KR102563425B1 - 반도체 장치의 제조 방법 - Google Patents
반도체 장치의 제조 방법 Download PDFInfo
- Publication number
- KR102563425B1 KR102563425B1 KR1020180034920A KR20180034920A KR102563425B1 KR 102563425 B1 KR102563425 B1 KR 102563425B1 KR 1020180034920 A KR1020180034920 A KR 1020180034920A KR 20180034920 A KR20180034920 A KR 20180034920A KR 102563425 B1 KR102563425 B1 KR 102563425B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- oxide film
- hafnium oxide
- semiconductor device
- manufacturing
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims description 55
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 239000013078 crystal Substances 0.000 claims abstract description 91
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 37
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 37
- 238000000151 deposition Methods 0.000 claims abstract description 22
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 18
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 15
- 239000004020 conductor Substances 0.000 claims description 83
- 238000010438 heat treatment Methods 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 57
- 239000003990 capacitor Substances 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 8
- 238000004544 sputter deposition Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 2
- 229910000449 hafnium oxide Inorganic materials 0.000 abstract description 177
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 abstract description 176
- 230000005621 ferroelectricity Effects 0.000 abstract description 32
- 239000012535 impurity Substances 0.000 abstract description 27
- 230000005476 size effect Effects 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000011229 interlayer Substances 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 238000005240 physical vapour deposition Methods 0.000 description 10
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004151 rapid thermal annealing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
- H10B53/30—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
- H01L29/4011—Multistep manufacturing processes for data storage electrodes
- H01L29/40111—Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02181—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02189—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02197—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02356—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/516—Insulating materials associated therewith with at least one ferroelectric layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6684—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B51/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
- H10B51/30—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/78391—Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
- Formation Of Insulating Films (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
[과제] Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막의 강유전성을 발현시킨다.
[해결수단] 반도체 기판(1S)상에 절연막(2)을 통하여 산화하프늄막(3)을 퇴적한 후, 반도체 기판(1S)에 대하여 마이크로파(MW)를 조사하여 산화하프늄막(3)을 선택적으로 가열한다. 이에 의해, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)에 Si 등과 같은 불순물을 첨가하지 않아도, 산화하프늄막(3)의 강유전성을 발현시킬 수 있다. 즉, 역 사이즈 효과를 가지는 산화하프늄막(3)을 강유전체 메모리 셀의 강유전체막으로서 사용할 수 있으므로, 강유전체 메모리 셀의 미세화를 실현할 수 있다.
[해결수단] 반도체 기판(1S)상에 절연막(2)을 통하여 산화하프늄막(3)을 퇴적한 후, 반도체 기판(1S)에 대하여 마이크로파(MW)를 조사하여 산화하프늄막(3)을 선택적으로 가열한다. 이에 의해, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)에 Si 등과 같은 불순물을 첨가하지 않아도, 산화하프늄막(3)의 강유전성을 발현시킬 수 있다. 즉, 역 사이즈 효과를 가지는 산화하프늄막(3)을 강유전체 메모리 셀의 강유전체막으로서 사용할 수 있으므로, 강유전체 메모리 셀의 미세화를 실현할 수 있다.
Description
본 발명은, 반도체 장치의 제조 방법에 관하여, 예를 들면, 하프늄(Hf) 및 지르코늄(Zr)의 적어도 한쪽과 산소(O)를 주성분으로 하는 금속 산화막을 강(强)유전체막으로서 이용하는 반도체 장치의 제조 기술에 관한 것이다.
예를 들면, 특허문헌 1에는, 강유전체 메모리 셀을 가지는 집적회로의 제법이 기재되고, 산화하프늄, 산화지르코늄 또는 Hf와 Zr의 혼합 산화물을 포함하는 아몰퍼스(amorphous)층을 퇴적하고, 그 위에, 유전체, 도체의 산화물 또는 금속을 포함하는 피복층을 퇴적한 후, 아몰퍼스층을 가열하여 결정화하는 기술이 개시되어 있다. 또한, 이 특허문헌 1에는, 아몰퍼스층에 실리콘 등을 첨가함으로써, 강유전성을 가지는 상태로 결정화할 수 있는 것이 기재되어 있다.
그런데, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막은, 얇게 해도 강유전성을 나타내는 점에서, 이 금속 산화막을 강유전체 메모리 등의 강유전체막으로서 이용함으로써 강유전체 메모리를 미세화할 수 있다. 이 때문에, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막의 강유전성을 발현시키는 것이 요구되고 있다.
그 밖의 과제와 신규 특징은, 본 명세서의 기술 및 첨부 도면으로부터 명백해질 것이다.
일 실시 형태에 있어서의 반도체 장치의 제조 방법에서는, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막을 반도체 기판상에 퇴적한 후, 상기 금속 산화막을 마이크로파로 선택적으로 가열하는 공정을 가진다.
또한, 일 실시 형태에 있어서의 반도체 장치의 제조 방법에서는, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막을 반도체 기판상에 퇴적하고, 상기 금속 산화막상에 도체막을 퇴적한 후, 상기 금속 산화막을 마이크로파로 선택적으로 가열하는 공정을 가진다.
또한, 일 실시 형태에 있어서의 반도체 장치의 제조 방법에서는, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막을 제1 도체막상에 퇴적한 후, 상기 금속 산화막을 마이크로파로 선택적으로 가열하는 공정을 가진다.
또한, 일 실시 형태에 있어서의 반도체 장치의 제조 방법에서는, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막을 제1 도체막상에 퇴적하고, 상기 금속 산화막상에 제2 도체막을 퇴적한 후, 상기 금속 산화막을 마이크로파로 선택적으로 가열하는 공정을 가진다.
일 실시 형태에 의하면, Hf 및 Zr의 적어도 한쪽과 O를 주성분으로 하는 금속 산화막의 강유전성을 발현시킬 수 있다.
[도 1] 산화하프늄막의 성막 공정 중의 반도체 기판의 요부 단면도이다.
[도 2] 산화하프늄막에 대한 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 3] 마이크로파에 의한 가열 처리 후에 있어서의 산화하프늄막의 결정의 해석 결과를 나타내는 그래프도이다.
[도 4] 산화하프늄막상에 캡 도체막을 퇴적한 후의 반도체 기판의 요부 단면도이다.
[도 5] 도 4의 캡 도체막의 퇴적 공정 후에 산화하프늄막에 대하여 마이크로파 가열을 한창 실시하고 있는 중의 반도체 기판의 요부 단면도이다.
[도 6] 캡 도체막이 있는 경우와 없는 경우에서 마이크로파 가열 후에 있어서의 산화하프늄막의 결정의 해석 결과를 비교하여 나타내는 그래프도이다.
[도 7] 마이크로파 가열 후에 있어서의 산화하프늄막 결정 중의 사방정(Orthorhombic crystals)의 X선 강도를 가열 조건(온도 및 시간)마다 나타내는 그래프도이다.
[도 8] 마이크로파 가열 후에 있어서의 산화하프늄막의 결정의 X선 피크 강도와 가열 온도의 관계를 나타내는 그래프도이다.
[도 9] 캡 도체막을 PVD법으로 퇴적한 경우의 산화하프늄막의 결정의 X선 피크 강도를 나타내는 그래프도이다.
[도 10] 캡 도체막을 CVD법으로 퇴적한 경우의 산화하프늄막의 결정의 X선 피크 강도를 나타내는 그래프도이다.
[도 11] 마이크로파 가열 후에 있어서의 산화하프늄막의 결정 중의 사방정의 X선 강도를 조건(가열 온도, 가열 시간 및 캡 도체막의 퇴적 방법)마다 나타내는 그래프도이다.
[도 12] 실시 형태 1의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 13] 도 12 이후의 반도체 장치의 제조 공정의 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 14] 도 13 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 15] 도 14 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 16] 실시 형태 1의 반도체 장치의 제조 공정의 마이크로파 가열 공정에서 사용한 마이크로파 가열 장치의 일례의 구성도이다.
[도 17] 실시 형태 2의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 18] 도 17 이후의 반도체 장치의 제조 공정인 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 19] 도 18 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 20] 도 19 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 21] 실시 형태 3의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 22] 도 21 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 23] 도 22 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 24] 도 23 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 25] 도 24 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 26] 도 25 이후의 반도체 장치의 제조 공정인 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 27] 도 26 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 28] 도 27 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 29] 도 28 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 30] 도 29 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 2] 산화하프늄막에 대한 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 3] 마이크로파에 의한 가열 처리 후에 있어서의 산화하프늄막의 결정의 해석 결과를 나타내는 그래프도이다.
[도 4] 산화하프늄막상에 캡 도체막을 퇴적한 후의 반도체 기판의 요부 단면도이다.
[도 5] 도 4의 캡 도체막의 퇴적 공정 후에 산화하프늄막에 대하여 마이크로파 가열을 한창 실시하고 있는 중의 반도체 기판의 요부 단면도이다.
[도 6] 캡 도체막이 있는 경우와 없는 경우에서 마이크로파 가열 후에 있어서의 산화하프늄막의 결정의 해석 결과를 비교하여 나타내는 그래프도이다.
[도 7] 마이크로파 가열 후에 있어서의 산화하프늄막 결정 중의 사방정(Orthorhombic crystals)의 X선 강도를 가열 조건(온도 및 시간)마다 나타내는 그래프도이다.
[도 8] 마이크로파 가열 후에 있어서의 산화하프늄막의 결정의 X선 피크 강도와 가열 온도의 관계를 나타내는 그래프도이다.
[도 9] 캡 도체막을 PVD법으로 퇴적한 경우의 산화하프늄막의 결정의 X선 피크 강도를 나타내는 그래프도이다.
[도 10] 캡 도체막을 CVD법으로 퇴적한 경우의 산화하프늄막의 결정의 X선 피크 강도를 나타내는 그래프도이다.
[도 11] 마이크로파 가열 후에 있어서의 산화하프늄막의 결정 중의 사방정의 X선 강도를 조건(가열 온도, 가열 시간 및 캡 도체막의 퇴적 방법)마다 나타내는 그래프도이다.
[도 12] 실시 형태 1의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 13] 도 12 이후의 반도체 장치의 제조 공정의 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 14] 도 13 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 15] 도 14 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 16] 실시 형태 1의 반도체 장치의 제조 공정의 마이크로파 가열 공정에서 사용한 마이크로파 가열 장치의 일례의 구성도이다.
[도 17] 실시 형태 2의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 18] 도 17 이후의 반도체 장치의 제조 공정인 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 19] 도 18 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 20] 도 19 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 21] 실시 형태 3의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 22] 도 21 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 23] 도 22 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 24] 도 23 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 25] 도 24 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 26] 도 25 이후의 반도체 장치의 제조 공정인 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다.
[도 27] 도 26 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 28] 도 27 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 29] 도 28 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
[도 30] 도 29 이후의 반도체 장치의 제조 공정 중의 반도체 기판의 요부 단면도이다.
이하의 실시 형태에 있어서는 편의상 그 필요가 있을 때는, 복수의 섹션 또는 실시 형태로 분할하여 설명하지만, 특별히 명시한 경우를 제외하고, 그들은 서로 무관계한 것은 아니고, 한쪽은 다른 쪽의 일부 또는 전부의 변형예, 상세, 보충 설명 등의 관계에 있다.
또한, 이하의 실시 형태에 있어서, 요소의 수 등(개수, 수치, 양, 범위 등을 포함한다)을 언급하는 경우, 특별히 명시한 경우 및 원리적으로 명백하게 특정의 수로 한정되는 경우 등을 제외하고, 그 특정의 수로 한정되는 것은 아니며, 특정의 수 이상이어도 이하이어도 된다.
또한, 이하의 실시 형태에 있어서, 그 구성 요소(요소 스텝 등도 포함한다)는, 특별히 명시한 경우 및 원리적으로 명백하게 필수라고 생각되는 경우 등을 제외하고, 반드시 필수의 것은 아닌 점은 말할 필요도 없다.
마찬가지로, 이하의 실시 형태에 있어서, 구성 요소 등의 형상, 위치 관계 등을 언급할 때는, 특별히 명시한 경우 및 원리적으로 명백하게 그렇지 않다고 생각되는 경우 등을 제외하고, 실질적으로 그 형상 등에 근사 또는 유사한 것 등을 포함하는 것으로 한다. 이것은, 상기 수치 및 범위에 관해서도 동일하다.
또한, 실시 형태를 설명하기 위한 전체 도면에 있어서, 동일한 부재에는 원칙으로서 동일한 부호를 부여하고, 그 반복 설명은 생략한다. 또한, 도면을 알기 쉽게 하기 위해 평면도이어도 해칭((hatching)을 표현한 경우가 있다.
<발명자의 연구 결과>
산화하프늄(HfOx)막은, 얇게 해도 강유전성을 나타내는 역(逆) 사이즈 효과를 가지므로, 이 산화막을 강유전체 메모리 등의 강유전체막으로서 사용함으로써 강유전체 메모리 등의 미세화를 실현할 수 있다. 이 때문에, 산화하프늄막의 강유전성을 발현시키는 것이 요구되고 있다.
산화하프늄막이 강유전성을 발현하기 위해서는 사방정(직방정)으로 불리는 결정상을 형성할 필요가 있다. 그러나, 사방정(Orthorhombic)은 준(準)안정상이며, 불안정하다. 이 때문에, 성막 후의 아몰퍼스상(相) 상태의 산화하프늄막에, 예를 들면, RTA(Rapid Thermal Annealing) 또는 FA(Furnace) 등으로 열처리(∼800℃)를 실시하면, 단사정(Monoclinic)이 형성되어 버린다. 그래서, 산화하프늄막에 실리콘(Si) 등과 같은 불순물을 미량으로 첨가하여 상기 열처리를 실시하면, 사방정이 형성되기 쉬워지는 것이 보고되어 있다. 그러나, 실제로는, RTA나 FA 등에서는 사방정을 형성하는 것이 어렵고, 고온으로 열처리하면 단사정이 형성되어 버린다.
그래서, 본 발명자는, 성막 후의 아몰퍼스상 상태의 산화하프늄막을 전자파(RF:Radio Frequency)로 가열하는 것에 관하여 검토했다. 그 결과, 성막 후의 아몰퍼스상 상태의 산화하프늄막을, 예를 들면, 2.45GHz의 마이크로파로 선택적으로 가열함으로써, 산화하프늄막에 실리콘 등과 같은 불순물을 첨가하지 않아도, 산화하프늄막의 결정 중에 사방정이 형성되는 것을 처음으로 발견했다. 이 연구 결과 에 관하여 도면을 참조하여 설명한다.
도 1은 산화하프늄막의 성막 공정 중의 반도체 기판의 요부 단면도, 도 2는 산화하프늄막에 대한 마이크로파 가열 처리 중의 반도체 기판의 요부 단면도이다. 우선, 도 1에 나타내듯이, 예를 들면, 단결정 실리콘(Si)으로 이루어지는 반도체 기판(이하, 단지 기판이라 한다)(1S)에 열산화 처리를 실시하여, 기판(1S)의 주면(主面)상에, 예를 들면, 산화실리콘막으로 이루어지는 절연막(제1 절연막)(2)을 형성한다. 절연막(2)의 두께는, 예를 들면, 1∼3nm 정도이다.
이어서, 절연막(2)상에, 예를 들면, 하프늄(Hf)과 산소(O)를 주성분으로 하는 산화하프늄막(금속 산화막)(3)을 ALD(Atomic Layer Deposition)법 등에 의해 퇴적한다. 이 성막 후의 산화하프늄막(3)은 아몰퍼스상 상태이며, 그 두께는, 예를 들면, 10nm 정도이다. 단, 여기에서는, 산화하프늄막(3)에 실리콘 등과 같은 불순물을 첨가하고 있지 않다.
그 후, 도 2에 나타내듯이, 예를 들면, 2.45GHz의 마이크로파(MW)를 기판(1S)에 조사함으로써, 아몰퍼스상 상태의 산화하프늄막(3)을 마이크로파로 선택적으로 가열한다. 즉, 산화하프늄막(3) 중의 분극(分極)을 마이크로파로 진동시켜 산화하프늄막(3)을 선택적으로 가열한다. 이에 의해, 산화하프늄막(3)을 결정화시킨다.
도 3은 마이크로파에 의한 가열 처리 후에 있어서의 산화하프늄막의 결정의 해석 결과를 나타내고 있다. 도 3의 부호 Las는, 성막 직후(as 데포)의 산화하프늄막(3)의 결정 구조의 해석 결과를 나타내고, 부호 Lw0는 마이크로파 가열 후의 산화하프늄막(3)의 결정 구조의 해석 결과를 나타내고 있다. 회절 각도 30.4° 부근의 피크는 사방정으로 되어 있다. 회절 각도 28.4° 부근 및 31.8° 부근의 피크는 단사정으로 되어 있다. 또한, 피크가 높을수록, 그 결정이 많이 존재하는 것을 나타내고 있다.
본 발명자의 연구 결과에 의하면, 실리콘 등과 같은 불순물을 첨가하지 않은 산화하프늄막에 대하여 RTA나 FA 등과 같은 통상의 가열 처리를 실시해도 산화하프늄막 중에 사방정은 형성되지 않았다. 즉, 이 경우의 산화하프늄막은 강유전성을 나타내지 않는다.
이에 대하여, 도 3에 나타내듯이, 산화하프늄막에 마이크로파 가열을 실시한 경우(Lw0)는, 산화하프늄막(3)에 실리콘 등과 같은 불순물을 첨가하지 않아도, 산화하프늄막(3)의 결정 중에 사방정이 많이 형성되는(즉, 산화하프늄막(3)은 강유전성을 나타내는) 것을 본 발명자가 처음으로 발견했다.
다음으로, 본 발명자는 산화하프늄막상에 질화티탄(TiN) 등을 주성분으로 하는 캡 도체막을 퇴적한 경우의 산화하프늄막의 결정 구조에 관하여 검토했다. 도 4는 산화하프늄막상에 캡 도체막을 퇴적한 후의 기판의 요부 단면도, 도 5는 도 4의 캡 도체막의 퇴적 공정 후에 산화하프늄막에 대하여 마이크로파 가열 처리를 한창 실시하고 있는 중의 기판의 요부 단면도이다.
우선, 도 4에 나타내듯이, 상기와 동일하게 하여, 기판(1S)의 주면에 절연막(2)을 형성한 후, 그 위에, 아몰퍼스상 상태의 산화하프늄막(3)을 퇴적한다. 이 경우도 산화하프늄막(3)에는, 실리콘 등과 같은 불순물을 첨가하지 않는다. 또한, 절연막(2) 및 산화하프늄막(3)의 두께는, 도 1에서 설명한 것과 동일하다.
이어서, 아몰퍼스상 상태의 산화하프늄막(3)상에, 예를 들면, TiN을 주성분으로 하는 캡 도체막(4)을 퇴적한다. 캡 도체막(4)의 두께는, 예를 들면, 10nm 정도이다.
그 후, 도 5에 나타내듯이, 아몰퍼스상 상태의 산화하프늄막(3)을, 예를 들면, 2.45GHz의 마이크로파(MW)로 선택적으로 가열하는 것에 의해, 산화하프늄막(3)을 결정화시킨다.
여기서, 도 6은 캡 도체막(4)이 있는 경우와 없는 경우에 있어서 마이크로파 가열 후에 있어서의 산화하프늄막(3)의 결정의 해석 결과를 비교하여 나타내고 있다. 부호 Lw0는 도 3과 동일하게 캡 도체막(4)이 없는 경우로서 마이크로파 가열 처리 후의 산화하프늄막(3)의 결정 구조의 해석 결과를 나타내고, 한편, 파선으로 나타내는 부호 Lw1는 캡 도체막(4)이 있는 경우로서 마이크로파 가열 처리 후의 산화하프늄막(3)의 결정 구조의 해석 결과를 나타내고 있다. 회절 각도 30.4° 부근의 피크는 사방정이 되어 있고, 회절 각도 28.4° 부근 및 31.8° 부근의 피크는 단사정이 되어 있다. 이 도 6으로부터, 캡 도체막(4)이 있는 경우(Lw1)는, 캡 도체막(4)이 없는 경우(Lw0)에 비하여, 산화하프늄막(3)의 결정 중의 단사정이 감소하는데다가, 사방정이 증가하는(즉, 산화하프늄막(3)은 강유전성을 나타내는) 것이 판명되었다.
또한, 도 7은 마이크로파 가열 후에 있어서의 산화하프늄막(3)의 결정 중의 사방정의 X선 강도를 가열 조건(온도 및 시간)마다 나타내고 있다. 이 도 7로부터, 예를 들면, 400℃에서 5분의 가열 조건과, 300℃에서 30분의 가열 조건에서, 산화하프늄막(3)의 결정 중의 사방정이 최대가 되는 것이 판명되었다.
또한, 도 8은 마이크로파 가열 후에 있어서의 산화하프늄막(3)의 결정의 X선 피크 강도와 가열 온도의 관계를 나타내고 있다. 부호 Lo는 사방정, 꺾은 선(Lm1, Lm2)은 단사정을 나타내고 있다. 이 도 8로부터, 가열 온도가 600℃ 이상이 되면, 산화하프늄막(3)의 결정 중의 사방정이 저하하는 한편으로, 단사정이 재결정화하여 증가하는 것이 판명되었다.
따라서, 도 7 및 도 8로부터, 마이크로파 가열시의 최적 온도는, 예를 들면, 300℃ 이상, 600℃ 미만, 바람직하게는, 300℃ 이상, 500℃ 이하, 가장 바람직하게는, 300℃ 이상, 400℃ 이하인 것을 알 수 있다. 또한, 이 온도는, 예를 들면, 마이크로파 가열 처리시에 기판(1S)의 이면에 설치된 열전대 등과 같은 온도 센서에 의해 측정된 온도이다.
또한, 본 발명자는, 캡 도체막(4)의 성막 방법의 차이에 따라 산화하프늄막 중의 결정에 변화가 발생하는지에 관하여 검토했다. 도 9는 캡 도체막(4)을 PVD(Physical Vapor Deposition)법으로 퇴적한 경우의 산화하프늄막(3)의 결정의 X선 피크 강도를 나타내고, 도 10은 캡 도체막(4)을 CVD(Chemical Vapor Deposition)법으로 퇴적한 경우의 산화하프늄막(3)의 결정의 X선 피크 강도를 나타내고 있다. 또한, 도 11은 마이크로파 가열 후에 있어서의 산화하프늄막(3)의 사방정의 X선 강도를 조건(가열 온도, 가열 시간 및 캡 도체막(4)의 퇴적 방법)마다 나타내고 있다.
이 도 9 및 도 10으로부터, CVD법보다 PVD법으로 캡 도체막(4)을 퇴적한 쪽이, 산화하프늄막(3)에 많은 사방정이 형성되는 것이 판명되었다. 그리고, 도 11로부터, 캡 도체막(4)을 PVD법으로 형성하고, 마이크로파 가열시의 조건을, 예를 들면, 300℃, 30분 정도로 함으로써, 산화하프늄막(3) 중에 사방정이 가장 많이 형성되는 것이 판명되었다. 즉, 아몰퍼스상 상태의 산화하프늄막(3)상에, 저온이며 저데미지의 PVD법으로 캡 도체막(4)을 퇴적한 후, 산화하프늄막(3)을 마이크로파 가열함으로써, 산화하프늄막(3) 중에 사방정이 가장 많이 형성되는 것이 판명되었다.
또한, 본 발명자의 연구 결과에 의하면, 상기 방법을 채용함으로써, 마이크로파 가열에 의한 산화하프늄막(3)의 결정화 후에, 보다 높은 온도에서 열처리를 실시해도 산화하프늄막(3)의 사방정을 유지할 수 있는(즉, 산화하프늄막(3)의 강유전성을 유지할 수 있는) 것이 판명되었다.
이상의 것은, 산화하프늄막을 대신하여, 지르코늄(Zr)과 O를 주성분으로 하는 산화지르코늄(ZrOx), 또는, Hf 및 Zr와 O를 주성분으로 하는 금속 산화물에서도 동일한 것을 말할 수 있다. 또한, 상기의 예에서는, 산화하프늄막(3)의 성막(成膜) 전에, 기판(1S)의 주면에 절연막(2)을 형성하고 있지만, 절연막(2)을 형성하지 않아도 된다. 이 경우도 강유전성에 관해서는 동일한 결과를 얻을 수 있다.
(실시 형태 1)
본 실시 형태 1에서는, 예를 들면, 1 트랜지스터(1T)형의 강유전체 메모리 셀의 제조 방법에 관하여 도 12∼도 15를 참조하여 설명한다. 또한, 도 12∼도 15는 본 실시 형태의 반도체 장치의 제조 공정 중의 기판(1S)의 요부 단면도이다.
우선, 도 12에 나타내듯이, 기판(1S)의 주면에, 예를 들면, 홈형의 분리부(STI)를 형성한 후, 기판(1S)에 열산화 처리 등을 실시하여, 분리부(STI)로 둘러싸이는 활성 영역에 절연막(2)을 형성한다. 절연막(2)은, 예를 들면, 산화실리콘막으로 이루어지고, 그 두께는, 예를 들면, 1∼2nm 정도이다. 이 절연막(2)은, 이 후에 성막되는 산화하프늄막과 기판(1S)의 계면에 전하가 트랩되지 않도록 하는 기능을 가지고 있다. 이에 의해, 산화하프늄막의 유전 분극 특성을 향상시킬 수 있다. 또한, 절연막(2)을, 예를 들면, 산질화(SiON)막으로 형성해도 된다. 또한, 이하에 있어서, 기판(1S)은, 예를 들면, 평면 시점에서 대략 원형 모양의 반도체 웨이퍼이다.
이어서, 기판(1S)의 주면(분리부(STI) 및 절연막(2))상에, 예를 들면, 상기의 산화하프늄막(3)을 ALD법, CVD법 또는 PVD법 등에 의해 퇴적한다. 이 성막 후의 산화하프늄막(3)은, 아몰퍼스상 상태이며, 그 두께는, 예를 들면, 10nm 정도이다. 또한, 여기에서는, 산화하프늄막(3)에 실리콘 등과 같은 불순물을 첨가하지 않았다.
그 후, 산화하프늄막(3)상에 캡 도체막(4)을 퇴적한다. 캡 도체막(4)은, 예를 들면, TiN을 주성분으로 하여 이루어지고, 그 두께는, 예를 들면, 10∼20nm 정도이다. 즉, 캡 도체막(4)의 두께는, 산화하프늄막(3)의 두께와 동일하거나, 또는 그 이상이다.
다음으로, 도 13에 나타내듯이, 예를 들면, 2.45GHz의 마이크로파(MW)를 기판(1S)에 조사하여, 산화하프늄막(3)을 선택적으로 가열하고, 산화하프늄막(3)을 결정화한다. 마이크로파(MW)의 조사 조건은, 예를 들면, 1∼10kW, 1∼30분이다. 또한, 가열 처리시의 온도는, 기판(1S)의 이면의 온도로, 예를 들면, 300∼400℃이다.
이와 같이 산화하프늄막(3)을 마이크로파(MW)로 가열하는 것에 의해, 산화하프늄막(3)만을 급속하게, 또한, 균일하게 가열할 수 있다. 특히, 마이크로파 에너지는, 분극 결정에 흡수되기 때문에, 분극을 가지는 결정핵을 선택적으로 가열할 수 있다. 이 때문에, 산화하프늄막(3)의 결정 중에 사방정을 효율적으로 안정적으로 형성할 수 있다. 즉, 산화하프늄막(3)의 결정 중에, 보다 많은 사방정을 형성할 수 있다. 따라서, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상기와 같이 산화하프늄막(3)상에 캡 도체막(4)을 형성함으로써, 산화하프늄막(3)에, 보다 많은 사방정을 더 형성할 수 있다. 특히, 캡 도체막(4)의 성막 방법으로서, 예를 들면, 실온에 있어서 고주파 스퍼터링법 등과 같은 PVD법을 채용함으로써, 캡 도체막(4)을 저온, 또한, 저데미지로 성막할 수 있으므로, 산화하프늄막(3)에 더 효율적으로 안정적으로 사방정을 형성할 수 있다. 즉, 산화하프늄막(3)에 보다 많은 사방정을 더 형성할 수 있다. 따라서, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 캡 도체막(4)은, 산화하프늄막(3)에 대하여 응력을 부여하여, 산화하프늄막(3)의 사방정의 상태를 유지하는 기능을 구비하고 있다. 이 때문에, 산화하프늄막(3)상에 캡 도체막(4)을 설치하는 것에 의해, 산화하프늄막(3)의 결정화 후에 다른 열처리를 거쳐도, 산화하프늄막(3)의 결정 중의 사방정의 상태를 유지할 수 있다. 따라서, 산화하프늄막(3)의 강유전성을 유지할 수 있다.
이어서, 캡 도체막(4)상에, 예를 들면, 두께가 50nm∼100nm 정도의 다결정 실리콘막(도시하지 않음)을 CVD법 등에 의해 퇴적한 후, 그 다결정 실리콘막에 이온 주입법 등에 의해 불순물을 도입한다. 그 후, 그 다결정 실리콘막을 리소그래피 기술 및 에칭 기술에 의해 패터닝하고, 또한, 하층의 캡 도체막(4) 및 산화하프늄막(3)을 패터닝함으로써, 도 14에 나타내듯이, 게이트 전극(Gm) 및 강유전체막(F)을 형성한다. 게이트 전극(Gm)은, 캡 도체막(4)과 저저항인 다결정 실리콘막(LP)의 적층막으로 형성되고, 강유전체막(F)은, 산화하프늄막(3)으로 형성되어 있다. 그 후, 게이트 전극(Gm)을 마스크로 하여 기판(1S)의 주면에 소정의 불순물을 이온 주입함으로써, 기판(1S)의 주면에, 게이트 전극(Gm)에 대하여 자기 정합적으로 저불순물 농도의 반도체 영역(5a, 5a)을 형성한다.
다음으로, 도 15에 나타내듯이, 게이트 전극(Gm)의 측면에, 예를 들면, 산화실리콘막으로 이루어지는 사이드월 스페이서(SW)를 형성한 후, 게이트 전극(Gm) 및 사이드월 스페이서(SW)를 마스크로 하여 기판(1S)의 주면에 소정의 불순물을 이온 주입한다. 이에 의해, 기판(1S)의 주면에 게이트 전극(Gm) 및 사이드월 스페이서(SW)에 대하여 자기 정합적으로 고불순물 농도의 반도체 영역(5b, 5b)을 형성한다. 이 저불순물 농도의 반도체 영역(5a)과 고불순물 농도의 반도체 영역(5b)으로 소스 영역(SR) 및 드레인 영역(DR)이 형성된다. 이와 같이 하여 1T형의 강유전체 메모리 셀을 구성하는 강유전체 게이트 전계 효과 트랜지스터(Ferroelectrics Field Effect Transistor: 이하, FeFET로 약칭한다)(Qf)를 형성한다.
이어서, 기판(1S)의 주면상에, 예를 들면, 산화실리콘막으로 이루어지는 층간 절연막(IF1)을 CVD법 등에 의해 퇴적한 후, 그 층간 절연막(IF1)에 소스 영역(SR) 및 드레인 영역(DR)에 이르는 컨택트홀(CT1)을 형성한다. 그 후, 컨택트홀(CT1)을 매립하도록 층간 절연막(IF1)상에, 예를 들면, 텅스텐 등과 같은 도체막을 스퍼터링법 등에 의해 퇴적한 후, 그 도체막에 대하여 CMP(Chemical Mechanical Polishing) 처리를 실시함으로써, 컨택트홀(CT1) 내에 플러그(PG1)를 형성한다. 그 후, 층간 절연막(IF1)상에, 예를 들면, 알루미늄 등과 같은 금속막을 퇴적한 후, 이것을 리소그래피 기술 및 에칭 기술에 의해 패터닝함으로써 배선(ML)을 형성한다.
본 실시 형태 1에 의하면, FeFET(Qf)의 강유전체막(F)을 구성하는 산화하프늄막(3)의 결정 중에 사방정을 효율적으로 안정적으로 형성할 수 있고, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)의 강유전성을 발현할 수 있다. 따라서, 1T형의 FeFET(Qf)를 형성할 수 있다.
또한, FeFET(Qf)의 강유전체막으로서, 역 사이즈 효과를 가지는 산화하프늄막을 사용할 수 있으므로, FeFET(Qf)의 미세화를 실현할 수 있다. 따라서, FeFET(Qf)의 집적도를 향상시킬 수 있다.
또한, FeFET(Qf)의 강유전체막(F)을 구성하기 위한 산화하프늄막(3)에 마이크로파로 열처리를 실시함으로써, 산화하프늄막(3)의 강유전성을 유지할 수 있으므로, FeFET(Qf)의 수명을 향상시킬 수 있다.
다음으로, 도 16은 본 실시 형태의 반도체 장치의 제조 공정의 마이크로파 가열 공정에서 사용한 마이크로파 가열 장치의 일례의 구성도이다.
마이크로파 가열 장치(MWA)는, 예를 들면, 복수의 기판(1S)에 대하여 일괄하여 마이크로파 가열 처리를 실시하기 위한 배치식의 마이크로파 어닐링 장치이다. 이 마이크로파 가열 장치(MWA)를 구성하는 용기(QC)는, 예를 들면, 석영을 포함하는 쿼츠 챔버로 이루어지고, 그 내부에는, 랙(RK)이 설치되어 있다. 이 랙(RK)에는, 복수의 재치판(FP)이, 랙(RK)의 높이 방향을 따라 설치되어 있다. 각 재치판(FP)에는, 기판(1S)이 그 주면을 위로 향한 상태로 재치된다. 또한, 각 재치판(FP)에는, 기판(1S)의 온도를 검출하는 온도 센서로서, 예를 들면, 열전대가 설치되어 있다. 이 열전대는, 기판(1S)의 이면에 접촉한 상태로 설치된다.
한편, 용기(QC)의 외부에는, 용기(QC)의 외주를 둘러싸도록, 마그네트론(MG)이 설치되어 있다. 마그네트론(MG)은, 예를 들면, 2.45GHz의 마이크로파를 발생하여, 용기(QC) 내의 복수의 기판(1S)에 조사하고, 각 기판(1S)상의 산화하프늄막(3)을 선택적으로 가열하는 기기이다. 여기서 사용하는 마이크로파의 주파수는, 산화하프늄막(3)이 마이크로파 에너지를 효율적으로 흡수하는 주파수(분극 진동이 발생하는 주파수)로 되어 있으며, 그 관점에서는, 예를 들면, 1GHz∼10GHz의 범위에서 여러 가지 변경이 가능하다. 단, 이 주파수의 범위 중에서, 전파법상으로 자유로운 사용이 허가되어 있는 것은, 예를 들면, 2.45GHz 또는 5.8GHz이며, 이 중 어느 하나이면, 특별한 전자파 쉴드(shield) 설비 등을 설치하지 않아도 사용할 수 있으므로, 이 중 어느 하나의 주파수를 사용하는 것이 바람직하다.
또한, 여기에서는 배치식의 마이크로파 가열 장치를 사용한 경우에 관하여 설명했지만, 이에 한정되는 것은 아니고, 예를 들면, 기판(1S)을 1매마다 처리하는 매엽식(연속식)의 마이크로파 가열 장치를 사용해도 된다. 또한, 마이크로파의 발생 기기로서 마그네트론을 사용했지만, 이에 한정되는 것은 아니고 여러 가지 변경이 가능하고, 예를 들면, 클라이스트론과 같은 다른 마이크로파의 발생 기기를 사용해도 된다.
(실시 형태 2)
본 실시 형태 2에서는, 예를 들면, 1 트랜지스터 1 커패시터(1T1C)형의 강유전체 메모리 셀의 제조 방법에 관하여 도 17∼도 20을 참조하여 설명한다. 또한, 도 17∼도 20은 본 실시 형태 2의 반도체 장치의 제조 공정 중의 기판(1S)의 요부 단면도이다.
우선, 도 17에 나타내듯이, 기판(1S)의 주면에 있어서 분리부(STI)로 둘러싸인 활성 영역에 통상의 선택 전계 효과 트랜지스터(이하, 선택 MOSFET라고 한다)(Qs)를 형성한다. 선택 MOSFET(Qs)의 게이트 전극(Gs)은, 예를 들면, 저저항인 다결정 실리콘막으로 이루어지고, 그 하면과 기판(1S)의 사이에는, 게이트 절연막(Gi)이 형성되어 있다. 게이트 절연막(Gi)은, 예를 들면, 산화실리콘막으로 이루어지고, 기판(1S)을 열산화함으로써 형성되어 있다. 또한, 게이트 전극(Gs)의 상면에는, 예를 들면, 산화실리콘막 또는 질화실리콘막으로 이루어지는 캡 절연막(Ci)이 형성되어 있다.
다음으로, 상기와 동일하게, 기판(1S)상에 층간 절연막(IF1)을 퇴적하고, 컨택트홀(CT1)을 형성하고, 플러그(PG1)를 더 형성한 후, 층간 절연막(IF1)상에, 예를 들면, TiN을 주성분으로 하는 하부 전극용의 도체막(제1 도체막)(10)을 스퍼터링법 등에 의해 퇴적한다.
이어서, 하부 전극용의 도체막(10)상에, 상기 실시 형태 1과 동일하게, 예를 들면, 산화하프늄막(3)을 퇴적한다. 성막 후의 산화하프늄막(3)은, 아몰퍼스상 상태이며, 그 두께는, 예를 들면, 10nm 정도이다. 또한, 산화하프늄막(3)에, 실리콘 등과 같은 불순물을 첨가하고 있지 않다.
그 후, 상기 실시 형태 1의 캡 도체막(4)과 동일하게, 산화하프늄막(3)상에, 예를 들면, TiN을 주성분으로 하는 상부 전극용의 도체막(제2 도체막)(11)을 퇴적한다. 이 도체막(11)은, 상기 캡 도체막(4)과 동일한 기능을 구비하고 있으며, 그 두께는, 산화하프늄막(3)과 동일하거나, 그 이상이며, 예를 들면, 10∼20nm 정도이다.
다음으로, 도 18에 나타내듯이, 예를 들면, 2.45GHz의 마이크로파(MW)를 기판(1S)에 조사하여, 도체막(10, 11) 사이의 산화하프늄막(3)을 선택적으로 가열하고, 산화하프늄막(3)을 결정화한다. 마이크로파(MW)의 조사 조건 및 가열 처리 온도는, 상기 실시 형태 1과 동일하다. 또한, 마이크로파 가열 처리에서 사용하는 마이크로파 가열 장치도, 상기 실시 형태 1에서 도 16을 이용하여 설명한 것과 동일하다.
본 실시 형태 2의 경우도 상기 실시 형태 1과 동일하게, 산화하프늄막(3)의 결정 중에 사방정을 효율적으로 안정적으로 형성할 수 있고, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상기와 같이 산화하프늄막(3)상에 상부 전극용의 도체막(11)을 형성함으로써, 산화하프늄막(3)에, 보다 많은 사방정을 더 형성할 수 있다. 특히, 상부 전극용의 도체막(11)을, 예를 들면, 실온에 있어서 고주파 스퍼터링법 등과 같은 PVD법으로 성막함으로써, 도체막(11)을 저온, 또한, 저데미지로 성막할 수 있다. 이 때문에, 산화하프늄막(3)에 더 효율적으로 안정적으로 사방정을 형성할 수 있고, 산화하프늄막(3)에 보다 많은 사방정을 더 형성할 수 있다. 따라서, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상부 전극용의 도체막(11)은, 캡 도체막(4)과 동일하게 산화하프늄막(3)의 사방정의 상태를 유지하는 기능을 가지고 있다. 이 때문에, 산화하프늄막(3)상에 도체막(11)을 설치하는 것에 의해, 산화하프늄막(3)의 결정화 후에 다른 열처리를 거쳐도, 산화하프늄막(3)의 결정 중의 사방정의 상태를 유지할 수 있다. 따라서, 산화하프늄막(3)의 강유전성을 유지할 수 있다.
또한, 커패시터를 가지는 강유전체 메모리 셀에서는, 커패시터의 형성 전에 기판(1S)에 선택 MOSFET(Qs)가 형성되어 있다. 이 때문에, 커패시터의 형성시에 고온의 열처리를 하면, 예를 들면, 선택 MOSFET(Qs)의 소스 영역(SR)이나 드레인 영역(DR)의 불순물이 확산해 버려, 선택 MOSFET(Qs)의 전기적 특성이나 신뢰성이 저하하는 경우가 있다. 한편, 선택 MOSFET(Qs)의 전기적 특성이나 신뢰성을 확보하기 위해 선택 MOSFET(Qs)의 치수를 크게 하면 미세화에 반한다. 이에 대해, 본 실시 형태에서는, 커패시터의 산화하프늄막(3)을 마이크로파에 의해 비교적 저온(예를 들면, 300∼400℃)으로, 게다가 선택적으로 가열할 수 있으므로, 상기와 같은 선택 MOSFET(Qs)로의 열에 의한 영향을 경감할 수 있다. 즉, 선택 MOSFET(Qs)의 전기적 특성이나 신뢰성을 향상시킬 수 있다. 또한, 선택 MOSFET(Qs)를 미세화할 수 있으므로, 강유전체 메모리 셀의 집적도를 향상시킬 수 있다.
이어서, 도 19에 나타내듯이, 도체막(10), 산화하프늄막(3) 및 도체막(11)을 리소그래피 기술 및 에칭 기술에 의해 패터닝하여, 강유전체 메모리 셀의 커패시터(CD)를 형성한다. 커패시터(CD)는, 하부 전극(CE1)과, 강유전체막(F)과, 상부 전극(CE2)의 적층체로 구성되어 있다. 하부 전극(CE1)은 도체막(10)으로 형성되고, 상부 전극(CE2)은 도체막(11)으로 형성되어 있다. 또한, 강유전체막(F)은, 강유전체성을 가지는 산화하프늄막(3)으로 형성되어 있다.
그 후, 도 20에 나타내듯이, 기판(1S)의 주면상에, 예를 들면, 산화실리콘막으로 이루어지는 층간 절연막(IF2)을 형성한 후, 그 층간 절연막(IF2)에 커패시터(CD)의 상부 전극(CE2) 및 플러그(PG1)에 이르는 컨택트홀(CT2)을 형성한다. 그 후, 그 컨택트홀(CT2) 내에, 상기 플러그(PG1)와 동일하게 하여, 예를 들면, 텅스텐 등과 같은 도체막으로 이루어지는 플러그(PG2)를 형성한 후, 상기 실시 형태 1과 동일하게, 층간 절연막(IF2)상에 배선(ML)을 형성한다.
본 실시 형태 2에 의하면, 1T1C형의 강유전체 메모리 셀의 커패시터(CD)에 있어서 강유전체막(F)을 구성하는 산화하프늄막(3)의 결정 중에 사방정을 효율적으로 안정적으로 형성할 수 있고, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)의 강유전성을 발현할 수 있다. 따라서, 1T1C형의 강유전체 메모리 셀을 형성할 수 있다.
또한, 1T1C형의 강유전체 메모리 셀의 커패시터(CD)의 강유전체막으로서, 역 사이즈 효과를 가지는 산화하프늄막을 사용할 수 있으므로, 커패시터(CD)의 미세화를 실현할 수 있다. 따라서, 1T1C형의 강유전체 메모리 셀의 집적도를 향상시킬 수 있다.
또한, 1T1C형의 강유전체 메모리 셀의 커패시터(CD)에 있어서 강유전체막(F)을 구성하기 위한 산화하프늄막(3)에 마이크로파로 열처리를 실시함으로써, 산화하프늄막(3)의 강유전성을 유지할 수 있으므로, 1T1C형의 강유전체 메모리 셀의 수명을 향상시킬 수 있다.
또한, 커패시터(CD)의 강유전체막(F)을 구성하는 산화하프늄막(3)을 마이크로파로 비교적 저온에서, 게다가 선택적으로 가열할 수 있으므로, 강유전체 메모리 셀을 구성하는 선택 MOSFET(Qs)의 전기적 특성이나 신뢰성을 향상시킬 수 있다. 또한, 강유전체 메모리 셀을 구성하는 선택 MOSFET(Qs)를 미세화할 수 있으므로, 1T1C형의 강유전체 메모리 셀의 집적도를 향상시킬 수 있다.
(실시 형태 3)
본 실시 형태 3에서는, 예를 들면, 핀형의 트랜지스터로 1T형의 강유전체 메모리 셀을 구성하는 경우의 반도체 장치의 제조 방법을 도 21∼도 30을 참조하여 설명한다. 또한, 도 21∼도 30은 본 실시 형태 3의 반도체 장치의 제조 공정 중의 기판(1S)의 요부 단면도이다. 또한, 도 21∼도 30의 오른쪽 단면도는, 왼쪽 단면도의 중앙 위치에 있어서 왼쪽 단면도에 교차(직교)하는 단면도이다.
우선, 도 21에 나타내듯이, 기판(1S)에 열산화 처리 등을 실시하여, 기판(1S)의 주면에 절연막(15)을 형성한다. 절연막(15)은, 예를 들면, 산화실리콘막으로 이루어지고, 그 두께는, 예를 들면, 2∼10nm 정도이다. 이어서, 절연막(15)상에 절연막(16)을 CVD법 등에 의해 퇴적한다. 절연막(16)은, 예를 들면, 질화실리콘막으로 이루어지고, 그 두께는, 예를 들면, 20∼100nm 정도이다. 그 후, 절연막(16)상에 아몰퍼스 실리콘막을 CVD법 등에 의해 퇴적한 후, 그 아몰퍼스 실리콘막을 리소그래피 기술 및 에칭 기술에 의해 원하는 형상으로 패터닝하여 더미 패턴(17)을 형성한다. 이 더미 패턴(17)의 두께는, 예를 들면, 20∼200nm 정도이다.
다음으로, 기판(1S)의 주면상에, 더미 패턴(17)의 상면 및 측면을 덮도록, 예를 들면, 10∼40nm 정도의 두께의 산화실리콘막을 CVD법 등에 의해 퇴적한 후, 이 산화실리콘막에 이방성 드라이 에칭을 실시하여, 더미 패턴(17)의 측벽에 하드 마스크막(18)을 형성한다. 이 하드 마스크막(18)의 폭(도 21의 왼쪽 도면의 단방향 치수)은, 예를 들면, 10∼40nm가 된다. 이 하드 마스크막(18)의 폭이 후술한 핀의 폭이 된다. 이어서, 더미 패턴(17)을 제거한 후, 도 22에 나타내듯이, 남겨진 하드 마스크막(18)을 에칭 마스크로 하여, 절연막(16, 15) 및 기판(1S)에 이방성 드라이 에칭을 실시하여, 하드 마스크막(18)으로부터 노출하는 절연막(16, 15) 및 기판(1S) 일부를 에칭 제거한다. 이에 의해, 평면 시점에서, 하드 마스크막(18)과 동일한 형상의 절연막(16, 15) 및 핀(돌출부)(FA)을 형성한다. 핀(FA)은, 기판(1S)의 일부에서 형성되고, 기판(1S)의 주면으로부터 돌출한 상태로 형성되어 있다. 또한, 하드 마스크막(18)으로부터 노출한 영역의 기판(1S)을, 예를 들면, 100∼250nm 파냄으로써, 예를 들면, 기판(1S)의 주면으로부터의 높이 100∼250nm를 가지는 핀(FA)을 형성할 수 있다. 핀(FA)을 형성한 후, 하드 마스크막(18)을 제거한다.
다음으로, 도 23에 나타내듯이, 기판(1S)의 주면상에, 예를 들면, 산화실리콘막으로 이루어지는 절연막(19)을 퇴적한 후, 이 절연막(19)에 대하여 CMP 처리를 실시하고, 절연막(16)의 상면이 노출된 시점에서 CMP 처리를 종료한다. 이에 의해, 핀(FA)의 인접 사이를 매립하도록 기판(1S)의 주면상에 절연막(19)을 형성한다. 그 후, 절연막(16, 15)을 차례로 제거한다.
이어서, 절연막(19)에 에칭 처리를 실시하는 것에 의해, 도 24에 나타내듯이, 절연막(19)의 상부를 에칭 제거하여 절연막(19)의 주면 높이를 하강(후퇴)시킨다. 이에 의해, 핀(FA)의 표면(주면 및 이에 교차하는 측면)의 일부를 절연막(19)으로부터 노출시킴과 동시에, 핀(FA)의 다리부 주위에 절연막(19)으로 구성되는 홈형의 분리막(STI)을 형성한다.
다음으로, 기판(1S)에 열산화 처리를 실시하여, 도 25에 나타내듯이, 노출되어 있는 핀(FA)의 표면(주면 및 측면)에 절연막(제2 절연막)(20)을 형성한다. 절연막(20)은, 예를 들면, 산화실리콘막으로 이루어지고, 그 두께는, 예를 들면, 1∼2nm 정도이다. 또한, 절연막(20)을, 예를 들면, 산질화(SiON)막으로 형성해도 된다.
이어서, 도 26에 나타내듯이, 상기 실시 형태 1과 동일하게, 기판(1S)의 주면상에, 예를 들면, 두께 10nm 정도의 산화하프늄막(3)을 퇴적한다. 이 경우도 산화하프늄막(3)에는 실리콘 등과 같은 불순물을 첨가하고 있지 않다. 그 후, 상기 실시 형태 1과 동일하게, 산화하프늄막(3)상에, 예를 들면, 두께 10∼20nm 정도의 질화티탄막으로 이루어지는 캡 도체막(4)을 퇴적한다.
다음으로, 예를 들면, 2.45GHz의 마이크로파(MW)를 기판(1S)에 조사하여, 산화하프늄막(3)을 선택적으로 가열하고, 산화하프늄막(3)을 결정화한다. 마이크로파(MW)의 조사 조건 및 가열 처리 온도는, 상기 실시 형태 1과 동일하다. 또한, 마이크로파 가열 처리에서 사용하는 마이크로파 가열 장치는, 상기 실시 형태 1에서 도 16을 이용하여 설명한 것과 동일하다.
본 실시 형태 3의 경우도 상기 실시 형태 1과 동일하게, 산화하프늄막(3)의 결정 중에 사방정을 효율적으로 안정적으로 형성할 수 있고, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상기 실시 형태 1과 동일하게, 산화하프늄막(3)상에 캡 도체막(4)을 설치함으로써, 산화하프늄막(3)에, 보다 많은 사방정을 더 형성할 수 있다. 특히, 캡 도체막(4)을, 예를 들면, 실온에 있어서 고주파 스퍼터링법 등과 같은 PVD법으로 성막함으로써, 캡 도체막(4)을 저온, 또한, 저데미지로 성막할 수 있다. 이 때문에, 산화하프늄막(3)에 더 효율적으로 안정적으로 사방정을 형성할 수 있고, 산화하프늄막(3)에 보다 많은 사방정을 더 형성할 수 있다. 따라서, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상기 실시 형태 1과 동일하게 캡 도체막(4)을 설치함으로써, 산화하프늄막(3)의 결정화 후에 다른 열처리를 거쳐도, 산화하프늄막(3)의 결정 중의 사방정의 상태를 유지할 수 있으므로, 산화하프늄막(3)의 강유전성을 유지할 수 있다.
이어서, 도 27에 나타내듯이, 캡 도체막(4)상에, 예를 들면, 두께가 50nm∼100nm 정도의 다결정 실리콘막(LP)을 CVD법 등에 의해 퇴적한 후, 그 다결정 실리콘막(LP)에 이온 주입법 등에 의해 불순물을 도입한다. 그 후, 다결정 실리콘막(LP)상에, 예를 들면, 산화실리콘막으로 이루어지는 캡 절연막(Ci)을 CVD법 등에 의해 퇴적한 후, 캡 절연막(Ci)상에, 레지스트 패턴(PR1)을 리소그래피 기술에 의해 형성한다.
그 후, 레지스트 패턴(PR1)을 에칭 마스크로 하여, 도 28에 나타내듯이, 캡 절연막(Ci), 다결정 실리콘막(LP), 캡 도체막(4), 산화하프늄막(3) 및 절연막(20)을 패터닝하여, 게이트 전극(Gm) 및 강유전체막(F)을 형성한다. 게이트 전극(Gm)은, 캡 도체막(4)과 저저항인 다결정 실리콘막(LP)의 적층막으로 형성되고, 강유전체막(F)은, 산화하프늄막(3)으로 형성되어 있다.
그 후, 게이트 전극(Gm)을 마스크로 하여 기판(1S)의 주면에 소정의 불순물을 이온 주입함으로써, 기판(1S)의 핀(FA)에, 게이트 전극(Gm)에 대하여 자기 정합적으로 저불순물 농도의 반도체 영역(5a, 5a)을 형성한다.
다음으로, 도 29에 나타내듯이, 게이트 전극(Gm)의 측면에 사이드월 스페이서(SW)를 형성한 후, 게이트 전극(Gm) 및 사이드월 스페이서(SW)를 마스크로 하여 기판(1S)의 주면에 소정의 불순물을 이온 주입한다. 이에 의해, 게이트 전극(Gm) 및 사이드월 스페이서(SW)에 대하여 자기 정합적으로 고불순물 농도의 반도체 영역(5b, 5b)을 핀(FA)에 형성한다. 이 저불순물 농도의 반도체 영역(5a)과 고불순물 농도의 반도체 영역(5b)으로 소스 영역(SR) 및 드레인 영역(DR)이 형성된다. 이와 같이 하여 1T형의 강유전체 메모리 셀을 구성하는 핀형의 FeFET(Qf)를 형성한다.
그 후, 도 30에 나타내듯이, 상기 실시 형태 1과 동일하게, 기판(1S)의 주면상에 층간 절연막(IF1)을 퇴적한 후, 그 층간 절연막(IF1)에 컨택트홀(CT1)을 형성하고, 그 컨택트홀(CT1) 내에 플러그(PG1)를 형성하고, 또한, 층간 절연막(IF1)상에 배선(ML)을 형성한다.
본 실시 형태 3에 의하면, 상기 실시 형태 1과 동일하게, 핀형의 FeFET(Qf)의 강유전체막(F)을 구성하는 산화하프늄막(3)의 강유전성을 발현할 수 있다. 따라서, 핀형의 FeFET(Qf)를 형성할 수 있다.
또한, 핀형의 FeFET(Qf)의 강유전체막(F)으로서, 역 사이즈 효과를 가지는 산화하프늄막을 사용할 수 있으므로, 핀형의 FeFET(Qf)의 미세화를 실현할 수 있다. 따라서, 핀형의 FeFET(Qf)의 집적도를 향상시킬 수 있다.
또한, 핀형의 FeFET(Qf)의 강유전체막(F)을 구성하기 위한 산화하프늄막(3)에 마이크로파로 열처리를 실시함으로써, 산화하프늄막(3)의 강유전성을 유지할 수 있으므로, 핀형의 FeFET(Qf)의 수명을 향상시킬 수 있다.
이상, 본 발명자에 의해 이루어진 발명을 그 실시 형태에 근거하여 구체적으로 설명했지만, 본 발명은 상기 실시 형태에 한정되는 것은 아니고, 그 요지를 일탈하지 않는 범위에서 여러 가지 변경 가능한 것은 말할 필요도 없다.
예를 들면, 상기 실시 형태 1∼3에서는, 캡 도체막(4) 또는 도체막(11)의 퇴적 후에, 산화하프늄막(3)을 마이크로파로 가열하는 경우에 관하여 설명했지만, 상기한 것처럼, 산화하프늄막(3)을 성막 후, 캡 도체막(4) 또는 도체막(11)을 퇴적하기 전에, 산화하프늄막(3)을 마이크로파로 선택적으로 가열해도 된다. 이 경우도, 상기와 동일하게, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상기 실시 형태 1∼3에 있어서, 산화하프늄막(3)의 마이크로파 가열 전에, 예를 들면, 사방정의 결정핵을 가지는, Si, Zr, 질소(N), 탄소(C) 또는 불소(F) 중 어느 1개 이상의 불순물 원소를 이온 주입법 등에 의해 산화하프늄막(3)에 첨가해도 된다. 이에 의해, 마이크로파 가열만의 경우보다도, 산화하프늄막(3)의 결정 중에 사방정을 효율적으로 안정적으로 형성할 수 있다. 즉, 산화하프늄막(3)의 결정 중에 사방정을 보다 많이 형성할 수 있으므로, 산화하프늄막(3)의 강유전성을 발현할 수 있다.
또한, 상기 실시 형태 1∼3에 있어서는, 산화하프늄막을 이용하여 강유전체막을 형성하는 경우에 관하여 설명했지만, 이에 한정되는 것은 아니고, 예를 들면, 산화지르코늄막(금속 산화막), 또는, Hf 및 Zr의 혼합물과 O를 주성분으로 하는 금속 산화막을 이용하여 강유전체막을 형성해도 된다.
여기서, 산화지르코늄막을 이용하는 경우는, 산화지르코늄막의 마이크로파 가열 전에, 산화지르코늄막에, 예를 들면, 사방정의 결정핵을 가지는, Si, Hf, N, C 또는 F 중 어느 1개 이상의 불순물 원소를 이온 주입법 등에 의해 첨가해도 된다.
또한, Hf 및 Zr의 혼합물과 O를 주성분으로 하는 금속 산화막을 이용하는 경우는, 그 금속 산화막의 마이크로파 가열 전에, 그 금속 산화막에, 예를 들면, 사방정의 결정핵을 가지는, Si, N, C 또는 F 중 어느 1개 이상의 불순물 원소를 이온 주입법 등에 의해 첨가해도 된다.
1S 반도체 기판
2 절연막
3 산화하프늄막
4 캡 도체막
5a 반도체 영역
5b 반도체 영역
10 도체막
11 도체막
20 절연막
F 강유전체막
LP 다결정 실리콘막
Qf FeFET
Qs 선택 MOSFET
Gm 게이트 전극
Gs 게이트 전극
Gi 게이트 절연막
SR 소스 영역
DR 드레인 영역
CD 커패시터
CE1 하부 전극
CE2 상부 전극
FA 핀
ML 배선
MWA 마이크로파 가열 장치
MG 마그네트론
MW 마이크로파
2 절연막
3 산화하프늄막
4 캡 도체막
5a 반도체 영역
5b 반도체 영역
10 도체막
11 도체막
20 절연막
F 강유전체막
LP 다결정 실리콘막
Qf FeFET
Qs 선택 MOSFET
Gm 게이트 전극
Gs 게이트 전극
Gi 게이트 절연막
SR 소스 영역
DR 드레인 영역
CD 커패시터
CE1 하부 전극
CE2 상부 전극
FA 핀
ML 배선
MWA 마이크로파 가열 장치
MG 마그네트론
MW 마이크로파
Claims (23)
- (a) 반도체 기판 상에, 하프늄 및 지르코늄의 적어도 한쪽과 산소를 포함하는 금속 산화막을 퇴적하는 공정,
(b) 상기 금속 산화막 상에 도체막을 퇴적하는 공정,
(c) 상기 금속 산화막에 마이크로파 가열 처리를 실시하는 공정,
(d) 상기 도체막 상에 반도체막을 퇴적하는 공정,
(e) 상기 반도체막, 상기 도체막 및 상기 금속 산화막을 패터닝하여, 게이트 전극 및 강유전체막을 형성하는 공정
을 가지며,
상기 게이트 전극 및 상기 강유전체막은, 강유전체 메모리 셀을 구성하고 있는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 (c)공정을, 상기 (a)공정 후, 상기 (b)공정 전에 실시하는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 (c)공정을, 상기 (b)공정 후에 실시하는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 (a)공정은,
(a1) 상기 반도체 기판상에 제1 절연막을 형성하는 공정,
(a2) 상기 제1 절연막을 덮도록 상기 금속 산화막을 퇴적하는 공정
을 가지는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 (a)공정은,
(a1) 상기 반도체 기판의 일부로 구성되고, 상기 반도체 기판의 주면으로부터 돌출하는 돌출부를 형성하는 공정,
(a2) 상기 돌출부를 덮도록 상기 반도체 기판의 주면상에 상기 금속 산화막을 퇴적하는 공정,
을 가지는, 반도체 장치의 제조 방법. - 청구항 5에 있어서,
상기 (a1)공정 후, 상기 (a2)공정 전에, 상기 돌출부의 표면에 제2 절연막을 형성하는 공정을 가지는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 (b)공정의 상기 도체막은 질화티탄을 포함하는, 반도체 장치의 제조 방법. - 청구항 7에 있어서,
상기 도체막을 고주파 스퍼터링법으로 퇴적하는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 금속 산화막에, 실리콘, 질소, 탄소 또는 불소 중 어느 원소를 하나 이상 첨가하는, 반도체 장치의 제조 방법. - 청구항 1에 있어서,
상기 (c)공정의 마이크로파의 주파수가 1GHz∼10GHz인, 반도체 장치의 제조 방법. - 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,
상기 게이트 전극은, 상기 반도체막 및 상기 도체막으로 형성되어 있고,
상기 강유전체막은, 상기 금속 산화막으로 형성되어 있는, 반도체 장치의 제조 방법. - 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,
(f) 상기 반도체 기판 중, 상기 강유전체막으로부터 노출한 영역 내에 소스 영역 및 드레인 영역을 형성하는 공정을 가지며,
상기 게이트 전극, 상기 강유전체막, 상기 소스 영역 및 상기 드레인 영역은, 상기 강유전체 메모리 셀을 구성하고 있는, 반도체 장치의 제조 방법. - 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,
상기 (c)공정에서는, 상기 강유전체막의 결정 중에 사방정이 형성되는, 반도체 장치의 제조 방법. - (a) 반도체 기판 상에 제1 도체막을 퇴적하는 공정,
(b) 상기 제1 도체막 상에, 하프늄 및 지르코늄의 적어도 한쪽과 산소를 포함하는 금속 산화막을 퇴적하는 공정,
(c) 상기 금속 산화막 상에 제2 도체막을 퇴적하는 공정,
(d) 상기 금속 산화막에 마이크로파 가열 처리를 실시하는 공정,
(e) 상기 제2 도체막, 상기 금속 산화막 및 상기 제1 도체막을 패터닝하여, 하부 전극, 강유전체막 및 상부 전극의 적층체로 구성된 커패시터를 형성하는 공정
을 가지며,
상기 커패시터는, 강유전체 메모리 셀을 구성하고 있는, 반도체 장치의 제조 방법. - 청구항 14에 있어서,
상기 (d)공정을, 상기 (b)공정 후, 상기 (c)공정 전에 실시하는, 반도체 장치의 제조 방법. - 청구항 14에 있어서,
상기 (d)공정을, 상기 (c)공정 후에 실시하는, 반도체 장치의 제조 방법. - 청구항 14에 있어서,
상기 (c)공정의 상기 제2 도체막은 질화티탄을 포함하는, 반도체 장치의 제조 방법. - 청구항 17에 있어서,
상기 제2 도체막을 고주파 스퍼터링법으로 퇴적하는, 반도체 장치의 제조 방법. - 청구항 14에 있어서,
상기 금속 산화막에, 실리콘, 질소, 탄소 또는 불소 중 어느 원소를 하나 이상 첨가하는, 반도체 장치의 제조 방법. - 청구항 14에 있어서,
상기 (d)공정의 마이크로파의 주파수가 1GHz∼10GHz인, 반도체 장치의 제조 방법. - 청구항 14 내지 청구항 20 중 어느 한 항에 있어서,
상기 강유전체막은, 상기 금속 산화막으로 형성되어 있는, 반도체 장치의 제조 방법. - 청구항 14 내지 청구항 20 중 어느 한 항에 있어서,
(f) 상기 반도체 기판에 전계 효과 트랜지스터를 형성하는 공정을 가지며,
상기 전계 효과 트랜지스터 및 상기 커패시터는, 상기 강유전체 메모리 셀을 구성하고 있는, 반도체 장치의 제조 방법. - 청구항 14 내지 청구항 20 중 어느 한 항에 있어서,
상기 (d)공정에서는, 상기 강유전체막의 결정 중에 사방정이 형성되는, 반도체 장치의 제조 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017100274A JP6887307B2 (ja) | 2017-05-19 | 2017-05-19 | 半導体装置の製造方法 |
JPJP-P-2017-100274 | 2017-05-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180127180A KR20180127180A (ko) | 2018-11-28 |
KR102563425B1 true KR102563425B1 (ko) | 2023-08-04 |
Family
ID=61800307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180034920A KR102563425B1 (ko) | 2017-05-19 | 2018-03-27 | 반도체 장치의 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10680071B2 (ko) |
EP (1) | EP3413332A3 (ko) |
JP (1) | JP6887307B2 (ko) |
KR (1) | KR102563425B1 (ko) |
CN (1) | CN108962898B (ko) |
TW (1) | TWI766017B (ko) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190008049A (ko) * | 2017-07-14 | 2019-01-23 | 에스케이하이닉스 주식회사 | 강유전성 메모리 소자의 제조 방법 |
KR102434565B1 (ko) * | 2018-01-19 | 2022-08-19 | 미쓰비시덴키 가부시키가이샤 | 박층 캐패시터 및 박층 캐패시터의 제조 방법 |
JP7123622B2 (ja) | 2018-05-18 | 2022-08-23 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
US10707320B2 (en) * | 2018-10-19 | 2020-07-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Field effect transistors with ferroelectric dielectric materials |
JP2020098844A (ja) * | 2018-12-18 | 2020-06-25 | ソニー株式会社 | 半導体記憶装置、及びニューラルネットワーク装置 |
KR102645021B1 (ko) | 2019-03-06 | 2024-03-06 | 삼성전자주식회사 | 반도체 장치 |
JP7173909B2 (ja) * | 2019-03-20 | 2022-11-16 | キオクシア株式会社 | 半導体記憶装置 |
US11031490B2 (en) * | 2019-06-27 | 2021-06-08 | Taiwan Semiconductor Manufacturing Co., Ltd | Fabrication of field effect transistors with ferroelectric materials |
US11335790B2 (en) * | 2019-09-20 | 2022-05-17 | Sandisk Technologies Llc | Ferroelectric memory devices with dual dielectric confinement and methods of forming the same |
JP7480951B2 (ja) * | 2019-10-09 | 2024-05-10 | 国立大学法人京都工芸繊維大学 | 強誘電体薄膜の製造方法および強誘電体薄膜製造装置 |
CN111554745B (zh) * | 2020-04-23 | 2022-03-08 | 西安电子科技大学 | 一种铁电电容和铁电场效应晶体管及制备方法 |
DE102020210163B4 (de) | 2020-08-11 | 2023-12-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Verfahren zum Herstellen einer ferroelektrischen Schicht oder einer antiferroelektrischen Schicht und Bauelement |
US11690228B2 (en) * | 2021-02-25 | 2023-06-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Annealed seed layer to improve ferroelectric properties of memory layer |
US11557609B2 (en) * | 2021-03-04 | 2023-01-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit structure and method of forming the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010519781A (ja) * | 2007-03-27 | 2010-06-03 | インテル・コーポレーション | オンチップメモリセルおよびその製造方法 |
JP2012084602A (ja) * | 2010-10-07 | 2012-04-26 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置システム |
US20150104933A1 (en) * | 2013-10-16 | 2015-04-16 | Taiwan Semiconductor Manufacturing Company Limited | Systems and methods for annealing semiconductor device structures using microwave radiation |
JP2016534575A (ja) * | 2013-09-13 | 2016-11-04 | マイクロン テクノロジー, インク. | 強誘電体メモリセルを形成する方法および関連する半導体デバイス構造 |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432767B2 (en) * | 1995-12-05 | 2002-08-13 | Hitachi, Ltd. | Method of fabricating semiconductor device |
US5990507A (en) * | 1996-07-09 | 1999-11-23 | Kabushiki Kaisha Toshiba | Semiconductor device having ferroelectric capacitor structures |
EP1758169A3 (en) * | 1996-08-27 | 2007-05-23 | Seiko Epson Corporation | Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same |
JPH1098162A (ja) * | 1996-09-20 | 1998-04-14 | Hitachi Ltd | 半導体集積回路装置の製造方法 |
US6303391B1 (en) * | 1997-06-26 | 2001-10-16 | Advanced Technology Materials, Inc. | Low temperature chemical vapor deposition process for forming bismuth-containing ceramic films useful in ferroelectric memory devices |
KR100269306B1 (ko) * | 1997-07-31 | 2000-10-16 | 윤종용 | 저온처리로안정화되는금속산화막으로구성된완충막을구비하는집적회로장치및그제조방법 |
KR20000026967A (ko) * | 1998-10-24 | 2000-05-15 | 김영환 | 반도체 장치의 커패시터 및 그 형성 방법 |
US6204158B1 (en) * | 1998-12-18 | 2001-03-20 | Advanced Technology Materials, Inc. | Reduced diffusion of a mobile specie from a metal oxide ceramic into the substrate |
US6140672A (en) * | 1999-03-05 | 2000-10-31 | Symetrix Corporation | Ferroelectric field effect transistor having a gate electrode being electrically connected to the bottom electrode of a ferroelectric capacitor |
US6495878B1 (en) * | 1999-08-02 | 2002-12-17 | Symetrix Corporation | Interlayer oxide containing thin films for high dielectric constant application |
AU2001265390A1 (en) * | 2000-06-06 | 2001-12-17 | Ekc Technology, Inc. | Method of making electronic materials |
JP3952124B2 (ja) * | 2000-08-30 | 2007-08-01 | 日本電気株式会社 | 金属酸化物誘電体膜及びその製造方法 |
JP3939250B2 (ja) * | 2001-05-10 | 2007-07-04 | シメトリックス・コーポレーション | 強誘電性複合材料、その製造方法、およびそれを用いたメモリ |
JP2003069011A (ja) * | 2001-08-27 | 2003-03-07 | Hitachi Ltd | 半導体装置とその製造方法 |
US6815223B2 (en) * | 2002-11-22 | 2004-11-09 | Symetrix Corporation | Low thermal budget fabrication of ferroelectric memory using RTP |
US7075134B2 (en) * | 2001-11-29 | 2006-07-11 | Symetrix Corporation | Ferroelectric and high dielectric constant integrated circuit capacitors with three-dimensional orientation for high-density memories, and method of making the same |
US6781184B2 (en) * | 2001-11-29 | 2004-08-24 | Symetrix Corporation | Barrier layers for protecting metal oxides from hydrogen degradation |
US7135421B2 (en) * | 2002-06-05 | 2006-11-14 | Micron Technology, Inc. | Atomic layer-deposited hafnium aluminum oxide |
US6737364B2 (en) * | 2002-10-07 | 2004-05-18 | International Business Machines Corporation | Method for fabricating crystalline-dielectric thin films and devices formed using same |
US7101813B2 (en) * | 2002-12-04 | 2006-09-05 | Micron Technology Inc. | Atomic layer deposited Zr-Sn-Ti-O films |
KR100532427B1 (ko) * | 2003-03-27 | 2005-11-30 | 삼성전자주식회사 | 강유전체 메모리 소자의 제조 방법 |
WO2005004198A2 (en) * | 2003-06-13 | 2005-01-13 | North Carolina State University | Complex oxides for use in semiconductor devices and related methods |
TWI246767B (en) * | 2003-10-24 | 2006-01-01 | Yamaha Corp | Semiconductor device with capacitor and fuse and its manufacture method |
JP2005183842A (ja) * | 2003-12-22 | 2005-07-07 | Fujitsu Ltd | 半導体装置の製造方法 |
US7422935B2 (en) * | 2004-09-24 | 2008-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device, and semiconductor device and electronic device |
JP4303209B2 (ja) * | 2005-02-04 | 2009-07-29 | 富士通株式会社 | 強誘電体素子及び強誘電体素子の製造方法 |
US7767543B2 (en) * | 2005-09-06 | 2010-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a micro-electro-mechanical device with a folded substrate |
WO2007046290A1 (en) * | 2005-10-18 | 2007-04-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US7592251B2 (en) * | 2005-12-08 | 2009-09-22 | Micron Technology, Inc. | Hafnium tantalum titanium oxide films |
JP4888004B2 (ja) * | 2006-09-26 | 2012-02-29 | 富士通株式会社 | 歪みセンサ |
JP5525694B2 (ja) * | 2007-03-14 | 2014-06-18 | 株式会社半導体エネルギー研究所 | 半導体装置及び半導体装置の作製方法 |
US7750406B2 (en) * | 2007-04-20 | 2010-07-06 | International Business Machines Corporation | Design structure incorporating a hybrid substrate |
US7750345B2 (en) * | 2007-05-18 | 2010-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8304823B2 (en) | 2008-04-21 | 2012-11-06 | Namlab Ggmbh | Integrated circuit including a ferroelectric memory cell and method of manufacturing the same |
JP5518381B2 (ja) * | 2008-07-10 | 2014-06-11 | 株式会社半導体エネルギー研究所 | カラーセンサ及び当該カラーセンサを具備する電子機器 |
US8089135B2 (en) * | 2008-07-30 | 2012-01-03 | International Business Machine Corporation | Back-end-of-line wiring structures with integrated passive elements and design structures for a radiofrequency integrated circuit |
US7977172B2 (en) * | 2008-12-08 | 2011-07-12 | Advanced Micro Devices, Inc. | Dynamic random access memory (DRAM) cells and methods for fabricating the same |
KR101393265B1 (ko) * | 2009-12-25 | 2014-05-08 | 가부시키가이샤 리코 | 전계효과 트랜지스터, 반도체 메모리, 표시 소자, 화상 표시 장치, 및 시스템 |
TWI539453B (zh) * | 2010-09-14 | 2016-06-21 | 半導體能源研究所股份有限公司 | 記憶體裝置和半導體裝置 |
CN102446741B (zh) * | 2010-10-07 | 2016-01-20 | 株式会社日立国际电气 | 半导体器件制造方法、衬底处理装置和半导体器件 |
KR20120055363A (ko) * | 2010-11-23 | 2012-05-31 | 삼성전자주식회사 | 커패시터 및 이를 포함하는 반도체 소자 |
TWI541904B (zh) * | 2011-03-11 | 2016-07-11 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
CN102760697B (zh) * | 2011-04-27 | 2016-08-03 | 株式会社半导体能源研究所 | 半导体装置的制造方法 |
JP6005401B2 (ja) * | 2011-06-10 | 2016-10-12 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP2013073950A (ja) * | 2011-09-26 | 2013-04-22 | Toshiba Corp | 半導体装置の製造方法 |
US8871600B2 (en) * | 2011-11-11 | 2014-10-28 | International Business Machines Corporation | Schottky barrier diodes with a guard ring formed by selective epitaxy |
JP5845866B2 (ja) * | 2011-12-07 | 2016-01-20 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
US9419146B2 (en) * | 2012-01-26 | 2016-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US8901556B2 (en) * | 2012-04-06 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Insulating film, method for manufacturing semiconductor device, and semiconductor device |
US9190525B2 (en) * | 2012-07-06 | 2015-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including oxide semiconductor layer |
JP5865806B2 (ja) * | 2012-09-05 | 2016-02-17 | 株式会社東芝 | 半導体装置の製造方法及び半導体製造装置 |
CN103855013A (zh) * | 2012-11-30 | 2014-06-11 | 中国科学院微电子研究所 | N型mosfet的制造方法 |
JP2014241363A (ja) * | 2013-06-12 | 2014-12-25 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
TW202203465A (zh) * | 2013-10-10 | 2022-01-16 | 日商半導體能源研究所股份有限公司 | 液晶顯示裝置 |
US9331168B2 (en) * | 2014-01-17 | 2016-05-03 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacuturing method of the same |
US9391162B2 (en) * | 2014-04-04 | 2016-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel MOSFET with ferroelectric gate stack |
JP2015211161A (ja) * | 2014-04-28 | 2015-11-24 | 株式会社東芝 | 半導体装置の製造方法 |
JP6246664B2 (ja) * | 2014-06-04 | 2017-12-13 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
KR20210039507A (ko) | 2014-11-28 | 2021-04-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 모듈, 및 전자 기기 |
JP6647841B2 (ja) * | 2014-12-01 | 2020-02-14 | 株式会社半導体エネルギー研究所 | 酸化物の作製方法 |
US9425041B2 (en) * | 2015-01-06 | 2016-08-23 | Lam Research Corporation | Isotropic atomic layer etch for silicon oxides using no activation |
CN106409919A (zh) * | 2015-07-30 | 2017-02-15 | 株式会社半导体能源研究所 | 半导体装置以及包括该半导体装置的显示装置 |
KR20170031620A (ko) * | 2015-09-11 | 2017-03-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 및 그 제작 방법 |
JP2017076788A (ja) * | 2015-10-12 | 2017-04-20 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
WO2017153882A1 (en) * | 2016-03-11 | 2017-09-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, manufacturing method thereof, and display device including the semiconductor device |
JP2017201647A (ja) * | 2016-05-02 | 2017-11-09 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US10193063B2 (en) * | 2016-12-01 | 2019-01-29 | Arm Ltd. | Switching device formed from correlated electron material |
JP2018110140A (ja) * | 2016-12-28 | 2018-07-12 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US20180301266A1 (en) * | 2017-04-17 | 2018-10-18 | Cornell University | Magnetic structures having dusting layer |
US20190057860A1 (en) * | 2017-08-18 | 2019-02-21 | Lam Research Corporation | Methods for improving performance in hafnium oxide-based ferroelectric material using plasma and/or thermal treatment |
US10374052B2 (en) * | 2017-10-12 | 2019-08-06 | Globalfoundries Singapore Pte. Ltd. | Reduced capacitance coupling effects in devices |
JP6920192B2 (ja) * | 2017-12-28 | 2021-08-18 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
KR102433290B1 (ko) * | 2018-02-08 | 2022-08-17 | 에스케이하이닉스 주식회사 | 강유전성 소자의 제조 방법 |
JP7123622B2 (ja) * | 2018-05-18 | 2022-08-23 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
-
2017
- 2017-05-19 JP JP2017100274A patent/JP6887307B2/ja active Active
-
2018
- 2018-03-01 US US15/909,980 patent/US10680071B2/en active Active
- 2018-03-20 EP EP18162922.1A patent/EP3413332A3/en not_active Withdrawn
- 2018-03-27 KR KR1020180034920A patent/KR102563425B1/ko active IP Right Grant
- 2018-05-09 TW TW107115650A patent/TWI766017B/zh active
- 2018-05-16 CN CN201810470033.0A patent/CN108962898B/zh active Active
-
2020
- 2020-04-27 US US16/858,857 patent/US11476339B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010519781A (ja) * | 2007-03-27 | 2010-06-03 | インテル・コーポレーション | オンチップメモリセルおよびその製造方法 |
JP2012084602A (ja) * | 2010-10-07 | 2012-04-26 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置システム |
JP2016534575A (ja) * | 2013-09-13 | 2016-11-04 | マイクロン テクノロジー, インク. | 強誘電体メモリセルを形成する方法および関連する半導体デバイス構造 |
US20150104933A1 (en) * | 2013-10-16 | 2015-04-16 | Taiwan Semiconductor Manufacturing Company Limited | Systems and methods for annealing semiconductor device structures using microwave radiation |
Also Published As
Publication number | Publication date |
---|---|
TWI766017B (zh) | 2022-06-01 |
US11476339B2 (en) | 2022-10-18 |
CN108962898B (zh) | 2023-09-01 |
US20180337055A1 (en) | 2018-11-22 |
TW201901759A (zh) | 2019-01-01 |
JP6887307B2 (ja) | 2021-06-16 |
US20200258990A1 (en) | 2020-08-13 |
EP3413332A3 (en) | 2019-02-20 |
US10680071B2 (en) | 2020-06-09 |
EP3413332A2 (en) | 2018-12-12 |
JP2018195767A (ja) | 2018-12-06 |
CN108962898A (zh) | 2018-12-07 |
KR20180127180A (ko) | 2018-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102563425B1 (ko) | 반도체 장치의 제조 방법 | |
TWI816785B (zh) | 半導體裝置及其製造方法 | |
KR102535453B1 (ko) | 강유전체 전계 효과 트랜지스터의 제조방법 | |
TW201916118A (zh) | 負電容結構的形成方法 | |
US20160163821A1 (en) | Semiconductor structure including a ferroelectric transistor and method for the formation thereof | |
KR20150093384A (ko) | 저저항 텅스텐계 매립게이트구조물을 갖는 트랜지스터 및 그 제조 방법, 그를 구비한 전자장치 | |
KR20150061163A (ko) | 표면 처리 방법, 반도체 제조 방법 및 이에 의해 제조된 반도체 장치 | |
US6617212B2 (en) | Semiconductor device and method for fabricating the same using damascene process | |
KR20040025619A (ko) | 반도체 장치의 제조 방법 | |
TWI764045B (zh) | 電晶體及其製造方法 | |
US6197668B1 (en) | Ferroelectric-enhanced tantalum pentoxide for dielectric material applications in CMOS devices | |
KR20030077929A (ko) | 반도체 장치 및 그 제조 방법 | |
US8883642B2 (en) | Method of manufacturing semiconductor device and semiconductor manufacturing apparatus | |
US20230369053A1 (en) | Semiconductor Device and Method of Manufacturing | |
CN100557822C (zh) | 半导体器件制造方法及半导体器件 | |
JP2008244108A (ja) | 半導体装置および半導体装置の製造方法 | |
US20090053905A1 (en) | Method of forming dielectric layer of semiconductor memory device | |
KR100778881B1 (ko) | 강유전 랜덤 억세스 메모리 및 그 제조 방법 | |
US12071690B2 (en) | Thin film structure including dielectric material layer, and method of manufacturing the same, and electronic device employing the same | |
US20120034752A1 (en) | Methods of forming a gate structure and methods of manufacturing a semiconductor device using the same | |
JP2005175499A (ja) | メモリ素子及びその製造方法 | |
US20240021709A1 (en) | Semiconductor device with tunable threshold voltage and method for manufacturing the same | |
TWI860058B (zh) | 半導體裝置 | |
KR100420409B1 (ko) | 반도체장치의 제조 방법 | |
KR20030093717A (ko) | 비정질 금속게이트전극을 구비한 반도체소자의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |