[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2679857C1 - Способ нанесения высокотемпературного покрытия на режущий инструмент - Google Patents

Способ нанесения высокотемпературного покрытия на режущий инструмент Download PDF

Info

Publication number
RU2679857C1
RU2679857C1 RU2018102158A RU2018102158A RU2679857C1 RU 2679857 C1 RU2679857 C1 RU 2679857C1 RU 2018102158 A RU2018102158 A RU 2018102158A RU 2018102158 A RU2018102158 A RU 2018102158A RU 2679857 C1 RU2679857 C1 RU 2679857C1
Authority
RU
Russia
Prior art keywords
coating
nitrides
cutting tool
applying
thickness
Prior art date
Application number
RU2018102158A
Other languages
English (en)
Inventor
Андрей Александрович КУЖНЕНКОВ
Вячеслав Зиновьевич МОНАСТЫРСКИЙ
Александр Иванович Пьянов
Original Assignee
Общество с ограниченной ответственностью "ВПТ-НН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ВПТ-НН" filed Critical Общество с ограниченной ответственностью "ВПТ-НН"
Priority to RU2018102158A priority Critical patent/RU2679857C1/ru
Application granted granted Critical
Publication of RU2679857C1 publication Critical patent/RU2679857C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к области металлообработки, а именно к способам нанесения износостойких высокотемпературных покрытий на режущий инструмент из быстрорежущей стали или твердого сплава. Способ нанесения высокотемпературного покрытия на режущий инструмент включает нанесение на поверхность режущего инструмента в камере ионно-плазменной установки тугоплавкого слоя из нитридов металлов и проведение микродугового оксидирования. Упомянутый тугоплавкий слой наносят толщиной 1-12 мкм из нитридов металлов, выбранных из группы, включающей Al, Ti, Nb, Та, Zr, Cr, Hf, V и их сочетания. Затем проводят упомянутое микродуговое оксидирование при температуре обработки нитридного покрытия на поверхности инструмента в диапазоне 1000-5000°С для замещения упомянутых нитридов на оксид выбранного металла, содержащегося в замещенных нитридах, при обеспечении толщины оксидного слоя в пределах 0,2-4,0 мкм. Обеспечивается повышение работоспособности режущего инструмента и его качества. 1 з.п. ф-лы, 2 табл., 1 пр.

Description

Изобретение относится к области металлообработки, а именно, к способам нанесения износостойких высокотемпературных покрытий на инструмент, а именно, на режущий инструмент из быстрорежущей стали или твердого сплава, в том числе на инструмент для железнодорожного транспорта.
Известен способ получения износостойкого покрытия для режущего инструмента, описанный в патенте РФ №2494171, С23С 14/24, С23С 14/06, В23В 27/14 2013 г. Способ включает вакуумное ионно-плазменное нанесение износостойкого покрытия. Нижний слой наносят из нитрида соединения титана, алюминия и циркония при их соотношении, мас. %: титан 71,0-78,3, алюминий 6,7-10,0, цирконий 15,0-19,0. Затем наносят промежуточный слой из карбонитрида соединения титана, алюминия и циркония при их соотношении, мас. %: титан 71,0-78,3, алюминий 6,7-10,0, цирконий 15,0-19,0 и верхний из нитрида соединения титана и алюминия при их соотношении, мас. %: титан 85,0-90,0, алюминий 10,0-15,0. Слои покрытия наносят расположенными горизонтально в одной плоскости тремя катодами. Первый и второй катоды выполняют составными из титана и алюминия и располагают противоположно друг другу, а третий изготавливают составным из титана и циркония и располагают между ними. Нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов. Недостатком данного метода является низкая стойкость, в связи с окислением нитрида титана при температурах, менее 900°С и снижением твердости покрытия.
Известен способ получения износостойкого покрытия, патент РФ №2494172, С23С 14/24, С23С 14/06, 2013 г. Способ включает вакуумное ионно-плазменное нанесение покрытия на основе сложного нитрида металлов с помощью нескольких дуговых испарителей. Нанесение покрытия осуществляют в среде азотокислородной смеси с содержанием кислорода 1÷3 масс. % при давлении 0,07÷0,45 Па с использованием по меньшей мере двух дуговых испарителей, один из которых содержит гафниевый или циркониевый катод, остальные титановые. На поверхности обрабатываемого инструмента образуется покрытие из нитридов титана и гафния (Ti,Hf)N или циркония (Ti,Zr)N, в объеме которого случайно расположены наноразмерные частицы оксидов гафния или циркония. В процессе осаждения покрытия в среде азотокислородной смеси в первую очередь образуются кристаллы HfO2 или ZrO2. Оптимальный диапазон содержания кислорода в реакционной газовой смеси - 1÷3 масс. %. Покрытие обладает высокой твердостью, превышающей почти в 2 раза твердость покрытия из нитридов титана и циркония или гафния.
Недостатком данного покрытия является его низкая работоспособность при высоких температурах резания (1000°С-1200°С). Это связано с тем, что наноразмерные частицы оксидов гафния или циркония в покрытии расположены случайно и не образуют сплошного слоя, кроме того покрытие не защищает поверхность материала основы от окисления при действии высоких температур.
В качестве прототипа выбран способ нанесения покрытия на режущий инструмент (RU 2615941 С1, МПК С23С 28/00, 11.04.2017). Способ включает нанесение на поверхность режущего инструмента в камере ионно-плазменной установки тугоплавкого барьерного слоя из нитридов металлов, с дальнейшим нанесением на этот нитрид слоя из «чистого», не связанного алюминия. На другой установке методом МДО (микродугового оксидирования) «чистый» алюминий окисляют до образования оксидов метастабильных(γ-,θ-,η-, Al2O3) и стабильных (α- Al2O3) модификаций. Нитридный слой толщиной~5 мкм, служит для минимизации проникновения жидкого алюминия к твердосплавной основе, исключения взаимодействия кобальта с алюминием и охрупчивания при меньших толщинах всей композиции. Окисление нитридного слоя в аналоге не предусматривается. Слой «чистого» алюминия толщиной 4-21 мкм оксидируется. При толщине «чистого» алюминия ниже 4 мкм невозможно получить α, γ-Al2O3 модификации. Таким образом, общая толщина покрытия получается ~9-25 мкм.
Недостатком данного способа является низкая стойкость покрытого инструмента из-за сколов покрытия указанной толщины при ударах на прерывистом резании (фрезеровании) и точении при тяжелых режимах резания (по ползунам, трещинам, неоднородной твердости в пределах детали) при обработке колесных пар и осей железнодорожного транспорта режущими пластинами типа LNMX301940, LNMX191940, RPUX 3010М0, RCMX3010M0, SNMM250724 и др. Кроме того, к недостаткам аналога можно отнести высокую себестоимость нанесения покрытия.
Сущность предлагаемого изобретения заключается в том, что на поверхность инструмента наносится нитридное покрытие из материалов группы Al, Ti, Nb, Та, Zr, Cr, Hf, V, Si, так и в их сочетании, толщиной 2-12 мкм. Далее методом МДО осуществляют процесс окисления нитрида(нитридов), их замещение на о оксинитриды и далее на оксиды наносимых материалов, или их комбинации. В отличие от аналога, в разработанном покрытии «чистый» металл (например, алюминий или титан) не наносится, а окисляется нитрид этого металла находящегося в предварительно нанесенном покрытии. Температура в зоне разряда при обработке нитридного покрытия на поверхности инструмента методом МДО, в зависимости от режимов окисления достигает диапазона 1000°-5000°С, этой температуры достаточно для замещения нитрида на оксид металла (обычно в печи-500°С-2000°С). Толщина оксидного и оксинитридного слоя определяется режимами работы установки и временем оксидирования и достигает 0,2-4,0 мкм. На поверхности инструмента по одной из химических реакций замещения, например, нитрида алюминия:
Figure 00000001
образуется сплошной слой Al203 с выделением окисла азота. Полученный сплошной слой Al203 обладает высокой теплостойкостью, инертностью к обрабатываемому материалу, защищает нижележащие слои покрытия от окисления.
Аналогичный эффект происходит и с другими нитридами материалов (Ti, Nb, Та, Zr, Cr, Hf, V, Si, так и в их сочетании) при окислении посредством метода МДО.
Технический результат состоит в повышении работоспособности режущего инструмента и его качества. Режущий инструмент содержит материал основы, с нанесенным износостойким покрытием, состоящим, по меньшей мере, из двух-трех слоев. На первом этапе, на установке PVD, на поверхность пластины наносят покрытие из нитридов металлов, как выбранных из группы Al, Ti, Nb, Ta, Zr, Cr, Hf, V, Si, так и в их сочетании. На втором этапе, в установке микродугового оксидирования (МДО) проводят процесс окисления с частичным замещением нитридов на оксиды. По мере получения методом МДО, оксид диффундирует к внешней границе покрытия, образуя сплошной оксидный слой, обладающий высокой теплостойкостью, инертностью к обрабатываемому материалу, защищает нижележащие слои покрытия от окисления.
Пример реализации предлагаемого способа
На первом этапе создания покрытия твердосплавные пластины марки МС221, формо-размера CNMG120408 промывают в ультразвуковой ванне, протирают спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Ионно-плазменной камерной вакуумной ННВ-6.6-И1» типа «Булат», снабженной тремя испарителями, расположенными горизонтально в одной плоскости. Камеру откачивают до давления 1,5-2×10-5 мм.рт.ст., подают аргон до давления 1,5-2×10-3 мм.рт.ст., включают поворотное устройство, подают на него отрицательное напряжение 1000-1100 В, включают один испаритель (катод) из титана марки ВТ1 при токе дуги 130 А, производят ионную очистку и нагрев пластин до температуры 750-800 ОС в течение 10-15 мин. Затем снижают отрицательное напряжение до 120 В, включают два противоположных испарителя (катода) - из алюминия, подают в камеру реакционный газ - азот и осаждают покрытие толщиной от 1-14 мкм в течение 10-180 мин при давлении газа 3×10-3 мм.рт.ст. Температура конденсации при этом составляет 450-500°С. Затем выключают испарители, подачу реакционного газа и вращение поворотного приспособления, осуществляют остывание пластин в течение 45-50 мин.
На втором этапе получают на пластинах слой α-Al2O3 на установке микродугового оксидирования.
Для этого образцы с нанесенным на него нитридным покрытием устанавливают на токопроводящую оснастку, которую подключают к источнику тока.
В ванну заливают щелочной электролит, включают мешалку, которая его перемешивает. Для охлаждения электролита по контуру ванны пускают холодную воду. Ванну, являющуюся катодом, подключают к источнику тока.
Образцы на оснастке опускают в электролит. Плотность тока составила 17А/дм2. Время оксидирования 5- 60 мин. По окончании процесса оксидирования образцы достают из ванны, промывают и сушат в сушильном шкафу.
Стойкостные испытания проводили на токарно-винторезном станке 16К20. В качестве обрабатываемого материала использовалась конструкционная Сталь 50. Режимы резания: V=200 м/мин, S=0,2 мм/об, t=1,0 мм. Проводили испытания твердосплавных пластин CNMG120408-R4 марки МС221, с нанесенным по предлагаемому способу покрытием. За критерий затупления принимался износ по задней грани шириной 0,5 мм.
Figure 00000002
Из приведенных в табл.данных следует, что стойкость пластин с общей толщиной покрытия 2-12 мкм, и оксидным слоем 0,2-4,0 мкм обработанных по предлагаемому способу, выше стойкости серийных пластин с покрытием (AlTi)N.
Обработка колесных пар железнодорожного вагонов, проводилась на на колесо-токарном станке 1836М10 на следующих режимах резания: V=35 м/мин, S=1,2 мм/об, t=10,0 мм. Проводили испытания твердосплавных пластин LNMX301940 марки VT430 с нанесенным по предлагаемому способу покрытием (параметры покрытия соответствуют п. 4; п. 5; п. 2 таблицы 1.), по сравнению с пластинами LNMX301940 марки GC4025 фирмы «Sandvik Coromant» (Швеция) и инструмента с серийно применяемым покрытием AlTiN. Результаты испытаний сведены в табл. 2
Figure 00000003
Как следует из анализа результатов испытаний, стойкость инструмента с разработанным покрытием с общей толщиной 2-12 мкм, и оксидным слоем 0,2-4,0 мкм выше, чем стойкость инструмента, изготовленного фирмой «Sandvik Coromant» (Швеция) и отечественного серийного покрытия AlTiN. Стойкость инструмента полученным методом замещения по предлагаемому способу, выше стойкости пластин с покрытием, полученным оксидированием «чистого» алюминия из-за сколов последнего.

Claims (2)

1. Способ нанесения высокотемпературного покрытия на режущий инструмент, включающий нанесение на поверхность режущего инструмента в камере ионно-плазменной установки тугоплавкого слоя из нитридов металлов и проведение микродугового оксидирования, отличающийся тем, что упомянутый тугоплавкий слой наносят толщиной 1-12 мкм из нитридов металлов, выбранных из группы, включающей Al, Ti, Nb, Та, Zr, Cr, Hf, V и их сочетания, после чего проводят упомянутое микродуговое оксидирование при температуре обработки нитридного покрытия на поверхности инструмента в диапазоне 1000-5000°С для замещения упомянутых нитридов на оксид выбранного металла, содержащегося в замещенных нитридах, при обеспечении толщины оксидного слоя в пределах 0,2-4,0 мкм.
2. Способ по п. 1, отличающийся тем, что упомянутое покрытие наносят на режущий инструмент из быстрорежущей стали или твердого сплава.
RU2018102158A 2018-01-19 2018-01-19 Способ нанесения высокотемпературного покрытия на режущий инструмент RU2679857C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018102158A RU2679857C1 (ru) 2018-01-19 2018-01-19 Способ нанесения высокотемпературного покрытия на режущий инструмент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018102158A RU2679857C1 (ru) 2018-01-19 2018-01-19 Способ нанесения высокотемпературного покрытия на режущий инструмент

Publications (1)

Publication Number Publication Date
RU2679857C1 true RU2679857C1 (ru) 2019-02-13

Family

ID=65442631

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018102158A RU2679857C1 (ru) 2018-01-19 2018-01-19 Способ нанесения высокотемпературного покрытия на режущий инструмент

Country Status (1)

Country Link
RU (1) RU2679857C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781583C1 (ru) * 2021-12-27 2022-10-14 Общество с ограниченной ответственностью "Новые Технологии Покрытий" Способ нанесения покрытия на металлорежущий инструмент

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1680799A1 (ru) * 1988-08-26 1991-09-30 Научно-Производственное Объединение Технологии И Оборудования Защитных Покрытий В Автомобильной Промышленности Износостойкое многослойное покрытие
US6723391B2 (en) * 1998-02-17 2004-04-20 Unaxis Balzers Ag Method for producing cutting tools
US6827976B2 (en) * 1998-04-29 2004-12-07 Unaxis Trading Ag Method to increase wear resistance of a tool or other machine component
RU2615941C1 (ru) * 2015-12-21 2017-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ нанесения покрытий на твердые сплавы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1680799A1 (ru) * 1988-08-26 1991-09-30 Научно-Производственное Объединение Технологии И Оборудования Защитных Покрытий В Автомобильной Промышленности Износостойкое многослойное покрытие
US6723391B2 (en) * 1998-02-17 2004-04-20 Unaxis Balzers Ag Method for producing cutting tools
US6827976B2 (en) * 1998-04-29 2004-12-07 Unaxis Trading Ag Method to increase wear resistance of a tool or other machine component
RU2615941C1 (ru) * 2015-12-21 2017-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ нанесения покрытий на твердые сплавы

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781583C1 (ru) * 2021-12-27 2022-10-14 Общество с ограниченной ответственностью "Новые Технологии Покрытий" Способ нанесения покрытия на металлорежущий инструмент

Similar Documents

Publication Publication Date Title
CN1470350B (zh) 被覆工具
KR100653001B1 (ko) 절삭공구용 경질피막, 경질피막 피복 절삭공구, 경질피막의제조방법 및 경질피막 형성용 타겟
RU2542185C2 (ru) Режущий инструмент с покрытием
CN108883481B (zh) 包覆切削工具
JP4824173B2 (ja) Pvd被膜切削工具およびその製造方法
JP4018480B2 (ja) 被覆硬質工具
JP5061394B2 (ja) 表面被覆切削工具
US20100135738A1 (en) coated cutting tool and a method of making thereof
IL172557A (en) Surface-coated cutting tool
JP5730535B2 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
FR2599285A1 (fr) Revetement resistant a l'usure pour outils de coupe et procede d'application dudit revetement.
US20180119271A1 (en) Coated cutting tool and a method for coating the cutting tool
JP4405835B2 (ja) 表面被覆切削工具
JP3914686B2 (ja) 切削工具とその製造方法
JP2009061540A (ja) 非晶質炭素膜被覆工具
JP2004042193A (ja) 被覆切削工具
KR101170396B1 (ko) 경질 피막 및 그 제조 방법
RU2679857C1 (ru) Способ нанесения высокотемпературного покрытия на режущий инструмент
JP2005262389A (ja) チタン合金加工用表面被覆切削工具
JPWO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
JP3950385B2 (ja) 表面被覆切削工具
JP2009101490A (ja) 高速切削加工で硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具
JP2009101474A (ja) 高速切削加工で硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具
JP2006026783A (ja) 表面被覆切削工具
RU2191220C2 (ru) Износостойкое покрытие