US20060251670A1 - Multiple variants of meningococcal protein nmb1870 - Google Patents
Multiple variants of meningococcal protein nmb1870 Download PDFInfo
- Publication number
- US20060251670A1 US20060251670A1 US10/536,215 US53621505A US2006251670A1 US 20060251670 A1 US20060251670 A1 US 20060251670A1 US 53621505 A US53621505 A US 53621505A US 2006251670 A1 US2006251670 A1 US 2006251670A1
- Authority
- US
- United States
- Prior art keywords
- protein
- seq
- composition
- amino acid
- acid sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- SAFPFSIUNJJUSQ-VLQATZTDSA-N [H]C(NC)[C@]([H])(N=[Ac])C([H])(C)[C@]([H])(C)C([H])([Y])CC(C)(C)C.[H]C1(CC(C)(C)C)O[C@]([H])(O)[C@]([H])(N=[Ac])C([H])(C)[C@]1([H])C Chemical compound [H]C(NC)[C@]([H])(N=[Ac])C([H])(C)[C@]([H])(C)C([H])([Y])CC(C)(C)C.[H]C1(CC(C)(C)C)O[C@]([H])(O)[C@]([H])(N=[Ac])C([H])(C)[C@]1([H])C SAFPFSIUNJJUSQ-VLQATZTDSA-N 0.000 description 2
- SMPCRBDKKLGVFI-YGDXNXRRSA-N [H]C1OC([H])(COP(=O)(O)O[C@@]2([H])OC([H])(COP(=O)(O)O)[C@@]([H])(C)C([H])(C)[C@@]2([H])N=[Ac])[C@@]([H])(C)C([H])(C)[C@@]1([H]OP(=O)(O)O[3H])N=[Ac] Chemical compound [H]C1OC([H])(COP(=O)(O)O[C@@]2([H])OC([H])(COP(=O)(O)O)[C@@]([H])(C)C([H])(C)[C@@]2([H])N=[Ac])[C@@]([H])(C)C([H])(C)[C@@]1([H]OP(=O)(O)O[3H])N=[Ac] SMPCRBDKKLGVFI-YGDXNXRRSA-N 0.000 description 2
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/095—Neisseria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/102—Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/22—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/285—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pasteurellaceae (F), e.g. Haemophilus influenza
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- This invention is in the field of vaccination and, in particular, vaccination against disease caused by pathogenic bacteria in the genus Neisseria, such as N. meningitidis (meningococcus).
- Neisseria meningitidis is a Gram-negative encapsulated bacterium which colonises the upper respiratory tract of approximately 10% of human population. Approximately once in every 10,000 colonised people (or once in 100,000 population) the bacterium enters the blood stream where it multiplies and causes sepsis. From the blood stream the bacterium can cross the blood-brain barrier and cause meningitis. Both diseases are devastating and can kill 5-15% of affected children and young adults within hours, despite the availability of effective antibiotics. Up to 25% of those who survive are left with permanent sequelae.
- NMB1870 One of the ⁇ 2200 proteins disclosed in reference 2 is ‘NMB1870’.
- the protein was originally disclosed as protein ‘741’ from strain MC58 [SEQ IDs 2535 & 2536 in ref. 8; SEQ ID 1herein], and has also been referred to as ‘GNA1870’ [following ref. 3] or as ‘ORF2086’ [13].
- NMB1870 is an extremely effective antigen for eliciting anti-meningococcal antibody responses, and that it is expressed across all meningococcal serogroups.
- NMB1870 has been found in all meningococcal strains tested to date. Forty-two different meningococcal NMB1870 sequences have been identified, and it has been found that these sequences group into three variants. Furthermore, it has been found that serum raised against a given variant is bactericidal within the same variant group, but is not active against strains which express one of the other two variants i.e. there is intra-variant cross-protection, but not inter-variant cross-protection. For maximum cross-strain efficacy, therefore, more than one variant should be used for immunising a patient.
- the invention therefore provides a composition comprising at least two of the following antigens:
- the invention also provides the use of NMB1870 for providing immunity against multiple (e.g. 2, 3, 4, 5 or more) strains and/or serogroups of N. meningitidis.
- the value of a is at least 85 e.g. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, or more.
- the value of b is at least 85 e.g. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, or more.
- c is at least 85 e.g. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, or more.
- the value of x is at least 7 e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,-29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250).
- the value of y is at least 7 e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250).
- the value of z is at least 7 e.g.
- any given amino acid sequence will not fall into more than one of categories (a), (b) and (c). Any given NMB1870 sequence will thus fall into only one of categories (a), (b) and (c). It is thus preferred that: protein (a) has less than i% sequence identity to protein (b); protein (a) has less than j% sequence identity to protein (c); and protein (b) has less than k% sequence identity to protein (c).
- the value of i is 60 or more (e.g.
- j is 60 or more (e.g.
- k is 60 or more (e.g., 60, 62, 63, 64, 65, 66, 67, 68, 69,.70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, etc.) and is at most b.
- the value of k is 60 or more (e.g.
- the values of i,j and k are not intrinsically related to each other.
- protein (a) might have >85% sequence identity to SEQ ID 24
- protein (b) might have >85% sequence identity to SEQ ID 33, but protein (a) and (b) have less than 75% sequence identity to each other.
- Proteins (a) and (b) are therefore each closely related to their ‘prototype’ sequences, but they are not so closely related to each other.
- protein (a) might have >85% sequence identity to SEQ ID 24
- protein (b) might have >85% sequence identity to SEQ ID 33
- protein (c) might have >85% sequence identity to SEQ ID 41, but protein (a) and (b) have less than 75% sequence identity to each other, protein (a) and (c) have less than 75% sequence identity to each other, and protein (b) and (c) have less than 75% sequence identity to each other.
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against at least one N. meningitidis strain from each of at least two of the following three groups of strains:
- the mixture can elicit a bactericidal response effective against each of serogroup B N. meningitidis strains MC58, 961-5945 and M1239.
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against at least 50% of clinically-relevant meningococcal serogroup B strains (e.g. at least 60%, 70%, 80%, 90%, 95% or more).
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against strains of serogroup B N. meningitidis and strains of at least one (e.g. 1, 2, 3, 4) of serogroups A, C, W135 and Y.
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against strains of N. gonococcus and/or N. cinerea.
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against strains from at least two of the three main branches of the dendrogram shown in FIG. 9 (i.e. the dendrogram obtained by analysing SEQ IDs 1 to 23 by the Kimura & Jukes-Cantor algorithm).
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against N. meningitidis strains in at least 2 (e.g. 2, 3, 4, 5, 6, 7) of hypervirulent lineages ET-37, ET-5, cluster A4, lineage 3, subgroup I, subgroup III, and subgroup IV-1 [14,15].
- compositions of the invention may additionally induce bactericidal antibody responses against one or more hyperinvasive lineages.
- the mixture of two or more of (a), (b) and (c) can preferably elicit an antibody response which is bactericidal against N. meningitidis strains in at least at least 2 (e.g. 2, 3, 4, 5, 6, 7) of the following multilocus sequence types: ST1, ST4, ST5, ST8, ST11, ST32 and ST41 [16].
- the mixture may also elicit an antibody response which is bactericidal against ST44 strains.
- Bactericidal antibody responses are conveniently measured in mice and are a standard indicator of vaccine efficacy [e.g. see end-note 14 of reference 3].
- the composition need not induce bactericidal antibodies against each and every MenB strain within the specified lineages or MLST; rather, for any given group of four of more strains of serogroup B meningococcus within a particular hypervirulent lineage or MLST, the antibodies induced by the composition are bactericidal against at least 50% (e.g. 60%, 70%, 80%, 90% or more) of the group.
- Preferred groups of strains will include strains isolated in at least four of the following countries: GB, AU, CA, NO, IT, US, NZ, NL, BR, and CU.
- the serum preferably has a bactericidal titre of at least 1024 (e.g. 2 10 , 2 11 , 2 12 , 2 13 , 2 14 , 2 15 , 2 16 , 2 17 , 2 18 or higher, preferably at least 2 14 ) i.e. the serum is able to kill at least 50% of test bacteria of a particular strain when diluted 1/1024 e.g. as described in end-note 14 of reference 3.
- NMB1870 is naturally a lipoprotein in N. meningitidis. It has also been found to be lipidated when expressed in E. coli.
- one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) NMB1870 proteins included in compositions of the invention is a lipoprotein.
- the invention provides a protein comprising an amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%,95%, 96%, 97%, 98%, 99%, 99.5% or more) sequence identity to one or more of SEQ IDs 24 to 45, and/or comprising an amino acid sequence consisting of a fragment of at least 7 (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250) contiguous amino acids from one or more of SEQ IDs 24 to 45 (preferably SEQ IDs 25 to 45), characterised in that the protein is a lipoprotein.
- amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%,95%, 96%, 97%, 98%, 99%, 99.5% or more) sequence identity to one or more of SEQ IDs 24 to 45, and/or
- the lipoprotein has a N-terminal cysteine residue, to which the lipid is covalently attached.
- To prepare the lipoprotein via bacterial expression generally requires a suitable N-terninal signal peptide to direct lipidation by diacylglyceryl transferase, followed by cleavage by lipoprotein-specific (type II) SPase.
- the lipoprotein of the invention may have a N-terminal cysteine (e.g. SEQ IDs 24 to 45), therefore, it will be a product of post-translational modification of a nascent protein which has the usual N-terminal methionine (e.g. SEQ IDs 1 to 22).
- the lipoprotein may be associated with a lipid bilayer and may be solubilised with detergent
- NMB1870 proteins useful for the invention comprise an amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) sequence identity to one or more of SEQ ID NO s 1 to 23, and/or comprising an amino acid sequence consisting of a fragment of at least 7 (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250) contiguous amino acids from one or more of SEQ ID NO s 1 to 23.
- Preferred fragments include: (a) fragments which comprise an epitope, and preferably a bactericidal epitope; (b) fragments common to two or more of SEQ IDs 1 to 23; (c) SEQ IDs 1 to 23 with 1 or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120 or more, etc.) N-terninal residues deleted; (d) SEQ IDs 1 to 23 with 1 or more (e.g.
- SEQ IDs 1 to 23 without their signal peptides e.g. SEQ IDs 24 to 45.
- SEQ IDs 24 to 45 SEQ IDs 1 to 23 without their signal peptides.
- NMB1870 proteins useful for the invention comprise an amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%, 95%, 96%/, 97%, 98%, 99%, 99.5% or more) sequence identity to one or more of SEQ ID NO s 123 to 141, and/or comprising an amino acid sequence consisting of a fragment of at least 7 (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250) contiguous amino acids from one or more of SEQ ID NO s 123 to 141.
- a fragment of at least 7 e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250
- NMB1870 proteins usefwll for the invention comprise an amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) sequence identity to one or more of SEQ ID NO s 1 to 252 of reference 13, and/or comprising an amino acid sequence consisting of a fragment of at least 7 (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250) contiguous amino acids from one or more of SEQ ID NO s 1 to 252 of reference 13.
- SEQ ID NO s 300-302 of reference 13 provide consensus sequences, and SEQ ID NO s 254-299 are fragments.
- Preferred fragments include: (a) fragments which comprise an epitope, and preferably a bactericidal epitope; (b) fragments common to two or more of SEQ IDs 123 to 141; (c) SEQ IDs 123 to 141 with 1 ormore (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120 or more, etc.) N-terminal residues deleted; (d) SEQ IDs 123 to 141 with 1 or more (e.g.
- Preferred amino acid sequences with ⁇ 100% identity to SEQ ID NO s 1 to 23 and 123 to 141 are allelic variants, homologs, orthologs, paralogs, mutants etc. thereof. It is preferred that one or more of the differences in allelic variants, homologs, orthologs, paralogs or mutants, compared to SEQ ID NO s 1 to 23 and 123 to 141, involves a conservative amino acid replacement i.e. replacement of one amino acid with another which has a related side chain. Genetically-encoded amino acids are generally divided into four families: (1) acidic i.e. aspartate, glutamate; (2) basic i.e. lysine, arginine, histidine; (3) non-polar i.e.
- a preferred subset of proteins does not include the amino acid sequence TRSKP (SEQ ID NO: 70) or TRSKPV (SEQ ID NO: 71) within 10 amino acids of the protein's N-terminus.
- Another preferred subset of proteins does not include the amino acid sequence PSEPPFG (SEQ ID NO: 72) within 10 amino acids of the protein's N-terminus.
- Another preferred subset of proteins for use with the invention includes the amino acid sequence (Gly) n , where n is 1, 2, 3, 4 or more e.g. SEQ ID NO: 73.
- a characteristic of preferred proteins of the invention is the ability to induce bactericidal anti-meningococcal antibodies after administration to a host animal.
- Proteins can be prepared by various means e.g. by chemical synthesis (at least in part), by digesting longer polypeptides using proteases, by translation from RNA, by purification from cell culture (e.g. from recombinant expression or from N. meningitidis culture). etc.
- Heterologous expression in an E. coli host is a preferred expression route (e.g. strains DH5a, BL21(DE 3 ), BLR, etc.).
- Proteins of the invention may be attached or immobilised to a solid support.
- Proteins of the invention may comprise a detectable label e.g. a radioactive label, a fluorescent label, or a biotin label. This is particularly useful in immunoassay techniques.
- Proteins can take various forms (e.g. native, fusions, glycosylated, non-glycosylated, lipidated, disulfide bridges, etc.). Proteins are preferably meningococcal proteins.
- Proteins are preferably prepared in substantially pure or substantially isolated form (i.e. substantially free from other Neisserial or host cell proteins) or substantially isolated form.
- the proteins are provided in a non-naturally occurring environment e.g. they are separated from their naturally-occurring environment.
- the subject protein is present in a composition that is enriched for the protein as compared to a control.
- purified protein is provided, whereby purified is meant that the protein is present in a composition that is substantially free of other expressed proteins, where by substantially free is meant that less than 90%, usually less than 60% and more usually less than 50% of the composition is made up of other expressed proteins.
- protein refers to amino acid polymers of any length.
- the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids.
- the terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component.
- proteins containing one or more analogs of an amino acid including, for example, unnatural amino acids, etc.
- Proteins can occur as single chains or associated chains.
- the invention also provides proteins comprising an amino acid sequence having at least 50%/o (e.g. 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) sequence identity to one or more of SEQ ID NO s 77, 79, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93 & 94, and/or comnprising an amino acid sequence consisting of a fragment of at least 7 (e.g.
- the invention relates to a single NMB1870 protein
- the invention does not encompass a protein comprising an amino acid sequence as disclosed in any of SEQ ID NO s : 1 to 302 of reference 13.
- such proteins can optionally be used where the invention relates to NMB1870 mixtures
- NMB1870 may be used in the form of a fusion protein, although the proteins may also be expressed other than as a fusion protein (e.g. without GST, MBP, his-tag or similar).
- Fusion proteins can have a C-terminus and/or N-terminus fusion partner.
- N-terminus fusion partner is used with SEQ IDs 1 to 23, the skilled person will realise that the start codon will (if included) be expressed as a valine, because GTG is translated as valine except when it is used as a start codon, in which case it is translated as N-formyl-methionine.
- Suitable N-terminus fusion partners include leader peptides from other proteins (particularly other lipoproteins), which may be substituted for the natural NMB1870 leader peptides (i.e. the sequence prior to the N-terminus cysteine may be replaced with another leader peptide of interest). Examples are sequences comprising SEQ ID 46, and the H. influenzae P 4 lipoprotein leader sequence [e.g. 17].
- a preferred type of fusion protein is disclosed in references 10, 11 & 12 in which two or more (e.g. 3, 4, 5, 6 or more) Neisserial proteins are joined such that they are translated as a single polypeptide chain.
- such hybrid proteins can be represented by the formula: NH 2 -A-[-X-L-] n -B—COOH wherein X is an amino acid sequence comprising a Neisserial sequence, L is an optional linker amino acid sequence, A is an optional N-terminal amino acid sequence, B is an optional C-terminal amino acid sequence, and n is an integer greater than 1.
- the value of n is between 2 and x, and the value of x is typically 3, 4, 5, 6, 7, 8, 9 or 10.
- At least one of the —X— moieties is a NMB1870 sequence as defined above.
- at least one of the —X— moieties has sequence identity to at least one of the other X moieties e.g. X 1 is SEQ ID NO: 24 and X 2 is a SEQ ID NO: 25. Proteins in which two or three of the three NMB1870 variants are joined as a tandem protein are preferred.
- the native leader peptide should be omitted, particularly where X 1 is not a NMB1870 sequence.
- the leader peptides will be deleted except for that of the —X— moiety located at the N-terminus of the hybrid protein i.e. the leader peptide of X 1 will be retained, but the leader peptides of X 2 . . . X n will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X 1 as moiety -A-.
- NMB1870 sequences for use as —X— moieties are truncated up to and including the polyglycine sequence found near the mature N-terminus e.g. the NMB1870 sequence will begin VAA . . . (or IAA . . . for strain m3813).
- NMB1870 sequences include SEQ ID NO s : 80, 81 & 84.
- linker amino acid sequence -L- may be present or absent.
- the hybrid may be NH 2 —X 1 -L 1 -X 2 -L 2 -COOH, NH 2 —X 1 —X 2 —COOH, NH 2 —X-L 1 -X 2 —COOH, NH 2 —X 1 -X 2 -L 2 -COOH, etc.
- Linker amino acid sequence(s) -L- will typically be short (e.g. 20 or fewer amino acids i.e. 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable linker amino acid sequences will be apparent to those skilled in the art.
- a useful linker is GSGGGG (SEQ ID NO: 144), with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the Gly 4 tetrapeptide (SEQ ID NO: 73) is another typical poly-glycine linker.
- Another useful linker is SEQ ID NO: 78.
- -A- is an optional N-terminal amino acid sequence.
- This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art.
- -A- may provide such a methionine residue in the translated protein (e.g. -A- is a single Met residue).
- a useful -A- moiety for expressing NMB1870 is SEQ ID NO: 86.
- -A- preferably provides a N-terminus cysteine (e.g. -A- is a single Cys residue).
- one of the X moieties is a ‘protein 936’ sequence.
- X 1 is a 936 sequence (e.g. SEQ ID NO: 76, which is the processed MC58 protein)
- L 1 a poly-glycine linker (e.g. SEQ ID NO. 144)
- X 2 a NMB1870 sequence in which the N-terminus has been deleted up to and including its own poly-glycine sequence, and L 2 and B may be omitted.
- An example of such a hybrid protein is SEQ ID NO: 77, in which truncated NMB1870 from strain m1239 is downstream of the processed 936 from strain MC58.
- Further examples of hybrid proteins of 936 (2996 strain) and truncated NMB1870 (strain 2996 or M1239) are SEQ ID NO s : 91, 92, 93 & 94.
- NadA protein is disclosed in references 191 and 192. These references disclose three distinct alleles of NadA, although some minor variations were found e.g. serogroup C strain ISS1024 has a variant of allele 2 with a single heptad repeat deletion, serogroup C strains ISS759 and 973-1720 both contain a variant of allele 3 with a single amino acid mutation in the leader peptide, and serogroup B strain 95330 contains a recombination of alleles 1 and 2.
- SEQ ID NO: 143 was identified. This protein is a recombinant of known alleles 2 and 3.
- the invention provides a protein comprising an amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more e.g. 100%) sequence identity to SEQ ID NO: 143, and/or comprising an amino acid sequence consisting of a fragment of at least 7 (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 225, 250) contiguous amino acids from SEQ ID NO: 143.
- amino acid sequence having at least 50% (e.g. 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more e.g. 100%) sequence identity to SEQ ID NO: 143, and/or comprising an amino acid sequence consisting of a fragment of at least 7 (e.g. 8,
- Preferred fragments include: (a) fragments which comprise an epitope, and preferably a bactericidal epitope; (b) fragments common to SEQ ID NO: 143 and at least one of the NadA sequences disclosed in references 191 and 192; (c) SEQ ID NO: 143 with 1 or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120 or more, etc.) N-terminal residues deleted; (d) SEQ ID NO: 143 with 1 or more (e.g.
- SEQ ID NO: 143 without its signal peptide.
- SEQ ID NO: 143 Preferred amino acid sequences with ⁇ 100% identity to SEQ ID NO: 143 are allelic variants, homologs, orthologs, paralogs, mutants etc. thereof It is preferred that one or more of the differences in allelic variants, homologs, orthologs, paralogs or mutants, compared to SEQ ID NO: 143, involves a conservative amino acid replacement.
- the invention provides nucleic acid encoding a protein of the invention as defined above.
- the invention also provides nucleic acid comprising: (a) a fragment of at least n consecutive nucleotides from said nucleic acid, wherein n is 10 or more (e.g. 12, 14, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500 or more); and/or (b) a sequence having at least 50% (e.g. 60%, 70%, 80%, 90%, 95%, 96%,97%, 98%, 99% or more) sequence identity to said nucleic acid.
- the invention provides nucleic acid which can hybridise to nucleic acid encoding a protein of the invention, preferably under “high stringency” conditions (e.g. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution).
- Nucleic acids of the invention can be used in hybridisation reactions (e.g. Northern or Southern blots, or in nucleic acid microarrays or ‘gene chips’) and amplification reactions (e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, etc.) and other nucleic acid techniques.
- hybridisation reactions e.g. Northern or Southern blots, or in nucleic acid microarrays or ‘gene chips’
- amplification reactions e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, etc.
- Nucleic acids of the invention can be prepared in many ways e.g. by chemical synthesis in whole or part, by digesting longer polynucleotides using nucleases (e.g. restriction enzymes), from genomic or cDNA libraries, from the bacterium itself, etc.
- nucleases e.g. restriction enzymes
- Nucleic acids of the invention can take various forms e.g. single-stranded, double-stranded, vectors, primers, probes, labelled, unlabelled, etc.
- Nucleic acids of the invention are preferably in isolated or substantially isolated form.
- the invention includes nucleic acid comprising sequences complementary to those described above e.g. for antisense or probing, or for use as primers.
- nucleic acid includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
- PNA peptide nucleic acids
- Nucleic acid according to the invention may be labelled e.g. with a radioactive or fluorescent label. This is particularly useful where the nucleic acid is to be used in nucleic acid detection techniques e.g. where the nucleic acid is a primer or as a probe for use in techniques such as PCR, LCR, TMA, NASBA, etc.
- the invention also provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors, such as those suitable for nucleic acid immunisation) and host cells transformed with such vectors.
- nucleotide sequences of the invention e.g. cloning or expression vectors, such as those suitable for nucleic acid immunisation
- compositions of the invention include a small number (e.g. fewer than t antigens, where t is 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or 3) of purified serogroup B antigens. It is particularly preferred that the composition should not include complex or undefined mixtures of antigens e.g. it is preferred not to include outer membrane vesicles in the composition.
- the antigens are preferably expressed recombinantly in a heterologous host and then purified.
- composition of the invention includes at least two different NMB1870 proteins. It may also include another neisserial antigen, as a vaccine which targets more than one antigen per bacterium decreases the possibility of selecting escape mutants.
- Neisserial antigens for inclusion in the compositions include proteins comprising:
- the composition may include antigens for immunising against other diseases or infections.
- the composition may include one or more of the following further antigens:
- composition may comprise one or more of these further antigens.
- Toxic protein antigens may be detoxified where necessary (e.g. detoxification of pertussis toxin by chemical and/or genetic means [40]).
- diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens. OTP combinations are thus preferred.
- Saccharide antigens are preferably in the form of conjugates.
- Carrier proteins for the conjugates include the N. meningitidis outer membrane protein [68], synthetic peptides [69,70], heat shock proteins [71,72], pertussis proteins [73,74], protein D from H. influenzae [ 75], cytolines [76], lymphokines [76], streptococcal proteins, hormones [76], growth factors [76], toxin A or B from C. difficile [ 77], iron-uptake proteins [78], etc.
- a preferred carrier protein is the CRM197 diphtheria toxoid [79].
- Antigens in the composition will typically be present at a concentration of at least 1 ⁇ g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
- Immunogenic compositions of the invention may be used therapeutically (i.e. to treat an existing infection) or prophylactically (i.e. to prevent future infection).
- nucleic acid preferably DNA e.g. in the form of a plasmid
- encoding the antigen may be used.
- compositions of the invention include one, two or three of: (a) saccharide antigens from meningococcus serogroups Y, W135, C and (optionally) A; (b) a saccharide antigen from Haemophilus influenzae type B; and/or (c) an antigen from Streptococcus pneumoniae.
- the recently-approved serogroup C vaccines include conjugated saccharides. MenjugateTM and MeningitecTM have oligosaccharide antigens conjugated to a CRM 197 carrier, whereas NeisVac-CTM uses the complete polysaccharide (de-O-acetylated) conjugated to a tetanus toxoid carrier.
- the proposed MenActraTM vaccine contains conjugated capsular saccharide antigens from each of serogroups Y, W135, C and A.
- compositions of the present invention preferably include capsular saccharide antigens from one or more of meningococcus serogroups Y, W135, C and (optionally) A, wherein the antigens are conjugated to carrier protein(s) and/or are oligosaccharides.
- the composition may include a capsular saccharide antigen from: serogroup C; serogroups A and C; serogroups A, C and W135; serogroups A, C and Y; serogroups C, W135 and Y; or from all four of serogroups A, C, W135 and Y.
- a typical quantity of each meningococcal saccharide antigen per dose is between 1 ⁇ g and 20 ⁇ g e.g. about 1 ⁇ g, about 2.5 ⁇ g, about 4 ⁇ g, about 5 ⁇ g, or about 10 ⁇ g (expressed as saccharide).
- the ratio (w/w) of MenA saccharide:MenC saccharide may be greater than 1 (e.g. 2:1, 3:1, 4:1, 5:1, 10:1 or higher).
- the ratio (w/w) of MenY saccharide:MenW135 saccharide may be greater than 1 (e.g. 2:1, 3:1, 4:1, 5:1, 10:1 or higher) and/or that the ratio (w/w) of MenY saccharide:MenC saccharide may be less than 1 (e.g. 1:2, 1:3, 1:4, 1:5, or lower).
- Preferred ratios (w/w) for saccharides from serogroups A:C:W135:Y are: 1:1:1:1; 1:1:1:2; 2:1:1:1; 4:2:1:1; 8:4:2:1; 4:2:1:2; 8:4:1:2; 4:2:2:1; 2:2:1: 1; 4:4:2: 1; 2:2:1:2; 4:4:1:2; and 2:2:2:1.
- Preferred ratios (w/w) for saccharides from serogroups C:W135:Y are: 1:1:1; 1:1:2; 1:1:1; 2:1:1; 4:2:1; 2:1:2; 4:1:2; 2:2:1; and 2:1:1. Using a substantially equal mass of each saccharide is preferred.
- Capsular saccharides will generally be used in the form of oligosaccharides. These are conveniently formed by fragmentation of purified capsular polysaccharide (e.g. by hydrolysis), which will usually be followed by purification of the fragments of the desired size.
- Fragmentation of polysaccharides is preferably performed to give a final average degree of polymerisation (DP) in the oligosaccharide of less than 30 (e.g. between 10 and 20, preferably around 10 for serogroup A; between 15 and 25 for serogroups W135 and Y, preferably around 15-20; between 12 and 22 for serogroup C; etc.).
- DP can conveniently be measured by ion exchange chromatography or by colorimetric assays [81].
- the hydrolysate will generally be sized in order to remove short-length oligosaccharides [29]. This can be achieved in various ways, such as ultrafiltration followed by ion-exchange chromatography. Oligosaccharides with a degree of polymerisation of less than or equal to about 6 are preferably removed for serogroup A, and those less than around 4 are preferably removed for serogroups W135 and Y.
- MenC saccharide antigens are disclosed in reference 80, as used in MenjugateTM.
- the saccharide antigen may be chemically modified. This is particularly useful for reducing hydrolysis for serogroup A [82; see below]. De-O-acetylation of meningococcal saccharides can be performed. For oligosaccharides, modification may take place before or after depolymerisation.
- composition of the invention includes a MenA saccharide antigen
- the antigen is preferably a modified saccharide in which one or more of the hydroxyl groups on the native saccharide has/have been replaced by a blocking group [82]. This modification improves resistance to hydrolysis.
- the number of monosaccharide units having blocking groups can vary. For example, all or substantially all the monosaccharide units may have blocking groups. Alternatively, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the monosaccharide units may have blocking groups. At least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 monosaccharide units may have blocking groups.
- the number of blocking groups on a monosaccharide unit may vary.
- the number of blocking groups on a monosaccharide unit may be 1 or 2.
- the blocking group will generally be at the 4 position and/or 3-position of the monosaccharide units.
- the terminal monosaccharide unit may or may not have a blocking group instead of its native hydroxyl. It is preferred to retain a free anomeric hydroxyl group on a terminal monosaccharide unit in order to provide a handle for further reactions (e.g. conjugation).
- Anomeric hydroxyl groups can be converted to amino groups (—NH 2 or —NH-E, where E is a nitrogen protecting group) by reductive amination (using, for example, NaBH 3 CN/NH 4 Cl), and can then be regenerated after other hydroxyl groups have been converted to blocking groups.
- Blocking groups to replace hydroxyl groups may be directly accessible via a derivatizing reaction of the hydroxyl group i.e. by replacing the hydrogen atom of the hydroxyl group with another group.
- Suitable derivatives of hydroxyl groups which act as blocking groups are, for example, carbamates, sulfonates, carbonates, esters, ethers (e.g. silyl ethers or alkyl ethers) and acetals.
- Some specific examples of such blocking groups are allyl, Aloc, benzyl, BOM, t-butyl, trityl, TES, TBDPS, TES, TMS, TIPS, PMB, MEM, MOM, MTM, THP, etc.
- blocking groups that are not directly accessible and which completely replace the hydroxyl group include C 1-12 alkyl, C 3-12 alkyl, C 5-12 aryl, C 5-12 aryl-C 1-6 alkyl, NR 1 R 2 (R 1 and R 2 are defined in the following paragraph), H, F, Cl, Br, CO 2 H, CO 2 (C 1-6 alkyl), CN, CF 3 , CCl 3 , etc.
- Preferred blocking groups are electron-withdrawing groups.
- Preferred blocking groups are of the formula: —O—X—Y or —OR 3 wherein: X is C(O), S(O) or SO 2 ; Y is C 1-12 alkyl, C 1-12 alkoxy, C 3-12 cycloalkyl, C 5-12 aryl or C 5-12 aryl-C 1-6 alkyl, each of which may optionally be substituted with 1, 2 or 3 groups independently selected from F, Cl, Br, CO 2 H, CO 2 (C 1-6 alkyl), CN, CF 3 or CCl 3 ; or Y is NR 1 R 2 ; R 1 and R 2 are independently selected from H, C 1-12 alkyl, C 3-12 cycloalkyl, C 5-12 aryl, C 5-12 aryl-C 1-4 alkyl; or R 1 and R 2 may be joined to form a C 3-12 saturated heterocyclic group; R 3 is C 1-12 alkyl or C 3-12 cycloalkyl, each of which may optionally be substituted with 1, 2 or
- R 3 is C 1-12 alkyl or C 3-12 cycloalkyl, it is typically substituted with 1, 2 or 3 groups as defined above.
- R 1 and R 2 are joined to form a C 3-12 saturated heterocyclic group, it is meant that R 1 and R 2 together with the nitrogen atom form a saturated heterocyclic group containing any number of carbon atoms between 3 and 12 (e.g. C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , C 12 ).
- the heterocyclic group may contain 1 or 2 heteroatoms (such as N, O or S) other than the nitrogen atom.
- Examples of C 3-12 saturated heterocyclic groups are pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, imidazolidinyl, azetidinyl and aziridinyl.
- Blocking groups —O—X—Y and —OR 3 can be prepared from —OH groups by standard derivatizing procedures, such as reaction of the hydroxyl group with an acyl halide, alkyl halide, sulfonyl halide, etc.
- the oxygen atom in —O—X—Y is preferably the oxygen atom of the hydroxyl group
- the —X—Y group in —O—X—Y preferably replaces the hydrogen atom of the hydroxyl group.
- the blocking groups may be accessible via a substitution reaction, such as a Mitsonobu-type substitution.
- a substitution reaction such as a Mitsonobu-type substitution.
- the blocking group is —OC(O)CF 3 [83], or a carbamate group —OC(O)NR 1 R 2 , where R 1 and R 2 are independently selected from C 1-6 alkyl. More preferably, R 1 and R 2 are both methyl i.e. the blocking group is —OC(O)NMe 2 .
- Carbamate blocking groups have a stabilizing effect on the glycosidic bond and may be prepared under mild conditions.
- Preferred modified MenA saccharides contain n monosaccharide units, where at least h% of the monosaccharide units do not have —OH groups at both of positions 3 and 4.
- the value of h is 24 or more (e.g. 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 99 or 100) and is preferably 50 or more.
- the absent —OH groups are preferably blocking groups as defined above.
- Other preferred modified MenA saccharides comprise monosaccharide units, wherein at least s of the monosaccharide units do not have —OH at the 3 position and do not have —OH at the 4 position.
- the value of s is at least 1 (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90).
- the absent —OH groups are preferably blocking groups as defined above.
- Suitable modified MenA saccharides for use with the invention have the formula: wherein
- Each of the n+2 Z groups may be the same or different from each other.
- each of the n+2 Q groups may be the same or different from each other.
- All the Z groups may be OH.
- at least 10%, 20, 30%, 40%, 50% or 60% of the Z groups may be OAc.
- about 70% of the Z groups are OAc, with the remainder of the Z groups being OH or blocking groups as defined above.
- At least about 7% of Q groups are blocking groups.
- at least 10%, 20%/o, 30%, 40%, 50%, 60%, 70%, 80%, 90% or even 100% of the Q groups are blocking groups.
- Meningococcal capsular polysaccharides are typically prepared by a process comprising the steps of polysaccharide precipitation (e.g. using a cationic detergent), ethanol fractionation, cold phenol extraction (to remove protein) and ultracentrifugation. (to remove LPS) [e.g. ref. 84].
- a more preferred process [30] involves polysaccharide precipitation followed by solubilisation of the precipitated polysaccharide using a lower alcohol.
- Precipitation can be achieved using a cationic detergent such as tetrabutylammonium and cetyltrimethylammonium salts (e.g the bromide salts), or hexadimethrine bromide and myristyltrimethylammonium salts. Cetyltrimethylammoniuni bromide (‘CTAB’) is particularly preferred [85].
- a cationic detergent such as tetrabutylammonium and cetyltrimethylammonium salts (e.g the bromide salts), or hexadimethrine bromide and myristyltrimethylammonium salts.
- CTAB Cetyltrimethylammoniuni bromide
- Solubilisation of the precipitated material can be achieved using a lower alcohol such as methanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methyl-propan-1-ol, 2-methyl-propan-2-ol, diols, etc., but ethanol is particularly suitable for solubilising CTAB-polysaccharide complexes.
- Ethanol is preferably added to the precipitated polysaccharide to give a final concentration (based on total content of ethanol and water) of between 50%/o and 95%.
- the polysaccharide may be further treated to remove contaminants. This is particularly important in situations where even minor contamination is not acceptable (e.g. for human vaccine production). This will typically involve one or more steps of filtration e.g. depth filtration, filtration through activated carbon may be used, size filtration and/or ultrafiltration. Once filtered to remove contaminants, the polysaccharide may be precipitated for further treatment and/or processing. This can be conveniently achieved by exchanging cations (e.g. by the addition of calcium or sodium salts).
- capsular saccharides of the present invention may be obtained by total or partial synthesis e.g. Hib synthesis is disclosed in ref. 86, and MenA synthesis in ref. 87.
- compositions of the invention comprise capsular saccharides from at least two serogroups of N. meningitidis.
- the saccharides are preferably prepared separately (including any fragmentation, conjugation, modification, etc.) and then admixed to give a composition of the invention.
- composition comprises capsular saccharide from serogroup A
- serogroup A saccharide is not combined with the other saccharide(s) until shortly before use, in order to minimise the potential for hydrolysis.
- This can conveniently be achieved by having the serogroup A component (typically together with appropriate excipients) in lyophilised form and the other serogroup component(s) in liquid form (also with appropriate excipients), with the liquid components being used to reconstitute the lyophilised MenA component when ready for use.
- an aluminium salt adjuvant it is preferred to include the adjuvant in the vial containing the with the liquid vaccine, and to lyophilise the MenA component without adjuvant.
- a composition of the invention may thus be prepared from a kit comprising: (a) capsular saccharide from N. meningitidis serogroup A, in lyophilised form; and (b) the further antigens from the composition, in liquid form.
- the invention also provides a method for preparing a composition of the invention, comprising mixing a lyophilised capsular saccharide from N. meningitidis serogroup A with the further antigens, wherein said further antigens are in liquid form.
- the invention also provides a kit comprising: (a) a first container containing capsular saccharides from two or more of N. meningitidis serogroups C, W135 and Y, all in lyophilised form; and (b) a second container containing in liquid form (i) a composition which, after administration to a subject, is able to induce an antibody response in that subject, wherein the antibody response is bactericidal against two or more (e.g. 2 or 3) of hypervirulent lineages A4, ET-5 and lineage 3 of N. meningitidis serogroup B, (ii) capsular saccharides from none or one of N.
- the amount of an individual saccharide antigen will generally be between 1-50 ⁇ g (measured as mass of saccharide), with about 2.5 ⁇ g, 5 ⁇ g or 10 ⁇ g of each being preferred.
- A:C:W135:Y weight ratios of 1:1:1:1; 1:1:1:2; 2:1:1:1; 4:2:1:1; 8:4:2:1; 4:2:1:2; 8:4:1:2; 4:2:2:1; 2:2:1:1; 4:4:2:1; 2:2:1:2; 4:4:1:2; and 2:2:2:1 therefore, the amount represented by the number 1 is preferably about 2.5 ⁇ g, 5 ⁇ g or 10 ⁇ g.
- compositions For a 1:1:1:1 ratio A:C:W:Y composition and a 10 ⁇ g per saccharide, therefore, 40 ⁇ g saccharide is administered per dose.
- Preferred compositions have about the following ⁇ g saccharide per dose: A 10 0 0 0 10 5 2.5 C 10 10 5 2.5 5 5 2.5 W135 10 10 5 2.5 5 5 2.5 Y 10 10 5 2.5 5 5 2.5
- compositions of the invention comprise less than 50 ⁇ g meningococcal saccharide per dose.
- Other preferred compositions comprise ⁇ 40 ⁇ g meningococcal saccharide per dose.
- Other preferred compositions comprise ⁇ 30 ⁇ g meningococcal saccharide per dose.
- Other preferred compositions comprise ⁇ 25 ⁇ g meningococcal saccharide per dose.
- Other preferred compositions comprise ⁇ 20 ⁇ g meningococcal saccharide per dose.
- Other preferred compositions comprise ⁇ 10 ⁇ g meningococcal saccharide per dose but, ideally, compositions of the invention comprise at least 10 ⁇ g meningococcal saccharide per dose.
- MenjugateTM and NeisVacTM MenC conjugates use a hydroxide adjuvant, whereas MeningitecTM uses a phosphate. It is possible in compositions of the invention to adsorb some antigens to an aluminium hydroxide but to have other antigens in association with an aluminium phosphate.
- P a phosphate
- composition includes a H. influenzae type B antigen
- it will typically be a Hib capsular saccharide antigen. Saccharide antigens from H. influenzae b are well known.
- the Hib saccharide is covalently conjugated to a carrier protein, in order to enhance its immunogenicity, especially in children.
- a carrier protein in order to enhance its immunogenicity, especially in children.
- the invention may use any suitable Hib conjugate.
- Suitable carrier proteins are described below, and preferred carriers for Hib saccharides are CRM 197 (‘HbOC’), tetanus toxoid (‘PRP-T’) and the outer membrane complex of N. meningitidis (‘PRP-OMP’).
- the saccharide moiety of the conjugate may be a polysaceharide (e.g. full-length polyribosylribitol phosphate (PRP)), but it is preferred to hydrolyse polysaccharides to form oligosaccharides (e.g. MW from ⁇ 1 to ⁇ 5 kDa).
- polysaceharide e.g. full-length polyribosylribitol phosphate (PRP)
- PRP polyribosylribitol phosphate
- a preferred conjugate comprises a Hib oligosaccharide covalently linked to CRM 197 via an adipic acid linker [97, 98]. Tetanus toxoid is also a preferred carrier.
- compositions of the invention may comprise more than one Hib antigen.
- composition includes a Hib saccharide antigen
- the composition includes an aluminium phosphate adjuvant then the Hib antigen may be adsorbed to the adjuvant [99] or it may be non-adsorbed [100].
- Hib antigens may be lyophilised e.g. together with meningococcal antigens.
- composition includes a S. pneumoniae antigen
- a S. pneumoniae antigen it will typically be a capsular saccharide antigen which is preferably conjugated to a carrier protein [e.g. refs. 31-33]. It is preferred to include saccharides from more than one serotype of S. pneumoniae. For example, mixtures of polysaccharides from 23 different serotype are widely used, as are conjugate vaccines with polysaccharides from between 5 and 11 different serotypes [101].
- PrevNarTM [102] contains antigens from seven serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) with each saccharide individually conjugated to CRM 197 by reductive amination, with 2 ⁇ g of each saccharide per 0.5 ml dose (4 ⁇ g of serotype 6B), and with conjugates adsorbed on an aluminium phosphate adjuvant.
- Compositions of the invention preferably include at least serotypes 6B, 14, 19F and 23F. Conjugates may be adsorbed onto an aluminium phosphate.
- the composition may include one or more polypeptide antigens.
- Genome sequences for several strains of pneumococcus are available [103,104] and can be subjected to reverse vaccinology [105-108] to identify suitable polypeptide antigens [109,110].
- the composition may include one or more of the following antigens: PhtA, PhtD, PhtB, PhtE, SpsA, LytB, LytC, LytA, Sp125, Sp101, Sp128 and Sp130, as defined in reference 111.
- the composition may include both saccharide and polypeptide antigens from pneumococcus. These may be used in simple admixture, or the pneumococcal saccharide antigen may be conjugated to a pneumococcal protein. Suitable carrier proteins for such embodiments include the antigens listed in the previous paragraph [111].
- Pneumococcal antigens may be lyophilised e.g. together with meningococcal and/or Hib antigens.
- Capsular saccharides in compositions of the invention will usually be conjugated to carrier protein(s).
- conjugation enhances the immunogenicity of saccharides as it converts them from T-independent antigens to T-dependent antigens, thus allowing priming for immunological memory.
- Conjugation is particularly useful for paediatric vaccines and is a well known technique [e.g. reviewed in refs. 112 and 88-96].
- Preferred carrier proteins are bacterial toxins or toxoids, such as diphtheria toxoid or tetanus toxoid.
- the CRM197 mutant diphtheria toxin [79, 113,114] is particularly preferred.
- Other suitable carrier proteins include the N. meningitidis outer membrane protein [68], synthetic peptides [69,70], heat shock proteins [71,72], pertussis proteins [73,74], cytokines (76], lymphokines [76], hormones [76], growth factors [76], artificial proteins comprising multiple human CD4 + T cell epitopes from various pathogen-derived antigens [115], protein D from H.
- Influenzae [75,116], pneumococcal surface protein PspA [117], iron-uptake proteins [78], toxin A or B from C. difficile [77], etc.
- Preferred carriers are diphtheria toxoid, tetanus toxoid, H. influenzae protein D, and CRM 197 .
- composition of the invention it is possible to use more than one carrier protein e.g. to reduce the risk of carrier suppression.
- different carrier proteins can be used for different serogroups e.g. serogroup A saccharides might be conjugated to CRM197 while serogroup C saccharides might be conjugated to tetanus toxoid.
- more than one carrier protein for a particular saccharide antigen e.g. serogroup A saccharides might be in two groups, with some conjugated to CRM 197 and others conjugated to tetanus toxoid. In general, however, it is preferred to use the same carrier protein for all saccharides.
- a single carrier protein might carry more than one saccharide antigen [118].
- a single carrier protein might have conjugated to it saccharides from serogroups A and C.
- saccharides can be mixed prior to the conjugation reaction. In general, however, it is preferred to have separate conjugates for each serogroup.
- Conjugates with a saccharide:protein ratio (w/w) of between 1:5 (i.e. excess protein) and 5:1 (i.e. excess saccharide) are preferred. Ratios between 1:2 and 5:1 are preferred, as are ratios between 1:1.25 and 1:2.5 are more preferred. Excess carrier protein is preferred for MenA and MenC.
- Conjugates may be used in conjunction with free carrier protein [119].
- the unconjugated form is preferably no more than 5% of the total amount of the carrier protein in the composition as a whole, and more preferably present at less than 2% by weight.
- the saccharide will typically be activated or functionalised prior to conjugation. Activation may involve, for example, cyanylating reagents such as CDAP (e.g. 1-cyano4-dimethylamino pyridinium tetrafluoroborate [120,121,etc.]).
- CDAP cyanylating reagents
- Other suitable techniques use carbodiimides, hydrazides, active esters, norborane, p-nitrobenzoic acid, N-hydroxysuccinimide, S-NHS, EDC, TSTU; see also the introduction to reference 94).
- Linkages via a linker group may be made using any known procedure, for example, the procedures described in references 122 and 123.
- One type of linkage involves reductive amination of the polysaccharide, coupling the resulting amino group with one end of an adipic acid linker group, and then coupling a protein to the other end of the adipic acid linker group [92,124,125].
- Other linkers include B-propionamido [126], nitrophenyl-ethylamine [127], haloacyl halides [128], glycosidic linkages [129], 6-aminocaproic acid [130], ADH [131], C 4 to C 12 moieties [132] etc.
- direct linkage can be used. Direct linkages to the protein may comprise oxidation of the polysaccharide followed by reductive amination with the protein, as described in, for example, references 133 and 134.
- a process involving the introduction of amino groups into the saccharide e.g. by replacing terminal ⁇ O groups with -NH 2
- derivatisation with an adipic diester e.g. adipic acid N-hydroxysuccinimido diester
- Another preferred reaction uses CDAP activation with a protein D carrier e.g. for MenA or MenC.
- composition of the invention includes a conjugated oligosaccharide
- oligosaccharide preparation precedes conjugation
- compositions of the invention should not include complex or undefined mixtures of antigens, which are typical characteristics of OMVs.
- one way in which the invention can be applied to OMVs is where OMVs are to be administered in a multiple dose schedule.
- each dose may be supplemented (either by adding the purified protein or by expression of the protein within the bacteria from which the OMVs are derived) by one of the first protein, second protein or third protein as defined above.
- different doses are supplemented with different NMB1870 variants.
- each dose could contain a different one of the first protein, second protein and third protein such that, after receiving three doses of OMVs, all three variants have been received.
- one variant could be used per OMY dose (thus omitting one variant), or one or both OMV doses could be supplemented with more than one variant in order to give coverage with all three variants.
- there are three OMV doses and each of the three OMV doses contains three different genetically-engineered vesicle populations each displaying three subtypes, thereby giving nine different subtypes in all.
- N. meningitidis serogroup B microvesicles [137], ‘native OMVs’ [138], blebs or outer membrane vesicles [e.g. refs. 139 to 144, etc.].
- These may be prepared from bacteria which have been genetically manipulated [145-148] e.g. to increase immunogenicity (e.g. hyper-express immunogens), to reduce toxicity, to inhibit capsular polysaccharide synthesis, to down-regulate PorA expression, etc. They may be prepared from hyperblebbing strains [149-152].
- Vesicles from a non-pathogenic Neisseria may be included [153].
- OMVs may be prepared without the use of detergents [154,155]. They may express non-Neisserial proteins on their surface [156]. They may be LPS-depleted. They may be mixed with recombinant antigens [139,157]. Vesicles from bacteria with different class I outer membrane protein subtypes may be used e.g. six different subtypes [158,159] using two different genetically-engineered vesicle populations each displaying three subtypes, or nine different subtypes using three different genetically-engineered vesicle populations each displaying three subtypes, etc. Useful subtypes include: P1.7,16; P1.5-1,2-2; P1.19,15-1; P1.5-2,10; P1.12-1,13; P1.7-2,4; P1.22,14; P1.7-1,1; P1.18-1,3,6.
- composition of the invention is preferably an immunogenic composition, and the invention provides an immunogenic composition of the, invention for use as a medicament.
- the invention also provides a method for raising an antibody response in a mammal, comprising administering an immunogenic composition of the invention to the mammal.
- the antibody response is preferably a protective and/or bactericidal antibody response.
- the invention also provides a method for protecting a mammal against a Neisserial (e.g. meningococcal) infection, comprising administering to the mammal an immunogenic composition of the invention.
- a Neisserial e.g. meningococcal
- the invention also provides the use of at least two of antigens (a), (b) and (c) as defined above in the manufacture of a medicament for preventing Neisserial (e.g. meningococcal) infection in a mammal.
- Neisserial e.g. meningococcal
- the mammal is preferably a human.
- the human may be an adult or, preferably, a child.
- Immunogenic compositions of the invention may be used therapeutically (i.e. to treat an existing infection) or prophylactically (i.e. to prevent future infection).
- the uses and methods are particularly useful for preventing/treating diseases including, but not limited to, meningitis (particularly bacterial meningitis) and bacteremia.
- Efficacy of therapeutic treatment can be tested by monitoring Neisserial infection after administration of the composition of the invention.
- Efficacy of prophylactic treatment can be tested by monitoring immune responses against NMB1870 after administration of the composition.
- Immunogenicity of compositions of the invention can be determined by administering them to test subjects (e.g. children 12-16 months age, or animal models [160]) and then determining standard parameters including serum bactericidal antibodies (SBA) and ELISA titres (GMT) of total and high-avidity anti-capsule IgG. These immune responses will generally be determined around 4 weeks after administration of the composition, and compared to values determined before administration of the composition.
- a SBA increase of at least 4-fold or 8-fold is preferred. Where more than one dose of the composition is administered, more than one post-administration determination may be made.
- compositions of the invention can confer an antibody titre in a patient that is superior to the criterion for seroprotection for each antigenic component for an acceptable percentage of human subjects.
- Antigens with an associated antibody titre above which a host is considered to be seroconverted against the antigen are well known, and such titres are published by organisations such as WHO.
- Preferably more than 80% of a statistically significant sample of subjects is seroconverted, more preferably more than 90%, still more preferably more than 93% and most preferably 96-100%.
- compositions of the invention will generally be administered directly to a patient: Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or by rectal, oral, vaginal, topical, transdermal, intranasal, ocular, aural, pulmonary or other mucosal administration. Intramuscular administration to the thigh or the upper arm is preferred. Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used. A typical intramuscular dose is 0.5 ml.
- the invention may be used to elicit systemic and/or mucosal immunity.
- Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. A primary dose schedule may be followed by a booster dose schedule. Suitable timing between priming doses (e.g. between 4-16 weeks), and between priming and boosting, can be routinely determined.
- the immunogenic composition of the invention will generally include a pharmaceutically acceptable carrier, which can be any substance that does not itself induce the production of antibodies harmful to the patient receiving the composition, and which can be administered without undue toxicity.
- Suitable carriers can be large, slowly-metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.
- Pharmaceutically acceptable carriers can include liquids such as water, saline, glycerol and ethanol. Auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, can also be present in such vehicles. Liposomes are suitable carriers. A thorough discussion of pharmaceutical carriers is available in ref. 161.
- compositions of the invention may be prepared in various forms.
- the compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared.
- the composition may be prepared for topical administration e.g. as an ointment, cream or powder.
- the composition be prepared for oral administration e.g. as a tablet or capsule, or as a syrup (optionally flavoured).
- the composition may be prepared for pulmonary administration e.g. as an inhaler, using a fine powder or a spray.
- the composition may be prepared as a suppository or pessary.
- the composition may be prepared for nasal, aural or ocular administration e.g. as drops.
- compositions of the invention may be isotonic with respect to humans.
- Immunogenic compositions comprise an immunologically effective amount of immunogen, as well as any other of other specified components, as needed.
- immunologically effective amount it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (e.g. non-human primate, primate, etc.), the capacity of the individual's immune system to synthesist antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials. Dosage treatment may be a single dose schedule or a multiple dose schedule (e.g. including booster doses). The composition may be administered in conjunction with other immunoregulatory agents.
- An immunogenic composition will generally include an adjuvant.
- Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (A) MF59 (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer) [see Chapter 10 of ref. 163; see also ref. 164]; (B) microparticles (i.e. a particle of ⁇ 100 nm to ⁇ 1 5 ⁇ m in diameter, more preferably ⁇ 200 nm to ⁇ 30 ⁇ n in diameter, and most preferably ⁇ 500 nm to ⁇ 10 ⁇ m in diameter) formed from materials that are biodegradable and non-toxic (e.g.
- RibiTM adjuvant system Ribi Immunochem
- Ribi Immunochem Ribi Immunochem
- MPL monophosphorylipid A
- TDM trehalose dimycolate
- CWS cell wall skeleton
- saponin adjuvants such as QuilA or QS21 [see Chapter 22 of ref. 163], also known as StimulonTM
- H chitosan [e.g.
- CFA complete Freund's adjuvant
- IFA incomplete Freund's adjuvant
- J cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL6, IL-7, IL-12, etc.), interferons (e.g. interferon- ⁇ ), macrophage colony stimulating factor, tumor necrosis factor, etc. [see Chapters 27 & 28 of ref. 163], RC529;
- K a saponin (e.g.
- a polyoxyethylene ether or a polyoxyethylene ester [172] a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol [173] or a polyoxyethylene alkyl ether or ester surfactant in combination with at least one additional non-ionic surfactant such as an octoxynol [174];
- an immunostimulatory oligonucleotide e.g.
- a CpG oligonucleotide) and a saponin [175];
- R an immunostimulant and a particle of metal salt [176];
- S a saponin and an oil-in-water emulsion [177];
- T E. coli heat-labile enterotoxin (“LT”), or detoxified mutants thereof, such as the K63 or R72 mutants [e.g. Chapter 5 of ref. 38];
- aluminium salts such as aluminium hydroxides (including oxyhydroxides), aluminium phosphates (including hydroxyphosphates), aluminium sulfate, etc [Chapters 8 & 9 in ref. 163] or calcium salts, such as calcium phosphate; and (X) other substances that act as immunostimulating agents to enhance the effectiveness of the composition [e.g. see Chapter 7 of ref. 163].
- Aluminium salts aluminium phosphates and particularly hydroxyphosphates, and/or hydroxides and particularly oxyhydroxide
- MF59 are preferred adjuvants for parenteral immunisation.
- Toxin mutants are preferred mucosal adjuvants.
- QS21 is another useful adjuvant for NMB1870, which may be used alone or in combination with any of (A) to (X) e.g. with an aluminium salt.
- Muramyl peptides include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2 ⁇ 1′-2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE), etc.
- a bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3′) transcription of a coding sequence (e.g. structural gene) into mRNA.
- a promoter will have a transcription initiation region which is usually placed proximal to the 5′ end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site.
- a bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene.
- Constitutive expression may occur in the absence of negative regulatory elements, such as the operator.
- positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5′) to the RNA polymerase binding sequence.
- An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli ( E. coli ) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173].
- Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.
- Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al.(980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Pat. No. 4,738,921; EP-A 0036776 and EP-A-0121775].
- sugar metabolizing enzymes such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056]
- maltose additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan
- synthetic promoters which do not occur in nature also function as bacterial promoters.
- transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [U.S. Pat. No. 4,551,433].
- the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad Sci. 80:21].
- a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription.
- a naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes.
- the bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad Sci. 82:1074].
- a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).
- an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes.
- the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3.9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34].
- SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3′ and of E. coli 16S rRNA [Steitz et al.
- a promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a bacterial methionine N-terminal peptidase (EP-A-02 19237).
- transcription termination sequences recognized by bacteria are regulatory regions located 3′ to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the trp gene in E. coli as well as other biosynthetic genes.
- a replicon such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as bacteria.
- the replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification.
- a replicon may be either a high or low copy number plasmid.
- a high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150.
- a host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host
- the expression constructs can be integrated into the bacterial genome with an integrating vector.
- Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome.
- integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A-0127328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.
- extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed.
- Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469].
- Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.
- Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.
- Expression and transformation vectors have been developed for transformation into many bacteria.
- expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad Sci USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J Mol. Biol.
- Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl 2 or other agents, such as divalent cations and DMSO.
- DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See e.g. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus ], [Miller et al. (1988) Proc. Natl. Acad.
- the invention preferably excludes: (a) amino acid and nucleic acid sequences available in public sequence databases (e.g. GenBank or GENESEQ) prior to 22nd Nov. 2002; (b) amino acid and nucleic acid sequences disclosed in patent applications having a filing date or, where applicable, a priority date prior to 22nd November 2002.
- SEQ ID entries in the any of the references cited herein may be excluded e.g. reference 13.
- composition “comprising” means “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
- meningococcal classification includes serotype, serosubtype and then immunotype, and the standard nomenclature lists serogroup, serotype, serosubtype, and immunotype, each separated by a colon e.g. B:4:P1.15:L3,7,9.
- serogroup B some lineages cause disease often (hyperinvasive), some lineages cause more severe forms of disease than others (hypervirulent), and others rarely cause disease at all. Seven hypervirulent lineages are recognised, namely subgroups I, III and IV-1, ET-5 complex, ET-37 complex, A4 cluster and lineage 3.
- multilocus enzyme electrophoresis MLEE
- multilocus sequence typing MLST
- ST32, ST44, ST8 and ST11 complexes are ST32, ST44, ST8 and ST11 complexes.
- alkyl refers to alkyl groups in both straight and branched forms, The alkyl group may be interrupted with 1, 2 or 3 heteroatoms selected from —O—, —NH— or —S—. The alkyl group may also be interrupted with 1, 2 or 3 double and/or triple bonds. However, the term “alkyl” usually refers to alkyl groups having no heteroatom interruptions or double or triple bond interruptions. Where reference is made to C 1-12 alkyl, it is meant the alkyl group may contain any number of carbon atoms between 1 and 12 (e.g.
- the alkyl group may contain any number of carbon atoms between 1 and 6 (e.g. C 1 , C 2 , C 3 , C 4 , C 8 , C 6 ).
- cycloalkyl includes cycloalkyl, polycycloalkyl, and cycloalkenyl groups, as well as combinations of these with alkyl groups, such as cycloalkylalkyl groups.
- the cycloalkyl group may be interrupted with 1, 2 or 3 heteroatoms selected from —O—, —NH— or —S—.
- cycloalkyl usually refers to cycloalkyl groups having no heteroatom interruptions. Examples of cycloalkyl groups include cyclopentyl, cyclohexyl, cyclohexenyl, cyclohexylmethyl and adamantyl groups.
- C 3-12 cycloalkyl it is meant that the cycloalkyl group may contain any number of carbon atoms between 3 and 12 (e.g. C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , C 12 ).
- aryl refers to an aromatic group, such as phenyl or naphthyl. Where reference is made to C 5-12 aryl, it is meant that the aryl group may contain any number of carbon atoms between 5 and 12 (e.g. C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , C 12 ).
- C 5-12 -aryl-C 1-6 alkyl refers to groups such as benzyl, phenylethyl and naphthylmethyl.
- Nitrogen protecting groups include silyl groups (such as TMS, TES, TBS, TIPS), acyl derivatives (such as phthalimides, trifluoroacetamides, methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl (Boc), benzyloxycarbonyl (Z or Cbz), 9-fluorenylmethoxycarbonyl (Fmoc), 2-(trimethylsilyl)ethoxy carbonyl, 2,2,2-trichloroethoxycarbonyl (Troc)), sulfonyl derivatives (such as ⁇ -trimethylsilylethanesulfonyl (SES)), sulfenyl derivatives, C 1-12 alkyl, benzyl, benzhydryl, trityl, 9-phenylfluorenyl etc.
- a preferred nitrogen protecting group is Fmoc.
- FIG. 1 shows the nucleotide sequence of the upstream region of NMB1870.
- FIG. 2 is a schematic representation of the structure of TbpB proteins and of antigens NMB2132 and NMB1870.
- the leader peptides and proximal glycine-rich regions are indicated.
- Five conserved boxes are indicated by different motifs and their positions are mapped on the protein sequence.
- FIG. 3 shows the increase in NMB1870 levels in N. meningitidis MC58 during the growth curve.
- FIG. 4 shows the increase in NMB1870 levels in the supernatant over the same period. PorA levels and NMB1380 levels do not increase. Numbers above lanes refer to OD 620nm of the culture. KO indicates a NMB1870 knockout mutant of MC58, and Wcl stands for the whole cell lysate control.
- FIG. 5 shows OMVs probed with anti-NMB1870.
- FIG. 6 shows FACS analysis of encapsulated MC58 or a non-encapsulated mutant MC58 using anti-NMB1870.
- FIG. 7 is a western blot of a gradient SDS-PAGE gel loaded with total cell lysates of high (lanes 1 & 2), intermediate (3 & 4) and low (5 & 6) NMB1870 expressers.
- Lane 7 contains a MC58 NMB1870 knockout. Lanes are: (1) MC58; (2) H44/76; (3) NZ394/98; (4) 961-5945; (5) 67/00; (6) M1239; (7) MC58 ⁇ nmb1870.
- FIG. 8 shows FACS and bactericidal titres for each of a high, intermediate and low expresser, and also for the NMB1870 knockout.
- the intermediate and low expresser have identical NMB1870 amino acid sequences, with a 91.6% match to MC58.
- FIG. 9 is a dendrogram showing the strain clustering according to NMB1870 protein distances.
- the labels ‘1’, ‘2’ and ‘3’ indicate the three variants. Numbers in square brackets indicate the number of strains with identical sequence present in each branch of the dendrogram. Hypervirulent lineages are indicated, followed by the number of strains when this is different from the total number. Serogroups other than B are also shown. The three type strains (MC58, 961-5965 and M1239) and the other strains used in the serological analysis are within circles.
- FIG. 10 is a sequence alignment of variant 1 (MC58), variant 2 (961-5945), and variant 3 (M1239). Amino acid numbers initiate from the cysteine predicted to be the first amino acid of the mature protein. Grey and black backgrounds indicate conserved and identical residues, respectively.
- FIG. 11 shows FACS analysis of sera against variant 1 (first row), variant 2 (second row), and variant 3 (third row), using the type strain of variant 1 (MC58), variant 2 (961-5945) and variant 3 (M1239).
- Control sera against the capsular polysaccharide is shown in row 4 (monoclonal antibody Seam3).
- Control serum against a cytoplasmic protein is shown in row 5 (anti-NMB1380).
- Row 6 contains the knock out mutants (KO) of each type strain, probed with the homologous antiserum.
- FIGS. 12 show dendrograms for the three separate variants of NMB1870, classified by multilorus sequence types (ST).
- the NMB1870 gene was identified in the genome sequences of MenB and MenA published by The Institute for Genomic Research (TIGR) and Sanger Center, respectively [2,4; NMB1870 and NMA0586]. However, there is a discrepancy over the position of the ATG start codon as the MenB start codon is 120 bp upstream of the MenA start codon. In contrast to both prior art annotations, the present invention places the start codon as a GTG codon which is downstream of the prior art start codons (18bp downstream for MenA, 138bp for MenB) and agrees with reference 8.
- the GTG start (+1) is consistent with the presence of a correctly spaced ribosome-binding site and with the prediction of the lipoprotein signature.
- the prior art TIGR MenB start codon is shown in a box, and the Sanger Men start codon is in a circle. Inverted repeats are shown by horizontal arrows.
- NMB1870 is a monocistronic gene located 157 bases downstream the stop codon of the fructose-bisphosphate aldolase gene nmb1869.
- MenA Z2491 the overall organisation is similar, but 31 base pairs upstream from the GTG starting codon there is an insertion of 186 nucleotides which are homologous to an internal repeat region of IS1106 and are flanked by two 16 base pairs inverted repeats.
- a putative ribosome binding site is present 8 bp upstream from the GTG starting codon.
- a fur box (11/19 matches with the E.
- coli fur box consensus [178]; SEQ ID NO s : 74 & 75) is located 35 bp upstream of the start codon, as predicted by GCG FindPatterns starting from SEQ ID NO: 75 and allowing a maximum of nine mismatches. Putative promoter sequences were also detected.
- NMB31870 has the typical signature of a surface-exposed lipoprotein, characterised by a signal peptide with a lipo-box motif of the type -Leu-X-X-Cys-, where the Cysteine was followed by a Serine, an amino acid generally associated with outer membrane localisation of lipoproteins [180].
- the lipo-box is lost in gonococcus due to a frame-shifting single base (G) insertion after MC58 nucleotide 36, with the correct reading frame being re-established by a 8 bp insertion after position 73.
- the mature MC58 protein is predicted to be a lipoprotein with a molecular weight of 26,964 Da and a pI of 7.96, and is characterised by the presence of four glycines downstream of the lipo-box motif.
- NMB1870 is a globular protein mostly composed of beta sheets.
- the PSI-BLAST algorthm was used for homology searches [182] using the non-redundant protein database. No homologous proteins were found by searching existing non-redundant prokaryotic and eukaryotic protein databases maintained at the NCBI site, including the human genome, suggesting that NMB1870 is specific for Neisseria. However, a domain with some homology (28% identity over 146 amino acids) was found with the C-terminal portion of the transferrin-binding protein TfbA of Actinobacillus pleuropneumoniae [ 183] ( FIG. 2 ). A closer look at this domain revealed homologies also with the transferrin-binding proteins from N. meningitidis [ 184 ], H. influenzae [ 185 ], Moraxella cotatrhalhs [ 186] and with the N. meningitidis surface antigen NMB2132, previously annotated as TbpB homologue [3].
- the recombinant protein failed to bind human transferfin in vitro.
- the Fur box in the promoter suggests that the expression of NMB1870 may be regulated by iron. However, expression of the protein does not seem to increase in low iron conditions.
- An interesting feature of the protein is the presence of a stretch of four glycines downstream from the lipidated cysteine. Three or more consecutive glycines downstream from a lipidated cysteine are present also in other five lipoproteins in N. meningitidis, namely the transferrin-binding protein B (TbpB), the outer membrane component of an ABC transporter NMB0623, the hypothetical protein NMB1047, the TbpB homologue NMB2132, and the AspA lipoprotein [1881.
- TbpB transferrin-binding protein B
- a search for lipoproteins with a glycine-rich region was carried out on 22 complete genomic sequences retrieved at the NCBI site [189] using FindPatterns.
- the search retrieved 29 lipoproteins in some but not all bacterial species.
- the organisms with this type of lipoproteins include both Gram-negative and Gram-positive bacteria, including Haemophilus influenzae, Enterococcus fecalis, Mycobacterium tuberculosis, Lysteria monocytogenes and Staphylococcus aureus, while others such as E.coli, Bacillus subtilis, Helicobacter pylon, Streptococcus pneumoniae, S. pyogenes and Vibrio cholerae have none.
- lipoproteins with this signature belong to ABC transporters, followed by proteins of unknown function. Although this common feature in the primary structure suggests a common role or the glycine repeats, so tar, the function is unknown. However, it may serve to guide the lipoproteins to a specific pathway of secretion and surface localisation [190].
- strains representative of the genetic and geographic diversity of the N. meningitidis population were selected for further investigation of NMB1870. Strains derive from 19 different countries, 73% belong to serogroup B, and 32 were isolated in the last five years. The strain panel mostly includes serogroup B strains, a few strains of serogroups A, C, Y, W-135 and Z, and one strain each of N. gonorrhoeae and N. cinerea. Strains are disclosed in more detail in references 191 & 192. Some strains are available from the ATCC (e.g. strain MC58 is available under reference BAA-335).
- the NMB1870 gene was amplified using primers external to the coding sequence (A1, SEQ ID 55; and B2, SEQ ID 56). About 10 ng of chromosomal DNA was used as template for the amplification. PCR conditions were: 30 cycles, 94° C. for 40′′ 58° C. for 40′′ 68° C. for 40′′. PCR fragment were purified by the Qiagen QIAquick PCR Purification Kit, and submitted to sequence analysis, which was performed using an ABI 377 Automatic Sequencer. Sequencing was performed using primers A1, B2, 22 (SEQ ID 57) and 32 (SEQ ID 58).
- the gene was detected by PCR in all 70 Neisseria strains. In N. laciamica a band could be detected by Western blotting, but the gene could not be amplified.
- the nucleotide sequence of the gene was determined in all 70 strains. A total of 23 different protein sequences were encoded (SEQ ID NO s 1 to 23). Computer analysis of these 23 sequences, using Kimura and Jukes-Cantor algorithm, divided them into three variants ( FIG. 9 ). The dendrogram was obtained starting from the multiple sequence alignment of NMB1870 protein sequences (PileUP) using the Protein Sequence Parsimony Method (ProtPars), a program available within the Phylogeny Inference Package (Phylip), and confirmed by the GCG program Distances, using the Kimura and Jukes-Cantor algorithms.
- PileUP Protein Sequence Parsimony Method
- Prolip a program available within the Phylogeny Inference Package
- NMB1870 sequences from 100 further strains were determined. Many of these were identical to one of SEQ ID NO s 1 to 23, but 19 further unique sequences are given as SEQ ID NO s 140 to 158.
- FIGS. 12-14 show dendrograms of the various sequences, classified by ST multilocus sequence types.
- the reference strain is MC58, with the lowest sequence identity to the reference being 89.4% against an average of 93.7%.
- the reference strain is 2996 and sequences extend down to 93.4% identity (average 96.3%).
- the lowest identity to reference strain M1239 is 94.7% (average 95.8%).
- ST32cpx is the most homogeneous hypervirulent cluster, harbouring only one NMB8170 sequence from variant 1 (also also only one form of NMB1343 and of NadA).
- ST44cpx strains harbour variant 1 (several different sequences) of NMB1870, with some having variant 3 (single sequence).
- ST32cpx is closer to ST44cpx, as compared to other clusters, which matches data based on porA genotype (class III).
- ST11 and ST8 complexes are mostly represented by different sequences within variant 2 of NMB1870, suggesting that these complexes are closer together, as compared to other clusters, and matching the porA genotype (class II).
- ST11cpx harbours all three variants, indicating that it is the most diverse hypervirulent cluster out of the four.
- Strains MC58, 961-5945 and M1239 were arbitrarily selected as type strains for variants 1, 2 and 3, respectively.
- the sequence diversity between the three type strains is shown in FIG. 10 .
- Amino acid identity was 74.1% between variant 1 and variant 2, 62.8% between variant 1 and variant 3, and 84.7% between variant 2 and variant 3.
- Sequences within each variant were well-conserved, the most distant showing 91.6%, 93.4% and 93.2% identity to their type strains, respectively.
- N. cinerea belongs to variant 1, and shares 96,7% homology with MC58. As shown in FIG.
- variant 1 harbours all strains from hyperviruilent lineages ET-5, most lineage 3 strains, the serogroup A strains, two recent isolates of W-135 and one ET-37.
- variant 2 harbours all strains from the hypervirulent complex A4, from serogroups Y and Z, one old W-135 isolate and five ET-37 strains.
- variant 3 harbours four unique ST strains, one ET-37 strain, one lineage 3 strain and gonococcus.
- strains in each variant group are as follows: 1 gb185 (sequence shared with ES14784, M.00.0243291) m4030 (sequence shared with M3812) m2197 m2937 iss1001 (sequence shared with NZ394/98, 67/00, 93/114, bz198, m1390, nge28, 14996, 65/96, ISS1120, S59058, ISS1017, ISS1043, ISS1026, ISS1102, ISS1106, ISS656, ISS678, ISS740, ISS749, ISS995, ISS845, ISS1167, ISS1157, ISS1182, M4717, M6094, D8273) lnp17592 (sequence shared with 00-241341, 00-241357, 2ND80.
- SEQ ID NO s 139 (strain 220173i), 140 (strains gb101 & ISS908) and 141 (strain nge3l) are distant from these three variants (as is, to a lesser degree, strain m3813).
- strain Inp17592 sequence (also seen in strains 00-241341, 00-241357, 2ND80. 2ND221 & ISS1142) is seen in the W-135 Haji serogroup.
- the NadA sequence (SEQ ID NO: 143) is a recombination between alleles 2 and 3 [191,192].
- NMB1870 genes were amplified by PCR from the genome of N. meningitidis MC58, 961-5945 and M1239 strains. Forward and reverse primers were designed in order to amplify the nmb1870 coding sequence devoid of the sequence coding for the putative leader peptide. M1239 and 961-5945 variants were found not to be expressible in E. coli. They were therefore expressed by adding to the N-terminal the sequence SEQ ID NO: 46 that is present in the gonococcus protein but absent in the meningococcus counterpart.
- Oligonucleotides used for the amplification were as follows: Strain Forward Reverse MC58 CGCGGATCC CATATG GTCGCCGCCGACATCG CCCG CTCGAG TTGCTTGGCGGCAAGGC (‘For1’; SEQ ID 47) (‘Rev1’; SEQ ID 48) 961/5945 CGCGGATCC CATATG GGCCCTGATTCTGACCGCCTGCAGCAGC CCCG CTCGAG CTGTTTGCCGGCGATGCC GGAGGGTCGCCGCCGACATCGG (‘Rev2’; SEQ ID 50) (‘For2’; SEQ ID 49) M1239 CGCGGATCC CATATG GGCCCTGATTCTGACCGCC GCCC AAGCTT CTGTTTGCCGGCGATGCC TGCAGCAGCGGAGG GGAGGGGGTGGTGTCGC (‘Rev3’; SEQ ID 52) (‘For3’; SEQ ID 51)
- PCR conditions in the case of primer combination For1/Rev1 were: denaturation at 94° C. for 30′′, annealing at 57° C. for 30′′, elongation at 68° C. for 1 min (5 cycles), denaturation at 94° C. for 30′′, annealing at 68° C. for 30′′, elongation at 68° C. for 1 min (30 cycles).
- primer combinations For2/Rev2 and For3/Rev2 and For3/Rev3: 94° C. for 30′′, 56° C. for 30′′, 68° C. for 1 min (5 cycles), 94° C. for 30′′, 71° C. for 30′′, 68° C. for 1 min (30 cycles).
- nmb1870 gene was amplified from the MC58 genome using the following primers: f-lFor (CGCGGATCC CATATG AATCAACTGCCTTCTGCTGCC; SEQ ID 53) and f-lRev (CCCG CTCGAG TTATTGCTTGGCGGCAAGGC; SEQ ID 54) and the following conditions: 94° C. for 30′′, 58° C. for 30′′, 72° C. for 1 min (30 cycles).
- PCR were performed on approx. 10 ng of chromosomal DNA using High Fidelity Taq DNA Polymerase (Invitrogen). The PCR products were digested with NdeI and XhoI and cloned into the NdeI/XhoI sites of the pET-21b+ expression vector (Novagen).
- Recombinant proteins were expressed as His-tag fusions in E. coli and purified by MCAC (Metal Chelating Affinity Chromatography), as previously described [3], and used to immunise mice to obtain antisera.
- E. coli DH5a was used for cloning work, and BL21(DE 3 ) was used for expression.
- Isogenic knockout mutants in which the nmb1870 gene was truncated and replaced with an erythromycin antibiotic cassette was prepared by transforming strains MC58, 961-5945 and M1239 with the plasmid pBS ⁇ nmb1870ERM.
- This plasmid contains the erythromycin resistance gene within the nmb1870 upstream and downstream flanking regions of 500 bp.
- the siaD gene was deleted and replaced with ermC using the plasmid pBS ⁇ CapERM.
- the upstream and downstream flanking regions of 1000 bp and 1056 bp, respectively, were amplified from MC58 genome using the following primers: UCapFor GC TCTAGA TTCTTTCCCAAGAACTCTC (SEQ ID 63, Xba1 underlined); UcapRev TCC CCCGGG CCGTATcATCCACCAC (SEQ ID 64, Sma1 underlined); DCapFor TCC CCCGGG ATCCACGCAAATACCCC (SEQ ID 65, Sma1 underlined) and DCapRev CCCG CTCGAG ATATAAGTGGAAGACGGA (SEQ ID 66, Xho1 underlined).
- Amplified fragments were cloned into pBluescript and transformed into naturally competent N. meningitidis strain MC58.
- the mixture was spotted onto a GC agar plate, incubated for 6 hrs at 37° C., 5% CO 2 then diluted in PBS and spread on GC agar plates containing 5 ⁇ g/ml erythromycin.
- the deletion of the nmb1870 gene in the MC58 ⁇ nmb1870, 961-5945 ⁇ nmb1870 and M1239 ⁇ nmb1870 strains was confirmed by PCR; lack of NMB1870 expression was confirmed by Western blot analysis.
- the deletion of the siaD gene and the lack of capsule expression in the MC58 ⁇ siaD strain were confirmed by PCR and FACS, respectively.
- Meningococcal strains MC58 and MC58 ⁇ nmb1870 were grown in GC medium and labeled with [9,10- 3 H]-palmitic acid (Amersham). Cells from 5 ml culture were lysed by boiling for 10 min and centrifuged at 13,000 rpm. The supernatants were precipitated with TCA and washed twice with cold acetone. Proteins were suspended in 50 ⁇ l of 1.0% SDS and 15 ⁇ l analyzed by SDS-PAGE, stained with Coomassie brilliant blue, fixed and soaked for 15 min in Amplify solution (Amersham). Gels were exposed to Hyperfilm MP (Amersham) at ⁇ 80° C. for three days.
- a radioactive band of the appropriate molecular weight was detected in MC58, but not in the ⁇ nmb1870 knockout mutant.
- Recombinant E. coli grown in the presence of [9,10-3H]-palmitic acid also produce a radioactive band at the expected molecular weight, confirming that E. coli recognises the lipoprotein motif and adds a lipid tail to the recombinant protein.
- MC58 strain was grown at 37° C. with 5% CO 2 in GC medium at stationary phase. Samples were collected during growth (OD 620nm 0.05-0.9). MC58 ⁇ nmb1870 was grown until OD 620nm 0.5. Bacterial cells were collected by centrifugation, washed once with PBS, resuspended in various volumes of PBS in order to standardise the OD values. Culture supernatant was filtered using a 0.2 ⁇ m filter and 1 ml precipitated by the addition of 250 ⁇ l of 50% trichloroacetic acid (TCA). The sample was incubated on ice for 2 hr, centrifuged for 40 min at 4° C.
- TCA trichloroacetic acid
- Western blot analysis were performed according to standard procedures, using polyclonal antibodies raised against protein expressed in E. coli, at a 1:1000 dilution, followed by a 1/2000 dilution of HPR-labeled anti-human IgG (Sigma). Scanning was performed using a LabScan (Pharmacia) and Imagemaster software (Pharmacia).
- a protein of ⁇ 29.5 kDa was detected in the total cell extracts of N. menigitidis.
- the amount of the protein in the whole cell lysate approximately doubled during the growth curve, while the optical density of the culture increased from 0.05 to 0.9 OD 620nm .
- a band of the same size was also detected in the culture supernatant.
- the protein was not detected in the supernatant of the freshly inoculated culture (OD 620nm 0.05), and increased approximately four times during the growth from 0.1 to 0.9 OD 620nm ( FIG. 4 , left-hand panel).
- the genuine nature of the expression in the supernatant was confirmed by testing the same samples for membrane blebs and cytoplasmic proteins.
- the MC58 ⁇ nmb1870 knockout strain shows no protein in either whole cell lysate or culture supernatant (lanes ‘KO’ in FIGS. 3 & 4 ).
- NMB1870 was detected by western blotting in outer membrane vesicles, confirming that the protein segregates with the membrane fractions of N. meningitidis ( FIG. 5 ). However, sera from mice immunised with the OMVs did not recognise recombinant NMB1870 in western blotting, suggesting that the protein is not immunogenic in OMV preparations.
- FACS analysis using the anti-NMB1870 antibodies confirmed that the protein is surface-exposed and accessible to antibodies both in encapsulated and non-encapsulated N. meningitidis strains ( FIG. 6 ).
- FACS analysis used a FACS-Scan flow cytometer, with antibody binding detected using a secondary antibody anti-mouse (whole molecule) FITC-conjugated (Sigma).
- the positive FACS control used SEAM3, a mAb specific for the meningococcus B capsular polysaccharide [194]; the negative control consisted of a mouse polyclonal antiserum against the cytoplasmic protein NMB1380 [195].
- variant 1, variant 2 and variant 3 NMB1870 recombinant proteins were used to immunise six-week-old CD1 female mice (Charles River). Four to six mice per group were used. The recombinant proteins were given i.p., together with complete Freund's adjuvant (CFA) for the first dose and incomplete Freund's adjuvant (IFA) for the second (day 21) and third (day 35) booster doses. The same immunization schedule were performed using aluminium hydroxide adjuvant (3 mg/ml) instead of Freund's adjuvant. Blood samples for analysis were taken on day 49.
- CFA complete Freund's adjuvant
- IFA incomplete Freund's adjuvant
- the antisera were tested for their ability to induce complement-mediated killing of capsulated N. meningitidis strains, as previously described [3, 196] using pooled baby rabbit serum (CedarLane) used as complement source. Serum from a healthy human adult (with no intrinsic bactericidal activity when tested at a final concentration of 25 or 50%) was also used as complement source. Serum bactericidal titers were defined as the serum dilution resulting in 50% decrease in colony forming units (CFU) per ml after 60 mins. incubation of bacteria with reaction mixture, compared to control CFU per ml at time 0. Typically, bacteria incubated with the negative control antibody in the presence of complement showed a 150 to 200% increase in CFU/ml during the 60 min incubation.
- CFU colony forming units
- Representative strains from the high, intermediate and low expressors were selected for the assay.
- the differential expression of the protein on the surface of the selected strains was confirmed by FACS analysis ( FIG. 8 )—MC58, a representative of the high expresser strains was killed with high efficiency by the serum diluted up to 1/64,000; NZ394/98 (originally NZ98/254), a representative of the intermediate expressers was also killed with high efficiency, by the serum diluted up to 1/16,000 and even strain 67/00, a representative of the low expresser strains was killed by the antiserum diluted up to 1/2,048. Control strains, where the nmb1870 gene had been knocked out, was not killed by the same antiserum.
- Bactericidal Activity is Variant-Specific
- Each type variant was expressed in E. coli as a His-tagged protein and used to immunise mice.
- the sera were used to test the immunological cross-reactivity between strains of the three variants by FACS and bactericidal assay. As shown in FIG. 11 , by FACS analysis, all strains were recognised by each serum, although the degree of recognition varied considerably, usually reflecting the amino acid homology between the proteins.
- the data show that the serum against each variant was able to induce an efficient complement-mediated killing of the homologous strain (titers ranging between 16,000 and 64,000), while the activity was low (128-2,048) or absent ( ⁇ 4) against strains of the other variants.
- the cross-bactericidal titers between variants 2 and 3 were higher than the others.
- human complement was used, bactericidal titers of 4,096, 256 and 512 were obtained with variants 1, 2 and 3, respectively, using the homologous type strains. No titers were detected against the heterologous strains.
- the following table shows the components of these proteins in their mature forms, and gives the SEQ ID NO s of the full polypeptide and the SEQ ID NO s and strains for the component sequences A, X 1 , L 1 and X 2 : SEQ ID A X 1 L 1 X 2 pI (1) 79 — MC58 (SEQ ID 80) SEQ ID 78 2996 (SEQ ID 81) 6.74 (2) 82 — MC58 (SEQ ID 80) SEQ ID 144 2996 (SEQ ID 81) 6.63 (3) 83 — MC58 (SEQ ID 80) SEQ ID 78 M1239 (SEQ ID 84) (4) 85 — MC58 (SEQ ID 80) SEQ ID 144 M1239 (SEQ ID 84) (5) 87 SEQ ID 86 2996 (SEQ ID 81) SEQ ID 78 M1239 (SEQ ID 84) 6.44 (6) 88 SEQ ID 86 2996 (SEQ ID 81) SEQ ID 144 M1239
- NMB1870 proteins MW ⁇ 55kDa
- hybrid proteins with ‘9362 2996 ’ at the N-terminus (MW ⁇ 49kDa).
- Two linkers were used: (a) SEQ ID NO: 78, which is derived from the gonococcal NMB1870 homolog (SEQ ID NO: 46); and (b) a glycine-rich linker (SEQ ID NO: 144).
- SEQ ID NO: 78 was also used at the N-terminus of mature proteins, without its two N-terminus BamHI residues (Gly-Ser) i.e. SEQ ID NO: 86.
- the adjuvant was either CFA (top) or an aluminium hydroxide (bottom): SBA Protein 2996 (2) MC58 (1) M1239 (3) 961/5945 (2) (1) 4096 262144 2048 32768 1024 32768 128 2048 (2) 8192 262144 2048 32768 1024 16384 512 1024 (3) — 131072 32768 4096 — 32768 4096 1024 (4) — 262144 32768 8192 — 32768 1024 512 (5) 512 ⁇ 4 4096 32768 1024 16 4096 8192 (6) 4096 ⁇ 4 32768 32768 2048 16 4096 16384 (7) — 4 4096 32768 — 16 4096 8192 (8) 2048 32 32768 32768 1024 32 8192 16384 (9) 2048 ⁇ 4 ⁇ 4 32768 4096 ⁇ 4 512 16384 (10) 4096 ⁇ 4 256 131072 512 ⁇ 4 ⁇ 4 2048 (11) 256 ⁇ 4 >327
- proteins (1) and (2) include sequences from NMB1870 variants 1 and 2, and the best SBA results are seen against these two variants. Similarly, the best results are seen against variants 1 and 3 when using proteins (3) and (4). Good activity is seen using NMB1870 from variants 2 and 3, in either order from N-terminus to C-terminus, using proteins (5) to (8), with little activity against variant 1.
- the variant-specific nature of the NMB1870 response is also apparent when using the hybrid proteins, with some anti-2996 activity being provided by the ‘936’ moiety.
- a “triple tandem” protein, where n 3, was constructed based on strains (1) MC58, (2) 2996 and (3) m1239.
- the 757mer triple tandem protein NH 2 A-X 1 -L 1 -X 2 -L 2 -X 3 -L 3 -B—COOH has amino acid sequence SEQ ID NO: 142: Moiety A X 1 L 1 X 2 L 2 X 3 L 3 B Detail — NMB1870 MC58 Gly-rich linker NMB1870 2996 Gly-rich linker NMB1870 m1239 — — SEQ ID — 80 ⁇ 144 81 144 84 — — Variant — 1 — 2 — 3 — —
- X 2 and X 3 both lack the N-terminus up to their poly-glycine regions (i.e. they are ⁇ G sequences).
- mice were immunised with nine different proteins and the bactericidal activity of the resulting sera were tested against different strains of meningococcus, including both strains which match those from which the immunising proteins were derived and strains which are different from the immunising proteins.
- the nine proteins were:
- the bactericidal efficacy of sera raised against proteins (A) to (C) matched the genotype of the test strains e.g. using CFA as adjuvant for the immunisations, the SBA titres against strain MC58 (variant 1) were: (A) 262144; (B) ⁇ 4; (C) ⁇ 4. Similarly, when sera were tested against strain 961-5945 (variant 2) the SBA were: (A) 256; (B) 32768; (C) 4096. Finally, against strain M1239 (variant 3) titres were: (A) ⁇ 4; (B) 512; (C) 32768.
- protein (A) gave SBA titres of ⁇ 512 against the following strains: M01-240185, M2197, LPN17592, M6190 (all ET37); MC58, BZ83, CU385, N44/89, 44/76, M2934, M4215 (all ETS); BZ133; M1390, ISS1026, ISS1106, ISS1102 (lin. 3);
- protein (B) gave SBA titres ⁇ 512 against strains: 2996, 961-5945, 96217 (cluster A4); M01-240013, C11, NGH38, M3279, M4287, B7232 (other). These strains cover serogroups B and C; no serogroup A, W135 or Y strains were tested.
- protein (C) gave SBA titres ⁇ 512 against strains: M01-0240364, NGP165 (ET37); M1239 (lin. 3); M01-240355, M3369 (other). These strains are in serogroup B, and no serogroup A, C, W135 or Y strains were tested.
- Sera obtained using protein (G) were bactericidal against strain MC58 and 961-5945, as well as other strains which possess variant 1 or variant 2 of NMB1870.
- Sera raised against protein (H1) gave low titres against strains which posssess variant 1 of NMB1870, but high titres against other strains e.g. 16384 against strain 961-5945 (variant 2) and 32768 against strain M3369 (variant 3).
- Sera obtained by immunisation with CFA-adjuvanted protein (H) gave SBA titres ⁇ 512 against: LNP17094, 96217, 961-5945, 2996, 5/99 (cluster A4); C4678, MO-0240364, NGP165 (ET37); M1239 (lin. 3); M2552, BZ232, M3279, M4287, 1000, NGH38, C11, M01-240013, M01-240355, M3369 (other). These strains cover serogroups B and C; activity against serogroups A, W135 or Y strains was not tested with protein (H).
- Sera obtained by immunisation with CFA-adjuvanted protein (I) gave SBA titres ⁇ 512 against: M01-0240364, 14784, M6190, MC58, LPN17592, M2197 (ET37); 44176 (ETS); M1239, ISS1102, ISS1106, ISS1026, 394/98 (lin. 3); M2937 (other). These strains cover serogroups B, C and W135; activity against serogroups A or Y strains was not tested with protein (I).
- NMB1870 appears not to be a useful antigen for broad immunisation—its expression levels vary between strains, there is significant sequence variability, and there is no cross-protection between the different variants. However, it has been shown that even those strains which express very low levels of this antigen are susceptible to anti-NMB1870 sera. Furthermore, sequence diversity is limited to three variant forms such that broad immunity can be achieved without the need for a large number of antigens. In addition, it seems that these three proteins may offer immunity against more than just serogroup B meningococcus.
- NMB1870 The different variants of NMB1870 can be expressed together as fusion proteins in order to give single polypeptide chains which are active against more than one variant.
- NMB1870 is immunogenic during infection, is able to induce bactericidal antibodies, and protects infant rats from bacterial challenge.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/364,264 US8980286B2 (en) | 2002-11-22 | 2012-02-01 | Multiple variants of meningococcal protein NBM1870 |
US13/367,289 US20120148618A1 (en) | 2002-11-22 | 2012-02-06 | Multiple variants of meningococcal protein nmb1870 |
US14/918,417 US9550814B2 (en) | 2002-11-22 | 2015-10-20 | Multiple variants of meningococcal protein NMB1870 |
US15/351,286 US20170290902A1 (en) | 2002-11-22 | 2016-11-14 | Multiple variants of meningococcal protein nmb1870 |
US15/641,955 US10328142B2 (en) | 2002-11-22 | 2017-07-05 | Multiple variants of meningococcal protein NMB1870 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0227346.4A GB0227346D0 (en) | 2002-11-22 | 2002-11-22 | 741 |
GB0227346.4 | 2002-11-22 | ||
PCT/IB2003/006320 WO2004048404A2 (en) | 2002-11-22 | 2003-11-21 | Multiple variants of meningococcal protein nmb1870 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2003/006320 A-371-Of-International WO2004048404A2 (en) | 2002-11-22 | 2003-11-21 | Multiple variants of meningococcal protein nmb1870 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/364,264 Continuation US8980286B2 (en) | 2002-11-22 | 2012-02-01 | Multiple variants of meningococcal protein NBM1870 |
US13/367,289 Continuation US20120148618A1 (en) | 2002-11-22 | 2012-02-06 | Multiple variants of meningococcal protein nmb1870 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060251670A1 true US20060251670A1 (en) | 2006-11-09 |
Family
ID=9948377
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/536,215 Abandoned US20060251670A1 (en) | 2002-11-22 | 2003-11-21 | Multiple variants of meningococcal protein nmb1870 |
US13/364,264 Expired - Lifetime US8980286B2 (en) | 2002-11-22 | 2012-02-01 | Multiple variants of meningococcal protein NBM1870 |
US13/367,289 Abandoned US20120148618A1 (en) | 2002-11-22 | 2012-02-06 | Multiple variants of meningococcal protein nmb1870 |
US14/918,417 Expired - Lifetime US9550814B2 (en) | 2002-11-22 | 2015-10-20 | Multiple variants of meningococcal protein NMB1870 |
US15/351,286 Abandoned US20170290902A1 (en) | 2002-11-22 | 2016-11-14 | Multiple variants of meningococcal protein nmb1870 |
US15/641,955 Expired - Lifetime US10328142B2 (en) | 2002-11-22 | 2017-07-05 | Multiple variants of meningococcal protein NMB1870 |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/364,264 Expired - Lifetime US8980286B2 (en) | 2002-11-22 | 2012-02-01 | Multiple variants of meningococcal protein NBM1870 |
US13/367,289 Abandoned US20120148618A1 (en) | 2002-11-22 | 2012-02-06 | Multiple variants of meningococcal protein nmb1870 |
US14/918,417 Expired - Lifetime US9550814B2 (en) | 2002-11-22 | 2015-10-20 | Multiple variants of meningococcal protein NMB1870 |
US15/351,286 Abandoned US20170290902A1 (en) | 2002-11-22 | 2016-11-14 | Multiple variants of meningococcal protein nmb1870 |
US15/641,955 Expired - Lifetime US10328142B2 (en) | 2002-11-22 | 2017-07-05 | Multiple variants of meningococcal protein NMB1870 |
Country Status (19)
Country | Link |
---|---|
US (6) | US20060251670A1 (es) |
EP (4) | EP2258716B1 (es) |
JP (3) | JP4767540B2 (es) |
CN (1) | CN100381464C (es) |
AU (1) | AU2003288681B2 (es) |
BR (1) | BR0316501A (es) |
CA (2) | CA2507009A1 (es) |
CY (2) | CY1115778T1 (es) |
DK (3) | DK2258716T3 (es) |
ES (3) | ES2637065T3 (es) |
GB (1) | GB0227346D0 (es) |
HK (1) | HK1088342A1 (es) |
HU (1) | HUE034257T2 (es) |
MX (1) | MXPA05005442A (es) |
NZ (1) | NZ540206A (es) |
PT (3) | PT2258716E (es) |
RU (1) | RU2336091C2 (es) |
SI (3) | SI1562983T1 (es) |
WO (1) | WO2004048404A2 (es) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040125193A1 (en) * | 2002-09-20 | 2004-07-01 | Nobuaki Kubo | Light scanning device, scanning line adjusting method, scanning line adjusting control method, image forming apparatus, and image forming method |
US20040167068A1 (en) * | 2002-08-30 | 2004-08-26 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US20050222385A1 (en) * | 2001-09-06 | 2005-10-06 | Chiron Spa | Hybrid and tandem expression of neisserial proteins |
US20060029621A1 (en) * | 2000-07-27 | 2006-02-09 | Granoff Dan M | Vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US20060051840A1 (en) * | 2000-02-28 | 2006-03-09 | Chiron Srl | Hybrid expression of neisserial proteins |
US20060171957A1 (en) * | 2002-10-11 | 2006-08-03 | Chiron Spa | Polypeptide-vaccines for broad protetion against hypervirulent meningococcal lineages |
US20060257413A1 (en) * | 2001-10-11 | 2006-11-16 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US20070082007A1 (en) * | 2003-04-16 | 2007-04-12 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US20090041802A1 (en) * | 2005-06-27 | 2009-02-12 | Ralph Leon Biemans | Immunogenic composition |
US20090148469A1 (en) * | 1998-11-02 | 2009-06-11 | Andrew Robinson | Multicomponent meningococcal vaccine |
US20090285845A1 (en) * | 2004-09-01 | 2009-11-19 | Vega Masignani | Domains And Epitopes Of Meningococcal Protein NMB1870 |
US20110020390A1 (en) * | 2008-02-21 | 2011-01-27 | Mariagrazia Pizza | Meningococcal fhbp polypeptides |
US20110033491A1 (en) * | 1998-11-02 | 2011-02-10 | Andrew Robinson | Multicomponent meningococcal vaccine |
US20110104193A1 (en) * | 1999-05-19 | 2011-05-05 | Novartis Vaccines And Diagnostics Srl | Combination neisserial compositions |
US20110189187A1 (en) * | 2006-12-22 | 2011-08-04 | Wyeth | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US20110256180A1 (en) * | 2010-03-30 | 2011-10-20 | Beernink Peter T | Factor H Binding Proteins (FHBP) with Altered Properties and Methods of Use Thereof |
CN102711814A (zh) * | 2009-04-30 | 2012-10-03 | 奥克兰儿童医院及研究中心 | 一种嵌合h因子结合蛋白(fhbp)及其使用方法 |
US20120282295A1 (en) * | 2009-10-30 | 2012-11-08 | Novartis Ag | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
US8394390B2 (en) | 1999-10-29 | 2013-03-12 | Novartis Ag | Neisserial antigenic peptides |
US8398988B2 (en) | 2009-03-24 | 2013-03-19 | Novartis Ag | Adjuvanting meningococcal factor H binding protein |
US8524251B2 (en) | 1998-05-01 | 2013-09-03 | J. Craig Venter Institute, Inc. | Neisseria meningitidis antigens and compositions |
US8968748B2 (en) | 2005-01-27 | 2015-03-03 | Children's Hospital & Research Center Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US8980286B2 (en) | 2002-11-22 | 2015-03-17 | Novartis Ag | Multiple variants of meningococcal protein NBM1870 |
US8986710B2 (en) | 2012-03-09 | 2015-03-24 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
USRE45587E1 (en) | 2001-07-26 | 2015-06-30 | Glaxosmithkline Biologicals Sa | Vaccines comprising aluminum adjuvants and histidine |
US20150209419A1 (en) * | 2011-12-29 | 2015-07-30 | Beatrice Maria Arico | Adjuvanted combinations of meningococcal factor h binding proteins |
US9156894B2 (en) | 2005-11-25 | 2015-10-13 | Glaxosmithkline Biologicals Sa | Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870 |
US20160025719A1 (en) * | 2014-07-25 | 2016-01-28 | Serum Institute Of India Ltd. | Highly sensitive immunoassay for rapid quantification of meningococcal capsular polysaccharide antigens |
US9556240B2 (en) | 2010-08-23 | 2017-01-31 | Wyeth Llc | Stable formulations of Neisseria meningitidis rLP2086 antigens |
US9757443B2 (en) | 2010-09-10 | 2017-09-12 | Wyeth Llc | Non-lipidated variants of Neisseria meningitidis ORF2086 antigens |
US9802987B2 (en) | 2013-03-08 | 2017-10-31 | Pfizer Inc. | Immunogenic fusion polypeptides |
US9822150B2 (en) | 2013-09-08 | 2017-11-21 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US9914756B2 (en) | 2013-08-02 | 2018-03-13 | Children's Hospital & Research Center At Oakland | Non-naturally occurring factor H binding proteins (fHbp) and methods of use thereof |
US10000545B2 (en) | 2012-07-27 | 2018-06-19 | Institut National De La Sante Et De La Recherche Medicale | CD147 as receptor for pilus-mediated adhesion of Meningococci to vascular endothelia |
US10183070B2 (en) | 2017-01-31 | 2019-01-22 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US10196429B2 (en) | 2012-03-09 | 2019-02-05 | Pfizer Inc. | Neisseria meningitidis composition and methods thereof |
US10195264B2 (en) | 2004-04-22 | 2019-02-05 | Glaxosmithkline Biologicals S.A. | Immunising against meningococcal serogroup Y using proteins |
US10266572B2 (en) | 2014-07-23 | 2019-04-23 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US10376573B2 (en) | 2012-06-14 | 2019-08-13 | Glaxosmithkline Biologicals Sa | Vaccines for serogroup X meningococcus |
US10478483B2 (en) | 2010-06-25 | 2019-11-19 | Glaxosmithkline Biologicals Sa | Combinations of meningococcal factor H binding proteins |
CN110607314A (zh) * | 2019-10-31 | 2019-12-24 | 四川农业大学 | 一种TcdB RBD基因、重组RBD蛋白和应用 |
US10888611B2 (en) | 2015-02-19 | 2021-01-12 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US11027004B2 (en) * | 2016-10-24 | 2021-06-08 | Biomvis Srl | Immunogenic compositions containing bacterial outer membrane vesicles |
US11098335B2 (en) * | 2006-02-03 | 2021-08-24 | Fujifilm Diosynth Biotechnologies Uk Limited | Expression system |
US11932671B2 (en) | 2014-02-28 | 2024-03-19 | Glaxosmithkline Biologicals Sa | Modified meningococcal fHbp polypeptides |
US11939357B2 (en) | 2014-07-17 | 2024-03-26 | Glaxosmithkline Biologicals Sa | Modified meningococcal fHbp polypeptides |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0010130A (pt) | 1999-04-30 | 2002-06-04 | Chiron Spa | Antìgenos de neisseria conservados |
GB9928196D0 (en) | 1999-11-29 | 2000-01-26 | Chiron Spa | Combinations of B, C and other antigens |
ES2507100T3 (es) | 2000-01-17 | 2014-10-14 | Novartis Vaccines And Diagnostics S.R.L. | Vacuna OMV suplementada contra meningococo |
EP2172213B1 (en) | 2003-01-30 | 2013-04-03 | Novartis AG | Injectable vaccines against multiple meningococcal serogroups |
PL1961426T3 (pl) | 2003-10-02 | 2012-03-30 | Gsk Vaccines S R L | Skojarzone szczepionki przeciwko zapaleniu opon mózgowo-rdzeniowych |
GB0419627D0 (en) | 2004-09-03 | 2004-10-06 | Chiron Srl | Immunogenic bacterial vesicles with outer membrane proteins |
GB0424092D0 (en) | 2004-10-29 | 2004-12-01 | Chiron Srl | Immunogenic bacterial vesicles with outer membrane proteins |
US20090104218A1 (en) * | 2004-12-22 | 2009-04-23 | J. Craig Venter Institute | Group B Streptococcus |
HUE027400T2 (en) | 2005-02-18 | 2016-10-28 | Glaxosmithkline Biologicals Sa | Proteins and nucleic acids from meningitis / sepsis with Escherichia coli |
EP2298795A1 (en) | 2005-02-18 | 2011-03-23 | Novartis Vaccines and Diagnostics, Inc. | Immunogens from uropathogenic escherichia coli |
AU2013201318B2 (en) * | 2005-11-25 | 2015-11-19 | Glaxosmithkline Biologicals Sa | Chimeric, hybrid and tandem polypeptides of meningococcal NMB 1870 |
JP2010500399A (ja) | 2006-08-16 | 2010-01-07 | ノバルティス アーゲー | 尿路病原性大腸菌由来の免疫原 |
GB0700562D0 (en) | 2007-01-11 | 2007-02-21 | Novartis Vaccines & Diagnostic | Modified Saccharides |
GB0713880D0 (en) | 2007-07-17 | 2007-08-29 | Novartis Ag | Conjugate purification |
CN101951949B (zh) | 2007-10-19 | 2013-10-02 | 诺华股份有限公司 | 脑膜炎球菌疫苗制剂 |
PL2268618T3 (pl) | 2008-03-03 | 2015-11-30 | Novartis Ag | Związki i kompozycje jako modulatory aktywności receptorów TLR |
AU2009223613B2 (en) | 2008-03-10 | 2014-09-25 | Children's Hospital & Research Center At Oakland | Chimeric factor H binding proteins (fHBP) containing a heterologous B domain and methods of use |
EP2331562A4 (en) | 2008-09-03 | 2012-07-04 | Childrens Hosp & Res Ct Oak | PEPTIDES WITH AN EPITOPE OF A DOMAIN OF THE FACTOR H-BINDING PROTEIN AND METHOD OF USE |
IT1394288B1 (it) * | 2008-09-12 | 2012-06-06 | Novartis Vaccines & Diagnostic | Immunogeni di proteine che legano il fattore h. |
NZ593674A (en) | 2008-12-17 | 2013-03-28 | Novartis Ag | Meningococcal vaccines including hemoglobin receptor |
RU2555757C2 (ru) | 2009-03-24 | 2015-07-10 | Новартис Аг | Комбинации менингококкового фактор н-связывающего белка и пневмококковых сахаридных конъюгатов |
AU2010258677B2 (en) | 2009-06-10 | 2016-10-06 | Glaxosmithkline Biologicals S.A. | Benzonaphthyridine-containing vaccines |
NZ598459A (en) | 2009-08-27 | 2014-03-28 | Novartis Ag | Adjuvant comprising aluminium, oligonucleotide and polycation |
CN104650241A (zh) | 2009-08-27 | 2015-05-27 | 诺华股份有限公司 | 包括脑膜炎球菌fHBP序列的杂交多肽 |
JO3257B1 (ar) | 2009-09-02 | 2018-09-16 | Novartis Ag | مركبات وتركيبات كمعدلات لفاعلية tlr |
SG178954A1 (en) | 2009-09-02 | 2012-04-27 | Novartis Ag | Immunogenic compositions including tlr activity modulators |
CN102724988B (zh) | 2009-09-30 | 2014-09-10 | 诺华股份有限公司 | 脑膜炎球菌fHBP多肽的表达 |
EP2493499A1 (en) | 2009-10-27 | 2012-09-05 | Novartis AG | Modified meningococcal fhbp polypeptides |
WO2011057148A1 (en) | 2009-11-05 | 2011-05-12 | Irm Llc | Compounds and compositions as tlr-7 activity modulators |
SG10201501980SA (en) | 2009-12-15 | 2015-05-28 | Novartis Ag | Homogeneous suspension of immunopotentiating compounds and uses thereof |
EP2544714A1 (en) * | 2010-03-10 | 2013-01-16 | GlaxoSmithKline Biologicals S.A. | Vaccine composition |
EP2549990A1 (en) | 2010-03-23 | 2013-01-30 | Irm Llc | Compounds (cystein based lipopeptides) and compositions as tlr2 agonists used for treating infections, inflammations, respiratory diseases etc. |
CA2810971C (en) | 2010-09-10 | 2020-11-03 | Novartis Ag | Developments in meningococcal outer membrane vesicles |
AU2012222883A1 (en) | 2011-03-02 | 2013-10-17 | Novartis Ag | Combination vaccines with lower doses of antigen and/or adjuvant |
EP2707009A1 (en) | 2011-05-12 | 2014-03-19 | Novartis AG | Antipyretics to enhance tolerability of vesicle-based vaccines |
AU2012301812A1 (en) | 2011-08-31 | 2014-03-06 | Children's Hospital & Research Center Oakland | Engineered sequences to facilitate expression of antigens in neisseria and methods of use |
US9657297B2 (en) | 2012-02-02 | 2017-05-23 | Glaxosmithkline Biologicals Sa | Promoters for increased protein expression in meningococcus |
EP2822584A1 (en) | 2012-03-08 | 2015-01-14 | Novartis AG | Combination vaccines with tlr4 agonists |
US10598666B2 (en) | 2012-03-08 | 2020-03-24 | Glaxosmithkline Biologicals Sa | In vitro potency assay for protein-based meningococcal vaccines |
JP6324961B2 (ja) | 2012-09-06 | 2018-05-16 | ノバルティス アーゲー | 血清群b髄膜炎菌とd/t/pとの組み合わせワクチン |
AU2015289193A1 (en) * | 2014-07-17 | 2017-02-02 | Glaxosmithkline Biologicals S.A. | Meningococcus vaccines |
EP3302511A1 (en) | 2015-06-02 | 2018-04-11 | De Staat der Nederlanden, vert. door de Minister van VWS | Surface display of antigens on gram-negative outer membrane vesicles |
AR104833A1 (es) * | 2015-07-01 | 2017-08-16 | Syngenta Participations Ag | Composiciones y métodos para controlar plagas de plantas |
EP3263695A1 (en) | 2016-06-29 | 2018-01-03 | GlaxoSmithKline Biologicals SA | Immunogenic compositions |
EP3506933A2 (en) | 2016-09-02 | 2019-07-10 | GlaxoSmithKline Biologicals SA | Vaccines for neisseria gonorrhoeae |
WO2019126197A1 (en) | 2017-12-18 | 2019-06-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Bacterial polysaccharide-conjugated carrier proteins and use thereof |
GB202115077D0 (en) | 2021-10-21 | 2021-12-08 | Glaxosmithkline Biologicals Sa | Assay |
GB202115151D0 (en) | 2021-10-21 | 2021-12-08 | Glaxosmithkline Biologicals Sa | Methods |
GB202208093D0 (en) | 2022-06-01 | 2022-07-13 | Glaxosmithkline Biologicals Sa | Immunogenic composition |
GB202208089D0 (en) | 2022-06-01 | 2022-07-13 | Glaxosmithkline Biologicals Sa | Immunogenic composition |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001064922A2 (en) * | 2000-02-28 | 2001-09-07 | Chiron Spa | Heterologous expression of neisserial proteins |
US20040167068A1 (en) * | 2002-08-30 | 2004-08-26 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US6903202B2 (en) * | 1998-11-20 | 2005-06-07 | Desert Genetics, Inc. | DNA encoding proteins that inhibit Hsp70 function |
US20050222385A1 (en) * | 2001-09-06 | 2005-10-06 | Chiron Spa | Hybrid and tandem expression of neisserial proteins |
US20060029621A1 (en) * | 2000-07-27 | 2006-02-09 | Granoff Dan M | Vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US20060171957A1 (en) * | 2002-10-11 | 2006-08-03 | Chiron Spa | Polypeptide-vaccines for broad protetion against hypervirulent meningococcal lineages |
US20070026021A1 (en) * | 1998-05-01 | 2007-02-01 | Chiron S.R.I. | Neisseria meningitidis antigens and compositions |
US20070082014A1 (en) * | 2003-01-30 | 2007-04-12 | Chiron Srl | Injectable vaccines against multiple meningococcal serogroups |
US20080241180A1 (en) * | 2003-10-02 | 2008-10-02 | Mario Contorni | Liquid Vaccines For Multiple Meningococcal Serogroups |
US20090032820A1 (en) * | 2007-08-03 | 2009-02-05 | The Hong Kong University Of Science & Technology | Reliable Normally-Off III-Nitride Active Device Structures, and Related Methods and Systems |
US7576176B1 (en) * | 1998-05-01 | 2009-08-18 | Novartis Vaccines And Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
US20090285845A1 (en) * | 2004-09-01 | 2009-11-19 | Vega Masignani | Domains And Epitopes Of Meningococcal Protein NMB1870 |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057685A (en) | 1972-02-02 | 1977-11-08 | Abbott Laboratories | Chemically modified endotoxin immunizing agent |
AU545912B2 (en) | 1980-03-10 | 1985-08-08 | Cetus Corporation | Cloned heterologous jive products in bacillies |
ZA811368B (en) | 1980-03-24 | 1982-04-28 | Genentech Inc | Bacterial polypedtide expression employing tryptophan promoter-operator |
DK188582A (da) | 1981-04-29 | 1982-10-30 | Biogen Nv | Bacillus-kloningsvektorer rekombinations-dna-molekyler bacillus-vaerter transformeret dermed samt fremgangsmaader til ekspressionaf fremmede dna-sekvenser og fremstilling af polypeptideer som er kodede dermed |
US4551433A (en) | 1981-05-18 | 1985-11-05 | Genentech, Inc. | Microbial hybrid promoters |
US4356170A (en) | 1981-05-27 | 1982-10-26 | Canadian Patents & Development Ltd. | Immunogenic polysaccharide-protein conjugates |
US4673574A (en) | 1981-08-31 | 1987-06-16 | Anderson Porter W | Immunogenic conjugates |
US4459286A (en) | 1983-01-31 | 1984-07-10 | Merck & Co., Inc. | Coupled H. influenzae type B vaccine |
JPS59166086A (ja) | 1983-03-09 | 1984-09-19 | Teruhiko Beppu | 新規な発現型プラスミドとそれらを用いて仔牛プロキモシン遺伝子を大腸菌内で発現させる方法 |
US4663160A (en) | 1983-03-14 | 1987-05-05 | Miles Laboratories, Inc. | Vaccines for gram-negative bacteria |
JPS59205983A (ja) | 1983-04-28 | 1984-11-21 | ジエネツクス・コ−ポレイシヨン | 異種遺伝子を原核微生物で発現させる方法 |
US4663280A (en) | 1983-05-19 | 1987-05-05 | Public Health Research Institute Of The City Of New York | Expression and secretion vectors and method of constructing vectors |
US4761283A (en) | 1983-07-05 | 1988-08-02 | The University Of Rochester | Immunogenic conjugates |
US4689406A (en) | 1983-08-10 | 1987-08-25 | Amgen | Enhancement of microbial expression of polypeptides |
JPS6054685A (ja) | 1983-09-02 | 1985-03-29 | Suntory Ltd | 改良発現ベクタ−およびその利用 |
EP0136907A3 (en) | 1983-10-03 | 1986-12-30 | Genentech, Inc. | A xenogeneic expression control system, a method of using it, expression vectors containing it, cells transformed thereby and heterologous proteins produced therefrom |
US4695624A (en) | 1984-05-10 | 1987-09-22 | Merck & Co., Inc. | Covalently-modified polyanionic bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers, and methods of preparing such polysaccharides and conjugates and of confirming covalency |
US4882317A (en) | 1984-05-10 | 1989-11-21 | Merck & Co., Inc. | Covalently-modified bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers and methods of preparing such polysaccharides and conjugataes and of confirming covalency |
US4808700A (en) | 1984-07-09 | 1989-02-28 | Praxis Biologics, Inc. | Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers |
US4738921A (en) | 1984-09-27 | 1988-04-19 | Eli Lilly And Company | Derivative of the tryptophan operon for expression of fused gene products |
US4745056A (en) | 1984-10-23 | 1988-05-17 | Biotechnica International, Inc. | Streptomyces secretion vector |
IT1187753B (it) | 1985-07-05 | 1987-12-23 | Sclavo Spa | Coniugati glicoproteici ad attivita' immunogenica trivalente |
US4865974A (en) | 1985-09-20 | 1989-09-12 | Cetus Corporation | Bacterial methionine N-terminal peptidase |
JPS63123383A (ja) | 1986-11-11 | 1988-05-27 | Mitsubishi Kasei Corp | ハイブリツドプロモ−タ−、発現調節dna配列および発現ベクタ− |
JPH01125328A (ja) | 1987-07-30 | 1989-05-17 | Centro Natl De Biopreparados | 髄膜炎菌ワクチン |
NL8802046A (nl) | 1988-08-18 | 1990-03-16 | Gen Electric | Polymeermengsel met polyester en alkaansulfonaat, daaruit gevormde voorwerpen. |
DE3841091A1 (de) | 1988-12-07 | 1990-06-13 | Behringwerke Ag | Synthetische antigene, verfahren zu ihrer herstellung und ihre verwendung |
AU640118B2 (en) | 1988-12-19 | 1993-08-19 | De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezonheid En Cultuur | Meningococcal class 1 outer-membrane protein vaccine |
DE68907045T2 (de) | 1989-01-17 | 1993-12-02 | Eniricerche Spa | Synthetische Peptide und deren Verwendung als allgemeine Träger für die Herstellung von immunogenischen Konjugaten, die für die Entwicklung von synthetischen Impfstoffen geeignet sind. |
JPH0832638B2 (ja) | 1989-05-25 | 1996-03-29 | カイロン コーポレイション | サブミクロン油滴乳剤を含んで成るアジュバント製剤 |
WO1991001146A1 (en) | 1989-07-14 | 1991-02-07 | Praxis Biologics, Inc. | Cytokine and hormone carriers for conjugate vaccines |
IT1237764B (it) | 1989-11-10 | 1993-06-17 | Eniricerche Spa | Peptidi sintetici utili come carriers universali per la preparazione di coniugati immunogenici e loro impiego per lo sviluppo di vaccini sintetici. |
SE466259B (sv) | 1990-05-31 | 1992-01-20 | Arne Forsgren | Protein d - ett igd-bindande protein fraan haemophilus influenzae, samt anvaendning av detta foer analys, vacciner och uppreningsaendamaal |
IE912559A1 (en) | 1990-07-19 | 1992-01-29 | Merck & Co Inc | The class ii protein of the outer membrane of neisseria¹meningitidis, and vaccines containing same |
IL98715A0 (en) | 1990-08-13 | 1992-07-15 | American Cyanamid Co | Filamentous hemaglutinin of bodetella pertussis as a carrier molecule for conjugate vaccines |
US5153312A (en) | 1990-09-28 | 1992-10-06 | American Cyanamid Company | Oligosaccharide conjugate vaccines |
DE69334197T2 (de) | 1992-03-02 | 2008-12-11 | Novartis Vaccines And Diagnostics S.R.L. | Helicobacter pylori Cytotoxin verwendbar in Impfstoffe und Diagnostik |
IT1262896B (it) | 1992-03-06 | 1996-07-22 | Composti coniugati formati da proteine heat shock (hsp) e oligo-poli- saccaridi, loro uso per la produzione di vaccini. | |
ES2143716T3 (es) | 1992-06-25 | 2000-05-16 | Smithkline Beecham Biolog | Composicion de vacuna que contiene adyuvantes. |
IL102687A (en) | 1992-07-30 | 1997-06-10 | Yeda Res & Dev | Conjugates of poorly immunogenic antigens and synthetic pepide carriers and vaccines comprising them |
NL9201716A (nl) | 1992-10-02 | 1994-05-02 | Nederlanden Staat | Buitenmembraanvesikel dat voorzien is van een groep polypeptiden welke ten minste de immuunwerking van aan membraan gebonden buitenmembraaneiwitten (OMP's) hebben, werkwijze ter bereiding ervan alsmede een vaccin dat een dergelijk buitenmembraanvesikel omvat. |
DE122009000058I1 (de) | 1993-09-22 | 2009-12-31 | Jackson H M Found Military Med | Verfahren zur aktivierung von löslichem kohlenhydraten durch verwendung von neuen cyanylierungsreagenzien, zur herstellung von immunogenischen konstrukten |
GB9326253D0 (en) | 1993-12-23 | 1994-02-23 | Smithkline Beecham Biolog | Vaccines |
JPH10502365A (ja) | 1994-07-01 | 1998-03-03 | リカン・リミテッド | ヘリコバクタータンパク質およびワクチン |
EP1167378B1 (en) | 1994-07-15 | 2011-05-11 | University of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
IL117483A (en) | 1995-03-17 | 2008-03-20 | Bernard Brodeur | MENINGITIDIS NEISSERIA shell protein is resistant to proteinase K. |
WO1997000697A1 (en) | 1995-06-23 | 1997-01-09 | Smithkline Beecham Biologicals S.A. | A vaccine composition comprising a polysaccharide conjugate antigen adsorbed onto aluminium phosphate |
US6180111B1 (en) | 1995-05-18 | 2001-01-30 | University Of Maryland | Vaccine delivery system |
EP0831901B2 (en) | 1995-06-07 | 2005-12-07 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Vaccine comprising a polysaccharide antigen-carrier protein conjugate and free carrier protein |
GB9513261D0 (en) | 1995-06-29 | 1995-09-06 | Smithkline Beecham Biolog | Vaccines |
ATE355375T1 (de) | 1996-01-04 | 2006-03-15 | Novartis Vaccines & Diagnostic | Bakterioferritin aus helicobacter pylori |
DE19630390A1 (de) | 1996-07-26 | 1998-01-29 | Chiron Behring Gmbh & Co | Proteine, insbesondere Membranproteine von Helicobacter pylori, ihre Herstellung und Verwendung |
ES2241042T3 (es) | 1996-10-11 | 2005-10-16 | The Regents Of The University Of California | Conjugados de polinucleotido inmunoestimulador/ molecula inmunomoduladora. |
US6558677B2 (en) | 1996-10-15 | 2003-05-06 | Wendell D. Zollinger | Vaccine against gram negative bacteria |
WO1998017805A2 (en) | 1996-10-24 | 1998-04-30 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, c/o Centers for Disease Control and Prevention, Technology Transfer Office | Invasion associated genes from neisseria meningitidis serogroup b |
PT942983E (pt) | 1996-10-31 | 2007-02-28 | Human Genome Sciences Inc | Antigénios e vacinas de streptococcus pneumoniae |
JP5037747B2 (ja) | 1997-01-30 | 2012-10-03 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | 免疫応答を刺激するための吸着された抗原を有するマイクロパーティクルの使用 |
US6214806B1 (en) | 1997-02-28 | 2001-04-10 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders |
DE69841122D1 (de) | 1997-03-10 | 2009-10-15 | Coley Pharm Gmbh | Verwendung von nicht-methyliertem CpG Dinukleotid in Kombination mit Aluminium als Adjuvantien |
US6299881B1 (en) | 1997-03-24 | 2001-10-09 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts |
US6339068B1 (en) | 1997-05-20 | 2002-01-15 | University Of Iowa Research Foundation | Vectors and methods for immunization or therapeutic protocols |
AU755322B2 (en) | 1997-06-06 | 2002-12-12 | Dynavax Technologies Corporation | Inhibitors of DNA immunostimulatory sequence activity |
GB9711964D0 (en) | 1997-06-09 | 1997-08-06 | Medical Res Council | Live attenuated vaccines |
GB9712347D0 (en) | 1997-06-14 | 1997-08-13 | Smithkline Beecham Biolog | Vaccine |
GB9713156D0 (en) | 1997-06-20 | 1997-08-27 | Microbiological Res Authority | Vaccines |
CA2302554C (en) | 1997-09-05 | 2007-04-10 | Smithkline Beecham Biologicals S.A. | Oil in water emulsions containing saponins |
CA2671261A1 (en) | 1997-11-06 | 1999-05-20 | Novartis Vaccines And Diagnostics S.R.L. | Neisserial antigens |
US6914131B1 (en) | 1998-10-09 | 2005-07-05 | Chiron S.R.L. | Neisserial antigens |
CN100390283C (zh) | 1997-11-21 | 2008-05-28 | 根瑟特公司 | 肺炎衣原体的基因组序列和其多肽,片段以及其用途特别是用于诊断、预防和治疗感染 |
GB9725084D0 (en) | 1997-11-28 | 1998-01-28 | Medeva Europ Ltd | Vaccine compositions |
CA2309228A1 (en) | 1997-11-28 | 1999-06-10 | Genset S.A. | Chlamydia trachomatis genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
ES2333071T5 (es) | 1998-01-14 | 2015-08-17 | Novartis Vaccines And Diagnostics S.R.L. | Antígenos de Neisseria meningitidis |
US7018637B2 (en) | 1998-02-23 | 2006-03-28 | Aventis Pasteur, Inc | Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines |
IL138000A0 (en) | 1998-04-09 | 2001-10-31 | Smithkline Beecham Biolog | Adjuvant compositions |
GB9817052D0 (en) | 1998-08-05 | 1998-09-30 | Smithkline Beecham Biolog | Vaccine |
AU771330B2 (en) | 1998-08-19 | 2004-03-18 | Baxter Healthcare Sa | Immunogenic beta-propionamido-linked polysaccharide protein conjugate useful as a vaccine produced using an N-acryloylated polysaccharide |
CA2346713A1 (en) | 1998-10-09 | 2000-04-20 | Chiron Corporation | Neisseria genomic sequences and methods of their use |
WO2000023105A2 (en) | 1998-10-16 | 2000-04-27 | Smithkline Beecham Biologicals S.A. | Adjuvant systems and vaccines |
GB9823978D0 (en) | 1998-11-02 | 1998-12-30 | Microbiological Res Authority | Multicomponent meningococcal vaccine |
AU1722300A (en) | 1998-11-12 | 2000-05-29 | Regents Of The University Of California, The | Chlamydia pneumoniae genome sequence |
AU3790900A (en) * | 1998-12-01 | 2000-06-19 | Aventis Pasteur Limited | Chlamydia antigens and corresponding DNA fragments and uses thereof |
JP2002531095A (ja) * | 1998-12-01 | 2002-09-24 | アベンティス、パストゥール、リミテッド | クラミジア抗原および対応するdna断片ならびにその使用 |
GB9828000D0 (en) | 1998-12-18 | 1999-02-10 | Chiron Spa | Antigens |
US6146902A (en) | 1998-12-29 | 2000-11-14 | Aventis Pasteur, Inc. | Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions |
JP4832646B2 (ja) * | 1999-03-12 | 2011-12-07 | サノフィ、パストゥール、リミテッド | クラミジア抗原および対応するdna断片ならびにその使用 |
BR0009163A (pt) | 1999-03-19 | 2001-12-26 | Smithkline Beecham Biolog | Vacina |
CA2365914A1 (en) | 1999-04-09 | 2000-10-19 | Techlab, Inc. | Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines |
CN1227030C (zh) | 1999-04-19 | 2005-11-16 | 史密丝克莱恩比彻姆生物有限公司 | 包含皂甙和免疫刺激寡核苷酸的佐剂组合物 |
JP2003527079A (ja) | 1999-04-30 | 2003-09-16 | カイロン コーポレイション | ナイセリアゲノム配列およびそれらの使用方法 |
CN102580072A (zh) | 1999-05-19 | 2012-07-18 | 诺华疫苗和诊断有限公司 | 组合式奈瑟球菌组合物 |
GB9918319D0 (en) | 1999-08-03 | 1999-10-06 | Smithkline Beecham Biolog | Vaccine composition |
AR025749A1 (es) | 1999-09-24 | 2002-12-11 | Smithkline Beecham Biolog | Vacunas |
CA2383413A1 (en) | 1999-09-24 | 2001-03-29 | Smithkline Beecham Biologicals S.A. | Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines |
GB9925559D0 (en) | 1999-10-28 | 1999-12-29 | Smithkline Beecham Biolog | Novel method |
PT2275551E (pt) | 1999-10-29 | 2015-06-29 | Novartis Vaccines & Diagnostic | Péptidos antigénicos de neisseria |
WO2001034642A2 (en) | 1999-11-12 | 2001-05-17 | University Of Iowa Research Foundation | Control of neisserial membrane synthesis |
ES2507100T3 (es) | 2000-01-17 | 2014-10-14 | Novartis Vaccines And Diagnostics S.R.L. | Vacuna OMV suplementada contra meningococo |
GB0007432D0 (en) | 2000-03-27 | 2000-05-17 | Microbiological Res Authority | Proteins for use as carriers in conjugate vaccines |
OA12302A (en) | 2000-06-29 | 2003-10-24 | Glaxosmithkline Biolog Sa | Multivalent vaccine composition. |
GB0108364D0 (en) | 2001-04-03 | 2001-05-23 | Glaxosmithkline Biolog Sa | Vaccine composition |
US20040005667A1 (en) | 2000-07-03 | 2004-01-08 | Giuloi Ratti | Immunisation against chlamydia pneumoniae |
GB0103170D0 (en) | 2001-02-08 | 2001-03-28 | Smithkline Beecham Biolog | Vaccine composition |
CA2421757A1 (en) * | 2000-09-08 | 2002-03-14 | Massachusetts Institute Of Technology | G-csf analog compositions and methods |
GB0022742D0 (en) | 2000-09-15 | 2000-11-01 | Smithkline Beecham Biolog | Vaccine |
AU9489801A (en) | 2000-09-28 | 2002-04-08 | Chiron Corp | Microparticle compositions and methods for the manufacture thereof |
EP1328543B1 (en) | 2000-10-27 | 2009-08-12 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups a & b |
GEP20053691B (en) | 2001-01-23 | 2005-12-12 | Pasteur | Multivalent Meningococcal Polysaccharide-Protein Conjugate Vaccine |
GB0103171D0 (en) | 2001-02-08 | 2001-03-28 | Smithkline Beecham Biolog | Vaccine composition |
GB0103169D0 (en) | 2001-02-08 | 2001-03-28 | Smithkline Beecham Biolog | Vaccine composition |
GB0103424D0 (en) | 2001-02-12 | 2001-03-28 | Chiron Spa | Gonococcus proteins |
US20030035806A1 (en) * | 2001-05-11 | 2003-02-20 | D'ambra Anello J. | Novel meningitis conjugate vaccine |
GB0115176D0 (en) | 2001-06-20 | 2001-08-15 | Chiron Spa | Capular polysaccharide solubilisation and combination vaccines |
GB0118249D0 (en) | 2001-07-26 | 2001-09-19 | Chiron Spa | Histidine vaccines |
WO2003009869A1 (en) | 2001-07-26 | 2003-02-06 | Chiron Srl. | Vaccines comprising aluminium adjuvants and histidine |
ATE469915T1 (de) | 2001-07-27 | 2010-06-15 | Novartis Vaccines & Diagnostic | Antikörper gegen das meningokokken adhäsin app |
MX339524B (es) | 2001-10-11 | 2016-05-30 | Wyeth Corp | Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica. |
GB0129007D0 (en) * | 2001-12-04 | 2002-01-23 | Chiron Spa | Adjuvanted antigenic meningococcal compositions |
GB0130123D0 (en) | 2001-12-17 | 2002-02-06 | Microbiological Res Agency | Outer membrane vesicle vaccine and its preparation |
WO2003080678A1 (en) | 2002-03-26 | 2003-10-02 | Chiron Srl | Modified saccharides having improved stability in water |
GB0302218D0 (en) | 2003-01-30 | 2003-03-05 | Chiron Sri | Vaccine formulation & Mucosal delivery |
EP2258386A3 (en) | 2002-08-02 | 2011-11-02 | GlaxoSmithKline Biologicals S.A. | Neisseria Vaccine composition |
GB0220194D0 (en) | 2002-08-30 | 2002-10-09 | Chiron Spa | Improved vesicles |
GB0227346D0 (en) | 2002-11-22 | 2002-12-31 | Chiron Spa | 741 |
EP1590459A2 (en) | 2003-01-15 | 2005-11-02 | Wyeth Holdings Corporation | Methods for increasing neisseria protein expression and compositions thereof |
CA2522751A1 (en) | 2003-04-16 | 2004-11-04 | Wyeth Holdings Corporation | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
CN104225587B (zh) | 2003-05-07 | 2017-07-21 | 赛诺菲巴斯德公司 | 多价脑膜炎球菌衍生的多糖‑蛋白质缀合物及疫苗 |
AU2006208208B2 (en) | 2005-01-27 | 2011-05-19 | Children's Hospital & Research Center At Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
GB0524066D0 (en) | 2005-11-25 | 2006-01-04 | Chiron Srl | 741 ii |
TW200806315A (en) | 2006-04-26 | 2008-02-01 | Wyeth Corp | Novel formulations which stabilize and inhibit precipitation of immunogenic compositions |
AR064642A1 (es) | 2006-12-22 | 2009-04-15 | Wyeth Corp | Polinucleotido vector que lo comprende celula recombinante que comprende el vector polipeptido , anticuerpo , composicion que comprende el polinucleotido , vector , celula recombinante polipeptido o anticuerpo , uso de la composicion y metodo para preparar la composicion misma y preparar una composi |
US20100150912A1 (en) | 2007-04-11 | 2010-06-17 | Novartis Ag | Blocking interaction between pathogen factors and factor h to inhibit hemorrhagic syndromes |
CA2688268A1 (en) | 2007-06-04 | 2008-12-11 | Novartis Ag | Formulation of meningitis vaccines |
CA2695467A1 (en) | 2007-08-02 | 2009-03-26 | Children's Hospital & Research Center At Oakland | Fhbp- and lpxl1-based vesicle vaccines for broad spectrum protection against diseases caused by neisseria meningitidis |
WO2009104097A2 (en) | 2008-02-21 | 2009-08-27 | Novartis Ag | Meningococcal fhbp polypeptides |
AU2009223613B2 (en) | 2008-03-10 | 2014-09-25 | Children's Hospital & Research Center At Oakland | Chimeric factor H binding proteins (fHBP) containing a heterologous B domain and methods of use |
EP2331562A4 (en) | 2008-09-03 | 2012-07-04 | Childrens Hosp & Res Ct Oak | PEPTIDES WITH AN EPITOPE OF A DOMAIN OF THE FACTOR H-BINDING PROTEIN AND METHOD OF USE |
IT1394288B1 (it) | 2008-09-12 | 2012-06-06 | Novartis Vaccines & Diagnostic | Immunogeni di proteine che legano il fattore h. |
GB0819633D0 (en) | 2008-10-25 | 2008-12-03 | Isis Innovation | Composition |
JP5597245B2 (ja) | 2009-03-24 | 2014-10-01 | ノバルティス アーゲー | アジュバント添加した髄膜炎菌h因子結合タンパク質 |
EP2493499A1 (en) | 2009-10-27 | 2012-09-05 | Novartis AG | Modified meningococcal fhbp polypeptides |
EP2544714A1 (en) | 2010-03-10 | 2013-01-16 | GlaxoSmithKline Biologicals S.A. | Vaccine composition |
BR112012024348B1 (pt) | 2010-03-30 | 2022-11-08 | Children's Hospital & Research Center At Oakland | Composição imunogênica, seu uso, proteína de ligação ao fator h de ocorrência não natural, e célula bacteriana geneticamente modificada |
ES2744471T3 (es) | 2010-09-04 | 2020-02-25 | Glaxosmithkline Biologicals Sa | Ensayos de anticuerpos bactericidas para evaluar la inmunogenia y la potencia de vacunas de sacárido capsular meningocócico |
ES2728282T3 (es) | 2010-09-10 | 2019-10-23 | Wyeth Llc | Variantes no lipidadas de antígenos ORF2086 de Neisseria meningitidis |
CN104428008B (zh) | 2012-05-24 | 2020-10-09 | 美国政府(由卫生和人类服务部的部长所代表) | 多价脑膜炎球菌缀合物及制备缀合物的方法 |
JP6324961B2 (ja) | 2012-09-06 | 2018-05-16 | ノバルティス アーゲー | 血清群b髄膜炎菌とd/t/pとの組み合わせワクチン |
-
2002
- 2002-11-22 GB GBGB0227346.4A patent/GB0227346D0/en not_active Ceased
-
2003
- 2003-11-21 CN CNB2003801076879A patent/CN100381464C/zh not_active Expired - Lifetime
- 2003-11-21 JP JP2004554854A patent/JP4767540B2/ja not_active Expired - Lifetime
- 2003-11-21 DK DK10178923.8T patent/DK2258716T3/da active
- 2003-11-21 SI SI200332317T patent/SI1562983T1/sl unknown
- 2003-11-21 PT PT101789238T patent/PT2258716E/pt unknown
- 2003-11-21 WO PCT/IB2003/006320 patent/WO2004048404A2/en active Application Filing
- 2003-11-21 ES ES10182503.2T patent/ES2637065T3/es not_active Expired - Lifetime
- 2003-11-21 HU HUE10182503A patent/HUE034257T2/en unknown
- 2003-11-21 CA CA002507009A patent/CA2507009A1/en not_active Abandoned
- 2003-11-21 MX MXPA05005442A patent/MXPA05005442A/es active IP Right Grant
- 2003-11-21 AU AU2003288681A patent/AU2003288681B2/en not_active Expired
- 2003-11-21 EP EP10178923.8A patent/EP2258716B1/en not_active Revoked
- 2003-11-21 PT PT37805280T patent/PT1562983E/pt unknown
- 2003-11-21 DK DK03780528.0T patent/DK1562983T3/da active
- 2003-11-21 RU RU2005119640/13A patent/RU2336091C2/ru active
- 2003-11-21 ES ES10178923.8T patent/ES2509915T3/es not_active Expired - Lifetime
- 2003-11-21 EP EP10179140A patent/EP2258717A3/en not_active Withdrawn
- 2003-11-21 EP EP10182503.2A patent/EP2261239B1/en not_active Expired - Lifetime
- 2003-11-21 SI SI200332544T patent/SI2261239T1/sl unknown
- 2003-11-21 ES ES03780528.0T patent/ES2436747T5/es not_active Expired - Lifetime
- 2003-11-21 SI SI200332369T patent/SI2258716T1/sl unknown
- 2003-11-21 EP EP03780528.0A patent/EP1562983B2/en not_active Expired - Lifetime
- 2003-11-21 US US10/536,215 patent/US20060251670A1/en not_active Abandoned
- 2003-11-21 CA CA2960687A patent/CA2960687A1/en not_active Abandoned
- 2003-11-21 DK DK10182503.2T patent/DK2261239T3/en active
- 2003-11-21 BR BR0316501-9A patent/BR0316501A/pt not_active IP Right Cessation
- 2003-11-21 NZ NZ540206A patent/NZ540206A/en not_active IP Right Cessation
- 2003-11-21 PT PT101825032T patent/PT2261239T/pt unknown
-
2006
- 2006-08-08 HK HK06108816.9A patent/HK1088342A1/xx not_active IP Right Cessation
-
2010
- 2010-03-16 JP JP2010059915A patent/JP5564297B2/ja not_active Expired - Lifetime
-
2012
- 2012-02-01 US US13/364,264 patent/US8980286B2/en not_active Expired - Lifetime
- 2012-02-06 US US13/367,289 patent/US20120148618A1/en not_active Abandoned
-
2013
- 2013-03-28 JP JP2013068018A patent/JP2013176371A/ja active Pending
-
2014
- 2014-09-11 CY CY20141100741T patent/CY1115778T1/el unknown
-
2015
- 2015-10-20 US US14/918,417 patent/US9550814B2/en not_active Expired - Lifetime
-
2016
- 2016-11-14 US US15/351,286 patent/US20170290902A1/en not_active Abandoned
-
2017
- 2017-06-21 CY CY20171100655T patent/CY1119019T1/el unknown
- 2017-07-05 US US15/641,955 patent/US10328142B2/en not_active Expired - Lifetime
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7576176B1 (en) * | 1998-05-01 | 2009-08-18 | Novartis Vaccines And Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
US20070026021A1 (en) * | 1998-05-01 | 2007-02-01 | Chiron S.R.I. | Neisseria meningitidis antigens and compositions |
US6903202B2 (en) * | 1998-11-20 | 2005-06-07 | Desert Genetics, Inc. | DNA encoding proteins that inhibit Hsp70 function |
US20040092711A1 (en) * | 2000-02-28 | 2004-05-13 | Arico Maria Beatrice | Hybrid expression of neisserial proteins |
US20040110670A1 (en) * | 2000-02-28 | 2004-06-10 | Arico Maria Beatrice | Heterologous expression of neisserial proteins |
US20060051840A1 (en) * | 2000-02-28 | 2006-03-09 | Chiron Srl | Hybrid expression of neisserial proteins |
WO2001064922A2 (en) * | 2000-02-28 | 2001-09-07 | Chiron Spa | Heterologous expression of neisserial proteins |
US20060029621A1 (en) * | 2000-07-27 | 2006-02-09 | Granoff Dan M | Vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US20050222385A1 (en) * | 2001-09-06 | 2005-10-06 | Chiron Spa | Hybrid and tandem expression of neisserial proteins |
US20040167068A1 (en) * | 2002-08-30 | 2004-08-26 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US7785608B2 (en) * | 2002-08-30 | 2010-08-31 | Wyeth Holdings Corporation | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US20060171957A1 (en) * | 2002-10-11 | 2006-08-03 | Chiron Spa | Polypeptide-vaccines for broad protetion against hypervirulent meningococcal lineages |
US20070082014A1 (en) * | 2003-01-30 | 2007-04-12 | Chiron Srl | Injectable vaccines against multiple meningococcal serogroups |
US20080241180A1 (en) * | 2003-10-02 | 2008-10-02 | Mario Contorni | Liquid Vaccines For Multiple Meningococcal Serogroups |
US20090285845A1 (en) * | 2004-09-01 | 2009-11-19 | Vega Masignani | Domains And Epitopes Of Meningococcal Protein NMB1870 |
US20090032820A1 (en) * | 2007-08-03 | 2009-02-05 | The Hong Kong University Of Science & Technology | Reliable Normally-Off III-Nitride Active Device Structures, and Related Methods and Systems |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9249196B2 (en) | 1998-05-01 | 2016-02-02 | Glaxosmithkline Biologicals Sa | Neisseria meningitidis antigens and compositions |
US8524251B2 (en) | 1998-05-01 | 2013-09-03 | J. Craig Venter Institute, Inc. | Neisseria meningitidis antigens and compositions |
US9249198B2 (en) | 1998-05-01 | 2016-02-02 | Glaxosmithkline Biologicals Sa | Neisseria meningitidis antigens and compositions |
US9266929B2 (en) | 1998-05-01 | 2016-02-23 | Glaxosmithkline Biologicals Sa | Neisseria meningitidis antigens and compositions |
US20090148469A1 (en) * | 1998-11-02 | 2009-06-11 | Andrew Robinson | Multicomponent meningococcal vaccine |
US20110033491A1 (en) * | 1998-11-02 | 2011-02-10 | Andrew Robinson | Multicomponent meningococcal vaccine |
US10967045B2 (en) * | 1998-11-02 | 2021-04-06 | Secretary of State for Health and Social Care | Multicomponent meningococcal vaccine |
US9364528B1 (en) | 1999-05-19 | 2016-06-14 | Glaxosmithkline Biologicals Sa | Combination neisserial compositions |
US20110104193A1 (en) * | 1999-05-19 | 2011-05-05 | Novartis Vaccines And Diagnostics Srl | Combination neisserial compositions |
US9610342B2 (en) | 1999-05-19 | 2017-04-04 | Glaxosmithkline Biologicals Sa | Combination neisserial compositions |
US8394390B2 (en) | 1999-10-29 | 2013-03-12 | Novartis Ag | Neisserial antigenic peptides |
US8734812B1 (en) | 1999-10-29 | 2014-05-27 | Novartis Ag | Neisserial antigenic peptides |
US9067987B2 (en) | 1999-10-29 | 2015-06-30 | Glaxosmithkline Biologicals Sa | Neisserial antigenic peptides |
US9267163B2 (en) | 2000-02-28 | 2016-02-23 | Glaxosmithkline Biologicals Sa | Hybrid expression of neisserial proteins |
US20060051840A1 (en) * | 2000-02-28 | 2006-03-09 | Chiron Srl | Hybrid expression of neisserial proteins |
US9150898B2 (en) | 2000-02-28 | 2015-10-06 | Glaxosmithkline Biologicals Sa | Heterologous expression of Neisserial proteins |
US8980285B2 (en) | 2000-07-27 | 2015-03-17 | Children's Hospital & Research Center At Oakland | Vaccines for broad spectrum protection against Neisseria meningitidis |
US20060029621A1 (en) * | 2000-07-27 | 2006-02-09 | Granoff Dan M | Vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
USRE45587E1 (en) | 2001-07-26 | 2015-06-30 | Glaxosmithkline Biologicals Sa | Vaccines comprising aluminum adjuvants and histidine |
US8840907B2 (en) | 2001-09-06 | 2014-09-23 | Novartis Vaccines And Diagnostics S.R.L. | Isolated protein and compositions comprising the protein |
US20050222385A1 (en) * | 2001-09-06 | 2005-10-06 | Chiron Spa | Hybrid and tandem expression of neisserial proteins |
US9056075B2 (en) | 2001-09-06 | 2015-06-16 | Glaxosmithkline Biologicals Sa | Methods of inducing an immune response with compositions comprising a Neisseria meningitidis 741 protein |
US9011869B2 (en) | 2001-09-06 | 2015-04-21 | Glaxosmithkline Biologicals Sa | Hybrid and tandem expression of Neisserial proteins |
US8980277B2 (en) | 2001-09-06 | 2015-03-17 | Novartis Ag | Hybrid and tandem expression of neisserial proteins |
US8563007B1 (en) | 2001-10-11 | 2013-10-22 | Wyeth Holdings Corporation | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US9623101B2 (en) | 2001-10-11 | 2017-04-18 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US9132182B2 (en) | 2001-10-11 | 2015-09-15 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US9107873B2 (en) | 2001-10-11 | 2015-08-18 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US9757444B2 (en) | 2001-10-11 | 2017-09-12 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US8563006B2 (en) | 2001-10-11 | 2013-10-22 | Wyeth Holdings Corporation | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US8101194B2 (en) | 2001-10-11 | 2012-01-24 | Wyeth Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US11116829B2 (en) | 2001-10-11 | 2021-09-14 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US10300122B2 (en) | 2001-10-11 | 2019-05-28 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US9168293B2 (en) | 2001-10-11 | 2015-10-27 | Wyeth Holdings Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US20060257413A1 (en) * | 2001-10-11 | 2006-11-16 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US7785608B2 (en) | 2002-08-30 | 2010-08-31 | Wyeth Holdings Corporation | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US20040167068A1 (en) * | 2002-08-30 | 2004-08-26 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US20040125193A1 (en) * | 2002-09-20 | 2004-07-01 | Nobuaki Kubo | Light scanning device, scanning line adjusting method, scanning line adjusting control method, image forming apparatus, and image forming method |
US20060171957A1 (en) * | 2002-10-11 | 2006-08-03 | Chiron Spa | Polypeptide-vaccines for broad protetion against hypervirulent meningococcal lineages |
US8663656B2 (en) | 2002-10-11 | 2014-03-04 | Novartis Ag | Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages |
US10328142B2 (en) | 2002-11-22 | 2019-06-25 | Glaxosmithkline Biologicals Sa | Multiple variants of meningococcal protein NMB1870 |
US8980286B2 (en) | 2002-11-22 | 2015-03-17 | Novartis Ag | Multiple variants of meningococcal protein NBM1870 |
US9550814B2 (en) | 2002-11-22 | 2017-01-24 | Glaxosmithkline Biologicals Sa | Multiple variants of meningococcal protein NMB1870 |
US20070082007A1 (en) * | 2003-04-16 | 2007-04-12 | Zlotnick Gary W | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US10195264B2 (en) | 2004-04-22 | 2019-02-05 | Glaxosmithkline Biologicals S.A. | Immunising against meningococcal serogroup Y using proteins |
US20090285845A1 (en) * | 2004-09-01 | 2009-11-19 | Vega Masignani | Domains And Epitopes Of Meningococcal Protein NMB1870 |
US9452208B2 (en) | 2005-01-27 | 2016-09-27 | Children's Hospital & Research Center Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US8968748B2 (en) | 2005-01-27 | 2015-03-03 | Children's Hospital & Research Center Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US11801293B2 (en) | 2005-01-27 | 2023-10-31 | Children's Hospital & Research Center At Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US10857221B2 (en) | 2005-01-27 | 2020-12-08 | Children's Hospital & Research Center At Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US10046043B2 (en) | 2005-01-27 | 2018-08-14 | Children's Hospital & Research Center At Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US9034345B2 (en) | 2005-01-27 | 2015-05-19 | Children's Hospital & Research Center Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US10478484B2 (en) | 2005-01-27 | 2019-11-19 | Children's Hospital & Research Center At Oakland | GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis |
US20090041802A1 (en) * | 2005-06-27 | 2009-02-12 | Ralph Leon Biemans | Immunogenic composition |
US11241495B2 (en) | 2005-06-27 | 2022-02-08 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
US10166287B2 (en) | 2005-06-27 | 2019-01-01 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
US9156894B2 (en) | 2005-11-25 | 2015-10-13 | Glaxosmithkline Biologicals Sa | Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870 |
US11098335B2 (en) * | 2006-02-03 | 2021-08-24 | Fujifilm Diosynth Biotechnologies Uk Limited | Expression system |
US20110189187A1 (en) * | 2006-12-22 | 2011-08-04 | Wyeth | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US8574597B2 (en) | 2006-12-22 | 2013-11-05 | Wyeth Llc | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US20110020390A1 (en) * | 2008-02-21 | 2011-01-27 | Mariagrazia Pizza | Meningococcal fhbp polypeptides |
US9579372B2 (en) | 2008-02-21 | 2017-02-28 | Glaxosmithkline Biologicals Sa | Meningococcal fHBP polypeptides |
US9468673B2 (en) | 2008-02-21 | 2016-10-18 | Glaxosmithkline Biologicals Sa | Meningococcal fHBP polypeptides |
US10568953B2 (en) | 2009-03-24 | 2020-02-25 | Glaxosmithkline Biologicals Sa | Adjuvanting meningococcal factor H binding protein |
US8398988B2 (en) | 2009-03-24 | 2013-03-19 | Novartis Ag | Adjuvanting meningococcal factor H binding protein |
US8834888B2 (en) | 2009-03-24 | 2014-09-16 | Novartis Ag | Adjuvanting meningococcal factor H binding protein |
US9572884B2 (en) | 2009-03-24 | 2017-02-21 | Glaxosmithkline Biologicals Sa | Adjuvanting meningococcal factor H binding protein |
US10245311B2 (en) | 2009-03-24 | 2019-04-02 | Glaxosmithkline Biologicals Sa | Adjuvanting meningococcal factor H binding protein |
WO2010127172A3 (en) * | 2009-04-30 | 2012-10-04 | Children's Hospital & Research Center At Oakland | Chimeric factor h binding proteins (fhbp) and methods of use |
US9266942B2 (en) | 2009-04-30 | 2016-02-23 | Children's Hospital & Research Center Oakland | Chimeric factor H binding proteins (fHbp) and methods of use |
CN102711814A (zh) * | 2009-04-30 | 2012-10-03 | 奥克兰儿童医院及研究中心 | 一种嵌合h因子结合蛋白(fhbp)及其使用方法 |
US20120282295A1 (en) * | 2009-10-30 | 2012-11-08 | Novartis Ag | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
US9441004B2 (en) | 2009-10-30 | 2016-09-13 | Glaxosmithkline Biologicals Sa | Purification of staphylococcus aureus type 8 capsular saccharides |
US11208424B2 (en) | 2009-10-30 | 2021-12-28 | Glaxosmithkline Biologicals Sa | Staphylococcus aureus type 5 capsular saccharides |
US9060965B2 (en) * | 2009-10-30 | 2015-06-23 | Glaxosmithkline Biologicals Sa | Purification of Staphylococcus aureus type 5 capsular saccharides |
US10342860B2 (en) | 2010-03-30 | 2019-07-09 | Children's Hospital & Research Center At Oakland | Factor H binding proteins (FHBP) with altered properties and methods of use thereof |
US9439957B2 (en) | 2010-03-30 | 2016-09-13 | Children's Hospital & Research Center Oakland | Factor H binding proteins (FHBP) with altered properties and methods of use thereof |
US20110256180A1 (en) * | 2010-03-30 | 2011-10-20 | Beernink Peter T | Factor H Binding Proteins (FHBP) with Altered Properties and Methods of Use Thereof |
US9827300B2 (en) * | 2010-03-30 | 2017-11-28 | Children's Hospital & Research Center Oakland | Factor H binding proteins (FHBP) with altered properties and methods of use thereof |
US10905754B2 (en) | 2010-03-30 | 2021-02-02 | Children's Hospital & Research Center At Oakland | Factor H binding proteins (fHbp) with altered properties and methods of use thereof |
US10478483B2 (en) | 2010-06-25 | 2019-11-19 | Glaxosmithkline Biologicals Sa | Combinations of meningococcal factor H binding proteins |
US9556240B2 (en) | 2010-08-23 | 2017-01-31 | Wyeth Llc | Stable formulations of Neisseria meningitidis rLP2086 antigens |
US11077180B2 (en) | 2010-09-10 | 2021-08-03 | Wyeth Llc | Non-lipidated variants of Neisseria meningitidis ORF2086 antigens |
US9757443B2 (en) | 2010-09-10 | 2017-09-12 | Wyeth Llc | Non-lipidated variants of Neisseria meningitidis ORF2086 antigens |
US10512681B2 (en) | 2010-09-10 | 2019-12-24 | Wyeth Llc | Non-lipidated variants of Neisseria meningitidis ORF2086 antigens |
US20150209419A1 (en) * | 2011-12-29 | 2015-07-30 | Beatrice Maria Arico | Adjuvanted combinations of meningococcal factor h binding proteins |
US10596246B2 (en) * | 2011-12-29 | 2020-03-24 | Glaxosmithkline Biological Sa | Adjuvanted combinations of meningococcal factor H binding proteins |
US10829521B2 (en) | 2012-03-09 | 2020-11-10 | Pfizer Inc. | Neisseria meningitidis composition and methods thereof |
US10196429B2 (en) | 2012-03-09 | 2019-02-05 | Pfizer Inc. | Neisseria meningitidis composition and methods thereof |
US11472850B2 (en) | 2012-03-09 | 2022-10-18 | Pfizer Inc. | Neisseria meningitidis composition and methods thereof |
US8986710B2 (en) | 2012-03-09 | 2015-03-24 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US9561269B2 (en) | 2012-03-09 | 2017-02-07 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US10550159B2 (en) | 2012-03-09 | 2020-02-04 | Pfizer Inc. | Neisseria meningitidis composition and methods thereof |
US9724402B2 (en) | 2012-03-09 | 2017-08-08 | Pfizer Inc. | Neisseria meningitidis composition and methods thereof |
US10376573B2 (en) | 2012-06-14 | 2019-08-13 | Glaxosmithkline Biologicals Sa | Vaccines for serogroup X meningococcus |
US10000545B2 (en) | 2012-07-27 | 2018-06-19 | Institut National De La Sante Et De La Recherche Medicale | CD147 as receptor for pilus-mediated adhesion of Meningococci to vascular endothelia |
US9802987B2 (en) | 2013-03-08 | 2017-10-31 | Pfizer Inc. | Immunogenic fusion polypeptides |
US9914756B2 (en) | 2013-08-02 | 2018-03-13 | Children's Hospital & Research Center At Oakland | Non-naturally occurring factor H binding proteins (fHbp) and methods of use thereof |
US10899802B2 (en) | 2013-09-08 | 2021-01-26 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US9822150B2 (en) | 2013-09-08 | 2017-11-21 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US11680087B2 (en) | 2013-09-08 | 2023-06-20 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US11932671B2 (en) | 2014-02-28 | 2024-03-19 | Glaxosmithkline Biologicals Sa | Modified meningococcal fHbp polypeptides |
US11939357B2 (en) | 2014-07-17 | 2024-03-26 | Glaxosmithkline Biologicals Sa | Modified meningococcal fHbp polypeptides |
US11673920B2 (en) | 2014-07-23 | 2023-06-13 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US12129282B2 (en) | 2014-07-23 | 2024-10-29 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US10995122B2 (en) | 2014-07-23 | 2021-05-04 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US10266572B2 (en) | 2014-07-23 | 2019-04-23 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US10836799B2 (en) | 2014-07-23 | 2020-11-17 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US11834476B2 (en) | 2014-07-23 | 2023-12-05 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US10487122B2 (en) | 2014-07-23 | 2019-11-26 | Children's Hospital & Research Center At Oakland | Factor H binding protein variants and methods of use thereof |
US20160025719A1 (en) * | 2014-07-25 | 2016-01-28 | Serum Institute Of India Ltd. | Highly sensitive immunoassay for rapid quantification of meningococcal capsular polysaccharide antigens |
US10365272B2 (en) * | 2014-07-25 | 2019-07-30 | Serum Institute Of India Private Limited | Highly sensitive immunoassay for rapid quantification of meningococcal capsular polysaccharide antigens |
US10888611B2 (en) | 2015-02-19 | 2021-01-12 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US11027004B2 (en) * | 2016-10-24 | 2021-06-08 | Biomvis Srl | Immunogenic compositions containing bacterial outer membrane vesicles |
US10813989B2 (en) | 2017-01-31 | 2020-10-27 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US11730800B2 (en) | 2017-01-31 | 2023-08-22 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US10183070B2 (en) | 2017-01-31 | 2019-01-22 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
US10543267B2 (en) | 2017-01-31 | 2020-01-28 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
CN110607314A (zh) * | 2019-10-31 | 2019-12-24 | 四川农业大学 | 一种TcdB RBD基因、重组RBD蛋白和应用 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10328142B2 (en) | Multiple variants of meningococcal protein NMB1870 | |
EP1976990B1 (en) | Chimeric, hybrid and tandem polypeptides of meningococcal nmb1870 | |
EP1784419B1 (en) | Domains and epitopes of meningococcal protein nmb1870 | |
JP2006521782A5 (es) | ||
AU2013201318A1 (en) | Chimeric, hybrid and tandem polypeptides of meningococcal NMB 1870 | |
MX2008006719A (es) | Polipeptidos quimericos, hibridos y en tandem de meningococos nmb1870 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHIRON S.R.L., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COMANDUCCI, MAURIZIO;PIZZA, MARIAGRAZIA;REEL/FRAME:017041/0102;SIGNING DATES FROM 20050812 TO 20050824 |
|
AS | Assignment |
Owner name: NOVARTIS VACCINES AND DIAGNOSTICS S.R.L., ITALY Free format text: CHANGE OF NAME;ASSIGNOR:CHIRON S.R.L.;REEL/FRAME:020193/0439 Effective date: 20060503 |
|
AS | Assignment |
Owner name: NOVARTIS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS VACCINES AND DIAGNOSTICS SRL;REEL/FRAME:021615/0451 Effective date: 20080930 Owner name: NOVARTIS AG,SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS VACCINES AND DIAGNOSTICS SRL;REEL/FRAME:021615/0451 Effective date: 20080930 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |