TW202411587A - Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins - Google Patents
Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins Download PDFInfo
- Publication number
- TW202411587A TW202411587A TW111133493A TW111133493A TW202411587A TW 202411587 A TW202411587 A TW 202411587A TW 111133493 A TW111133493 A TW 111133493A TW 111133493 A TW111133493 A TW 111133493A TW 202411587 A TW202411587 A TW 202411587A
- Authority
- TW
- Taiwan
- Prior art keywords
- porosity
- thermal conductivity
- fin
- heat dissipation
- phase
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 239000007787 solid Substances 0.000 title claims abstract description 18
- 238000001816 cooling Methods 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000000110 cooling liquid Substances 0.000 claims description 16
- 238000007654 immersion Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 9
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- 239000013043 chemical agent Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000003518 caustics Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 abstract description 6
- 239000002826 coolant Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- -1 copper Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
本發明涉及一種散熱結構,具體來說是涉及一種具高孔隙率之實體與具高熱導率之鰭片的兩相浸沒式複合散熱結構。The present invention relates to a heat dissipation structure, in particular to a two-phase immersion composite heat dissipation structure having a solid body with high porosity and a fin with high thermal conductivity.
浸沒式冷卻技術是將發熱元件(如伺服器、磁碟陣列等)直接浸沒在不導電的冷卻液中,以透過冷卻液吸熱氣化帶走發熱元件運作所產生之熱能。並且,若是採用散熱鰭片配合冷卻液,則會缺乏能夠產生氣泡的成核點。若是採用多孔結構配合冷卻液,儘管能夠增加產生氣泡的成核點,但其垂直方向的熱傳導的劣勢會造成熱性能下降。因此,如何透過浸沒式冷卻技術更加有效地進行散熱一直是業界所需要解決的問題。Immersion cooling technology is to immerse the heat generating components (such as servers, disk arrays, etc.) directly in a non-conductive cooling liquid, so that the cooling liquid absorbs heat and evaporates to take away the heat energy generated by the operation of the heat generating components. In addition, if a heat sink fin is used in conjunction with the cooling liquid, there will be a lack of nucleation points that can generate bubbles. If a porous structure is used in conjunction with the cooling liquid, although the nucleation points for generating bubbles can be increased, the disadvantage of heat conduction in the vertical direction will cause a decrease in thermal performance. Therefore, how to dissipate heat more effectively through immersion cooling technology has always been a problem that the industry needs to solve.
有鑑於此,本發明人本於多年從事相關產品之開發與設計,有感上述缺失之可改善,乃特潛心研究並配合學理之運用,終於提出一種設計合理且有效改善上述缺失之本發明。In view of this, the inventor has been engaged in the development and design of related products for many years and feels that the above-mentioned deficiencies can be improved. Therefore, he has conducted intensive research and applied academic theories, and finally proposed the present invention which has a reasonable design and effectively improves the above-mentioned deficiencies.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種具高孔隙率之實體與具高熱導率之鰭片的兩相浸沒式複合散熱結構。The technical problem to be solved by the present invention is to provide a two-phase immersion composite heat dissipation structure with a solid body having high porosity and a fin having high thermal conductivity in view of the shortcomings of the prior art.
本發明實施例提供一種具高孔隙率之實體與具高熱導率之鰭片的兩相浸沒式複合散熱結構,包括:一散熱基底、多個高熱導率之鰭片、以及一個以上的高孔隙率之實體,所述散熱基底具有相背對的第一表面與第二表面,所述散熱基底的第二表面用以與浸沒於兩相冷卻液的發熱元件形成接觸,所述散熱基底的第一表面連接有所述多個高熱導率之鰭片,並且一個以上的所述高孔隙率之實體位於所述散熱基底的第一表面並連接於相鄰的所述高熱導率之鰭片的側壁之間並呈交錯排列,且所述高孔隙率之實體形成有多個封閉孔與多個開放孔,並且所述高孔隙率之實體與所述高熱導率之鰭片預定的體積比要大於0.25。The present invention provides a two-phase immersion composite heat sink structure having a high-porosity solid body and a high-thermal conductivity fin, comprising: a heat sink base, a plurality of high-thermal conductivity fins, and one or more high-porosity solid bodies, wherein the heat sink base has a first surface and a second surface opposite to each other, wherein the second surface of the heat sink base is used to form contact with a heat generating element immersed in a two-phase cooling liquid, and the heat sink base has a heat sink having ... The first surface is connected to the plurality of high thermal conductivity fins, and more than one high porosity entity is located on the first surface of the heat dissipation base and connected between the side walls of the adjacent high thermal conductivity fins and arranged in a staggered manner, and the high porosity entity is formed with a plurality of closed holes and a plurality of open holes, and a predetermined volume ratio of the high porosity entity to the high thermal conductivity fin is greater than 0.25.
在一優選實施例中,所述高熱導率之鰭片是由銅、銅合金、鋁、鋁合金的其一金屬所製成。In a preferred embodiment, the high thermal conductivity fin is made of a metal selected from the group consisting of copper, copper alloy, aluminum, and aluminum alloy.
在一優選實施例中,所述高熱導率之鰭片是以彎折、鍛壓、擠壓、粉末燒結的其一方式所形成。In a preferred embodiment, the high thermal conductivity fin is formed by bending, forging, extrusion, or powder sintering.
在一優選實施例中,所述高熱導率之鰭片是針柱式鰭片或片狀鰭片,且所述高熱導率之鰭片的熱導率大於300W/m.K。In a preferred embodiment, the high thermal conductivity fin is a pin-type fin or a sheet fin, and the thermal conductivity of the high thermal conductivity fin is greater than 300 W/m.K.
在一優選實施例中,所述高孔隙率之實體與所述高熱導率之鰭片的體積比是介於0.25至2.25之間。In a preferred embodiment, the volume ratio of the high porosity body to the high thermal conductivity fin is between 0.25 and 2.25.
在一優選實施例中,所述高孔隙率之實體的孔隙率是大於所述高熱導率之鰭片的孔隙率,並且所述高孔隙率之實體的孔隙率是大於20%且小於70%。In a preferred embodiment, the porosity of the high porosity entity is greater than the porosity of the high thermal conductivity fin, and the porosity of the high porosity entity is greater than 20% and less than 70%.
在一優選實施例中,所述高孔隙率之實體的高度是高於1mm,並且所述高孔隙率之實體的高度是介於所述高熱導率之鰭片的高度的10%至150%之間。In a preferred embodiment, the height of the high porosity entity is higher than 1 mm, and the height of the high porosity entity is between 10% and 150% of the height of the high thermal conductivity fin.
在一優選實施例中,所述高孔隙率之實體是以金屬粉末燒結所形成,並且用以形成所述高孔隙率之實體的金屬粉末的中值粒徑(D50)為30微米至800微米之間。In a preferred embodiment, the high-porosity body is formed by sintering metal powder, and the median particle size (D50) of the metal powder used to form the high-porosity body is between 30 μm and 800 μm.
在一優選實施例中,所述高孔隙率之實體是以化學藥劑對基材進行化學腐蝕所形成,並且用以形成所述高孔隙率之實體的化學藥劑是磷酸系微蝕劑、硫酸系微蝕劑、氯化鐵腐蝕劑的其一。In a preferred embodiment, the high-porosity entity is formed by chemically corroding the substrate with a chemical agent, and the chemical agent used to form the high-porosity entity is one of a phosphoric acid-based micro-etching agent, a sulfuric acid-based micro-etching agent, and a ferric chloride corrosive agent.
在一優選實施例中,所述高孔隙率之實體是由銅、銅合金、鋁合金、石墨、銀的其一基材所製成。In a preferred embodiment, the high-porosity body is made of a substrate selected from the group consisting of copper, copper alloy, aluminum alloy, graphite, and silver.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。To further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only used for reference and description and are not used to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。並且,附圖中相同或類似的部位以相同的標號標示。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a specific embodiment to illustrate the implementation methods disclosed by the present invention. Technical personnel in this field can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments. The details in this specification can also be modified and changed in various ways based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple schematic illustrations and are not depicted according to actual sizes. Please note in advance. Moreover, the same or similar parts in the drawings are marked with the same reference numerals. The following implementation methods will further explain the relevant technical contents of the present invention in detail, but the disclosed contents are not intended to limit the scope of protection of the present invention. In addition, the term "or" used herein may include any one or more combinations of the associated listed items as appropriate.
[第一實施例][First embodiment]
請參閱圖1所示,其為本發明的其中一種實施例,本發明實施例提供一種具高孔隙率之實體與具高熱導率之鰭片的兩相浸沒式複合散熱結構,用於接觸浸沒於兩相冷卻液中的發熱元件(熱源)。如圖1所示,根據本發明實施例所提供的具高孔隙率之實體與具高熱導率之鰭片的兩相浸沒式複合散熱結構,其包括有一散熱基底10、多個高熱導率之鰭片20、以及一個以上的高孔隙率之實體30。Please refer to FIG. 1, which is one embodiment of the present invention. The present invention provides a two-phase immersion composite heat sink structure with a high-porosity solid body and a high-thermal-conductivity fin, which is used to contact a heat-generating element (heat source) immersed in a two-phase cooling liquid. As shown in FIG. 1, the two-phase immersion composite heat sink structure with a high-porosity solid body and a high-thermal-conductivity fin provided by the present invention includes a heat sink substrate 10, a plurality of high-thermal-conductivity fins 20, and more than one high-porosity solid body 30.
在本實施例中,散熱基底10可採用高導熱性材所製成,例如銅、銅合金或鋁合金。In this embodiment, the heat dissipation substrate 10 may be made of a material with high thermal conductivity, such as copper, copper alloy or aluminum alloy.
進一步說,散熱基底10可呈板狀且具有相背對的第一表面11與第二表面12。散熱基底10的第二表面12用以與浸沒於兩相冷卻液900的發熱元件800形成接觸,這接觸可以是直接接觸或是透過中介層形成間接接觸(熱接觸)。Specifically, the heat sink 10 may be plate-shaped and have a first surface 11 and a second surface 12 opposite to each other. The second surface 12 of the heat sink 10 is used to form contact with the heat generating element 800 immersed in the two-phase cooling liquid 900. This contact may be direct contact or indirect contact (thermal contact) through an intermediate layer.
再者,散熱基底10的第一表面11則連接有多個高熱導率之鰭片20,並且散熱基底10與高熱導率之鰭片20可以是以金屬射出成型(Metal Injection Molding,MIM)或以鏟削成型方式(Skiving process)一體地連接、或以焊接方式連接。高熱導率之鰭片20可以是由銅、銅合金、鋁或鋁合金等金屬所製成,且高熱導率之鰭片20可以是以彎折、鍛壓、擠壓、粉末燒結等方式所形成。並且,高熱導率之鰭片20可以是針柱式鰭片(pin fin)或片狀鰭片(plate fin),高熱導率之鰭片20之高度較佳是大於3mm,且高熱導率之鰭片20的熱導率是大於300W/m.K。另外,高熱導率之鰭片20的孔隙率是小於15%,因超過15%會使得高熱導率之鰭片20的熱導率過低且機械強度較不足。Furthermore, the first surface 11 of the heat sink base 10 is connected to a plurality of high thermal conductivity fins 20, and the heat sink base 10 and the high thermal conductivity fins 20 can be integrally connected by metal injection molding (MIM) or skiving process, or connected by welding. The high thermal conductivity fins 20 can be made of metals such as copper, copper alloy, aluminum or aluminum alloy, and the high thermal conductivity fins 20 can be formed by bending, forging, extrusion, powder sintering, etc. Furthermore, the high thermal conductivity fin 20 may be a pin fin or a plate fin, and the height of the high thermal conductivity fin 20 is preferably greater than 3 mm, and the thermal conductivity of the high thermal conductivity fin 20 is greater than 300 W/m.K. In addition, the porosity of the high thermal conductivity fin 20 is less than 15%, because if it exceeds 15%, the thermal conductivity of the high thermal conductivity fin 20 will be too low and the mechanical strength will be insufficient.
因此,為了能更強化浸沒式散熱效果,一個以上的高孔隙率之實體30位於散熱基底10的第一表面11並連接於相鄰的高熱導率之鰭片20的側壁之間,也可以說是填滿相鄰的高熱導率之鰭片20的側壁之間的間隙,且呈交錯排列。並且,高孔隙率之實體30與高熱導率之鰭片20預定的體積比(volume ratio)要大於0.25,最佳是介於0.25至2.25之間。再者,高孔隙率之實體30的孔隙率須大於高熱導率之鰭片20的孔隙率。進一步說,高孔隙率之實體30的孔隙率可以是大於20%,甚至到70%。另外,高孔隙率之實體30的高度較佳要高於1mm,並且高孔隙率之實體30的高度須為高熱導率之鰭片20的高度的10%至150%之間。Therefore, in order to further enhance the immersion heat dissipation effect, one or more high-porosity entities 30 are located on the first surface 11 of the heat dissipation substrate 10 and connected between the side walls of the adjacent high-thermal conductivity fins 20, or in other words, fill the gaps between the side walls of the adjacent high-thermal conductivity fins 20, and are arranged in a staggered manner. In addition, the predetermined volume ratio of the high-porosity entity 30 to the high-thermal conductivity fin 20 is greater than 0.25, and is preferably between 0.25 and 2.25. Furthermore, the porosity of the high-porosity entity 30 must be greater than the porosity of the high-thermal conductivity fin 20. Furthermore, the porosity of the high-porosity entity 30 can be greater than 20%, or even 70%. In addition, the height of the high-porosity body 30 is preferably greater than 1 mm, and the height of the high-porosity body 30 must be between 10% and 150% of the height of the high-thermal conductivity fin 20 .
在本實施例中,高孔隙率之實體30可以是但不限於銅、銅合金、鋁合金、石墨、銀等基材所製成,並且形成有多個封閉孔301與多個開放孔302。並且,高孔隙率之實體30可以是以化學腐蝕所形成。進一步說,高孔隙率之實體30可以是以化學藥劑對基材進行化學腐蝕所形成,並且可以是以磷酸系微蝕劑、硫酸系微蝕劑或氯化鐵腐蝕劑進行化學腐蝕所形成。In this embodiment, the high-porosity body 30 may be made of, but not limited to, a base material such as copper, copper alloy, aluminum alloy, graphite, silver, etc., and may be formed with a plurality of closed pores 301 and a plurality of open pores 302. Furthermore, the high-porosity body 30 may be formed by chemically corroding the base material with a chemical agent, and may be formed by chemically corroding with a phosphoric acid-based micro-etchant, a sulfuric acid-based micro-etchant, or a ferric chloride-based micro-etchant.
再者,高孔隙率之實體30可以是以金屬粉末燒結所形成。進一步說,用以形成高孔隙率之實體30的金屬粉末的中值粒徑(D50)優選為30微米至800微米之間,並添加有造孔劑,可確保高孔隙率之實體30的孔隙率能達到20%以上。並且,高孔隙率之實體30的封閉孔301或開放孔302可以再透過化學藥劑沉積、電鍍、或氣相沉積(物理或化學氣相沉積)而增加。Furthermore, the high-porosity body 30 can be formed by sintering metal powder. In other words, the median particle size (D50) of the metal powder used to form the high-porosity body 30 is preferably between 30 microns and 800 microns, and a pore-forming agent is added to ensure that the porosity of the high-porosity body 30 can reach more than 20%. In addition, the closed pores 301 or open pores 302 of the high-porosity body 30 can be increased by chemical deposition, electroplating, or vapor deposition (physical or chemical vapor deposition).
因此,本實施例可透過高熱導率之鰭片與高孔隙率之實體結合的複合結構,達到同時提升垂直方向的熱傳導性能以及氣泡的成核點,從而得以有效的強化整體浸沒式散熱效果。Therefore, the present embodiment can achieve the improvement of vertical thermal conductivity and bubble nucleation points through the composite structure of high thermal conductivity fins and high porosity solid bodies, thereby effectively enhancing the overall immersion heat dissipation effect.
[第二實施例][Second embodiment]
請參閱圖2所示,其為本發明的第二實施例,本實施例與第一實施例大致相同,其差異說明如下。Please refer to FIG. 2 , which is a second embodiment of the present invention. This embodiment is substantially the same as the first embodiment, and the differences are described as follows.
在本實施例中,更包括有一高導熱結構40a。並且,高導熱結構40a為一熱導率大於380W/m.K的導熱結構。並且,高導熱結構40a是結合至散熱之基底10的第二表面12,使散熱之基底10的第二表面12是透過高導熱結構40a與浸沒於兩相冷卻液900的發熱元件800形成間接接觸(熱接觸)。細部來說,高導熱結構40a可以是透過焊接、摩擦攪拌接合(FSW)、膠黏、擴散接合(diffusion bonding)等方式結合至散熱之基底10的第二表面12。In this embodiment, a high thermal conductivity structure 40a is further included. Moreover, the high thermal conductivity structure 40a is a thermal conductivity structure having a thermal conductivity greater than 380W/m.K. Moreover, the high thermal conductivity structure 40a is bonded to the second surface 12 of the heat dissipation substrate 10, so that the second surface 12 of the heat dissipation substrate 10 forms indirect contact (thermal contact) with the heat generating element 800 immersed in the two-phase cooling liquid 900 through the high thermal conductivity structure 40a. In detail, the high thermal conductivity structure 40a can be bonded to the second surface 12 of the heat dissipation substrate 10 by welding, friction stir bonding (FSW), gluing, diffusion bonding, etc.
在本實施例中,高導熱結構40a可以是一實心金屬板,其可以是由銅、銅合金或鋁合金所製成。另外,高導熱結構40a也可以是由高導熱性的石墨所製成。In this embodiment, the high thermal conductivity structure 40a can be a solid metal plate, which can be made of copper, copper alloy or aluminum alloy. In addition, the high thermal conductivity structure 40a can also be made of graphite with high thermal conductivity.
[第三實施例][Third Embodiment]
請參閱圖3所示,其為本發明的第三實施例,本實施例與第一及第二實施例大致相同,其差異說明如下。Please refer to FIG. 3 , which is a third embodiment of the present invention. This embodiment is substantially the same as the first and second embodiments, and the differences are described as follows.
在本實施例中,高導熱結構40b內部還形成有一真空密閉腔401,且真空密閉腔401的腔頂壁4011與腔底壁4012還可以分別形成有上燒結體4013與下燒結體4014,並且真空閉密腔401中含有適量的液體,所述液體可以是水或丙酮。並且,高導熱結構40b的底面可用以接觸浸沒於兩相冷卻液900中的發熱元件800,以使浸沒在兩相冷卻液900中的發熱元件800,除了可以透過兩相冷卻液900吸熱氣化帶走發熱元件800產生之熱能,更可以透過高導熱結構40b接觸並吸收發熱元件800產生之熱能,使得真空密閉腔401中內的液體氣化、蒸發為蒸汽,散發至散熱基底10並將熱能快速傳給散熱基底10上的高熱導率之鰭片20與高孔隙率之實體30,並利用兩相冷卻液吸熱氣化將高熱導率之鰭片20與高孔隙率之實體30吸收的熱能帶走,而真空密閉腔401中的蒸汽交出熱能並於腔頂壁4011冷凝後再回流至腔底壁4012,如此高速迴圈,就能將發熱元件800產生之熱能快速匯出,進而更強化整體浸沒式散熱效果。In this embodiment, a vacuum sealed chamber 401 is formed inside the high thermal conductivity structure 40b, and the top wall 4011 and the bottom wall 4012 of the vacuum sealed chamber 401 may respectively form an upper sintered body 4013 and a lower sintered body 4014, and the vacuum sealed chamber 401 contains an appropriate amount of liquid, which may be water or acetone. Furthermore, the bottom surface of the high thermal conductivity structure 40b can be used to contact the heating element 800 immersed in the two-phase cooling liquid 900, so that the heating element 800 immersed in the two-phase cooling liquid 900 can not only absorb the heat generated by the heating element 800 through the two-phase cooling liquid 900, but also can contact and absorb the heat generated by the heating element 800 through the high thermal conductivity structure 40b, so that the liquid in the vacuum sealed cavity 401 is vaporized and evaporated into steam, which is dissipated to the heat dissipation base 1. 0 and quickly transfers the heat energy to the high thermal conductivity fins 20 and the high porosity entity 30 on the heat dissipation base 10, and uses the two-phase cooling liquid to absorb heat and vaporize to take away the heat energy absorbed by the high thermal conductivity fins 20 and the high porosity entity 30, while the steam in the vacuum sealed chamber 401 hands over the heat energy and condenses on the chamber top wall 4011 and then flows back to the chamber bottom wall 4012. Such a high-speed loop can quickly export the heat energy generated by the heating element 800, thereby further enhancing the overall immersion cooling effect.
綜合以上所述,本發明提供的具高孔隙率之實體的兩相浸沒式複合散熱結構,其至少可以通過「散熱基底」、「多個高熱導率之鰭片」、「一個以上的高孔隙率之實體」、「散熱基底具有相背對的第一表面與第二表面,散熱基底的第二表面用以與浸沒於兩相冷卻液的發熱元件形成接觸,散熱基底的第一表面連接有多個高熱導率之鰭片」、「一個以上的高孔隙率之實體位於散熱基底的第一表面並連接於相鄰的高熱導率之鰭片的側壁之間並呈交錯排列」、「高孔隙率之實體形成有多個封閉孔與多個開放孔」、「高孔隙率之實體與高熱導率之鰭片預定的體積比要大於0.25」的技術方案,從而得以有效的強化整體浸沒式散熱效果。In summary, the present invention provides a two-phase immersion composite heat dissipation structure with a high-porosity entity, which can at least be achieved through "a heat dissipation base", "a plurality of high thermal conductivity fins", "one or more high-porosity entities", "a heat dissipation base having a first surface and a second surface opposite to each other, the second surface of the heat dissipation base being used to form contact with a heat generating element immersed in a two-phase cooling liquid, and the first surface of the heat dissipation base being connected to a plurality of The invention discloses a technical solution of "a high thermal conductivity fin", "one or more high porosity entities are located on the first surface of the heat dissipation base and connected to the side walls of the adjacent high thermal conductivity fins and arranged in a staggered manner", "the high porosity entity forms a plurality of closed holes and a plurality of open holes", and "the predetermined volume ratio of the high porosity entity and the high thermal conductivity fin is greater than 0.25", thereby effectively enhancing the overall immersion heat dissipation effect.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The contents disclosed above are only preferred feasible embodiments of the present invention and are not intended to limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made using the contents of the specification and drawings of the present invention are included in the scope of the patent application of the present invention.
10:散熱基底 11:第一表面 12:第二表面 20:高熱導率之鰭片 30:高孔隙率之實體 301:封閉孔 302:開放孔 40a,40b:高導熱結構 401:真空密閉腔 4011:腔頂壁 4012:腔底壁 4013:上燒結體 4014:下燒結體 900:兩相冷卻液 800:發熱元件 10: heat dissipation base 11: first surface 12: second surface 20: high thermal conductivity fin 30: high porosity solid 301: closed hole 302: open hole 40a, 40b: high thermal conductivity structure 401: vacuum sealed cavity 4011: cavity top wall 4012: cavity bottom wall 4013: upper sintered body 4014: lower sintered body 900: two-phase cooling liquid 800: heating element
圖1為本發明第一實施例的結構側視示意圖。FIG1 is a schematic side view of the structure of the first embodiment of the present invention.
圖2為本發明第二實施例的結構側視示意圖。FIG. 2 is a schematic side view of the structure of the second embodiment of the present invention.
圖3為本發明第三實施例的結構側視示意圖。FIG3 is a schematic side view of the structure of the third embodiment of the present invention.
10:散熱基底 10: Heat dissipation base
11:第一表面 11: First surface
12:第二表面 12: Second surface
20:高熱導率之鰭片 20: Fins with high thermal conductivity
30:高孔隙率之實體 30: High porosity solid
301:封閉孔 301: Sealing hole
302:開放孔 302: Opening hole
900:兩相冷卻液 900: Two-phase cooling liquid
800:發熱元件 800:Heating element
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111133493A TW202411587A (en) | 2022-09-05 | 2022-09-05 | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111133493A TW202411587A (en) | 2022-09-05 | 2022-09-05 | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202411587A true TW202411587A (en) | 2024-03-16 |
Family
ID=91228113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111133493A TW202411587A (en) | 2022-09-05 | 2022-09-05 | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202411587A (en) |
-
2022
- 2022-09-05 TW TW111133493A patent/TW202411587A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM627557U (en) | Immersion-cooled porous heat-dissipation substrate structure | |
Fang et al. | Molybdenum copper based ultrathin two-phase heat transport system for high power-density gallium nitride chips | |
TW202411587A (en) | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins | |
TWM629671U (en) | Immersion-cooled heat-dissipation structure | |
TWI816524B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity | |
TWI823668B (en) | Two-phase immersion cooling compound heat-dissipating device | |
TWI833500B (en) | Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness | |
TWM629670U (en) | Two-phase immersion-cooled fin structure | |
TWI833342B (en) | Two-phase immersion-cooling heat-dissipation structure having porous structure | |
TWI822512B (en) | Two-phase immersion-cooling heat-dissipation structure with shortened evacuation route for vapor bubbles | |
TWI804930B (en) | Immersion-cooled heat-dissipation structure | |
TWI792347B (en) | Two-phase immersion-cooled fin structure | |
TWI823696B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fins | |
TWI809641B (en) | Immersion-cooling type heat-dissipation plate | |
TWI784746B (en) | Immersion-cooled porous heat-dissipation structure having macroscopic-scale fin structure | |
TWI797865B (en) | Two-phase immersion-cooled heat-dissipation structure | |
TWI813026B (en) | Two-phase immersion-cooled heat-dissipation substrate | |
TWI819807B (en) | Two-phase immersion-cooling heat-dissipation structure having fins for facilitating bubble generation | |
US20240155808A1 (en) | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solid structure and high-thermal-conductivity fins | |
JP2006245569A (en) | Heat dissipation conduit structure for semiconductor chip and its production process | |
TWI816444B (en) | Immersion-cooling heat-dissipation structure with high density fins | |
TWI779869B (en) | Immersion-cooled porous heat-dissipation structure | |
TWI817573B (en) | Two-phase immersion-cooling heat-dissipation structure with high density fins | |
TWI789894B (en) | Immersion-cooled heat-dissipation structure | |
TWM384507U (en) | Vapor chamber device with metal mesh heat-dissipating structure |