下で加水分解縮合反応を行った場合 であるが、薬液耐性の劣化が観察されており、ポリカルボシラン存在下で加水分解縮 合することが有用であることを示して 、る。
[0107] また、比較例 3は本願の構造を有するポリカルボシランのみを加水分解縮合反応し た場合であるが、比誘電率が高ぐさらに保存安定性が劣っており、シラン化合物を ポリカルボシラン存在下で加水分解縮合することが有用であることを示している。
[0108] さらに、比較例 4は、比較例 2および比較例 3でそれぞれ得られた加水分解縮合物 を混合して膜形成用組成物としたものであるが、保存安定性が悪ぐさらに塗膜の断 面観察において相分離が確認されており、これによりポリカルボシランの存在下にシ ランィ匕合物の加水分解縮合を行なうことが有用であることを示している。
[0109] 以上により、本発明により得られるシリカ系膜は、機械的強度に優れ、比誘電率が 低ぐさらには薬液耐性および保存安定性においても優れているため、半導体素子 などの層間絶縁膜として好適に用いることができる。

Claims

請求の範囲
(B)成分;主鎖が一(Si— CH ) 一で表される構造力 なり、かつ、下記一般式 (4)
2
で表される構造、下記一般式 (5)で表される構造、下記一般式 (6)で表される構造 および下記一般式(7)で表される構造を有するポリカルボシランの存在下、
(A)成分;下記一般式( 1)〜(3)で表される化合物の群力 選ばれた少なくとも 1種 のシランィ匕合物を加水分解縮合して得られた加水分解縮合物と、
有機溶媒と、を含む、絶縁膜形成用組成物。
R Si (OR1) (1)
a 4— a
(式中、 Rは水素原子、フッ素原子または 1価の有機基を示し、 R1は 1価の有機基を 示し、 aは 1〜2の整数を示す。 )
Si (OR2) (2)
4
(式中、 R2は 1価の有機基を示す。 )
R3 (R40) Si- (R7) -Si (OR5) R6 · · · (3)
b 3-b d 3-c c
(式中、 R3〜R6は同一または異なり、それぞれ 1価の有機基を示し、 bおよび cは同 一または異なり、 0〜2の数を示し、 R7は酸素原子、フエ-レン基または—(CH ) -
2 m で表される基(ここで、 mは 1〜6の整数である)を示し、 dは 0または 1を示す。)
[化 13]
Figure imgf000039_0001
… · · (4)
[化 14]
Figure imgf000040_0001
… · · (5)
(式中、 R8は、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基 からなる群より選ばれる基を示す。 )
[化 15]
Figure imgf000040_0002
(式中、 R9および R1C>は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基 、アルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[化 16]
Figure imgf000040_0003
… · · (7)
(式中、 RU〜R13は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基、ァ ルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
請求項 1において、
前記 (A)成分を (A)成分の完全加水分解縮合物に換算した 100重量部に対して、 前記 (B)成分が 1〜: L000重量部である、絶縁膜形成用組成物。 [3] 請求項 1または 2において、
前記 (B)成分の分子中にお!、て、下記一般式 (4)で表される構造が 5〜20モル% であり、下記一般式(5)で表される構造が 5〜20モル%であり、下記一般式 (6)で表 される構造が 20〜50モル0 /0であり、下記一般式(7)で表される構造が 30〜60モル %である、絶縁膜形成用組成物。
[4] 請求項 1ないし 3のいずれかにおいて、
前記 (B)成分のポリスチレン換算重量平均分子量が 700〜: L0, 000である、絶縁 膜形成用組成物。
[5] 請求項 1ないし 4のいずれかにおいて、
前記 (B)成分が、前記一般式 (4)〜(7)で表される構造に存在するケィ素原子以 外のケィ素原子を分子中に含まない、絶縁膜形成用組成物。
[6] 請求項 1ないし 5のいずれかにおいて、
前記加水分解縮合は、塩基性触媒、酸性触媒、または金属キレート触媒の存在下 で行なわれる、絶縁膜形成用組成物。
[7] 請求項 6において、
前記塩基性触媒は、下記一般式 (8)で表される含窒素化合物である、絶縁膜形成 用組成物。
(X'X^ N) Y (8)
a
(式中、 X1, X2, X3, X4は同一または異なり、それぞれ水素原子、炭素数 1〜20の アルキル基、ヒドロキシアルキル基、ァリール基、およびァリールアルキル基からなる 群より選ばれる基を示し、 Yはハロゲン原子または 1〜4価のァ-オン性基を示し、 a は 1〜4の整数を示す。 )
[8] 加水分解縮合物および有機溶媒を含む絶縁膜形成用組成物の製造方法であって
(B)成分;主鎖が一(Si— CH ) 一で表される構造力 なり、かつ、下記一般式 (4)
2
で表される構造、下記一般式 (5)で表される構造、下記一般式 (6)で表される構造 および下記一般式(7)で表される構造を有するポリカルボシランの存在下、
(A)成分;下記一般式( 1)〜(3)で表される化合物の群力 選ばれた少なくとも 1種 のシランィ匕合物を加水分解縮合して得られた加水分解縮合物と、
有機溶媒と、を含む、絶縁膜形成用組成物。
R Si (OR1) (1)
a 4— a
(式中、 Rは水素原子、フッ素原子または 1価の有機基を示し、 R1は 1価の有機基を 示し、 aは 1〜2の整数を示す。 )
Si (OR2) (2)
4
(式中、 R2は 1価の有機基を示す。 )
R3 (R40) Si- (R?) -Si (OR5) R6 · · · (3)
b 3-b d 3-c c
(式中、 R3〜R6は同一または異なり、それぞれ 1価の有機基を示し、 bおよび cは同 一または異なり、 0〜2の数を示し、 R7は酸素原子、フエ-レン基または—(CH ) -
2 m で表される基(ここで、 mは 1〜6の整数である)を示し、 dは 0または 1を示す。)
[化 17]
Figure imgf000042_0001
… · · (4)
[化 18]
Figure imgf000042_0002
… · · (5)
(式中、 R8は、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ァシロキシ基 からなる群より選ばれる基を示す。 )
[化 19]
Figure imgf000043_0001
… · · (6)
(式中、 R9および R1C>は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基 、アルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[化 20]
Figure imgf000043_0002
(式中、 RU〜R "は、同一または異なり、水素原子、ハロゲン原子、ヒドロキシ基、ァ ルコキシ基、ァシロキシ基力 なる群より選ばれる基を示す。 )
[9] 請求項 8において、
前記 (A)成分を (A)成分の完全加水分解縮合物に換算した 100重量部に対して、 前記 (B)成分が 1〜: L000重量部である、絶縁膜形成用組成物の製造方法。
[10] 請求項 8または 9において、
前記 (B)成分の分子中にお!、て、下記一般式 (4)で表される構造が 5〜20モル% であり、下記一般式(5)で表される構造が 5〜20モル%であり、下記一般式 (6)で表 される構造が 20〜50モル0 /0であり、下記一般式(7)で表される構造が 30〜60モル %である、絶縁膜形成用組成物の製造方法。
[11] 請求項 8な!、し 10の!、ずれかにお 、て、
前記加水分解縮合は、塩基性触媒、酸性触媒、または金属キレート触媒の存在下 で行なわれる、絶縁膜形成用組成物の製造方法。
[12] 請求項 11において、 前記塩基性触媒は、下記一般式 (8)で表される含窒素化合物である、絶縁膜形成 用組成物の製造方法。
(X'X^ N) Y (8)
a
(式中、 X1, X2, X3, X4は同一または異なり、それぞれ水素原子、炭素数 1〜20の アルキル基、ヒドロキシアルキル基、ァリール基、およびァリールアルキル基からなる 群より選ばれる基を示し、 Yはハロゲン原子または 1〜4価のァ-オン性基を示し、 a は 1〜4の整数を示す。 )
[13] 請求項 1ないし 7のいずれかに記載の絶縁膜形成用組成物を基板に塗布し、塗膜 を形成する工程と、
前記塗膜について、加熱、電子線照射、紫外線照射、および酸素プラズマから選 ばれる少なくとも 1種の硬化処理を行なう工程と、を含む、シリカ系絶縁膜の形成方法
[14] 請求項 13に記載のシリカ系絶縁膜の形成方法により得られる、シリカ系絶縁膜。
PCT/JP2005/008222 2004-05-11 2005-04-28 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法 WO2005108516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05737241A EP1746139A4 (en) 2004-05-11 2005-04-28 COMPOSITION FOR FORMING INSULATING FILM, PROCESS FOR PRODUCING THE SAME, SILICA INSULATING FILM, AND PROCESS FOR PREPARING THE SAME
KR1020067025860A KR101168452B1 (ko) 2004-05-11 2005-04-28 절연막 형성용 조성물, 그의 제조 방법, 실리카계 절연막및 그의 형성 방법
CN2005800146286A CN1950473B (zh) 2004-05-11 2005-04-28 绝缘膜形成用组合物和其制法及二氧化硅系绝缘膜和其形成法
US11/580,959 US7736748B2 (en) 2004-05-11 2006-10-16 Insulating-film-forming composition, method of producing the same, silica-based insulating film, and method of forming the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004141200 2004-05-11
JP2004-141200 2004-05-11
JP2005040460A JP5110238B2 (ja) 2004-05-11 2005-02-17 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
JP2005-040460 2005-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/580,959 Continuation US7736748B2 (en) 2004-05-11 2006-10-16 Insulating-film-forming composition, method of producing the same, silica-based insulating film, and method of forming the same

Publications (1)

Publication Number Publication Date
WO2005108516A1 true WO2005108516A1 (ja) 2005-11-17

Family

ID=35320218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008222 WO2005108516A1 (ja) 2004-05-11 2005-04-28 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法

Country Status (6)

Country Link
US (1) US7736748B2 (ja)
EP (1) EP1746139A4 (ja)
JP (1) JP5110238B2 (ja)
KR (1) KR101168452B1 (ja)
TW (1) TW200610793A (ja)
WO (1) WO2005108516A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096656A1 (ja) * 2007-02-07 2008-08-14 Jsr Corporation ケイ素含有ポリマーおよびその合成方法、膜形成用組成物、ならびにシリカ系膜およびその形成方法
WO2009008041A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
JP5267460B2 (ja) * 2007-07-06 2013-08-21 富士通株式会社 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705208B1 (en) * 2004-01-16 2013-03-20 JSR Corporation Composition for forming insulating film, method for producing same, silica insulating film, and method for forming same
KR20070010011A (ko) * 2004-02-26 2007-01-19 제이에스알 가부시끼가이샤 중합체 및 그의 제조 방법, 절연막 형성용 조성물, 및절연막 및 그의 형성 방법
EP1981074B1 (en) * 2006-02-02 2011-06-22 JSR Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
JP5099301B2 (ja) * 2006-03-23 2012-12-19 Jsr株式会社 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP5099302B2 (ja) * 2006-03-23 2012-12-19 Jsr株式会社 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
US7927664B2 (en) * 2006-08-28 2011-04-19 International Business Machines Corporation Method of step-and-flash imprint lithography
US20100174103A1 (en) * 2007-02-14 2010-07-08 Jsr Corporation Material for forming silicon-containing film, and silicon-containing insulating film and method for forming the same
US20100261925A1 (en) * 2007-07-10 2010-10-14 Jsr Corporation Method for producing silicon compound
JP5365785B2 (ja) * 2008-05-30 2013-12-11 Jsr株式会社 有機ケイ素化合物の製造方法
JP4379637B1 (ja) 2009-03-30 2009-12-09 Jsr株式会社 有機ケイ素化合物の製造方法
KR101036803B1 (ko) 2009-07-20 2011-05-25 서울대학교산학협력단 전자빔 리소그라피용 레지스트 및 전자빔 리소그라피용 레지스트 현상방법
US11164739B2 (en) * 2018-02-08 2021-11-02 Versum Materials Us, Llc Use of silicon structure former with organic substituted hardening additive compounds for dense OSG films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127152A (ja) * 1999-10-25 2001-05-11 Fujitsu Ltd 低誘電率絶縁膜の形成方法及び該方法で形成された低誘電率絶縁膜及び該低誘電率絶縁膜を用いた半導体装置
JP2001345317A (ja) * 2000-03-29 2001-12-14 Fujitsu Ltd 低誘電率被膜形成材料、及びそれを用いた被膜と半導体装置
JP2002069375A (ja) * 2000-08-28 2002-03-08 Jsr Corp 膜形成用組成物および絶縁膜形成用材料
JP2002129103A (ja) * 2000-10-23 2002-05-09 Jsr Corp 膜形成用組成物および絶縁膜形成用材料

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461299A (en) * 1977-10-26 1979-05-17 Tokushiyu Muki Zairiyou Kenkiy Polycarbosilane partially containing siloxane linkage and method of making same
JPS6169836A (ja) * 1984-09-12 1986-04-10 Chisso Corp けい素含有ステツプラダ−ポリマ−及びその製造方法
JPH04233732A (ja) * 1990-08-16 1992-08-21 Motorola Inc 半導体の製造工程で使用するスピン・オン誘電体
JP3296440B2 (ja) * 1991-10-17 2002-07-02 鐘淵化学工業株式会社 ケイ素系ハイブリッド材料
JP3320440B2 (ja) 1992-03-17 2002-09-03 触媒化成工業株式会社 被膜形成用塗布液およびその製造方法
JP3073313B2 (ja) 1992-05-12 2000-08-07 触媒化成工業株式会社 半導体装置およびその製造方法
EP0851463A1 (en) * 1996-12-24 1998-07-01 STMicroelectronics S.r.l. Process for realizing an intermediate dielectric layer for enhancing the planarity in semiconductor electronic devices
DE69733639T2 (de) * 1997-06-03 2006-05-18 Hitachi Chemical Co., Ltd. Klebefilm mit elektromagnetischer Abschirmung
JP4473352B2 (ja) 1998-05-26 2010-06-02 東京応化工業株式会社 低比誘電率シリカ系被膜、それを形成するための塗布液、その塗布液の調製方法
JPH11340220A (ja) 1998-05-26 1999-12-10 Tokyo Ohka Kogyo Co Ltd シリカ系被膜形成用塗布液及びその製造方法
US6204202B1 (en) * 1999-04-14 2001-03-20 Alliedsignal, Inc. Low dielectric constant porous films
JP4305587B2 (ja) * 1999-04-27 2009-07-29 Jsr株式会社 半導体装置用の層間絶縁膜形成用材料
US6225238B1 (en) * 1999-06-07 2001-05-01 Allied Signal Inc Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
CN1221592C (zh) * 1999-08-20 2005-10-05 拜尔公司 无机涂料组合物及其生产方法与应用
US6761975B1 (en) * 1999-12-23 2004-07-13 Honeywell International Inc. Polycarbosilane adhesion promoters for low dielectric constant polymeric materials
JP3941327B2 (ja) * 2000-02-01 2007-07-04 Jsr株式会社 シリカ系膜の製造方法、シリカ系膜、絶縁膜および半導体装置
JP4117436B2 (ja) * 2000-04-10 2008-07-16 Jsr株式会社 膜形成用組成物、膜の形成方法およびシリカ系膜
DE10041417A1 (de) * 2000-08-23 2002-03-21 Beru Ag Elektronische Ansteuerung für Heizelemente
JP4545973B2 (ja) * 2001-03-23 2010-09-15 富士通株式会社 シリコン系組成物、低誘電率膜、半導体装置および低誘電率膜の製造方法
KR100451044B1 (ko) * 2001-06-07 2004-10-02 주식회사 엘지화학 유기실리케이트 중합체의 제조방법, 및 이를 이용한절연막의 제조방법
JP2003115482A (ja) * 2001-10-05 2003-04-18 Asahi Kasei Corp 絶縁膜形成用組成物
JPWO2003087228A1 (ja) * 2002-04-12 2005-08-18 Azエレクトロニックマテリアルズ株式会社 ケイ素含有共重合ポリマー組成物、溶剤可溶性架橋ケイ素含有共重合ポリマー及びこれらの硬化物
US7834119B2 (en) 2002-04-18 2010-11-16 Lg Chem, Ltd. Organic silicate polymer and insulation film comprising the same
US6844568B2 (en) * 2002-04-25 2005-01-18 Kyocera Corporation Photoelectric conversion device and manufacturing process thereof
KR100515583B1 (ko) 2002-06-27 2005-09-20 주식회사 엘지화학 유기실리케이트 중합체 및 이를 함유하는 절연막
US6809041B2 (en) * 2002-07-01 2004-10-26 Rensselaer Polytechnic Institute Low dielectric constant films derived by sol-gel processing of a hyperbranched polycarbosilane
US20040109950A1 (en) * 2002-09-13 2004-06-10 Shipley Company, L.L.C. Dielectric materials
KR20050024721A (ko) * 2003-09-01 2005-03-11 삼성전자주식회사 신규 실록산계 수지 및 이를 이용한 반도체 층간 절연막
US7462678B2 (en) * 2003-09-25 2008-12-09 Jsr Corporation Film forming composition, process for producing film forming composition, insulating film forming material, process for forming film, and silica-based film
JP2005175060A (ja) * 2003-12-09 2005-06-30 Jsr Corp 絶縁膜およびその形成方法、ならびに膜形成用組成物
JP4737361B2 (ja) * 2003-12-19 2011-07-27 Jsr株式会社 絶縁膜およびその形成方法
EP1705208B1 (en) * 2004-01-16 2013-03-20 JSR Corporation Composition for forming insulating film, method for producing same, silica insulating film, and method for forming same
WO2005068539A1 (ja) * 2004-01-16 2005-07-28 Jsr Corporation ポリマーの製造方法、ポリマー、絶縁膜形成用組成物、絶縁膜の製造方法、および絶縁膜
KR20070010011A (ko) * 2004-02-26 2007-01-19 제이에스알 가부시끼가이샤 중합체 및 그의 제조 방법, 절연막 형성용 조성물, 및절연막 및 그의 형성 방법
JP5110239B2 (ja) * 2004-05-11 2012-12-26 Jsr株式会社 有機シリカ系膜の形成方法、膜形成用組成物
WO2005108469A1 (ja) * 2004-05-11 2005-11-17 Jsr Corporation 有機シリカ系膜の形成方法、有機シリカ系膜、配線構造体、半導体装置、および膜形成用組成物
DE102005017427A1 (de) * 2005-04-15 2006-10-19 Zimmer Ag Verfahren zur Aufbereitung von Kondensaten aus der Polykondensation
EP1615260A3 (en) * 2004-07-09 2009-09-16 JSR Corporation Organic silicon-oxide-based film, composition and method for forming the same, and semiconductor device
JP4355939B2 (ja) * 2004-07-23 2009-11-04 Jsr株式会社 半導体装置の絶縁膜形成用組成物およびシリカ系膜の形成方法
US7358317B2 (en) * 2004-09-22 2008-04-15 Jsr Corporation Polycarbosilane and method of producing the same
JP2006152063A (ja) * 2004-11-26 2006-06-15 Jsr Corp 新規ポリカルボシランおよびその製造方法、膜形成用組成物、ならびに膜およびその形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127152A (ja) * 1999-10-25 2001-05-11 Fujitsu Ltd 低誘電率絶縁膜の形成方法及び該方法で形成された低誘電率絶縁膜及び該低誘電率絶縁膜を用いた半導体装置
JP2001345317A (ja) * 2000-03-29 2001-12-14 Fujitsu Ltd 低誘電率被膜形成材料、及びそれを用いた被膜と半導体装置
JP2002069375A (ja) * 2000-08-28 2002-03-08 Jsr Corp 膜形成用組成物および絶縁膜形成用材料
JP2002129103A (ja) * 2000-10-23 2002-05-09 Jsr Corp 膜形成用組成物および絶縁膜形成用材料

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096656A1 (ja) * 2007-02-07 2008-08-14 Jsr Corporation ケイ素含有ポリマーおよびその合成方法、膜形成用組成物、ならびにシリカ系膜およびその形成方法
JPWO2008096656A1 (ja) * 2007-02-07 2010-05-20 Jsr株式会社 ケイ素含有ポリマーおよびその合成方法、膜形成用組成物、ならびにシリカ系膜およびその形成方法
WO2009008041A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
WO2009008212A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
JP5267460B2 (ja) * 2007-07-06 2013-08-21 富士通株式会社 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
US8580907B2 (en) 2007-07-06 2013-11-12 Fujitsu Limited Insulating film material, multilayer wiring board and production method thereof, and semiconductor device and production method thereof

Also Published As

Publication number Publication date
KR20070010080A (ko) 2007-01-19
JP2005350651A (ja) 2005-12-22
TW200610793A (en) 2006-04-01
US20070031687A1 (en) 2007-02-08
US7736748B2 (en) 2010-06-15
TWI326701B (ja) 2010-07-01
KR101168452B1 (ko) 2012-07-25
EP1746139A4 (en) 2011-07-13
JP5110238B2 (ja) 2012-12-26
EP1746139A1 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
KR101185644B1 (ko) 절연막 형성용 조성물 및 그의 제조 방법, 및 실리카절연막 및 그의 형성 방법
US7736748B2 (en) Insulating-film-forming composition, method of producing the same, silica-based insulating film, and method of forming the same
KR100619647B1 (ko) 막 형성용 조성물, 막의 형성 방법 및 절연막
WO2005108468A1 (ja) 有機シリカ系膜の形成方法、有機シリカ系膜、配線構造体、半導体装置、および膜形成用組成物
TW200536621A (en) Method for producing polymer, polymer, composition for forming insulating film, method for producing insulating film, and insulating film
WO2007139004A1 (ja) 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
WO2005057646A1 (ja) 絶縁膜およびその形成方法、ならびに膜形成用組成物
JP4662000B2 (ja) 膜形成用組成物、膜の形成方法および絶縁膜
JP5099302B2 (ja) 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP2010106100A (ja) 絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法
JP5423937B2 (ja) 絶縁膜形成用組成物の製造方法、ポリマーの製造方法
JP4022802B2 (ja) 膜形成用組成物、膜の形成方法および絶縁膜
JP5099301B2 (ja) 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP4101989B2 (ja) ポリオルガノシロキサン系組成物の製造方法、ポリオルガノシロキサン系組成物、および膜
JP2004059738A (ja) 膜形成用組成物、膜の形成方法およびシリカ系膜
JP5152464B2 (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法
JP2001049184A (ja) 膜形成用組成物、膜の形成方法および低密度化膜
JP2001049174A (ja) 膜形成用組成物、膜の形成方法および低密度化膜
JP2009227910A (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法
JPWO2008096656A1 (ja) ケイ素含有ポリマーおよびその合成方法、膜形成用組成物、ならびにシリカ系膜およびその形成方法
JP2008222857A (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法
WO2008066060A1 (fr) Procédé de fabrication d&#39;un polymère, composition de formation d&#39;un film isolant et film isolant de silice et son procédé de fabrication
JP5376118B2 (ja) 絶縁膜形成用組成物の製造方法、ならびに絶縁膜の形成方法
JP4716035B2 (ja) シリカ系膜およびその形成方法
JP2008198852A (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005737241

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11580959

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580014628.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067025860

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067025860

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005737241

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11580959

Country of ref document: US