[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2601329C2 - Новые осветительные приборы - Google Patents

Новые осветительные приборы Download PDF

Info

Publication number
RU2601329C2
RU2601329C2 RU2013143030/05A RU2013143030A RU2601329C2 RU 2601329 C2 RU2601329 C2 RU 2601329C2 RU 2013143030/05 A RU2013143030/05 A RU 2013143030/05A RU 2013143030 A RU2013143030 A RU 2013143030A RU 2601329 C2 RU2601329 C2 RU 2601329C2
Authority
RU
Russia
Prior art keywords
bis
organic fluorescent
color converter
isopropyl
compound
Prior art date
Application number
RU2013143030/05A
Other languages
English (en)
Other versions
RU2013143030A (ru
Inventor
Герхард Вагенбласт
Мартин КЕНЕМАНН
КЕЙЗЕР Герардус ДЕ
Зорин ИВАНОВИЧИ
Михель ПЕПЕРС
Маттиас Мюллер
Роберт ЗЕНД
Original Assignee
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Се filed Critical Басф Се
Publication of RU2013143030A publication Critical patent/RU2013143030A/ru
Application granted granted Critical
Publication of RU2601329C2 publication Critical patent/RU2601329C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Изобретение относится к осветительным приборам с длительным сроком службы. Осветительный прибор содержит по меньшей мере один СИД и по меньшей мере один конвертер цвета. Конвертер цвета содержит по меньшей мере один органический флуоресцентный краситель в матрице из полистирола или поликарбоната. СИД и конвертер цвета находятся в конфигурации удаленного люминофора. Между конвертером цвета и СИДом присутствует газ, такой как воздух, благородные газы, азот или их смеси. Органический флуоресцентный краситель выбирают из производных перилена формул II-X, указанных в описании. Предложенные конвертеры цвета на основе периленовых флуоресцентных красителей обеспечивают осветительные приборы с высоким квантовым выходом флуоресценции и более длительным сроком службы. 6 н. и 22 з.п. ф-лы, 4 ил., 1 табл., 6 пр.

Description

Предметом настоящего изобретения являются осветительные приборы, содержащие по меньшей мере один СИД и конвертер цвета, содержащий по меньшей мере один органический флуоресцентный краситель в матрице, состоящей по существу из полистирола или поликарбоната, где СИД и конвертер цвета находятся в конфигурации удаленного люминофора.
Данное изобретение также обеспечивает конвертеры цвета, содержащие по меньшей мере один органический флуоресцентный краситель в матрице, состоящей по существу из полистирола или поликарбоната.
На освещение расходуется 20% мирового потребления электроэнергии. Осветительное оборудование является объектом дальнейшего технического развития относительно экономии энергии, цветопередачи, ресурса эксплуатации, производственных затрат и удобства использования. Лампы накаливания и галогеновые лампы, будучи излучателями тепла, вырабатывают свет с очень хорошей цветопередачей, поскольку испускается широкий спектр с характеристиками излучения, приближающимися к закону Планка для излучения абсолютно черного тела и близко схожими с солнечным светом. Один недостаток ламп накаливания заключается в высоком потреблении энергии, так как очень большое количество электроэнергии преобразуется в тепло.
Большей эффективностью обладают компактные флуоресцентные трубки, которые дают линейчатый спектр излучения ртути при разряжении паров ртути, возбуждаемых электрическим разрядом. С внутренней стороны этих компактных флуоресцентных трубок находятся люминофоры, содержащие редкоземельные металлы, которые поглощают некоторую часть спектра излучения ртути и испускают его в виде зеленого и красного света. Спектр излучения компактной флуоресцентной трубки состоит из различных линий, что приводит к намного более слабой цветопередаче. Свет компактной флуоресцентной трубки воспринимается многими людьми как менее естественный и менее приятный, чем солнечный свет или свет от ламп накаливания.
Более длительным сроком службы и очень хорошей эффективностью использования энергии характеризуются большинство светоизлучающих диодов (СИДов). Излучение света основано на рекомбинации пар электрон-дырка (экситонов) в области перехода прямосмещенного p-n перехода полупроводника. Размер запрещенной зоны этого полупроводника определяет приблизительную длину волны. СИДы могут быть получены в разном цвете.
Стабильные и энергетически эффективные синие СИДы могут давать белый свет благодаря преобразованию цвета. Согласно известному для этой цели способу, полимерный материал, содержащий преобразующий излучение люминофор, наносится непосредственно на светодиодный источник света (чип СИДа). Часто, полимерный материал наносится на чип СИДа в почти каплевидной или полусферической форме, в результате чего специфические оптические эффекты вносят вклад в излучение света. Такие структуры, в которых преобразующий излучение люминофор в полимерной матрице наносится непосредственно и без промежуточного пространства на чип СИДа, также именуются «люминофорами на чипе». В СИДах с люминофорами на чипах используемые преобразующие излучение люминофоры представляют собой, в основном, неорганические материалы. Преобразующие излучение люминофоры, которые могут состоять, например, из допированного церием алюмоиттриевого граната, поглощают некоторую часть синего света и испускают свет с большей длиной волны с широкой полосой испускания, так что смешивание прошедшего синего света и испускаемого света формирует белый свет.
Для того чтобы улучшить цветопередачу таких осветительных элементов, дополнительно можно внедрить светодиод, испускающий красный свет, также как описанный светодиод белого свечения. Это позволяет получать свет, который воспринимается многими людьми как более приятный. Тем не менее, этот способ является более неудобным и затратным с технической точки зрения.
В СИДах с люминофором на чипе полимерный материал и преобразующий излучение люминофор подвергаются относительно высокому термическому и излучательному напряжению. По этой причине, органические люминофоры, преобразующие излучение, до настоящего времени не подходили для применения в СИДах с люминофором на чипе. Органические флуоресцентные красители могут, в принципе, давать хорошую цветопередачу за счет их широких полос испускания. Тем не менее, до настоящего момента они не были стабильны достаточно, чтобы выдержать термическое и излучательное напряжения в случае расположения непосредственно на чипе СИДа.
Для того чтобы сформировать белый свет из синего света путем преобразования цвета, есть дополнительная концепция, в которой конвертер цвета (также именуемый просто как "конвертер"), который в основном содержит носитель и полимерное покрытие, находится на определенном расстоянии от чипа СИДа. Такая структура именуется "удаленным люминофором".
Пространственное расстояние между первичным источником света, СИДом и конвертером цвета снижает напряжение от теплоты и излучения до такой степени, что требования по стабильности могут быть достигнуты с помощью подходящих органических флуоресцентных красящих веществ. Более того, СИДы, соответствующие концепции "удаленного люминофора", являются даже более энергосберегающими, чем те, что соответствуют концепции "люминофора на чипе". Применение органических флуоресцентных красящих веществ в этих конвертерах позволяет получить разнообразные преимущества. Во-первых, органические флуоресцентные красящие вещества дают намного более высокий выход благодаря их по существу более высокому удельному поглощению, что означает, что значительно меньше материала требуется для эффективного преобразования излучения, чем в случае неорганических конвертеров излучения. Во-вторых, они позволяют получить хорошую цветопередачу и способны давать приятный свет. Кроме того, они не требуют никаких материалов, содержащих редкоземельные металлы, которые должны добываться и обеспечиваться затратным и неудобным образом и доступны только в ограниченной степени. Следовательно, желательно обеспечить конвертеры цвета для СИДов, содержащие подходящие органические флуоресцентные красящие вещества и имеющие длительный срок службы.
В опубликованной патентной заявке DE 102008057720 A1 описывается концепция СИДов с удаленным люминофором, а также раскрывается, помимо преобразующего слоя, содержащего неорганические преобразующие излучение люминофоры, применение органических преобразующих излучение люминофоров, которые включены в полимерную матрицу. Упомянутые полимерные матрицы представляют собой, например, силиконы, эпоксиды, акрилаты или полиакрилаты.
В международной патентной заявке WO 03/038915 A описывается применение периленовых красящих веществ в качестве преобразующего излучение люминофора для СИДов с люминофорами на чипах. В СИДах, соответствующих этому документу, органические красящие вещества включены в матрицу, состоящую из эпоксисмолы на основе бисфенола А.
Американская патентная заявка US 20080252198 раскрывает конвертеры цвета, содержащие комбинацию красных флуоресцентных красящих веществ на основе производных перилена с другими флуоресцентными красящими веществами. Они включены в прозрачную среду, которая может представлять собой, например, поливинилпирролидон, полиметакрилат, полистирол, поликарбонат, поливинилацетат, поливинилхлорид, полибутилен, полиэтиленгликоль, эпоксисмолу.
Задачей настоящего изобретения стало обеспечение осветительных приборов и конвертеров цвета на основе органических флуоресцентных красящих веществ, которые лишены недостатков предшествующего уровня техники и, особенно, которые имеют длительный срок службы. Кроме того, они должны иметь высокий квантовый выход флуоресценции.
Задача была достигнута благодаря осветительным приборам и конвертерам цвета, указанным в начале.
Патентоспособные осветительные приборы содержат по меньшей мере один СИД и по меньшей мере один конвертер цвета. Конвертеры цвета, аналогичным образом, составляют часть предмета настоящего изобретения и содержат, в соответствии с изобретением, по меньшей мере один органический флуоресцентный краситель в матрице, состоящей по существу из полистирола и/или поликарбоната.
В контексте данного изобретения, под конвертерами цвета подразумеваются устройства, которые способны поглощать свет определенных длин волн и конвертировать его в свет других длин волн.
Технически связанные СИДы часто являются синими СИДами, которые испускают свет с пиковой длиной волны, равной, например, 420-480 нм, предпочтительно 440-470 нм, наиболее предпочтительно 445-460 нм.
В соответствии с выбором преобразующих излучение люминофоров и поглощаемой длины волны, возможно, что патентоспособные конвертеры цвета испускают свет в широком диапазоне цветов. Во многих случаях, однако, целью является получение белого света.
Преобразующие излучение люминофоры включают все материалы, которые способны поглощать свет определенной длины волны и конвертировать его в свет другой длины волны. Такие материалы также именуются люминофорами или флуоресцентными красителями.
Преобразующие излучение люминофоры могут быть, например, неорганическими флуоресцентными красителями, такими как, например, допированный церием алюмоиттриевый гранат, или органическими флуоресцентными красителями. Органические флуоресцентные красители могут представлять собой органические флуоресцентные пигменты или органические флуоресцентные красящие вещества.
Патентоспособные конвертеры цвета содержат по меньшей мере один органический флуоресцентный краситель, присутствующий включенным в полимерную матрицу, состоящую по существу из поликарбоната или полистирола. Подходящими органическими флуоресцентными красителями являются в принципе все органические красящие вещества или пигменты, которые могут поглощать свет определенной длины волны и превращать его в свет другой длины волны, которые могут быть растворены или распределены гомогенно в полимерной матрице и которые имеют достаточную устойчивость к термическим и излучательным напряжениям.
Предпочтительными органическими пигментами являются, например, периленовые пигменты.
Как правило, подходящие органические пигменты имеют средний размер частиц согласно DIN 13320, равный 0,01-10 мкм, предпочтительно 0,1-1 мкм.
Подходящие органические флуоресцентные красящие вещества флуоресцируют в спектральном диапазоне видимого света и представляют собой, например, флуоресцентные красящие вещества, флуоресцирующие зеленым, оранжевым или красным светом, перечисленные в базе Colour Index.
Предпочтительными органическими флуоресцентными красящими веществами являются функционализированные производные нафталина или перилена.
Предпочтительными производными нафталина являются флуоресцентные красящие вещества, флуоресцирующие зеленым, оранжевым или красным светом, которые содержат нафталиновый фрагмент.
Предпочтение далее отдается производным нафталина, которые несут один или более заместителей, выбранных из галогена, циано-группы, бензимидазола, или один или более радикалов, несущих карбонильные функциональные группы. Подходящие карбонильные функциональные группы представляют собой, например, эфиры карбоновых кислот, дикарбоксимиды, карбоновые кислоты, карбоксамиды.
Предпочтительные периленовые производные содержат фрагмент перилена. Предпочтительный вариант осуществления относится к периленам, флуоресцирующим зеленым, оранжевым или красным светом.
Предпочтение отдается производным перилена, которые несут один или более заместителей, выбранных их галогена, циано-группы, бензимидазола, или один или более радикалов, несущих карбонильные функциональные группы. Подходящие карбонильные функциональные группы представляют собой, например, эфиры карбоновых кислот, карбоксимиды, карбоновые кислоты, карбоксамиды.
Предпочтительные производные перилена представляют собой, например, производные перилена, указанные в международной патентной заявке WO 2007/006717, стр.1, строка 5 - стр.22, строка 6.
В особенно предпочтительном варианте осуществления изобретения, подходящими органическими флуоресцентными красящими веществами являются производные перилена, выбранные из Формул II-VI
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
где R1 представляет собой линейный или разветвленный C1-C18 алкильный радикал, C4-C8 циклоалкильный радикал, который может быть моно- или полизамещенным галогеном или линейным или разветвленным C1-C18 алкилом, или фенил или нафтил, где фенил и нафтил могут быть моно- или полизамещенными галогеном или линейным или разветвленным C1-C18 алкилом.
В одном варианте осуществления изобретения, R1 в Формулах II-VI означает соединения с тем, что называется замещением «с раздвоенным концом», как указывается в международной патентной заявке WO 2009/037283 A1, стр.16, строка 19 - стр.25, строка 8. В предпочтительном варианте осуществления изобретения, R1 представляет собой 1-алкилалкил, например 1-этилпропил, 1-пропилбутил, 1-бутилпентил, 1-пентилгексил или 1-гексилгептил.
В Формулах II-VI, X означает заместители в орто- и/или пара-положении.
X, предпочтительно, представляет собой линейный или разветвленный C1-C18 алкил.
"y" показывает количество заместителей X. "y" является числом от 0 до 3.
Более предпочтительно, R1 в Формулах II-VI представляет собой 2,4-ди(трет-бутил)фенил или 2,6-дизамещенный фенил, особенно предпочтительно 2,6-дифенилфенил, 2,6-диизопропилфенил.
Особенно предпочтительно, X представляет собой трет-бутил в орто/пара положении и/или вторичный алкил, особенно изопропил, в орто-положениях или фенил в орто-положениях.
Согласно особому аспекту этого варианта осуществления, органические флуоресцентные красящие вещества выбираются из N,N′-бис(2,6-диизопропилфенил)-1,6-ди(2,6-диизопропилфенокси)-перилен-3,4:9,10-тетракарбоксимида, N,N′-бис(2,6-диизопропилфенил)-1,7-ди(2,6-диизопропилфенокси)-перилен-3,4:9,10-тетракарбоксимида и их смесей.
Согласно еще одному особому аспекту этого варианта осуществления, органическое флуоресцентное красящее вещество представляет собой моноимид N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты.
Другим предпочтительным флуоресцентным красящим веществом является красящее вещество Формулы VI, например N,N′-бис(2,6-диизопропилфенил)-1,6,7,12-тетрафеноксиперилен-3,4:9,10-тетракарбоксдиимид (Lumogen® Red 300).
В другом особенно предпочтительном варианте осуществления изобретения, подходящими органическими флуоресцентными красящими веществами являются производные перилена, выбранные из Формул VII-X,
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
где R1 в Формулах VII-X представляет собой линейный или разветвленный C1-C18 алкильный радикал, C4-C8 циклоалкильный радикал, который может быть моно- или полизамещенным галогеном или линейным или разветвленным C1-C18 алкилом, или фенил или нафтил, где фенил и нафтил могут быть моно- или полизамещенными галогеном или линейным или разветвленным C1-C18 алкилом.
В одном варианте осуществления изобретения, R1 в формулах VII-X означает соединения с тем, что называется замещением «с раздвоеннным концом», как указывается в международной патентной заявке WO 2009/037283 A1, стр.16, строка 19 - стр.25, строка 8. В предпочтительном варианте осуществления изобретения R1 представляет собой 1-алкилалкил, например 1-этилпропил, 1-пропилбутил, 1-бутилпентил, 1-пентилгексил или 1-гексилгептил.
Особенно предпочтительно, R1 в Формулах VII-X представляет собой линейный или разветвленный C1-C6 алкил, особенно н-бутил, втор-бутил, 2-этилгексил. Особенно предпочтительно, R1 в Формулах VII-X также представляет собой изобутил.
Согласно особому аспекту этого варианта осуществления, органические флуоресцентные красящие вещества выбираются из 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата) и их смесей.
Согласно еще одному особому аспекту этого варианта осуществления, органические флуоресцентные красящие вещества выбираются из 3,9-дицианоперилен-4,10-бис(изобутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(изобутилкарбоксилата) и их смесей.
Другими предпочтительными флуоресцентными красящими веществами являются Disperse Yellow 199, Solvent Yellow 98, Disperse Yellow 13, Disperse Yellow 11, Disperse Yellow 239, Solvent Yellow 159.
В предпочтительном варианте осуществления изобретения, по меньшей мере один органический флуоресцентный краситель выбран из N,N′-бис(2,6-диизопропилфенил)-1,7-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, N,N′-бис(2,6-диизопропилфенил)-1,6-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата), 3,9-дицианоперилен-4,10-бис(изобутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(изобутилкарбоксилата), моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты и их смесей.
В предпочтительном варианте осуществления изобретения, конвертеры цвета содержат по меньшей мере два различных органических флуоресцентных красящих вещества. Например, флуоресцентное красящее вещество, флуоресцирующее зеленым светом, может быть скомбинировано с флуоресцентным красящим веществом, флуоресцирующим красным светом. Под флуоресцентными красящими веществами, флуоресцирующими зеленым светом, подразумеваются особенно те желтые красящие вещества, которые поглощают синий свет и испускают зеленый или желто-зеленый флуоресцентный свет. Подходящие красные красящие вещества поглощают либо синий свет непосредственно СИДа или поглощают зеленый свет, испускаемый другими присутствующими красящими веществами, и передают красный флуоресцентный свет.
В менее предпочтительном варианте осуществления изобретения, патентоспособные конвертеры цвета содержат только одно органическое флуоресцентное красящее вещество, например оранжевое флуоресцентное красящее вещество.
Согласно изобретению, органические флуоресцентные красящие вещества включены в матрицу, состоящую по существу из полистирола и/или поликарбоната.
Когда органические флуоресцентные красители являются пигментами, они обычно присутствуют в диспергированной форме в матрице.
Органические флуоресцентные красящие вещества могут присутствовать либо в растворенной форме в матрице или в форме гомогенно распределенной смеси. Органические флуоресцентные красящие вещества, предпочтительно, присутствуют в растворенной форме в матрице.
Подходящими веществами для матрицы являются органические полимеры, состоящие по существу из полистирола и/или поликарбоната.
В предпочтительном варианте осуществления изобретения, матрица состоит из полистирола или поликарбоната.
Подразумевается, что полистирол включает все гомо- или сополимеры, которые возникают в результате полимеризации стирола и/или производных стирола.
Производные стирола представляют собой, например, алкилстиролы, такие как альфа-метил стирол, орто-, мета-, пара-метилстирол, пара-бутилстирол, особенно пара-трет-бутилстирол, алкоксистирол, такой как пара-метоксистирол, пара-бутоксистирол, пара-трет-бутоксистирол.
Обычно, подходящие полистиролы имеют среднюю молярную массу Мn, равную 10000-1000000 г/моль (определяется гель-проникающей хроматографией), предпочтительно 20000-750000 г/моль, более предпочтительно 30000-500000 г/моль.
В предпочтительном варианте осуществления изобретения, матрица конвертера цвета состоит по существу или полностью из гомополимера стирола или производных стирола.
В других предпочтительных вариантах осуществления изобретения, матрица состоит по существу или полностью из стирольного сополимера, который, как полагают в контексте настоящей заявки, также является полистиролом. Стирольные сополимеры могут содержать в качестве дополнительных составных частей, например, бутадиен, акрилонитрил, малеиновый ангидрид, винилкарбазол или эфиры акриловой кислоты, метакриловой кислоты или итаконовой кислоты в качестве мономеров. Подходящие стирольные сополимеры содержат обычно по меньшей мере 20% мас. стирола, предпочтительно по меньшей мере 40% мас. и более предпочтительно по меньшей мере 60% мас. стирола. В другом варианте осуществления, они содержат по меньшей мере 90%мас.стирола. Предпочтительными стирольными сополимерами являются сополимеры стирол-акрилонитрил (САН) и сополимеры акрилонитрил-бутадиен-стирол (АБС), сополимеры стирол-1,1′-дифенилэтилен, сополимеры акриловый эфир-стирол-акрилонитрил (АСА), сополимеры метилметакрилат-акрилонитрил-бутадиен-стирол (МАБС).
Другим предпочтительным полимером является сополимер альфа-метилстирол-акрилонитрил (АМСАН).
Стирольные гомо- или сополимеры могут быть получены, например, путем свободно-радикальной полимеризации, катионной полимеризации, анионной полимеризации или под влиянием металлорганических катализаторов (например с помощью катализатора Циглера-Натта). Это может привести к получению изотактического, синдиотактического, атактического полистирола или сополимеров. Их, предпочтительно, получают путем свободно-радикальной полимеризации. Полимеризация может проводиться как суспензионная полимеризация, эмульсионная полимеризация, растворная полимеризация или объемная полимеризация.
Получение подходящих полистиролов описывается, например, в публикации Oscar Nuyken, Polystyrenes and Other Aromatic Polyvinyl Compounds, in Kricheldorf, Nuyken, Swift, New York 2005, p.73-150 и в приводимых там ссылках, а также в публикации Elias, Macromolecules, Weinheim 2007, p.269-275.
Поликарбонаты представляют собой полиэфиры карбоновой кислоты с ароматическими или алифатическими дигидроксильными соединениями. Предпочтительными дигидроксильными соединениями являются, например, метилендифенилендигидроксильные соединения, например бисфенол А.
Одним способом получения поликарбонатов является реакция подходящих дигидроксильных соединений с фосгеном в межфазной полимеризации. Другим способом является реакция с диэфирами карбоновой кислоты, такими как дифенилкарбонат, в конденсационной полимеризации.
Получение подходящих поликарбонатов описывается, например, в публикации Elias, Macromolecules, Weinheim 2007, p.343-347.
В предпочтительном варианте осуществления, используются полистиролы или поликарбонаты, которые подверглись полимеризации с исключением кислорода. Мономеры, предпочтительно, содержали в ходе полимеризации всего самое большее 1000 ч./млн кислорода, более предпочтительно самое большее 100 ч./млн и особенно предпочтительно самое большее 10 ч./млн.
Подходящие полистиролы или поликарбонаты могут содержать, в качестве дополнительных компонентов, добавки, такие как ингибиторы горения, антиоксиданты, светостабилизаторы, ловушки свободных радикалов, антистатики. Такие стабилизаторы известны специалистам в данной области техники.
В предпочтительном варианте осуществления изобретения, подходящие полистиролы или поликарбонаты не содержат никаких антиоксидантов или ловушек свободных радикалов.
В одном варианте осуществления изобретения, подходящие полистиролы или поликарбонаты являются прозрачными полимерами.
В другом варианте осуществления изобретения, подходящие полистиролы или поликарбонаты являются непрозрачными полимерами.
В одном варианте осуществления изобретения, матрица состоит по существу или полностью из смеси полистирола и/или поликарбоната с другими полимерами, но матрица предпочтительно содержит по меньшей мере 25% мас., более предпочтительно 50% мас., наиболее предпочтительно по меньшей мере 70% мас., полистирола и/или поликарбоната.
В другом варианте осуществления изобретения, матрица состоит по существу или полностью из смеси полистирола или поликарбоната в любом соотношении.
В другом варианте осуществления изобретения, матрица состоит из смесей различных полистиролов и поликарбонатов.
В одном варианте осуществления изобретения, матрица механически упрочняется волокнами стекла.
Было неожиданно обнаружено, что устойчивость органического флуоресцентного красителя увеличивается в полистироле или поликарбонате по сравнению с другими материалами матрицы.
Для выполнения изобретения, геометрическое расположение, в котором находится органическая флуоресцентная содержащая краситель матрица, не является критическим. Органическая флуоресцентная содержащая краситель матрица может присутствовать, например, в форме пленок, листов или пластинок. Органическая флуоресцентная содержащая краситель матрица также может находиться в каплевидной форме, или полусферической форме, или в форме линз с выпуклыми и/или вогнутыми, плоскими или сферическими поверхностями.
Вне зависимости от трехмерной формы, патентоспособные конвертеры могут состоять, например, из единственного слоя или иметь многослойную структуру.
Когда конвертеры цвета согласно изобретению содержат более одного флуоресцентного красителя, в одном варианте осуществления изобретения возможно, что несколько флуоресцентных красителей присутствуют одновременно в одном слое.
В другом варианте осуществления изобретения, различные флуоресцентные красители присутствуют в разных слоях.
В одном варианте осуществления изобретения, органические флуоресцентные полимерные слои, содержащие красящие вещества, (матрицы) имеют толщину 25-200 мкм, предпочтительно 35-150 мкм и особенно 50-100 мкм.
В другом варианте осуществления изобретения, органические флуоресцентные полимерные слои, содержащие красящие вещества, имеют толщину 0,2-5 мм, предпочтительно 0,3-3 мм, более предпочтительно 0,4-1 мм.
Когда конвертеры цвета состоят из одного слоя и имеют слоистую структуру, отдельные слои в предпочтительно варианте осуществления изобретения являются непрерывными и не имеют каких бы то ни было отверстий или прерываний, так что свет, испускаемый СИДом, должен в каждом случае проходить через по меньшей мере одну органическую флуоресцентную содержащую краситель матрицу.
Концентрация органических флуоресцентных красителей в матрице зависит от факторов, включающих толщину полимерного слоя. Если используется тонкий полимерный слой, концентрация органического флуоресцентного красителя является в основном выше, чем в случае толстого полимерного слоя. Концентрация органических флуоресцентных красящих веществ составляет, как правило, 0,001-0,5% мас., предпочтительно 0,002-0,1% мас., наиболее предпочтительно 0,005-0,05% мас., в пересчете в каждом случае на количество материала матрицы.
Органические пигменты обычно применяются в концентрации, равной 0,001-0,5% мас., предпочтительно 0,005-0,2% мас., более предпочтительно 0,01-0,1% мас., в пересчете в каждом случае на количество материала матрицы.
В предпочтительном варианте осуществления изобретения, по меньшей мере один из слоев или матриц, содержащих органическое флуоресцентное красящее вещество, содержит тела, рассеивающие свет.
В другом предпочтительном варианте многослойной структуры, присутствует несколько слоев, содержащих флуоресцентное красящее вещество, и один или более слоев, содержащих рассеиватели без флуоресцентного красящего вещества.
Подходящими рассеивающими телами являются неорганические белые пигменты, например диоксид титана, сульфат бария, литопон, оксид цинка, сульфид цинка, карбонат кальция со средним размером частиц согласно DIN 13320, равным 0,01-10 мкм, предпочтительно 0,1-1 мкм, более предпочтительно 0,15-0,4 мкм.
Рассеивающие тела включены, как правило, в количестве 0,01-2.0% мас., предпочтительно 0,05-0,5% мас., более предпочтительно 0,1-0.4% мас., в пересчете в каждом случае на полимере слоя, содержащего рассеивающие тела.
Конвертеры цвета согласно изобретению могут необязательно содержать дополнительные компоненты, такие как несущий слой. Несущие слои служат для придания механической устойчивости конвертеру цвета. Тип материала несущих слоев не является критическим, при условии что он является прозрачным и имеет требуемую механическую прочность. Подходящими материалами для несущих слоев являются, например, стекло или прозрачные жесткие органические полимеры, такие как поликарбонат, полистирол или полиметакрилаты или полиметилметакрилаты.
Несущие слои обычно имеют толщину 0,1-10 мм, предпочтительно 0,3-5 мм, более предпочтительно 0,5-2 мм.
Соответствующие настоящему изобретению конвертеры цвета являются подходящими для преобразования света, производимого СИДами.
Соответствующие настоящему изобретению конвертеры цвета могут применяться в комбинации с СИДами в практически любой геометрической форме и независимо от структуры осветительного прибора.
Предпочтение отдается применению соответствующих настоящему изобретению конвертеров цвета в конфигурации удаленного люминофора. Конвертер цвета в этом случае является пространственно отделенным от СИДа. В основном, расстояние между СИДом и конвертером цвета составляет от 0,1 см до 50 см, предпочтительно от 0,2 до 10 см и наиболее предпочтительно от 0,5 до 2 см. Различные среды, такие как воздух, благородные газы, азот или другие газы или их смеси могут присутствовать между конвертером цвета и СИДом.
Конвертер цвета, например, может быть расположен концентрически вокруг СИДа или быть в форме плоского слоя, пластинки или листа.
Соответствующие настоящему изобретению конвертеры цвета и осветительные приборы при облучении светом СИДа показывают, по сравнению с конвертерами цвета и осветительными приборами предшествующего уровня техники, долгий срок службы и высокий квантовый выход, а также испускают приятный свет с хорошей цветопередачей.
Соответствующие настоящему изобретению осветительные приборы подходят для освещения внутри помещения, снаружи помещения, освещения офисов и транспортных средств, а также в фонарях, игровых приставках, уличных фонарях, светящихся дорожных знаках.
Изобретение также обеспечивает способ получения конвертеров цвета, содержащих по меньшей мере один органический краситель.
В одном варианте осуществления изобретения способ получения конвертеров цвета, содержащих органическое флуоресцентное красящее вещество, включает получение полимерной пленки, в которой органические флуоресцентные красящие вещества растворены или диспергированы в органическом растворителе вместе с материалом матрицы и необязательно рассеивающими частицами и обработаны в полимерную пленку с гомогенно распределенным красящим веществом путем удаления растворителя.
Другие варианты осуществления изобретения включают экструзию и/или литье под давлением полистирола или поликарбоната с органическими флуоресцентными красителями.
Примеры
Используемые материалы:
Полимер 1: прозрачный гомополимер метилметакрилата с температурой размягчения по Вика, равной 96°C согласно DIN EN ISO 306, (Plexiglas® 6N от Evonik)
Полимер 2: прозрачный поликарбонат на основе поликонденсата бисфенола А и фосгена (Makrolon® 3119 от Bayer)
Полимер 3: прозрачный полистирол на основе гомополимера стирола с плотностью 1048 кг/м3 и температурой размягчения по Вика 98°C согласно DIN EN ISO 306 (PS 168 N от BASF SE)
Красящее вещество 1: Флуоресцентное красящее вещество, флуоресцирующее желтым/зеленым светом, состоящее из смеси 3,9-дицианоперилен-4,10-бис(втор-бутил карбоксилата) и 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата).
Красящее вещество 2: Флуоресцентное красящее вещество, флуоресцирующее желтым/зеленым светом, именуемое моноимидом N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты.
Диоксид титана: TiO2 рутиловый пигмент из сульфатного процесса со средней рассеивающей способностью согласно DIN 53165, равной 94,0-100 (Kronos® 2056 от Kronos Titan)
Получение конвертеров цвета:
Приблизительно 2,5 г полимера и 0,03% мас. или 0,05% мас. красящего вещества (в пересчете на массу полимера) были растворены в приблизительно 5 мл метиленхлорида, где было диспергировано 0,1% мас. или 0,5% мас. TiO2.
Полученный раствор/дисперсия был нанесен на стеклянную поверхность с помощью коробчатой планки для нанесения (толщина сырой пленки 400 мкм). После того как растворитель высохнет, пленку отделяли от стекла и сушили при 50°C в вакуумном сушильном шкафу в течение ночи.
Круглые кусочки пленки диаметром 15 мм были вырублены из этой пленки и затем служили в качестве тестовых образцов.
Следующие образцы были получены и проанализированы:
No. Полимер Красящее вещество Содержание красящего вещества* Содержание TiO2* Толщина пленки
1 1 1 0.05% мас. 0.1% мас. 57 мкм
2 2 1 0.03% мас. 0.5% мас. 68 мкм
3 3 1 0.03% мас. 0.1% мас. 73 мкм
4 1 2 0.05% мас. 0.1% мас. 43 мкм
5 2 2 0.03% мас. 0.5% мас. 69 мкм
6 3 2 0.03% мас. 0.1% мас. 73 мкм
*: в пересчете на количество используемого полимера
Облучение образцов:
Образцы облучались экспонирующим аппаратом, состоящим из коммерчески доступных GaN-светодиодов из модельного ряда Luxeon V-Star (от Lumileds Lighting), модель LXHL-LR5C royal blue, которые были смонтированы вместе с отражательной оптикой на охлаждающем элементе. СИДы эксплуатировались при приблизительно 550-700 мА, со всеми экспонирующими устройствами, установленными на одну и ту же интенсивность. Облучение осуществлялось светом с длиной волны 455 нм. Освещенность была приблизительно 0,09 Вт/см2.
Определение срока службы образцов
Для данного анализа образцы были извлечены из экспонирующих устройств и анализировались в измерительной системе квантового выхода С9920-02 (от Hamamatsu). Анализ включал освещение каждого из образцов в фотометрическом шаре (шар Ульбрихта) светом 450-455 нм. Путем сравнения с контрольным измерением в сфере Ульбрихта в отсутствие образца, непоглощенная часть возбуждающего света и флуоресцентный свет, испускаемый образцом, определяют посредством ПЗС спектрометра. Интегрирование интенсивностей по непоглощенному возбуждающему свету или по испускаемому флуоресцентному свету дает степень поглощения или интенсивность флуоресценции или квантовый выход флуоресценции каждого образца.
Каждый из образцов облучался постоянно в течение 20 дней и извлекался из экспонирующего аппарата, только чтобы определить степень поглощения, интенсивность флуоресценции и квантовый выход флуоресценции конвертеров цвета.
Фигуры 1 и 3 показывают, по оси абсцисс, время облучения в днях и, по оси ординат, процент падающего света (450-455 нм), который был поглощен.
Номера между тремя кривыми соответствуют номерам образцов.
Было обнаружено во всех случаях, что поглощение света образцами уменьшалось с течением времени облучения, но это падение в случае конвертеров цвета, соответствующих настоящему изобретению, состоящих из полистирола или поликарбоната (образцы 2, 3, 5 и 6), было намного медленнее, чем в случае конвертеров цвета, не соответствующих настоящему изобретению (образцы 1 и 4).
Фигуры 2 и 4 показывают, по оси абсцисс, время облучения в днях и, по оси ординат, относительную интенсивность флуоресценции.
Номера между тремя кривыми соответствуют номерам образцов.
Было обнаружено во всех случаях, что интенсивность флуоресценции образцов падает со временем, но это падение было намного медленнее в случае конвертеров цвета, соответствующих настоящему изобретению, состоящих из полистирола или поликарбоната (образцы 2, 3, 5 и 6), чем в случае конвертеров цвета, не соответствующих настоящему изобретению (образцы 1 и 4).

Claims (28)

1. Осветительный прибор, который содержит по меньшей мере один светоизлучающий диод - СИД и по меньшей мере один конвертер цвета, содержащий по меньшей мере один органический флуоресцентный краситель в матрице, состоящей по существу из полистирола или поликарбоната, где СИД и конвертер цвета находятся в конфигурации удаленного люминофора, причем воздух, благородные газы, азот или их смеси присутствуют между конвертером цвета и СИДом и причем указанный по меньшей мере один органический флуоресцентный краситель представляет собой органическое флуоресцентное красящее вещество, выбранное из
Figure 00000010
Figure 00000011
Figure 00000012

Figure 00000013
Figure 00000014

Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
,
где R1 представляет собой линейный или разветвленный C1-C18 алкильный радикал, С48 циклоалкильный радикал, который может быть моно- или полизамещенным галогеном или линейным или разветвленным C1-C18 алкилом, или фенил или нафтил, где фенил и нафтил могут быть моно- или полизамещенными галогеном или линейным или разветвленным C1-C18 алкилом;
X означает заместители в орто- и/или пара-положении и представляет собой линейный или разветвленный C1-C18 алкил;
у представляет собой число от 0 до 3.
2. Осветительный прибор по п. 1, в котором матрица состоит из поликарбоната.
3. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель представляет собой соединение формулы VI, где R1 означает 2,6-диизопропилфенил и у равен 0.
4. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель представляет собой соединение формулы IV, где X означает изопропил в орто-положениях и у равен 2, и/или соединение формулы V, где X означает изопропил в орто-положениях и у равен 2.
5. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель выбран из N,N′-бис(2,6-диизопропилфенил)-1,7-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, N,N′-бис(2,6-диизопропилфенил)-1,6-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата), 3,9-дицианоперилен-4,10-бис(изобутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(изобутилкарбоксилата), моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты и их смесей.
6. Осветительный прибор по п. 5, в котором указанный, по меньшей мере, один органический флуоресцентный краситель выбран из N,N′-бис(2,6-диизопропилфенил)-1,7-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, N,N′-бис(2,6-диизопропилфенил)-1,6-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида и их смесей.
7. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель представляет собой смесь из 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата) и 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата) с соединением формулы VI, где R1 означает 2,6-диизопропилфенил и у равен 0.
8. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель представляет собой смесь из 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата) и 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата) с соединением формулы IV, где X означает изопропил в орто-положениях и у равен 2, и/или соединение формулы V, где X означает изопропил в орто-положениях и у равен 2.
9. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель представляет собой смесь из моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты с соединением формулы IV, где R1 означает 2,6-диизопропилфенил и у равен 0.
10. Осветительный прибор по п. 1 или 2, в котором указанный, по меньшей мере, один органический флуоресцентный краситель представляет собой смесь из моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты с соединением формулы IV, где X означает изопропил в орто-положениях и у равен 2, и/или соединение формулы V, где X означает изопропил в орто-положениях и у равен 2.
11. Конвертер цвета, содержащий, по меньшей мере, одно органическое флуоресцентное красящее вещество в матрице, состоящей по существу из полистирола или поликарбоната, где указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество выбрано из
Figure 00000019
Figure 00000020
Figure 00000021

Figure 00000022
Figure 00000023

Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
,
где R1 представляет собой линейный или разветвленный C1-C18 алкильный радикал, С48 циклоалкильный радикал, который может быть моно- или полизамещенным галогеном или линейным или разветвленным C1-C18 алкилом, или фенил или нафтил, где фенил и нафтил могут быть моно- или полизамещенными галогеном или линейным или разветвленным C1-C18 алкилом;
X означает заместители в орто- и/или пара-положении и представляет собой линейный или разветвленный C1-C18 алкил; у представляет собой число от 0 до 3.
12. Конвертер цвета по п. 11, в котором матрица состоит из поликарбоната.
13. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество представляет собой соединение формулы VI, где R1 означает 2,6-диизопропилфенил и у равен 0.
14. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество представляет собой соединение формулы IV, где X означает изопропил в орто-положениях и у равен 2, и/или соединение формулы V, где X означает изопропил в орто-положениях и у равен 2.
15. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество выбрано из N,N′-бис(2,6-диизопропилфенил)-1,7-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, N,N′-бис(2,6-диизопропилфенил)-1,6-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата), 3,9-дицианоперилен-4,10-бис(изобутилкарбоксилата), 3,10-дицианоперилен-4,9-бис(изобутилкарбоксилата), моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты и их смесей.
16. Конвертер цвета по п. 15, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество выбрано из N,N′-бис(2,6-диизопропилфенил)-1,7-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида, N,N′-бис(2,6-диизопропилфенил)-1,6-ди(2,6-диизопропилфенокси)перилен-3,4:9,10-тетракарбоксдиимида и их смеси.
17. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество представляет собой смесь из 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата) и 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата) с соединением формулы VI, где R1 означает 2,6-диизопропилфенил и у равен 0.
18. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество представляет собой смесь из 3,9-дицианоперилен-4,10-бис(втор-бутилкарбоксилата) и 3,10-дицианоперилен-4,9-бис(втор-бутилкарбоксилата) с соединением формулы IV, где X означает изопропил в орто-положениях и у равен 2, и/или соединение формулы V, где X означает изопропил в орто-положениях и у равен 2.
19. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество представляет собой смесь из моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты с соединением формулы IV, где R1 означает 2,6-диизопропилфенил и у равен 0.
20. Конвертер цвета по п. 11, в котором указанное, по меньшей мере, одно органическое флуоресцентное красящее вещество представляет собой смесь из моноимида N-(2,6-ди(изопропил)фенил)перилен-3,4-дикарбоновой кислоты с соединением формулы IV, где X означает изопропил в орто-положениях и у равен 2, и/или соединение формулы V, где X означает изопропил в орто-положениях и у равен 2.
21. Конвертер цвета по п. 11, в котором указанный, по меньшей мере, один органический флуоресцентный краситель присутствует в растворенной форме в матрице.
22. Конвертер цвета по п. 11, в котором конвертер дополнительно содержит, по меньшей мере, один неорганический белый пигмент в качестве рассеивающего тела.
23. Конвертер цвета по любому из пп. 11-22, в котором конвертер цвета представляет собой пленку, пластинку или лист.
24. Способ изготовления конвертера цвета по любому из пп. 11-23, включающий изготовление полимерной пленки, где органический флуоресцентный краситель растворяют в органическом растворителе вместе с материалом матрицы и обрабатывают в пленку путем удаления растворителя.
25. Способ изготовления конвертера цвета по п. 24, причем растворение органического флуоресцентного красителя проводят в присутствии рассеивающих частиц.
26. Способ изготовления конвертера цвета по любому из пп. 11-23, включающий экструзию и/или литье под давлением материала матрицы с по меньшей мере одним органическим флуоресцентным красителем.
27. Применение конвертера цвета по любому из пп. 11-23 для преобразования света, производимого СИДами.
28. Применение конвертера цвета по любому из пп. 11-23 в комбинации с по меньшей мере одним СИДом в структуре удаленного люминофора.
RU2013143030/05A 2011-02-24 2012-02-23 Новые осветительные приборы RU2601329C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161446139P 2011-02-24 2011-02-24
US61/446,139 2011-02-24
EP11155901.9 2011-02-24
EP11155901 2011-02-24
EP11165344.0 2011-05-09
EP11165344 2011-05-09
PCT/EP2012/053102 WO2012113884A1 (en) 2011-02-24 2012-02-23 Novel illumination devices

Publications (2)

Publication Number Publication Date
RU2013143030A RU2013143030A (ru) 2015-04-10
RU2601329C2 true RU2601329C2 (ru) 2016-11-10

Family

ID=46720121

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143030/05A RU2601329C2 (ru) 2011-02-24 2012-02-23 Новые осветительные приборы

Country Status (9)

Country Link
US (2) US9236535B2 (ru)
EP (1) EP2678403B1 (ru)
JP (2) JP6305063B2 (ru)
KR (1) KR101970021B1 (ru)
CN (1) CN103380192B (ru)
PL (1) PL2678403T3 (ru)
RU (1) RU2601329C2 (ru)
TW (1) TWI580758B (ru)
WO (1) WO2012113884A1 (ru)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601329C2 (ru) * 2011-02-24 2016-11-10 Басф Се Новые осветительные приборы
US9711665B2 (en) 2011-05-10 2017-07-18 Basf Se Color converters
DK2718395T3 (en) 2011-06-10 2018-06-06 Basf Se New lighting device that includes a color converter
US9385326B2 (en) 2013-01-15 2016-07-05 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
JP6456302B2 (ja) * 2013-02-11 2019-01-23 フィリップス ライティング ホールディング ビー ヴィ フェノキシ置換ペリレン−3,4,9,10−テトラカルボン酸ジイミド有機赤色放出体及びそれを用いた発光デバイス
WO2014122071A1 (en) 2013-02-11 2014-08-14 Koninklijke Philips N.V. Increasing the lifetime of an organic phosphor by using off-maximum excitation
CN105026519B (zh) 2013-03-01 2018-02-02 飞利浦照明控股有限公司 用于led照明的一类基于苯并氧杂蒽衍生物的发绿光/黄光磷光体
US9204598B2 (en) 2013-05-27 2015-12-08 Saudi Basic Indsutries Corporation Solar energy funneling using thermoplastics for agricultural applications
US9598632B2 (en) 2013-11-21 2017-03-21 Ford Global Technologies, Llc Method for depositing photoluminescent material
DE102014100837A1 (de) * 2014-01-24 2015-07-30 Osram Opto Semiconductors Gmbh Lichtemittierendes Bauelement und Verfahren zur Herstellung eines lichtemittierenden Bauelements
RU2016148230A (ru) * 2014-05-09 2018-06-13 Басф Се Цианированные периленовые соединения
TWI617659B (zh) * 2015-01-31 2018-03-11 Lg 化學股份有限公司 色彩轉換膜、其製造方法、背光單元和顯示設備
EP3072887B1 (en) 2015-03-26 2017-10-18 Basf Se N,n'-bis(2,6-diisopropylphenyl)-1,7-di(2,6-diphenylphenoxy)perylene-3,4;9,10-tetracarboximide, n,n'-bis(2,6-diisopropylphenyl)-1,6-di(2,6-diphenylphenoxy)perylene-3,4;9,10-tetracarboximide and the use thereof
EP3274334B1 (en) 2015-03-26 2019-07-10 Basf Se Cyanated benzoxanthene and benzothioxanthene compounds
CN112600063A (zh) * 2015-08-17 2021-04-02 无限关节内窥镜检查公司 集成光源
WO2017034370A1 (ko) * 2015-08-26 2017-03-02 욱성화학주식회사 페릴렌계 화합물, 이의 제조 방법, 및 이를 포함하는 형광 염료
WO2017087448A1 (en) 2015-11-16 2017-05-26 Infinite Arthroscopy Inc, Limited Wireless medical imaging system
CN108495898B (zh) * 2016-01-14 2020-10-27 巴斯夫欧洲公司 具有刚性2,2’-联苯氧基桥接的苝双酰亚胺
CA3022335A1 (en) 2016-04-27 2017-11-02 Basf Se Laminated lighting unit
KR101983694B1 (ko) * 2016-07-27 2019-05-29 삼성에스디아이 주식회사 신규한 화합물, 이를 포함하는 감광성 수지 조성물 및 컬러필터
EP3523303B1 (en) 2016-10-06 2020-09-23 Basf Se 2-phenylphenoxy-substituted perylene bisimide compounds and their use
WO2018108827A1 (en) 2016-12-12 2018-06-21 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Light emitting device
US11279829B2 (en) 2017-01-18 2022-03-22 Basf Se 1,6,7,12-tetra-(2-isopropylphenoxy)-substituted perylene tetracarboxylic acid diimides as color converters
WO2018141742A1 (en) 2017-02-03 2018-08-09 Basf Se Laminated glazing comprising a composite structure of laminated layers
CN110831488B (zh) 2017-02-15 2022-03-11 青金石控股有限责任公司 包括头单元和包含集成光源的光缆的无线医学成像系统
JP2020515890A (ja) * 2017-03-24 2020-05-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 色変換体のマトリックス材料としてのポリ(エチレンフラン−2,5−ジカルボキシレート)
JP7203830B2 (ja) * 2017-08-24 2023-01-13 ビーエーエスエフ ソシエタス・ヨーロピア データを送信するための、および可視スペクトル範囲内の電磁放射を放出するための送信機およびデータ送信システム
JP6481987B1 (ja) * 2018-01-24 2019-03-13 ベスパック株式会社 白色led光源用照明カバー及び製造方法
JPWO2019229840A1 (ja) * 2018-05-29 2021-04-30 株式会社ニューロシューティカルズ 眼内照明装置
KR102432808B1 (ko) * 2018-08-31 2022-08-16 동우 화인켐 주식회사 백색 수지 조성물, 이를 이용하여 제조된 백 라이트 유닛 및 상기 백 라이트 유닛을 포함하는 표시 장치
EP3941200A1 (en) 2019-03-22 2022-01-26 Basf Se Plant cultivation method
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1868419A1 (en) * 2005-03-29 2007-12-19 Idemitsu Kosan Co., Ltd. Red fluorescence conversion medium, color conversion substrate using same, and light-emitting device
RU2324106C2 (ru) * 2002-06-06 2008-05-10 Айлайт Текнолоджиз, Инк. Осветительное устройство для имитации неонового света с использованием флуоресцентных красителей
US7497072B2 (en) * 2006-04-21 2009-03-03 Igus Gmbh Energy guiding chain
DE102008057720A1 (de) * 2008-11-17 2010-05-20 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2205805C (en) * 1994-11-28 2005-08-09 David M. Burns Articles exhibiting durable color and/or fluorescent properties
JP3479062B2 (ja) 2001-10-31 2003-12-15 サンユレック株式会社 発光ダイオード
JP4048073B2 (ja) * 2002-03-29 2008-02-13 株式会社ファインラバー研究所 蛍光部材及びこれを用いた発光装置
DE10244706A1 (de) * 2002-09-24 2004-03-25 Röhm GmbH & Co. KG Formkörper aus Kunststoff, enthaltend einen Fluoreszenzfarbstoff
JP4636239B2 (ja) * 2003-12-26 2011-02-23 株式会社ファインラバー研究所 Led用蛍光組成物、led用蛍光部材及び半導体発光装置
FR2882059B1 (fr) * 2005-02-17 2007-03-23 Arkema Sa Objet moule presentant un effet multichromatique et dispositif lumineux associe
EP1863323A1 (en) 2005-03-22 2007-12-05 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device
KR20080007247A (ko) * 2005-05-12 2008-01-17 이데미쓰 고산 가부시키가이샤 색 변환 재료 조성물 및 이것을 포함하는 색 변환 매체
DE102005032583A1 (de) 2005-07-11 2007-01-25 Basf Ag Substituierte Rylenderivate
DE102005054591A1 (de) * 2005-11-14 2007-05-16 Roehm Gmbh Vorrichtung zur Beleuchtung mit blauen, grünen, gelben oder roten Leuchtdioden
WO2007122857A1 (ja) * 2006-03-23 2007-11-01 Idemitsu Kosan Co., Ltd. 発光装置
EP2130233A1 (en) * 2007-03-13 2009-12-09 Basf Se Photovoltaic modules with improved quantum efficiency
DE102007032280A1 (de) * 2007-06-08 2008-12-11 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
US20090078312A1 (en) 2007-09-18 2009-03-26 Basf Se Verfahren zur herstellung von mit rylentetracarbonsaeurediimiden beschichteten substraten
US7618157B1 (en) * 2008-06-25 2009-11-17 Osram Sylvania Inc. Tubular blue LED lamp with remote phosphor
EP2395941B1 (en) * 2009-02-11 2017-01-11 Nanyang Technological University Multi-layered surgical prosthesis
US9349924B2 (en) * 2009-03-19 2016-05-24 Koninklijke Phililps N.V. Illumination device with remote luminescent material
WO2010106478A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Color adjusting arrangement
AU2010252080A1 (en) 2009-05-26 2011-11-17 Basf Se Use of phthalocyanine compounds with aryl or hetaryl substituents in organic solar cells
US8724054B2 (en) * 2009-05-27 2014-05-13 Gary Wayne Jones High efficiency and long life optical spectrum conversion device and process
JP2010283282A (ja) 2009-06-08 2010-12-16 Nitto Denko Corp 波長変換シートの光学特性制御方法、波長変換シートの製造方法、カドミウムテルル系太陽電池用波長変換シートおよびカドミウムテルル系太陽電池
EP2443213B1 (en) 2009-06-18 2014-04-23 Basf Se Phenanthroazole compounds as hole transporting materials for electro luminescent devices
US20130109858A1 (en) * 2009-08-20 2013-05-02 Nitto Denko Corporation Method of synthesizing core-expanded perylene diimide dye and novel core-expanded perylene diimide dye
US9108998B2 (en) 2009-10-14 2015-08-18 Basf Se Dinuclear platinum-carbene complexes and the use thereof in OLEDs
KR101837095B1 (ko) 2009-10-28 2018-03-09 바스프 에스이 이종 리간드 카르벤 착체 및 유기 전자장치에서의 이의 용도
PL2513125T3 (pl) 2009-12-14 2015-04-30 Udc Ireland Ltd Kompleksy metali z ligandami diazabenzimidazolokarbenowymi i ich zastosowanie w OLED-ach
WO2011082961A2 (de) 2009-12-14 2011-07-14 Basf Se Verfahren zur herstellung von metallisierten oberflächen, metallisierte oberfläche und ihre verwendung
US8895651B2 (en) 2010-02-16 2014-11-25 Basf Se Composition for printing a seed layer and process for producing conductor tracks
US20110203649A1 (en) 2010-02-19 2011-08-25 Basf Se Use of indanthrene compounds in organic photovoltaics
US8637857B2 (en) 2010-04-06 2014-01-28 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US9359675B2 (en) 2010-04-22 2016-06-07 Basf Se Producing two-dimensional sandwich nanomaterials based on graphene
KR101805224B1 (ko) 2010-05-03 2017-12-05 바스프 에스이 저온 적용을 위한 컬러 필터
TWI562898B (en) 2010-05-14 2016-12-21 Basf Se Process for encapsulating metals and metal oxides with graphene and the use of these materials
US9577243B2 (en) 2010-05-28 2017-02-21 Sion Power Corporation Use of expanded graphite in lithium/sulphur batteries
JP5905454B2 (ja) 2010-06-14 2016-04-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 黒色二色性染料
US20110309344A1 (en) 2010-06-18 2011-12-22 Basf Se Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
US20110308592A1 (en) 2010-06-18 2011-12-22 Basf Se Use of substituted perylenes in organic solar cells
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
US9203037B2 (en) 2010-06-18 2015-12-01 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
US9067919B2 (en) 2010-07-08 2015-06-30 Basf Se Use of dibenzofurans and dibenzothiophenes substituted by nitrogen-bonded five-membered heterocyclic rings in organic electronics
EP2622042B1 (en) 2010-09-28 2016-12-14 Philips Lighting Holding B.V. Light-emitting arrangement with organic phosphor
US9079872B2 (en) 2010-10-07 2015-07-14 Basf Se Phenanthro[9, 10-B]furans for electronic applications
EP2487218A1 (en) 2011-02-09 2012-08-15 Koninklijke Philips Electronics N.V. Polymeric matrix with organic phosphor and manufactory thereof
RU2601329C2 (ru) * 2011-02-24 2016-11-10 Басф Се Новые осветительные приборы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2324106C2 (ru) * 2002-06-06 2008-05-10 Айлайт Текнолоджиз, Инк. Осветительное устройство для имитации неонового света с использованием флуоресцентных красителей
EP1868419A1 (en) * 2005-03-29 2007-12-19 Idemitsu Kosan Co., Ltd. Red fluorescence conversion medium, color conversion substrate using same, and light-emitting device
US7497072B2 (en) * 2006-04-21 2009-03-03 Igus Gmbh Energy guiding chain
DE102008057720A1 (de) * 2008-11-17 2010-05-20 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung

Also Published As

Publication number Publication date
US20160084477A1 (en) 2016-03-24
US9236535B2 (en) 2016-01-12
WO2012113884A1 (en) 2012-08-30
JP2017058701A (ja) 2017-03-23
KR20140009361A (ko) 2014-01-22
CN103380192B (zh) 2016-04-20
CN103380192A (zh) 2013-10-30
JP6305063B2 (ja) 2018-04-04
EP2678403A1 (en) 2014-01-01
TW201239065A (en) 2012-10-01
KR101970021B1 (ko) 2019-04-17
RU2013143030A (ru) 2015-04-10
JP2014514684A (ja) 2014-06-19
JP6521937B2 (ja) 2019-05-29
TWI580758B (zh) 2017-05-01
PL2678403T3 (pl) 2016-08-31
US20130334546A1 (en) 2013-12-19
EP2678403B1 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
RU2601329C2 (ru) Новые осветительные приборы
KR102047789B1 (ko) 신규 색 변환기
CN103619987B (zh) 颜色转换器
JP7065882B2 (ja) シアノアリール置換ナフトイレンベンゾイミダゾール化合物をベースとする蛍光着色剤
RU2508616C2 (ru) Осветительное устройство с сид и одним или более пропускающими окнами
JP2016200823A (ja) 波長変換部材及び発光装置の作製方法
RU2455335C2 (ru) Фотолюминофор желто-оранжевого свечения и светодиод на его основе
TW201448264A (zh) 發光裝置
JP2021507901A (ja) シアノアリール置換ベンゾ(チオ)キサンテン化合物
US20190376652A1 (en) Photo Luminescent Lighting Device
JP2021518677A (ja) 黄色発光素子
US12031861B2 (en) Light conversion device with high uniformity
TW201300704A (zh) 發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具

Legal Events

Date Code Title Description
HC9A Changing information about inventors
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170224

NF4A Reinstatement of patent

Effective date: 20171020