[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1995008852A1 - Organic electrolyte cell - Google Patents

Organic electrolyte cell Download PDF

Info

Publication number
WO1995008852A1
WO1995008852A1 PCT/JP1994/001557 JP9401557W WO9508852A1 WO 1995008852 A1 WO1995008852 A1 WO 1995008852A1 JP 9401557 W JP9401557 W JP 9401557W WO 9508852 A1 WO9508852 A1 WO 9508852A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
pas
battery
positive electrode
Prior art date
Application number
PCT/JP1994/001557
Other languages
English (en)
French (fr)
Inventor
Hajime Kinoshita
Nobuo Ando
Akihiro Anekawa
Takeshi Hashimoto
Yukinori Hato
Shizukuni Yata
Original Assignee
Kanebo Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd. filed Critical Kanebo Ltd.
Priority to KR1019960701479A priority Critical patent/KR100280252B1/ko
Priority to US08/619,489 priority patent/US5750287A/en
Priority to EP94927083A priority patent/EP0721230B1/en
Priority to CA002172378A priority patent/CA2172378C/en
Priority to DE69425330T priority patent/DE69425330T2/de
Publication of WO1995008852A1 publication Critical patent/WO1995008852A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an insoluble and infusible substrate having a polyacene-based skeleton structure for a negative electrode and a high-capacity and high-voltage organic electrolyte battery using a metal oxide for a positive electrode.
  • This battery is a so-called rocking chair type battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and lithium is returned to the positive electrode in discharging.
  • the battery is characterized by high voltage and high capacity, its capacity is about 80-9 OmAh / cc (based on the total volume of electrodes, separators, and current collectors). A certain high energy density has not been obtained.
  • an insoluble infusible substrate having a polyacene skeleton structure in which an aromatic condensation polymer is heat-treated and has an atomic ratio of hydrogen atoms to carbon atoms of 0.5 to 0.05 has a larger amount of lithium than a general carbon material.
  • a first object of the present invention is to provide a secondary battery having a high capacity and a high voltage.
  • Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and is excellent in safety.
  • Still another object of the present invention is to provide a secondary battery which is easy to manufacture. Further objects of the present invention will become clear from the following description.
  • the present inventors use a metal oxide for the positive electrode, an insoluble and infusible substrate having a polyacene skeleton structure for the negative electrode, and adjust the amount of lithium in the battery appropriately. Control was important.
  • an organic electrolyte battery including a positive electrode, a negative electrode, and a solution in which a lithium salt is dissolved in a non-protonic organic solvent as an electrolytic solution.
  • the positive electrode contains a metal oxide
  • the negative electrode is an insoluble infusible substrate (hereinafter PAS) having a polyacene skeleton structure in which the atomic ratio of hydrogen atoms and Z carbon atoms is 0.5 to 0.05, which is a heat-treated product of an aromatic condensation polymer,
  • PAS insoluble infusible substrate
  • the total amount of lithium contained in the battery is 500 mAhZg or more with respect to the negative electrode PAS, and the negative electrode-derived lithium is 100 mA. h Z g or more,
  • the aromatic condensation polymer in the present invention is a condensate of an aromatic hydrocarbon compound and an aldehyde.
  • aromatic hydrocarbon compound examples include so-called phenols such as phenol, cresol, and xylenol.
  • x and y are each independently 0, 1 or 2 or methylene bisphenols, or hydroxy biphenyls, hydroxynaphthalenes Can also be Of these, phenols, particularly phenol, are practically preferred.
  • aromatic condensation polymer in the present invention one part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is replaced with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, and aniline.
  • a substituted modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde can be used, and a modified aromatic polymer substituted with melamine or urea can also be used.
  • Furan resins are also suitable.
  • aldehydes such as formaldehyde, acetoaldehyde, and furfural can be used, but formaldehyde is preferable.
  • the phenol formaldehyde condensate may be any of a novolak type, a resolu type or a mixture thereof.
  • the insoluble and infusible substrate in the present invention is obtained by heat-treating the aromatic polymer, and is disclosed in Japanese Patent Publication No. 44212 (US Pat. No. 4,601,849, EP67444) and Japanese Patent Publication No. No. 24024 (U.S. Pat. No. 4,615,960, EP 149497) can use any insoluble infusible substrate having a polyacene skeleton structure. You can also.
  • HZC An insoluble infusible substrate having an atomic ratio of carbon atoms
  • an insoluble infusible substrate having a specific surface area of 600 m 2 Zg or more by the BET method is obtained by a method described in Japanese Patent Publication No. 3-24024 (US Pat. No. 4,615,960, EP 149497).
  • a solution containing an initial condensation product of an aromatic condensation polymer and an inorganic salt such as zinc chloride is prepared, and the solution is heated and cured in a mold.
  • the cured product thus obtained is gradually heated in a non-oxidizing atmosphere (including vacuum) to a temperature of 350 ° C to 800 ° C, preferably to an appropriate temperature of 400 ° C to 750 ° C.
  • the substrate is sufficiently washed with water or diluted hydrochloric acid to obtain an insoluble infusible substrate having the above HZC and a specific surface area of, for example, 600 m 2 Zg or more by a BET method.
  • the insoluble infusible substrate used in the present invention X-ray diffraction (according to CuKc, the position of the main peak exists at 24 ° or less as represented by 20, and in addition to the main peak, 41 to 46 °) There are other peaks in between. That is, it is suggested that the insoluble and infusible substrate has a polyacene-based skeleton structure in which an aromatic polycyclic structure is appropriately developed and has an amorphous structure.- It is useful as a battery active material because lithium can be stably doped. Is
  • HZC exceeds 0.50, doping and undoping of lithium cannot be performed smoothly because the aromatic polycyclic structure is not sufficiently developed, and charging / discharging efficiency decreases when batteries are assembled. I do.
  • HZC is 0.05 or less, the capacity of the battery of the present invention is unpreferably reduced.
  • the negative electrode of the present invention is composed of the above-described insoluble and infusible substrate (hereinafter referred to as PAS).
  • PAS 10 which is in a form that is easy to mold such as powder, granules, and short fibers, and is molded with a binder.
  • a fluorine-based binder is preferable. Further, a fluorine-based binder having an atomic ratio of fluorine atoms to carbon atoms (hereinafter, referred to as FZC) of less than 1.5 and not less than 0.75 is preferable, and particularly, the atomic ratio of FZC is 1. is A fluorine-containing polymer binder having a value of less than 3 and not less than 0.75 is preferred.
  • FZC fluorine-based binder having an atomic ratio of fluorine atoms to carbon atoms
  • fluorine-based binder examples include polyvinylidene fluoride, vinylidene fluoride-trifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, propylene-tetrafluoroethylene copolymer, and the like. Fluorine-containing polymers in which hydrogen in the main chain has been substituted with an alkyl group can also be used.
  • the FZC is 1.
  • the FZC is 1.25, 1.1 when the mole fraction of vinylidene fluoride is 50% and 80%, respectively.
  • the propylene tetrafluoroethylene copolymer when the propylene mole fraction is 50%, the F / C becomes 0.75.
  • polyfluoride A vinylidene fluoride-trifluoroethylene copolymer having a molar fraction of vinylidene and vinylidene fluoride of 50% or more is preferred, and polyvinylidene fluoride is practically preferred.
  • the doping capacity (capacity) of lithium possessed by PAS can be sufficiently utilized.
  • the positive electrode of the organic electrolyte battery of the present invention for example, L i xC o 0 2, L i xN i 0 2, L i xM n 0 2, L i xF e 0 2 such as L i xMyOz (M multiple A metal capable of taking a valence, or two or more kinds of metals), a lithium-containing metal oxide capable of electrochemically doping or undoping lithium, or a metal such as cobalt, manganese, nickel, etc.
  • Use transition metal oxide Particularly, a lithium-containing oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Among them, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable.
  • the positive electrode according to the present invention is formed by adding the above-mentioned metal oxide and, if necessary, a conductive material and a binder, and the type and composition of the conductive material and the binder may be appropriately set.
  • the type of the conductive agent may be a metal powder such as metallic nickel, but for example, a carbon-based material such as activated carbon, carbon black, acetylene black, and graphite is particularly preferable.
  • the mixing ratio varies depending on the electric conductivity of the active material, the shape of the electrode, and the like, but it is appropriate to add 2 to 40% to the active material.
  • the type of the binder may be any as long as it is insoluble in the electrolytic solution used in the present invention described later, and examples thereof include a rubber-based binder such as SBR, a fluorinated resin such as polytetrafluoroethylene, polyvinylidene fluoride, and the like.
  • Thermoplastic resins such as polypropylene and polyethylene are preferable, and the mixing ratio is 20% or less. It is preferred to be below.
  • the electrode shape of the positive electrode and the negative electrode used in the present invention can take various shapes such as a plate shape, a film shape, a column shape, or a shape formed on a metal foil, depending on a target battery.
  • a material in which a positive electrode or a negative electrode is formed in a film shape or a plate shape on a metal foil is preferable as a current collector integrated electrode because it can be applied to various batteries.
  • the battery of the present invention can greatly improve the capacity as compared with a conventional battery by using the above-mentioned PAC for the negative electrode and appropriately controlling the amount of lithium contained in the battery.
  • the total amount of lithium in the battery is the total of lithium derived from the positive electrode, lithium derived from the electrolyte, and lithium derived from the negative electrode.
  • the lithium derived from the positive electrode is lithium contained in the positive electrode at the time of battery assembly, and part or all of the lithium is supplied to the negative electrode by an operation of passing current from an external circuit (charging or the like).
  • the lithium derived from the electrolyte is lithium in the electrolyte contained in the separator, the positive electrode, the negative electrode, and the like.
  • the negative electrode-derived lithium is lithium carried on the negative electrode PAS of the present invention (lithium other than lithium derived from the positive electrode and lithium derived from the electrolyte).
  • the method of supporting lithium on the negative electrode PAS is not particularly limited.For example, a method of preliminarily doping lithium PAS with lithium in an electrochemical cell having lithium metal as a counter electrode before assembling a battery, and then assembling a battery. A method of attaching lithium metal to the negative electrode PAS in a battery by attaching the negative electrode to the negative electrode PAS and dropping lithium into the PAS in the battery is used.
  • the total amount of lithium in the battery is at least 500 mAhZg, preferably at least 60 OmAhZg,
  • the lithium derived from the negative electrode in the present invention is at least 100 mAh / g, preferably at least 15 OmAhZg with respect to the negative electrode PAS, and when less than 100 mAhZg, the total lithium amount is at least 50 OmAh / g with respect to the negative electrode PAS. Even if it does, a sufficient capacity cannot be obtained.
  • the lithium derived from the positive electrode and the lithium derived from the electrolyte may satisfy the above conditions, but the lithium derived from the positive electrode is at least 30 OmAhZg with respect to the negative electrode PAS. It is preferably at least 30 OmAh per gram of AS.
  • a non-protonic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention.
  • the nonprotonic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, getyl carbonate, a-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, methylene chloride, sulfolane and the like. Further, a mixture of two or more of these non-protonic organic solvents can also be used.
  • the electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of producing lithium ions.
  • electrolytes include, for example L i I, L i C 10 4, L i As F 6, L i BF 4, L i PF 6, or include L i HF 2 or the like.
  • the above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte.
  • the concentration of the electrolyte in the electrolyte should be at least 0.1 mol or more in order to reduce the internal resistance due to the electrolyte. It is preferably, and more preferably, 0.2 to 1.5 moles.
  • a current collector for extracting a current outside the battery for example, carbon, platinum, nickel, stainless steel, aluminum, copper, or the like can be used.
  • an electrode may be used. By being formed on a current collector, it can be used as a current collector-integrated electrode.
  • FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.
  • (1) is the positive electrode
  • (2) is the positive electrode
  • (2) is a negative electrode.
  • (3) and (3 ') are current collectors, which are connected to each electrode and the external terminals (7) and (7') so as not to cause a voltage drop.
  • (4) is an electrolytic solution in which the above-mentioned compound capable of generating ions that can be doped is dissolved in a non-protonic organic solvent.
  • the electrolyte is usually liquid, but may be used in the form of gel or solid to prevent liquid leakage.
  • (5) is a separator arranged to prevent contact between the positive and negative electrodes and to hold the electrolyte.
  • the separator is a non-electroconductive porous body having a continuous air hole that is durable with respect to an electrolyte solution or an electrode active material, and is usually made of glass fiber, polyethylene or polypropylene cloth, A nonwoven fabric or a porous body is used.
  • the thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like.
  • the positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem.
  • the shape and size of the electrode depends on the shape and properties of the target battery. It is determined appropriately depending on the function.
  • the shape of the battery according to the present invention includes a coin shape, a cylindrical shape, a square shape, a box shape, and the like satisfying the above basic configuration, and the shape is not particularly limited.
  • the features and advantages of the organic electrolyte battery of the present invention are that PAS is used for the negative electrode, metal oxide is used for the positive electrode, and both the amount of lithium in the battery and the amount of lithium derived from the negative electrode PAS are appropriately controlled. It is a high capacity and high voltage battery.
  • the basic features of the organic electrolyte battery of the present invention are, as described above, that the total amount of lithium contained in the battery is set to 5 OOmAhZg or more,
  • the battery of the present invention can be controlled by appropriately controlling the amount of lithium contained in the battery and controlling the pore structure of PAS used for the negative electrode as described below.
  • the capacity can be greatly improved compared to the battery of the above.
  • the amount of nitrogen gas adsorbed on the PAS in the present invention can be measured as follows. That is, the average particle size of 15 111 crushed by a disk mill? 0.035 g of AS powder is placed in a sample cell of a constant volume apparatus (Yuasa Ionics, Auto Soap-1), and nitrogen gas is adsorbed at a liquid nitrogen temperature of 77 ° K. From the obtained adsorption isotherm, plot the amount of adsorbed gas (ccZg) against the adsorbed gas layer thickness t (A). The following equation (1) is used as t (A).
  • the pore structure of PAS used for the negative electrode is determined by the above nitrogen adsorption isotherm, and the amount of adsorbed gas at a nitrogen adsorption thickness of 1 OA is 100 cc / g or less, particularly 80 ccZg or less. It is preferable to perform such control.
  • the total amount of lithium in the battery is not less than 500 mAh / g, preferably not less than 600 mAh / g with respect to the negative electrode PAS, and if it is less than 50 OmAhZg, sufficient capacity cannot be obtained.
  • the amount of lithium derived from the negative electrode is 10 OmAhZg or more, preferably 15 OmAhZg or more with respect to the negative electrode PAS, and when the amount is less than 100 mAh / g, even if the total lithium amount is 50 OmAhZg or more with respect to the negative electrode PAS. Even if it does, a sufficient capacity cannot be obtained.
  • the lithium derived from the positive electrode and the lithium derived from the electrolytic solution in the present invention may satisfy the above conditions, but it is preferable that the lithium derived from the positive electrode is at least 30 OmAhZg with respect to the negative electrode PAS.
  • a heat-treated product of an aromatic condensation polymer which is a powder of an insoluble and infusible substrate (hereinafter referred to as PAS) having a polyacene skeleton structure in which the atomic ratio of hydrogen atoms to carbon atoms is 0.5 to 0.05
  • PAS insoluble and infusible substrate
  • the negative electrode of the present invention is a molded product of the insoluble and infusible substrate (PAS) powder, which is obtained by molding a PAS powder having a powdery or granular shape, which is easily molded, with a binder.
  • PAS insoluble and infusible substrate
  • the average particle size of the PAS of the powder is 20 ⁇ m or less, and when the 50% size is 2 a / zm, particles having a particle size of 1 a Particles having a volume ratio of 10% or more and particles having a particle size of 4 a / zm or more are 10% or more by volume relative to the whole, and more preferably, when 50% diameter is 2 am, 1 Particles having a particle size of a / m or less are at least 20% by volume to the whole, and particles having a particle size of 4a or more are at least 10% by volume to the whole, particularly Like
  • the 50% diameter is set to 2 a ⁇ m
  • particles having a particle size of 1 am or less are 20% or more in volume ratio to the whole and particles having a particle size of 4 am or more Those having a volume ratio of 20% or more with respect to the whole are advantageous.
  • the granules have a wide particle size distribution and the average particle size does not exceed 20 m in order to obtain a high-capacity battery.
  • the resulting battery will have a low capacity, which is not preferable.
  • the average particle diameter is a volume average diameter
  • the 50% diameter is a particle diameter corresponding to 50% of an integrated distribution curve
  • the PAS of the powder is, for example, heat-treating a molded article of an aromatic polymer.
  • the resulting insoluble and infusible substrate can be obtained by grinding.
  • the pulverizing method is not particularly limited, but it is efficient to use a pulverizer having both a pulverizing mechanism of impact and friction, for example, a ball mill such as a pot mill or a vibrating mill. In some cases, it can also be obtained by classifying the obtained powder, or by mixing two or more PAS powders having different particle size distributions.
  • the binder used in the negative electrode of the present invention is preferably a fluorine-based binder, and more preferably has an atomic ratio of fluorine atoms and carbon atoms (hereinafter, referred to as F / C) of less than 1.5.
  • F / C atomic ratio of fluorine atoms and carbon atoms
  • the above-mentioned fluorine-based binders are preferred, and in particular, less than 1.3 and 0.75 or more fluorine-based binders are preferred.
  • fluorine-based binder examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, propylene-tetrafluoroethylene copolymer, and the like.
  • a fluorinated polymer in which hydrogen in the chain is substituted with an alkyl group can also be used.
  • the negative electrode of the present invention is obtained by molding the PAS powder with a binder, and the porosity of the negative electrode is determined by impregnating propylene carbonate at 25 ° C. It is preferably 40% or less. When the porosity exceeds 40%, it is difficult to obtain a sufficient capacity when a battery is used, even if the particle size of PAS is controlled as described above.
  • the porosity of the negative electrode used in the present invention is preferably 40% or less as described above, but according to the experience of the present inventors, unexpectedly, the porosity of the negative electrode was about 25%. A high capacity battery can also be obtained. In light of this fact, It is considered that the porosity of the negative electrode may be about 20%.
  • the negative electrode is a heat-treated product of an aromatic condensed polymer, and an insoluble infusible substrate (PAS) having a polyacene skeleton structure in which the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05 is prepared by using a thermoplastic binder to form a metal. After being molded on a foil, it is preferable to heat-treat it at a temperature equal to or higher than the melting point of the thermoplastic binder.
  • PAS insoluble infusible substrate
  • thermoplastic binder a fluorine-containing polymer binder, particularly a fluorine-containing polymer having an atomic ratio of fluorine atoms and carbon atoms of less than 1.5 to 0.75 or more, particularly polyvinylidene fluoride is preferable.
  • the lithium doping ability (capacity) of PAS can be sufficiently utilized.
  • the method of the heat treatment is not particularly limited. It is preferable to carry out in a temperature range higher than C to 100 ° C. If heat treatment is not performed, for example, if a negative electrode PAS formed on a metal foil is preliminarily doped with lithium in an electrochemical cell using lithium metal as a counter electrode and then a battery is assembled, the bending strength of the electrode will be weak. The electrodes are likely to peel off, and the internal resistance of the assembled battery will increase, making it difficult to obtain sufficient capacity.
  • an insoluble and infusible substrate having a polyacene-based skeleton structure is used as a thermoplastic binder, preferably a fluorine-containing polymer binder.
  • a thermoplastic binder preferably a fluorine-containing polymer binder.
  • the above-mentioned fluorinated polymer, and a solvent or a dispersion medium are sufficiently mixed and molded.
  • the proportion of the fluorinated polymer varies depending on the shape and particle size of the insoluble infusible substrate, the intended strength and shape of the electrode, etc., but is preferably 2% to 50% by weight relative to the insoluble infusible substrate.
  • the solvent is preferably 5% to 30%.
  • the viscosity of the mixture can be controlled by the amount of the solvent.
  • the mixture adjusted to a high viscosity is formed into a sheet shape using a roller or the like, or the mixed slurry adjusted to a low viscosity is coated on a metal foil.
  • an ultrathin electrode of, for example, 100 / m or less can be obtained.
  • the coating molding method is preferable.
  • the shape of the positive electrode and the negative electrode used in the present invention can be various shapes such as a plate shape, a film shape, a cylindrical shape, or formed on a metal foil depending on a target battery. Those formed on a foil are preferable as a current collector-body electrode because they can be applied to various batteries.
  • the negative electrode is a heat-treated aromatic condensation polymer and has a polyacene skeleton structure in which the atomic ratio of hydrogen atoms and carbon atoms is 0.5 to 0.05.
  • Insoluble and infusible substrate (PAS) PAS
  • the total amount of lithium contained in the battery with respect to the negative electrode PAS is 50 Om AhZg or more, and the lithium derived from the negative electrode is 10 OmAhZg or more, and
  • the negative electrode-derived lithium in the present invention is lithium supported on the negative electrode PAS of the present invention (lithium derived from the positive electrode, lithium derived from the electrolyte solution).
  • the method of supporting lithium on the negative electrode PAS is not particularly limited as long as lithium can be supported on the negative electrode PAS in advance before assembling a battery.
  • a constant current or applying a constant is voltage in the electrochemical cell described above lithium can be previously supported on the negative electrode PAS.
  • the negative electrode PAS and the lithium metal are conducted in the battery by a method such as attaching lithium metal to the negative electrode PAS. It is not preferable to use a method such as doping AS because not only does the capacity of a practical battery decrease, but the internal resistance of the battery also increases.
  • the total amount of lithium in the battery is advantageously at least 50 OmAhZg, preferably at least 600 mAhZg with respect to the negative electrode PAS, and when the total lithium content is less than 50 OmAhZg, the capacity is sufficient. I can't get it.
  • the lithium derived from the negative electrode is 100 mAh / g or more, preferably 15 OmAhZg or more with respect to the negative electrode PAS, and when less than 10 OmAh / g, even if the total lithium amount is 50 OmA Even if hZg or more, sufficient capacity cannot be obtained.
  • a lithium-containing oxide is used for the positive electrode, as described above, it is practical to make the lithium from the negative electrode 60 OmAhZg or less with respect to the negative electrode PAS.
  • the lithium derived from the positive electrode and the lithium derived from the electrolyte in the present invention may satisfy the above conditions, but the lithium derived from the positive electrode is preferably 3 to 0 OmAh / g or more with respect to the negative electrode PAS.
  • FIG. 2 is an explanatory diagram of the basic configuration of the battery according to the present invention.
  • (1) is the positive electrode
  • (2) is the negative electrode.
  • (3) and (3 ') are current collectors, and the electrodes are formed on the current collectors.
  • the lead terminals (10) and (10 ') 5 are connected to the current collector so as not to cause a voltage drop, and one end is connected to the battery case (6) and the top lid (9).
  • (5) is a separator impregnated with an electrolytic solution, in which the aforementioned compound capable of generating ions that can be doped is dissolved in a non-protonic organic solvent.
  • the electrolyte is usually in a liquid state and is impregnated in the separator.
  • the electrolyte may be used in the form of a gel or a solid without the separator 0 to prevent liquid leakage.
  • (8) is an insulating packing arranged to prevent contact between the positive and negative electrodes (battery case and top lid).
  • the separator is a porous body having no durable electron-conducting pores with respect to an electrolyte solution or an electrode active material, and is usually made of glass fiber, polystyrene, or the like. A cloth, non-woven fabric or porous body made of ethylene or polypropylene is used.
  • the thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like.
  • the positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem.
  • the shape, size, and the like of the electrode are appropriately determined depending on the shape and performance of the intended battery.
  • the shape of the battery of the present invention is not limited to the cylindrical shape as exemplified above, but includes a coin shape, a square shape, a box shape and the like, and the shape is not particularly limited.
  • the non-protonic organic solvent solution of a lithium salt is provided as the positive electrode, the negative electrode, and the electrolytic solution.
  • the positive electrode contains a metal oxide
  • the negative electrode is a heat-treated product of an aromatic condensation polymer, and includes an insoluble infusible substrate (PAS) having a polyacene skeleton structure in which the atomic ratio of hydrogen atoms and carbon atoms is 0.5 to 0.05,
  • PAS insoluble infusible substrate
  • the total amount of lithium contained in the battery is 500 mAhZg or more, and the lithium derived from the negative electrode is 1 O OmAhZg or more.
  • lithium derived from the negative electrode be electrochemically supported by applying a potential equal to or lower than the potential of the Li metal to the negative electrode.
  • the total amount of lithium in the battery is the total of lithium derived from the positive electrode, lithium derived from the electrolyte, and lithium derived from the negative electrode.
  • the lithium derived from the positive electrode is lithium contained in the positive electrode when the battery is assembled, and part or all of the lithium is supplied to the negative electrode by an operation of passing current from an external circuit (such as charging).
  • the lithium derived from the electrolyte is lithium in the electrolyte contained in the separator, the positive electrode, the negative electrode, etc.
  • the lithium derived from the negative electrode is lithium supported on the negative electrode PAS of the present invention (lithium other than lithium derived from the positive electrode and lithium derived from the electrolyte).
  • the method of supporting lithium on the negative electrode PAS is performed by, for example, using an electrochemical cell having lithium metal as a counter electrode before assembling the battery.
  • Lithium can be loaded on the negative electrode PAS in advance by energizing 10 currents, applying a constant voltage, or a combination thereof.
  • the voltage to be applied varies depending on the target amount of lithium derived from the negative electrode, the PAS, the type and shape of the electrode, the type and shape of the electrolytic cell, and is preferably from OmV to 100 OmV with respect to the lithium metal potential. More preferably, the range is from 10 mV to 300 mV. It is important to select a voltage that is low enough to prevent lithium metal from being electrodeposited.In some cases, lithium is initially supported at a potential lower than the lithium metal potential, and is gradually increased. It is also possible to raise the voltage at the end and finally terminate at a positive potential, or to carry it at a positive potential at first and then carry it at a potential lower than the lithium metal potential.
  • the total amount of lithium in the battery is 500 m with respect to the negative electrode PAS. If it is AhZg or more, preferably 60 OmAhZg or more, and if it is less than 500 mAh, sufficient capacity cannot be obtained.
  • the lithium derived from the negative electrode in the present invention is at least 100 mAhZg with respect to the negative electrode PAS, preferably at least 15 OmAh / g, and when less than 10 OmAhZg, the total lithium amount is at least 50 OmAhZg with respect to the negative electrode PAS. Even if not enough capacity is obtained.
  • lithium derived from the negative electrode is at least 100 mAhZg with respect to the negative electrode PAS, preferably at least 15 OmAh / g, and when less than 10 OmAhZg, the total lithium amount is at least 50 OmAhZg with respect to the negative electrode PAS. Even if not enough capacity is obtained.
  • lithium derived from the negative electrode is
  • the lithium derived from the positive electrode and the lithium derived from the electrolytic solution in the present invention may satisfy the above conditions, but it is preferable that the lithium derived from the positive electrode is at least 30 OmAhZg with respect to the negative electrode PAS.
  • the lithium derived from the negative electrode described in (4) when the lithium derived from the negative electrode described in (4) is previously supported on the PAS before the battery is assembled, the lithium derived from the negative electrode is electrochemically formed using a solution of a lithium salt in a cyclic carbonate solvent. It is particularly preferable to carry them.
  • the lithium salt for example, a L i C 10 4, L i As F 6, L i BF 4, L i PF 6 such electrolytes capable of forming lithium ions, and the cyclic carbonate solvent, ethylene carbonate
  • a single solvent such as propylene carbonate or a mixture of two or more solvents can be used.
  • the above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte, but the concentration of the electrolyte in the electrolyte is at least 0.1 mol / or more to reduce the internal resistance due to the electrolyte.
  • the amount is usually 0.2 to 1.5 mol ⁇ .
  • Lithium in the negative electrode PAS in advance there is no particular limitation as long as it can support the battery.For example, by applying a constant current or applying a constant voltage in an electrochemical cell using the above-mentioned electrolyte and lithium metal as a counter electrode. However, lithium can be previously supported on the negative electrode PAS.
  • an organic electrolyte battery which is easy to manufacture and can be used as a secondary battery having a high capacity and a high voltage is provided. Further, the organic electrolyte battery of the present invention provides a secondary battery which can be charged and discharged for a long period of time and is excellent in safety.
  • a secondary battery having a particularly high capacity is provided.
  • third and fourth preferred aspects of the present invention are advantageous because they provide a secondary battery having a low internal resistance and a high capacity.
  • the fifth preferred embodiment of the present invention has an advantage that the high capacity and high voltage secondary battery of the present invention can be manufactured more easily.
  • the present invention will be described with reference to examples. However, the following examples are for specifically explaining aspects of the present invention, and the present invention is not limited or restricted to the following examples.
  • FIG. 1 of the accompanying drawings The basic configuration of the battery according to the present invention shown in FIG. 1 of the accompanying drawings is as follows.
  • the basic configuration of the battery according to the present invention shown in FIG. 2 is as follows.
  • a 0.5 mm thick phenol-formaldehyde resin molded plate is placed in a silicon-nit electric furnace, heated at a rate of 10 ° C / hour in a nitrogen atmosphere, heat-treated to 650 ° C, and the insoluble infusible substrate ( PAS) was synthesized.
  • the PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder having an average particle size of 15 ⁇ m.
  • the HZC ratio was 0.22.
  • L i C 00 2 manufactured by Strem Chemicals, Inc. 100 parts, against the graph eye bets 5 parts, 10 parts by weight of polyvinylidene fluoride powder N, N-dimethylformamide was dissolved Ami de 90 parts by weight of solution 50 parts by weight A slurry was obtained by thorough mixing. The slurry was applied on a 20- ⁇ m thick anode foil (positive electrode current collector) using an applicator, dried and pressed to obtain a 150-thick positive electrode 1.
  • the negative electrode was a lithium as a counter electrode, propylene carbonate and Jechiruka one Boneto the electrolytic solution 1: 1 (the weight ratio) mixture, a solution obtained by dissolving i PF 6 to 1 mole Z £ concentration, a constant current (one (The current is set so that the anode PAS carries 3 OmAh / g of lithium per hour.)
  • the anode PAS is doped with 15 OmAhZg and 20 OmAh / g. Lithium from the negative electrode).
  • the negative electrodes were 1, 2, and 3, respectively.
  • a positive electrode having a thickness of 100 m and 200 m was obtained in the same manner as in Example 1 ( positive electrodes 2 and 3 respectively).
  • a battery was assembled in the same manner as in Example 1 in combination with the negative electrode 2, and the volume capacity was evaluated. The results are shown in Table 2 below.
  • a positive electrode 4 having a thickness of 260 m was obtained in the same manner as in Example 1.
  • a negative electrode 4 on which lithium was not previously supported was used.
  • Positive electrode 1, 3, 4 and negative electrode 4 Table 3 shows the results of evaluating the volume capacity by assembling a battery in the same manner as in Example 1.
  • Example 1 the negative electrode 5 was obtained by setting the amount of lithium to be supported in advance to 5 OmAh / g. A battery was assembled in the same manner as in Example 1 in combination with the positive electrode 1, and the volume capacity was evaluated. Table 4 shows the results.
  • the xylene-modified novolak resin molded plate was placed in a siliconite electric furnace, heated at a rate of 10 ° C.Z in a nitrogen atmosphere, and heat-treated to 650 ° C. to synthesize an insoluble infusible substrate (hereinafter referred to as PAS).
  • PAS insoluble infusible substrate
  • the PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder having an average particle size of 15 / m.
  • the HZC ratio was 0.22.
  • the nitrogen adsorption thickness of the PAS powder was 29 cc / g for 10 persons.
  • L i CO0 manufactured by Strem Co. 2 100 parts, against the graph eye bets 5 parts, 10 parts by weight of polyvinylidene fluoride powder, New, sufficient solution 50 parts by weight dissolved in ⁇ - dimethylformamidine de 90 parts by weight To obtain a slurry.
  • the slurry was applied on a 20- ⁇ m thick aluminum foil (positive electrode current collector) using an applicator, dried and pressed to obtain a positive electrode 5 with a thickness of 165 / zm.
  • the above-mentioned negative electrode has lithium as a counter electrode, and propylene carbonate is used as an electrolytic solution.
  • Bok 1 1 (weight ratio) mixed solution was used a solution prepared by dissolving L i PF 6 to 1 mol / concentration.
  • Table 5 shows the total lithium content for the negative electrode PAS in the battery. Charged to the battery voltage at a constant current of 0.25 MAZ cm 2 in the battery becomes 4.3 V, followed by battery voltage 0.25 MAZ cm 2 constant current was discharged to 2.5 V. This cycle of 4.3 V to 2.5 V was repeated, and the discharge was evaluated at the 3 isth discharge by the volume capacity (mAhZc c). As the volume standard, the total of the electrode volume, the separator volume, and the current collector volume was used. Table 5 shows the results. Table 5
  • Example 3 the composition of the PAS raw material was changed to 30 parts by weight of xylene resin, 70 parts by weight of novolak, 10 parts by weight of xylene resin, and 90 parts by weight of novolak. These negative electrodes were doped with 30 OmAh / g of lithium per PAS and supported to form negative electrodes 9 and 10, respectively.
  • a battery was assembled in the same manner as in Example 3, and the volume capacity was evaluated. Table 6 shows the results.
  • Example 3 the composition of the PAS raw material was changed to 30 parts by weight of a xylene resin and 70 parts by weight of a novolak, and used as the negative electrode.
  • One of these negative electrodes was not loaded with lithium in advance, and the other was doped with and loaded with 50 mAhZg of lithium per negative electrode PAS to form negative electrodes 11 and 12, respectively.
  • Example 3 the composition of the PAS raw material was 100 parts by weight of novolak and 10 parts by weight of hexamethylenetetramine, and only the powdered resin (“REGITOP” manufactured by Showa Polymer Co., Ltd.) was used as the raw material. A negative pole was created using the result. These negative electrodes were doped with 300 mAh // g of lithium per PAS and supported to form negative electrodes 13 and 14, respectively.
  • Example 5 A 0.5-inch thick funor resin molded plate is placed in a silicon electric furnace, heated at a rate of 10 ° CZ under a nitrogen atmosphere, heat-treated to 650 ° C, and an insoluble infusible substrate (PAS) is formed. Synthesized. The HZC ratio was 0.22.
  • the PAS powder having the particle size distribution shown in Table 9 (No.1, No.2, No.3, No.4) I got The particle size distribution was measured using a laser diffraction particle size distribution analyzer after dispersing the obtained powder in water using ultrasonic waves.
  • L i C o 0 manufactured by Strem Co. 2 100 parts, with respect to the graph eye preparative 5 parts, Porifutsui spoon vinyl isopropylidene powder 10 parts by weight, N, and dissolve in 90 parts by weight N- dimethylformamide ⁇ Mi de solution
  • a slurry was obtained by sufficiently mixing 50 parts by weight.
  • the slurry was applied on an aluminum foil (positive electrode current collector) having a thickness of 20 using an applicator, dried and pressed to obtain positive electrodes 6 and 7 having a thickness of 160 zm and 180 / zm.
  • the negative electrode was a lithium as a counter electrode, propylene carbonate and Jefferies chill carbonate in the electrolytic solution 1: 1 (the weight ratio) mixture, a solution obtained by dissolving i PF 6 to a concentration of 1 mole / I, the constant current (one The current was set such that the anode PAS carried 3 OmAhZg of lithium per hour), and 300 mAhZg of lithium was doped and carried per anode PAS (lithium derived from the cathode).
  • the above battery is charged at a constant current of 0.2 SmAZcm 2 until the battery voltage reaches 4.3 V, and then the battery voltage is 2.5 V at a constant current of 0.25 mA / cm 2 Discharged until.
  • This cycle of 4.3 V to 2.5 V was repeated, and the third discharge was evaluated in terms of volume capacity (mAhZc c).
  • volume standard the total of the electrode volume, the separator volume, and the current collector volume was used. The results are also shown in Table 10.
  • PAS No. 2 of Example 5 thoroughly mix 100 parts by weight of PAS powder and 110 parts by weight of a solution obtained by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of ⁇ , ⁇ -dimethylformamide. As a result, a slurry was obtained. The slurry was applied on a copper foil (negative electrode collector) having a thickness of 10 / zm using an applicator, and dried to obtain a PAS negative electrode having a thickness of 110 zm. The porosity of the negative electrode was determined by impregnating with propylene carbonate at 25 ° C. The porosity was 46%.
  • a positive electrode having a thickness of 130 // m was obtained in the same manner as in Example 1.
  • 30 OmAhZg of the lithium derived from the negative electrode was carried on the negative electrode in the same manner as in Example 5, and the same evaluation as in Example 5 was performed.
  • the volume capacity is 131 mAh / g.
  • a 0.5 mm thick funor resin molded plate is placed in a silicon electric furnace, heated at a rate of 10 ° C / hour in a nitrogen atmosphere, heat-treated to 650 ° C, and treated with an insoluble infusible substrate (PAS). ) was synthesized.
  • the PAS plate thus obtained was pulverized with a pot mill to obtain an average particle size of about 3 / zm.
  • the HZC ratio was 0.22.
  • L i C o 0 2 manufactured by Strem Chemicals, Inc. 100 parts, against the graph eye bets 5 parts, 10 parts by weight of polyvinylidene fluoride powder, N, solution 50 parts by weight was dissolved in N- dimethylformamidine de 90 parts by weight was thoroughly mixed to obtain a slurry.
  • the slurry was coated on a 20-m thick aluminum foil (positive electrode current collector) using an applicator, dried and pressed, and a 340 tz-thick positive electrode coated with Li CoO 2 on both sides was applied. Obtained.
  • the negative electrode was a lithium as a counter electrode, propylene carbonate and Jefferies chill carbonate in the electrolytic solution 1: 1 (the weight ratio) mixture, using a 1 mol / ⁇ solution of i PF 6 on the concentration of a constant current (one The current was set so that the anode PAS carried 3 OmAhZg of lithium per hour) and the cathode PAS was doped with 300 mAhZg of lithium and carried. (Lithium from the negative electrode).
  • the negative electrodes were 22, 23, 24, and 25, respectively. Using the positive electrode 1, the negative electrodes 22, 23, 24, and 25 (all 4 ⁇ 35 cm 2 ), a cylindrical battery as shown in FIG. 2 was assembled.
  • a polypropylene separator having a thickness of 25 m was used.
  • An aluminum terminal with a thickness of 150 mm and a width of 5 mm was used as the positive electrode terminal, and nickel with the same size as the positive electrode was used as the negative electrode terminal.
  • propylene carbonate and Jefferies chill carbonate Natick I as the electrolytic solution 1: Using a solution of L i PF 6 to a concentration of 1 mole Z 1 (weight ratio) mixture.
  • the total amount of lithium relative to the negative electrode PAS in the battery was 117 OmAhZg.
  • the negative electrode 1 treated at 100 ° C. was used, the electrode was peeled off from the metal foil when the electrode was wound, and the battery did not become a battery.
  • a positive electrode 2 having a thickness of 460 // m was obtained in the same manner as in Example 7.
  • the size of the positive electrode and the negative electrode was 4 ⁇ 30 cm 2 .
  • Lithium derived from the negative electrode was used as OmAhZg and combined with negative electrodes 22, 23, 24, and 25, and a battery was assembled in the same manner as in Example 7, and the volume capacity was evaluated.
  • the total amount of lithium relative to the negative electrode PAS in the battery was 109 OmAh / g. Table 15 shows the results.
  • a 0.5 mm thick phenolic resin molded plate is placed in a silicon electric furnace, heated at a rate of 10 ° CZ under a nitrogen atmosphere, and heat-treated to 650 ° C to synthesize an insoluble infusible substrate (PAS). did.
  • the PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder having an average particle size of about 15. 11 / / 0 ratio was 0.22.
  • a solution prepared by dissolving 100 parts by weight of the above PAS powder and 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide was used.
  • the slurry was obtained by sufficiently mixing the mixture with 0 parts by weight.
  • the slurry was applied to a lO ⁇ m thick copper foil (negative electrode current collector) using an applicator, dried and pressed to obtain a PAS negative electrode having a thickness of 210 m with both sides coated with PAS. .
  • L i C o0 2 manufactured by Strem Chemicals, Inc. 100 parts, against the graph eye bets 5 parts, New 10 parts by weight of polyvinylidene fluoride powder, Nyu- dimethylformamide was dissolved in ⁇ Mi de 90 parts by weight solution 50 parts by weight was sufficiently mixed to obtain a slurry.
  • the slurry was coated on an aluminum foil having a thickness of 20 ⁇ M with applique Isseki one (positive electrode collector), dried, pressed, the positive electrode of the L i Co 0 2 was coated thickness of 280 m on both sides Obtained.
  • a cylindrical battery as shown in Figure 2 was assembled.
  • a polypropylene separator having a thickness of 25 ⁇ m was used.
  • An aluminum terminal with a thickness of 150 / m and a width of 5 mm was used as the positive electrode terminal, and a nigger of the same size as the positive electrode was used as the negative electrode terminal, which was attached to the end of the electrode.
  • a 1: 1 (weight ratio) mixture of propylene carbonate and getyl carbonate was used.
  • the total amount of lithium with respect to the negative electrode PAS in the battery was 1040 mA hZg.
  • the above battery was charged at a constant current of 0.25 mAZcm 2 until the battery voltage reached 4.3 V, the internal resistance was measured, and then the battery was discharged at a constant current of 0.2 SmAZcm 2 until the battery voltage reached 2.5 V. This cycle of 4.3V-2.5V was repeated, and the third discharge was evaluated in terms of volume capacity (mAhZc c). As the volume standard, the total of the electrode volume, the separator volume, and the current collector volume was used. Table 16 shows the results.
  • a positive electrode having a thickness of 380 / m was obtained in the same manner as in Example 8.
  • the size of the positive electrode and the negative electrode was 4 ⁇ 30 cm 2 .
  • a battery was assembled in the same manner as in Example 8 using lithium derived from the negative electrode as OmAhZg, and the volume capacity was evaluated.
  • the total amount of lithium relative to the negative electrode PAS in the battery was 101 OmA hZg. Table 16 shows the results.
  • Example 8 30 OmAhZg of lithium metal (about 12 m) was attached to the negative electrode PAS, and two cylindrical batteries similar to those of Example 8 were assembled. After leaving at room temperature for 3 days, one was decomposed, and the lithium metal was completely gone. The volume capacity was evaluated in the same manner as in Example 8. The total lithium content of this battery was 104 OmA hZg. Table 16 shows the results.
  • Example 8 lithium metal (about 200 m) was attached to the negative electrode PAS, sandwiched between 2 mm-thick polypropylene plates, and lithium derived from the negative electrode was supported in the same electrolytic solution as in Example 1. Was. When the lithium metal was peeled off from the PAS negative electrode in about 40 minutes, 300 mAh Zg of lithium was doped. Thereafter, a cylindrical battery similar to that of Example 8 was assembled, and the volume capacity was evaluated in the same manner as in Example 8. The total lithium content of this battery was 1040 mAhZg. The results are shown in Evaluation 16.
  • Example 8 the lithium derived from the negative electrode was supported on the negative electrode PAS by short-circuiting the lithium metal (about 20 Q / m) and the negative electrode PAS. In about 35 minutes, 300mAh / g of lithium was doped. Thereafter, a cylindrical battery similar to that of Example 8 was assembled, and the volume capacity was evaluated in the same manner as in Example 8. The total lithium content of this battery was 104 OmAhZg. Table 16 shows the results.
  • a 0.5 mm-thick phenolic resin molded plate is placed in a silicon electric furnace, heated at a rate of 10 ° CZ under a nitrogen atmosphere, heat-treated to 650 ° C, and heated to 650 ° C. ) was synthesized.
  • the PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder having an average particle size of about 15 m.
  • the HZC ratio was 0.22.
  • L i Co0 2 manufactured by Strem Chemicals, Inc. 100 parts, against the graph eye bets 5 parts, 10 parts by weight of polyvinylidene fluoride powder, N, N-dimethylformamide was dissolved in ⁇ Mi de 90 parts by weight of the solution 50 parts by weight A slurry was obtained by thorough mixing.
  • An electrolysis cell was assembled. A constant voltage is applied so that the PAS negative electrode is +20 mV, 0 mV, one 20 mV, one 50 mV, and one hundred mV with respect to the lithium reference electrode, and the time during which 300 mAhZg (lithium derived from the negative electrode) can be carried Measure Specified. Table 17 shows the results.
  • a battery as shown in FIG. 1 was assembled.
  • the separator 1 a polypropylene separator having a thickness of 25 m was used.
  • the total amount of lithium with respect to the negative electrode pAS in the battery was 104 OmAhZg.
  • Example 11 lithium metal (approximately 200 m) was adhered to the negative electrode PAS, and sandwiched between polypropylene plates having a thickness of 2 mm. Lithium derived from the negative electrode was supported in the electrolyte solution. When lithium metal was peeled off from the PAS negative electrode in about 40 minutes, 300 mAh Zg of lithium could be doped. It takes more time than when a negative voltage is applied.
  • Example 11 the lithium derived from the negative electrode was carried on the negative electrode PAS by short-circuiting the lithium metal (about 200 zm) and the negative electrode PAS. In about 35 minutes, 30 OmA hZg of lithium could be doped. It takes more time than when a negative voltage is applied.
  • a 0.5 mm thick phenolic resin molded plate was placed in a silicon electric furnace, heated in a nitrogen atmosphere at a rate of 10 ° C / Z, and heat-treated to 1000 ° C to obtain a carbonaceous material.
  • the PAS plate thus obtained was pulverized with a disk mill to obtain a carbonaceous material powder having an average particle size of about 13.
  • the HZC ratio was 0.02.
  • the carbonaceous material was used as an electrode in the same manner as in Example 11, and lithium derived from the negative electrode was loaded with lithium in the same manner as in Example 11.
  • the time required for loading was 50 minutes, and in the case of OmV, the time required for loading was 45 minutes.- 2 OmV, -5 OmV.
  • Lithium metal was deposited. When left as it was, the lithium metal had disappeared after about 30 hours, but this is not practical as a method for supporting lithium derived from the negative electrode.
  • Example 11 a battery similar to that of Example 11 was assembled using the negative electrode prepared at +2 OmV and evaluated. After three cycles, a large amount of lithium metal was placed on the negative electrode. Was precipitated.
  • a 0.5 mm thick phenolic resin molded plate is placed in a silicon electric furnace, heated at a rate of 10 ° CZ in a nitrogen atmosphere, and heat-treated to 650 ° C-insoluble and infusible substrate (referred to as PAS) Was synthesized.
  • PAS 650 ° C-insoluble and infusible substrate
  • the PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder having an average particle size of about 15.
  • HZCii was 0.22.
  • L i C 00 2 manufactured by Strem Chemicals, Inc. 100 parts, against the graph eye bets 5 parts, 10 parts by weight of polyvinylidene fluoride powder, N, solution 50 parts by weight were dissolved in 90 parts by weight of N- dimethylformamide ⁇ Mi de was sufficiently mixed to obtain a slurry.
  • the slurry was coated on ⁇ Noremi foil having a thickness of 20 m using an applicator (positive electrode collector), dried, and pressed to obtain a positive electrode having a coated thickness of 280 m to LiCoO 2 on both sides.
  • the battery was charged at a constant current of 0.25 mAZ cm 2 until the battery voltage reached 4.3 V, and then discharged at a constant current of 0.25 mA / cm 2 until the battery voltage reached 2.5 V. This cycle of 4.3 V to 2.5 V was repeated, and the third discharge was 169 mAh / cc when evaluated by volume capacity (mAh cc). As the volume standard, the total of the electrode volume, the separator volume, and the current collector volume was used.
  • Lithium from the negative electrode, propylene carbonate and Jechirukabone Ichiboku 1: 1 (by weight) in a mixture the same method as in Example 1 except for using 1 molar solution of the L i PF 6 was dissolve in a concentration of ⁇ When the battery was assembled and the volume capacity was evaluated, it was 155 mAcc.
  • the battery was assembled by the above method and the volume capacity was evaluated to be 167 mAhZcc.
  • the example has a capacity about 10% higher than the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
[発明の名称]
有機電解質電池
[発明の詳細な説明]
本発明は、 負極にポリアセン系骨格構造を有する不溶不融性基体、 正 極に金属酸化物を用いた、 高容量かつ高電圧を有する有機電解質電池に 関する。
近年、 導電性高分子、 遷移金属酸化物等を正極とし、 負極にリチウム 金属あるいはリチウム合金を用いた二次電池がエネルギー密度が高いこ とから、 N i— C d電池、 鉛電池に代る電池として提案されている。 しかし、 これら二次電池は繰り返し充放電を行うと正極、 あるいは負 極の劣化による容量低下が大きく実用に問題が残されている。 特に負極 の劣化はデントライ 卜と呼ばれるこけ状のリチウム結晶の生成を伴い、 充放電の繰り返しにより終局的にはデントライ トがセパレーターを貫通 し、 電池内部でショートを引き起こし、 場合によっては電池が破裂する 等、 安全面においても問題があった。
近時、 上記問題点を解決すべく、 グラフアイ ト等の炭素材料を負極に 用い、 正極に L i C o 0 2 等のリチウム含有金属酸化物を用いた電池が 提案されている。 該電池は、 電池組立後、 充電する事により正極のリチ ゥム含有金属酸化物より負極にリチウムを供給し、 更に放電では負極の リチウムを正極に戻すという、 いわゆるロッキングチェア型電池である。 該電池は高電圧、 高容量を特長とするものの、 その容量は最大 8 0〜9 O m A h / c c (電極、 セパレーター、 集電材の総体積基準) 程度であ り、 リチウム電池の特徴である高エネルギー密度を得るに至っていない。 一方、 芳香族系縮合ポリマーの熱処理物であって水素原子ノ炭素原子 の原子比が 0.5〜0.05であるポリアセン系骨格構造を有する不溶不 融性基体は、 一般の炭素材料に比べ大量にリチウムをドープする事が可 能であるが、 該不溶不融性基体を使用して電池を組み立てた場合、 その 容量には不満足な点が残されていた。
そこで、 本発明の第一の目的は高容量かつ高電圧を有する二次電池を 提供するにある。
本発明の他の目的は長期に亘つて充放電が可能で、 かつ安全性に優れ た二次電池を提供するにある。
本発明の更に他の目的は製造が容易な二次電池を提供するにある。 本発明の更に他の目的は以下め説明から明らかにされよう。
本発明者らは、 上記の目的及び利益を達成するためには、 正極に金属 酸化物を、 負極にポリアセン系骨格構造を有する不溶不融性基体を用い、 かつ、 電池内のリチウム量を適切に制御することが重要であることが分 つた。
さらに詳細に述べると、 本発明によれば、 上記の目的及び利益は、 正 極、 負極並びに電解液としてリチウム塩を非プロ トン性有機溶媒に溶解 した溶液を備えた有機電解質電池であって、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって水素原子 Z 炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構 造を有する不溶不融性基体 (以下 PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAhZg以上であり、 かつ負極由来のリチウムが 100 mA h Z g以上である、
ことを特徴とする有機電解質電池によって達成されることが分った。 本発明における芳香族系縮合ポリマーとは、 芳香族炭化水素化合物と アルデヒ ド類との縮合物である。 芳香族炭化水素化合物としては、 例え ば、 フエノール、 クレゾール、 キシレノール等の如き、 いわゆるフエノ
—ル類が好適である。 例えば、 下記式 (A ) 、
Figure imgf000005_0001
(ここで、 xおよび yはそれぞれ独立に、 0、 1又は 2である) で表されるメチレン · ビスフエノール類であることができ、 或いはヒ ド ロキシ · ビフエ二ル類、 ヒ ドロキシナフタレン類であることもできる。 これらの内、 実用的にはフエノール類、 特にフエノールが好適である。 本発明における芳香族系縮合ポリマーとして、 上記のフエノール性水 酸基を有する芳香族炭化水素化合物の 1部をフエノール性水酸基を有さ ない芳香族炭化水素化合物、 例えば、 キシレン、 トルエン、 ァニリン等 で置換した変成芳香族系縮合ポリマー例えばフエノールとキシレンとホ ルムアルデヒ ドとの縮合物を用いることもでき、 また、 メラミ ン、 尿素 で置換した変成芳香族系ポリマーを用いることもできる。 また、 フラン 樹脂も好適である。
また、 アルデヒ ドとしては、 ホルムアルデヒ ド、 ァセトアルデヒ ド、 フルフラール等のアルデヒ ドを使用することができるが、 ホルムアルデ ヒ ドが好適である。 フエノールホルムアルデヒ ド縮合物としては、 ノボ ラック型又はレゾ一ル型或はそれらの混合物のいずれであってもよい。 本発明における不溶不融性基体は、 上記芳香族系ポリマーを熱処理す る事により得られ、 特公平 1— 44212号公報 (米国特許第 4, 60 1, 849号、 EP67444) 、 特公平 3— 24024号公報 (米国 特許第 4, 615, 960号、 EP 149497) 等に記載されているポ リァセン系骨格構造を有する不溶不融性基体は全て用いることができ、 例えば、 次のようにして製造することもできる。
該芳香族系縮合ポリマーを、 例えば窒素、 アルゴンの如き非酸化性雰 囲気下 (真空も含む) 中で、 400°C〜800°Cの適当な温度まで徐々 に加熱する事により、 水素原子/炭素原子の原子比 (以下 HZCと記す) が 0.50〜0.05、 好ましくは 0.35〜0.10の不溶不融性基体を 得ることができる。
また、 特公平 3— 24024号公報 (USP4, 615, 960、 EP 149497) 等に記載されている方法で、 600m2Zg以上の BE T法による比表面積を有する、 不溶不融性基体を得ることもできる。 例 えば、 芳香族系縮合ポリマーの初期縮合物と無機塩、 例えば塩化亜鉛を 含む溶液を調製し、 該溶液を加熱して型内で硬化する。 かく して得られ た硬化体を、 非酸化性雰囲気 (真空も含む) 中で、 350°C〜800°C の温度まで、 好ましくは 400°C〜750°Cの適当な温度まで徐々に加 熱した後、 水あるいは希塩酸等によって充分に洗浄することにより、 上 記 HZCを有し、 かつ、 例えば 600m2Zg以上の BET法による比 表面積を有する不溶不融性基体を得ることもできる。
本発明に用いる不溶不融性基体は、 X線回折 (CuKc によれば、 メイン · ピークの位置は 20で表して 24° 以下に存在し、 また該メイ ン · ピークの他に 41〜46° の間にブロードな他のピークが存在する。 すなわち、 上記不溶不融性基体は芳香族系多環構造が適度に発達した ポリアセン系骨格構造を有し、 かつアモルファス構造をとると示唆され- リチウムを安定にドーピングできることから電池用活物質として有用で ある
5 HZCが 0.50を越える場合、 芳香族系多環構造が充分に発達して いないため、 リチウムのドーピング、 脱ドーピングがスムーズに行うこ とができず、 電池を組んだ時、 充放電効率が低下する。 また、 HZCが 0.05以下の場合、 本発明の電池の容量が低下し好ましくない。
本発明の負極は上記不溶不融性基体 (以下 PAS) より成り、 実用的
10 には粉末状、 粒状、 短繊維状等の成形しやすい形状にある PASをバイ ンダ一で成形したものを用いる事が望ましい。
バインダーとしては、 フッ素系バインダーが好ましく、 更にはフッ素 原子 炭素原子の原子比 (以下、 FZCと記す) が 1.5未満 0.75以 上であるフッ素系バインダーが好ましく、 特に、 FZCの原子比が 1. i s 3未満 0.75以上の含フッ素ポリマー系バインダ一が好ましい。
上記フッ素系バインダーとしては、 例えば、 ポリフッ化ビニリデン、 フッ化ビニリデン一 3フッ化ェチレン共重合体、 エチレン一 4フッ化工 チレン共重合体、 プロピレン一 4フッ化工チレン共重合体等が挙げられ、 更に主鎖の水素をアルキル基で置換した含フッ素系ポリマーも用いるこ
20 とができる。 ポリフッ化ビニリデンの場合、 FZCは 1であり、 フッ化 ビニリデン一 3フッ化工チレン共重合体の場合、 フッ化ビニリデンのモ ル分率が 50%の時、 80%の時それぞれ FZCは 1.25、 1.1とな り、 更にプロピレン一 4フッ化工チレン共重合体の場合、 プロピレンの モル分率が 50%の時、 F/Cは 0.75となる。 中でも、 ポリフッ化 ビニリデン、 フッ化ビニリデンのモル分率が 5 0 %以上のフッ化ビニリ デン一 3フッ化工チレン共重合体が好ましく、 実用的にはポリフッ化ビ 二リデンが好ましい。
これらバインダーを用いた場合、 P A Sの有するリチウムのド一プ能 (容量) を充分に利用することができる。
本発明の有機電解質電池の正極としては、 例えば、 L i xC o 02、 L i xN i 02、 L i xM n 02、 L i xF e 02等の L i xMyOz (Mは複数 の原子価をとりうる金属、 二種以上の金属でも良い) の一般式で表され 得る、 リチウムを電気化学的にドープ、 脱ドープが可能なリチウム含有 金属酸化物、 あるいはコバルト、 マンガン、 ニッケル等の遷移金属酸化 物を用いる。 特にリチウム金属に対し 4 V以上の電圧を有するリチウム 含有酸化物が好ましい。 中でも、 リチウム含有コバルト酸化物、 リチウ ム含有ニッケル酸化物が好ましい。
本発明における正極は、 上記金属酸化物、 及び必要に応じて導電材、 バインダーを加え成形したものであり、 導電材、 バインダーの種類、 組 成等は適宜設定すればよい。
導電剤の種類は、 金属ニッケル等の金属粉末でもよいが、 例えば、 活 性炭、 カーボンブラック、 アセチレンブラック、 黒鉛等の炭素系のもの が特に好ましい。 混合比は活物質の電気伝導度、 電極形状等により異な るが、 活物質に対して 2〜4 0 %加えるのが適当である。
また、 バインダーの種類は、 後述の本発明にて用いる電解液に不溶の ものであればよく、 例えば、 S B R等のゴム系バインダー、 ポリ四フッ 化工チレン、 ポリフッ化ビニリデン等の含フッ素系樹脂、 ポリプロピレ ン、 ポリエチレン等の熱可塑性樹脂が好ましく、 その混合比は 2 0 %以 下とするのが好ましい。
本発明に用いる正極、 負極の電極形状は、 目的とする電池により、 板 状、 フィルム状、 円柱状、 あるいは、 金属箔上に成形するなど、 種々の 形状をとることが出来る。 特に、 金属箔上に正極又は負極を膜状又は板 状に成形したものは集電体一体電極として、 種々の電池に応用できるこ とから好ましい。
本発明の電池は、 上記 P A Sを負極に用い、 かつ電池内に含まれるリ チウム量を適切に制御する事により従来の電池に比べ、 容量を大幅に向 上することができる。
本発明において電池内の総リチウム量とは正極由来のリチウム、 電解 液由来のリチウム、 負極由来のリチウムの総計である。
正極由来のリチウムとは、 電池組立時、 正極に含まれるリチウムであ り、 該リチウムの一部もしくは全部は、 外部回路から電流を通ずる操作 (充電等) により、 負極に供給される。 また、 電解液由来のリチウムと は、 セパレ一ター、 正極、 負極等に含まれる電解液中のリチウムである。 また、 負極由来のリチウムとは、 本発明の負極 P A Sに担持されている リチウムである (正極由来のリチウム、 電解液由来のリチウム以外のリ チウムである) 。
リチウムを負極 P A Sに担持させる方法は特に限定しないが、 例えば、 電池を組む前に予めリチウム金属を対極とした電気化学セルにて予め負 極 P A Sにリチウムをドープしたのち電池を組む方法、 リチウム金属を 負極 P A Sに張りつける等の方法で電池内にて負極 P A Sとリチウム金 属を導通させておき、 該電池内でリチウムを P A Sにド一プする等の方 法等が挙げられる。 本発明において電池内の総リチウム量は、 負極 PASに対し 500m AhZg以上、 好ましくは 60 OmAhZg以上であり、 500mAh
/g未満の場合、 容量が充分に得られない。
また、 本発明における負極由来のリチウムは負極 PASに対し 100 mAh/g以上、 好ましくは 15 OmAhZg以上であり、 100mA hZg未満の場合、 たとえ総リチウム量が負極 PASに対し 50 OmA h/g以上であったとしても充分な容量が得られない。
本発明における正極由来のリチウム、 電解液由来のリチウムは上記条 件を満たしていればよいが、 正極由来のリチウムが負極 P A Sに対し 3 0 OmAhZg以上であること、 すなわち正極由来のリチウムが負極 P AS 1 g当り 30 OmAh以上であることが好ましい。
また正極にリチウム含有酸化物を用いる場合は、 負極由来のリチウム は負極 PASに対して 60 OmAhZg以下にすることが有利である。 本発明に用いる電解液を構成する溶媒としては非プロ トン性有機溶媒 が用いられる。 非プロ トン性有機溶媒としては、 例えば、 エチレンカー ボネィ ト、 プロピレンカーボネィ ト、 ジメチルカーボネート、 ジェチル カーボネート、 ァ一ブチロラク トン、 ァセトニトリル、 ジメ トキシエタ ン、 テトラヒ ドロフラン、 ジォキソラン、 塩化メチレン、 スルホラン等 が挙げられ、 更に、 これら非プロ トン性有機溶媒の二種以上の混合液も 用いることができる。
また、 上記の混合又は単一の溶媒に溶解させる電解質は、 リチウムィ オンを生成しうる電解質のいずれでも良い。 このような電解質としては、 例えば L i I、 L i C 104、 L i As F6、 L i BF4、 L i PF6、 又 は L i HF2 等が挙げられる。 上記の電解質及び溶媒は充分に脱水された状態で混合され、 電解液と するのであるが、 電解液中の電解質の濃度は電解液による内部抵抗を小 さくするため少なくとも 0.1モル 以上とするのが好ましく、 通常 0.2-1.5モル £とするのが更に好ましい。
電池外部に電流を取り出すための集電体としては、 例えば、 炭素、 白 金、 ニッケル、 ステンレス、 アルミニウム、 銅等を用いることが出来、 箔状、 ネット状の集電体を用いる場合、 電極を集電体上に成形すること により集電体一体型電極として用いることもできる。
次に図面により本発明の実施態様の一例を説明する。 図 1は本発明に 係る電池の基本構成説明図である。 図 1において、 (1) は正極であり、
(2) は負極である。 (3) 、 (3') は集電体であり、 各電極及び外 部端子 (7) 、 (7') に電圧降下を生じないように接続されている。
(4) は電解液であり、 ドーピングされうるイオンを生成し得る前述の 化合物が非プロ トン性有機溶媒に溶解されている。 電解液は通常液状で あるが漏液を防止するためゲル状又は固体状にして用いることもできる。
(5) は正負両極の接触を防止する事及び電解液を保持する事を目的と して配置されたセパレ一ターである。
該セパレ一ターは、 電解液或は電極活物質等に対し、 耐久性のある連 通気孔を有する電子伝導性のない多孔体であり、 通常ガラス繊維、 ポリ エチレン或はポリプロピレン等からなる布、 不織布或は多孔体が用いら れる。 セパレーターの厚さは電池の内部抵抗を小さくするため薄い方が 好ましいが、 電解液の保持量、 流通性、 強度等を勘案して決定される。 正負極及びセパレーターは電池ケース (6) 内に実用上問題が生じない ように固定される。 電極の形状、 大きさ等は目的とする電池の形状、 性 能により適宜決められる。
本発明の電池形状は上記基本構成を満足する、 コイン型、 円筒型、 角 形、 箱型等が挙げられ、 その形状は特に限定されない。
以上説明したとおり、 本発明の有機電解質電池の特徴及び advantages 5 は、 負極に PAS、 正極に金属酸化物を用い、 かつ電池内のリチウム量、 負極 P A S由来のリチウム量の両者を適切に制御した、 高容量かつ高電 圧の電池である。
本発明の有機電解質電池の基本的な特徴は、 以上説明したとおり、 電 池内に含まれる総リチウム量を 5 OOmAhZg以上とし、 かつ負極由
10 来のリチウム量を 10 OmAhZg以上に制御することであるが、 さら に、 本発明の好ましい態様を述べると以下のとおりである。
(1) 本発明の電池は、 以上述べたとおり、 電池内に含まれるリチウ ム量を適切に制御すると共に、 負極に用いられる P A Sの細孔構造を以 下に述べるように制御することにより従来の電池に比べ、 容量を大幅に i s 向上することができる。
本発明における P A Sへの窒素ガス吸着量は以下のようにして測定す ることができる。 即ち、 ディスクミルで粉砕した平均粒径 15 111の? AS粉体 0.035 gを定容装置 (湯浅アイォニクス製、 ォートソープ 一 1) のサンプルセルに入れ、 液体窒素温度 77° Kにおいて窒素ガス を吸着させる。 得られる吸着等温線から、 吸着ガス層厚み t (A) に対 して吸着ガス量 (c cZg) をプロットする。 t (A) としては以下の 式 (1) を用いる。
13.99 1/2
t (A) = ( ) (1)
log(P/P0) + 0.034 (ここで PZP。は窒素ガスの相対圧力)
本発明においては、 負極に用いられる PASの細孔構造を、 上記の窒 素吸着等温線から得られる、 窒素吸着厚み 1 OAにおける吸着ガス量が 100 c c/g以下、 特に 80 c cZg以下となるように制御すること が好適である。
本発明において PASへの窒素吸着厚み 10 Aにおける吸着ガス量が 100 c cZgを超えた場合、 容量が十分に得られない。
本発明においては、 さらに電池内の総リチウム量は、 負極 PASに対 し 500mAh/g以上、 好ましくは 600mAh/g以上であり、 5 0 OmAhZg未満の場合、 容量が充分に得られない。
また、 本発明における負極由来のリチウム量は負極 P A Sに対し 10 OmAhZg以上、 好ましくは 15 OmAhZg以上であり、 100m Ah/g未満の場合、 たとえ総リチウム量が負極 PASに対し 50 Om A hZg以上であったとしても充分な容量が得られない。
本発明における正極由来のリチウム、 電解液由来のリチウムは上記条 件を満たしていればよいが、 正極由来のリチウムが負極 P A Sに対し 3 0 OmAhZg以上であることが好ましい。
(2) 次に本発明の第 2の好適な態様について述べる。
本発明においては、 芳香族系縮合ポリマーの熱処理物であって、 水素 原子ノ炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造 を有する不溶不融性基体 (以下 PASという) の粉体 (例えば粒状、 粉 末状、 短繊維状等) を、 バインダー、 好ましくはフッ素系バインダーで 成形したものを、 負極として用いることが好適であることは、 既に述べ たとおりである。 かく して、 本発明の負極は上記不溶不融性基体 (PAS) 粉体の成形 物であり、 粉末状、 粒状等の成形しやすい形状にある PAS粉体をバイ ンダ一で成形したものを用い、 該粉体の PASの平均粒径は 20〃m以 下であり、 かつ 50%径を 2 a /zmとした時、 1 a〃m以下の粒径を有 5 する粒子が全体に対し体積比で 10%以上であり、 かつ 4 a /zm以上の 粒径を有する粒子が全体に対し体積比で 10%以上であるもの、 さらに 好ましくは、 50%径を 2 a mとした時、 1 a / m以下の粒径を有す る粒子が全体に対し体積比で 20%以上であり、 かつ 4 a 以上の粒 径を有する粒子が全体に対し体積比で 10%以上であるもの、 特に好ま
10 しくは、 50%径を 2 a〃mとした時、 1 a m以下の粒径を有する粒 子が全体に対し体積比で 20%以上であり、 かつ 4 a m以上の粒径を 有する粒子が全体に対し体積比で 20%以上であるものが有利である。 本発明において、 粒体は粒度分布が広く、 平均粒径が 20 mを越えな いことが、 高容量な電池を得るために有利である。 平均粒径が 20 m i s を越える場合、 あるいは平均粒径は 20〃m以下であったとしても、 5 0%径を 2 a zmとした時、 1 a m以下の粒径を有する粒子が全体に 対し体積比で 10%未満であったり、 4 a 以上の粒径を有する粒子 が全体に対し体積比で 10%未満である場合、 得られる電池の容量が低 くなり好ましくない。
0 ここで、 平均粒径とは、 体積平均径であり、 50 %径とは、 積算分布 曲線の 50%に相当する粒子径である (下記文献を参照されたい) 。 久保輝一郎他編 「粉体理論と応用」 第 450~453頁 (昭和 54年 5月 12曰丸善 (株) 発行)
該粉体の PASは、 例えば、 芳香族系ポリマーの成型体を熱処理する 事によって得られる不溶不融性基体を、 粉砕することにより得ることが できる。 粉砕方法としては、 特に限定されるものではないが、 衝撃、 摩 擦の両粉砕機構を兼ね備えた粉砕機、 例えば、 ポットミル、 振動ミルの 様なボールミルを用いると効率的である。 また、 場合によっては、 得ら れた粉末を分級すること、 更には異なった粒度分布を有する P A S粉を、 2種以上混合する事によっても得られる。
本発明の負極に用いるバインダーとしては、 既に述べたとおり、 フッ 素系バインダーが好ましく、 更にはフッ素原子 炭素原子の原子比 (以 下、 F / Cと記す) が 1 . 5未満 0 . 7 5以上であるフッ素系バインダー が好ましく、 特に、 1 . 3未満 0 . 7 5以上のフッ素系バインダーが好ま しい。
上記フッ素系バインダーとしては、 例えば、 ポリフッ化ビニリデン、 フッ化ビニリデンー 3フッ化工チレン共重合体、 エチレン一 4フッ化工 チレン共重合体、 プロピレン一 4フッ化工チレン共重合体等が挙げられ、 更に主鎖の水素をアルキル基で置換した含フッ素系ポリマーも用いるこ とができる。
本発明の負極は、 既に述べたとおり、 前記 P A Sの粉体を、 バインダ 一で成形したものであるが、 該負極の気孔率は、 2 5 °Cにおいてプロピ レンカーボネートを含浸する事により求められ、 4 0 %以下であるもの が好ましい。 気孔率が 4 0 %を越える場合、 上記の様に P A Sの粒度を、 制御したとしても、 電池とした場合、 充分な容量が得にくい。
本発明で用いる前記負極の気孔率は、 上記のとおり 4 0 %以下が好適 であるが、 本発明者らの経験によれば、 意外にも、 負極の気孔率が 2 5 %程度になっても高容量の電池が得られる。 この事実に照らしてみると、 負極の気孔率は 20%程度であってもよいと思われる。
(3) 以下に本発明の第 3の好適な態様について述べる。
本発明の有機電解質電池の負極としては、
負極が芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子 の原子比が 0.5〜0.05であるポリアセン系骨格構造を有する不溶不 融性基体 (PAS) を熱可塑性バインダーを用いて、 金属箔上に成形し た後、 該熱可塑性バインダ一の融点以上で加熱処理したものが好適であ る。
この熱可塑性バインダーとしては、 既に述べたとおり、 含フッ素ポリ マーバインダー、 特にフッ素原子 炭素原子の原子比が 1.5未満 0.7 5以上である含フッ素系ポリマー、 特にポリフッ化ビニリデンが好適で ある。
これらバインダーを用いた場合、 PASの有するリチウムのドープ能 (容量) を充分に利用することができる。
本発明の負極は、 前記 PASをバインダーで成形したのち、 該バイン ダ一の融点以上で加熱処理する場合、 加熱処理の方法は、 特に限定され ないが、 非酸化性雰囲気下、 融点より 5°Cから 100°C高い温度範囲で 行うのが好ましい。 加熱処理を行わない場合、 例えば、 金属箔上に成形 した負極 P A Sに、 リチウム金属を対極とした電気化学セルにて予めリ チウムをドープしたのち電池を組む場合、 電極の曲げ強度が弱くなる、 電極のはがれが生じやすくなり、 更には組み立てた電池の内部抵抗が上 昇するなどして、 十分な容量が得にく くなる。
本発明において、 ポリアセン系骨格構造を有する不溶不融性基体 (P AS) を熱可塑性バインダ一、 好ましくは含フッ素系ポリマーバインダ —を用いて、 金属箔上に成形するには、 例えば、 上記不溶不融性基体と. 上記含フッ素系ポリマーと、 溶媒又は分散媒とを、 充分に混合し成形す る。 含フッ素系ポリマーの割合は不溶不融性基体の形状、 粒度、 目的と する電極の強度、 形状などにより異なるが、 不溶不融性基体に対し重量 で好ましくは 2 %から 5 0 %、 更に、 好ましくは 5 %から 3 0 %である c 溶媒としては N, N—ジメチルホルムアミ ド、 N—メチルピロリ ドン、 N, N—ジメチルァセトアミ ドなど、 上記含フッ素系ポリマーが溶解可 能な溶媒が好ましい。 上記混合物において、 上記含フッ素系ポリマーが 完全に溶解していても、 一部のみが溶解していても、 特に問題はないが、 含フッ素系ポリマーが完全に溶解していることが、 均質な電極を得るう えで好ましい。 また、 上記混合物の粘度は溶媒の量により制御すること ができ、 例えば高粘度に調整した混合物をシ一ト状にローラー等を用い て成形したり、 低粘度に調整した混合スラリーを金属箔上に塗布、 乾燥、 必要に応じてプレスすることにより例えば 1 0 0 / m以下の極薄電極を 得ることもできる。 特に、 優れた可とう性を求める場合、 塗布成形法が 望ましい。
本発明に用いる正極、 負極の電極形状は、 目的とする電池により、 板 状、 フィルム状、 円筒状、 あるいは、 金属箔上に成形するなど、 種々の 形状をとることが出来るが、 特に、 金属箔上に成形したものは集電体ー 体電極として、 種々の電池に応用できることから好ましい。
( 4 ) 次に本発明の第 4の好適な態様について述べる。
本発明の有機電解質電池においては、 さらに、
i ) 負極が芳香族系縮合ポリマーの熱処理物であって水素原子 炭 素原子の原子比が 0 . 5〜0 . 0 5であるポリアセン系骨格構造を有する 不溶不融性基体 (PAS) であり、
ii) 負極 PASに対し、 電池内に含まれる総リチウム量が 50 Om AhZg以上であり、 かつ負極由来のリチウムが 10 OmAhZg以上 であり、 かつ、
5 iii) 負極由来のリチウムを、 電池組立前に PASにあらかじめ担持 させたもの、
を使用することが好適である。
本発明における負極由来のリチウムとは、 本発明の負極 PASに担持 されているリチウムである (正極由来のリチウム、 電解液由来のリチウ
10 ム以外のリチウムである) 。
本発明の上記の好ましい態様において、 リチウムを負極 PASに担持 させる方法としては、 電池を組む前に予め負極 P A Sにリチウムを担持 することが出来れば、 特に限定されないが、 例えば、 リチウム金属を対 極とした電気化学セルにて、 一定電流を通電する事により、 あるいは定 i s 電圧を印加する事により、 予め負極 PASにリチウムを担持させる事が できる。 電池組み立てた後、 負極 PASにリチウムを担持させた場合、 例えば、 リチウム金属を負極 PASに張りつける等の方法で電池内にて 負極 PASとリチウム金属を導通させておき、 該電池内でリチウムを P ASにドープする等の方法を取る場合、 実用電池としての容量を低下さ 0 せるだけでなく、 電池の内部抵抗が上昇する等により、 好ましくない。
この場合においても、 本発明において電池内の総リチウム量は、 負極 PASに対し 50 OmAhZg以上、 好ましくは 600 m A hZ g以上 であることが有利であり、 50 OmAhZg未満の場合、 容量が充分に 得られない。 また、 本発明における負極由来のリチウムは負極 PASに対し 100 m A h/g以上、 好ましくは 15 OmAhZg以上であり、 10 OmA h/g未満の場合、 たとえ総リチウム量が負極 PASに対し 50 OmA hZg以上であったとしても充分な容量が得られない。 また、 正極にリ 5 チウム含有酸化物を用いる場合においては、 既に述べたとおり、 負極由 来のリチウムは負極 PASに対し 60 OmAhZg以下にすることが、 実用的である。
本発明における正極由来のリチウム、 電解液由来のリチウムは上記条 件を満たしていればよいが、 正極由来のリチウムが負極 P A Sに対し 3 t o 0 OmAh/g以上であることが好ましい。
次に図面により本発明のさらに他の実施態様の一例を説明する。 図 2 は本発明に係る電池の基本構成説明図である。 図 2において、 (1) は 正極であり、 (2) は負極である。 (3) 、 (3') は集電体であり、 電極は該集電体の上に成形されている。 リード端子 (10) 、 (10') 5 は電圧降下を生じないように集電体に接続されており、 その一端は、 電 池ケース (6) 、 トップ蓋 (9) に接続される。 (5) は電解液が含浸 されたセパレ一ターであり、 該電解液には、 ドーピングされうるイオン を生成し得る前述の化合物が非プロ トン性有機溶媒に溶解されている。 電解液は通常液状であり、 セパレーターに含浸されるが、 セパレーター0 なしに、 漏液を防止するためゲル状又は固体状にして用いることもでき る。 (8) は正負両極の接触 (電池ケースと トップ蓋) を阻止する事を 目的として配置された絶縁パッキンである。
該セパレーターは、 電解液或は電極活物質等に対し、 耐久性のある連 通気孔を有する電子伝導性のない多孔体であり、 通常ガラス繊維、 ポリ エチレン或はポリプロピレン等からなる布、 不織布或は多孔体が用いら れる。 セパレーターの厚さは電池の内部抵抗を小さくするため薄い方が 好ましいが、 電解液の保持量、 流通性、 強度等を勘案して決定される。 正負極及びセパレーターは電池ケース (6) 内に実用上問題が生じない ように固定される。 電極の形状、 大きさ等は目的とする電池の形状、 性 能により適宜決められる。
本発明の電池形状は上記例示の、 円筒型に限定されるものではなく、 コイン型、 角形、 箱型等が挙げられ、 その形状は特に限定されない。
(5) 次に本発明の第 5の好適な態様について述べる。
本発明においては、 既に述べたとおり、 正極、 負極並びに電解液とし てリチウム塩の非プロ トン性有機溶媒溶液を備えており、
(1) 正極が金属酸化物を含み、
( 2 ) 負極が芳香族系縮合ポリマーの熱処理物であって水素原子 炭 素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有する 不溶不融性基体 (PAS) を含むものであり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500m AhZg以上であり、 かつ負極由来のリチウムが 1 O OmAhZg以上 である、
有機電解質電池を製造する場合、 上記の負極由来のリチウムを、 L i 金属の電位以下の電位を負極に印加することにより電気化学的に担持さ せることが好適である。
本発明において、 既に述べたとおり、 電池内の総リチウム量とは正極 由来のリチウム、 電解液由来のリチウム、 負極由来のリチウムの総計で め o 正極由来のリチウムとは、 電池組立時、 正極に含まれるリチウムであ り、 該'リチウムの一部もしくは全部は、 外部回路から電流を通ずる操作 (充電等) により、 負極に供給される。 また、 電解液由来のリチウムと は、 セパレ一タ一、 正極、 負極等に含まれる電解液中のリチウムである c
5 また、 負極由来のリチウムとは、 本発明の負極 PASに担持されている リチウムである (正極由来のリチウム、 電解液由来のリチウム以外のリ チウムである) 。
本発明において、 リチウムを負極 PASに担持させる方法は、 電池を 組む前に例えば、 リチウム金属を対極とした電気化学セルにて、 一定電
10 流を通電する事、 あるいは、 定電圧を印加する事、 あるいはその組み合 わせにより、 予め負極 P A Sにリチウムを担持させる事ができる。
本発明においては、 この負極 P A Sにリチウムを予め担持させるに当 つては、 負極 PASにリチウム金属電位に対して、 少なくとも、 一回、 リチウム金属電位以下の電位を印加することが特に有利である。 印加す i s る電圧は、 目標とする負極由来のリチウム量、 PAS、 電極の種類、 形 状、 電解セルの種類、 形状により異なるが、 リチウム金属電位に対して、 OmVから一 100 OmVが好ましく、 更に好ましくは一 10mVから — 300mVである。 重要な事は、 リチウム金属が電析しない様な電位 でかつより低い電圧を選択することが肝要であり、 場合によっては、 最 0 初、 リチウム金属電位以下の電位で、 リチウムを担持させ、 徐々に電圧 を上昇させ、 最終的に正の電位で終了する方法、 あるいは、 最初、 正の 電位で担持させ、 後にリチウム金属電位以下の電位で担持させる事もで きる。
本発明において電池内の総リチウム量は、 負極 PASに対し 500m AhZg以上、 好ましくは 60 OmAhZg以上であり、 500mAh 未満の場合、 容量が充分に得られない。
また、 本発明における負極由来のリチウムは負極 PASに対し 100 mAhZg以上、 好ましくは 15 OmAh/g以上であり、 10 OmA hZg未満の場合、 たとえ総リチウム量が負極 PASに対し 50 OmA hZg以上であったとしても充分な容量が得られない。 また、 正極にリ チウム含有酸化物を用いる場合においては、 負極由来のリチウムは負極
PASに対し 60 OmAhZg以下にすることが、 実用的である。
本発明における正極由来のリチウム、 電解液由来のリチウムは上記条 件を満たしていればよいが、 正極由来のリチウムが負極 P A Sに対し 3 0 OmAhZg以上であることが好ましい。
(6) さらに、 本発明の第 6の好適な態様を以下に述べる。
本発明においては、 前記 (4) で述べた負極由来のリチウムを、 電池 組立前に PASにあらかじめ担持させるに当って、 負極由来のリチウム をリチウム塩の環状カーボネート溶媒溶液を用いて電気化学的に担持さ せる事が特に好適である。
ここで、 リチウム塩とは、 例えば、 L i C 104、 L i As F6、 L i BF4、 L i PF6 等リチウムイオンを生成しうる電解質であり、 環状 カーボネート溶媒とは、 エチレンカーボネート、 プロピレンカーボネー ト等の単一溶媒、 あるいは、 2種以上の混合溶媒を用いることができる。 上記の電解質及び溶媒は充分に脱水された状態で混合され、 電解液とす るのであるが、 電解液中の電解質の濃度は電解液による内部抵抗を小さ くするため少なくとも 0.1モル/ 以上とするのが好ましく、 通常 0. 2〜1.5モル ^とするのが更に好ましい。 予め負極 PASにリチウ ムを担持することが出来れば、 特に限定しないが、 例えば、 上記電解液 を用い、 リチウム金属を対極とした電気化学セルにて、 一定電流を通電 する事により、 あるいは定電圧を印加する事により、 予め負極 P A Sに リチウムを担持させる事ができる。
以上説明した本発明によれば、 製造が容易で、 しかも高容量かつ高電 圧を有する二次電池として使用可能な有機電解質電池が提供される。 さらに、 本発明の有機電解質電池は、 長期にわたって充放電が可能で、 かつ安全性に優れた二次電池を提供する。
また、 本発明の前記の第 1、 第 2、 第 3、 第 4、 第 5及び第 6の好適 な態様を 1つ又はそれ以上組み合わすことにより殊に高容量の二次電池 が提供される。
また、 本発明の前記第 3及び第 4の好適な態様は、 内部抵抗が低く、 かつ高容量の二次電池を提供するので有利である。
さらに、 本発明の前記第 5の好適な態様は、 本発明の上記高容量かつ 高電圧の二次電池をより容易に製造することを可能とする利点を有する。 以下本発明を実施例について説明する。 しかし、 以下の実施例は本発 明の態様を具体的に説明するためのものであって、 本発明は以下の実施 例に何ら制限されたり、 又は拘束されるものではない。
なお、 添付図面第 1図に示した本発明に係る電池の基本構成は以下の とおりである。
1 正極
2 負極
3、 3 '
4 電解液 5 セパレ一ター
6 電池ケース
7、 7' 外部端子
また、 添付第 2図に示した本発明に係る電池の基本構成は以下のとお りである。
1 正極
2 負極
3 集電体 (正極)
3' 集電体 (負極)
8 絶縁パッキン
5 セノ レーター
6 電池ケース
9 トップ蓋
10 端子 (正極)
10' 端子 (負極)
実施例 1
厚さ 0.5 mmのフエノール ·ホルムアルデヒ ド樹脂成形板をシリコ ニット電気炉中に入れ窒素雰囲気下で 10°C/時間の速度で昇温し、 6 50°Cまで熱処理し、 不溶不融性基体 (PASと記す) を合成した。 か く して得られた PAS板をディスクミルで粉砕することにより平均粒径 15〃mの PAS粉体を得た。 HZC比は 0.22であった。
次に上記 PAS粉末 100重量部と、 ポリフッ化ビニリデン粉末 10 重量部を N, N—ジメチルホルムァミ ド 90重量部に溶解した溶液 10 0重量部とを充分に混合する事によりスラリ一を得た。 該スラリーをァ プリケーターを用い厚さ 10 mの銅箔 (負極集電体) 上に塗布し、 加 熱、 乾燥し、 プレスし厚さ 110〃mの PAS負極を得た。
市販の L i C 002 (ストレム社製) 100部、 グラフアイ ト 5部に 対し、 ポリフッ化ビニリデン粉末 10重量部を N, N—ジメチルホルム アミ ド 90重量部に溶解した溶液 50重量部を充分に混合する事により スラリ一を得た。 該スラリーをアプリケータ一を用い厚さ 20〃mのァ ノレミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし、 厚さ 150 の 正極 1を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネートと ジェチルカ一ボネートの 1 : 1 (重量比) 混合液に、 1モル Z £の濃度 にし i PF6 を溶解した溶液を用い、 定電流 (一時間当たり、 負極 PA Sに 3 OmAh/gのリチウムを担持させるような電流を設定) にて負 極 P ASあたり 15 OmAhZg、 20 OmAh/g. 30 OmAh/ gのリチウムをドーピングし担持させた (負極由来のリチウム) 。 それ ぞれ負極 1、 2、 3とした。
上記正極と、 負極 1、 2、 3 (いずれも 1 X 1 cm2) とを用い、 図 1のような電池を 3種類組み立てた。 セパレー夕一としては、 厚さ 25 t mのポリプロピレンセパレーターを用いた。 また電解液としてはプロ ピレンカーボネートとジェチルカーボネートの 1 : 1 (重量比) 混合液 に、 1モル Z£の濃度に L i PF6 を溶解した溶液を用いた。 電池内の 負極 P A Sに対する総リチウム量は表 1に示す。
上記電池に 0.25 mAZ cm2の定電流で電池電圧が 4.3 Vになる まで充電し、 続いて 0.25 mAZ cm2の定電流で電池電圧が 2.5 V になるまで放電した。 この 4.3 V— 2.5 Vのサイクルを繰り返し、 3 回目の放電において、 体積容量 (mAhZc c) にて評価した。 体積基 準としては、 電極体積、 セパレーター体積、 集電体体積の総計を用いた 結果を下記表 1に示す。
Figure imgf000026_0001
実施例 2
実施例 1と同様の方法で厚さ 100 m、 200 ^m. の正極を得た ( それぞれ正極 2、正極 3とした。
負極 2と組み合わせ、 実施例 1と同様の方法で電池を組み、 体積容量 を評価した。 結果を下記表 2に示す。
表 2
Figure imgf000026_0002
比較例 1
実施例 1と同様の方法で厚さ 260 mの正極 4を得た。 負極にはリ チウムを予め担持させない負極 4を用いた。 正極 1、 3、 4と負極 4と を組み合わせ実施例 1と同様の方法で電池を組み、 体積容量を評価した 結果を表 3に示す。
表 3
Figure imgf000027_0001
負極由来のリチウム量が 0の場合、 総リチウム量をいく ら増やしても- 充分な容量が得られなかった。
比較例 2
実施例 1において、 予め担持させるリチウム量を 5 O m A h / gとし て負極 5を得た。 正極 1と組み合わせ、 実施例 1と同様の方法で電池を 組み、 体積容量を評価した。 結果を表 4に示す。
表 4
Figure imgf000027_0002
電池内の総リチウム量が充分であっても、 負極由来のリチウム量 (本 実施例では予めドープしたリチウム) が少ないと充分な容量が得られな かった。
( 1 ) 以下に本発明の第 1の好適な態様の実施例を示す。 実施例 3
キンレン樹脂 (リグナイ ト社製) 50重量部と、 ノボラック (昭和高 分子社製) 50重量部、 キシレンスルホン酸 0.1重量部を 100。Cで 加熱してキシレン変成ノボラック樹脂を得た。 該樹脂 100重量部にへ キサメチレンテトラ ミ ン 10重量部を混合、 粉砕したものを熱プレスに より成形板に成形した。
該キシレン変成ノボラック樹脂成形板をシリコニット電気炉中に入れ 窒素雰囲気下で 10°CZ時間の速度で昇温し、 650°Cまで熱処理し、 不溶不融性基体 (PASと記す) を合成した。 かく して得られた PAS 板をディスクミルで粉砕することにより平均粒径 15 /mの PAS粉体 を得た。 HZC比は 0.22であった。 該 PAS粉体の窒素吸着厚み 1 0人における吸着ガス量は 29 c c/gであった。
次に上記 PAS粉末 100重量部と、 ポリフッ化ビニリデン粉末 10 重量部を N, N—ジメチルホルムァミ ド 90重量部に溶解した溶液 10 0重量部とを充分に混合する事によりスラリーを得た。 該スラリーをァ プリケーターを用い厚さ 10 zmの銅箔 (負極集電体) 上に塗布し、 乾 燥、 プレスし厚さ 110〃mの P A S負極を得た。
市販の L i Co02 (ストレム社製) 100部、 グラフアイ ト 5部に 対し、 ポリフッ化ビニリデン粉末 10重量部、 Ν,Ν—ジメチルホルム アミ ド 90重量部に溶解した溶液 50重量部を充分に混合する事により スラリ一を得た。 該スラリーをアプリケーターを用い厚さ 20〃mのァ ルミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし厚さ 165 /zmの正 極 5を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネー卜と ジェチルカ一ボネートの 1 : 1 (重量比) 混合液に、 1モル Z の濃度 に i PF6を溶解した溶液を用い、 定電流 (一時間当たり、 負極 PA Sに 3 OmAhZgのリチウムを担持させるような電流を設定) にて負 極 P ASあたり 150mAh/g、 20 OmAh/g. 30 OmAh/
5 gのリチウムをドーピングし担持させた (負極由来のリチウム) 。 それ ぞれ負極 6、 7、 8とした。 上記正極と、 負極 6、 7、 8 (いずれも l x l cm2) とを用い、 図 1のような電池を 3種類組み立てた。 セパ レーターとしては、 厚さ 25 zmのポリプロピレンセパレーターを用い た。 また電解液としてはプロピレンカーボネートとジェチルカーボネー
10 卜の 1 : 1(重量比)混合液に、 1モル/ の濃度に L i PF 6を溶解した 溶液を用いた。 電池内の負極 PASに対する総リチウム量は表 5に示す。 上記電池に 0.25 mAZ cm 2の定電流で電池電圧が 4.3 Vになる まで充電し、 続いて 0.25 mAZ cm2の定電流で電池電圧が 2.5 V になるまで放電した。 この 4.3 V— 2.5 Vのサイクルを繰り返し、 3 i s 回目の放電において、 体積容量 (mAhZc c) にて評価した。 体積基 準としては、 電極体積、 セパレーター体積、 集電体体積の総計を用いた。 結果を表 5に示す。 表 5
吸着厚み 1 OA 電池内の 負極由来の
負極 総リチウム量 リチウム量 体積容量
20 (cc/g) (mAh/g) (mAh/g) (raAh/cc)
6 29 990 150 151
7 29 1020 200 157
8 29 1130 300 171 実施例 4
実施例 3において PAS原料の組成をキシレン樹脂 30重量部、 ノボ ラック 70重量部、 及びキシレン樹脂 10重量部、 ノボラック 90重量 部に変えたものを負極に用いた。 これらの負極 PASあたり 30 OmA h/gのリチウムをドーピングし担持させ、 それぞれ負極 9、 負極 10 とした。
実施例 3と同様の方法で電池を組み、 体積容量を評価した。 結果を表 6に示す。
表 6
Figure imgf000030_0001
比較例 3
実施例 3において PAS原料の組成をキシレン樹脂 30重量部、 ノボ ラック 70重量部に変えたものを負極に用いた。 これらの負極のうち 1 つにはリチウムを予め担持させず、 もう 1つには負極 PASあたり 50 mAhZgのリチウムをドーピングし担持させ、 それぞれ負極 11、 1 2とした。
実施例 3と同様の方法で電池を組み、 体積容量を評価した。 結果を表 7に示す。 表 7
Figure imgf000031_0001
比較例 4
実施例 3において、 PAS原料の組成をノボラック 100重量部とへ キサメチレンテトラミ ン 10重量部としたもの、 及び粉末レゾ一ル (昭 和高分子株式会社製 「レジトップ」 ) のみを原料としたものを用いて負 極を作成した。 これらの負極 PASあたり 300mAh//gのリチウム をドーピングし担持させ、 それぞれ負極 13、 14とした。
実施例 3と同様の方法で電池を組み、 体積容量を評価した。 結果を表 Oに不 o
表 8
Figure imgf000031_0002
( 2 ) 以下に本発明の第 2の好適な態様の実施例を示す。
実施例 5 厚さ 0.5關のフユノール樹脂成形板をシリコニッ ト電気炉中に入れ 窒素雰囲気下で 10°CZ時間の速度で昇温し、 650°Cまで熱処理し、 不溶不融性基体 (PASと記す) を合成した。 HZC比は 0.22であつ た。 かく して得られた PAS板をアルミナ性ポッ トミルで粉砕時間を変 える事により、 表 9に示す粒度分布を有する PAS粉体 (No.1、 No.2、 No.3、 No.4) を得た。 粒度分布は、 得られた粉体を水 中に超音波を用い分散させた後、 レーザー回折式粒度分布測定装置を用 い測定した。
表 9
Figure imgf000032_0001
次に上記 PAS粉末 100重量部と、 ポリフッ化ビニリデン粉末 10 重量部を Ν, Ν—ジメチルホルムアミ ド 90重量部に溶解した溶液 10 0重量部とを充分に混合する事によりスラリーを得た。 該スラリーをァ プリケーターを用い厚さ 10 mの銅箔 (負極集電体) 上に塗布し、 乾 燥、 プレスし厚さ 110 zmの PAS負極を得た。 該負極の気孔率は、 25°Cにおいてプロピレンカーボネートを含浸する事により求めた。 使 用したプロピレンカーボネートの密度は、 1.20 gZc c (ピクノメ 一夕で測定)であった。 結果を表 9にまとめて示す。 市販の L i C o 02 (ストレム社製) 100部、 グラフアイ ト 5部に対し、 ポリフツイ匕ビニ リデン粉末 10重量部、 N, N—ジメチルホルムァミ ド 90重量部に溶 解した溶液 50重量部を充分に混合する事によりスラリーを得た。 該ス ラリーをアプリケーターを用い厚さ 20 のアルミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし厚さ 160 zm、 180 /zmの正極 6、 7 を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネートと ジェチルカーボネートの 1 : 1 (重量比) 混合液に、 1モル/ ίの濃度 に i PF6を溶解した溶液を用い、 定電流 (一時間当り、 負極 PAS に 3 OmAhZgのリチウムを担持させるような電流を設定) にて負極 PASあたり 300mAhZgのリチウムをドーピングし担持させた (負 極由来のリチウム) 。
上記正極 6、 7を、 電池内の総リチウム量が負極 PASに対に対し約 l l OOmAhZgとなるように、 負極 15、 16、 17、 18 (いず れも 1 X 1 cm2) と組み合わせ、 図 1のような電池を 5種類組み立て た。 セパレータ一としては、 厚さ 25 /mのポリプロピレンセパレ一タ 一を用いた。 また電解液としてはプロピレンカーボネー卜とジェチルカ —ボネートの 1 : 1 (重量比)混合液に、 1モル の濃度に L i P F6 を溶解した溶液を用いた。 電池内の負極 PASに対する総リチウム量は 表 10に示す。
上記電池に 0.2 SmAZcm2の定電流で電池電圧が 4.3 Vになる まで充電し、 続いて 0.25 mA/ cm2の定電流で電池電圧が 2.5 V になるまで放電した。 この 4.3 V— 2.5 Vのサイクルを繰り返し、 3 回目の放電において、 体積容量 (mAhZc c) にて評価した。 体積基 準としては、 電極体積、 セパレーター体積、 集電体体積の総計を用いた。 結果を同じく表 10に示す。
5 表 10
10
Figure imgf000034_0001
実施例 6
i s 実施例 5と同様の方法で厚さ 240 /zm、 210〃m、 200 //mの 正極 8、 9、 10を得た。 実施例 5と同様の方法で、 負極 17の負極由 来のリチウム量を 0mAhZg、 (比較) 15 OmAhZg及び 200 mAh/g (本発明) とし上記正極と組み合わせ、 実施例 5と同様の方 法で電池を組み、 体積容量を評価した。 結果を表 11に示す。
20
Figure imgf000035_0001
実施例 5と同様の方法で厚さ 150 m、 130^mの正極 11、 1 2を得た。 以下上記 No. 19〜21の負極に 30 OmAhZgの負極 由来のリチウムを実施例 5と同様の方法で担持させ、 実施例 5と同様の 評価をおこなった。 結果を表 13に示す。
表 13
Figure imgf000036_0001
比較例 6
実施例 5の PASNo. 2を用い、 PAS粉末 100重量部と、 ポリ フッ化ビニリデン粉末 10重量部を Ν,Ν—ジメチルホルムアミ ド 90 重量部に溶解した溶液 110重量部とを充分に混合することによりスラ リ一を得た。 該スラリーをアプリケ一ターを用い厚さ 10 /zmの銅箔 (負 極集電体) 上に塗布し、 乾燥、 厚さ 110 zmの PAS負極を得た。 該 負極の気孔率を 25°Cにおいてプロピレンカーボネートを含浸すること により求められた。 気孔率は、 46%であった。
実施例 1と同様の方法で厚さ 130 //mの正極を得た。 以下負極に 3 0 OmAhZgの負極由来のリチウムを実施例 5と同様の方法で担持さ せ、 実施例 5と同様の評価をおこなった。 体積容量は 131 mAh/g あつ 7こ。
(3) 以下に本発明の第 3の好適な態様の実施例を示す。 実施例 7
厚さ 0.5 mmのフユノール樹脂成形板をシリコニッ ト電気炉中に入 れ窒素雰囲気下で 10°C/時間の速度で昇温し、 650°Cまで熱処理し、 不溶不融正基体 (PASと記す) を合成した。 かく して得られた PAS 板をポッ トミルで粉砕することにより平均粒径約 3 /zmを得た。 HZC 比は 0.22であった。
次に上記 PAS粉末 100重量部と、 融点が 1 Ί 2°Cのポリフッ化ビ 二リデン粉末 10重量部を Ν, Ν—ジメチルホルムアミ ド 90重量部に 溶解した溶液 100重量部とを充分に混合することによりスラリーを得 た。 該スラリーをアプリケーターを用い厚さ 10〃mの銅箔 (負極集電 体) 上に塗布し、 乾燥、 プレスし、 両面に PASを塗布した厚さ 210 amの PAS負極を得た。 該 PAS負極を真空下、 100°C、 160°C、 190 °C、 220 °Cで加熱処理し、 負極 22、 23、 24、 25を得た。 市販の L i C o 02 (ストレム社製) 100部、 グラフアイ ト 5部に 対し、 ポリフッ化ビニリデン粉末 10重量部、 N,N—ジメチルホルム アミ ド 90重量部に溶解した溶液 50重量部を充分に混合することによ りスラリ一を得た。 該スラリ一をアプリケ一ターを用い厚さ 20〃mの アルミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし、 両面に L i Co O 2を塗布した厚さ 340 tzmの正極を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネートと ジェチルカーボネートの 1 : 1 (重量比) 混合液に、 1モル/^の濃度 に i PF6を溶解した溶液を用い、 定電流 (一時間当たり、 負極 PA Sに 3 OmAhZgのリチウムを担持させるような電流を設定) にて負 極 PASあたり 300mAhZgのリチウムをドーピングし担持させた (負極由来のリチウム) 。 それぞれ負極 22、 23、 24、 25とした。 上記正極 1、 負極 22、 23、 24、 25 (いずれも 4 x 35 cm2) とを用い、 図 2のような円筒形電池を組んだ。 セパレーターとしては、 厚さ 25〃mのポリプロピレンセパレーターを用いた。 正極端子として は厚さ 150〃m、 幅 5 mmのアルミニウム端子、 負極端子としては正 極と同サイズのニッケルを用い、 それぞれ、 電極の端にとりつけた。 ま た、 電解液としてはプロピレンカーボネートとジェチルカーボネー卜の 1 : 1 (重量比) 混合液に 1モル Z の濃度に L i PF 6を溶解した溶液 を用いた。 電池内の負極 PASに対する総リチウム量はいずれも、 11 7 OmAhZg あった。 ここで、 100°C処理の負極 1を用いた場合、 電極巻き取り時金属箔から電極がはがれ、 電池にならなかった。 上記電池に 0.25 mAZ cm2の定電流で電池電圧が 4.3 Vになる まで充電し、 内部抵抗を測定したのち、 続いて 0.25 mA// cm2の定 電流で電池電圧が 2.5 Vになるまで放電した。 この 4.3V— 2.5V のサイクルを繰り返し、 3回目の放電において、 体積容量 (mAhZc c) にて評価した。 体積基準としては、 電極体積、 セパレーター体積、 集電体体積の総計を用いた。 結果を表 14に示す。 表 14
負極 加熱処理 充電時内部抵抗 体積容量
番号 (°C) (ηιΩ) (mAh/cc)
22 100 巻き取り時電極はがれ
23 160 230 132
24 190 120 168
25 220 120 164 本発明の好ましい実施例である負極 24、 25は、 負極 22、 23に 比べ、 内部抵抗が低く、 体積容量が高い。
比較例 Ί
実施例 7と同様の方法で厚さ 460 //mの正極 2を得た。 正極、 負極 のサイズは (いずれも 4 X 30 cm2) とした。
負極由来のリチウムを OmAhZgとして、 負極 22、 23、 24、 25と組み合わせ、 実施例 7と同様の方法で電池を組み、 体積容量を評 価した。 電池内の負極 PASに対する総リチウム量はいずれも、 109 OmAh/gであった。 結果を表 15に示す。
丄 o
Figure imgf000039_0001
(4) 以下に本発明の第 4の態様の実施例を示す。
実施例 8
厚さ 0.5mmのフエノール樹脂成形板をシリコニッ ト電気炉中に入 れ窒素雰囲気下で 10°CZ時間の速度で昇温し、 650°Cまで熱処理し、 不溶不融性基体 (PAS) を合成した。 かく して得られた PAS板をディ スクミルで粉砕することにより平均粒径約 15 の PAS粉体を得た。 11/ /0比は0.22であった。 次に上記 P A S粉末 100重量部と、 ポリフッ化ビニリデン粉末 10 重量部を N, N—ジメチルホルムァミ ド 90重量部に溶解した溶液 10
0重量部とを充分に混合することによりスラリーを得た。 該スラリーを アプリケ—ターを用い厚さ l O^mの銅箔 (負極集電体) 上に塗布し、 乾燥、 プレスし、 両面に P A Sを塗布した厚さ 210〃mの PAS負極 を得た。
市販の L i C o02 (ストレム社製) 100部、 グラフアイ ト 5部に 対し、 ポリフッ化ビニリデン粉末 10重量部を Ν,Ν—ジメチルホルム ァミ ド 90重量部に溶解した溶液 50重量部を充分に混合することによ りスラリーを得た。 該スラリーをアプリケ一夕一を用い厚さ 20〃mの アルミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし、 両面に L i Co 02を塗布した厚さ 280 mの正極を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネートと ジェチルカーボネートの 1 : 1 (重量比) 混合液に、 1モル/ の濃度 に i PF6を溶解した溶液を用い、 定電流 (一時間当たり、 負極 PA Sに 3 OmAhZgのリチウムを担持させるような電流を設定) にて負 極 PASあたり 30 OmAhZgのリチウムをドーピングし担持させた (負極由来のリチウム) 。
上記正極、 負極 (いずれも 4 X 35 cm2) とを用い、 図 2のような 円筒形電池を組んだ。 セパレーターとしては、 厚さ 25〃mのポリプロ ピレンセパレーターを用いた。 正極端子としては厚さ 150 /m、 幅 5 mmのアルミニウム端子、 負極端子としては正極と同サイズのニッゲル を用い、 それぞれ、 電極の端にとりつけた。 また電解液としてはプロピ レンカーボネートとジェチルカ一ボネー卜の 1 : 1 (重量比) 混合液に、 1モルノ の濃度に L i P F 6を溶解した溶液を用いた。 電池内の負極 P A Sに対する総リチウム量は、 1040mA hZgであった。
上記電池に 0.25 mAZ cm 2の定電流で電池電圧が 4.3 Vになる まで充電し、 内部抵抗を測定したのち、 続いて 0.2 SmAZcm2の定 電流で電池電圧が 2.5 Vになるまで放電した。 この 4.3V— 2.5V のサイクルを繰り返し、 3回目の放電において、 体積容量 (mAhZc c) にて評価した。 体積基準としては、 電極体積、 セパレータ一体積、 集電体体積の総計を用いた。 結果を表 16に示す。
比較例 8
実施例 8と同様の方法で厚さ 380 /mの正極を得た。 正極、 負極の サイズは (いずれも 4 X 30 cm2) とした。
負極由来のリチウムを OmAhZgとして、 実施例 8と同様の方法で 電池を組み、 体積容量を評価した。 電池内の負極 PASに対する総リチ ゥム量は、 101 OmA hZgであった。 結果を表 16に示す。
比較例 9
実施例 8において、 30 OmAhZg量のリチウム金属 (約 12 m) を、 負極 PASに、 はりつけ、 以下実施例 8と同様の円筒型電池を 2本 組んだ。 3日間室温にて、 放置後、 1本を分解したところ、 完全にリチ ゥム金属は無くなつていた。 実施例 8と同様にし、 体積容量を評価した。 この電池の総リチウム量は 104 OmA hZgであった。 結果を表 16 に示す。
負極由来のリチウム量が 0の場合は十分な容量が得られず、 電池内で 負極由来のリチウムを担持させた場合、 電池の内部抵抗が上昇し、 電池 容量が低下した。 実施例 9
実施例 8において、 リチウム金属 (約 200〃m) を、 負極 PASに, はりつけ、 厚さ 2mmのポリプロピレン板に挟み、 実施例 1と同様の電 解液中にて、 負極由来のリチウムを担持させた。 約 40分間でリチウム 金属を PAS負極からはがしたところ、 300mAhZgのリチウムを ドープすることができた。 以下実施例 8と同様の円筒型電池を組み、 実 施例 8と同様にし、 体積容量を評価した。 この電池の総リチウム量は 1 040mA hZgであった。 結果を評価 16に示す。
実施例 10
実施例 8において、 対局リチウム金属 (約 20 Q /m) と負極 PAS を短絡することにより、 負極 PASに、 負極由来のリチウムを担持させ た。 約 35分間で 300mAh/gのリチウムをドープすることができ た。 以下実施例 8と同様の円筒型電池を組み、 実施例 8と同様にし、 体 積容量を評価した。 この電池の総リチウム量は 104 OmAhZgであつ た。 結果を表 16に示す。
表 16
Figure imgf000042_0001
( 5 ) 以下に本発明の第 5の好適な態様の実施例を示す c 実施例 11
厚さ 0.5 mmのフ ノール樹脂成形板をシリコニッ ト電気炉中に入 れ窒素雰囲気下で 10°CZ時間の速度で昇温し、 650°Cまで熱処理し, 不溶不融性基体 (PASと記す) を合成した。 かく して得られた PAS 板をディスク ミルで粉砕することにより平均粒径約 15 mの PAS粉 体を得た。 HZC比は 0.22であった。
次に上記 PAS粉末 100重量部と、 ポリフッ化ビ二リデン粉末 10 重量部を Ν, Ν—ジメチルホルムアミ ド 90重量部に溶解した溶液 10 0重量部とを充分に混合する事によりスラリーを得た。 該スラリーをァ プリケーターを用い厚さ 10 の銅箔 (負極集電体) 上に塗布し、 乾 燥、 プレスし、 両面に P A Sを塗布した厚さ 210〃mの PAS負極を
1守た o
市販の L i Co02 (ストレム社製) 100部、 グラフアイ ト 5部に 対し、 ポリフッ化ビニリデン粉末 10重量部、 N,N—ジメチルホルム ァミ ド 90重量部に溶解した溶液 50重量部を充分に混合する事により スラリ一を得た。 該スラリ一をアプリケーターを用い厚さ 20〃mのァ ルミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし、 両面に LiCo02 を塗布した厚さ 280 mの正極を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネートと ジェチルカーボネートの 1 : 1 (重量比) 混合液に、 1モル £の濃度 にし i PF6を溶解した溶液を用い、 リチウム参照極を有する電解セル を組んだ。 リチウム参照極に対して、 PAS負極が、 +20mV、 0m V、 一 20mV、 一 50mV、 一 100 m Vとなるように、 定電圧を印 加し、 300mAhZg (負極由来のリチウム) が担持できる時間を測 定した。 結果を表 17に示す。
上記正極 1、 負極 (いずれも 1 X 1 cm2) とを用い、 図 1のような 電池を組んだ。 セパレータ一としては、 厚さ 25〃mのポリプロピレン セパレーターを用いた。 電池内の負極 p A Sに対する総リチウム量は、 104 OmAhZgであった。
上記電池に 0.25 mAZ cm2の定電流で電池電圧が 4.3 Vになる まで充電し、 続いて 0.25mAZcm2の定電流で電池電圧が 2.5 V になるまで放電した。 この 4.3— 2.5 Vのサイクルを繰り返し、 3回 目の放電において、 体積容量 (mAhZc c) にて評価した。 体積基準 としては、 電極体積、 セパレ一ター体積、 集電体体積の総計を用いた。 結果を表 17に示す。
表 17
Figure imgf000044_0001
比較例 10
実施例 11において、 リチウム金属 (約 200 m) を、 負極 PAS に、 はりつけ、 厚さ 2 mmのポリプロピレン板に挟み、 実施例 1と同様 の電解液中にて、 負極由来のリチウムを担持させた。 約 40分間でリチ ゥム金属を P A S負極からはがしたところ、 300mAhZgのリチウ ムをドープすることができた。 負の電圧を印加した場合に比べ時間がか 力、る。
比較例 11
実施例 11において、 対局リチウム金属 (約 200 zm) と負極 PA Sを短絡することにより、 負極 PASに、 負極由来のリチウムを担持さ せた。 約 35分間で 30 OmA hZgのリチウムをドープすることがで きた。 負の電圧を印加した場合に比べ時間がかかる。
比較例 12 ,
厚さ 0.5 mmのフェノール樹脂成形板をシリコニッ ト電気炉中に入 れ窒素雰囲気下で 10°CZ時間の速度で昇温し、 1000°Cまで熱処理 し、 炭素質材料を得た。 かく して得られた PAS板をディスクミルで粉 砕することにより平均粒径約 13 の炭素質材料粉末を得た。 HZC 比は 0.02であった。
該炭素質材料を実施例 11と同様の方法で電極とし、 負極由来のリチ ゥムを、 実施例 11と同様の方法でリチウムを担持させた。 +2 OmV の場合、 担持にかかった時間は 50分、 OmVの場合、 担持にかかった 時間は 45分であり— 2 OmV、 - 5 OmV. 一 10 OmVを印加した 場合、 負極炭素材料上にリチウム金属が析出した。 そのまま放置したと ころ、 リチウム金属は約 30時間後には消えていたが、 負極由来のリチ ゥムの担持方法として実用的であるとはいえない。
また、 +2 OmVで作成した負極を用い実施例 11と同様の電池を組 み、 評価したところ、 3サイクル終了後、 負極上に大量のリチウム金属 が析出していた。
( 6 ) 以下に本発明の第 6の好適な態様の実施例を示す。
実施例 12
厚さ 0.5mmのフエノール樹脂成形板をシリコニッ ト電気炉中に入 れ窒素雰囲気下で 10°CZ時間の速度で昇温し、 650°Cまで熱処理し- 不溶不融性基体 (PASと記す) を合成した。 かく して得られた PAS 板をディスクミルで粉砕することにより平均粒径約 15 の PAS粉 体を得た。 HZCiiは 0.22であった。
次に上記 PAS粉末 100重量部と、 ポリフッ化ビ二リデン粉末 10 重量部を Ν,Ν—ジメチルホルムアミ ド 90重量部に溶解した溶液 10 0重量部とを充分に混合する事によりスラリーを得た。 該スラリーをァ プリケーターを用い厚さ 10 //mの銅箔 (負極集電体) 上に塗布し、 乾 燥、 プレスし、 両面に PASを塗布した厚さ 210 zmの PAS負極を た。
市販の L i C 002 (ストレム社製) 100部、 グラフアイ ト 5部に 対し、 ポリフッ化ビニリデン粉末 10重量部、 N, N—ジメチルホルム ァミ ド 90重量部に溶解した溶液 50重量部を充分に混合する事により スラリ一を得た。 該スラリーをアプリケーターを用い厚さ 20 mのァ ノレミ箔 (正極集電体) 上に塗布し、 乾燥、 プレスし、 両面に LiCo02 を塗布した厚さ 280 mの正極を得た。
上記負極をリチウムを対極とし、 電解液にプロピレンカーボネー卜と ジェチルカーボネー卜に、 1モル £の濃度に L i P F 6を溶解した溶 液を用い、 定電流 (一時間当たり、 負極 PASに 30mAhZgのリチ ゥムを担持させるような電流を設定) にて負極 PASあたり 300mA hZgのリチウムをドーピングし担持させた (負極由来のリチウム) 。 上記正極、 負極 (いずれも 1 X 1 cm2) とを用い、 図 1のような電 池を組んだ。 セパレーターとしては、 厚さ 25 /mのポリプロピレンセ パレ—ターを用いた。 また電解液としてはプロピレンカーボネートとジ ェチルカーボネートの 1 : 1 (重量比) 混合液に、 1モルノ の濃度に L i PF6を溶解した溶液を用いた。 電池内の負極 PASに対する総リ チウム量は、 104 OmAhZgであった。
上記電池に 0.25 mAZ cm2の定電流で電池電圧が 4.3 Vになる まで充電し、 続いて 0.25 mA/ cm2の定電流で電池電圧が 2.5 V になるまで放電した。 この 4.3 V— 2.5 Vのサイクルを繰り返し、 3 回目の放電において、 体積容量 (mAhノ c c) にて評価したところ、 169mAh/c cであった。 体積基準としては、 電極体積、 セパレ一 ター体積、 集電体体積の総計を用いた。
比較例 13
負極由来のリチウムを、 プロピレンカーボネートとジェチルカーボネ 一卜の 1 : 1 (重量比) 混合液に、 1モル ίの濃度に L i P F 6を溶 解した溶液を用いる以外は実施例 1と同様の方法で電池を組み、 体積容 量を評価したところ、 155mA c cであった。
実施例 13
負極由来のリチウムを、 プロピレンカーボネートとエチレンカーボネ 一卜の 1 : 1 (重量比) 混合液に、 1モル Z の濃度に L i P F6を溶 解した溶液を用いる以外は実施例 12と同様の方法で電池を組み、 体積 容量を評価したところ、 167mAhZc cであった。
実施例は比較例に対し、 約 1割容量が高い。

Claims

請求の範囲
1. 正極、 負極並びに電解液としてリチウム塩の非プロ トン性有機溶媒 溶液を備えた有機電解質電池であって、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって水素原子 炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有す る不溶不融性基体 (PAS) であり、
( 3 ) 上記負極のポリァセン系骨格構造を有する不溶不融性基体に 対し、 電池内に含まれる総リチウム量が 50 OmAhZg以上であり、 かつ負極由来のリチウムが 10 OmAhZg以上である、
ことを特徴とする有機電解質電池。
2. 負極がポリァセン系骨格構造を有する不溶不融性基体とバインダー より成る成形体であり、 バインダ一がフッ素原子 炭素原子の原子比が 1.5未満 0.75以上である含フッ素系ポリマーである請求の範囲第 1 項記載の有機電解質電池。
3. 含フッ素系ポリマーがポリフッ化ビニリデンである請求の範囲第 2 項記載の有機電解質電池。
4. リチウム含有金属酸化物を正極とするものである請求の範囲第 1項 記載の有機電解質電池。
5. 正極、 負極並びに電解液としてリチウム塩の非プロ トン性有機溶媒 溶液を備えており、
(1) 正極が金属酸化物を含むものであり、
( 2 ) 負極が芳香族系縮合ポリマーの熱処理物であって水素原子 Z 炭素原子の原子比が 0.5〜0.05であるポリァセン系骨格構造を有す る不溶不融性基体 (PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAhZg以上であり、 かつ負極由来のリチウムが 100mAh/g以 上である、
有機電解質電池であって、
該ポリアセン系骨格構造を有する不溶不融性基体 (PAS) が、 窒素 吸着等温線から得られる、 窒素吸着厚み 1 OAにおける吸着ガス量が 1 00 c cZg以下であることを特徴とする有機電解質電池。
6. 正極、 負極並びに電解液としてリチウム塩の非プロトン性有機溶媒 溶液を備えており、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって水素原子 炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有す る不溶不融性基体 (PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAhZg以上であり、 かつ負極由来のリチウムが 1 OOmAhZg以 上である、
有機電解質電池であって、
該ポリアセン系骨格構造を有する不溶不融性基体 (PAS) は、 平均粒 径 20 /m以下であり、 かつ 50%径を 2 a zmとした時、 l a m以 下の粒径を粒子が体積比で 10 %以上であり、 かつ 4 a m以上の粒径 を有する粒子が体積比で 10%以上であり、 かつ負極の気孔率が 40% 以下である、
ことを特徴とする有機電解質電池。
7. 正極、 負極並びに電解液としてリチウム塩の非プロ トン性有機溶媒 溶液を備えており、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって、 水素原子 ノ炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有 する不溶不融性基体 (PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAh/g以上であり、 かつ負極由来のリチウムが 1 O OmAhZg以 上である、
有機電解質電池であって、
該負極は、 該ポリアセン系骨格構造を有する不溶不融性基体 (PAS) を熱可塑性バインダーを用いて、 金属箔上に成形した後、 該熱可塑性バ ィンダ一の融点以上で加熱処理したものである、
ことを特徴とする有機電解質電池。
8. 正極、 負極並びに電解液としてリチウム塩の非プロ トン性有機溶媒 溶液を備えており、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって、 水素原子 Z炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有 する不溶不融性基体 (PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAh/g以上であり、 かつ負極由来のリチウムが 100mAh/g以 上である、
有機電解質電池であって、 該負極由来のリチウムが、 電池組立前に PASに予め担持させたもので ある、
ことを特徴とする有機電解質電池。
9. 正極、 負極並びに電解液としてリチウム塩の非プロ トン性有機溶媒 溶液を備えており、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって、 水素原子 炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有 する不溶不融性基体 (PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAhZg以上であり、 かつ負極由来のリチウムが 1 O OmAhZg以 上である、
有機電解質電池であって、
負極由来のリチウムは、 L i金属の電位以下の電位を印加することによ り電気化学的に担持させたものである、
ことを特徴とする有機電解質電池。
10. 正極、 負極並びに電解液としてリチウム塩の非プロトン性有機溶 媒溶液を備えており、
( 1 ) 正極が金属酸化物を含むものであり、
(2) 負極が芳香族系縮合ポリマーの熱処理物であって、 水素原子 炭素原子の原子比が 0.5〜0.05であるポリアセン系骨格構造を有 する不溶不融性基体 (PAS) であり、
(3) 負極 PASに対し、 電池内に含まれる総リチウム量が 500 mAhZg以上であり、 かつ負極由来のリチウムが 1 OOmAhZg以 上である、
有機電解質電池であって、
負極由来のリチウムをリチウム塩の環状カーボネート溶媒溶液を用いて 電気化学的に担持させたものである、
ことを特徴とする有機電解質電池。
11. 負極がポリアセン系骨格構造を有する不溶不融性基体 (PAS) とバインダ一より成る成形体であり、 バインダ一がフッ素原子/炭素原 子の原子比が 1.5未満 0.75以上である含フッ素ポリマ一である請求 の範囲第 2項〜第 10項のいずれかによる有機電解質電池。
12. 負極がポリアセン系骨格構造を有する不溶不融性基体 (PAS) とバインダ一より成る成形体であり、 バインダ一である含フッ素系ポリ マーがポリフッ化ビニリデンである請求の範囲第 2項〜第 10項のいず れかによる有機電解質電池。
13. 正極が、 リチウム含有金属酸化物である請求の範囲第 2項〜第 1 0項のいずれかによる有機電解質電池。
PCT/JP1994/001557 1993-09-22 1994-09-22 Organic electrolyte cell WO1995008852A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019960701479A KR100280252B1 (ko) 1993-09-22 1994-09-22 유기 전해질 전지
US08/619,489 US5750287A (en) 1993-09-22 1994-09-22 Organic electrolytic cell
EP94927083A EP0721230B1 (en) 1993-09-22 1994-09-22 Organic electrolyte cell
CA002172378A CA2172378C (en) 1993-09-22 1994-09-22 Organic electrolytic cell
DE69425330T DE69425330T2 (de) 1993-09-22 1994-09-22 Organische elektrolytzelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/259403 1993-09-22
JP25940393 1993-09-22

Publications (1)

Publication Number Publication Date
WO1995008852A1 true WO1995008852A1 (en) 1995-03-30

Family

ID=17333644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001557 WO1995008852A1 (en) 1993-09-22 1994-09-22 Organic electrolyte cell

Country Status (6)

Country Link
US (1) US5750287A (ja)
EP (1) EP0721230B1 (ja)
KR (1) KR100280252B1 (ja)
CA (1) CA2172378C (ja)
DE (1) DE69425330T2 (ja)
WO (1) WO1995008852A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033227A1 (fr) * 1997-01-27 1998-07-30 Kanebo Limited Batterie electrolytique organique
JP2002063892A (ja) * 2000-08-14 2002-02-28 Kansai Research Institute 非水系二次電池
US6740454B1 (en) 1998-07-27 2004-05-25 Kanebo Limited Organic electrolytic cell with a porous current collector
WO2004059672A1 (ja) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha 蓄電装置および蓄電装置の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379843B1 (en) * 1996-06-14 2002-04-30 Hitachi Maxwell, Ltd. Nonaqueous secondary battery with lithium titanium cathode
JP3877488B2 (ja) * 2000-03-22 2007-02-07 三洋電機株式会社 アルカリ蓄電池用電極の製造方法
WO2002082571A1 (en) * 2001-04-03 2002-10-17 Le Carbone Lorraine Electrochemical cells and method of making the same
JP4369129B2 (ja) 2001-04-27 2009-11-18 太陽誘電株式会社 有機電解質電池
KR20140135777A (ko) * 2012-05-31 2014-11-26 가부시끼가이샤 히다치 세이사꾸쇼 리튬 이온 이차전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112264A (ja) * 1983-11-18 1985-06-18 Sanyo Chem Ind Ltd 負極材および電池
JPS60170163A (ja) * 1984-02-10 1985-09-03 Kanebo Ltd 有機電解質電池
JPS63102166A (ja) * 1986-10-20 1988-05-07 Mitsubishi Gas Chem Co Inc 2次電池
JPS63298963A (ja) * 1987-05-29 1988-12-06 Toshiba Battery Co Ltd 非水溶媒二次電池用負極体の製造方法
JPH03252065A (ja) * 1990-02-28 1991-11-11 Sony Corp 非水電解液二次電池
JPH04109553A (ja) * 1990-08-29 1992-04-10 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH04206276A (ja) * 1990-11-29 1992-07-28 Sanyo Electric Co Ltd 非水電解液二次電池
JPH04284374A (ja) * 1991-03-13 1992-10-08 Sony Corp 非水電解液二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601849A (en) * 1981-06-15 1986-07-22 Kanebo, Ltd. Electrically conductive organic polymeric material and process for production thereof
US4615960A (en) * 1984-01-19 1986-10-07 Kanebo, Ltd. Insoluble and infusible substrate with a polyacene-type skeletal structure, and its applications for electrical conductor or organic cell
US4628015A (en) * 1984-09-20 1986-12-09 Kanebo, Ltd. Insoluble and infusible substrate with a polyacene-type skeletal structure, and its applications for electrical conductor and organic cell
US5243004A (en) * 1990-03-19 1993-09-07 Fuji Photo Film Co., Ltd. Electron conductive high molecular compounds and electric conductive materials using them
JP3162437B2 (ja) * 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 非水電解質二次電池
JP3077218B2 (ja) * 1991-03-13 2000-08-14 ソニー株式会社 非水電解液二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112264A (ja) * 1983-11-18 1985-06-18 Sanyo Chem Ind Ltd 負極材および電池
JPS60170163A (ja) * 1984-02-10 1985-09-03 Kanebo Ltd 有機電解質電池
JPS63102166A (ja) * 1986-10-20 1988-05-07 Mitsubishi Gas Chem Co Inc 2次電池
JPS63298963A (ja) * 1987-05-29 1988-12-06 Toshiba Battery Co Ltd 非水溶媒二次電池用負極体の製造方法
JPH03252065A (ja) * 1990-02-28 1991-11-11 Sony Corp 非水電解液二次電池
JPH04109553A (ja) * 1990-08-29 1992-04-10 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH04206276A (ja) * 1990-11-29 1992-07-28 Sanyo Electric Co Ltd 非水電解液二次電池
JPH04284374A (ja) * 1991-03-13 1992-10-08 Sony Corp 非水電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0721230A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033227A1 (fr) * 1997-01-27 1998-07-30 Kanebo Limited Batterie electrolytique organique
EP0964468A1 (en) * 1997-01-27 1999-12-15 Kanebo Ltd. Organic electrolytic battery
EP0964468A4 (en) * 1997-01-27 2004-09-29 Kanebo Ltd ORGANIC ELECTROLYTIC BATTERY
US6740454B1 (en) 1998-07-27 2004-05-25 Kanebo Limited Organic electrolytic cell with a porous current collector
JP2002063892A (ja) * 2000-08-14 2002-02-28 Kansai Research Institute 非水系二次電池
WO2004059672A1 (ja) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha 蓄電装置および蓄電装置の製造方法
JPWO2004059672A1 (ja) * 2002-12-26 2006-05-11 富士重工業株式会社 蓄電装置および蓄電装置の製造方法
US8152865B2 (en) 2002-12-26 2012-04-10 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and manufacturing method of the same

Also Published As

Publication number Publication date
KR960705378A (ko) 1996-10-09
DE69425330T2 (de) 2000-12-28
EP0721230A4 (en) 1998-09-02
US5750287A (en) 1998-05-12
DE69425330D1 (de) 2000-08-24
EP0721230A1 (en) 1996-07-10
EP0721230B1 (en) 2000-07-19
KR100280252B1 (ko) 2001-02-01
CA2172378C (en) 2001-05-29
CA2172378A1 (en) 1995-03-30

Similar Documents

Publication Publication Date Title
WO1998033227A1 (fr) Batterie electrolytique organique
JP2001345100A (ja) リチウム二次電池負極用炭素質粒子、その製造方法、リチウム二次電池負極及びリチウム二次電池
WO1995008852A1 (en) Organic electrolyte cell
JP3218285B2 (ja) 有機電解質電池
JP2920079B2 (ja) 有機電解質電池
JP3403856B2 (ja) 有機電解質電池
JP2627033B2 (ja) 有機電解質電池の製造方法
JPH08162161A (ja) 有機電解質電池
JPH0864251A (ja) 有機電解質電池
JP2869191B2 (ja) 有機電解質電池
JPH09102328A (ja) 有機電解質電池
JPH08162159A (ja) 有機電解質電池
JP2869354B2 (ja) 有機電解質電池
JP2556408B2 (ja) 有機電解質電池
JPH09102301A (ja) 有機電解質電池
JP2920070B2 (ja) 有機電解質電池
JP2869355B2 (ja) 有機電解質電池
JP3403857B2 (ja) 有機電解質電池
JP3403894B2 (ja) 有機電解質電池
JP2556407B2 (ja) 有機電解質電池
JP2912517B2 (ja) 有機電解質電池
JPH0864248A (ja) 有機電解質電池
JP3078229B2 (ja) 有機電解質電池
JP2955192B2 (ja) 有機電解質電池用電極
JP2614724B2 (ja) 金属硫化物複合物を正極とする有機電解質電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2172378

Country of ref document: CA

Ref document number: 08619489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994927083

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994927083

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994927083

Country of ref document: EP