[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005036623A1 - 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法 - Google Patents

基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法 Download PDF

Info

Publication number
WO2005036623A1
WO2005036623A1 PCT/JP2004/014945 JP2004014945W WO2005036623A1 WO 2005036623 A1 WO2005036623 A1 WO 2005036623A1 JP 2004014945 W JP2004014945 W JP 2004014945W WO 2005036623 A1 WO2005036623 A1 WO 2005036623A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
back surface
arm member
transport
Prior art date
Application number
PCT/JP2004/014945
Other languages
English (en)
French (fr)
Inventor
Nobuyoshi Tanno
Takashi Horiuchi
Original Assignee
Zao Nikon Co., Ltd.
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zao Nikon Co., Ltd., Nikon Corporation filed Critical Zao Nikon Co., Ltd.
Priority to JP2005514618A priority Critical patent/JP4335213B2/ja
Priority to EP04792214A priority patent/EP1672682A4/en
Publication of WO2005036623A1 publication Critical patent/WO2005036623A1/ja
Priority to US11/398,603 priority patent/US7898645B2/en
Priority to US11/592,222 priority patent/US20070052942A1/en
Priority to US12/929,591 priority patent/US8755025B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • Substrate transfer device and substrate transfer method exposure apparatus and exposure method, device manufacturing method
  • the present invention relates to a substrate transfer apparatus and a substrate transfer method for transferring a substrate exposed by a liquid immersion method, an exposure apparatus and an exposure method, and a device manufacturing method.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. Transfer to the substrate.
  • further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns.
  • the resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases.
  • the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the mainstream exposure wavelength is 248 nm of KrF excimer laser, but 193 nm of shorter wavelength ArF excimer laser is also being put to practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution and the depth of focus ⁇ are respectively represented by the following equations.
  • is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k and k are process coefficients.
  • the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid lZn in the air (n is the refractive index of the liquid)
  • n is the refractive index of the liquid
  • Patent Document 1 International Publication No. 99-49504 pamphlet
  • the substrate exposed by the liquid immersion method is carried out of the substrate stage by the substrate transport member.
  • the liquid between the substrate transport member and the substrate becomes a lubricating film, and the substrate becomes slippery with respect to the substrate transport member (the position becomes slippery).
  • the substrate transport member may not be able to transport the substrate in a desired state.
  • the liquid may form a film and the substrate may slip on the substrate transport member, and the substrate may not be transported satisfactorily.
  • the substrate transport member is configured to hold the substrate by vacuum suction, if a liquid is attached to the substrate, there is a possibility that the liquid may enter the vacuum system and damage the vacuum system.
  • the liquid is attached to the substrate or the substrate transfer member and transferred, the liquid drops from the substrate during the transfer, and the devices and members around the transfer path are stretched by the dropped liquid.
  • inconveniences such as the inability to maintain the cleanliness of the environment in which the exposure apparatus is arranged occur.
  • the dropped liquid may cause an environmental change (humidity change) around the exposure apparatus.
  • the liquid adheres to the substrate carrying member! / ⁇ the liquid adheres to the substrate and contaminates the substrate, or if the liquid adhered to the substrate dries before the exposure processing, a mark is formed. Leaving it on the substrate surface could lead to a decrease in the quality of the manufactured device. Further, if, for example, a developing process is performed in a state where the liquid is attached to the substrate after the exposure process, the Liquids adhering to the substrate may collect impurities (dust and the like) in the atmosphere and contaminate the substrate, which may make it impossible to manufacture a device having desired performance.
  • the present invention has been made in view of such circumstances, and a substrate transport apparatus, a substrate transport method, an exposure apparatus, and an exposure method capable of favorably transporting a substrate exposed by a liquid immersion method in a desired state. And a device manufacturing method.
  • the substrate is supported in a substrate transport apparatus that transports a substrate exposed by an image of a pattern via a projection optical system and a liquid. It is provided with a substrate support member, the substrate support member, and a liquid removing mechanism that removes the liquid attached to at least one of at least a part of the back surface of the substrate.
  • the substrate transport apparatus that transports a substrate exposed by an image of a pattern via a projection optical system and a liquid
  • the substrate is transported and the liquid is transported.
  • a substrate transfer member provided with a moisture absorbing material that absorbs the moisture.
  • a partial area of a rear surface of the substrate is provided in a substrate transporting apparatus that transports a substrate having a pattern image exposed through a projection optical system and a liquid.
  • a first liquid removing mechanism for removing the liquid adhered to the substrate, and a liquid adhering to a surface of the substrate after the liquid attached to a partial area of the back surface of the substrate is removed by the first liquid removing mechanism.
  • a second liquid removing mechanism for removing the liquid for removing the liquid.
  • a back surface of the substrate is supported by a substrate. Before being supported by the member, the liquid adhering to the support area supported by the substrate support member on the back surface of the substrate is removed.
  • a partial area of a rear surface of the substrate is provided. After the liquid attached to the substrate is removed and the liquid attached to the partial area is removed, the liquid attached to the surface of the substrate is removed.
  • the substrate after the immersion exposure processing when transported, the substrate is brought into a desired state.
  • a device having a desired performance can be manufactured.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of a device manufacturing system as an exposure apparatus of the present invention.
  • FIG. 2 is a view of FIG. 1 as viewed from above.
  • FIG. 3 is a schematic configuration diagram illustrating an embodiment of an exposure apparatus main body that performs an exposure process.
  • FIG. 4 is a diagram showing an example of the arrangement of supply nozzles and recovery nozzles.
  • FIG. 5 is a schematic configuration diagram showing one embodiment of a transfer arm member according to the present invention.
  • FIG. 6A is a view showing one embodiment of a liquid removing operation by the transfer arm member according to the present invention.
  • FIG. 6B is a view showing one embodiment of a liquid removing operation by the transfer arm member according to the present invention.
  • FIG. 7A is a schematic configuration diagram showing one embodiment of a holding table according to the present invention.
  • FIG. 7B is a schematic configuration diagram showing one embodiment of a holding table according to the present invention.
  • FIG. 8A is a view showing one embodiment of a liquid removing operation by the holding table according to the present invention.
  • FIG. 8B is a view showing one embodiment of a liquid removing operation by the holding table according to the present invention.
  • FIG. 9 is a diagram showing one embodiment of a liquid removing operation by the first liquid removing system.
  • FIG. 10 is a schematic configuration diagram showing another embodiment of the transfer arm member according to the present invention.
  • FIG. 11 is a schematic configuration diagram showing another embodiment of the transfer arm member according to the present invention.
  • FIG. 12A is a view showing another embodiment of the liquid removing operation by the first liquid removing system.
  • FIG. 12B is a view showing another embodiment of the liquid removing operation by the first liquid removing system.
  • FIG. 13 is a diagram showing another embodiment of the liquid removing operation by the first liquid removing system.
  • FIG. 14 is a diagram showing another embodiment of the liquid removing operation by the first liquid removing system.
  • FIG. 15 is a diagram schematically showing a configuration example of a second liquid removal system.
  • FIG. 16 is a diagram schematically showing another configuration example of the second liquid removal system.
  • FIG. 17 is a diagram schematically showing another configuration example of the second liquid removal system.
  • FIG. 18 is a view schematically showing another example of the transport system including the second liquid removal system.
  • FIG. 19 is a flowchart illustrating an example of a semiconductor device manufacturing process.
  • Vacuum system (adsorption mechanism), 35... Gas supply system (gas blowing mechanism),
  • connection mechanism 38 ... 1st flow path (connection mechanism), 38 ⁇ ⁇ 'valve (connection mechanism),
  • Substrate transfer system (substrate transfer device), H2-2nd arm member (substrate support member),
  • HT Holding table (substrate support member), LQ: Liquid, substrate, PL: Projection optical system, P
  • FIG. 1 is a diagram showing an embodiment of a device manufacturing system provided with an exposure apparatus of the present invention, and is a schematic configuration diagram viewed from a side
  • FIG. 2 is a diagram viewed from above of FIG.
  • the device manufacturing system SYS includes an exposure apparatus EX-SYS and a coater / developing device CZD-SYS (see FIG. 2).
  • the exposure system EX-SYS One developer unit CZD—The interface IF (see Fig. 2) that forms the connection with the SYS, the space between the projection optical system PL and the substrate P is filled with the liquid LQ, and the projection optical system PL and the liquid LQ are filled.
  • the exposure apparatus main body EX for exposing the substrate P by projecting the pattern formed on the mask onto the substrate P through the interface, and the transport system H for transporting the substrate P between the interface section IF and the exposure apparatus main body EX.
  • a second liquid removal system 220 for removing the liquid LQ adhered to the surface, and a controller CONT for controlling the overall operation of the entire exposure apparatus EX-SYS are provided.
  • the coater's developer device CZD-SYS was exposed to light by the coating device C, which applies a photoresist (photosensitizer) to the substrate of the substrate P before the exposure process, and the exposure device body EX.
  • a developing device (processing device) D for developing the subsequent substrate P. As shown in FIG.
  • the exposure apparatus main body EX is disposed inside the first chamber apparatus CH1 in which cleanliness is controlled.
  • the coating device C and the developing device D are arranged inside the second chamber device CH2 different from the first chamber device CH1.
  • the first chamber device CH1 that houses the exposure apparatus body EX and the second chamber device CH2 that houses the coating device C and the developing device D are connected via an interface IF.
  • the coating device C and the developing device D housed inside the second chamber device CH2 are collectively referred to as “coater / developing unit main body CZD” as appropriate.
  • the exposure apparatus body EX has an illumination optical system IL that illuminates the mask M supported on the mask stage MST with the exposure light EL, and a pattern of the mask M illuminated with the exposure light EL.
  • the projection optical system includes a projection optical system PL that projects an image on the substrate P, and a substrate stage PST that supports the substrate P.
  • the exposure apparatus body EX of the present embodiment is a scanning type that exposes a pattern formed on the mask M to the substrate P while synchronously moving the mask M and the substrate P in different directions (opposite directions) in the scanning direction.
  • An exposure apparatus (a so-called scanning stepper).
  • the direction of synchronous movement (scanning direction) of the mask M and the substrate P in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction (non-scanning direction)
  • the X-axis The direction perpendicular to the Y-axis direction and coincident with the optical axis AX of the projection optical system PL is defined as the Z-axis direction.
  • the “substrate” includes a semiconductor wafer coated with a resist
  • the “mask” includes a reticle on which a device pattern to be reduced and projected on the substrate is formed.
  • the transport system ⁇ includes a first arm member HI for carrying (loading) the substrate ⁇ ⁇ ⁇ before exposure processing to the substrate stage PST, and unloading (unloading) the substrate P after exposure processing from the substrate stage PST. ) And a second arm member H2. As shown in FIG. 2, the substrate P before the exposure processing transported from the coating apparatus is transferred to the third arm member H3 via the interface IF. The third arm member H3 transfers the substrate P to the bri-alignment unit PAL. The preparatory section PAL roughly adjusts the position of the substrate P with respect to the substrate stage PST. The substrate P aligned by the bri-alignment unit PAL is loaded on the substrate stage PST by the first arm member HI.
  • the substrate P after the exposure processing is unloaded from the substrate stage PST by the second arm member H2.
  • the second arm member H2 transfers the substrate P after the exposure processing to a holding table HT provided in the middle of the transport path of the substrate P.
  • the holding table HT constitutes a part of the first liquid removal system 100, and temporarily holds the transferred substrate P.
  • the holding table HT is arranged inside the cover member 70, and the cover member 70 is provided with openings 71 and 72 for allowing the substrate P to be transported to pass therethrough.
  • the openings 71 and 72 are provided with shirt portions 71A and 72A, respectively, which open and close the openings 71 and 72.
  • the holding table HT is rotatable while holding the substrate P.
  • the substrate P whose orientation has been changed by the rotation of the holding table HT is held by the fourth arm member H4 and transported to the interface section IF.
  • the substrate P transported to the interface section IF is passed to the developing device D.
  • the developing device D performs a developing process on the transferred substrate P.
  • the first to fourth arm members (transfer arm members) HI-H4, the brialignment unit PAL, and the holding table HT are also arranged inside the first chamber device CHI.
  • an opening and a shirt that opens and closes the opening are provided at portions facing the interface IF of each of the first and second chamber devices CH1 and CH2. The shutter is released during the transfer operation of the board P to the interface IF.
  • the first arm member HI holds the substrate P to which the liquid LQ before the exposure processing is not attached and loads the substrate P on the substrate stage PST.
  • the second arm member H2 was subjected to immersion exposure processing.
  • the substrate P to which the later liquid LQ may adhere is held and unloaded from the substrate stage PST.
  • the first arm member HI for transporting the substrate P to which the liquid LQ does not adhere and the second arm member H2 for transporting the substrate P to which the liquid LQ adheres and may be selectively used. Since the liquid LQ does not adhere to the first arm member HI, it is possible to prevent the liquid LQ from adhering to the back surface of the substrate P loaded on the substrate stage PST. Therefore, even if the substrate holder of the substrate stage PST holds the substrate P by vacuum suction, it is possible to prevent the inconvenience of the liquid LQ from entering the vacuum system such as a vacuum pump through the suction hole of the substrate holder. Can be.
  • FIG. 3 is a schematic configuration diagram of the exposure apparatus main body EX.
  • the illumination optical system IL illuminates the mask M supported on the mask stage MST with the exposure light EL, and is used to make the illuminance of the exposure light source and the luminous flux emitted from the exposure light source uniform. It has an integrator, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution.
  • Illumination optical system IL power Exposure light EL emitted is, for example, a mercury lamp power emitted ultraviolet rays (g-line, h-line, i-line) and far ultraviolet light (wavelength 248 nm) such as KrF excimer laser light (wavelength 248 nm). Vacuum ultraviolet light such as DUV light, Ar F excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm)
  • VUV light VUV light
  • ArF excimer laser light ArF excimer laser light
  • the mask stage MST supports the mask M and is two-dimensionally movable in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in an XY plane, and is capable of minute rotation in the ⁇ Z direction. It is.
  • the mask stage MST is driven by a mask stage driving device MSTD such as a linear motor.
  • the mask stage drive MSTD is controlled by the controller CONT.
  • a moving mirror 56 is provided on the mask stage MST, and a laser interferometer 57 is provided at a position facing the moving mirror 56.
  • the two-dimensional position and rotation angle of the mask stage MST holding the mask M are measured in real time by a laser interferometer, and the measurement results are output to the controller CONT.
  • Controller CONT measures laser interferometer By driving the mask stage driving device MSTD based on the result, the mask M supported by the mask stage MST is positioned.
  • the projection optical system PL is for projecting and exposing the pattern of the mask M onto the substrate P at a predetermined projection magnification of 13, and is composed of a plurality of optical elements (lenses and mirrors).
  • the lens barrel is housed in the PK.
  • the projection optical system PL is a reduction system whose projection magnification j8 is, for example, 1Z4 or 1Z5. Note that the projection optical system PL may be either a unity magnification system or an enlargement system.
  • an optical element (lens) 2 is exposed from the lens barrel PK on the distal end side (substrate P side) of the projection optical system PL of the present embodiment. This optical element 2 is provided detachably (exchangeable) with respect to the barrel PK.
  • the optical element 2 is formed of fluorite. Since fluorite has a high affinity for pure water, the liquid LQ can be brought into close contact with almost the entire tip surface (liquid contact surface) 2a of the optical element 2. That is, in the present embodiment, since the affinity for the liquid contact surface 2a of the optical element 2 is high and the liquid (water) LQ is supplied, the liquid contact surface 2a of the optical element 2 is supplied. And liquid LQ.
  • the optical element 2 may be quartz having a high affinity for water. Alternatively, the liquid contact surface 2a of the optical element 2 may be subjected to a hydrophilic (lyophilic) treatment to further enhance the affinity with the liquid LQ.
  • the substrate stage PST supports the substrate P.
  • the Z stage 51 holds the substrate P via a substrate holder
  • the XY stage 52 supports the Z stage 51, and supports the XY stage 52.
  • the substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor.
  • the substrate stage driving device PSTD is controlled by the control device CONT.
  • the Z stage 51 By driving the Z stage 51, the position of the substrate P held by the Z stage 51 in the Z axis direction (focus position) and the positions in the X and Y directions are controlled.
  • the XY stage 52 By driving the XY stage 52, the position of the substrate P in the XY direction (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled.
  • the Z stage 51 controls the focus position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the autofocus method and the auto-leveling method
  • the XY stage 52 Performs positioning of P in the X and Y axis directions. It goes without saying that the Z stage and the XY stage may be provided integrally.
  • a movable mirror 54 is provided on the substrate stage PST (Z stage 51).
  • a laser interferometer 55 is provided at a position facing the movable mirror 54.
  • the two-dimensional position and rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 55, and the measurement result is output to the control device CONT.
  • the controller CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55 to position the substrate P supported by the substrate stage PST.
  • a liquid immersion method is applied to improve the resolution by substantially shortening the exposure wavelength and substantially widen the focal depth. Therefore, at least while the image of the pattern of the mask M is being transferred onto the substrate P, the predetermined liquid LQ is filled between the surface of the substrate P and the tip surface 2a of the optical element 2 of the projection optical system PL. It is. As described above, the optical element 2 is exposed at the distal end side of the projection optical system PL, and the liquid LQ is configured to contact only the optical element 2. This prevents corrosion of the lens barrel PK made of metal and the like. In the present embodiment, pure water is used for the liquid LQ.
  • Pure water can be used not only for ArF excimer laser light, but also for exposure light EL such as ultraviolet emission lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm). Even when light (DUV light) is used, the exposure light EL can be transmitted.
  • exposure light EL such as ultraviolet emission lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm). Even when light (DUV light) is used, the exposure light EL can be transmitted.
  • the exposure apparatus main body EX includes a liquid supply mechanism 10 for supplying a liquid LQ between the tip surface 2a of the optical element 2 of the projection optical system PL and the substrate P, and a liquid for collecting the liquid LQ on the substrate P. And a recovery mechanism 20.
  • the liquid supply mechanism 10 supplies a predetermined liquid LQ to form the liquid immersion area AR2 on the substrate P.
  • the liquid supply mechanism 11 can supply the liquid LQ, and the liquid supply apparatus 11 has a supply pipe.
  • a supply nozzle 13 having a supply port for supplying the liquid LQ sent from the liquid supply device 11 onto the substrate P.
  • the supply nozzle 13 is arranged close to the surface of the substrate P.
  • the liquid supply device 11 includes a tank for storing the liquid LQ, a pressure pump, and the like, and supplies the liquid LQ onto the substrate P via the supply pipe 12 and the supply nozzle 13.
  • the liquid supply operation of the liquid supply device 11 is controlled by the control device CONT, and the control device CONT can control the amount of liquid supply to the substrate P by the liquid supply device 11 per unit time.
  • the liquid supply device 11 has a temperature adjustment mechanism for the liquid LQ, and A liquid LQ having a temperature substantially equal to the temperature in the chamber (for example, 23 ° C.) is supplied onto the substrate P.
  • the liquid recovery mechanism 20 recovers the liquid LQ on the substrate P.
  • the recovery nozzle 23 is disposed in close proximity without contacting the surface of the substrate P.
  • a liquid recovery device 21 connected through the.
  • the liquid recovery device 21 includes, for example, a vacuum system (suction device) such as a vacuum pump and a tank for storing the recovered liquid LQ, and recovers the liquid LQ on the substrate P via a recovery nozzle 23 and a recovery pipe 22. .
  • the liquid recovery operation of the liquid recovery device 21 is controlled by the control device CONT, and the control device CONT can control the amount of liquid recovered by the liquid recovery device 21 per unit time.
  • the substrate P moves in the + X direction (or -X direction) at the speed ⁇ ⁇ ⁇ ( ⁇ is the projection magnification) through the XY stage 52 in synchronization with the movement in the direction (or + X direction) at the speed V. I do.
  • the next shot area is moved to the scanning start position by the stepping of the substrate, and thereafter, the exposure processing for each shot area is sequentially performed by the step-and-scan method.
  • the liquid LQ is set to flow along the moving direction of the substrate.
  • FIG. 4 shows a projection area AR1 of the projection optical system PL, a supply nozzle 13 (13A-13C) for supplying the liquid LQ in the X-axis direction, and a collection nozzle 23 (23A, 23B) for collecting the liquid LQ.
  • FIG. 6 is a diagram showing a positional relationship with the stakeholder.
  • the shape of the projection area AR1 of the projection optical system PL is a rectangular shape elongated in the Y-axis direction, and three supply areas are provided on the + X direction side so that the projection area AR1 is sandwiched in the X-axis direction.
  • Nozzles 13A to 13C are arranged, and two recovery nozzles 23A and 23B are arranged on the X direction side.
  • the supply nozzles 13A to 13C are connected to the liquid supply device 11 via the supply pipe 12, and the recovery nozzles 23A and 23B are connected to the liquid recovery device 21 via the recovery pipe 22.
  • the supply nozzles 15A to 15C and the recovery nozzles 25A and 25B are arranged in a positional relationship in which the supply nozzles 13A to 13C and the recovery nozzles 23A and 23B are rotated by approximately 180 °.
  • the supply nozzles 13A-13C and the collection nozzles 25A, 25B are arranged alternately in the Y-axis direction, and the supply nozzles 15A-15C and the collection nozzles 23A, 23B intersect in the Y-axis direction.
  • the supply nozzles 15A to 15C are connected to the liquid supply device 11 via the supply pipe 14, and the recovery nozzles 25A and 25B are connected to the liquid recovery apparatus 21 via the recovery pipe 24.
  • the supply pipe 12, the supply nozzles 13A to 13C, the collection pipe 22, and the collection nozzle 23A The liquid LQ is supplied and recovered by the liquid supply device 11 and the liquid recovery device 21 using 23B. That is, when the substrate P moves in the ⁇ X direction, the liquid LQ is supplied onto the substrate P from the liquid supply device 11 via the supply pipe 12 and the supply nozzle 13 (13A-13C), and the collection nozzle 23 The liquid LQ is recovered by the liquid recovery device 21 via the liquid collecting device 21 (23A, 23B) and the recovery pipe 22, and the liquid LQ flows in the X direction so as to fill the space between the projection optical system PL and the substrate P.
  • the supply pipe 14 when scanning exposure is performed by moving the substrate P in the scanning direction (+ X direction) indicated by the arrow Xb, the supply pipe 14, the supply nozzles 15A to 15C, the collection pipe 24, and the collection nozzles 25A and 25B are connected.
  • the liquid LQ is supplied and collected by the liquid supply device 11 and the liquid recovery device 21.
  • the control device CONT uses the liquid supply device 11 and the liquid recovery device 21 to flow the liquid LQ in the same direction as the movement direction of the substrate P along the movement direction of the substrate P.
  • the liquid LQ supplied from the liquid supply device 11 via the supply nozzle 13 flows so as to be drawn between the projection optical system PL and the substrate P as the substrate P moves in the X direction. Even if the supply energy of the liquid supply device 11 is small, the liquid LQ can be easily supplied between the projection optical system PL and the substrate P. By switching the direction in which the liquid LQ flows according to the scanning direction, the liquid flows between the projection optical system PL and the substrate P regardless of whether the substrate P is scanned in the + X direction or the X direction. LQ can be satisfied, and high resolution, wide, and depth of focus can be obtained.
  • FIG. 5 is a schematic perspective view showing a second arm member H2 for unloading from the substrate stage PST the substrate P to which the liquid LQ after the exposure processing may have adhered.
  • the second arm member H2 is configured by a fork-shaped hand, supports the back surface of the substrate P, and transports the substrate P.
  • the second arm member H2 has an upper surface (support surface) 30 facing the back surface of the substrate P, and supports the substrate P on the support surface 30.
  • a plurality of suction holes 31 which are openings for holding the back surface of the substrate P by suction are provided at substantially regular intervals over a substantially entire area of the support surface 30.
  • a vacuum system (suction mechanism) 34 is connected to the suction hole 31 via a flow path 31A formed inside the second arm member H2.
  • the vacuum system 34 is constituted by a vacuum pump provided in the exposure apparatus body EX or a vacuum system in a factory where the device manufacturing system SYS is installed.
  • the suction mechanism 37 including the vacuum system 34 and the suction holes 31 drives the vacuum system 34 to suction the rear surface of the substrate P through the suction holes 31 in order to support the rear surface of the substrate P.
  • a blowing hole 32 as an opening is provided at a position different from the suction hole 31.
  • a plurality of spray holes 32 are provided, arranged between each of the plurality of suction holes 31 provided, and provided substantially uniformly over the entire area of the support surface 30 of the second arm member H2.
  • a gas supply system 35 is connected to the blowing hole 32 via a flow path 32A formed inside the second arm member H2.
  • a gas blowing mechanism (liquid removing mechanism) 36 includes the gas supply system 35 and the blowing holes 32.
  • the flow path 32A is provided with a filter for removing foreign substances (dust and oil mist) in the gas blown against the substrate P.
  • a predetermined gas is blown out from the blowing hole 32 through the flow path 32A.
  • the operation of the gas supply system 35 is controlled by the control device CONT.
  • the control device CONT controls the gas supply system 35 so that the amount of gas blown out from the spray hole 32 per unit time can be adjusted.
  • Projections 33 as positioning members are provided at a plurality of predetermined positions on the support surface 30 of the second arm member H2.
  • the protrusion 33 prevents the substrate P from being displaced or falling from the second arm member H2.
  • the substrate P held on the substrate stage PST is subjected to a liquid immersion method. Exposure process. After the liquid immersion exposure processing for each of the plurality of shot areas set on the substrate P is completed, the control device CONT stops the liquid supply mechanism 10 from supplying the liquid onto the substrate P. On the other hand, the control device CONT continues to drive the liquid recovery mechanism 20 for a predetermined time even after the liquid supply operation by the liquid supply mechanism 10 is stopped. Thus, the liquid LQ on the substrate P is sufficiently collected. After the elapse of the predetermined time, the control device CONT stops driving the liquid recovery mechanism 20, and as shown in the schematic diagram of FIG. 6A, the downward force of the projection optical system PL also retreats the substrate stage PST in the horizontal direction.
  • a pin member 57 that can move up and down is provided inside the Z stage 51 (substrate holder) of the substrate stage PST.
  • the pin member 57 moves up and down with respect to the upper surface of the Z stage 51 by moving up and down.
  • the controller CONT raises the pin member 57 to raise the substrate P on the Z stage 51.
  • the controller CONT causes the second arm member H2 to enter the lower side (back side) of the board P raised by the pin member 57.
  • the control device CONT drives the gas supply system 35 to The gas is blown through the blowing holes 32.
  • the gas blowing mechanism (first liquid removing device) 36 including the gas supply system 35 and the blowing holes 32 blows gas on the back surface of the substrate P, so that the liquid LQ temporarily adheres to the back surface of the substrate P.
  • the liquid LQ can be removed from the substrate P by flying.
  • the cover member 58 is arranged so as to surround the second arm member H2 and the substrate P as shown in FIG. 6A. Is preferred. By doing so, it is possible to prevent the liquid LQ that has been splashed from the back surface of the substrate P from scattering (adhering) to peripheral devices.
  • the cover member 58 is composed of a plurality of divided members, and each of the divided members is provided with a drive mechanism. Then, after the substrate stage PST also retreats the downward force of the projection optical system PL, each of the divided members (cover members) comes closer to the substrate stage PST by the drive mechanism.
  • the gas blowing mechanism 36 positions the second arm member H2 at a predetermined distance from the back surface of the substrate P, and blows gas to a partial area of the back surface of the substrate P.
  • the gas blowing mechanism 36 positions the second arm member H2 at a predetermined distance from the back surface of the substrate P, and blows gas to a partial area of the back surface of the substrate P.
  • the gas may be blown over the entire or a part of the rear surface of the substrate P while changing the distance between the second arm member H2 and the rear surface of the substrate P. By doing so, the liquid LQ adhering to the back surface of the substrate P can be removed.
  • the gas may be blown to the back surface of the substrate P while moving the substrate stage PST supporting the substrate P via the pin members 57 without moving the second arm member H2.
  • the gas may be blown while moving the arm member H2 and the substrate P (substrate stage PST) relatively!
  • the gas blowing mechanism 36 adheres to at least a part of the back surface of the substrate P where the support surface 30 of the second arm member H2 is in contact, that is, a support region supported by the second arm member H2. /! Pururu liquid LQ should be removed.
  • the driving of the gas supply system 35 is stopped.
  • the second arm member H2 approaches the back surface of the substrate P, and the back surface of the substrate P comes into contact with the support surface 30 of the second arm member H2.
  • the control device CONT drives the vacuum system 34 constituting the suction mechanism 37. Accordingly, the back surface of the substrate P is suction-held through the suction holes 31 provided in the support surface 30 of the second arm member H2.
  • the second arm member H2 Before the second arm member H2 supports the rear surface of the substrate P, the liquid LQ adhering to the rear surface of the substrate P has been removed, so the second arm member H2 may cause the substrate P to be displaced.
  • the substrate P to be connected can be satisfactorily held. Since the liquid LQ does not adhere to the back surface of the substrate P, even when the back surface of the substrate P is suction-held by the suction mechanism 37, the liquid LQ may enter the vacuum system 34 through the suction holes 31. Absent. Therefore, inconvenience such as breakage of the vacuum system 34 can be prevented.
  • the second arm member H2 holding the substrate P transfers the substrate P to the holding table HT.
  • the second arm member H2 supports the front surface of the substrate P or the rear surface of the substrate P.
  • Liquid LQ may have adhered to areas other than
  • a collecting mechanism 60 for collecting the liquid dropped from the exposed substrate P is disposed. Therefore, even if the substrate P is transported with the liquid LQ adhered thereto, it is possible to prevent the liquid LQ from being adhered and scattered from the substrate P to peripheral devices and members on the transport path.
  • FIG. 1 As shown in FIG.
  • the collection mechanism 60 includes a gutter member 61 disposed below the transfer path of the second arm member H2, and a liquid LQ collected via the gutter member 61. And a liquid suction device 62 for discharging the liquid.
  • the gutter member 61 is provided inside the first chamber device CH1, and the liquid suction device 62 is provided outside the first chamber device CH1.
  • the gutter member 61 and the liquid suction I device 62 are connected via a pipe 63, and the pipe 63 is provided with a valve 63A for opening and closing the flow path of the pipe 63.
  • the liquid LQ after the exposure is adhered, and the substrate P is transported by the second arm member H2. During the transportation, the liquid LQ may fall from the substrate P. Can be collected by the gutter member 61.
  • the liquid suction device 62 sucks the liquid LQ on the gutter member 61 provided inside the chamber device CH1, discharges it to the outside of the chamber device CH1, and discharges the liquid LQ to the gutter member 61 inside the chamber device CH1. Can be prevented from remaining, and the inconvenience of humidity fluctuation (environment fluctuation) inside the chamber device CH1 can be prevented.
  • the liquid suction device 62 can continuously perform the suction operation of the liquid LQ collected in the gutter member 61, and intermittently performs the bow suction I operation only at V for a predetermined period. It can also be done. By continuously performing the bow absorption I operation, the liquid LQ does not remain in the gutter member 61, so that the humidity fluctuation inside the chamber device CH1 can be further prevented.
  • the suction operation (discharge operation) by the liquid suction device 62 is not performed, and the suction operation is performed only in a period other than the exposure, thereby generating the suction operation. Inconveniences such as vibration affecting exposure accuracy can be prevented.
  • FIGS. 7A and 7B are diagrams showing a holding table HT for temporarily holding the substrate P transported by the second arm member H2.
  • FIG. 7A is a side view
  • FIG. 7B is a plan view.
  • the holding table HT constituting the substrate support member has a substantially circular shape in a plan view, and a spray hole 42 as an opening is provided at a substantially central portion of an upper surface (support surface) 40 thereof.
  • one spray hole 42 is provided, but it is also possible to provide the spray hole 42 at each of a plurality of arbitrary positions on the support surface 40.
  • a plurality of suction holes 41 are provided on the support surface 40 at predetermined intervals so as to surround the spray holes 42.
  • a vacuum system 34 is connected to the suction hole 41 via a flow path 41A formed inside the holding table HT.
  • the suction mechanism 45 includes the vacuum system 34 and the suction holes 41.
  • the gas supply system 35 is connected to the blowing hole 42 via a flow path 42A formed inside the holding table HT.
  • a gas blowing mechanism 46 includes the gas supply system 35 and the blowing holes 42.
  • the flow path 42A is provided with a filter for removing foreign substances (dust and oil mist) in the gas blown against the substrate P.
  • FIG. 8A-B illustrate a first liquid removal system 100.
  • the first liquid removal system 100 mainly removes the liquid LQ attached to at least one of the front surface and the back surface of the substrate P.
  • FIG. 9 is a view showing an operation of transferring a substrate P to a holding table HT by a second arm member H2.
  • the second arm member H2 holding the substrate P enters the inside of the cover member 70 housing the holding table HT through the opening 71.
  • the control device CONT drives the shutter 71A to open the opening 71.
  • the opening 72 is closed by the shutter 72A.
  • the control device CONT drives the gas supply system 35 constituting the gas blowing mechanism 46, and the blowing hole is formed. Gas is blown to the back surface of the substrate P from 42.
  • a part of the back surface of the substrate P, which is supported by the second arm member H2 (first support region) extends from the blowing hole 32 provided in the second arm member H2.
  • the liquid LQ has already been removed by the blown gas.
  • the liquid LQ may adhere to the region of the rear surface of the substrate P which is not supported by the second arm member H2.
  • the control device CONT controls the region of the back surface of the substrate P that is supported by the holding table HT (the The liquid LQ adhering to the (2 support area) is blown off and removed by blowing gas from the spray hole 42 to the back surface of the substrate P. That is, the spray hole 42 and its The gas supply system 35 connected to the blowing hole 42 of the substrate P removes the liquid LQ adhering to the area (second support area) held by the holding table HT (second liquid removing device) on the back surface of the substrate P.
  • the third liquid removing device is configured.
  • the back surface of the substrate P held by the second arm member H2 and the support surface 40 of the holding table HT are separated by a predetermined distance.
  • the gas is blown from the spray hole 42 to the back surface of the substrate P.
  • the liquid LQ adhering to the back surface of the substrate P is blown off and removed.
  • the removed liquid LQ is not scattered around by the cover member 70. Note that, here, when the gas is blown to the back surface of the substrate P, the second arm member H2 holding the substrate P and the holding tape HT having the blowing holes 42 do not move, and the gas blown out from the force blowing holes 42 is a configuration.
  • the second arm member H2 holding the substrate P is moved in the X-axis direction (Y-axis direction), and the holding table HT having the spray holes 42 is moved in the Y-axis direction (X-axis direction).
  • a gas may be blown to the back surface.
  • the substrate P and the spray hole 42 may be relatively rotated and moved.
  • a gas may be blown to the back surface of the substrate P while the second arm member H2 is driven to tilt the substrate P.
  • the liquid LQ adhering to the back surface of the substrate P is collected at one place by its own weight (gravity action), and falls (removed) from the substrate P and becomes chewy. Further, when the liquid LQ has adhered to the second arm member H2, the liquid LQ can be removed together with the liquid LQ adhered to the substrate P.
  • a liquid recovery unit 80 is connected to the cover member 70 via a recovery pipe 81.
  • the recovery pipe 81 is provided with a valve 82 for opening and closing the flow path of the recovery pipe 81.
  • the liquid LQ blown off from the substrate P is collected by a liquid collecting unit 80 connected to the cover member 70.
  • the liquid recovery unit 80 recovers the liquid LQ blown from the substrate P by sucking the gas inside the cover member 70 together with the scattered liquid LQ.
  • the liquid recovery unit 80 continuously performs the bowing I operation of the gas inside the cover member 70 and the scattered liquid LQ. This Since the liquid LQ does not remain inside the cover member 70 such as the inner wall and the bottom of the cover member 70, the humidity inside the force bar member 70 does not greatly change. Further, even when the shutter portions 71A and 72A are opened, the moist gas in the cover member 70 does not flow out of the cover member 70.
  • the pin members After removing the liquid LQ on the back surface of the substrate P, the pin members (not shown) rise from the holding table HT to support the back surface of the substrate P.
  • the pin member provided on the holding table HT has the same configuration as the pin member 57 described with reference to FIG. 6A.
  • the second arm member H2 retreats to the outside of the cover member 70, and the opening 71 is closed by the shutter 71A.
  • the control device CONT drives the vacuum system 34 to suck and hold the substrate P through the suction holes 41.
  • a spray nozzle 103 that constitutes a part of the first liquid removal system 100 is disposed inside the cover member 70, and the spray nozzle 103 is connected to the gas supply system 1 through a flow path 105. 04 is connected.
  • the flow path 105 is provided with a filter for removing foreign substances (dust and oil mist) in the gas blown against the substrate P.
  • FIG. 9 is a view of the inside of the cover member 70 of FIG. 8B as viewed from above.
  • the back surface of the substrate P is supported by the support surface 40 of the holding table HT.
  • the spray nozzle 103 includes a nozzle body 103A whose longitudinal direction is the Y-axis direction, and a plurality of nozzle holes 103B arranged in the longitudinal direction of the nozzle body 103A.
  • the gas supplied from the gas supply system 104 is blown out from each of the plurality of nozzle holes 103B.
  • the substrate P held by the holding table HT and the spray nozzle 103 are provided so as to be relatively movable.
  • the spray nozzle 103 scans and moves in the X-axis direction with respect to the substrate P held on the holding table HT.
  • the holding table HT holding the substrate P may be moved with respect to the spray nozzle 103, and both the holding table HT and the spray nozzle 103 may be moved. You may let it. Then, the liquid LQ from which the surface force of the substrate P has been skipped is recovered by the liquid recovery unit 80.
  • the substrate P from which the liquid LQ on each of the front surface and the back surface has been removed is transported to the developing device D by the fourth arm member H4.
  • the control device CONT drives the shutter 72A to open the opening 72, and the fourth opening moves from the opening 72 to the inside of the cover member 70.
  • the arm member H4 enters. In parallel with this, the pin member of the holding table HT raises the substrate P, and the fourth arm member H4 holds the rear surface of the raised substrate P. Note that the holding table HT rotates before transferring the substrate P to the fourth arm member H4, and changes the substrate P to a desired orientation. Then, the fourth arm member H4 holding the substrate P unloads the substrate P from the inside of the cover member 70 through the opening 72.
  • the liquid removal provided on the second arm member H2 (the holding table HT) is performed before the second arm member H2 (or the holding table HT) supports the back surface of the substrate P.
  • the gas By blowing the gas through the blowing holes 32 (42) constituting the mechanism to remove the liquid LQ on the back surface, which is the supported surface of the substrate P, the remaining liquid LQ becomes a lubricating film and the substrate P (2) It is possible to prevent the occurrence of inconveniences such as a positional shift with respect to the arm member H2 (holding table HT) and to support the substrate P in a desired state.
  • the second arm member H2 (or the holding table HT) is configured to vacuum-suck and hold the substrate P through the suction holes 31 (41), the vacuum is achieved by removing the liquid LQ on the back surface of the substrate P.
  • the inconvenience of liquid LQ entering system 34 can be prevented.
  • the substrate P can be maintained in a good state. Can be transported. Then, the liquid LQ adhered to the back surface and the front surface of the substrate P is removed by the first liquid removal system 100, so that the liquid LQ falls from the substrate P on the subsequent transport path of the substrate P and scatters. It is possible to prevent inconveniences such as doing so. Furthermore, by sufficiently removing the liquid LQ on both the front surface and the back surface of the substrate P, it is possible to smoothly perform a predetermined process after the liquid immersion exposure process such as the development process without being affected by the remaining liquid LQ. Can be.
  • the liquid LQ adhering to the substrate P is removed by blowing gas onto the substrate P.
  • dry gas such as dry air
  • the liquid LQ adhering to the substrate P is dried and its removal is promoted.
  • a hot air higher than the temperature inside the chamber device CH1 may be blown.
  • a gas such as dry air, nitrogen gas, or helium gas can be used as the gas to be blown.
  • a part of the liquid removing mechanism provided on the second arm member H2 is configured before the back surface of the substrate P is supported by the second arm member H2.
  • Force for removing liquid LQ using blowing hole 32 After removing liquid LQ by blowing gas to the back surface of substrate P from a blowing hole provided on a member separate from second arm member H2, the second The back surface of the substrate P may be supported by the arm member H2.
  • the substrate P is provided on another member. The liquid LQ may be removed by blowing gas from the spray hole to the back surface of the substrate P.
  • the suction surface 31 and the blowing hole 41 are provided on the support surface 30 of the second arm member H2 at positions different from each other.
  • the difference is that the opening provided on the support surface 30 also serves as a suction hole and a spray hole.
  • an opening 31 is provided in the support surface 30 of the second arm member H2.
  • valves 38A and 39A are controlled by the controller CONT [0063] Before holding the back surface of the substrate P that has been subjected to the liquid immersion exposure processing with the second arm member H2 shown in Fig. 10, the control device CONT drives the valves 38A and 39A to switch the second flow path.
  • the first flow path 38 Upon opening 39, the first flow path 38 is closed, and the gas supply system 35 is driven.
  • the controller CONT drives the valves 38A and 39A to open the first flow path 38 and close the second flow path 39, The driving of the gas supply system 35 is stopped, and the vacuum system 34 is driven. By doing so, the second arm member H2 can suction-hold the substrate P through the opening (suction hole) 31.
  • the liquid LQ attached to the substrate P can be removed, and the substrate P can be adsorbed and held.
  • the liquid on the back surface of the substrate P may be sucked, or both may be used in combination.
  • FIG. 11 is a diagram showing an example in which a hygroscopic material 90 is provided on the upper surface 30 of the second arm member H2.
  • a hygroscopic material 90 for absorbing the liquid LQ is provided on the upper surface 30 of the second arm member H2.
  • a sponge-like member ⁇ a porous ceramic or the like can be used as the hygroscopic material 90.
  • the hygroscopic material 90 provided on the second arm member H2 is Touch the back of P.
  • the liquid LQ adhering to the back surface of the substrate P is absorbed by the hygroscopic material 90 and removed from the back surface of the substrate P.
  • the hygroscopic material 90 is brought closer to the substrate P to a position where the hygroscopic material 90 and the substrate P are separated by a predetermined distance. Then, the liquid LQ may be attached to the back surface of the substrate P using capillary action to absorb (remove) the liquid LQ.
  • the control device CONT After removing the liquid LQ adhering to the back surface of the substrate P using the hygroscopic material 90, the control device CONT causes the second arm member H2 (hygroscopic material 90) to contact the back surface of the substrate P.
  • the vacuum system 34 is connected to the suction hole 31 via the flow path 31A to drive the vacuum system 34.
  • Suction hole 31 is moisture absorbing material 9
  • the back surface of the substrate P is sucked and held through 0. Even in this case, since the lubricating film of the liquid LQ is not formed between the substrate P and the second arm member H2 (the hygroscopic material 90), the substrate P is displaced with respect to the second arm member H2. It is possible to prevent inconveniences such as arising.
  • a gas-liquid separator 80 between the suction hole 31 and the vacuum system 34 in the channel 31A. Since the hygroscopic material 90 contains the liquid LQ, there is a possibility that the liquid LQ contained in the hygroscopic material 90 may enter the vacuum system 34 by driving the vacuum system 34. By separating the sucked liquid component and allowing only the gas component to flow into the vacuum system 34, it is possible to prevent inconvenience such as breakage of the vacuum system 34.
  • the force of providing the hygroscopic material 90 on the upper surface 30 of the second arm member H2 is such that the hygroscopic material 90 is supported on another supporting member without providing the hygroscopic material 90 on the second arm member H2.
  • the liquid LQ which is supported by the support member and adheres to the back surface of the substrate P with the hygroscopic material 90, absorbs (removes) the liquid LQ,
  • the back surface of the substrate P may be supported by the second arm member H2.
  • the hygroscopic material 90 may be pressed against the back surface of the substrate P to absorb moisture, It is also possible to absorb the moisture while relatively moving the moisture absorbent 90. Also in this case, moisture can be absorbed using the capillary phenomenon in a slightly separated state without bringing the hygroscopic material 90 into contact with the back surface of the substrate P. By doing so, the rear surface of the substrate P is not damaged. Further, the hygroscopic material 90 can be provided on the upper surface 40 of the holding table HT.
  • the first liquid removal system 100 for removing the liquid LQ attached to the surface of the substrate P removes the liquid LQ by blowing gas from the spray nozzle 103 to the surface of the substrate P. By rotating the substrate P, the liquid LQ adhering to the surface of the substrate P can be blown off and removed.
  • FIGS. 12A and 12B are diagrams showing a first liquid removal system 100 having a rotation mechanism for rotating the substrate P to fly the liquid LQ attached to the surface of the substrate P.
  • the holding table HT of the first liquid removal system 100 includes a holder 121 that holds the center of the back surface of the substrate P, a rotation mechanism 122 that rotates the holder 121 that holds the substrate P, and It has.
  • a suction hole is provided on the upper surface of the holder portion 121, and the holder portion 121 suction-holds the central portion of the rear surface of the substrate P.
  • the rotation mechanism 122 is constituted by a motor provided inside the holding table HT, and rotates the holder section 121 by rotating the shaft section 123 connected to the holder section 121.
  • the shaft portion 123 is provided to be extendable and contractable, and the holder portion 121 is provided so as to be able to move up and down with respect to the upper surface 40 of the holding table HT together with the shaft portion 123.
  • the holder portion 121 holding the substrate P rises with respect to the upper surface 40 of the holding table HT, the substrate P separates from the holding table HT and can be rotated by driving the rotation mechanism 122.
  • the holder portion 121 is lowered, the substrate P is suction-held on the upper surface 40 of the holding table HT by the suction hole 41.
  • the base plate P is formed through a blowing hole 42 formed in the center of the holder 122 as a substrate supporting member of the holding table HT. Is blown against the back surface of the. Thus, the liquid LQ adhering to the back surface of the substrate P is removed.
  • the holder section 122 moves up while holding the substrate P by suction, and rotates the substrate P as shown in FIG. 12B. Thereby, the liquid LQ adhering to the surface of the substrate P is blown off and removed.
  • the lower part of the cover member 70 shown in FIGS. 12A and 12B is inclined so as to gradually expand as it goes downward.
  • the cover member 70 has a shape that gradually expands downward as the force is applied!
  • a mechanism for preventing the liquid LQ from rebounding in addition to inclining the inner wall of the cover member 70, a hygroscopic material is attached to the inner wall of the cover member 70, the inner wall is made uneven (corrugated), or a liquid suction device is used.
  • the liquid LQ adhering to the surface of the substrate P can be removed by suction and recovery using the liquid suction device 140.
  • a recovery nozzle 142 is connected to a liquid suction device 140 via a recovery pipe 141.
  • the collection nozzle 142 is arranged close to the surface of the substrate P held on the holding table HT.
  • Liquid suction device 140 is configured to include, for example, a vacuum system, and a gas-liquid separator (not shown) for separating liquid and gas collected from the collection nozzle 142 is provided in the middle of the collection pipe 141.
  • the collection nozzle 142 When removing the liquid LQ adhering to the surface of the substrate P, the collection nozzle 142 is brought close to the surface of the substrate P, and the liquid suction device 140 is driven, so that the liquid LQ on the surface of the substrate P is collected by the collection nozzle.
  • the liquid is collected in a collection tank or the like provided in the liquid suction device 140 via the collection pipe 142 and the collection pipe 141. Also, when removing the liquid LQ on the surface of the substrate P via the collection nozzle 142, the liquid LQ can be removed while relatively moving the collection nozzle 142 and the substrate P.
  • the collection nozzle 142 for example, the collection nozzle (1) described with reference to FIG.
  • the shape and arrangement of 5) may be adopted.
  • a collecting member having an annular collecting port may be employed as the collecting nozzle.
  • the liquid LQ attached to the surface of the substrate P may be dried. Good.
  • the gas is blown against the back surface of the substrate P by the gas blowing mechanism provided on the second arm member H2, and a part of the back surface of the substrate P supported by the second arm member H2.
  • the liquid removing the liquid in the region described above may be removed by the following configuration on the other surface and the liquid on the surface of the substrate P. That is, as shown in FIG. 14, the wall member 160 is provided in the middle of the transport path of the second arm member H2, and the gas blowing nozzles 161 are attached to the upper and lower sides of the wall member 160, respectively.
  • the liquid LQ adhered to the substrate P can be removed by blowing gas from the gas blowing nozzle 161 to each of the front surface and the rear surface of the substrate P. Then, the gas can be blown to the entire area of the substrate P by blowing the gas from the gas spray nozzle 161 to the substrate P while transporting and moving the substrate P. Also in this configuration, the liquid attached to the second arm member H2 can be removed together with the liquid LQ attached to the front surface or the back surface of the substrate P.
  • the gas when gas is sprayed on the back surface of the substrate P, the gas is blown from the direction perpendicular to the back surface of the substrate P. Spraying may be performed from the direction in which it is inserted (an inclined direction, for example, a direction inclined at 45 degrees).
  • the second liquid removal system 220 mainly removes the liquid LQ attached to the surface of the second arm member H2.
  • the second liquid removal system 220 is configured to move the substrate P on the movement path of the second arm member H2, specifically, between the substrate stage PST and the holding table HT. It is provided on the transport path. That is, in the transfer system H of the present example, the substrate P after the exposure processing by the second arm member H2 is carried out from the substrate stage PST, the substrate P is transferred to the holding table, and then the second liquid removal system is used. By 220, the liquid adhering to the second arm member H2 is removed.
  • FIG. 15 schematically shows a configuration example of the second liquid removal system 220.
  • the second liquid removal system 220 includes a gas injection unit (first gas injection unit 221 and second gas injection unit 222) that injects gas to the second arm member H2, and a gas injection unit.
  • the apparatus includes a gas supply device 223 that supplies gas to the units 221 and 222, a chamber 224 that accommodates the gas ejection units 221 and 222, and a liquid suction device 225 that suctions the liquid in the chamber 224.
  • the first gas injection unit 221 injects gas toward the upper surface of the second arm member H2, and the second gas injection unit 222 injects gas toward the lower surface of the second arm member H2. It does.
  • the first gas injection section 221 and the second gas injection section 222 are arranged at a predetermined interval from each other, and the second arm member H2 is inserted between them.
  • the first gas injection unit 221 and the second gas injection unit 222 are connected to a gas supply device 223 via a supply pipe 226, respectively.
  • the supply pipe 226 is provided with a filter (not shown) for removing impurities (such as particles or oil mist) in the gas.
  • dry air is used as the injection gas.
  • other gases such as nitrogen gas and helium gas may be used as the injection gas.
  • the liquid suction device 225 generates a vacuum pressure to suck the liquid in the chamber 224, and is connected to the chamber 224 via a pipe 225a.
  • the pipe 225a is provided with a valve 225b that can be opened and closed.
  • the chamber 224 is provided with an opening 227 for inserting and removing the second arm member H2.
  • the opening 227 is provided with a shirt 228. Further, outside the chamber 224 and in the vicinity of the opening 227 of the chamber 224, a liquid detector 229 for detecting whether or not the liquid is applied to the second arm member H2 to detect a force is provided. .
  • the second arm member H2 When the liquid detector 229 detects that liquid is attached to the second arm member H2, the second arm member H2 is inserted into the chamber 224 and attached to the second arm member H2. The liquid that has adhered is removed, and if the liquid has not adhered or the liquid within the allowable range has adhered, the second arm member H2 is not inserted into the chamber 224, and the substrate stage PST is moved from the substrate stage PST to the substrate P. Out.
  • liquid detector 229 in this example, an image sensor such as a CCD camera is used.
  • Image information captured by the image sensor is sent to the control device CONT (see FIG. 1).
  • the control device CONT stores image information of the second arm member H2 to which the liquid has not adhered.
  • the control device CONT determines, for example, whether or not the liquid is attached to the second arm member H2 by comparing the image information stored in advance with the current image information. Note that this determination is not limited to automatic determination, and the image information captured by the image sensor is displayed on a monitor, and based on the displayed state of the second arm member H2, the operator applies the liquid to the second arm member H2. It may be determined whether or not is adhered.
  • the second arm member H2 can be inclined by a predetermined angle when determining whether or not the liquid is attached to the second arm member H2.
  • the liquid detector 229 is not limited to one using an image sensor, but has a light projector and a light receiver, irradiates the second arm member H2 with light, and passes through the second arm member H2 via the liquid.
  • the liquid adheres to the second arm member H2 based on the difference between the intensity of the reflected light or scattered light from the surface of the second arm member H2 and the intensity of the reflected light or scattered light from the surface of the second arm member H2. Difference between the dielectric constant when liquid is attached to the surface of the second arm member H2 and the dielectric constant when liquid is not attached to the surface of the second arm member H2.
  • Other detectors may be used as long as they can detect the liquid attached to the second arm member H2, such as those that detect force.
  • the liquid detector 129 is not limited to the non-contact type, and may be a contact type. When a contact-type liquid detector is used, it is preferable to take sufficient clean measures so that impurities do not adhere to the second arm member H2 via the detector.
  • the controller CONT inserts the second arm member H2 into the chamber 224, and sends the gas from the gas supply device 223. The gas is injected toward the second arm member H2 via the injection units 221 and 222.
  • the liquid adhering to the surface of the second arm member H2 is released by the injected gas. It is blown off, thereby removing the liquid from the second arm member H2. Further, the liquid removed from the second arm member H2 is collected by the liquid suction device 225 via the pipe 225a.
  • the exposure apparatus body EX performs the exposure processing based on the liquid immersion method.
  • the liquid attached to the substrate P during the exposure processing is removed from the substrate P by the first liquid removal system 100.
  • the liquid is removed from the second arm member H2 by the second liquid removal system 220. Since the second liquid removal system 220 is disposed on the transport path of the second arm member H2, a decrease in throughput, which reduces the waste of the movement of the second arm member H2 during the liquid removal, is suppressed.
  • the substrate P that has been subjected to the exposure processing based on the liquid immersion method can be satisfactorily transferred, and a stable processing operation can be performed.
  • the removal of the liquid adhering to the second arm member H2 is performed at least before the substrate P is unloaded from the substrate stage PST.
  • the liquid may be removed from the second arm member H2 immediately after the substrate unloading operation by the second arm member H2 is completed. That is, when the second arm member H2 to which the liquid adheres moves, the liquid may scatter, which may cause an operation failure or an environmental change. Therefore, the first liquid removal system on substrate P After the transfer to the stem 100 is completed, the liquid detector 229 checks whether or not liquid has adhered to the second arm member H2, and if liquid has adhered to the second arm member H2, the second By using the liquid removal system 220 to remove the liquid attached to the second arm member H2, the occurrence of such a problem can be suppressed.
  • the first liquid removing system 100 described above can be omitted.
  • the liquid is removed from the second arm member H2 only when necessary based on the detection result of the liquid detector 229, there is an advantage that a decrease in throughput due to liquid removal is suppressed. are doing. If there is a high possibility that the liquid is attached to the second arm member H2, the liquid detection operation by the liquid detector 129 may be omitted, and the liquid may always be removed from the second arm member H2! ,.
  • FIG. 16 and FIG. 17 show other embodiments of the second liquid removal system 220.
  • FIG. 16 and FIG. 17 show other embodiments of the second liquid removal system 220.
  • the second liquid removal system 220 of Fig. 16 is connected to the liquid suction device 230 and the liquid suction device 230 via a pipe 231 and is attached to each of the front and back surfaces of the second arm member H2.
  • the first and second suction units 232 and 233 for sucking the liquids contained therein, and a drying device 235 for drying the inside of the chamber 234 are provided.
  • the first and second suction units 232 and 233 are provided to be relatively movable in the X-axis direction with respect to the second arm member H2. 15, an opening 236 through which the second arm member H2 is inserted and removed is provided in the chamber 234, and a shirt 237 is disposed in the opening 236.
  • the chamber 234 is Dry gas (dry air) is supplied to the inside as appropriate.
  • the supplied dry air may be room temperature or hot air controlled to a predetermined temperature.
  • the liquid suction device 230 or the suction device is used.
  • the components 232 and 233 may be omitted.
  • the drying method is not limited to the gas supply method, and other drying methods such as a decompression method and an infrared irradiation method may be used!
  • the second liquid removal system 220 in Fig. 17 includes a liquid suction device 240, moisture absorbents 242 and 243 connected to the liquid suction device 240 via a pipe 241 and moisture absorbents 242 and 243 in the Z direction. And a driving device 244 for moving.
  • a hygroscopic materials 242 and 243 for example, a sponge-like member ⁇ porous ceramic or the like is used.
  • the second liquid removing system 220 shown in FIG. 17 when removing the liquid from the second arm member H2, the hygroscopic materials 242 and 243 are brought into close contact with the second arm member H2 by the driving device 244. In this state, when the liquid suction device 240 is driven to collect the liquid absorbed by the hygroscopic materials 242 and 243, the liquid attached to the second arm member H2 is removed. In the liquid removal using the hygroscopic materials 242 and 243, scattering of the liquid is small. Therefore, it is possible to avoid arranging one chamber (housing) and to achieve compactness of the apparatus. In the case where the moisture removal by the moisture absorbents 242 and 243 cannot remove the liquid from the second arm member H2 promptly, the second arm member H2 may be combined with a drying device as shown in FIG.
  • the hygroscopic material 90 shown in Fig. 11 may have a function of removing the liquid for the arm.
  • the liquid LQ adheres to the second arm member H2 moisture can be absorbed by the hygroscopic material 90. Then, the liquid absorbed by the hygroscopic material 90 via the vacuum system 34 for holding the substrate may be collected. According to this configuration, since the hygroscopic material 90 forms a part of the second arm member H2, the size of the device can be reduced. Further, the liquid can be removed from the second arm member H2 at an arbitrary position and at an arbitrary timing. For example, it is possible to remove the liquid from the second arm member H2 while the second arm member H2 is moving. Therefore, the throughput is improved.
  • FIG. 18 shows another embodiment of the transfer system H including the second liquid removal system 220.
  • the transfer system H includes a cleaning device 260 for cleaning the second arm member H2, in addition to the second liquid removal system 220 for removing the liquid attached to the second arm member H2.
  • the second liquid removal system 220 uses the gas injection type shown in FIG. 15 as the second liquid removal system 220.
  • the configuration example of the misalignment described in the present embodiment may be applied.
  • the cleaning device 260 includes a cleaning liquid supply device 261 that supplies a cleaning liquid, and liquid ejecting units 263 and 264 that are connected to the cleaning liquid supply device 261 via a pipe 262 and that eject the cleaning liquid toward the second arm member H2. And a chamber 265 for accommodating the liquid ejecting units 263 and 264.
  • Various chemicals other than pure water are appropriately used as the cleaning liquid.
  • the liquid ejecting units 263 and 264 are, for example, components having a plurality of ejecting nozzles arranged on a header connected to the cleaning liquid supply device 261.
  • the second liquid removal system 220 and the cleaning device 260 are arranged side by side in the vertical direction! /, But may be arranged in the horizontal direction. Note that the cleaning liquid in the chamber 265 is appropriately collected through a collection pipe (not shown).
  • the transfer system H shown in FIG. 18 the substrate P after the exposure processing by the second arm member H2 is carried out of the substrate stage PST, the substrate P is transferred to the holding table HT, and then the second arm member H2 is cleaned. After washing in the device 260, the liquid attached to the second arm member H2 is removed by the second liquid removal system 220. Therefore, in the transfer system H, the second arm member H2 is cleaned, so that the adhesion of impurities to the substrate before the exposure processing is suppressed.
  • the method of cleaning the second arm member H2 is not limited to the method of spraying the cleaning liquid, but the method of immersing the second arm member H2 in the cleaning liquid stored in the tank, or the ultrasonic cleaning. Other methods such as a method may be used. Further, the method is not limited to the method using a cleaning liquid, and for example, a so-called light cleaning method using light (eg, UV light) or ozone may be used.
  • the cleaning of the second arm member H2 may not be performed each time the substrate P is unloaded, but may be performed each time a predetermined number of substrates P are unloaded.
  • a foreign matter detector for detecting foreign matter (impurities) on the front surface (including the back surface and side surface) of the second arm member H2 is provided separately from the liquid detector 229.
  • the presence or absence of foreign matter adhered to the arm member H2 may be confirmed, and if the foreign matter adheres, the second arm member H2 may be cleaned using the cleaning device 260.
  • pure water is used as the liquid LQ used in the exposure processing.
  • Pure water can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and has the advantage that it does not adversely affect the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effect on the environment and has a very low impurity content, and therefore has the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end surface of the projection optical system PL. Can be expected.
  • the liquid LQ in the present embodiment is composed of pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. it can.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL. If used, the wavelength is shortened to lZn, that is, about 134 nm on the substrate P, and high resolution is obtained. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44 times as compared to that in the air, if it is sufficient to secure the same depth of focus as that used in the air, the projection optical system PL Can further increase the numerical aperture, and in this regard, the resolution is also improved.
  • the force projection in which the lens 2 is attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma, etc.).
  • a plane-parallel plate that can transmit the exposure light EL may be used.
  • the space between the projection optical system PL and the surface of the substrate P is configured to be filled with the liquid LQ.
  • a cover glass having a plane-parallel plate force is attached to the surface of the substrate P. It may be configured to fill the liquid LQ in the closed state.
  • the liquid LQ of the present embodiment may be a liquid other than power water, which is water.
  • water for example
  • the light source of the exposure light EL is an F laser, this F laser light does not transmit water,
  • liquid LQ for example, perfluoropolyether (PFPE) or
  • liquid LQ there is also a liquid LQ which is transparent to the exposure light EL and has a refractive index as high as possible and which is stable to the photoresist applied to the surface of the substrate P or the substrate P (for example, Cedar). Oil) can also be used.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or a mask used in an exposure apparatus.
  • a reticle master synthetic quartz, silicon wafer, etc. is applied.
  • a force that employs an exposure apparatus that locally fills the space between the projection optical system PL and the substrate P with a liquid is disclosed in Japanese Patent Application Laid-Open No. 6-124873.
  • the exposure apparatus (exposure apparatus main body) EX includes a step-and-scan type scanning exposure apparatus (scanning and scanning) for scanning and exposing the pattern of the mask M by synchronously moving the mask M and the substrate P. Then, with the mask M and the substrate P still, The present invention can also be applied to a step-and-repeat type projection exposure apparatus (stepper) that performs batch exposure and sequentially moves the substrate P stepwise. In addition, the present invention can be applied to an exposure apparatus of a step 'and' stitch method in which at least two patterns are partially overlapped and transferred on the substrate P.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, or the like. It can be widely applied to an image pickup device (CCD), an exposure apparatus for manufacturing a reticle or a mask, and the like.
  • CCD image pickup device
  • the exposure apparatus EX of the embodiment of the present application is capable of performing various mechanical subsystems including each component listed in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy.
  • Various subsystems The process of assembling into the exposure apparatus includes mechanical connection, electrical circuit wiring connection, and pneumatic circuit piping connection between the various subsystems. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
  • a micro device such as a semiconductor device includes a step 301 for designing the function and performance of the micro device, a step 302 for manufacturing a mask (reticle) based on the design step, Step 303 of manufacturing a substrate as a base material, exposure processing step 304 of exposing a mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, and device assembly step (including dicing step, bonding step, and package step) 305 It is manufactured through an inspection step 306 and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 投影光学系と液体とを介したパターンの像によって露光された基板を搬送する基板搬送装置は、前記基板を支持する基板支持部材と、前記基板支持部材と、前記基板の裏面のうち少なくとも一部の領域との少なくとも一方に付着した前記液体を除去する液体除去機構とを備える。

Description

基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製 造方法
技術分野
[0001] 本発明は、液浸法により露光された基板を搬送する基板搬送装置及び基板搬送方 法、露光装置及び露光方法、デバイス製造方法に関するものである。
本願は、 2003年 10月 8日に出願された特願 2003— 349549号および特願 2003— 349552号に対し優先権を主張し、その内容をここに援用する。
背景技術
[0002] 半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の 基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程で使用される露光装置は、マスクを支持するマスクステージと基板を支 持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながら マスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイス ノターンのより一層の高集積ィ匕に対応するために投影光学系の更なる高解像度化 が望まれている。投影光学系の解像度は、使用する露光波長が短くなるほど、また投 影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波 長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主 流の露光波長は、 KrFエキシマレーザの 248nmであるが、更に短波長の ArFェキ シマレーザの 193nmも実用化されつつある。また、露光を行う際には、解像度と同様 に焦点深度 (DOF)も重要となる。解像度 及び焦点深度 δはそれぞれ以下の式 で表される。
[0003] R=k · λ /ΝΑ … (1)
δ = ±k - λ /ΝΑ2 … (2)
2
ここで、 λは露光波長、 ΝΑは投影光学系の開口数、 k、 kはプロセス係数である。
1 2
(1)式、(2)式より、解像度 Rを高めるために、露光波長えを短くして、開口数 NAを 大きくすると、焦点深度 δが狭くなることが分力る。 [0004] 焦点深度 δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させる ことが困難となり、露光動作時のフォーカスマージンが不足する恐れがある。そこで、 実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特 許文献 1に開示されている液浸法が提案されている。この液浸法は、投影光学系の 下面と基板表面との間を水や有機溶媒等の液体で満たし、液体中での露光光の波 長力 空気中の lZn (nは液体の屈折率で通常 1. 2-1. 6程度)になることを利用し て解像度を向上するとともに、焦点深度を約 η倍に拡大するというものである。
特許文献 1:国際公開第 99Ζ49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0005] ところで、液浸法により露光された基板は、基板搬送部材によって基板ステージか ら搬出される。このとき、基板の裏面に液体が付着していると、基板搬送部材と基板と の間の液体が潤滑膜となって、基板が基板搬送部材に対して滑りやすくなり (位置ず れしゃすくなり)、基板搬送部材は基板を所望の状態で搬送できなくなる不都合が生 じる可能性がある。また、基板搬送部材に液体が付着していると、その液体が膜とな つて基板搬送部材に対して基板が滑るなどにより、基板を良好に搬送できないおそ れがある。基板搬送部材が基板を真空吸着保持する構成の場合、基板に液体が付 着していると、その液体が真空系に浸入して真空系を破損させる不都合が生じる可 能性もある。
[0006] また、基板や基板搬送部材に液体が付着した状態で搬送すると、搬送中にお!、て 液体が基板から落下し、落下した液体により搬送経路周辺の各装置や部材が鲭び たり、露光装置が配置されている環境のクリーン度を維持できなくなる等の不都合が 生じる。あるいは、落下した液体により露光装置周辺の環境変化 (湿度変化)をもたら す場合もある。
[0007] 基板搬送部材に液体が付着して!/ヽると、その液体が基板に付着して、基板を汚染 したり、基板に付着した液体が露光処理前に乾燥した場合、その痕が基板表面に残 ることにより、製造されるデバイスの品質低下を招く可能性があった。また、露光処理 後において基板に液体を付着させた状態で例えば現像処理が実行されると現像む ら等を引き起こしたり、基板に付着した液体が雰囲気中の不純物 (塵等)を集めて基 板を汚染し、所望の性能を有するデバイスが製造できなくなるおそれが生じる。
[0008] 本発明はこのような事情に鑑みてなされたものであって、液浸法により露光された 基板を所望の状態で良好に搬送できる基板搬送装置及び基板搬送方法、露光装置 及び露光方法、デバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0009] 上記の課題を解決するため、請求項 1に係る発明では、投影光学系と液体とを介し たパターンの像によって露光された基板を搬送する基板搬送装置において、前記基 板を支持する基板支持部材と、前記基板支持部材と、前記基板の裏面のうち少なく とも一部の領域との少なくとも一方に付着した前記液体を除去する液体除去機構とを 備えることとした。
[0010] また、請求項 11に係る発明では、投影光学系と液体とを介したパターンの像によつ て露光された基板を搬送する基板搬送装置において、前記基板を搬送し、かつ前記 液体を吸収する吸湿材を備える基板搬送部材を有することとした。
[0011] また、請求項 23に係る発明では、投影光学系と液体とを介してパターンの像が露 光された基板を搬送する基板搬送装置において、前記基板の裏面のうち一部の領 域に付着した液体を除去する第 1液体除去機構と、前記基板の裏面のうち一部の領 域に付着した液体を前記第 1液体除去機構で除去した後に、前記基板の表面に付 着した前記液体を除去する第 2液体除去機構とを備えることとした。
[0012] また、請求項 27に係る発明では、投影光学系と液体とを介してパターンの像が露 光された基板を搬送する基板搬送方法にお!ヽて、前記基板の裏面を基板支持部材 で支持する前に、前記基板の裏面のうち前記基板支持部材が支持する支持領域に 付着した液体を除去することとした。
[0013] さらに、請求項 33に記載された発明では、投影光学系と液体とを介してパターンの 像が露光された基板を搬送する基板搬送方法において、前記基板の裏面のうち一 部の領域に付着した前記液体を除去し、前記一部の領域に付着した前記液体を除 去した後に、前記基板の表面に付着した液体を除去することとした。
[0014] 上述した本発明によれば、液浸露光処理後の基板を搬送する際、基板を所望の状 態で搬送でき、所望の性能を有するデバイスを製造することができる。
図面の簡単な説明
[図 1]本発明の露光装置としてのデバイス製造システムの一実施形態を示す概略構 成図である。
[図 2]図 1を上方から見た図である。
[図 3]露光処理を行う露光装置本体の一実施形態を示す概略構成図である。
[図 4]供給ノズル及び回収ノズルの配置例を示す図である。
[図 5]本発明に係る搬送アーム部材の一実施形態を示す概略構成図である。
[図 6A]本発明に係る搬送アーム部材による液体除去動作の一実施形態を示す図で ある。
[図 6B]本発明に係る搬送アーム部材による液体除去動作の一実施形態を示す図で ある。
[図 7A]本発明に係る保持テーブルの一実施形態を示す概略構成図である。
[図 7B]本発明に係る保持テーブルの一実施形態を示す概略構成図である。
[図 8A]本発明に係る保持テーブルによる液体除去動作の一実施形態を示す図であ る。
[図 8B]本発明に係る保持テーブルによる液体除去動作の一実施形態を示す図であ る。
[図 9]第 1の液体除去システムによる液体除去動作の一実施形態を示す図である。
[図 10]本発明に係る搬送アーム部材の別の実施形態を示す概略構成図である。
[図 11]本発明に係る搬送アーム部材の別の実施形態を示す概略構成図である。
[図 12A]第 1の液体除去システムによる液体除去動作の別の実施形態を示す図であ る。
[図 12B]第 1の液体除去システムによる液体除去動作の別の実施形態を示す図であ る。
[図 13]第 1の液体除去システムによる液体除去動作の別の実施形態を示す図である [図 14]第 1の液体除去システムによる液体除去動作の別の実施形態を示す図である [図 15]第 2の液体除去システムの構成例を模式的に示す図である。
[図 16]第 2の液体除去システムの他の構成例を模式的に示す図である。
[図 17]第 2の液体除去システムの他の構成例を模式的に示す図である。
[図 18]第 2の液体除去システムを備える搬送システムの他の形態例を模式的に示す 図である。
[図 19]半導体デバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0016] 31 · · ·吸着穴(開口部、第 1開口部)、 32· · ·吹付穴(開口部、第 2開口部)、
34…真空系(吸着機構)、 35…気体供給系 (気体吹付機構)、
36· · ·気体吹付機構 (液体除去機構)、37· ··吸着機構、
38…第 1流路 (接続機構)、 38Α· · 'バルブ (接続機構)、
39· "第 2流路 (接続機構)、 39Α· · 'バルブ (接続機構)、 41…吸着穴(開口部)、 42
…吹付穴(開口部)、 45…吸着機構、
46· ··気体吹付機構 (液体除去機構)、 90· ··吸湿材、
100…第 1の液体除去システム、 122…回転機構、
150…乾燥装置 (乾燥機構)、 EX…露光装置本体、 EX - SYS…露光装置、
Η· ··基板搬送システム (基板搬送装置)、 H2- ··第 2アーム部材 (基板支持部材)、
HT…保持テーブル (基板支持部材)、 LQ…液体、 Ρ· ··基板、 PL…投影光学系、 P
ST- "基板ステージ、 SYS · "デバイス製造システム、
CZD— SYS…コータ ·デベロツバ装置、 IF- · 'インターフェース部、
220…第 2の液体除去システム
発明を実施するための最良の形態
[0017] 以下、本発明を実施するための形態について図面を参照しながら説明する。図 1は 本発明の露光装置を備えたデバイス製造システムの一実施形態を示す図であって 側方から見た概略構成図、図 2は図 1を上方から見た図である。
[0018] 図 1、図 2において、デバイス製造システム SYSは、露光装置 EX— SYSと、コータ. デベロツバ装置 CZD-SYS (図 2参照)とを備えている。露光装置 EX-SYSは、コ 一タ ·デベロッパ装置 CZD— SYSとの接続部を形成するインターフェース部 IF (図 2 参照)と、投影光学系 PLと基板 Pとの間を液体 LQで満たし、投影光学系 PLと液体 L Qとを介して、マスクに形成されたパターンを基板 P上に投影して基板 Pを露光する露 光装置本体 EXと、インターフェース部 IFと露光装置本体 EXとの間で基板 Pを搬送 する搬送システム Hと、搬送システム Hの搬送経路の途中に設けられ、基板 Pの表面 に付着した液体 LQを除去する第 1の液体除去システム 100と、上記搬送経路の途 中に設けられ、第 2アーム部材 H2の表面に付着した液体 LQを除去する第 2の液体 除去システム 220と、露光装置 EX - SYS全体の動作を統括制御する制御装置 CO NTとを備えている。コータ 'デベロッパ装置 CZD-SYSは、露光処理される前の基 板 Pの基材に対してフォトレジスト (感光剤)を塗布する塗布装置 Cと、露光装置本体 EXにお ヽて露光処理された後の基板 Pを現像処理する現像装置 (処理装置) Dとを 備えている。図 2に示すように、露光装置本体 EXはクリーン度が管理された第 1チヤ ンバ装置 CH1内部に配置されている。一方、塗布装置 C及び現像装置 Dは第 1チヤ ンバ装置 CH1とは別の第 2チャンバ装置 CH2内部に配置されている。そして、露光 装置本体 EXを収容する第 1チャンバ装置 CH1と、塗布装置 C及び現像装置 Dを収 容する第 2チャンバ装置 CH2とは、インターフェース部 IFを介して接続されている。こ こで、以下の説明において、第 2チャンバ装置 CH2内部に収容されている塗布装置 C及び現像装置 Dを合わせて「コータ ·デベロツバ本体 CZD」と適宜称する。
図 1に示すように、露光装置本体 EXは、露光光 ELでマスクステージ MSTに支持さ れているマスク Mを照明する照明光学系 ILと、露光光 ELで照明されたマスク Mのパ ターンの像を基板 P上に投影する投影光学系 PLと、基板 Pを支持する基板ステージ PSTとを備えている。また、本実施形態における露光装置本体 EXは、マスク Mと基 板 Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスク Mに 形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツパ )である。以下の説明において、水平面内においてマスク Mと基板 Pとの同期移動方 向(走査方向)を X軸方向、水平面内において X軸方向と直交する方向を Y軸方向( 非走査方向)、 X軸及び Y軸方向に垂直で投影光学系 PLの光軸 AXと一致する方向 を Z軸方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 0 Y、及び θ Ζ方向とする。なお、ここでいう「基板」は半導体ウェハ上にレジス トを塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパターンが形 成されたレチクルを含む。
[0020] 搬送システム Ηは、露光処理される前の基板 Ρを基板ステージ PSTに搬入 (ロード) する第 1アーム部材 HIと、露光処理された後の基板 Pを基板ステージ PSTから搬出 (アンロード)する第 2アーム部材 H2とを備えている。図 2に示すように、塗布装置じか ら搬送された露光処理前の基板 Pはインターフェース部 IFを介して第 3アーム部材 H 3に渡される。第 3アーム部材 H3は、基板 Pをブリアライメント部 PALに渡す。プリァラ ィメント部 PALは、基板ステージ PSTに対して基板 Pの大まかな位置合わせを行う。 ブリアライメント部 PALで位置合わせされた基板 Pは第 1アーム部材 HIによって基板 ステージ PSTにロードされる。露光処理を終えた基板 Pは第 2アーム部材 H2によつ て基板ステージ PSTよりアンロードされる。第 2アーム部材 H2は露光処理後の基板 P を、その基板 Pの搬送経路の途中に設けられた保持テーブル HTに渡す。保持テー ブル HTは、第 1の液体除去システム 100の一部を構成するものであって、渡された 基板 Pを一時保持する。保持テーブル HTはカバー部材 70内部に配置されており、 カバー部材 70には、搬送される基板 Pを通過させるための開口部 71、 72が設けられ ている。開口部 71、 72にはシャツタ部 71A、 72Aが設けられており、開口部 71、 72 を開閉する。保持テーブル HTは基板 Pを保持して回転可能であって、その保持テー ブル HTの回転によって向きを変えられた基板 Pは、第 4アーム部材 H4に保持され、 インターフェース部 IFまで搬送される。インターフェース部 IFに搬送された基板 Pは 現像装置 Dに渡される。現像装置 Dは渡された基板 Pに対して現像処理を施す。
[0021] そして、第 1一第 4アーム部材 (搬送アーム部材) HI— H4、ブリアライメント部 PAL 、及び保持テーブル HTも第 1チャンバ装置 CHI内部に配置されている。ここで、第 1、第 2チャンバ装置 CH1、 CH2それぞれのインターフェース部 IFと対面する部分に は開口部及びこの開口部を開閉するシャツタが設けられている。基板 Pのインターフ ース部 IFに対する搬送動作中にはシャツタが開放される。
[0022] 第 1アーム部材 HIは露光処理される前の液体 LQが付着してない基板 Pを保持し て基板ステージ PSTにロードする。一方、第 2アーム部材 H2は液浸露光処理された 後の液体 LQが付着している可能性のある基板 Pを保持して基板ステージ PSTよりァ ンロードする。このように、液体 LQが付着していない基板 Pを搬送する第 1アーム部 材 HIと、液体 LQが付着して 、る可能性のある基板 Pを搬送する第 2アーム部材 H2 とを使い分けているので、第 1アーム部材 HIには液体 LQが付着することなぐ基板 ステージ PSTにロードされる基板 Pの裏面などへの液体 LQの付着を防止することが できる。したがって、基板ステージ PSTの基板ホルダが基板 Pを真空吸着保持する構 成であっても、基板ホルダの吸着穴を介して真空ポンプなどの真空系に液体 LQが 浸入する不都合の発生を防止することができる。
[0023] 図 3は、露光装置本体 EXの概略構成図である。
[0024] 照明光学系 ILは、マスクステージ MSTに支持されているマスク Mを露光光 ELで照 明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化す るオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集光 するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク M上の照明領域をスリ ット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領域は照 明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射 出される露光光 ELとしては、例えば水銀ランプ力 射出される紫外域の輝線 (g線、 h 線、 i線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)や、 Ar Fエキシマレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光
2
(VUV光)などが用いられる。本実施形態では、 ArFエキシマレーザ光を用いた場合 を例に挙げて説明する。
[0025] マスクステージ MSTは、マスク Mを支持するものであって、投影光学系 PLの光軸 AXに垂直な平面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微小回 転可能である。マスクステージ MSTはリニアモータ等のマスクステージ駆動装置 MS TDにより駆動される。マスクステージ駆動装置 MSTDは制御装置 CONTにより制御 される。マスクステージ MST上には移動鏡 56が設けられ、移動鏡 56に対向する位 置にはレーザ干渉計 57が設けられて!/、る。マスク Mを保持したマスクステージ MST の 2次元方向の位置、及び回転角はレーザ干渉計によりリアルタイムで計測され、計 測結果は制御装置 CONTに出力される。制御装置 CONTはレーザ干渉計の計測 結果に基づいてマスクステージ駆動装置 MSTDを駆動することでマスクステージ M STに支持されて!、るマスク Mの位置決めを行う。
[0026] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 13で基板 Pに投影露光 するものであって、複数の光学素子(レンズやミラー)で構成されており、これら光学 素子は鏡筒 PK内に収容されている。本実施形態において、投影光学系 PLは、投影 倍率 j8が例えば 1Z4あるいは 1Z5の縮小系である。なお、投影光学系 PLは等倍 系及び拡大系のいずれでもよい。また、本実施形態の投影光学系 PLの先端側 (基 板 P側)には、光学素子(レンズ) 2が鏡筒 PKより露出している。この光学素子 2は鏡 筒 PKに対して着脱 (交換)可能に設けられて 、る。
[0027] 光学素子 2は蛍石で形成されて 、る。蛍石は純水との親和性が高!、ので、光学素 子 2の先端面 (液体接触面) 2aのほぼ全面に液体 LQを密着させることができる。すな わち、本実施形態にぉ 、ては光学素子 2の液体接触面 2aとの親和性が高 、液体( 水) LQを供給するようにしているので、光学素子 2の液体接触面 2aと液体 LQとの密 着性が高い。なお、光学素子 2は水との親和性が高い石英であってもよい。また光学 素子 2の液体接触面 2aに親水化 (親液化)処理を施して、液体 LQとの親和性をより 高めるようにしてもよい。
[0028] 基板ステージ PSTは、基板 Pを支持するものであって、基板 Pを基板ホルダを介し て保持する Zステージ 51と、 Zステージ 51を支持する XYステージ 52と、 XYステージ 52を支持するベース 53とを備えて 、る。基板ステージ PSTはリニアモータ等の基板 ステージ駆動装置 PSTDにより駆動される。基板ステージ駆動装置 PSTDは制御装 置 CONTにより制御される。 Zステージ 51を駆動することにより、 Zステージ 51に保持 されている基板 Pの Z軸方向における位置(フォーカス位置)、及び Θ X、 Θ Y方向に おける位置が制御される。また、 XYステージ 52を駆動することにより、基板 Pの XY方 向における位置 (投影光学系 PLの像面と実質的に平行な方向の位置)が制御される 。すなわち、 Zステージ 51は、基板 Pのフォーカス位置及び傾斜角を制御して基板 P の表面をオートフォーカス方式、及びオートレべリング方式で投影光学系 PLの像面 に合わせ込み、 XYステージ 52は基板 Pの X軸方向及び Y軸方向における位置決め を行う。なお、 Zステージと XYステージとを一体的に設けてよいことは言うまでもない。 [0029] 基板ステージ PST(Zステージ 51)上には移動鏡 54が設けられている。また、移動 鏡 54に対向する位置にはレーザ干渉計 55が設けられている。基板ステージ PST上 の基板 Pの 2次元方向の位置、及び回転角はレーザ干渉計 55によりリアルタイムで 計測され、計測結果は制御装置 CONTに出力される。制御装置 CONTはレーザ干 渉計 55の計測結果に基づいて基板ステージ駆動装置 PSTDを駆動することで基板 ステージ PSTに支持されている基板 Pの位置決めを行う。
[0030] 本実施形態では、露光波長を実質的に短くして解像度を向上するとともに、焦点深 度を実質的に広くするために、液浸法を適用する。そのため、少なくともマスク Mのパ ターンの像を基板 P上に転写している間は、基板 Pの表面と投影光学系 PLの光学素 子 2の先端面 2aとの間に所定の液体 LQが満たされる。上述したように、投影光学系 PLの先端側には光学素子 2が露出しており、液体 LQは光学素子 2のみに接触する ように構成されている。これにより、金属からなる鏡筒 PKの腐蝕等が防止されている 。本実施形態において、液体 LQには純水が用いられる。純水は、 ArFエキシマレー ザ光のみならず、露光光 ELを例えば水銀ランプ力 射出される紫外域の輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)とした 場合にも、この露光光 ELを透過可能である。
[0031] 露光装置本体 EXは、投影光学系 PLの光学素子 2の先端面 2aと基板 Pとの間に液 体 LQを供給する液体供給機構 10と、基板 P上の液体 LQを回収する液体回収機構 20とを備えている。液体供給機構 10は、基板 P上に液浸領域 AR2を形成するため に所定の液体 LQを供給するものであって、液体 LQを送出可能な液体供給装置 11 と、液体供給装置 11に供給管 12を介して接続され、この液体供給装置 11から送出 された液体 LQを基板 P上に供給する供給口を有する供給ノズル 13とを備えて 、る。 供給ノズル 13は基板 Pの表面に近接して配置されている。
[0032] 液体供給装置 11は、液体 LQを収容するタンク、及び加圧ポンプ等を備えており、 供給管 12及び供給ノズル 13を介して基板 P上に液体 LQを供給する。また、液体供 給装置 11の液体供給動作は制御装置 CONTにより制御され、制御装置 CONTは 液体供給装置 11による基板 P上に対する単位時間あたりの液体供給量を制御可能 である。また、液体供給装置 11は液体 LQの温度調整機構を有しており、装置が収 容されるチャンバ内の温度とほぼ同じ温度 (例えば 23°C)の液体 LQを基板 P上に供 給するようになっている。
[0033] 液体回収機構 20は基板 P上の液体 LQを回収するものであって、基板 Pの表面に 接触することなぐ近接して配置された回収ノズル 23と、この回収ノズル 23に回収管 22を介して接続された液体回収装置 21とを備えている。液体回収装置 21は例えば 真空ポンプ等の真空系(吸引装置)及び回収した液体 LQを収容するタンク等を備え ており、基板 P上の液体 LQを回収ノズル 23及び回収管 22を介して回収する。液体 回収装置 21の液体回収動作は制御装置 CONTにより制御され、制御装置 CONT は液体回収装置 21による単位時間あたりの液体回収量を制御可能である。
[0034] 走査露光時には、投影光学系 PLの先端の光学素子 2の直下の投影領域 AR1に マスク Mの一部のパターン像が投影され、投影光学系 PLに対して、マスク Mがー X方 向(又は +X方向)に速度 Vで移動するのに同期して、 XYステージ 52を介して基板 Pが +X方向(又は- X方向)に速度 β ·ν ( βは投影倍率)で移動する。そして、 1つ のショット領域への露光終了後に、基板 Ρのステッピングによって次のショット領域が 走査開始位置に移動し、以下、ステップ ·アンド'スキャン方式で各ショット領域に対 する露光処理が順次行われる。本実施形態では、基板 Ρの移動方向に沿って液体 L Qを流すように設定されて 、る。
[0035] 図 4は、投影光学系 PLの投影領域 AR1と、液体 LQを X軸方向に供給する供給ノ ズル 13 (13A— 13C)と、液体 LQを回収する回収ノズル 23 (23A、 23B)との位置関 係を示す図である。図 4において、投影光学系 PLの投影領域 AR1の形状は Y軸方 向に細長い矩形状となっており、その投影領域 AR1を X軸方向に挟むように、 +X方 向側に 3つの供給ノズル 13A— 13Cが配置され、 X方向側に 2つの回収ノズル 23 A、 23Bが配置されている。そして、供給ノズル 13 A— 13Cは供給管 12を介して液 体供給装置 11に接続され、回収ノズル 23A、 23Bは回収管 22を介して液体回収装 置 21に接続されている。また、供給ノズル 13A— 13Cと回収ノズル 23A、 23Bとをほ ぼ 180° 回転した位置関係で、供給ノズル 15A— 15Cと、回収ノズル 25A、 25Bと が配置されている。供給ノズル 13A— 13Cと回収ノズル 25A、 25Bとは Y軸方向に 交互に配列され、供給ノズル 15A— 15Cと回収ノズル 23A、 23Bとは Y軸方向に交 互に配列され、供給ノズル 15A— 15Cは供給管 14を介して液体供給装置 11に接続 され、回収ノズル 25A、 25Bは回収管 24を介して液体回収装置 21に接続されてい る。
[0036] そして、矢印 Xaで示す走査方向(一 X方向)に基板 Pを移動させて走査露光を行う 場合には、供給管 12、供給ノズル 13A— 13C、回収管 22、及び回収ノズル 23A、 2 3Bを用いて、液体供給装置 11及び液体回収装置 21により液体 LQの供給及び回 収が行われる。すなわち、基板 Pがー X方向に移動する際には、供給管 12及び供給 ノズル 13 (13A— 13C)を介して液体供給装置 11から液体 LQが基板 P上に供給さ れるとともに、回収ノズル 23 (23A、 23B)及び回収管 22を介して液体 LQが液体回 収装置 21に回収され、投影光学系 PLと基板 Pとの間を満たすように X方向に液体 LQが流れる。一方、矢印 Xbで示す走査方向(+X方向)に基板 Pを移動させて走査 露光を行う場合には、供給管 14、供給ノズル 15A— 15C、回収管 24、及び回収ノズ ル 25A、 25Bを用いて、液体供給装置 11及び液体回収装置 21により液体 LQの供 給及び回収が行われる。すなわち、基板 Pが +X方向に移動する際には、供給管 14 及び供給ノズル 15 (15A— 15C)を介して液体供給装置 11から液体 LQが基板 P上 に供給されるとともに、回収ノズル 25 (25A、 25B)及び回収管 24を介して液体 LQ が液体回収装置 21に回収され、投影光学系 PLと基板 Pとの間を満たすように +X方 向に液体 LQが流れる。このように、制御装置 CONTは、液体供給装置 11及び液体 回収装置 21を用いて、基板 Pの移動方向に沿つて基板 Pの移動方向と同一方向へ 液体 LQを流す。この場合、例えば液体供給装置 11から供給ノズル 13を介して供給 される液体 LQは基板 Pの X方向への移動に伴って投影光学系 PLと基板 Pとの間 に引き込まれるようにして流れるので、液体供給装置 11の供給エネルギーが小さくて も液体 LQを投影光学系 PLと基板 Pとの間に容易に供給できる。そして、走査方向に 応じて液体 LQを流す方向を切り替えることにより、 +X方向、又は X方向のどちらの 方向に基板 Pを走査する場合にも、投影光学系 PLと基板 Pとの間を液体 LQで満た すことができ、高 、解像度及び広 、焦点深度を得ることができる。
[0037] 図 5は、露光処理後の液体 LQが付着している可能性のある基板 Pを基板ステージ PSTよりアンロードする第 2アーム部材 H2を示す概略斜視図である。図 5において、 第 2アーム部材 H2は、フォーク型ハンドにより構成され、基板 Pの裏面を支持してそ の基板 Pを搬送するものである。第 2アーム部材 H2は基板 Pの裏面に対向する上面( 支持面) 30を有しており、支持面 30で基板 Pを支持する。第 2アーム部材 H2の支持 面 30には基板 Pの裏面を吸着保持するための開口部である複数の吸着穴 31が所 定間隔でその支持面 30のほぼ全域に均等に設けられている。吸着穴 31には、第 2 アーム部材 H2の内部に形成された流路 31 Aを介して真空系(吸着機構) 34が接続 されている。真空系 34は露光装置本体 EXに設けられた真空ポンプ、あるいはデバ イス製造システム SYSが設置される工場内の真空系により構成される。真空系 34及 び吸着穴 31を含んで構成される吸着機構 37は、基板 Pの裏面を支持するために、 真空系 34を駆動して吸着穴 31を介して基板 Pの裏面を吸着する。
[0038] また、第 2アーム部材 H2の支持面 30において、吸着穴 31と異なる位置には開口 部である吹付穴 32が設けられている。本実施形態では、吹付穴 32は複数設けられ ており、複数設けられた吸着穴 31のそれぞれの間に配置され、第 2アーム部材 H2の 支持面 30の全域にほぼ均等に設けられている。吹付穴 32には、第 2アーム部材 H2 の内部に形成された流路 32Aを介して気体供給系 35が接続されている。前記気体 供給系 35及び吹付穴 32を含んで気体吹付機構 (液体除去機構) 36が構成されて いる。流路 32Aには、基板 Pに対して吹き付ける気体中の異物(ゴミやオイルミスト)を 除去するフィルタが設けられている。気体供給系 35が駆動することにより、流路 32A を介して吹付穴 32より所定の気体が吹き出すようになつている。また、気体供給系 35 の動作は制御装置 CONTにより制御され、制御装置 CONTは気体供給系 35を制 御することによって、吹付穴 32より吹き出す単位時間あたりの気体量を調整可能であ る。
[0039] また、第 2アーム部材 H2の支持面 30の複数の所定位置には位置決め部材である 突起部 33がそれぞれ設けられている。突起部 33により、第 2アーム部材 H2の支持 面 30で基板 Pの裏面を支持したとき、基板 Pが位置ずれしたり第 2アーム部材 H2より 落下したりする不都合の発生が防止されて!、る。
[0040] 次に、上述した露光装置本体 EX及び搬送システム Hの動作について説明する。
[0041] 露光装置本体 EXにお ヽて、基板ステージ PSTに保持された基板 Pは、液浸法を 用いて露光処理される。基板 P上に設定された複数のショット領域のそれぞれに対す る液浸露光処理が終了した後、制御装置 CONTは液体供給機構 10による基板 P上 への液体供給を停止する。一方で、制御装置 CONTは、液体供給機構 10による液 体供給動作を停止した後も所定時間だけ液体回収機構 20の駆動を継続する。これ により、基板 P上の液体 LQは十分に回収される。そして前記所定時間経過後、制御 装置 CONTは液体回収機構 20の駆動を停止するとともに、図 6Aの模式図に示すよ うに、投影光学系 PLの下力も基板ステージ PSTを水平方向に退避させる。ここで、 基板ステージ PSTの Zステージ 51 (基板ホルダ)の内部には昇降可能なピン部材 57 が設けられている。ピン部材 57は昇降することにより Zステージ 51の上面に対して出 没するようになっている。基板ステージ PSTが投影光学系 PLの下力も退避した後、 制御装置 CONTはピン部材 57を上昇して Zステージ 51上の基板 Pを上昇させる。そ して、制御装置 CONTは、ピン部材 57で上昇された基板 Pの下側 (裏面側)に第 2ァ 一ム部材 H2を進入させる。制御装置 CONTは、基板 Pの下側に第 2アーム部材 H2 を配置した後、第 2アーム部材 H2が基板 Pの裏面を支持する前に、気体供給系 35 を駆動して、基板 Pの裏面に対して吹付穴 32を介して気体を吹き付ける。なお、吹付 穴 32より基板 Pの裏面に対して気体を吹き付けているときには、基板 Pの裏面と第 2 アーム部材 H2の支持面 30とは所定距離離れている。気体供給系 35及び吹付穴 32 を含んで構成される気体吹付機構 (第 1液体除去装置) 36は、基板 Pの裏面に気体 を吹き付けることにより、仮に基板 Pの裏面に液体 LQが付着していても、その液体 L Qを基板 Pから飛ばして除去することができる。
ここで、気体吹付機構 36の吹付穴 32より基板 Pの裏面に対して気体を吹き付けて いるとき、図 6Aに示すように、第 2アーム部材 H2及び基板 Pを囲むようにカバー部材 58を配置することが好ましい。こうすること〖こより、基板 Pの裏面より飛ばされた液体 L Qの周辺装置への飛散 (付着)を防止することができる。本実施形態において、カバ 一部材 58は複数の分割部材により構成されており、分割部材のそれぞれには駆動 機構が設けられている。そして、基板ステージ PSTが投影光学系 PLの下力も退避し た後、前記駆動機構により前記分割部材 (カバー部材)のそれぞれが基板ステージ P STに接近するようになって 、る。 [0043] ここで、気体吹付機構 36は、第 2アーム部材 H2を基板 Pの裏面に対して所定距離 離した状態で位置決めし、基板 Pの裏面のうち、一部の領域に気体を吹き付けたり、 あるいは第 2アーム部材 H2を基板 Pの裏面に対して所定距離離した状態を維持した 状態で移動しつつ基板 Pの裏面のうち、上述した一部の領域より広い領域に気体を 吹き付けることができる。なお、第 2アーム部材 H2と基板 Pの裏面との間隔を変化さ せながら基板 Pの裏面の全域又は一部に気体を吹き付けてもよい。こうすることにより 、基板 Pの裏面に付着している液体 LQを除去することができる。もちろんこのとき、第 2アーム部材 H2を移動せずに基板 Pをピン部材 57を介して支持している基板ステー ジ PSTを移動しつつ基板 Pの裏面に気体を吹き付けてもよ 、し、第 2アーム部材 H2 と基板 P (基板ステージ PST)とを相対移動しつつ気体を吹き付けるようにしてもよ!ヽ
[0044] なお、気体吹付機構 36は、基板 Pの裏面のうち少なくとも第 2アーム部材 H2の支 持面 30が接する一部の領域、すなわち第 2アーム部材 H2で支持される支持領域に 付着して!/ヽる液体 LQを除去すればょ ヽ。
[0045] 基板 Pの裏面のうち少なくとも第 2アーム部材 H2により支持される領域に付着して いる液体 LQを除去した後、気体供給系 35の駆動が停止される。次いで、図 6Bに示 すように、基板 Pの裏面に対して第 2アーム部材 H2が接近し、基板 Pの裏面と第 2ァ 一ム部材 H2の支持面 30とが接する。その後、制御装置 CONTは、吸着機構 37を 構成する真空系 34を駆動する。これにより、基板 Pの裏面は、第 2アーム部材 H2の 支持面 30に設けられた吸着穴 31を介して吸着保持される。第 2アーム部材 H2で基 板 Pの裏面を支持する前に、その基板 Pの裏面に付着している液体 LQは除去されて いるので、第 2アーム部材 H2は基板 Pの位置ずれを起こすことなぐ基板 Pを良好に 保持することができる。また、基板 Pの裏面には液体 LQが付着していないので、基板 Pの裏面を吸着機構 37で吸着保持した際にも、吸着穴 31を介して真空系 34に液体 LQが浸入することがない。したがって、真空系 34の破損等の不都合の発生を防止 することができる。
[0046] 基板 Pを保持した第 2アーム部材 H2は、その基板 Pを保持テーブル HTまで搬送す る。ここで、基板 Pの表面や、基板 Pの裏面のうち第 2アーム部材 H2に支持されてい る以外の領域に液体 LQが付着している可能性がある。ところ力 図 1に示すように、 基板 Pの搬送経路のうち、基板ステージ PSTと保持テーブル HTとの間には、露光後 の基板 Pから落下した液体を回収する回収機構 60が配置されているので、たとえ液 体 LQを付着した状態で基板 Pを搬送しても、搬送経路上の周辺装置 ·部材への基 板 Pからの液体 LQの付着 ·飛散を防止することができる。ここで、回収機構 60は、図 1に示すように、第 2アーム部材 H2の搬送経路の下に配置された樋部材 61と、樋部 材 61を介して回収された液体 LQを樋部材 61より排出する液体吸引装置 62とを備え ている。樋部材 61は第 1チャンバ装置 CH1内部に設けられ、液体吸引装置 62は第 1チャンバ装置 CH 1外部に設けられて 、る。樋部材 61と液体吸弓 I装置 62とは管路 6 3を介して接続されており、管路 63には、この管路 63の流路を開閉するバルブ 63A が設けられている。
[0047] 露光後の液体 LQが付着して 、る基板 Pを第 2アーム部材 H2で搬送して 、る最中、 基板 Pから液体 LQが落下する可能性があるが、その落下した液体 LQは樋部材 61 で回収することができる。落下した液体 LQを樋部材 61で回収することで、搬送経路 の周囲に液体 LQが飛散する等の不都合を防止できる。そして、液体吸引装置 62は チャンバ装置 CH 1内部に設けられた樋部材 61上の液体 LQを吸弓 Iすることでチャン バ装置 CH1外部に排出し、チャンバ装置 CH1内部の樋部材 61に液体 LQが留まら ないようにすることができ、チャンバ装置 CH1内部に湿度変動 (環境変動)が生じる 不都合を防止することができる。ここで、液体吸引装置 62は、樋部材 61に回収され た液体 LQの吸引動作を連続的に行うことができるし、予め設定された所定期間にお V、てのみ吸弓 I動作を断続的に行うこともできる。吸弓 I動作を連続的に行うことにより、 樋部材 61には液体 LQが留まらないので、チャンバ装置 CH1内部の湿度変動をより 一層防止することができる。一方、例えば露光装置本体 EXでの基板 Pの露光中には 、液体吸引装置 62による吸引動作 (排出動作)を行わず、露光以外の期間において のみ吸引動作を行うことにより、吸引動作によって発生する振動が露光精度に影響を 与えるといった不都合を防止することができる。
[0048] 図 7A— Bは、第 2アーム部材 H2により搬送された基板 Pを一時保持する保持テー ブル HTを示す図であって、図 7Aは側面図、図 7Bは平面図である。図 7A— Bにお いて、基板支持部材を構成する保持テーブル HTは平面視略円形状であって、その 上面 (支持面) 40の略中央部には、開口部である吹付穴 42が設けられている。本実 施形態において、吹付穴 42は 1つ設けられた構成であるが、支持面 40上の任意の 複数位置のそれぞれに設けることも可能である。更に支持面 40には吹付穴 42を囲 むように複数の吸着穴 41が所定間隔で設けられている。そして、吸着穴 41には保持 テーブル HTの内部に形成された流路 41 Aを介して真空系 34が接続されて ヽる。真 空系 34及び吸着穴 41を含んで吸着機構 45が構成されている。また、吹付穴 42〖こ は保持テーブル HTの内部に形成された流路 42Aを介して気体供給系 35が接続さ れている。気体供給系 35及び吹付穴 42を含んで気体吹付機構 46が構成されてい る。流路 42Aには、基板 Pに対して吹き付ける気体中の異物(ゴミやオイルミスト)を除 去するフィルタが設けられて 、る。
図 8A— Bは、第 1の液体除去システム 100を示す図である。第 1の液体除去システ ム 100は、主に基板 Pの表面又は裏面の少なくとも一方に付着した液体 LQを除去す るものである。第 2アーム部材 H2により基板 Pを保持テーブル HTに搬送する動作を 示す図である。図 8Aにおいて、基板 Pを保持した第 2アーム部材 H2は、保持テープ ル HTを収容したカバー部材 70の内部に開口部 71より進入する。このとき制御装置 CONTはシャツタ部 71Aを駆動して開口部 71を開放している。一方、開口部 72はシ ャッタ部 72Aにより閉じられて 、る。第 2アーム部材 H2で所定領域を支持されて 、る 基板 Pが保持テーブル HTの上方に配置された後、制御装置 CONTは、気体吹付 機構 46を構成する気体供給系 35を駆動し、吹付穴 42より基板 Pの裏面に気体を吹 き付ける。ここで、上述したように、基板 Pの裏面のうち第 2アーム部材 H2で支持され る一部の領域 (第 1支持領域)は、第 2アーム部材 H2に設けられている吹付穴 32か ら吹き付けられた気体によって既に液体 LQを除去されている力 基板 Pの裏面のう ち第 2アーム部材 H2で支持されてな 、領域には液体 LQが付着して 、る可能性があ る。そこで、制御装置 CONTは、第 1の液体除去システム 100の一部を構成する保 持テーブル HTが基板 Pの裏面を支持する前に、基板 Pの裏面のうち保持テーブル HTが支持する領域 (第 2支持領域)に付着した液体 LQを、基板 Pの裏面に対して吹 付穴 42より気体を吹き付けることで、飛ばして除去する。すなわち、吹付穴 42及びそ の吹付穴 42に接続する気体供給系 35は、基板 Pの裏面のうち保持テーブル HT (第 2液体除去装置)が保持する領域 (第 2支持領域)に付着している液体 LQを除去す る第 3液体除去装置を構成して ヽる。
[0050] 基板 Pの裏面に付着した液体 LQを除去する際には、第 2アーム部材 H2に保持さ れている基板 Pの裏面と保持テーブル HTの支持面 40とを所定間隔離した状態で、 吹付穴 42より基板 Pの裏面に対して気体が吹き付けられる。気体を吹き付けられるこ とにより、基板 Pの裏面に付着している液体 LQは飛ばされて除去される。除去された 液体 LQはカバー部材 70により周囲に飛散することがない。なおここでは、気体を基 板 Pの裏面に吹き付けるとき、基板 Pを保持した第 2アーム部材 H2及び吹付穴 42を 有する保持テープ HTは移動しな 、構成である力 吹付穴 42より吹き出した気体は 基板 Pの裏面の略中央部に吹き付けられた後、基板 Pのエッジ部向力つて流れるた め、基板 Pの裏面のエッジ部近傍に付着して ヽる液体 LQも良好に除去することがで きる。もちろん、基板 Pを吹付穴 42に対して相対的に移動しながら基板 Pの裏面に気 体を吹き付けることも可能である。例えば、基板 Pを保持する第 2アーム部材 H2を X 軸方向(Y軸方向)に移動させ、吹付穴 42を有する保持テーブル HTを Y軸方向(X 軸方向)に移動させつつ、基板 Pの裏面に気体を吹き付けるようにしてもよい。あるい は、基板 Pと吹付穴 42とを相対的に回転移動させるようにしてもよい。更に、第 2ァー ム部材 H2を駆動して基板 Pを傾斜させた状態で、その基板 Pの裏面に気体を吹き付 けるようにしてもよい。こうすることにより、基板 Pの裏面に付着している液体 LQは自 重 (重力作用)により一個所に集められ、基板 Pより落下(除去)しゃすくなる。さらに、 第 2アーム部材 H2に液体 LQが付着していた場合には、この液体 LQは、基板 Pに付 着した液体 LQと共に除去することができる。
[0051] カバー部材 70には、液体回収部 80が回収管 81を介して接続されている。回収管 81にはその回収管 81の流路を開閉するバルブ 82が設けられている。基板 Pから飛 ばされた液体 LQはカバー部材 70に接続されている液体回収部 80により回収される 。液体回収部 80はカバー部材 70内部の気体を飛散した液体 LQとともに吸引するこ とで、基板 Pから飛ばされた液体 LQを回収する。ここで、液体回収部 80は、カバー 部材 70内部の気体及び飛散した液体 LQの吸弓 I動作を継続的に行う。これにより、 カバー部材 70の内壁や底などカバー部材 70内部に液体 LQが留まらないので、力 バー部材 70内部の湿度が大きく変動することはない。また、シャツタ部 71A、 72Aが 開放されたときにも、カバー部材 70内の湿った気体がカバー部材 70の外へ流れ出 ることちない。
[0052] 基板 Pの裏面の液体 LQの除去を行った後、保持テーブル HTより不図示のピン部 材が上昇し、基板 Pの裏面を支持する。なお保持テーブル HTに設けられているピン 部材は図 6Aを参照して説明したピン部材 57と同等の構成を有する。そして、ピン部 材に基板 Pが支持された後、第 2アーム部材 H2がカバー部材 70の外へ退避するとと もに、シャツタ部 71Aにより開口部 71が閉じられる。そして、基板 Pを支持したピン部 材が下降することにより、図 8Bに示すように、基板 Pが保持テーブル HTの支持面 40 に支持される。支持面 40上に基板 Pが支持された後、制御装置 CONTは、真空系 3 4を駆動し、吸着穴 41を介して基板 Pを吸着保持する。
[0053] また、カバー部材 70内部には、第 1の液体除去システム 100の一部を構成する吹 付ノズル 103が配置されており、吹付ノズル 103には流路 105を介して気体供給系 1 04が接続されている。流路 105には、基板 Pに対して吹き付ける気体中の異物(ゴミ やオイルミスト)を除去するフィルタが設けられている。そして、気体供給系 104が駆 動することにより、流路 105を介して吹付ノズル 103より所定の気体が基板 Pの表面 に吹き付けられ、基板 Pの表面に付着して 、る液体 LQは吹き付けられた気体によつ て飛ばされて除去される。
[0054] 図 9は、図 8Bのカバー部材 70内部を上方から見た図である。基板 Pはその裏面を 保持テーブル HTの支持面 40に支持されて ヽる。吹付ノズル 103は Y軸方向を長手 方向とするノズル本体部 103Aと、ノズル本体部 103Aの長手方向に複数並んで設 けられたノズル孔 103Bとを備えて 、る。気体供給系 104から供給された気体は複数 のノズル孔 103Bのそれぞれから吹き出される。保持テーブル HTに保持された基板 Pと吹付ノズル 103とは相対移動可能に設けられている。本実施形態では、吹付ノズ ル 103が保持テーブル HTに保持された基板 Pに対して X軸方向に走査移動するよ うになつている。なお、基板 Pを保持した保持テーブル HTが、吹付ノズル 103に対し て移動するようにしてもょ 、し、保持テーブル HT及び吹付ノズル 103の双方を移動 させてもよい。そして、基板 Pの表面力も飛ばされた液体 LQは液体回収部 80に回収 される。
[0055] 表面及び裏面それぞれの液体 LQを除去された基板 Pは、第 4アーム部材 H4によ つて現像装置 Dまで搬送される。第 4アーム部材 H4で保持テーブル HTから基板 P を搬送する際には、制御装置 CONTは、シャツタ部 72Aを駆動して開口部 72を開口 し、その開口部 72からカバー部材 70内部に第 4アーム部材 H4を進入させる。これと 並行して、保持テーブル HTのピン部材が基板 Pを上昇させ、第 4アーム部材 H4は 上昇された基板 Pの裏面を保持する。なお保持テーブル HTは、基板 Pを第 4アーム 部材 H4に渡す前に回転し、基板 Pを所望の向きに変える。そして、基板 Pを保持した 第 4アーム部材 H4は開口部 72を介してその基板 Pをカバー部材 70内部より搬出す る。
[0056] 以上説明したように、第 2アーム部材 H2 (あるいは保持テーブル HT)で基板 Pの裏 面を支持する前に、その第 2アーム部材 H2 (保持テーブル HT)に設けられた液体除 去機構を構成する吹付穴 32 (42)を介して気体を吹き付けて基板 Pの被支持面であ る裏面の液体 LQを除去することで、残留した液体 LQが潤滑膜となって基板 Pが第 2 アーム部材 H2 (保持テーブル HT)に対して位置ずれを起こすなどと!/ヽつた不都合 の発生を防止し、基板 Pを所望の状態で支持することができる。また、第 2アーム部材 H2 (又は保持テーブル HT)が吸着穴 31 (41)を介して基板 Pを真空吸着保持する 構成であっても、基板 Pの裏面の液体 LQを除去することで、真空系 34に液体 LQが 浸入する不都合を防止できる。
[0057] また、第 2アーム部材 H2で基板 Pの裏面のうち少なくともその第 2アーム部材 H2で 支持する支持領域に付着した液体 LQを除去することで、基板 Pを良好に保持した状 態で搬送することができる。そして、その後に第 1の液体除去システム 100で基板 Pの 裏面及び表面に付着した液体 LQを除去することで、その後の基板 Pの搬送経路中 にその基板 Pから液体 LQが落下 '飛散したりする等の不都合の発生を防止すること ができる。更に、基板 Pの表面及び裏面の双方の液体 LQを十分に除去することで、 現像処理等の液浸露光処理後の所定のプロセス処理を残留した液体 LQの影響を 受けることなく円滑に行うことができる。 [0058] 上記実施形態では、基板 Pに対して気体を吹き付けることによりその基板 Pに付着 している液体 LQを除去している。ここで、吹き付ける気体としてはドライエア等の乾燥 した気体を吹き付けることが好ましい。こうすること〖こより、基板 Pに付着した液体 LQ は乾燥され、除去を促進される。また、吹き付ける気体としてはチャンバ装置 CH1内 部とほぼ同じ温度の気体のほかに、チャンバ装置 CH1内部の温度より高い温風を吹 き付けるようにしてもよい。また、吹き付ける気体は、乾燥空気、窒素ガス、ヘリウムガ ス等の気体を用いることができる。
[0059] なお、本実施形態にお!、ては、基板 Pの裏面を第 2アーム部材 H2で支持する前に 、その第 2アーム部材 H2に設けられた液体除去機構の一部を構成する吹付穴 32を 使って液体 LQを除去している力 第 2アーム部材 H2とは別の部材に設けられた吹 付穴より基板 Pの裏面に気体を吹き付けて液体 LQを除去した後、第 2アーム部材 H 2で基板 Pの裏面を支持するようにしてもよい。同様に、保持テーブル HTで基板 Pを 保持する前にも、その保持テーブル HTに設けられた吹付穴 42を使って基板 Pの裏 面の液体 LQを除去するかわりに、別の部材に設けられた吹付穴より基板 Pの裏面に 気体を吹き付けて液体 LQを除去するようにしてもょ 、。
[0060] 以下、本発明の別の実施形態について図 10を参照しながら説明する。以下の説明 において、上述した実施形態と同一又は同等の構成部分については同一の符号を 付し、その説明を簡略もしくは省略する。
[0061] 上記実施形態においては、第 2アーム部材 H2の支持面 30には吸着穴 31と吹付 穴 41とは互いに異なる位置に設けられている構成であった力 本実施形態の特徴的 な部分は、支持面 30に設けられた開口部が吸着穴と吹付穴とを兼用している点にあ る。
[0062] 図 10において、第 2アーム部材 H2の支持面 30には開口部 31が設けられている。
そして、開口部 31にその一端部を接続する流路 31Aの他端部は第 1流路 38と第 2 流路 39とに分岐しており、第 1流路 38は真空系 34に接続され、第 2流路 39は気体 供給系 35に接続されている。第 1流路 38の途中にはその第 1流路 38を開閉するバ ルブ 38Aが設けられ、第 2流路 39の途中にはその第 2流路 39を開閉するノ レブ 39 Aが設けられている。バルブ 38A、 39Aの動作は制御装置 CONTにより制御される [0063] 制御装置 CONTは、図 10に示した第 2アーム部材 H2で液浸露光処理を終えた基 板 Pの裏面を保持する前に、バルブ 38A、 39Aを駆動して、第 2流路 39を開けるとと もに第 1流路 38を閉じ、気体供給系 35を駆動する。これにより、基板 Pの裏面に対し て、開口部(吹付穴) 31を介して気体を吹き付けて基板 Pの裏面に付着して 、る液体 LQを除去することができる。そして、基板 Pの裏面に付着している液体 LQの除去を 終えた後、制御装置 CONTは、バルブ 38A、 39Aを駆動して、第 1流路 38を開ける とともに第 2流路 39を閉じ、気体供給系 35の駆動を停止するとともに、真空系 34を 駆動させる。こうすることにより、第 2アーム部材 H2は開口部(吸着穴) 31を介して基 板 Pを吸着保持することができる。このように、第 1、第 2流路 38、 39及びバルブ 38A 、 39Aを使って、開口部 31に対して気体供給系 35と真空系 34とを選択的に接続す ることによつても、基板 Pに付着している液体 LQの除去と、基板 Pの吸着保持とを行う ことができる。また、気体の吹き付けによる液体の除去に限らず、基板 Pの裏面の液 体を吸引してもよいし、両者を併用してもよい。
[0064] 図 11は、第 2アーム部材 H2の上面 30に吸湿材 90を設けた例を示す図である。図 11において、第 2アーム部材 H2の上面 30には、液体 LQを吸湿する吸湿材 90が設 けられている。吸湿材 90としては、スポンジ状部材ゃ多孔質セラミックス等を用いるこ とがでさる。
[0065] 図 11に示した第 2アーム部材 H2で基板 Pの裏面を支持する場合には、基板 Pの裏 面を支持する前に、第 2アーム部材 H2に設けられた吸湿材 90を基板 Pの裏面に接 触させる。こうすることにより、基板 Pの裏面に付着している液体 LQは吸湿材 90で吸 湿されて基板 Pの裏面より除去される。なお、吸湿材 90を使って基板 Pの裏面に付着 して ヽる液体 LQを除去する場合には、吸湿材 90と基板 Pとを所定距離だけ離れた 位置まで吸湿材 90を基板 Pに接近させ、毛細管現象を利用して基板 Pの裏面に付 着して 、る液体 LQを吸湿(除去)するようにしてもょ 、。
[0066] 基板 Pの裏面に付着している液体 LQを吸湿材 90を使って除去した後、制御装置 CONTは、基板 Pの裏面に対して第 2アーム部材 H2 (吸湿材 90)を接触させ、吸着 穴 31に流路 31 Aを介して接続して 、る真空系 34を駆動する。吸着穴 31は吸湿材 9 0を介して基板 Pの裏面を吸着保持する。こうすることによつても、基板 Pと第 2アーム 部材 H2 (吸湿材 90)との間には液体 LQの潤滑膜が形成されないので、基板 Pが第 2アーム部材 H2に対して位置ずれを起こすといった不都合の発生を防止することが できる。ここで、流路 31Aのうち吸着穴 31と真空系 34との間に気液分離器 80を設け ておくことが好ましい。吸湿材 90は液体 LQを含んでいるため、真空系 34を駆動する ことで吸湿材 90に含まれている液体 LQが真空系 34に浸入するおそれがある力 気 液分離器 80で吸着穴 31より吸引された液体成分を分離し、気体成分のみが真空系 34に流入するようにすることで、真空系 34の破損などの不都合の発生を防止するこ とがでさる。
[0067] なおここでは、第 2アーム部材 H2の上面 30に吸湿材 90を設けている力 第 2ァー ム部材 H2に吸湿材 90を設けずに別の支持部材に吸湿材 90を支持させ、基板 Pの 裏面を第 2アーム部材 H2で支持する前に、前記支持部材に支持されて 、る吸湿材 90で基板 Pの裏面に付着して 、る液体 LQを吸湿(除去)した後、第 2アーム部材 H2 で基板 Pの裏面を支持するようにしてもよい。また、吸湿材 90を使って基板 Pの裏面 に付着している液体 LQを除去する場合には、吸湿材 90を基板 Pの裏面に押し当て て吸湿するようにしてもよいし、基板 Pと吸湿材 90とを相対的に移動しつつ吸湿する ようにしてもよい。またこの場合においても、吸湿材 90と基板 Pの裏面とを接触させず に、僅かに離した状態で毛細管現象を利用して吸湿することができる。こうすることに より、基板 Pの裏面を傷付けずにすむ。また、吸湿材 90は、保持テーブル HTの上面 40に設けることも可能である。
[0068] 上記実施形態では、基板 Pの表面に付着した液体 LQを除去する第 1の液体除去 システム 100は、基板 Pの表面に対して吹付ノズル 103より気体を吹き付けて液体 L Qを除去している力 基板 Pを回転することによって基板 Pの表面に付着した液体 LQ を飛ばして除去することも可能である。
[0069] 図 12A— Bは、基板 Pを回転することによって基板 Pの表面に付着した液体 LQを飛 ばす回転機構を有する第 1の液体除去システム 100を示す図である。図 12A— Bに おいて、第 1の液体除去システム 100の保持テーブル HTは、基板 Pの裏面中央部を 保持するホルダ部 121と、基板 Pを保持したホルダ部 121を回転する回転機構 122と を備えている。ホルダ部 121の上面には吸着穴が設けられており、ホルダ部 121は 基板 Pの裏面中央部を吸着保持する。回転機構 122は保持テーブル HT内部に設 けられたモータにより構成されており、ホルダ部 121に接続された軸部 123を回転す ることでホルダ部 121を回転する。軸部 123は伸縮可能に設けられており、ホルダ部 121は軸部 123とともに保持テーブル HTの上面 40に対して昇降可能に設けられて V、る。基板 Pを保持したホルダ部 121が保持テーブル HTの上面 40に対して上昇し たとき、基板 Pは保持テーブル HTより離れ、回転機構 122の駆動により回転可能と なる。一方、ホルダ部 121が下降しているときは基板 Pは保持テーブル HTの上面 40 に吸着穴 41により吸着保持される。
[0070] 図 12Aに示すように、保持テーブル HTで基板 Pの裏面を支持する前に、保持テー ブル HTの基板支持部材としてのホルダ部 122中央部に形成された吹付穴 42より基 板 Pの裏面に対して気体が吹き付けられる。これにより、基板 Pの裏面に付着している 液体 LQが除去される。次いで、ホルダ部 122が基板 Pを吸着保持するとともに上昇 し、図 12Bに示すように基板 Pを回転する。これにより、基板 Pの表面に付着していた 液体 LQが飛ばされて除去される。
[0071] ところで、図 12A— Bに示したカバー部材 70の下部は、下方に向力うにつれて漸 次拡がるように傾斜している。これにより、基板 Pから飛ばされた液体 LQがカバー部 材 70の内壁に当たっても、カバー部材 70が下方に向力 につれて漸次拡がる形状 となって!/、るので、内壁に当たった液体 LQが跳ね返って再び基板 Pに付着してしま う不都合を防止することができる。なお、液体 LQの跳ね返り防止機構としては、カバ 一部材 70の内壁を傾斜させる他に、カバー部材 70の内壁に吸湿材を取り付けたり、 内壁を凹凸形状 (波形形状)にしたり、あるいは液体吸引装置に接続された吸引口を 設けることによつても、カバー部材 70の内壁に当たった液体 LQが基板 P側に跳ね返 る不都合を防止することができる。
[0072] 図 13に示すように、基板 Pの表面に付着している液体 LQを、液体吸引装置 140を 使って吸引回収することで除去することも可能である。図 13において、液体吸引装置 140には回収管 141を介して回収ノズル 142が接続されている。回収ノズル 142は、 保持テーブル HTに保持された基板 Pの表面に近接して配置される。液体吸引装置 140は例えば真空系を含んで構成されており、回収管 141の途中には回収ノズル 1 42より回収された液体と気体とを分離する不図示の気液分離器が設けられている。 基板 Pの表面に付着している液体 LQを除去する際には、回収ノズル 142を基板 Pの 表面に近付け、液体吸引装置 140を駆動することで、基板 Pの表面上の液体 LQは 回収ノズル 142及び回収管 141を介して液体吸引装置 140に設けられている回収タ ンクなどに集められる。また、回収ノズル 142を介して基板 Pの表面の液体 LQを除去 する際にも、回収ノズル 142と基板 Pとを相対的に移動しながら液体 LQを除去するこ とがでさる。
[0073] なお、回収ノズル 142としては、例えば図 4を参照して説明したような回収ノズル(1
5)の形状及び配置を採用してもよい。あるいは、回収ノズルとして環状の回収口を有 する回収部材を採用してもょ 、。
[0074] また、基板 Pを収容したカバー部材 70の内部に対して、乾燥装置 150よりドライエ ァ又は温風を供給することで、基板 Pの表面に付着した液体 LQを乾燥するようにし てもよい。
[0075] 上記実施形態では、第 2アーム部材 H2に設けられた気体吹付機構で基板 Pの裏 面に対して気体を吹き付け、基板 Pの裏面のうち、第 2アーム部材 H2が支持する一 部の領域の液体を除去している力 それ以外の裏面、及び基板 Pの表面の液体を以 下の構成で除去してもよい。すなわち、図 14に示すように、第 2アーム部材 H2の搬 送経路の途中に壁部材 160を設け、その壁部材 160の上下両側のそれぞれに気体 吹付ノズル 161を取り付ける。そして、開口部 162を基板 Pが通過するときに、気体吹 付ノズル 161より基板 Pの表面及び裏面のそれぞれに気体を吹き付けることによって 基板 Pに付着した液体 LQを除去することができる。そして、基板 Pを搬送移動しつつ その基板 Pに対して気体吹付ノズル 161より気体を吹き付けることにより、基板 Pの全 域に気体を吹き付けることができる。この構成においても、基板 Pの表面あるいは裏 面に付着した液体 LQと共に、第 2アーム部材 H2に付着した液体を除去することがで きる。
[0076] なお基板 Pの裏面に対して、気体吹付ノズル力 気体を吹き付ける場合、本例では 、基板 Pの裏面に対して直交する方向から気体を吹き付けている力 裏面に対して交 差する方向(傾斜した方向、例えば 45度傾斜した方向)から吹き付けてもよい。
[0077] 次に、本例の搬送システム Hが備える第 2の液体除去システム 220について説明す る。この第 2の液体除去システム 220は、主に第 2アーム部材 H2の表面に付着した 液体 LQを除去するものである。第 2の液体除去システム 220は、図 1及び図 2に示す ように、第 2アーム部材 H2の移動経路上、具体的には、基板ステージ PSTと保持テ 一ブル HTとの間における基板 Pの搬送経路上に設けられている。すなわち、本例の 搬送システム Hでは、第 2アーム部材 H2による露光処理後の基板 Pを基板ステージ PSTから搬出し、その基板 Pを保持テーブルに対して搬送した後、第 2の液体除去シ ステム 220によって第 2アーム部材 H2に付着した液体を除去する。
[0078] 図 15は、第 2の液体除去システム 220の構成例を模式的に示している。
[0079] 図 15において、第 2の液体除去システム 220は、第 2アーム部材 H2に対して気体 を噴き付ける気体噴射部 (第 1気体噴射部 221、第 2気体噴射部 222)と、気体噴射 部 221、 222に気体を供給する気体供給装置 223と、気体噴射部 221、 222を収容 するチャンバ 224と、チャンバ 224内の液体を吸引する液体吸引装置 225とを含ん で構成されている。
[0080] 第 1気体噴射部 221は、第 2アーム部材 H2の上面に向けて気体を噴射するもので あり、第 2気体噴射部 222は、第 2アーム部材 H2の下面に向けて気体を噴射するも のである。第 1気体噴射部 221と第 2気体噴射部 222とは、互いに所定の間隔を空け て配されており、両者の間に第 2アーム部材 H2が挿入されるようになっている。また、 第 1気体噴射部 221及び第 2気体噴射部 222はそれぞれ、供給管 226を介して気体 供給装置 223に接続されている。供給管 226には、気体中の不純物 (パーティクルあ るはオイルミストなど)を除去する不図示のフィルタが設けられている。なお、本例で は、噴射気体として、乾燥空気が用いられる。噴射気体としては、この他、窒素ガス、 ヘリゥムガスなどの他の気体を用いてもよい。
[0081] 液体吸引装置 225は、真空圧を発生させて、チャンバ 224内の液体を吸引するも のであり、配管 225aを介してチャンバ 224に接続されている。また、配管 225aには、 開閉自在なバルブ 225bが配設されている。
[0082] チャンバ 224には、第 2アーム部材 H2の出し入れを行うための開口 227が設けら れており、この開口 227にはシャツタ 228が配設されている。さらに、チャンバ 224の 外側でかつ、チャンバ 224の開口 227の近傍には、第 2アーム部材 H2に液体が付 着して 、る力否かを検出する液体検出器 229が配設されて 、る。
[0083] 液体検出器 229の検出結果、第 2アーム部材 H2に液体が付着していることが検出 された場合に、第 2アーム部材 H2をチャンバ 224に挿入して第 2アーム部材 H2に付 着した液体を除去し、液体が付着していない、あるいは許容範囲内の液体が付着し ている場合には、第 2アーム部材 H2をチャンバ 224に挿入せずに、基板ステージ PS Tから基板 Pを搬出する。
[0084] 上記液体検出器 229としては、本例では、 CCDカメラ等の撮像素子が用いられる。
撮像素子で撮像された画像情報は、制御装置 CONT (図 1参照)に送られる。制御 装置 CONTには、液体が未付着状態の第 2アーム部材 H2の画像情報が記憶され ている。制御装置 CONTは、例えば、事前に記憶された画像情報と、現時点の画像 情報とを比較することにより、第 2アーム部材 H2に液体が付着しているカゝ否かを判断 する。なお、この判断は自動で行うものに限らず、撮像素子で撮像された画像情報を モニタに表示し、表示された第 2アーム部材 H2の状態に基づいて、オペレータが第 2アーム部材 H2に液体が付着しているか否かを判断してもよい。なお、第 2アーム部 材 H2に液体が付着しているカゝ否かを判断する際に、第 2アーム部材 H2を所定角度 傾斜することができる。
[0085] また、液体検出器 229としては、撮像素子を用いるものに限らず、投光器と受光器 とを有し、第 2アーム部材 H2に光を照射し、液体を介した第 2アーム部材 H2の表面 から反射光や散乱光の強度と、液体を介さな!、第 2アーム部材 H2の表面からの反射 光や散乱光の強度との差異に基づいて第 2アーム部材 H2に液体が付着しているか 否かを判断したり、第 2アーム部材 H2の表面に液体が付着しているときの誘電率と、 第 2アーム部材 H2の表面に液体が付着していないときの誘電率との差異力 検出 するものなど、第 2アーム部材 H2に付着した液体検出が可能であれば他の検出器を 用いてもよい。また、液体検出器 129として、非接触式に限らず、接触式を用いてもよ い。接触式の液体検出器を用いる場合は、その検出器を介して第 2アーム部材 H2 に不純物が付着しな 、ようにクリーン対策を十分に施すのが好ま 、。 [0086] 上記構成の搬送システム Hでは、基板 Pの搬送経路上を移動する第 2アーム部材 H2の表面を液体検出器 229によって適宜検出する。第 2アーム部材 H2に液体が付 着していることが検出された場合、制御装置 CONT (図 1参照)は、第 2アーム部材 H 2をチャンバ 224内に挿入し、気体供給装置 223から気体噴射部 221、 222を介して 第 2アーム部材 H2に向けて気体を噴射する。このとき、気体噴射部 221、 222に対し て相対的に第 2アーム部材 H2を水平方向 (X方向)に移動させることにより、第 2ァー ム部材 H2の表面に付着した液体が噴射気体によって吹き飛ばされ、これにより、第 2 アーム部材 H2から液体が除去される。また、第 2アーム部材 H2から除去された液体 は、配管 225aを介して液体吸引装置 225に回収される。
[0087] 以上説明したように、本例のデバイス製造システム SYSでは、露光装置本体 EXに おいて、液浸法に基づく露光処理を行う。露光処理時に基板 Pに付着した液体は、 第 1の液体除去システム 100によって基板 Pから除去される。また、露光処理後の基 板 Pを搬送する第 2アーム部材 H2に液体が付着した場合は、第 2の液体除去システ ム 220によってその液体が第 2アーム部材 H2から除去される。第 2の液体除去シス テム 220は、第 2アーム部材 H2の搬送経路上に配設されていることから、上記液体 除去に際して第 2アーム部材 H2の動きに無駄が少なぐスループットの低下が抑制 される。第 2アーム部材 H2に付着した液体が除去されることにより、次の基板 Pの搬 送時など、第 2アーム部材 H2上で基板 Pが滑るなどの搬送不具合の発生が防止され る。その結果、このデバイス製造システム SYSでは、液浸法に基づいて露光処理さ れた基板 Pが良好に搬送され、安定した処理動作を行うことができる。
[0088] ここで、第 2アーム部材 H2に付着した液体の除去は、少なくとも、基板ステージ PS Tから基板 Pを搬出する前の時点で行われる。基板搬出前に第 2アーム部材 H2に付 着した液体が除去されることで、第 2アーム部材 H2上で基板が滑るなどの搬送不具 合の発生が確実に防止される。
[0089] また、上述した基板搬出前に加え、第 2アーム部材 H2による基板搬出動作が完了 した直後に、上記第 2アーム部材 H2に対する液体除去を行ってもよい。すなわち、 液体が付着した第 2アーム部材 H2が移動すると、その液体が飛散することによって 動作不具合や環境変化を招くおそれがある。そのため、基板 Pの第 1の液体除去シ ステム 100への受け渡しを終了した後に、液体検出器 229で第 2アーム部材 H2の液 体の付着の有無を確認し、第 2アーム部材 H2に液体が付着している場合には、第 2 の液体除去システム 220を使って、第 2アーム部材 H2に付着した液体を除去するこ とにより、そうした不具合の発生を抑制することができる。
[0090] 第 2アーム部材 H2に対する液体除去を行う際、第 2アーム部材 H2が支持する基 板 Pの表面又は裏面の少なくとも一方の面に付着している液体を同時に除去すること ができる。基板 Pの表面又は裏面の少なくとも一方の面に付着した液体が除去できる 場合、前述した第 1の液体除去システム 100を省略することも可能である。
[0091] また、本例では、液体検出器 229の検出結果に基づいて必要時にのみ第 2アーム 部材 H2の液体除去を行うことから、液体除去に伴うスループットの低下が抑制される という利点を有している。なお、第 2アーム部材 H2に液体が付着している可能性が高 い場合は、液体検出器 129による液体検出動作を省き、常に第 2アーム部材 H2に 対して液体除去を行ってもよ!、。
[0092] 図 16及び図 17は、第 2の液体除去システム 220の他の形態例を示している。
[0093] 図 16の第 2の液体除去システム 220は、液体吸引装置 230と、液体吸引装置 230 に配管 231を介して接続され、第 2アーム部材 H2の表面及び裏面のそれぞれに付 着している液体を吸引する第 1、第 2吸引部 232、 233と、チャンバ 234内部を乾燥 する乾燥装置 235とを備えている。なお、第 1、第 2吸引部 232、 233は、第 2アーム 部材 H2に対して X軸方向に相対移動可能に設けられている。また、チャンバ 234に は、図 15の例と同様に、第 2アーム部材 H2を出し入れを行うための開口 236が設け られ、この開口 236にはシャツタ 237が配設されている。
[0094] 図 16の第 2の液体除去システム 220では、第 2アーム部材 H2の液体除去に際して 、第 1、第 2吸引部 232、 233を第 2アーム部材 H2に接近させた状態で、液体吸引装 置 230が駆動される。これにより、第 2アーム部材 H2に付着している液体が第 1、第 2 吸引部 232、 233を介して液体吸引装置 230に吸引される。このとき、第 1、第 2吸引 部 232、 233と第 2アーム部材 H2とを X軸方向に相対移動することにより、第 2アーム 部材 H2に付着して 、る液体が除去される。
[0095] また、この第 2の液体除去システム 220では、乾燥装置 235によってチャンバ 234 内に乾燥した気体 (乾燥エア)が適宜供給される。供給される乾燥エアは、室温でも よぐあるいは所定の温度に制御された温風であってもよい。乾燥エアの供給により、 チャンバ 234内が乾燥し、その結果、第 2アーム部材 H2の液体除去が促進される。
[0096] なお、上記構成の第 2の液体除去システム 220において、乾燥装置 235による乾燥 エアの供給のみで、第 2アーム部材 H2から液体が速やかに除去される場合は、液体 吸引装置 230や吸引部 232、 233を省く構成としてもよい。また、乾燥方法は、気体 供給法に限らず、減圧法や赤外線照射法などの他の乾燥方法を用いてもよ!ヽ。
[0097] 図 17の第 2の液体除去システム 220は、液体吸引装置 240と、液体吸引装置 240 に配管 241を介して接続される吸湿材 242、 243と、吸湿材 242、 243を Z方向に移 動させる駆動装置 244とを備えている。吸湿材 242、 243としては、例えば、スポンジ 状部材ゃ多孔質セラミックス等が用いられる。
[0098] 図 17の第 2の液体除去システム 220では、第 2アーム部材 H2の液体除去に際して 、駆動装置 244により吸湿材 242、 243が第 2アーム部材 H2に密着される。この状態 で、液体吸引装置 240が駆動され、吸湿材 242、 243で吸湿した液体が回収される と、第 2アーム部材 H2に付着した液体が除去される。吸湿材 242、 243を用いた液 体除去では、液体の飛散が少ない。そのため、チャンバ一(筐体)の配設を回避し、 装置のコンパクトィ匕を図ることが可能である。なお、吸湿材 242、 243による吸湿では 、第 2アーム部材 H2の液体除去を速やかに行えない場合は、先の図 16に示したよう に、乾燥装置と組み合わせた構成としてもよい。
[0099] なお、図 11に示した吸湿材 90にアーム用液体除去の機能をもたせることもできる。
[0100] この例では、第 2アーム部材 H2に液体 LQが付着した場合に、吸湿材 90によって 吸湿することができる。そして、基板を保持するための真空系 34を介して吸湿材 90 で吸湿した液体を回収するように構成すればよい。この構成によれば、吸湿材 90が 第 2アーム部材 H2の一部を構成していることから、装置の小型化が図られる。また、 任意の位置やタイミングで第 2アーム部材 H2に対する液体除去を行うことが可能で ある。例えば、第 2アーム部材 H2の移動中に、第 2アーム部材 H2の液体除去を行う ことも可能である。そのため、スループットの向上が図られる。
[0101] 以上、第 2の液体除去システム 220の構成例について説明した力 第 2アーム部材 H2の液体を除去する構成としては、上述したものに限らない。また、上述した各構成 を適宜組み合わせてもよ 、ことは言うまでもな 、。
[0102] 図 18は、第 2の液体除去システム 220を備える搬送システム Hの他の形態例を示し ている。図 18において、搬送システム Hは、第 2アーム部材 H2に付着した液体を除 去する第 2の液体除去システム 220に加え、第 2アーム部材 H2を洗浄する洗浄装置 260を備えている。なお、本例では、第 2の液体除去システム 220として、図 15に示 した気体噴射型を用いて!/ヽるが、本実施形態で説明した ヽずれの構成例を適用して ちょい。
[0103] 洗浄装置 260は、洗浄液を供給する洗浄液供給装置 261と、洗浄液供給装置 261 に配管 262を介して接続され、第 2アーム部材 H2に向けて洗浄液を噴射する液体 噴射部 263、 264と、液体噴射部 263、 264を収容するチャンバ 265とを備えている 。洗浄液としては、純水の他に、各種薬品が適宜用いられる。また、液体噴射部 263 、 264は、例えば、洗浄液供給装置 261に接続されたヘッダに複数の噴射ノズルが 配設された構成カゝらなる。なお、図 18に示す構成例では、第 2の液体除去システム 2 20と洗浄装置 260とを垂直方向に並べて配置して!/、るが、水平方向に並べて配置し てもよい。なお、チャンバ 265内の洗浄液は不図示の回収配管を介して適宜回収さ れる。
[0104] 第 2アーム部材 H2に液体が付着すると、それに伴って不純物が第 2アーム部材 H 2に付着する可能性があり、その不純物が第 2アーム部材 H2に残っていると、次に露 光処理する基板の搬送時に、その基板に不純物が付着するおそれがある。図 18の 搬送システム Hでは、第 2アーム部材 H2による露光処理後の基板 Pを基板ステージ PSTから搬出し、その基板 Pを保持テーブル HTに対して搬送した後、第 2アーム部 材 H2を洗浄装置 260において洗浄し、その後、第 2の液体除去システム 220によつ て第 2アーム部材 H2に付着した液体を除去する。したがって、この搬送システム Hで は、第 2アーム部材 H2が洗浄されることで、露光処理前の基板への不純物の付着が 抑制される。
[0105] なお、第 2アーム部材 H2の洗浄方法としては、洗浄液を噴射する方法に限らず、タ ンクに貯溜された洗浄液に第 2アーム部材 H2を浸漬する方法、あるいは超音波洗浄 法など、他の方法を用いてもよい。また、洗浄液を用いるものに限らず、例えば、光( UV光など)やオゾンを用いたいわゆる光洗浄法を用いてもよい。なお、第 2アーム部 材 H2の洗浄は、基板 Pのアンロードの度に行わずに、所定枚の基板 Pのアンロード 毎に行うようにしてもよい。また、液体検出器 229とは別に第 2アーム部材 H2表面( 裏面、側面含む)の異物 (不純物)を検出する異物検出器を設け、例えば第 2の液体 除去システム 220での液体除去後に第 2アーム部材 H2への異物の付着の有無を確 認し、異物が付着して ヽる場合に洗浄装置 260を使って第 2アーム部材 H2の洗浄を 行うようにしてもよい。露光処理前の基板への不純物の付着が抑制されることで、露 光処理時における露光精度の向上が図られる。
[0106] ここで、液浸法による露光処理に関して、本実施形態では、露光処理で用いる液体 LQとして純水を用いている。純水は、半導体製造工場等で容易に大量に入手でき るとともに、基板 P上のフォトレジストや光学素子 (レンズ)等に対する悪影響がない利 点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極め て低いため、基板 Pの表面、及び投影光学系 PLの先端面に設けられている光学素 子の表面を洗浄する作用も期待できる。
[0107] 上述したように、本実施形態における液体 LQは純水により構成されている。純水は 、半導体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや 光学素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する 悪影響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投 影光学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待でき る。
[0108] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0109] 本実施形態では、投影光学系 PLの先端にレンズ 2が取り付けられている力 投影 光学系 PLの先端に取り付ける光学素子としては、投影光学系 PLの光学特性、例え ば収差 (球面収差、コマ収差等)の調整に用いる光学プレートであってもよい。あるい は露光光 ELを透過可能な平行平面板であってもよい。
[0110] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0111] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。
[0112] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよい。例えば
、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や
2
フッ素系オイル等のフッ素系流体であってもよい。また、液体 LQとしては、その他に も、露光光 ELに対する透過性があってできるだけ屈折率が高ぐ投影光学系 PLや 基板 P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を 用いることも可能である。
[0113] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。
[0114] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間を局所的に液体 で満たす露光装置を採用している力 特開平 6— 124873号公報に開示されているよ うな露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置や、 特開平 10— 303114号公報に開示されているようなステージ上に所定深さの液体槽 を形成し、その中に基板を保持する液浸露光装置にも本発明を適用可能である。
[0115] 露光装置 (露光装置本体) EXとしては、マスク Mと基板 Pとを同期移動してマスク M のパターンを走査露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキヤ ニンダステッノ )の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを 一括露光し、基板 Pを順次ステップ移動させるステップ'アンド'リピート方式の投影露 光装置 (ステツパ)にも適用することができる。また、本発明は基板 P上で少なくとも 2 つのパターンを部分的に重ねて転写するステップ 'アンド'ステイッチ方式の露光装 置にも適用できる。
[0116] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを 製造するための露光装置などにも広く適用できる。
[0117] 以上のように、本願実施形態の露光装置 EXは、本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およ びクリーン度等が管理されたクリーンルームで行うことが望ましい。
[0118] 半導体デバイス等のマイクロデバイスは、図 19に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 301、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 302、デバイスの基材である基板を製造するステップ 303、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する露光処理ステップ 304、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージェ 程を含む) 305、検査ステップ 306等を経て製造される。
[0119] 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが 、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求 の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に 想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属す るちのと了解される。

Claims

請求の範囲
[1] 投影光学系と液体とを介したパターンの像によって露光された基板を搬送する基 板搬送装置において、
前記基板を支持する基板支持部材と、
前記基板支持部材と、前記基板の裏面のうち少なくとも一部の領域との少なくとも 一方に付着した前記液体を除去する液体除去機構とを備えることを特徴とする基板 搬送装置。
[2] 前記基板支持部材は、前記基板を搬送する基板搬送部材であることを特徴とする 請求項 1に記載の基板搬送装置。
[3] 前記基板搬送部材に前記液体が付着しているカゝ否かを検出する液体検出器をさら に備え、
前記液体除去機構は、前記液体検出器の検出結果に基づいて、前記基板搬送部 材に付着した前記液体を除去することを特徴とする請求項 2に記載の基板搬送装置
[4] 前記液体除去機構は、前記基板搬送部材に対して、所定の気体を噴き付ける気体 噴射部を有することを特徴とする請求項 2又は請求項 3に記載の基板搬送装置。
[5] 前記液体除去機構は、前記基板搬送部材に付着した前記液体を吸湿する吸湿材 を有することを特徴とする請求項 2又は請求項 3に記載の基板搬送装置。
[6] 前記液体除去機構は、前記基板搬送部材に付着した前記液体を吸引することを特 徴とする請求項 2又は請求項 3に記載の基板搬送装置。
[7] 前記液体除去機構は、前記基板搬送部材に付着した前記液体を乾燥させることを 特徴とする請求項 2又は請求項 3に記載の基板搬送装置。
[8] 前記液体除去機構は、前記基板搬送部材に付着した前記液体と共に、前記基板 の裏面のうち少なくとも一部の領域に付着した前記液体を除去することを特徴とする 請求項 2から請求項 7のいずれか一項に記載の基板搬送装置。
[9] 前記基板搬送部材を洗浄する洗浄装置を備えることを特徴とする請求項 2から請 求項 8の ヽずれか一項に記載の基板搬送装置。
[10] 前記液体除去機構は、前記基板搬送部材の移動経路上に設けられることを特徴と する請求項 2から請求項 9のいずれか一項に記載の基板搬送装置。
[11] 投影光学系と液体とを介したパターンの像によって露光された基板を搬送する基 板搬送装置において、
前記基板を搬送し、かつ前記液体を吸収する吸湿材を備える基板搬送部材を有す ることを特徴とする基板搬送装置。
[12] 前記吸湿材は、前記基板に付着した前記液体を吸湿することを特徴とする請求項
11に記載の基板搬送装置。
[13] 前記基板支持部材は、前記基板の裏面を支持し、
前記液体除去機構は、前記基板支持部材に設けられ、前記基板支持部材が前記 基板の裏面を支持する前に、前記基板の裏面のうち少なくとも一部の領域に付着し た液体を除去することを特徴とする請求項 1に記載の基板搬送装置。
[14] 前記基板支持部材は、液体が付着した前記基板を搬送する基板搬送部材であるこ とを特徴とする請求項 13記載の基板搬送装置。
[15] 前記基板搬送部材は、前記基板の裏面に対向する少なくとも 1つの開口部を有し、 前記液体除去機構は、前記開口部を介して、前記基板の裏面のうち少なくとも一部 の領域に対して所定の気体を吹き付ける気体吹付機構を有することを特徴とする請 求項 14記載の基板搬送装置。
[16] 前記基板の裏面を支持するために、前記開口部を介して前記基板の裏面を吸着 する吸着機構と、
前記開口部に対して、前記気体吹付機構と前記吸着機構とを選択的に接続する接 続機構とを有することを特徴とする請求項 15記載の基板搬送装置。
[17] 前記基板の裏面を支持するために、前記基板の裏面を吸着する吸着機構を備え、 前記基板搬送部材は、前記吸着機構に接続され、且つ前記基板の裏面に対向す る少なくとも 1つの第 1開口部と、前記基板の裏面に対向し、且つ前記第 1開口部と は異なる位置に設けられる少なくとも 1つの第 2開口部を有し、
前記液体除去機構は、前記第 2開口部を介して、前記基板の裏面に対して所定の 気体を吹き付ける気体吹付機構を有することを特徴とする請求項 14記載の基板搬 送装置。
[18] 前記液体除去機構は、前記基板の裏面のうち少なくとも一部の領域に付着した前 記液体を吸湿する吸湿材を有することを特徴とする請求項 13記載の基板搬送装置。
[19] 前記基板の搬送経路の途中に設けられ、前記基板の表面に付着した液体を除去 する液体除去システムを有し、
前記基板支持部材及び前記液体除去機構は、前記液体除去システムに設けられ ることを特徴とする請求項 13記載の基板搬送装置。
[20] 前記液体除去システムは、前記基板の表面に付着した前記液体を乾燥する乾燥 機構、又は前記基板を回転することによって前記基板の表面に付着した液体を飛ば す回転機構を有することを特徴とする請求項 19記載の基板搬送装置。
[21] 前記基板の搬送経路の途中に設けられ、前記基板を一時保持する保持テーブル を有し、
前記基板支持部材及び前記液体除去機構は、前記保持テーブルに設けられるこ とを特徴とする請求項 13記載の基板搬送装置。
[22] 前記液体除去機構は、前記少なくとも一部の領域として、前記基板支持部材が支 持する支持領域に付着している液体を除去することを特徴とする請求項 13から請求 項 21の 、ずれか一項記載の基板搬送装置。
[23] 投影光学系と液体とを介してパターンの像が露光された基板を搬送する基板搬送 装置において、
前記基板の裏面のうち一部の領域に付着した液体を除去する第 1液体除去機構と 前記基板の裏面のうち一部の領域に付着した液体を前記第 1液体除去機構で除 去した後に、前記基板の表面に付着した前記液体を除去する第 2液体除去機構とを 備えたことを特徴とする基板搬送装置。
[24] 前記液体が付着した前記基板を搬送する基板搬送部材を有し、
前記第 1液体除去機構は、前記基板の裏面のうち、前記基板搬送部材が前記基板 の裏面を支持する第 1支持領域に付着した液体を除去することを特徴とする請求項 2 3記載の基板搬送装置。
[25] 前記基板搬送部材は、前記液体が除去された前記第 1領域を支持して、前記基板 を前記第 2液体除去機構に搬送することを特徴とする請求項 24記載の基板搬送装 置。
[26] 前記第 2液体除去機構は、前記基板の表面に付着した前記液体を乾燥する乾燥 機構、又は前記基板を回転することによって前記基板の表面に付着した液体を飛ば す回転機構を有することを特徴とする請求項 23から請求項 25のいずれか一項記載 の基板搬送装置。
[27] 投影光学系と液体とを介してパターンの像が露光された基板を搬送する基板搬送 方法において、
前記基板の裏面を基板支持部材で支持する前に、前記基板の裏面のうち前記基 板支持部材が支持する支持領域に付着した液体を除去することを特徴とする基板搬 送方法。
[28] 前記基板支持部材は、前記液体が付着した前記基板を搬送する搬送アーム部材 であることを特徴とする請求項 27記載の基板搬送方法。
[29] 前記液体の除去は、前記搬送アーム部材に形成された開口部から所定の気体を 吹き付けて行われることを特徴とする請求項 28記載の基板搬送方法。
[30] 前記液体の除去は、前記搬送アーム部材に設けられた吸湿材を使用して行われる ことを特徴とする請求項 28記載の基板搬送方法。
[31] 前記基板の搬送経路の途中に設けられ、前記基板の表面に付着した前記液体を 除去する液体除去システムを有し、
前記基板支持部材は、前記液体除去システムに設けられることを特徴とする請求 項 27記載の基板搬送方法。
[32] 前記基板の搬送経路の途中に設けられ、前記基板を一時保持する保持テーブル を有し、
前記基板支持部材は、前記保持テーブルに設けられることを特徴とする請求項 27 記載の基板搬送方法。
[33] 投影光学系と液体とを介してパターンの像が露光された基板を搬送する基板搬送 方法において、
前記基板の裏面のうち一部の領域に付着した前記液体を除去し、前記一部の領域 に付着した前記液体を除去した後に、前記基板の表面に付着した液体を除去するこ とを特徴とする基板搬送方法。
[34] 前記基板の裏面のうち一部の領域は、前記基板を搬送する搬送アーム部材が該 基板の裏面を支持する第 1支持領域であることを特徴とする請求項 33記載の基板搬 送方法。
[35] 前記搬送アーム部材は、前記液体が除去された前記第 1支持領域を支持して、前 記基板の表面に付着した前記液体を除去する第 2液体除去装置に前記基板を搬送 することを特徴とする請求項 34記載の基板搬送方法。
[36] 前記第 2液体除去装置が前記基板の裏面を支持する前に、前記基板の裏面のうち 前記第 2液体除去装置が支持する第 2支持領域に付着した液体を除去することを特 徴とする請求項 35記載の基板搬送方法。
[37] 基板ステージに保持された基板に、投影光学系と液体とを介してパターンの像を投 影して前記基板を露光する露光方法にお!、て、
請求項 27—請求項 36の ヽずれか一項記載の基板搬送方法を用いて、前記基板 ステージから前記基板を搬送する工程を有することを特徴とする露光方法。
[38] 基板ステージに保持された基板に、投影光学系と液体とを介してパターンの像を投 影して、前記基板を露光する露光装置において、
前記露光後の基板を前記基板ステージから搬出する基板搬送部材と、 前記基板ステージから前記基板を搬送する前に、前記基板搬送部材に付着した前 記液体を除去する液体除去機構とを備えることを特徴とする露光装置。
[39] 前記液体除去機構は、前記基板搬送部材に付着した前記液体と共に、前記基板 に付着した前記液体を除去することを特徴とする請求項 38に記載の露光装置。
[40] 基板ステージに保持された基板に、投影光学系と液体とを介してパターンの像を投 影して、前記基板を露光する露光装置において、
請求項 1から請求項 26、請求項 38、請求項 39のうちのいずれか一項に記載の基 板搬送装置を用いて、前記基板ステージから前記基板を搬送することを特徴とする 露光装置。
[41] 請求項 37の記載の露光方法を用いることを特徴とするデバイス製造方法。
PCT/JP2004/014945 2003-10-08 2004-10-08 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法 WO2005036623A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005514618A JP4335213B2 (ja) 2003-10-08 2004-10-08 基板搬送装置、露光装置、デバイス製造方法
EP04792214A EP1672682A4 (en) 2003-10-08 2004-10-08 SUBSTRATE TRANSPORT DEVICE AND METHOD, EXPOSURE DEVICE AND METHOD AND COMPONENT MANUFACTURING METHOD
US11/398,603 US7898645B2 (en) 2003-10-08 2006-04-06 Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method
US11/592,222 US20070052942A1 (en) 2003-10-08 2006-11-03 Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method
US12/929,591 US8755025B2 (en) 2003-10-08 2011-02-02 Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-349549 2003-10-08
JP2003-349552 2003-10-08
JP2003349552 2003-10-08
JP2003349549 2003-10-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/398,603 Continuation US7898645B2 (en) 2003-10-08 2006-04-06 Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method

Publications (1)

Publication Number Publication Date
WO2005036623A1 true WO2005036623A1 (ja) 2005-04-21

Family

ID=34436903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014945 WO2005036623A1 (ja) 2003-10-08 2004-10-08 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法

Country Status (5)

Country Link
US (3) US7898645B2 (ja)
EP (1) EP1672682A4 (ja)
JP (2) JP4335213B2 (ja)
KR (1) KR20060126949A (ja)
WO (1) WO2005036623A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598705A1 (en) 2004-05-18 2005-11-23 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006165502A (ja) * 2004-06-21 2006-06-22 Nikon Corp 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
JP2007067080A (ja) * 2005-08-30 2007-03-15 Tokyo Electron Ltd 基板洗浄装置及び基板洗浄方法。
JP2007067303A (ja) * 2005-09-01 2007-03-15 Tokyo Electron Ltd 基板搬送装置、基板搬送方法及び塗布、現像装置
JP2007095892A (ja) * 2005-09-28 2007-04-12 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2007189138A (ja) * 2006-01-16 2007-07-26 Sokudo:Kk 基板処理装置
JP2009070996A (ja) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp 真空吸着ステージおよびそれを用いた半導体製造方法。
JP2010087535A (ja) * 2005-12-02 2010-04-15 Asml Netherlands Bv 液浸型投影装置の汚染を防止または低減する方法および液浸型リソグラフィ装置
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
JP2011014935A (ja) * 2010-10-18 2011-01-20 Tokyo Electron Ltd 基板洗浄装置及び基板洗浄方法。
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
USRE42741E1 (en) 2003-06-27 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9703199B2 (en) 2004-12-06 2017-07-11 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus
JP2019149540A (ja) * 2017-12-01 2019-09-05 エレメンタル・サイエンティフィック・インコーポレイテッドElemental Scientific, Inc. 半導体ウエハの統合した分解および走査のためのシステム
TWI688820B (zh) * 2017-11-10 2020-03-21 豪捷科技股份有限公司 光罩玻璃基板上之透光薄膜雜質去除組件
JPWO2021033588A1 (ja) * 2019-08-22 2021-02-25
CN113488405A (zh) * 2021-05-30 2021-10-08 黄国燊 一种硅片表面除液机械臂

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053952A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005036623A1 (ja) * 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法
KR101319109B1 (ko) 2003-10-08 2013-10-17 가부시키가이샤 자오 니콘 기판 반송 장치 및 기판 반송 방법, 노광 장치 및 노광 방법, 디바이스 제조 방법
JP4506674B2 (ja) 2004-02-03 2010-07-21 株式会社ニコン 露光装置及びデバイス製造方法
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006080143A (ja) 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 露光装置及びパターン形成方法
US7385670B2 (en) * 2004-10-05 2008-06-10 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
JP5008280B2 (ja) 2004-11-10 2012-08-22 株式会社Sokudo 基板処理装置および基板処理方法
JP4926433B2 (ja) * 2004-12-06 2012-05-09 株式会社Sokudo 基板処理装置および基板処理方法
WO2006062065A1 (ja) * 2004-12-06 2006-06-15 Nikon Corporation メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
JP4794232B2 (ja) * 2004-12-06 2011-10-19 株式会社Sokudo 基板処理装置
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20070095270A (ko) * 2005-01-18 2007-09-28 가부시키가이샤 니콘 액체 제거 장치, 노광 장치 및 디바이스 제조 방법
JP2008004928A (ja) * 2006-05-22 2008-01-10 Nikon Corp 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
WO2007139017A1 (ja) * 2006-05-29 2007-12-06 Nikon Corporation 液体回収部材、基板保持部材、露光装置、及びデバイス製造方法
JP5029611B2 (ja) * 2006-09-08 2012-09-19 株式会社ニコン クリーニング用部材、クリーニング方法、露光装置、並びにデバイス製造方法
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US7900641B2 (en) 2007-05-04 2011-03-08 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
DE102007028115B4 (de) * 2007-06-19 2015-10-29 Siemens Aktiengesellschaft Verfahren zur Bestimmung einer für eine Myokardablation bei einem Patienten optimalen Leistung eines Ablationskatheters sowie zugehörige medizinische Einrichtungen
US9019466B2 (en) * 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
NL1035942A1 (nl) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
JP5017232B2 (ja) * 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. クリーニング装置および液浸リソグラフィ装置
NL1036273A1 (nl) * 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus.
NL1036306A1 (nl) 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN103715119B (zh) * 2013-12-31 2018-05-29 上海集成电路研发中心有限公司 加湿装置及加湿气体的方法
EP3155482B1 (en) 2014-06-16 2018-07-04 ASML Netherlands B.V. Lithographic apparatus, method of transferring a substrate and device manufacturing method
WO2016020121A1 (en) 2014-08-07 2016-02-11 Asml Netherlands B.V. Lithography apparatus and method of manufacturing a device
JP6609448B2 (ja) * 2015-09-30 2019-11-20 株式会社日立ハイテクマニファクチャ&サービス 試料搬送装置
US10665507B2 (en) 2017-09-29 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Automated transfer and drying tool for process chamber
CN107552461A (zh) * 2017-10-16 2018-01-09 浙江德立自动化装备股份有限公司 一种抽油烟机工件喷粉前的纯水清洗装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480052U (ja) * 1990-11-27 1992-07-13
JPH06124873A (ja) * 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JPH06168866A (ja) * 1992-11-27 1994-06-14 Canon Inc 液浸式投影露光装置
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JP2002016124A (ja) * 2000-06-28 2002-01-18 Sony Corp ウェーハ搬送アーム機構

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPH0480052A (ja) * 1990-07-24 1992-03-13 Nec Corp 熱転写シリアルプリンタ
US5518542A (en) * 1993-11-05 1996-05-21 Tokyo Electron Limited Double-sided substrate cleaning apparatus
US5727332A (en) * 1994-07-15 1998-03-17 Ontrak Systems, Inc. Contamination control in substrate processing system
JPH08316124A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5762749A (en) * 1995-07-21 1998-06-09 Dainippon Screen Mfg. Co., Ltd. Apparatus for removing liquid from substrates
US6297871B1 (en) 1995-09-12 2001-10-02 Nikon Corporation Exposure apparatus
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10258249A (ja) * 1997-03-19 1998-09-29 Dainippon Screen Mfg Co Ltd 回転式基板処理装置
WO1999027568A1 (fr) * 1997-11-21 1999-06-03 Nikon Corporation Graveur de motifs a projection et procede de sensibilisation a projection
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US7187503B2 (en) 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US6995930B2 (en) 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
EP1470268A2 (en) * 2000-10-03 2004-10-27 Applied Materials, Inc. Method and associated apparatus for tilting a substrate upon entry for metal deposition
KR100866818B1 (ko) 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
US20040209190A1 (en) * 2000-12-22 2004-10-21 Yoshiaki Mori Pattern forming method and apparatus used for semiconductor device, electric circuit, display module, and light emitting device
WO2002091078A1 (en) 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
TW561516B (en) * 2001-11-01 2003-11-11 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
DE10229818A1 (de) 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
US7092069B2 (en) 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10210899A1 (de) 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
EP1347496A3 (en) * 2002-03-12 2006-05-03 Dainippon Screen Mfg. Co., Ltd. Substrate treating apparatus and substrate treating method
US7077585B2 (en) * 2002-07-22 2006-07-18 Yoshitake Ito Developing method and apparatus for performing development processing properly and a solution processing method enabling enhanced uniformity in the processing
CN100462844C (zh) 2002-08-23 2009-02-18 株式会社尼康 投影光学系统、微影方法、曝光装置及使用此装置的方法
US6954993B1 (en) 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
US6988326B2 (en) 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US7093375B2 (en) 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US7383843B2 (en) 2002-09-30 2008-06-10 Lam Research Corporation Method and apparatus for processing wafer surfaces using thin, high velocity fluid layer
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US6788477B2 (en) 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60335595D1 (de) 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
JP3977324B2 (ja) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
CN101713932B (zh) 2002-11-12 2012-09-26 Asml荷兰有限公司 光刻装置和器件制造方法
CN101470360B (zh) 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (de) 2002-11-18 2004-06-03 Infineon Technologies Ag Optische Einrichtung zur Verwendung bei einem Lithographie-Verfahren, insbesondere zur Herstellung eines Halbleiter-Bauelements, sowie optisches Lithographieverfahren
DE10258718A1 (de) 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
WO2004053952A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
EP1429190B1 (en) 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
KR100967835B1 (ko) 2002-12-13 2010-07-05 코닌클리케 필립스 일렉트로닉스 엔.브이. 층상 스폿 조사 방법 및 장치에서의 액체 제거
EP1584089B1 (en) 2002-12-19 2006-08-02 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
AU2003295177A1 (en) 2002-12-19 2004-07-14 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US7010958B2 (en) 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
US6781670B2 (en) 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
US7090964B2 (en) 2003-02-21 2006-08-15 Asml Holding N.V. Lithographic printing with polarized light
US7206059B2 (en) 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
JP2005101498A (ja) * 2003-03-04 2005-04-14 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
JP4488004B2 (ja) 2003-04-09 2010-06-23 株式会社ニコン 液浸リソグラフィ流体制御システム
CN101061429B (zh) 2003-04-10 2015-02-04 株式会社尼康 包括用于沉浸光刻装置的真空清除的环境系统
WO2004093160A2 (en) 2003-04-10 2004-10-28 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
JP4656057B2 (ja) 2003-04-10 2011-03-23 株式会社ニコン 液浸リソグラフィ装置用電気浸透素子
JP4650413B2 (ja) 2003-04-10 2011-03-16 株式会社ニコン 液浸リソグフラフィ装置用の移送領域を含む環境システム
KR20190007532A (ko) 2003-04-11 2019-01-22 가부시키가이샤 니콘 액침 리소그래피에 의한 광학기기의 세정방법
JP4582089B2 (ja) 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
SG2012031209A (en) 2003-04-11 2015-07-30 Nippon Kogaku Kk Apparatus having an immersion fluid system configured to maintain immersion fluid in a gap adjacent an optical assembly
EP1614000B1 (en) 2003-04-17 2012-01-18 Nikon Corporation Immersion lithographic apparatus
JP4025683B2 (ja) 2003-05-09 2007-12-26 松下電器産業株式会社 パターン形成方法及び露光装置
JP4146755B2 (ja) 2003-05-09 2008-09-10 松下電器産業株式会社 パターン形成方法
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004102646A1 (ja) * 2003-05-15 2004-11-25 Nikon Corporation 露光装置及びデバイス製造方法
TWI282487B (en) 2003-05-23 2007-06-11 Canon Kk Projection optical system, exposure apparatus, and device manufacturing method
TWI442694B (zh) 2003-05-30 2014-06-21 Asml Netherlands Bv 微影裝置及元件製造方法
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4084710B2 (ja) 2003-06-12 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4054285B2 (ja) 2003-06-12 2008-02-27 松下電器産業株式会社 パターン形成方法
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4029064B2 (ja) 2003-06-23 2008-01-09 松下電器産業株式会社 パターン形成方法
JP4084712B2 (ja) 2003-06-23 2008-04-30 松下電器産業株式会社 パターン形成方法
JP2005019616A (ja) 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
JP4343597B2 (ja) 2003-06-25 2009-10-14 キヤノン株式会社 露光装置及びデバイス製造方法
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1491956B1 (en) 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
JP3862678B2 (ja) 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7236232B2 (en) 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7006209B2 (en) 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005057294A (ja) 2003-08-07 2005-03-03 Asml Netherlands Bv インタフェースユニット、該インタフェースユニットを含むリソグラフィ投影装置、及びデバイス製造方法
US7700267B2 (en) 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7061578B2 (en) 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7579135B2 (en) 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
SG140604A1 (en) * 2003-08-29 2008-03-28 Nikon Corp Liquid recovery apparatus, exposure apparatus, exposure method, and device manufacturing method
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7014966B2 (en) 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
EP3223074A1 (en) 2003-09-03 2017-09-27 Nikon Corporation Apparatus and method for immersion lithography for recovering fluid
JP4378136B2 (ja) 2003-09-04 2009-12-02 キヤノン株式会社 露光装置及びデバイス製造方法
JP3870182B2 (ja) 2003-09-09 2007-01-17 キヤノン株式会社 露光装置及びデバイス製造方法
US6961186B2 (en) 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60302897T2 (de) 2003-09-29 2006-08-03 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung
US7369217B2 (en) 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
JP2005136374A (ja) 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 半導体製造装置及びそれを用いたパターン形成方法
WO2005036623A1 (ja) * 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法
US7678527B2 (en) 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
WO2005050324A2 (en) 2003-11-05 2005-06-02 Dsm Ip Assets B.V. A method and apparatus for producing microchips
US7924397B2 (en) 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
US8854602B2 (en) 2003-11-24 2014-10-07 Asml Netherlands B.V. Holding device for an optical element in an objective
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7125652B2 (en) 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
US7385764B2 (en) 2003-12-15 2008-06-10 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US20050185269A1 (en) 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7460206B2 (en) 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050147920A1 (en) 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
JP4371822B2 (ja) 2004-01-06 2009-11-25 キヤノン株式会社 露光装置
JP4429023B2 (ja) 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
US20050153424A1 (en) 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
CN1910494B (zh) 2004-01-14 2011-08-10 卡尔蔡司Smt有限责任公司 反射折射投影物镜
ATE539383T1 (de) 2004-01-16 2012-01-15 Zeiss Carl Smt Gmbh Projektionssystem mit einem polarisationsmodulierenden optischen element mit variabler dicke
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
WO2005071491A2 (en) 2004-01-20 2005-08-04 Carl Zeiss Smt Ag Exposure apparatus and measuring device for a projection lens
US7026259B2 (en) 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
JP2007520893A (ja) 2004-02-03 2007-07-26 ロチェスター インスティテュート オブ テクノロジー 流体を使用したフォトリソグラフィ法及びそのシステム
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1716454A1 (en) 2004-02-09 2006-11-02 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
JP2007522508A (ja) 2004-02-13 2007-08-09 カール・ツアイス・エスエムテイ・アーゲー マイクロリソグラフィック投影露光装置のための投影対物レンズ
JP2007523383A (ja) 2004-02-18 2007-08-16 コーニング インコーポレイテッド 深紫外光による大開口数結像のための反射屈折結像光学系
US20050205108A1 (en) 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
US7027125B2 (en) 2004-03-25 2006-04-11 International Business Machines Corporation System and apparatus for photolithography
US7084960B2 (en) 2004-03-29 2006-08-01 Intel Corporation Lithography using controlled polarization
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005098504A1 (en) 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7271878B2 (en) 2004-04-22 2007-09-18 International Business Machines Corporation Wafer cell for immersion lithography
KR100557222B1 (ko) * 2004-04-28 2006-03-07 동부아남반도체 주식회사 이머전 리소그라피 공정의 액체 제거 장치 및 방법
US7244665B2 (en) 2004-04-29 2007-07-17 Micron Technology, Inc. Wafer edge ring structures and methods of formation
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1747499A2 (en) 2004-05-04 2007-01-31 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US20060244938A1 (en) 2004-05-04 2006-11-02 Karl-Heinz Schuster Microlitographic projection exposure apparatus and immersion liquid therefore
US7091502B2 (en) 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
KR20140138350A (ko) 2004-05-17 2014-12-03 칼 짜이스 에스엠티 게엠베하 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4913041B2 (ja) 2004-06-04 2012-04-11 カール・ツァイス・エスエムティー・ゲーエムベーハー 強度変化の補償を伴う投影系及びそのための補償素子
KR101368523B1 (ko) 2004-06-04 2014-02-27 칼 짜이스 에스엠테 게엠베하 광학적 결상 시스템의 결상 품질을 측정하기 위한 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480052U (ja) * 1990-11-27 1992-07-13
JPH06124873A (ja) * 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JPH06168866A (ja) * 1992-11-27 1994-06-14 Canon Inc 液浸式投影露光装置
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JP2002016124A (ja) * 2000-06-28 2002-01-18 Sony Corp ウェーハ搬送アーム機構

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9715178B2 (en) 2003-06-19 2017-07-25 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US9709899B2 (en) 2003-06-19 2017-07-18 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
USRE42741E1 (en) 2003-06-27 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
EP1598705A1 (en) 2004-05-18 2005-11-23 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
JP4669735B2 (ja) * 2004-05-18 2011-04-13 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
JP2005333134A (ja) * 2004-05-18 2005-12-02 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US10761438B2 (en) 2004-05-18 2020-09-01 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
JP2006165502A (ja) * 2004-06-21 2006-06-22 Nikon Corp 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
JP4677833B2 (ja) * 2004-06-21 2011-04-27 株式会社ニコン 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US9703199B2 (en) 2004-12-06 2017-07-11 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP4734063B2 (ja) * 2005-08-30 2011-07-27 東京エレクトロン株式会社 基板洗浄装置及び基板洗浄方法。
JP2007067080A (ja) * 2005-08-30 2007-03-15 Tokyo Electron Ltd 基板洗浄装置及び基板洗浄方法。
US8037890B2 (en) 2005-08-30 2011-10-18 Tokyo Electron Limited Substrate cleaning device and substrate cleaning method
US20120006362A1 (en) * 2005-08-30 2012-01-12 Tokyo Electron Limited Substrate cleaning device and substrate cleaning method
JP2007067303A (ja) * 2005-09-01 2007-03-15 Tokyo Electron Ltd 基板搬送装置、基板搬送方法及び塗布、現像装置
KR101039210B1 (ko) * 2005-09-01 2011-06-03 도쿄엘렉트론가부시키가이샤 도포 현상 장치
JP4616731B2 (ja) * 2005-09-01 2011-01-19 東京エレクトロン株式会社 塗布、現像装置
JP4761907B2 (ja) * 2005-09-28 2011-08-31 株式会社Sokudo 基板処理装置
JP2007095892A (ja) * 2005-09-28 2007-04-12 Dainippon Screen Mfg Co Ltd 基板処理装置
US8456611B2 (en) 2005-11-29 2013-06-04 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
JP2010087535A (ja) * 2005-12-02 2010-04-15 Asml Netherlands Bv 液浸型投影装置の汚染を防止または低減する方法および液浸型リソグラフィ装置
JP4667252B2 (ja) * 2006-01-16 2011-04-06 株式会社Sokudo 基板処理装置
JP2007189138A (ja) * 2006-01-16 2007-07-26 Sokudo:Kk 基板処理装置
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US10185231B2 (en) 2006-12-07 2019-01-22 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US10649349B2 (en) 2006-12-07 2020-05-12 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
JP2009070996A (ja) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp 真空吸着ステージおよびそれを用いた半導体製造方法。
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2011014935A (ja) * 2010-10-18 2011-01-20 Tokyo Electron Ltd 基板洗浄装置及び基板洗浄方法。
TWI688820B (zh) * 2017-11-10 2020-03-21 豪捷科技股份有限公司 光罩玻璃基板上之透光薄膜雜質去除組件
JP2019149540A (ja) * 2017-12-01 2019-09-05 エレメンタル・サイエンティフィック・インコーポレイテッドElemental Scientific, Inc. 半導体ウエハの統合した分解および走査のためのシステム
JP7253767B2 (ja) 2017-12-01 2023-04-07 エレメンタル・サイエンティフィック・インコーポレイテッド 半導体ウエハの統合した分解および走査のためのシステム
US11694914B2 (en) 2017-12-01 2023-07-04 Elemental Scientific, Inc. Systems for integrated decomposition and scanning of a semiconducting wafer
US11705351B2 (en) 2017-12-01 2023-07-18 Elemental Scientific, Inc. Systems for integrated decomposition and scanning of a semiconducting wafer
US11804390B2 (en) 2017-12-01 2023-10-31 Elemental Scientific, Inc. Systems for integrated decomposition and scanning of a semiconducting wafer
US12094738B2 (en) 2017-12-01 2024-09-17 Elemental Scientific, Inc. Systems for integrated decomposition and scanning of a semiconducting wafer
JPWO2021033588A1 (ja) * 2019-08-22 2021-02-25
WO2021033588A1 (ja) * 2019-08-22 2021-02-25 東京エレクトロン株式会社 基板処理装置および基板処理方法
CN114258581A (zh) * 2019-08-22 2022-03-29 东京毅力科创株式会社 基板处理装置和基板处理方法
JP7337175B2 (ja) 2019-08-22 2023-09-01 東京エレクトロン株式会社 基板処理装置および基板処理方法
CN113488405A (zh) * 2021-05-30 2021-10-08 黄国燊 一种硅片表面除液机械臂
CN113488405B (zh) * 2021-05-30 2022-11-18 广东凡林装备科技有限公司 一种硅片表面除液机械臂

Also Published As

Publication number Publication date
EP1672682A4 (en) 2008-10-15
JP4335213B2 (ja) 2009-09-30
US7898645B2 (en) 2011-03-01
JP2009094541A (ja) 2009-04-30
US20060256316A1 (en) 2006-11-16
EP1672682A1 (en) 2006-06-21
JPWO2005036623A1 (ja) 2007-11-22
US20070052942A1 (en) 2007-03-08
US20110122393A1 (en) 2011-05-26
JP4727734B2 (ja) 2011-07-20
KR20060126949A (ko) 2006-12-11
US8755025B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP4335213B2 (ja) 基板搬送装置、露光装置、デバイス製造方法
JP5634947B2 (ja) 基板搬送装置、露光装置、基板搬送方法、及び処理方法
US7359034B2 (en) Exposure apparatus and device manufacturing method
TWI424470B (zh) A method of manufacturing an exposure apparatus and an element
WO2004053952A1 (ja) 露光装置及びデバイス製造方法
JP2005101487A (ja) 露光装置及びデバイス製造方法、露光システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514618

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11398603

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067006725

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2004792214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004792214

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792214

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11398603

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067006725

Country of ref document: KR