TWI833500B - Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness - Google Patents
Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness Download PDFInfo
- Publication number
- TWI833500B TWI833500B TW111148180A TW111148180A TWI833500B TW I833500 B TWI833500 B TW I833500B TW 111148180 A TW111148180 A TW 111148180A TW 111148180 A TW111148180 A TW 111148180A TW I833500 B TWI833500 B TW I833500B
- Authority
- TW
- Taiwan
- Prior art keywords
- spade
- fins
- immersed
- phase
- shaped fins
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 24
- 238000001816 cooling Methods 0.000 title abstract description 6
- 230000003746 surface roughness Effects 0.000 title abstract description 3
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000002826 coolant Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000110 cooling liquid Substances 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000007654 immersion Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本發明涉及一種散熱結構,具體來說是涉及一種具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構。The present invention relates to a heat dissipation structure, and specifically to a two-phase immersed heat dissipation structure with spade-shaped fins having a high roughness surface.
浸沒式冷卻技術是將發熱元件(如伺服器、磁碟陣列等)直接浸沒在不導電的兩相冷卻液(two-phase coolant)中,以透過兩相冷卻液吸熱氣化帶走發熱元件運作所產生之熱能。然而,如何透過浸沒式冷卻技術更加有效地進行散熱一直是業界所需要解決的問題。Immersion cooling technology immerses heating components (such as servers, disk arrays, etc.) directly in a non-conductive two-phase coolant, so that the two-phase coolant absorbs heat and vaporizes it, taking away the heating components for operation. The heat energy generated. However, how to dissipate heat more effectively through immersion cooling technology has always been a problem that the industry needs to solve.
有鑑於此,本發明人本於多年從事相關產品之開發與設計,有感上述缺失之可改善,乃特潛心研究並配合學理之運用,終於提出一種設計合理且有效改善上述缺失之本發明。In view of this, the inventor has been engaged in the development and design of related products for many years. He felt that the above deficiencies could be improved, so he devoted himself to research and applied academic theories, and finally proposed an invention that is reasonably designed and effectively improves the above deficiencies.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構。The technical problem to be solved by the present invention is to provide a two-phase immersed heat dissipation structure with spade-shaped fins having a high roughness surface in view of the shortcomings of the existing technology.
本發明實施例公開了一種具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構,其包括有一浸沒式基板、以及多個鏟型鰭片,所述浸沒式基板具有相背對的上表面與下表面,所述浸沒式基板的下表面用以與浸沒於兩相冷卻液的發熱元件形成接觸,所述浸沒式基板的上表面連接有多個所述鏟型鰭片,且所述鏟型鰭片的表面的中心線平均粗糙度Ra是大於10μm,並且所述鏟型鰭片的表面的十點平均粗糙度Rz是大於20μm,使多個所述鏟型鰭片與所述兩相冷卻液形成接觸的表面積與多個所述鏟型鰭片的體積的比率是大於400以上。An embodiment of the present invention discloses a two-phase immersed heat dissipation structure with spade-type fins on a high-roughness surface, which includes an immersed substrate and a plurality of spade-type fins. The immersed substrate has opposite The upper surface and the lower surface, the lower surface of the immersed substrate is used to form contact with the heating element immersed in the two-phase cooling liquid, the upper surface of the immersed substrate is connected to a plurality of the spade fins, and the The centerline average roughness Ra of the surface of the spade-type fin is greater than 10 μm, and the ten-point average roughness Rz of the surface of the spade-type fin is greater than 20 μm, so that a plurality of the spade-type fins are consistent with the The ratio of the surface area of the two-phase cooling liquid in contact with the volume of the plurality of spade-type fins is greater than 400.
在一優選實施例中,所述鏟型鰭片是針柱狀鰭片、板片狀鰭片的其一。In a preferred embodiment, the spade-shaped fins are one of pin-shaped fins and plate-shaped fins.
在一優選實施例中,所述鏟型鰭片是由銅、銅合金、鋁合金的其一金屬所製成。In a preferred embodiment, the spade-shaped fins are made of one of copper, copper alloy, and aluminum alloy.
在一優選實施例中,所述鏟型鰭片的表面是通過機械加工所形成的粗糙之加工表面。In a preferred embodiment, the surface of the spade-shaped fin is a rough machined surface formed by mechanical processing.
在一優選實施例中,所述鏟型鰭片的表面是通過蝕刻方式所形成的粗糙之蝕刻表面。In a preferred embodiment, the surface of the spade fin is a rough etched surface formed by etching.
在一優選實施例中,所述鏟型鰭片的表面是通過沉積方式所形成的粗糙之沉積表面。In a preferred embodiment, the surface of the spade-shaped fin is a rough deposition surface formed by deposition.
在一優選實施例中,所述鏟型鰭片的尺寸為100~800微米,且與相鄰所述鏟型鰭片之間的鰭片間距為100~500微米。In a preferred embodiment, the size of the spade-shaped fins is 100-800 microns, and the fin spacing between adjacent spade-shaped fins is 100-500 microns.
在一優選實施例中,所述鏟型鰭片的表面的中心線平均粗糙度Ra與所述鰭片間距的比為1:10到1:50的範圍,且所述鏟型鰭片的表面的十點平均粗糙度Rz與所述鰭片間距的比為1:10到1:30的範圍。In a preferred embodiment, the ratio of the centerline average roughness Ra of the surface of the spade-shaped fins to the fin spacing is in the range of 1:10 to 1:50, and the surface of the spade-shaped fins The ratio of the ten-point average roughness Rz to the fin spacing is in the range of 1:10 to 1:30.
在一優選實施例中,具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構,更包括:一高導熱結構,其結合至所述浸沒式基板的下表面,使所述浸沒式基板是透過所述高導熱結構與所述發熱元件形成間接接觸,所述高導熱結構內部形成有一真空密閉腔,且所述真空密閉腔中含有液體。In a preferred embodiment, the two-phase immersed heat dissipation structure with spade-type fins with high roughness surfaces further includes: a high thermal conductivity structure, which is combined to the lower surface of the immersed substrate, so that the immersed The substrate is in indirect contact with the heating element through the highly thermally conductive structure. A vacuum sealed cavity is formed inside the highly thermally conductive structure, and the vacuum sealed cavity contains liquid.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only for reference and illustration and are not used to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。並且,附圖中相同或類似的部位以相同的標號標示。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a description of the relevant implementation modes disclosed in the present invention through specific specific examples. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only simple schematic illustrations and are not depictions based on actual dimensions, as is stated in advance. In addition, the same or similar parts in the drawings are labeled with the same reference numerals. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the scope of the present invention. In addition, the term "or" used in this article shall include any one or combination of more of the associated listed items depending on the actual situation.
[第一實施例][First Embodiment]
請參閱圖1至圖2所示,其為本發明的第一實施例,本發明實施例提供一種具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構,用於接觸浸沒於兩相冷卻液的發熱元件(熱源)。如圖所示,根據本發明實施例所提供的具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構,其包括有一浸沒式基板10、以及多個鏟型鰭片20(skived fins)。Please refer to FIGS. 1 to 2 , which are the first embodiment of the present invention. The embodiment of the present invention provides a two-phase immersed heat dissipation structure with spade-shaped fins with high roughness surfaces for contact and immersion between two Heating element (heat source) of phase coolant. As shown in the figure, a two-phase immersed heat dissipation structure with scooped fins with high roughness surfaces provided according to an embodiment of the present invention includes an
在本實施例中,浸沒式基板10可採用高導熱性材所製成,例如鋁、銅或其合金。浸沒式基板10可以是非多孔散熱材或是多孔散熱材。較佳來說,浸沒式基板10可以是浸沒於兩相冷卻液900(不導電之電子氟化液)中且孔隙率大於8%的多孔金屬散熱板,使更多的氣泡可生成在多個微孔中,以加強浸沒式散熱效果。In this embodiment, the
在本實施例中,浸沒式基板10具有相背對的上表面101與下表面102。浸沒式基板10的下表面102用以與浸沒於兩相冷卻液的發熱元件800形成接觸,這接觸可以是直接形成接觸或是透過中介層間接形成接觸。浸沒式基板10的上表面101則連接有多個鏟型鰭片20,並且多個鏟型鰭片20是以鏟削成型方式一體成型在浸沒式基板10的上表面101而得以極高密度排列。並且,鏟型鰭片20可以是針柱狀鰭片(pin fin)或是板片狀鰭片(plate fin),並且可以是由銅、銅合金或鋁合金所製成。In this embodiment, the
並且,在鏟型鰭片20尺寸較小(厚度T小於800微米)的情況下,鏟型鰭片20與兩相冷卻液900形成接觸的表面積對浸沒式散熱效果的影響會很大,因此鏟型鰭片20的表面201的中心線平均粗糙度Ra(center line average roughness Ra)是要大於10μm,並且鏟型鰭片20的表面201的十點平均粗糙度Rz(ten-point average roughness Rz)是要大於20μm,使多個鏟型鰭片20與兩相冷卻液900形成接觸的表面積與多個鏟型鰭片20的體積的比率(ratio)是大於400以上,以藉由增加表面粗糙度能有效增加形成接觸的表面積,且高粗糙度之表面亦有利於氣泡的生成,更加強浸沒式散熱效果。Moreover, when the size of the shovel-
更進一步說,在鏟型鰭片20尺寸(厚度T)為100~800微米,且與相鄰鰭片之間的鰭片間距D為100~500微米時,鏟型鰭片20的表面201的中心線平均粗糙度Ra與鰭片間距D的比為1:10到1:50的範圍,且鏟型鰭片20的表面201的十點平均粗糙度Rz與鰭片間距D的比為1:10到1:30的範圍,才能使效果更為顯著。Furthermore, when the size (thickness T) of the
在本實施例中,鏟型鰭片20的表面201可以是通過機械加工,例如珠擊方式(shot peening)所形成的粗糙之加工表面,也就是可利用硬質砂粒高速撞擊鏟型鰭片20,使鏟型鰭片20形成有預定的表面201。In this embodiment, the
在本實施例中,鏟型鰭片20的表面201可以是通過蝕刻方式所形成的粗糙之蝕刻表面。進一步說,鏟型鰭片20的表面201可以是通過物理蝕刻,例如離子蝕刻(ion etching)所形成。另外,鏟型鰭片20的表面201可以是通過化學蝕刻(chemical etching),例如通過化學蝕刻溶液的腐蝕作用所形成,並且可以是通過磷酸系微蝕劑、硫酸系微蝕劑或氯化鐵腐蝕劑進行化學腐蝕所形成。In this embodiment, the
在本實施例中,鏟型鰭片20的表面201也可以是通過沉積方式所形成的粗糙之沉積表面。進一步說,鏟型鰭片20的表面201可以是通過液相沉積或氣相沉積(物理或化學氣相沉積)所形成。In this embodiment, the
[第二實施例][Second Embodiment]
請參閱圖3所示,其為本發明的第二實施例。本實施例與第一實施例大致相同,其差異說明如下。Please refer to Figure 3, which is a second embodiment of the present invention. This embodiment is substantially the same as the first embodiment, and the differences are explained as follows.
在本實施例中,更包括有一高導熱結構30。並且,高導熱結構30是結合至浸沒式基板10的下表面102,使浸沒式基板10是透過高導熱結構30與浸沒於兩相冷卻液900的發熱元件800形成間接接觸。細部來說,高導熱結構30可以是透過焊接、摩擦攪拌接合、膠黏、或擴散接合等方式結合至浸沒式基板10的下表面102。在其他實施例中,浸沒式基板10可以是與高導熱結構30為一體成型。In this embodiment, a high
進一步說,高導熱結構30內部形成有一真空密閉腔301,且真空密閉腔301的腔頂壁與腔底壁還可以形成有燒結體,並且真空閉密腔301中含有適量的液體,所述液體可以是水或丙酮。並且,高導熱結構30的底面可用以接觸浸沒於兩相冷卻液900中的發熱元件800,以使浸沒在兩相冷卻液900中的發熱元件800,除了可以透過兩相冷卻液900吸熱氣化帶走發熱元件800產生之熱能,更可以透過高導熱結構30接觸並吸收發熱元件800產生之熱能,使得真空密閉腔301中內的液體氣化、蒸發為蒸汽,散發至浸沒式基板10並將熱能快速傳給與浸沒式基板10一體成型且以極高密度排列的鏟型鰭片20,並利用兩相冷卻液900吸熱氣化將鏟型鰭片20吸收的熱能帶走,而真空密閉腔301中的蒸汽交出熱能並於腔頂壁冷凝後再回流至腔底壁,如此高速迴圈,就能將發熱元件800產生之熱能快速匯出,進而強化浸沒式散熱效果。Furthermore, a vacuum sealed
綜合以上所述,本發明提供的具高粗糙度表面之鏟型鰭片的兩相浸沒式散熱結構,其至少可以通過「浸沒式基板」、「多個鏟型鰭片」、「浸沒式基板具有相背對的上表面與下表面,浸沒式基板的下表面用以與浸沒於兩相冷卻液的發熱元件形成接觸,浸沒式基板的上表面連接有多個鏟型鰭片」、「鏟型鰭片的表面的中心線平均粗糙度Ra是大於10μm,且鏟型鰭片的表面的十點平均粗糙度Rz是大於20μm,使多個鏟型鰭片與兩相冷卻液形成接觸的表面積與多個鏟型鰭片的體積的比率是大於400以上」的技術方案,能有效增加鏟型鰭片與兩相冷卻液形成接觸的表面積,並能利於氣泡的生成,從而得以有效的強化整體浸沒式散熱效果。Based on the above, the two-phase immersed heat dissipation structure with spade fins with high roughness surface provided by the present invention can at least pass through "immersed substrate", "multiple spade fins", "immersed substrate" It has an upper surface and a lower surface that are opposite to each other. The lower surface of the immersed substrate is used to form contact with the heating element immersed in the two-phase cooling liquid. The upper surface of the immersed substrate is connected with a plurality of spade-shaped fins. The centerline average roughness Ra of the surface of the fins is greater than 10 μm, and the ten-point average roughness Rz of the surface of the spade fins is greater than 20 μm, so that the surface area of multiple spade fins is in contact with the two-phase coolant. The technical solution of "the volume ratio of multiple spade fins is greater than 400" can effectively increase the surface area of contact between the spade fins and the two-phase coolant, and can facilitate the generation of bubbles, thereby effectively strengthening the whole Immersion cooling effect.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The contents disclosed above are only preferred and feasible embodiments of the present invention, and do not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
10:浸沒式基板 101:上表面 102:下表面 20:鏟型鰭片 201:表面 30:高導熱結構 301:真空密閉腔 800:發熱元件 900:兩相冷卻液 T:厚度 D:鰭片間距 10: Immersed substrate 101: Upper surface 102: Lower surface 20:Spade type fins 201: Surface 30: High thermal conductivity structure 301: Vacuum sealed chamber 800: Heating element 900: Two-phase coolant T:Thickness D: Fin spacing
圖1為本發明第一實施例的結構側視示意圖。Figure 1 is a schematic side view of the structure of the first embodiment of the present invention.
圖2為圖1的II部分的放大示意圖。FIG. 2 is an enlarged schematic diagram of part II of FIG. 1 .
圖3為本發明第二實施例的結構側視示意圖。Figure 3 is a schematic side view of the structure of the second embodiment of the present invention.
10:浸沒式基板 10: Immersed substrate
101:上表面 101: Upper surface
102:下表面 102: Lower surface
20:鏟型鰭片 20:Spade type fins
201:表面 201: Surface
800:發熱元件 800: Heating element
900:兩相冷卻液 900: Two-phase coolant
T:厚度 T:Thickness
D:鰭片間距 D: Fin spacing
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111148180A TWI833500B (en) | 2022-12-15 | 2022-12-15 | Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111148180A TWI833500B (en) | 2022-12-15 | 2022-12-15 | Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI833500B true TWI833500B (en) | 2024-02-21 |
TW202426841A TW202426841A (en) | 2024-07-01 |
Family
ID=90824998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111148180A TWI833500B (en) | 2022-12-15 | 2022-12-15 | Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI833500B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5726495A (en) * | 1992-03-09 | 1998-03-10 | Sumitomo Metal Industries, Ltd. | Heat sink having good heat dissipating characteristics |
US20190264986A1 (en) * | 2018-02-27 | 2019-08-29 | Auras Technology Co., Ltd. | Heat dissipation device |
TWM614782U (en) * | 2021-04-07 | 2021-07-21 | 奇鋐科技股份有限公司 | Heat sink structure |
-
2022
- 2022-12-15 TW TW111148180A patent/TWI833500B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5726495A (en) * | 1992-03-09 | 1998-03-10 | Sumitomo Metal Industries, Ltd. | Heat sink having good heat dissipating characteristics |
US20190264986A1 (en) * | 2018-02-27 | 2019-08-29 | Auras Technology Co., Ltd. | Heat dissipation device |
TWM614782U (en) * | 2021-04-07 | 2021-07-21 | 奇鋐科技股份有限公司 | Heat sink structure |
Non-Patent Citations (1)
Title |
---|
網路文獻 陳建榕 平板型熱交換器鰭片表面特性對冷凝現象影響的熱流分析 元智大學 20021231 https://hdl.handle.net/11296/vm3y3k * |
Also Published As
Publication number | Publication date |
---|---|
TW202426841A (en) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4995451A (en) | Evaporator having etched fiber nucleation sites and method of fabricating same | |
US20080236795A1 (en) | Low-profile heat-spreading liquid chamber using boiling | |
TWM627557U (en) | Immersion-cooled porous heat-dissipation substrate structure | |
JP2005077052A (en) | Flat heat pipe | |
TWI833500B (en) | Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness | |
US20240280332A1 (en) | Two-phase immersion-cooling heat-dissipation structure having skived fins | |
JP2010216676A (en) | Cooling substrate | |
TWI816524B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity | |
JP3941606B2 (en) | Cooling device, evaporator substrate, electronic device and cooling device manufacturing method | |
US20240142181A1 (en) | Two-phase immersion-type heat dissipation structure having skived fin with high porosity | |
TWI822512B (en) | Two-phase immersion-cooling heat-dissipation structure with shortened evacuation route for vapor bubbles | |
TWI819807B (en) | Two-phase immersion-cooling heat-dissipation structure having fins for facilitating bubble generation | |
TWI823696B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fins | |
TWI833342B (en) | Two-phase immersion-cooling heat-dissipation structure having porous structure | |
TWI823668B (en) | Two-phase immersion cooling compound heat-dissipating device | |
TW202411587A (en) | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins | |
TWM629671U (en) | Immersion-cooled heat-dissipation structure | |
TWI817573B (en) | Two-phase immersion-cooling heat-dissipation structure with high density fins | |
TWI817698B (en) | Two-phase immersion-cooling heat-dissipation structure having acute angle notch | |
US20240155808A1 (en) | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solid structure and high-thermal-conductivity fins | |
CN214708414U (en) | Heat dissipation part and temperature equalization plate with same | |
TWI803354B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fins | |
TWI804930B (en) | Immersion-cooled heat-dissipation structure | |
TWI807635B (en) | Immersion-cooling type heat-dissipation structure | |
US20240276676A1 (en) | Two-phase immersion-cooling heat-dissipation structure having shortened evacuation route for vapor bubbles |