[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102542664B1 - 고체 촬상 장치 및 그 구동 방법, 및 전자 기기 - Google Patents

고체 촬상 장치 및 그 구동 방법, 및 전자 기기 Download PDF

Info

Publication number
KR102542664B1
KR102542664B1 KR1020227005598A KR20227005598A KR102542664B1 KR 102542664 B1 KR102542664 B1 KR 102542664B1 KR 1020227005598 A KR1020227005598 A KR 1020227005598A KR 20227005598 A KR20227005598 A KR 20227005598A KR 102542664 B1 KR102542664 B1 KR 102542664B1
Authority
KR
South Korea
Prior art keywords
pixel
photoelectric conversion
conversion unit
charge
transistor
Prior art date
Application number
KR1020227005598A
Other languages
English (en)
Other versions
KR20220025945A (ko
Inventor
카츠히코 한자와
Original Assignee
소니그룹주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니그룹주식회사 filed Critical 소니그룹주식회사
Publication of KR20220025945A publication Critical patent/KR20220025945A/ko
Application granted granted Critical
Publication of KR102542664B1 publication Critical patent/KR102542664B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

보다 간단한 구성으로, 위상차 검출과 화상 생성을 양립한 화소를 실현할 수 있도록 한다. 행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 포함하고 있다. 제1의 판독 회로는, 제1의 광전변환부에서 생성된 전하를 판독하고, 제2의 판독 회로는, 제2의 광전변환부에서 생성된 전하를 판독한다. 트랜지스터는, 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속한다. 본 개시의 기술은, 예를 들면, 위상차 검출을 행하는 고체 촬상 장치 등에 적용할 수 있다.

Description

고체 촬상 장치 및 그 구동 방법, 및 전자 기기{SOLID-STATE IMAGING DEVICE, DRIVING METHOD THEREFOR, AND ELECTRONIC APPARATUS}
본 개시는, 고체 촬상 장치 및 그 구동 방법, 및 전자 기기에 관한 것으로, 특히, 위상차 검출과 화상 생성을 양립한 화소를 실현할 수 있도록 하는 고체 촬상 장치 및 그 구동 방법, 및 전자 기기에 관한 것이다.
<관련 출원의 상호 참조>
본 출원은 2014년 3월 17일에 출원된 일본 우선권 특허출원 JP2014-053667의 이익을 주장하며, 그 전체 내용은 본원에 참고로 인용된다.
촬상장치의 핀트의 조정 방법으로서, 위상차 방식과 콘트라스트 방식의 초점 검출이 알려져 있다. 위상차 방식에서는, 고속의 핀트 조정이 가능한 반면, 위상차 검출을 위한 센서를, 화상 검출 센서와는 별도로 준비할 필요가 있다. 한편, 콘트라스트 방식에서는, 핀트의 위치를 전후로 이동시켜서, 촬상 소자로부터의 신호를 함수에 의해 평가함으로써 핀트가 조정된다. 촬상 소자에서 핀트 위치를 검출할 수 있기 때문에, 화상 검출 센서와는 별도의 센서가 불필요하고, 촬상장치의 소형화가 용이하지만, 포커스 속도가 느리다는 결점이 있다.
그래서, 촬상 소자 중에, 위상차 방식의 초점 검출용의 화소를 매입하는 상면(像面) 위상차 방식이 제안되어 있다(예를 들면, 특허 문헌 1 내지 3 참조).
예를 들면, 특허 문헌 1에서는, 화소의 일부를 차광시킴으로써 형성한 초점 검출용의 화소를, 촬상 소자 내의 소정의 위치에 미련한 구성이 개시되어 있다. 특허 문헌 1의 방법은, 초점 검출의 정밀도는 높은 반면, 초점 검출용의 화소의 신호는 화상의 생성에는 이용할 수 없기 때문에, 결함 화소가 발생한다. 또한, 초점 검출용의 화소의 고밀도 배치와 결함 밀도가 상반되어 버리는 것으로도 된다.
한편, 특허 문헌 2에는, 1화소 내의 광전변환부를 2개로 나눈 구조가 개시되어 있다. 단화소(單畵素)로의 초점 검출의 정밀도는, 일부 차광에 의한 초점 검출의 정밀도보다도 낮다고 여겨지고 있지만, 화상의 생성에 이용할 때에는, 양자를 합성한 신호를 판독하면 좋기 때문에, 결함 화소가 발생하는 일은 없다.
특허 문헌 2의 구조에서는, 화상의 생성에 이용할 때에는, 1화소 내의 2개의 광전변환부의 신호를 합하기 때문에, 1화소 내의 2개의 광전변환부가, 하나의 FD(플로팅 디퓨전)부에 접속되어 있다. FD부의 용량은, 2개의 광전변환부에 맞춘 용량으로 최적화되기 때문에, 편방(片方)의 광전변환부만을 이용하여 초점 검출을 행하는 경우에는, 신호량이 작고, S/N비가 나빠진다. 반대로, FD부의 용량을 초점 검출시의 편방의 광전변환부에 맞추면, 다이내믹 레인지가 저하되고, 수광한 양의 화소 신호를 받을 수가 없다.
또한, 특허 문헌 1 및 2의 어느 화소 구조도, 초점 검출시에는, 1화소 내의 편방의 신호밖에 검출할 수가 없다. 그래서, 1화소 내의 2개의 광전변환부 각각에 메모리부를 미련하도록 한 것도 있다(예를 들면, 특허 문헌 3 참조).
특허문헌 1 : 일본 특개2013-157883호 공보 특허문헌 2 : 일본 특개2001-83407호 공보 특허문헌 3 : 일본 특개2007-243744호 공보
그러나, 1화소 내의 2개의 광전변환부 각각에 메모리부를 마련하도록 한 경우, 회로 규모가 커진다.
본 개시는, 이와 같은 상황을 감안하여 이루어진 것으로, 보다 간단한 구성으로, 위상차 검출과 화상 생성을 양립한 화소를 실현할 수 있도록 하는 것이다.
본 개시의 제1의 측면의 고체 촬상 장치는, 행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 갖고 있고, 상기 제1의 광전변환부에서 생성된 전하를 판독하는 제1의 판독 회로와, 상기 제2의 광전변환부에서 생성된 전하를 판독하는 제2의 판독 회로와, 상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속하는 트랜지스터를 구비한다.
본 개시의 제2의 측면의 고체 촬상 장치의 구동 방법은, 행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 갖고 있고, 상기 제1의 광전변환부에서 생성된 전하를 판독하는 제1의 판독 회로와, 상기 제2의 광전변환부에서 생성된 전하를 판독하는 제2의 판독 회로와, 상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속하는 트랜지스터를 구비하고, 상기 트랜지스터는, 상기 화소를 화상 생성용의 화소로서 이용하는 경우, 상기 제1의 전하 유지부와 상기 제2의 전하 유지부를 접속하고, 상기 화소를 초점 검출용의 화소로서 이용하는 경우, 상기 제1의 전하 유지부와 상기 제2의 전하 유지부를 절리(切離)한다.
본 개시의 제3의 측면의 전자 기기는, 행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 갖고 있고, 상기 제1의 광전변환부에서 생성된 전하를 판독하는 제1의 판독 회로와, 상기 제2의 광전변환부에서 생성된 전하를 판독하는 제2의 판독 회로와, 상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속하는 트랜지스터를 구비하는 고체 촬상 장치를 구비한다.
본 개시의 제1 내지 제3의 측면에서는, 행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 갖고 있고, 제1의 판독 회로에 의해, 상기 제1의 광전변환부에서 생성된 전하가 판독되고, 제2의 판독 회로에 의해, 상기 제2의 광전변환부에서 생성된 전하가 판독되고, 상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부가 트랜지스터에 의해 접속된다.
고체 촬상 장치 및 전자 기기는, 독립한 장치라도 좋고, 다른 장치에 조립된 모듈이라도 좋다.
본 개시의 제1 내지 제3의 측면에 의하면, 보다 간단한 구성으로, 위상차 검출과 화상 생성을 양립한 화소를 실현할 수 있다.
또한, 여기에 기재된 효과는 반드시 한정되는 것이 아니고, 본 개시 중에 기재된 어느 하나의 효과라도 좋다.
도 1은 본 개시에 관한 고체 촬상 장치의 개략 구성을 도시하는 도면.
도 2는 기본 화소의 회로 구성례를 설명하는 도면.
도 3은 고체 촬상 장치의 화소 어레이부의 제1의 화소 회로 구성을 도시하는 도면.
도 4는 화소의 구동례를 도시하는 타이밍 차트.
도 5는 표면 조사형의 고체 촬상 장치의 화소의 단면 구조도.
도 6은 이면 조사형의 고체 촬상 장치의 화소의 단면 구조도.
도 7은 고체 촬상 장치의 화소 어레이부의 제2의 화소 회로 구성을 도시하는 도면.
도 8은 고체 촬상 장치의 화소 어레이부의 제3의 화소 회로 구성을 도시하는 도면.
도 9는 제3의 화소 회로 구성에서의 화소의 동작을 설명하는 도면.
도 10은 제3의 화소 회로 구성에서의 화소의 동작을 설명하는 도면.
도 11은 고체 촬상 장치의 화소 어레이부의 제4의 화소 회로 구성을 도시하는 도면.
도 12는 제4의 화소 회로 구성에서의 화소의 동작을 설명하는 도면.
도 13은 제4의 화소 회로 구성에서의 화소의 동작을 설명하는 도면.
도 14는 FD 가산의 동작을 설명하는 도면.
도 15는 고체 촬상 장치의 화소 어레이부의 제5의 화소 회로 구성을 도시하는 도면.
도 16은 고체 촬상 장치의 화소 어레이부의 제6의 화소 회로 구성을 도시하는 도면.
도 17은 고체 촬상 장치의 기판 구성례를 설명하는 도면.
도 18은 본 개시에 관한 전자 기기로서의 촬상장치의 구성례를 도시하는 블록도.
이하, 본 개시를 실시하기 위한 형태(이하, 실시의 형태라고 한다)에 관해 설명한다. 또한, 설명은 이하의 순서로 행한다.
1. 고체 촬상 장치의 개략 구성례
2. 제1의 실시의 형태의 화소 회로 구성(FD부를 횡방향으로 접속하는 제1의 구성)
3. 제2의 실시의 형태의 화소 회로 구성(FD부를 횡방향으로 접속하는 제2의 구성)
4. 제3의 실시의 형태의 화소 회로 구성(FD부를 종방향으로 접속하는 제1의 구성)
5. 제4의 실시의 형태의 화소 회로 구성(FD부를 종방향으로 접속하는 제2의 구성)
6. 제5의 실시의 형태의 화소 회로 구성(FD부를 종방향 및 횡방향으로 접속하는 구성)
7. 제6의 실시의 형태의 화소 회로 구성(판독 회로를 4화소에서 공유하는 구성)
8. 전자 기기에의 적용례
<1. 고체 촬상 장치의 개략 구성례>
도 1은, 본 개시에 관한 고체 촬상 장치의 개략 구성을 도시하고 있다.
도 1의 고체 촬상 장치(1)는, 반도체로서 예를 들면 실리콘(Si)을 이용한 반도체 기판(12)에, 화소(2)가 2차원 어레이형상으로 배열된 화소 어레이부(3)와, 그 주변의 주변 회로부를 갖고서 구성된다. 주변 회로부로는, 수직 구동 회로(4), 칼럼 신호 처리 회로(5), 수평 구동 회로(6), 출력 회로(7), 제어 회로(8) 등이 포함된다.
제어 회로(8)는, 입력 클록과, 동작 모드 등을 지령하는 데이터를 수취하고, 또한 고체 촬상 장치(1)의 내부 정보 등의 데이터를 출력한다. 즉, 제어 회로(8)는, 수직 동기 신호, 수평 동기 신호 및 마스터 클록에 의거하여, 수직 구동 회로(4), 칼럼 신호 처리 회로(5) 및 수평 구동 회로(6) 등의 동작의 기준이 되는 클록 신호나 제어 신호를 생성한다. 그리고, 제어 회로(8)는, 생성한 클록 신호나 제어 신호를, 수직 구동 회로(4), 칼럼 신호 처리 회로(5) 및 수평 구동 회로(6) 등에 출력한다.
수직 구동 회로(4)는, 예를 들면 시프트 레지스터에 의해 구성되고, 소정의 화소 구동 배선(10)을 선택하고, 선택된 화소 구동 배선(10)에 화소(2)를 구동하기 위한 펄스를 공급하고, 행 단위로 화소(2)를 구동한다. 즉, 수직 구동 회로(4)는, 화소 어레이부(3)의 각 화소(2)를 행 단위로 순차적으로 수직 방향으로 선택 주사하고, 각 화소(2)의 광전변환부에서 수광량에 응하여 생성된 신호 전하에 의거한 화소 신호를, 수직 신호선(9)을 통하여 칼럼 신호 처리 회로(5)에 공급시킨다.
칼럼 신호 처리 회로(5)는, 화소(2)의 열마다 배치되어 있고, 1행분의 화소(2)로부터 출력되는 신호를 화소열마다 노이즈 제거 등의 신호 처리를 행한다. 예를 들면, 칼럼 신호 처리 회로(5)는, 화소 고유의 고정 패턴 노이즈를 제거하기 위한 CDS(Correlated Double Sampling : 상관 2중 샘플링) 및 AD 변환 등의 신호 처리를 행한다.
수평 구동 회로(6)는, 예를 들면 시프트 레지스터에 의해 구성되고, 수평 주사 펄스를 순차적으로 출력함에 의해, 칼럼 신호 처리 회로(5)의 각각을 순번대로 선택하고, 칼럼 신호 처리 회로(5)의 각각으로부터 화소 신호를 수평 신호선(11)에 출력시킨다.
출력 회로(7)는, 칼럼 신호 처리 회로(5)의 각각으로부터 수평 신호선(11)을 통하여 순차적으로 공급되는 신호에 대해, 신호 처리를 행하여 출력한다. 출력 회로(7)는, 예를 들면, 버퍼링만 하는 경우도 있고, 흑레벨 조정, 열 편차 보정, 각종 디지털 신호 처리 등이 행하여지는 경우도 있다. 입출력 단자(13)는, 외부와 신호의 교환을 한다.
이상과 같이 구성된 고체 촬상 장치(1)는, CDS 처리와 AD변환 처리를 행하는 칼럼 신호 처리 회로(5)가 화소열마다 배치된 칼럼 AD방식이라고 불리는 CMOS 이미지 센서이다.
<본 화소 회로의 기본 회로>
다음에, 고체 촬상 장치(1)의 화소 어레이부(3) 내의 화소 회로에 관해 설명하는데, 그 전에, 본 실시의 형태의 화소 회로의 기본이 되는 기본 화소의 회로 구성에 관해 설명한다.
도 2는, 기본 화소의 회로 구성례를 도시하고 있다.
기본 화소는, 광전변환부로서의 포토 다이오드(41), 전송 트랜지스터(42), FD(플로팅 디퓨전)부(43), 리셋 트랜지스터(44), 증폭 트랜지스터(45), 및 선택 트랜지스터(46)를 갖는다.
포토 다이오드(41)는, 수광한 광량에 응한 전하(신호 전하)를 생성하고, 또한, 축적한다. 포토 다이오드(41)는, 애노드 단자가 접지되어 있음과 함께, 캐소드 단자가 전송 트랜지스터(42)를 통하여, FD부(43)에 접속되어 있다.
전송 트랜지스터(42)는, 전송 신호(TRG)에 의해 온 된 때, 포토 다이오드(41)에서 생성된 전하를 판독하고, FD부(43)에 전송한다.
FD부(43)는, 포토 다이오드(41)로부터 판독된 전하를 유지한다. 리셋 트랜지스터(44)는, 리셋 신호(RST)에 의해 온 된 때, FD부(43)에 축적되어 있는 전하가 드레인(정전압원(Vdd))에 배출됨으로써, FD부(43)의 전위를 리셋한다.
증폭 트랜지스터(45)는, FD부(43)의 전위에 응한 화소 신호를 출력한다. 즉, 증폭 트랜지스터(45)는, 수직 신호선(9)을 통하여 접속되어 있는 정전류원으로서의 부하 MOS(부도시)와 소스 팔로워 회로를 구성하고, FD부(43)에 축적되어 있는 전하에 응한 레벨을 나타내는 화소 신호가, 증폭 트랜지스터(45)로부터 선택 트랜지스터(46)를 통하여 수직 신호선(9)에 출력된다.
선택 트랜지스터(46)는, 선택 신호(SEL)에 의해 기본 화소가 선택된 때 온 되고, 기본 화소의 화소 신호를, 수직 신호선(9)을 통하여 칼럼 신호 처리 회로(5)에 출력한다. 전송 신호(TRG), 선택 신호(SEL), 및 리셋 신호(RST)가 전송되는 각 제어선은, 도 1에서는, 화소 구동 배선(10)에 대응한다.
이상과 같이, 일반적으로는, 각 화소는, 하나의 포토 다이오드(41)에 대해, 전송 트랜지스터(42), FD부(43), 리셋 트랜지스터(44), 증폭 트랜지스터(45), 및 선택 트랜지스터(46)를, 각각 1개씩 갖는다.
<2. 제1의 실시의 형태의 화소 회로 구성>
이에 대해, 도 3은, 고체 촬상 장치(1)의 화소 어레이부(3)의 제1의 화소 회로 구성을 도시하고 있다.
도 3의 화소 어레이부(3)에서는, 도면 중의 종방향으로 인접하는 2개의 포토 다이오드(61)와 전송 트랜지스터(62)에서, 판독 회로인 FD부(63), 리셋 트랜지스터(64), 증폭 트랜지스터(65), 및 선택 트랜지스터(66)가 공유되어 있다. FD부(63)의 용량은, 예를 들면, 하나의 포토 다이오드(61)가 취득할 수 있는 전하량으로 설정되어 있다.
또한, 도 3의 화소 어레이부(3)에서는, 도면 중의 횡방향(행방향)으로 배열된 각 FD부(63)끼리를 접속하도록, FD결합 트랜지스터(67)가 배치되어 있다.
도면 중, 파선으로 둘러싸여진 횡방향으로 인접하는 2개의 포토 다이오드(61)는, 하나의 화소(2) 내에 포함된다. 즉, 고체 촬상 장치(1)의 화소 회로는, 각 화소(2)에 2개의 포토 다이오드(61)가 배치되고, 2개의 포토 다이오드(61)에서 생성된 전하가 유지되는 2개의 FD부(63)의 접속이, FD결합 트랜지스터(67)에 의해 온 오프 되는 구성을 갖고 있다.
도 3에서는, 1화소 내에 배치되어 있는 2개의 포토 다이오드(61) 및 전송 트랜지스터가, 각각, 포토 다이오드(61A) 및 전송 트랜지스터(62A), 및, 포토 다이오드(61B) 및 전송 트랜지스터(62B)로서 구별되어 있다.
그리고, 종방향으로 인접하는 각각 2개의 포토 다이오드(61A)와 전송 트랜지스터(62A)에서 공유되는, 하나의 FD부(63), 리셋 트랜지스터(64), 증폭 트랜지스터(65), 선택 트랜지스터(66), 및 FD결합 트랜지스터(67)가, FD부(63C), 리셋 트랜지스터(64C), 증폭 트랜지스터(65C), 선택 트랜지스터(66C), 및 FD결합 트랜지스터(67C)로 되어 있다.
또한, 종방향으로 인접하는 각각 2개의 포토 다이오드(61B)와 전송 트랜지스터(62B)에서 공유되는, 하나의 FD부(63), 리셋 트랜지스터(64), 증폭 트랜지스터(65), 선택 트랜지스터(66), 및 FD결합 트랜지스터(67)가, FD부(63D), 리셋 트랜지스터(64D), 증폭 트랜지스터(65D), 선택 트랜지스터(66D), 및 FD결합 트랜지스터(67D)로 되어 있다.
포토 다이오드(61), 전송 트랜지스터(62), FD부(63), 리셋 트랜지스터(64), 증폭 트랜지스터(65), 및 선택 트랜지스터(66)의 기능은, 상술한 기본 화소의 포토 다이오드(41), 전송 트랜지스터(42), FD부(43), 리셋 트랜지스터(44), 증폭 트랜지스터(45), 및 선택 트랜지스터(46)와 마찬가지이다.
전송 트랜지스터(62)에는, 1화소행에 대해 하나의 전송 제어선(81)이 행방향에 따라 배치되고, 전송 제어선(81)을 통하여 전송 신호(TRG)가 전송 트랜지스터(62)에 공급된다. 리셋 트랜지스터(64)에는, 2화소행에 대해 하나의 리셋 제어선(82)이 행방향에 따라 배치되고, 리셋 제어선(82)을 통하여 리셋 신호(RST)가 리셋 트랜지스터(64)에 공급된다. 선택 트랜지스터(66)에는, 2화소행에 대해 하나의 선택 제어선(83)이 행방향에 따라 배치되고, 선택 제어선(83)을 통하여 선택 신호(SEL)가 선택 트랜지스터(66)에 공급된다.
FD결합 트랜지스터(67)에는, 1화소열에 대해 2개의 FD결합 제어선(84X)이 열방향에 따라 배치되고, FD결합 제어선(84X)을 통하여 FD결합 신호(FDX)가 FD결합 트랜지스터(67)에 공급된다. 수직 신호선(9)도, 1화소당 2개의 포토 다이오드(61)에 대응하여, 2개 배치되어 있다.
도 3에서는, 화소 어레이부(3) 내의 좌상구석(左上隅)의 4행1열의 4개의 화소(211 내지 214)가 도시되어 있고, 화상 어레이부(3) 내의 각 화소행의 전송 트랜지스터(62)에 공급되는 전송 신호(TRG)는, 화소(2)의 배열에 대응하여, 전송 신호(TRG1, TRG2, TRG3, TRG4, …)로 구별되어 있다.
화소 어레이부(3) 내의 각 리셋 트랜지스터(64)와 선택 트랜지스터(66)는, 종방향으로 인접하는 2개의 포토 다이오드(61A)에 대해 하나 배치되어 있다. 그 때문에, 각 리셋 트랜지스터(64)와 선택 트랜지스터(66)에 공급되는 리셋 신호(RST)와 선택 신호(SEL)는, 각각, 리셋 신호(RST1, RST3, (RST5), …), 선택 신호(SEL1, SEL3, (SEL5), …)로 구별되어 있다.
화소 어레이부(3) 내의 각 FD결합 트랜지스터(67)는, 1화소에 대해 횡방향으로 2개 배치되기 때문에, 각 FD결합 트랜지스터(67)에 공급되는 FD결합 신호(FDX)는, 각각, FD결합 신호(FDX1-1, FDX1-2, (FDX2-1), (FDX2-2), …)로 구별되어 있다.
수직 신호선(9)은, 1화소당 2개의 판독 회로에 대응하여 2개 배치되기 때문에, 수직 신호선(9A 및 9B)로 구별되어 있다.
예를 들면, 4개의 화소(211 내지 214) 중, 화소(212)가 초점 검출용의 화소로서 사용되는 경우, 1화소 내에 배치되어 있는 2개의 포토 다이오드(61A 및 61B)에서 생성된 전하가 유지되는 2개의 FD부(63C와 63D) 사이의 FD결합 트랜지스터(67C)가, FD결합 신호(FDX1-1)에 의해 오프 되어, 2개의 FD부(63C와 63D)는 절리된다.
한편, 화소(212)가 화상 생성용의 화소로서 사용되는 경우, 1화소 내에 배치되어 있는 2개의 포토 다이오드(61A 및 61B)에서 생성된 전하가 유지되는 2개의 FD부(63C와 63D) 사이의 FD결합 트랜지스터(67C)는, FD결합 신호(FDX1-1)에 의해 온 되어, 2개의 FD부(63C와 63D)는 접속된다.
FD결합 트랜지스터(67D)는, 예를 들면, 화소(212)가 초점 검출용의 화소로서 사용되고, 포토 다이오드(61B)를 위한 용량을 가변하는 경우에, 이웃하는 화소(222)의 FD부(63C)(부도시)와 접속할 수 있다.
후술하는 도 5에 도시되는 바와 같이, 1화소 내의 2개의 포토 다이오드(61A 및 61B)는, 예를 들면, 종방향 또는 횡방향으로, 수광 영역이 2분할되도록 형성된다. 화소(2)가 초점 검출용의 화소로서 사용되는 경우, 1화소 내의 2개의 포토 다이오드(61A 및 61B)의 형성 위치가 다름에 의해, 2개의 포토 다이오드(61A 및 61B)로부터 생성되는 상(像)에, 어긋남이 발생한다. 이 상의 어긋남으로부터, 위상 어긋남량을 산출하여 디포커스량을 산출하고, 촬영 렌즈를 조정(이동)함으로써, 오토 포커스를 달성할 수 있다.
<화소(2)의 구동>
도 4A 및 4B는, 도 3에 도시한 4개의 화소(211 내지 214) 중, 화소(212)의 구동례를 도시하는 타이밍 차트이다.
도 4A는, 화소(212)가 화상 생성용의 화소로서 사용되는 경우의 구동을 도시하고 있고, 도 4B는, 화소(212)가 초점 검출용의 화소로서 사용되는 경우의 구동을 도시하고 있다. 단, 화소(212) 이외의 그 밖의 화소(2)의 경우도 마찬가지이다.
화소(212)가 선택되어 있는 기간인 시각(t1)부터 시각(t4)까지의 사이, 화소(212)의 선택 신호(SEL1)가 Hi가 되고, 화소(212)의 2개의 선택 트랜지스터(66C 및 66D)가 온 된다.
그리고, 화소(212)가 선택되어 있는 기간에서, 최초에, 시각(t2)부터 일정 기간, 화소(212)의 리셋 신호(RST1)가 Hi가 되어, 화소(212)의 2개의 리셋 트랜지스터(64C 및 64D)가 온 된다. 이에 의해, 화소(212)의 2개의 FD부(63C 및 63D)의 전위가 리셋된다.
그 후, 시각(t3)부터 일정 기간, 화소(212)의 전송 신호(TRG2)가 Hi가 되고, 화소(212)의 2개의 전송 트랜지스터(62A 및 62B)가 온 된다. 이에 의해, 화소(212)의 2개의 포토 다이오드(61A 및 61B)에 축적된 전하가, 각각, 대응하는 FD부(63C 및 63D)에 전송된다. 이 전송 기간 중, 화소(212)의 2개의 선택 트랜지스터(66C 및 66D)는 온 되어 있기 때문에, FD부(63C 및 63D)에 전송된 전하는 전압 신호로 변환되고, 증폭 트랜지스터(65C 및 65D)로부터, 선택 트랜지스터(66C 및 66D)를 통하여, 수직 신호선(9A) 및 수직 신호선(9B)에 출력된다.
이상의 동작은, 화소(212)가 화상 생성용의 화소로서 사용되는 경우와, 초점 검출용의 화소로서 사용되는 경우의 어느 쪽도 마찬가지이다.
화소(212)가 화상 생성용의 화소로서 사용되는 경우와 초점 검출용의 화소로서 사용되는 경우에서는, 화소(212)의 화소 내에 배치되어 있는 2개의 포토 다이오드(61A 및 61B)의 생성 전하가 유지되는 2개의 FD부(63C 및 63D) 사이의 FD결합 트랜지스터(67C)에 공급되는 FD결합 신호(FDX1-1)가 다르다.
구체적으로는, 화소(212)가 화상 생성용의 화소로서 사용되는 경우, 도 4A에 도시되는 바와 같이, 화소(212) 내의 2개의 포토 다이오드(61A 및 61B)에 접속된 2개의 FD부(63C 및 63D) 사이의 FD결합 트랜지스터(67C)는, 화소(212)의 선택 기간 중, 온으로 된다.
한편, 화소(212)가 초점 검출용의 화소로서 사용되는 경우, 도 4B에 도시되는 바와 같이, 화소(212) 내의 2개의 포토 다이오드(61A 및 61B)에 접속된 2개의 FD부(63C 및 63D) 사이의 FD결합 트랜지스터(67C)는, 화소(212)의 선택 기간 중, 오프로 된다.
화소(212) 내의 포토 다이오드(61A)에서 얻어진 화소 신호와, 화소(212) 내의 포토 다이오드(61B)에서 얻어진 화소 신호는, 수직 신호선(9A)과 수직 신호선(9B)으로부터, 동시에 출력된다.
화소(212)가 화상 생성용의 화소로서 사용되는 경우, 포토 다이오드(61A)에서 얻어진 화소 신호와, 화소(212) 내의 포토 다이오드(61B)에서 얻어진 화소 신호는, FD결합 트랜지스터(67C)로 결합되어 있기 때문에, 동일한 화소 신호로서 처리된다.
한편, 화소(212)가 초점 검출용의 화소로서 사용되는 경우, 포토 다이오드(61A)에서 얻어진 화소 신호와, 화소(212) 내의 포토 다이오드(61B)에서 얻어진 화소 신호는, FD결합 트랜지스터(67C)로 절리되어 있기 때문에, 다른 화소 신호(위상차 신호)로서 처리된다.
본 개시의 제1의 화소 회로 구성에 의하면, 화소(2)가 초점 검출용의 화소로서 사용되는 경우, 2분할된 포토 다이오드(61A 및 61B) 각각의 화소 신호를 동시에 출력할 수 있다. 또한, 화소(2)가 화상 생성용의 화소로서 사용되는 경우, 2분할된 포토 다이오드(61A 및 61B)를 결합하고 얻어지는 화상 신호를 출력할 수 있다.
따라서 화소(2)를, 초점 검출용과 화상 생성용의 양쪽의 목적으로 사용할 수 있기 때문에, 화소의 일부를 차광한 타입의 초점 검출용의 화소와 다르고, 초점 검출용의 화소(2)가 화상 생성시에 결함 화소로 되지 않는다.
화소(2)를 화상 생성용 화소로서 이용하는 경우, 2개의 판독 회로가 접속되어, 동시에 사용되게 된다. 이에 의해, 실효 트랜지스터 사이즈가 커지기 때문에, 소스 팔로워 앰프의 노이즈를 저감할 수 있다. 또한, 2개의 수직 신호선(9A)과 수직 신호선(9B)을 끼우고 다른 칼럼 신호 처리 회로(5)(AD변환부)를 이용함으로써, 회로 노이즈를 저감할 수도 있다.
또한, FD부(63)의 용량은, 하나의 포토 다이오드(61)가 취득할 수 있는 전하량에 최적으로 설정된다. 따라서 화소(2)가 초점 검출용의 화소, 및, 화상 생성용의 화소의 어느 쪽으로 사용되는 경우라도, FD부(63)의 용량은 최적의 용량으로 된다. 즉, 본 개시의 제1의 화소 회로 구성에 의하면, 화소 신호의 다이내믹 레인지의 확보와 S/N 비 향상을 양립시킬 수 있다.
또한, 화소(2)를 초점 검출용의 화소로서 사용하는 경우에서는, 화소의 일부를 차광하는 타입의 초점 검출용의 화소와 마찬가지로, 소비 전력의 삭감 등의 목적으로, 1화소 내에서 편측의 포토 다이오드(61)만으로 수광한 제어로 할 수도 있다. 이 경우, FD결합 트랜지스터(67C)를 온 함으로써, 동일 화소 내의 미사용의 FD부(63)와 접속하고, 용량을 가변할 수도 있다. 또한, 용량 가변을 행하는 경우, 도 3 및 후술하는 도 7의 접속 방법에서는, 전송 트랜지스터(62A와 62B)의 전송 제어선(81)을 제각기 미련하고, 각각에 공급되는 전송 신호(TRG)를, 예를 들면, TRG1A, TRG1B, TRG2A, TRG2B, …와 같이 나눌 필요가 있다.
<화소의 단면 구조도>
도 5는, 고체 촬상 장치(1)의 화소(2)의 단면 구조도이다.
고체 촬상 장치(1)는, 도 5에 도시되는 바와 같이, 예를 들면, N형의 반도체 기판(12)에 형성된 P형 반도체 영역(P-Well)(101)에 대해, 2개의 N형 반도체 영역(102A 및 102B)이, 화소(2)마다 형성되어 있다. 2개의 N형 반도체 영역(102A 및 102B)은, P형 반도체 영역(101)과의 PN 접합에 의해, 각각, 포토 다이오드(61A 및 61B)를 구성한다.
P형 반도체 영역(101)의 상측 계면의 화소 경계에는, FD부(63C 또는 63D)를 구성하는 N형 반도체 영역(103)이 형성되어 있다.
또한, N형 반도체 영역(102A)과 N형 반도체 영역(103) 사이의 반도체 기판(12) 상면에는, 전송 트랜지스터(62A)의 게이트 전극(104)이, 예를 들면, 폴리실리콘에 의해 형성되어 있다. 마찬가지로, N형 반도체 영역(102B)과 N형 반도체 영역(103) 사이의 반도체 기판(12) 상면에는, 전송 트랜지스터(62B)의 게이트 전극(104)이, 예를 들면, 폴리실리콘에 의해 형성되어 있다.
FD부(63C 또는 63D)가 되는 N형 반도체 영역(103)의 상방에는, 인접하는 다른 화소로부터의 입사광의 누입(漏入)을 방지하는 화소 사이 차광막(105)이, 예를 들면, 텅스텐(W), 알루미늄(Al) 또는 구리(Cu) 등의 금속막에 의해 형성되어 있다.
예를 들면, 질화막(SiN), 산질화막(SiON), 산화막(SiO2) 등을 이용하여, 상면이 평탄하게 형성된 절연층(106)의 상측에, 적(R), 녹(G), 또는 청(B)의 컬러 필터(107)가 형성되고, 컬러 필터(107)의 상측에, 온 칩 렌즈(108)가 형성되어 있다. 컬러 필터(107)의 적(R), 녹(G), 또는 청(B)은, 예를 들면 베이어 배열에 의해 배치되는 것으로 하지만, 그 밖의 배열 방법으로 배치되어도 좋다. 컬러 필터(107)는, 예를 들면 안료나 염료 등의 색소를 포함하는 감광성 수지를 회전 도포함에 의해 형성된다. 온 칩 렌즈(108)는, 예를 들면, 스티렌계 수지, 아크릴계 수지, 스티렌-아크릴 공중합계 수지, 또는 실록산계 수지 등의 수지계 재료로 형성된다.
리셋 트랜지스터(64C 및 64D), 증폭 트랜지스터(65C 및 65D), 선택 트랜지스터(66C 및 66D), 및 FD결합 트랜지스터(67C 및 67D)는, 도 5에 도시되는 단면 부분 이외의, 예를 들면, 수직 방향의 화소 사이 영역에 형성되어 있다.
이상과 같이, 고체 촬상 장치(1)는, 화소 트랜지스터가 형성된 반도체 기판(12)의 표면측부터 광이 입사되는 표면 조사형의 고체 촬상 장치로 구성할 수 있다.
또한, 도 6에 도시되는 바와 같이, 고체 촬상 장치(1)는, 화소 트랜지스터가 형성된 반도체 기판(12)의 표면측과는 반대측인 이면측부터 광이 입사되는 이면 조사형의 고체 촬상 장치의 구성으로 하는 것도 가능하다.
도 6에 도시되는 이면 조사형의 고체 촬상 장치(1)의 단면 구조도에서는, 반도체 기판(12)이 P형 기판이 되고, P형의 반도체 기판(12) 내에, 포토 다이오드(61A 및 61B)를 구성하는 N형 반도체 영역(102A 및 102B)이나, FD부(63C또는 63D)를 구성하는 N형 반도체 영역(103)이 형성되어 있다.
그리고, P형의 반도체 기판(12)의 표면측에, 전송 트랜지스터(62A 및 62B)가 형성되고, 절연층(109)으로 덮여 있다. 한편, P형의 반도체 기판(12)의 이면측에, 화소 사이 차광막(105)과 절연층(106)이 형성되고, 그 상측(도 6에서는 하측)에, 적(R), 녹(G), 또는 청(B)의 컬러 필터(107)나 온 칩 렌즈(108)가 형성되어 있다.
<3. 제2의 실시의 형태의 화소 회로 구성>
도 7은, 고체 촬상 장치(1)의 화소 어레이부(3)의 제2의 화소 회로 구성을 도시하고 있다.
도 7에서, 도 3에 도시한 제1의 화소 회로 구성과 대응하는 부분에 관해서는 동일한 부호를 붙이고 있다. 따라서 제2의 화소 회로의 설명에서는, 제1의 화소 회로 구성과 다른 점에 관해서만 설명한다. 이하의 그 밖의 화소 회로 구성에 관해서도 마찬가지이다.
도 3에 도시한 제1의 화소 회로 구성에서는, FD결합 트랜지스터(67)에 FD결합 신호(FDX)를 공급하는 FD결합 제어선(84X)이, 열방향(수직 방향)에 따라 배치되어 있다. 이에 대해, 도 7의 제2의 화소 회로 구성에서는, FD결합 트랜지스터(67)에 FD결합 신호(FDY)를 공급하는 FD결합 제어선(84Y)이 행방향(수평 방향)에 따라 배치되어 있다.
화소(2)를 초점 검출용의 화소로서 사용하는 경우, 횡방향으로 인접하는 FD결합 트랜지스터(67C와 67D)는, 동시에 온 시킬 수가 없다. 그 때문에, 제2의 화소 회로 구성에서는, 횡방향으로 배치된 인접하는 FD결합 트랜지스터(67)끼리에 대해 다른 제어를 가능하게 하기 위해, 2개의 FD결합 제어선(84Y)이 배치되고, 인접하는 FD결합 트랜지스터(67)에 대해 교대로 접속되어 있다.
<4. 제3의 실시의 형태의 화소 회로 구성>
도 8은, 고체 촬상 장치(1)의 화소 어레이부(3)의 제3의 화소 회로 구성을 도시하고 있다.
상술한 제1 및 제2의 화소 회로가, 횡방향으로 배열된 각 FD부(63)끼리를 접속하도록 FD결합 트랜지스터(67)가 배치되어 있음에 대해, 제3의 화소 회로에서는, 도 8에 도시되는 바와 같이, 종방향으로 배열된 각 FD부(63)끼리를 접속하도록 FD결합 트랜지스터(67)가 배치되어 있다. 그리고, 하나의 화소(2)에는, 종방향으로 나열하는 2개의 포토 다이오드(61A 및 61B)가 포함된다.
예를 들면, 화소(212)의 일방의 포토 다이오드(61A)에서 생성된 전하가 유지되는 FD부(63C)와, 화소(212)의 타방의 포토 다이오드(61B)에서 생성된 전하가 유지되는 FD부(63D)가, FD결합 트랜지스터(67E)를 통하여 접속되어 있다. 화소(212)의 FD결합 트랜지스터(67E)에는, 행방향에 따라 배치된 FD결합 제어선(84Y)을 통하여, FD결합 신호(FDY1)가 공급된다.
또한 예를 들면, 화소(213)의 일방의 포토 다이오드(61A)에서 생성된 전하가 유지되는 FD부(63D)와, 화소(213)의 타방의 포토 다이오드(61B)(부도시)에서 생성된 전하가 유지되는 FD부(63C)(부도시)가, 화소(213)의 FD결합 트랜지스터(67F)를 통하여 접속되어 있다. 화소(213)의 FD결합 트랜지스터(67F)에는, FD결합 제어선(84Y)을 통하여, FD결합 신호(FDY3)가 공급된다.
이와 같은 제3의 화소 회로 구성에서, 예를 들면, 화소(212)가 화상 생성용의 화소로서 사용되는 경우, 도 9에 도시되는 바와 같이, FD결합 트랜지스터(67E)가 온으로 되어, 화소(212)의 포토 다이오드(61A)에서 생성된 전하와, 포토 다이오드(61B)에서 생성된 전하가, 동시에 판독된다.
또한, 도 9의 예에서는, 증폭 트랜지스터(65C)와 증폭 트랜지스터(65D)의 양쪽을 사용하여, 화소(212)의 포토 다이오드(61A)에서 생성된 전하와, 포토 다이오드(61B)에서 생성된 전하를 판독하고 있지만, 증폭 트랜지스터(65C)와 증폭 트랜지스터(65D)의 어느 일방만으로부터 판독하는 것도 가능하다.
이에 대해, 화소(212)가 초점 검출용의 화소로서 사용되는 경우, 화소(212)의 포토 다이오드(61A)에서 생성된 전하는, 도 10에서 두꺼운 실선으로 도시되는 바와 같이, FD부(63C), 증폭 트랜지스터(65C), 및 선택 트랜지스터(66C)를 통과하여, 수직 신호선(9)에 출력된다.
또한, 화소(212)의 포토 다이오드(61B)에서 생성된 전하는, 도 10의 태파선으로 도시되는 바와 같이, FD부(63D), 증폭 트랜지스터(65D), 및 선택 트랜지스터(66D)를 통과하여, 수직 신호선(9)에 출력된다.
따라서 어느 쪽도, 동일한 수직 신호선(9)에 출력되기 때문에, 포토 다이오드(61A)의 신호 전하의 판독과 포토 다이오드(61B)의 신호 전하의 판독은, 시간을 나누어서 행할 필요가 있다.
<5. 제4의 실시의 형태의 화소 회로 구성>
그래서, 도 11은, 종방향으로 배열된 각 FD부(63)끼리를 접속하도록 FD결합 트랜지스터(67)가 배치되어 있는 경우에, 포토 다이오드(61A)의 신호 전하의 판독과 포토 다이오드(61B)의 신호 전하의 판독을 동시에 행하도록 한 화소 회로 구성을 도시하고 있다.
즉, 도 11은, 고체 촬상 장치(1)의 화소 어레이부(3)의 제4의 화소 회로 구성을 도시하고 있다.
제4의 화소 회로 구성에서는, 1화소열에 대해, 2개의 수직 신호선(9C 및 9D)이 배치되어 있고, 증폭 트랜지스터(65C)는, 선택 트랜지스터(66C)를 통하여, 수직 신호선(9C)에 접속되어 있고, 증폭 트랜지스터(65D)는, 선택 트랜지스터(66D)를 통하여, 수직 신호선(9D)에 접속되어 있다.
따라서 제4의 화소 회로 구성에 의하면, 도 12에 도시되는 바와 같이, 화소(212)가 초점 검출용의 화소로서 사용되는 경우에도, 포토 다이오드(61A)의 신호 전하와, 포토 다이오드(61B)의 신호 전하를 동시에 판독할 수 있기 때문에, 고속으로 판독을 행할 수가 있다.
제3 및 제4의 화소 회로 구성과 같이, 종방향으로 배열된 각 FD부(63)끼리를 접속하도록 FD결합 트랜지스터(67)가 배치되어 있는 경우에는, 도 13에 도시되는 바와 같이, 연속하는 복수의 FD부(63)를 동시에 접속시킴으로써, 1화소당의 FD부(63)의 용량을, Q배(Q=1, 2, 3, …)로 가변할 수 있다. FD용량의 가변은, 화소(2)를 초점 검출용의 화소 및 화상 생성용의 어느 쪽으로 사용하는 경우에도 이용할 수 있다.
또한, 도 14에 도시되는 바와 같이, 종방향으로 인접하는 복수의 같은 색 화소의 전송 트랜지스터(62)를 동시에 온 하고, 또한, 연속하는 복수의 FD부(63)를 동시에 접속시킴으로써, 종방향으로 인접하는 복수의 같은 색 화소의 화소 신호를, FD부(63)에서 가산하여 출력할 수 있다.
<6. 제5의 실시의 형태의 화소 회로 구성>
도 15는, 고체 촬상 장치(1)의 화소 어레이부(3)의 제5의 화소 회로 구성을 도시하고 있다.
제5의 화소 회로 구성은, 도 3에 도시한 제1의 화소 회로 구성에, 각 FD부(63)가 종방향으로도 또한 접속 가능해지도록, FD결합 트랜지스터(67E 및 67F)가 더욱 추가된 구성으로 되어 있다.
예를 들면, 화소(212)의 포토 다이오드(61A)에서 생성된 전하가 유지되는 FD부(63C)와, 화소(213)의 포토 다이오드(61A)에서 생성된 전하가 유지되는 FD부(63C)가, FD결합 트랜지스터(67E)를 통하여 접속되어 있다.
마찬가지로, 화소(212)의 포토 다이오드(61B)에서 생성된 전하가 유지되는 FD부(63D)와, 화소(213)의 포토 다이오드(61B)에서 생성된 전하가 유지되는 FD부(63D)가, FD결합 트랜지스터(67E)를 통하여 접속되어 있다. 화소(212)와 화소(213) 사이의 각 FD결합 트랜지스터(67E)에는, FD결합 제어선(84Y)을 통하여 FD결합 신호(FDY1)가 공급된다.
화소(214)의 포토 다이오드(61A)에서 생성된 전하가 유지되는 FD부(63C), 및, 포토 다이오드(61B)에서 생성된 전하가 유지되는 FD부(63D)도, 부도시의 화소(215)의 포토 다이오드(61A)에서 생성된 전하가 유지되는 FD부(63C), 및, 포토 다이오드(61B)에서 생성된 전하가 유지되는 FD부(63D)와, 각각, FD결합 트랜지스터(67F)로 접속되어 있다. 화소(214)와 화소(215) 사이의 각 FD결합 트랜지스터(67F)에는, FD결합 제어선(84Y)을 통하여 FD결합 신호(FDY3)가 공급된다.
도 15에 도시되는 제5의 화소 회로 구성에서는, FD결합 트랜지스터(67C)는, 1화소 내의 2개의 포토 다이오드(61A 및 61B)의 축적 전하를 유지하는 2개의 FD부(63C 및 63D)의 접속을 온 오프 한다. 따라서, FD결합 트랜지스터(67C)는, 화소(2)를 화상 생성용의 화소로서 사용하는지, 또는, 초점 검출용의 화소로서 사용하는지에 응하여, 온 오프 된다.
한편, FD결합 트랜지스터(67D)는, 행방향으로 인접하는 화소(2)의 축적 전하를 유지하는 FD부(63)끼리의 접속을 온 오프 한다. 따라서, FD결합 트랜지스터(67D)는, 행방향으로 인접하는 복수의 화소(2)의 화소 신호를 FD 가산하거나, FD용량을 가변하는 경우에 온 된다.
또한, FD결합 트랜지스터(67E 및 67F)는, 열방향으로 인접하는 화소(2)의 축적 전하를 유지하는 FD부(63)끼리의 접속을 온 오프 한다. 따라서, FD결합 트랜지스터(67E 및 67F)는, 열방향으로 인접하는 복수의 화소(2)의 화소 신호를 FD 가산하거나, FD용량을 가변하는 경우에 온 된다.
<7. 제6의 실시의 형태의 화소 회로 구성>
상술한 제1 내지 제5의 실시의 형태에서는, 판독 회로인 FD부(63), 리셋 트랜지스터(64), 증폭 트랜지스터(65), 및 선택 트랜지스터(66)가, 인접하는 2화소에서 공유되어 있는 예에 관해 설명하였다.
그러나, 본 개시에 관한 기술은, 인접하는 3화소 이상에서 판독 회로를 공유하는 구성으로 하는 것도 가능하다.
도 16은, 고체 촬상 장치(1)의 화소 어레이부(3)의 제6의 화소 회로 구성을 도시하고 있다.
도 16의 제6의 화소 회로 구성에서는, 종방향으로 인접하는 4화소에서, 하나의 판독 회로가 공유되어 있다. 그 밖의 구성은, 상술한 제1의 실시의 형태와 마찬가지이다.
이상 설명한 본 개시에 관한 제1 내지 제6의 화소 회로 구성에 의하면, 1화소 내에 2개의 포토 다이오드(61)를 미련하고, 각각에서 생성된 전하를, 다른 판독 회로에서 판독할 수 있기 때문에, 화소(2)를 초점 검출용과 화상 생성용의 어느 쪽으로 사용하는 경우라도, 결함 화소가 발생하지 않는다.
화소(2)를 초점 검출용의 화소로서 사용하는 경우, 2분할된 포토 다이오드(61A 및 61B) 각각의 화소 신호를 위상차 신호로서 이용할 수 있기 때문에, 회로 규모의 증가를 최소한으로 억제하면서, 초점 검출용 화소를 고밀도로 배치할 수 있다.
또한, 포토 다이오드(61)에 대응하여 마련되는 FD부(63)는, 종방향, 횡방향, 또는, 그들의 양방향으로 인접하는 FD부(63)와 접속하는 것이 가능하기 때문에, FD부(63)의 용량을 가변할 수 있다.
또한, 상술한 예에서는, FD부(63)의 용량이, 하나의 포토 다이오드(61)가 취득할 수 있는 전하량에 최적으로 설정되는 것으로 하여 설명하였지만, 하나의 포토 다이오드(61)에 대해, FD결합 트랜지스터(67)에 의해 접속되는 복수의 FD부(63)에서 전하를 유지하는 것을 전제로 한 경우에는, 하나의 FD부(63)의 용량을, 하나의 포토 다이오드(61)가 취득할 수 있는 전하량보다도 작게 설정할 수 있다. 즉, 하나의 포토 다이오드(61)가 취득할 수 있는 전하량과, 하나의 FD부(63)에서 유지할 수 있는 전하량의 비를, 포토 다이오드(61) : FD부(63)=1 : 1으로 하여도 좋고, 포토 다이오드(61) : FD부(63)= Q : 1(Q = 2, 3, 4, …의 어느 하나)로 하여도 좋다.
본 개시에 관한 제1 내지 제6의 화소 회로 구성에 의하면, 포토 다이오드(61)에 대응하여 마련되는 FD부(63)를, 인접하는 다른 FD부(63)와 접속할 수 있는 구성으로 함에 의해, FD부(63)의 용량의 자유도가 확대한다. 예를 들면, 수광량이 적은 때에는, FD부(63)의 용량이 작아지는 접속으로 사용하여 변환 효율을 올려서 사용하고, 수광량이 많은 때에는, 복수의 FD부(63)를 접속하여, 용량을 크게 하여 다이내믹 레인지를 올려서 사용할 수 있다.
또한, 하나의 화소(2) 내에 배치된 2개의 포토 다이오드(61A 및 61B)의 전하량의 비도, 상술한 포토 다이오드(61A) : 포토 다이오드(61B)=1 : 1이 아니고, 포토 다이오드(61A) : 포토 다이오드(61B)= Q : 1(Q 은 0보다 큰 정의 실수)로 하여도 좋다.
또한, 동화의 촬영시나 라이브 뷰 모드 등, 촬상 화상의 해상도가 낮아도 좋은 경우에는, 인접하는 화소(2)끼리를 FD부(63)로 접속하여 판독함에 의해, 복수 화소의 화소 신호를 FD 가산에 의해 가산한 신호를 생성할 수 있다. 통상, 화소 솎아냄에 의해 해상도가 낮은 화상을 생성하면, 무아레 등이 발생하는 경우가 있지만, FD 가산으로 가산한 신호를 생성함으로써 무아레 등을 저감할 수 있다. 또한, 화소 신호의 FD 가산은, FD 가산 이외의 아날로그 가산이나 디지털 가산과 비교하여, 소비 전력이나 처리 속도의 면에서 유리하다.
또한, 상술한 각 실시의 형태의 화소(2)의 회로 구성은, 화소행 단위로, 순차적으로, 포토 다이오드(61)에 의한 전하의 생성·축적을 행하는 롤링 셔터 방식에 의한 회로 구성으로서 설명하였다. 그러나, 전송 트랜지스터(62)와 FD부(63)의 사이에, 제2의 전송 트랜지스터와 제2의 전하 유지부를 추가하여, 화소 어레이부(3) 내의 전 화소에서 동시에 노광 동작을 행하고, 판독될 때까지의 사이, 제2의 전하 유지부에서 일시적으로 유지하고, 행 단위로 판독이 행하여지는 전 화소 동시 판독 방식(글로벌 셔터 방식)에 의한 회로 구성으로 하는 것도 가능하다.
<고체 촬상 장치의 기판 구성례>
도 1의 고체 촬상 장치(1)는, 도 17A에 도시되는 바와 같이, 1장의 반도체 기판(12)에, 복수의 화소(2)가 배열되어 있는 화소 영역(121)과, 화소(2)를 제어하는 제어 회로(122)와, 화소 신호의 신호 처리 회로를 포함하는 로직 회로(123)가 형성된 구성으로 되어 있다.
그렇지만, 고체 촬상 장치(1)는, 도 17B에 도시되는 바와 같이, 화소 영역(121)과 제어 회로(122)가 형성된 제1의 반도체 기판(131)과, 로직 회로(123)가 형성된 제2의 반도체 기판(132)을 적층한 구성으로 하는 것도 가능하다. 제1의 반도체 기판(131)과 제2의 반도체 기판(132)은, 예를 들면, 관통 비어나 Cu-Cu의 금속 결합에 의해 전기적으로 접속된다.
또는 또한, 고체 촬상 장치(1)는, 도 17C에 도시되는 바와 같이, 화소 영역(121)만이 형성된 제1의 반도체 기판(141)과, 제어 회로(122)와 로직 회로(123)가 형성된 제2의 반도체 기판(142)을 적층한 구성으로 하는 것도 가능하다. 제1의 반도체 기판(141)과 제2의 반도체 기판(142)은, 예를 들면, 관통 비어나 Cu-Cu의 금속 결합에 의해 전기적으로 접속된다.
<8. 전자 기기에의 적용례>
본 개시의 기술은, 고체 촬상 장치에의 적용으로 한정된 것이 아니다. 즉, 본 개시의 기술은, 디지털 카메라나 비디오 카메라 등의 촬상장치나, 촬상 기능을 갖는 휴대 단말 장치나, 화상 판독부에 고체 촬상 장치를 이용한 복사기 등, 화상 취입부(광전변환부)에 고체 촬상 장치를 이용하는 전자 기기 전반에 대해 적용 가능하다. 고체 촬상 장치는, 원칩으로서 형성된 형태라도 좋고, 촬상부와 신호 처리부 또는 광학계가 통합되어 팩키징된 촬상 기능을 갖는 모듈형상의 형태라도 좋다.
도 18은, 본 개시에 관한 전자 기기로서의, 촬상장치의 구성례를 도시하는 블록도이다.
도 18의 촬상장치(200)는, 렌즈군 등으로 이루어지는 광학부(201), 도 1의 고체 촬상 장치(1)의 구성이 채용되는 고체 촬상 장치(촬상 디바이스)(202), 및 카메라 신호 처리 회로인 DSP(Digital Signal Processor) 회로(203)를 구비한다. 또한, 촬상장치(200)는, 프레임 메모리(204), 표시부(205), 기록부(206), 조작부(207), 및 전원부(208)도 구비한다. DSP 회로(203), 프레임 메모리(204), 표시부(205), 기록부(206), 조작부(207) 및 전원부(208)는, 버스 라인(209)을 통하여 상호 접속되어 있다.
광학부(201)는, 피사체로부터의 입사광(상광)을 취입하여 고체 촬상 장치(202)의 촬상면상에 결상한다. 고체 촬상 장치(202)는, 광학부(201)에 의해 촬상면상에 결상된 입사광의 광량을 화소 단위로 전기 신호로 변환하여 화소 신호로서 출력한다. 이 고체 촬상 장치(202)로서, 도 1의 고체 촬상 장치(1), 즉, 화소(2)를 초점 검출시와 화상 생성시에서 2개의 FD부(63)의 접속을 온 오프 함으로써, 결함 화소를 발생시키는 일 없이, 회로 규모를 억제한 고체 촬상 장치를 이용할 수 있다.
표시부(205)는, 예를 들면, 액정 패널이나 유기 EL(Electro Luminescence) 패널 등의 패널형 표시 장치로 이루어지고, 고체 촬상 장치(202)에서 촬상된 동화 또는 정지화를 표시한다. 기록부(206)는, 고체 촬상 장치(202)에서 촬상된 동화 또는 정지화를, 하드 디스크나 반도체 메모리 등의 기록 매체에 기록한다.
조작부(207)는, 유저에 의한 조작하에, 촬상장치(200)가 갖는 다양한 기능에 관해 조작 지령을 발한다. 전원부(208)는, DSP 회로(203), 프레임 메모리(204), 표시부(205), 기록부(206) 및 조작부(207)의 동작 전원이 되는 각종의 전원을, 이들 공급 대상에 대해 적절히 공급한다.
상술한 바와 같이, 고체 촬상 장치(202)로서, 상술한 실시의 형태에 관한 고체 촬상 장치(1)를 이용함으로써, 초점 검출용 화소를 고밀도로 배치하여, 결함 화소를 발생시키지 않고서 촬상할 수 있다. 따라서, 비디오 카메라나 디지털 스틸 카메라, 나아가서는 휴대 전화기 등의 모바일 기기용 카메라 모듈 등의 촬상장치(200)에서도, 촬상 화상의 고화질화를 도모할 수 있다.
상술한 예에서는, 제1 도전형을 P형, 제2 도전형을 N형으로 하여, 전자를 신호 전하로 한 고체 촬상 장치에 관해 설명하였지만, 본 개시의 기술은 정공을 신호 전하로 하는 고체 촬상 장치에도 적용할 수 있다. 즉, 제1 도전형을 N형으로 하고, 제2 도전형을 P형으로 하여, 전술한 각 반도체 영역을 반대의 도전형의 반도체 영역으로 구성할 수 있다.
또한, 본 개시의 기술은, 가시광의 입사광량의 분포를 검지하여 화상으로서 촬상하는 고체 촬상 장치에의 적용에 한하지 않고, 적외선이나 X선, 또는 입자 등의 입사량의 분포를 화상으로서 촬상하는 고체 촬상 장치나, 광의의 의미로서, 압력이나 정전용량 등, 다른 물리량의 분포를 검지하여 화상으로서 촬상하는 지문 검출 센서 등의 고체 촬상 장치(물리량 분포 검지 장치) 전반에 대해 적용 가능하다.
본 개시의 실시의 형태는, 상술한 실시의 형태로 한정되는 것이 아니고, 본 개시의 요지를 일탈하지 않는 범위에서 여러 가지의 변경이 가능하다.
예를 들면, 상술한 복수의 실시의 형태의 전부 또는 일부를 조합시킨 형태를 채용할 수 있다.
또한, 본 명세서에 기재된 효과는 어디까지나 예시이고 한정되는 것이 아니고, 본 명세서에 기재된 것 이외의 효과가 있어도 좋다.
또한, 본 개시는 이하와 같은 구성도 취할 수 있다.
(1)
행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 포함하고 있고,
상기 제1의 광전변환부에서 생성된 전하를 판독하는 제1의 판독 회로와,
상기 제2의 광전변환부에서 생성된 전하를 판독하는 제2의 판독 회로와,
상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속하는 트랜지스터를 포함하는 고체 촬상 장치.
(2)
상기 트랜지스터는, 상기 화소를 화상 생성용의 화소로서 이용하는 경우, 상기 제1의 전하 유지부와 상기 제2의 전하 유지부를 접속하고, 상기 화소를 초점 검출용의 화소로서 이용하는 경우, 상기 제1의 전하 유지부와 상기 제2의 전하 유지부를 절리하는 상기 (1)에 기재된 고체 촬상 장치.
(3)
상기 화소가 초점 검출용의 화소로서 사용되는 경우, 상기 제1의 판독 회로에 의한 상기 제1의 광전변환부의 상기 전하를 판독함과, 상기 제2의 판독 회로에 의한 상기 제2의 광전변환부의 상기 전하를 판독함이, 동시에 행하여지는 상기 (1) 또는 (2)에 기재된 고체 촬상 장치.
(4)
상기 제1의 판독 회로와 상기 제2의 판독 회로의 각각은, 인접하는 1 이상의 다른 화소의 광전변환부와 공유되어 있는 상기 (1) 내지 (3)의 어느 하나에 기재된 고체 촬상 장치.
(5)
상기 제1의 판독 회로와 상기 제2의 판독 회로의 각각은, 인접하는 복수의 다른 화소의 광전변환부와 공유되어 있는 상기 (4)에 기재된 고체 촬상 장치.
(6)
상기 트랜지스터를 제어하는 제어선이, 열방향에 따라 배치되어 있는 상기 (1) 내지 (5)의 어느 하나에 기재된 고체 촬상 장치.
(7)
상기 트랜지스터를 제어하는 제어선이, 행방향에 따라 배치되어 있는 상기 (1) 내지 (5)의 어느 하나에 기재된 고체 촬상 장치.
(8)
이면 조사형인 있는 상기 (1) 내지 (7)의 어느 하나에 기재된 고체 촬상 장치.
(9)
표면 조사형인 상기 (1) 내지 (7)의 어느 하나에 기재된 고체 촬상 장치.
(10)
상기 화소는, 상기 복수의 화소에서 동시에 노광 동작을 행하고, 판독은 행 단위로 행하여지는 회로 구성을 포함하는 상기 (1) 내지 (9)의 어느 하나에 기재된 고체 촬상 장치.
(11)
상기 복수의 화소가 배열된 화소 영역이 적어도 형성된 제1의 반도체 기판과, 상기 화소로부터 출력된 화소 신호를 처리하는 로직 회로가 적어도 형성된 제2의 반도체 기판이 적층된 구성을 갖는 상기 (1) 내지 (10)의 어느 하나에 기재된 고체 촬상 장치.
(12)
행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 포함하고 있고,
상기 제1의 광전변환부에서 생성된 전하를 판독하는 제1의 판독 회로와,
상기 제2의 광전변환부에서 생성된 전하를 판독하는 제2의 판독 회로와,
상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속하는 트랜지스터를 포함하고,
상기 트랜지스터는, 상기 화소를 화상 생성용의 화소로서 이용하는 경우, 상기 제1의 전하 유지부와 상기 제2의 전하 유지부를 접속하고, 상기 화소를 초점 검출용의 화소로서 이용하는 경우, 상기 제1의 전하 유지부와 상기 제2의 전하 유지부를 절리하는 고체 촬상 장치의 구동 방법.
(13)
행렬형상으로 2차원 배치된 복수의 화소 각각은, 하나의 마이크로 렌즈를 통하여 입사된 광을 광전변환하는 제1의 광전변환부와 제2의 광전변환부를 포함하고 있고,
상기 제1의 광전변환부에서 생성된 전하를 판독하는 제1의 판독 회로와,
상기 제2의 광전변환부에서 생성된 전하를 판독하는 제2의 판독 회로와,
상기 제1의 판독 회로에 포함되는 제1의 전하 유지부와, 상기 제2의 판독 회로에 포함되는 제2의 전하 유지부를 접속하는 트랜지스터를 포함하는 고체 촬상 장치를 포함하는 전자 기기.
1 : 고체 촬상 장치
2 : 화소
3 : 화소 어레이부
12 : 반도체 기판
61 : 포토 다이오드
62 : 전송 트랜지스터
63 : FD부
64 : 리셋 트랜지스터
65 : 증폭 트랜지스터
66 : 선택 트랜지스터
67 : FD결합 트랜지스터
84X, 84Y : FD결합 제어선
131 : 제1의 반도체 기판
132 : 제2의 반도체 기판
141 : 제1의 반도체 기판
142 : 제2의 반도체 기판
200 : 촬상장치
202 : 고체 촬상 장치

Claims (13)

  1. 각각 하나의 마이크로 렌즈를 통하여 입사한 광을 광전 변환하는 제1 광전 변환부와 제2 광전 변환부를 갖는 제1 화소와 제2 화소를 구비하고,
    상기 제1 화소의 제1 광전 변환부와 제2 광전 변환부는 제1의 마이크로 렌즈에 대응하고,
    상기 제2 화소의 제1 광전 변환부와 제2 광전 변환부는 제2의 마이크로 렌즈에 대응하고,
    상기 제1 화소의 제1 광전 변환부는, 상기 제1 광전 변환부에서 생성된 전하를 유지하는 제1 전하 유지부에 접속되고,
    상기 제1 전하 유지부는, 상기 제1 전하 유지부의 전위에 응한 화소 신호를 출력하는 제1 증폭 트랜지스터에 접속되고,
    상기 제1 증폭 트랜지스터는, 상기 제1 증폭 트랜지스터로부터의 화소 신호를 수직 신호선에 출력하는 제1 선택 트랜지스터에 접속되고,
    상기 제2 화소의 제2 광전 변환부는, 상기 제2 화소의 제2 광전 변환부에서 생성된 전하를 유지하는 제2 전하 유지부에 접속되고,
    상기 제2 전하 유지부는, 상기 제2 전하 유지부의 전위에 응한 화소 신호를 출력하는 제2 증폭 트랜지스터에 접속되고,
    상기 제2 증폭 트랜지스터는, 상기 제2 증폭 트랜지스터로부터의 화소 신호를 수직 신호선에 출력하는 제2 선택 트랜지스터에 접속되고,
    상기 제1 전하 유지부와, 상기 제2 전하 유지부는, 제1 전하 결합 트랜지스터에 접속되고,
    상기 제1 화소의 제2 광전 변환부는, 상기 제2 화소의 제1 광전 변환부와 상기 제1 전하 결합 트랜지스터를 통하여 접속되고,
    상기 제2 화소의 제1 광전 변환부에서 생성된 전하는 상기 제1 전하 유지부에 유지되는 것을 특징으로 하는 고체 촬상 장치.
  2. 제1항에 있어서,
    상기 제2 화소의 제1 광전 변환부는, 상기 제1 전하 유지부에 접속되는 것을 특징으로 하는 고체 촬상 장치.
  3. 제1항에 있어서,
    상기 제1 화소의 제2 광전 변환부는, 상기 제2 전하 유지부에 접속되는 것을 특징으로 하는 고체 촬상 장치.
  4. 제2항에 있어서,
    상기 제1 화소는, 제1 파장에 대응한 컬러 필터를 가지고, 상기 제2 화소는, 제2 파장에 대응한 컬러 필터를 갖는 것을 특징으로 하는 고체 촬상 장치.
  5. 제1항에 있어서,
    상기 제1 화소의 제1 광전 변환부와 상기 제1 화소의 제2 광전 변환부는, 상기 제1 전하 결합 트랜지스터에 접속되는 것을 특징으로 하는 고체 촬상 장치.
  6. 제5항에 있어서,
    상기 제2 화소의 제1 광전 변환부와 상기 제2 화소의 제2 광전 변환부는, 상기 제1 전하 결합 트랜지스터에 접속되는 것을 특징으로 하는 고체 촬상 장치.
  7. 제1항에 있어서,
    상기 제1 전하 결합 트랜지스터는, 상기 제1 화소 및 상기 제2 화소를 화상 생성용의 화소로서 이용하는 경우, 상기 제1 전하 유지부와 상기 제2 전하 유지부를 접속하여, 상기 제1 화소 및 상기 제2 화소를 초점 검출용의 화소로써 이용하는 경우, 상기 제1 전하 유지부와 상기 제2 전하 유지부를 절리하는 것을 특징으로 하는 고체 촬상 장치.
  8. 제1항에 있어서,
    상기 제1 전하 결합 트랜지스터를 제어하는 제어선이, 열방향에 따라 배치되어 있는 것을 특징으로 하는 고체 촬상 장치.
  9. 제1항에 있어서,
    상기 제1 전하 결합 트랜지스터를 제어하는 제어선이, 행방향에 따라 배치되어 있는 것을 특징으로 하는 고체 촬상 장치.
  10. 제1항에 있어서,
    이면 조사형인 것을 특징으로 하는 고체 촬상 장치.
  11. 제1항에 있어서,
    표면 조사형인 것을 특징으로 하는 고체 촬상 장치.
  12. 제1항에 있어서,
    상기 제1 화소 및 상기 제2 화소가 배열된 화소 영역이 적어도 형성된 제1 반도체 기판과, 상기 제1 화소 및 상기 제2 화소로부터 출력된 화소 신호를 처리하는 로직 회로가 적어도 형성된 제2 반도체 기판이 적층된 구성을 갖는 것을 특징으로 하는 고체 촬상 장치.
  13. 각각 하나의 마이크로 렌즈를 통하여 입사한 광을 광전 변환하는 제1 광전 변환부와 제2 광전 변환부를 갖는 제1 화소와 제2 화소를 구비하고,
    상기 제1 화소의 제1 광전 변환부와 제2 광전 변환부는 제1의 마이크로 렌즈에 대응하고,
    상기 제2 화소의 제1 광전 변환부와 제2 광전 변환부는 제2의 마이크로 렌즈에 대응하고,
    상기 제1 화소의 제1 광전 변환부는, 상기 제1 광전 변환부에서 생성된 전하를 유지하는 제1 전하 유지부에 접속되고,
    상기 제1 전하 유지부는, 상기 제1 전하 유지부의 전위에 응한 화소 신호를 출력하는 제1 증폭 트랜지스터에 접속되고,
    상기 제1 증폭 트랜지스터는, 상기 제1 증폭 트랜지스터로부터의 화소 신호를 수직 신호선에 출력하는 제1 선택 트랜지스터에 접속되고,
    상기 제2 화소의 제2 광전 변환부는, 상기 제2 화소의 제2 광전 변환부에서 생성된 전하를 유지하는 제2 전하 유지부에 접속되고,
    상기 제2 전하 유지부는, 상기 제2 전하 유지부의 전위에 응한 화소 신호를 출력하는 제2 증폭 트랜지스터에 접속되고,
    상기 제2 증폭 트랜지스터는, 상기 제2 증폭 트랜지스터로부터의 화소 신호를 수직 신호선에 출력하는 제2 선택 트랜지스터에 접속되고,
    상기 제1 전하 유지부와, 상기 제2 전하 유지부는, 제1 전하 결합 트랜지스터에 접속되고,
    상기 제1 화소의 제2 광전 변환부는, 상기 제2 화소의 제1 광전 변환부와 상기 제1 전하 결합 트랜지스터를 통하여 접속되고,
    상기 제2 화소의 제1 광전 변환부에서 생성된 전하는 상기 제1 전하 유지부에 유지되는 고체 촬상 장치를 포함하는 것을 특징으로 하는 전자 기기.
KR1020227005598A 2014-03-17 2015-03-04 고체 촬상 장치 및 그 구동 방법, 및 전자 기기 KR102542664B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2014-053667 2014-03-17
JP2014053667A JP6075646B2 (ja) 2014-03-17 2014-03-17 固体撮像装置およびその駆動方法、並びに電子機器
PCT/JP2015/001142 WO2015141161A1 (en) 2014-03-17 2015-03-04 Solid-state imaging device, driving method therefor, and electronic apparatus
KR1020157030922A KR102369398B1 (ko) 2014-03-17 2015-03-04 고체 촬상 장치 및 그 구동 방법, 및 전자 기기

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157030922A Division KR102369398B1 (ko) 2014-03-17 2015-03-04 고체 촬상 장치 및 그 구동 방법, 및 전자 기기

Publications (2)

Publication Number Publication Date
KR20220025945A KR20220025945A (ko) 2022-03-03
KR102542664B1 true KR102542664B1 (ko) 2023-06-14

Family

ID=52774437

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227005598A KR102542664B1 (ko) 2014-03-17 2015-03-04 고체 촬상 장치 및 그 구동 방법, 및 전자 기기
KR1020157030922A KR102369398B1 (ko) 2014-03-17 2015-03-04 고체 촬상 장치 및 그 구동 방법, 및 전자 기기

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020157030922A KR102369398B1 (ko) 2014-03-17 2015-03-04 고체 촬상 장치 및 그 구동 방법, 및 전자 기기

Country Status (6)

Country Link
US (1) US10403672B2 (ko)
JP (1) JP6075646B2 (ko)
KR (2) KR102542664B1 (ko)
CN (1) CN105210363B (ko)
TW (1) TWI653892B (ko)
WO (1) WO2015141161A1 (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6588702B2 (ja) * 2015-01-05 2019-10-09 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP5897752B1 (ja) 2015-05-14 2016-03-30 ブリルニクスジャパン株式会社 固体撮像装置およびその駆動方法、電子機器
KR20170019581A (ko) * 2015-08-12 2017-02-22 삼성전자주식회사 지문 감지 센서, 이를 포함하는 전자 장치 및 지문 감지 센서의 동작 방법
JP6663209B2 (ja) * 2015-11-30 2020-03-11 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP6746301B2 (ja) 2015-11-30 2020-08-26 キヤノン株式会社 撮像装置の駆動方法、撮像装置、撮像システム
JP6600246B2 (ja) * 2015-12-17 2019-10-30 キヤノン株式会社 撮像装置及びカメラ
KR102046635B1 (ko) * 2015-12-18 2019-11-19 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 이미지 센서, 제어 방법 및 전자 장치
JP2017142356A (ja) * 2016-02-10 2017-08-17 ソニー株式会社 撮像装置、および、撮像装置の制御方法
US10879300B2 (en) * 2016-02-29 2020-12-29 Nikon Corporation Image sensor and image-capturing apparatus
US9936150B2 (en) * 2016-03-17 2018-04-03 Semiconductor Components Industries, Llc Image sensors with a rolling shutter scanning mode and high dynamic range
JP2017184075A (ja) * 2016-03-31 2017-10-05 ソニー株式会社 固体撮像素子および撮像装置
US11152405B2 (en) * 2016-05-24 2021-10-19 Sony Corporation Solid-state image pickup device and image pickup apparatus
JP6765859B2 (ja) * 2016-05-31 2020-10-07 キヤノン株式会社 撮像装置、およびその制御方法
CN111510648B (zh) * 2016-05-31 2022-08-16 索尼半导体解决方案公司 传感器和系统
JP6688165B2 (ja) * 2016-06-10 2020-04-28 キヤノン株式会社 撮像装置及び撮像システム
JP6778595B2 (ja) * 2016-08-17 2020-11-04 ルネサスエレクトロニクス株式会社 撮像素子
US10038863B2 (en) * 2016-08-17 2018-07-31 Renesas Electronics Corporation Image sensing device
JP6804140B2 (ja) * 2016-09-02 2020-12-23 東芝情報システム株式会社 固体撮像素子
JP6667431B2 (ja) 2016-12-27 2020-03-18 キヤノン株式会社 撮像装置、撮像システム
JP6769349B2 (ja) * 2017-03-03 2020-10-14 株式会社リコー 固体撮像素子及び撮像装置
US10791293B2 (en) * 2017-03-31 2020-09-29 Brillnics, Inc. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP2019050522A (ja) 2017-09-11 2019-03-28 キヤノン株式会社 撮像装置
EP4080880B1 (en) 2017-11-22 2024-08-14 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic apparatus
JP7013973B2 (ja) * 2018-03-19 2022-02-01 株式会社リコー 固体撮像素子及び撮像装置
WO2019189892A1 (ja) * 2018-03-30 2019-10-03 株式会社ニコン 撮像素子および撮像装置
JP7111810B2 (ja) * 2018-05-29 2022-08-02 オリンパス株式会社 固体撮像装置および撮像システム
US10890482B2 (en) 2019-01-18 2021-01-12 Himax Imaging Limited Pixel circuit for generating an output signal in response to incident radiation
KR102714983B1 (ko) * 2019-05-07 2024-10-10 삼성전자주식회사 복수의 포토 다이오드들을 포함하는 픽셀을 포함하는 이미지 센서
US11381768B2 (en) * 2019-05-07 2022-07-05 Samsung Electronics Co., Ltd. Image sensor with pixels including photodiodes sharing floating diffusion region
TW202121671A (zh) * 2019-05-31 2021-06-01 日商索尼半導體解決方案公司 固體攝像裝置
CN114205543A (zh) 2020-09-18 2022-03-18 三星电子株式会社 图像传感器
US20220116557A1 (en) * 2020-10-08 2022-04-14 Samsung Electronics Co., Ltd. Pixel array and image sensor including the same
FR3129526B1 (fr) * 2021-11-25 2023-11-24 St Microelectronics Crolles 2 Sas Capteur d'image
WO2024106196A1 (ja) * 2022-11-16 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083407A (ja) * 1999-09-13 2001-03-30 Canon Inc 撮像装置
JP2001250931A (ja) * 2000-03-07 2001-09-14 Canon Inc 固体撮像装置およびこれを用いた撮像システム
JP2012164942A (ja) 2011-02-09 2012-08-30 Canon Inc 半導体装置の製造方法、及び固体撮像装置の製造方法
JP2013172210A (ja) * 2012-02-17 2013-09-02 Canon Inc 撮像装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043381A (ja) * 2000-07-19 2002-02-08 Tokyo Electron Ltd ウエハ温度制御装置
US6521881B2 (en) * 2001-04-16 2003-02-18 Kingpak Technology Inc. Stacked structure of an image sensor and method for manufacturing the same
EP1501715A2 (en) * 2003-02-20 2005-02-02 NSK Ltd. Electric-powered power steering apparatus
CN101213829A (zh) 2005-06-01 2008-07-02 伊斯曼柯达公司 具有可选择装仓的cmos图像传感器像素
US7705900B2 (en) * 2005-06-01 2010-04-27 Eastman Kodak Company CMOS image sensor pixel with selectable binning and conversion gain
US7613157B2 (en) * 2005-08-30 2009-11-03 Interdigital Technology Corporation Wireless communication method and apparatus for processing enhanced uplink scheduling grants
JP4710660B2 (ja) 2006-03-10 2011-06-29 株式会社ニコン 固体撮像素子及びこれを用いた電子カメラ
US8098258B2 (en) * 2007-07-19 2012-01-17 Disney Enterprises, Inc. Methods and apparatus for multiple texture map storage and filtering
KR20090090776A (ko) * 2008-02-22 2009-08-26 삼성전자주식회사 이미지 센서 및 그 제조 방법
US7777171B2 (en) * 2008-08-26 2010-08-17 Eastman Kodak Company In-pixel summing of charge generated by two or more pixels having two reset transistors connected in series
US8913166B2 (en) * 2009-01-21 2014-12-16 Canon Kabushiki Kaisha Solid-state imaging apparatus
JP5359465B2 (ja) 2009-03-31 2013-12-04 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
JP5511541B2 (ja) * 2010-06-24 2014-06-04 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
US20130018215A1 (en) * 2011-01-18 2013-01-17 Merit Medical Systems, Inc. Esophageal stent and methods for use of same
JP5885403B2 (ja) * 2011-06-08 2016-03-15 キヤノン株式会社 撮像装置
JP6172888B2 (ja) * 2012-01-18 2017-08-02 キヤノン株式会社 撮像装置および撮像システム
JP2013157883A (ja) 2012-01-31 2013-08-15 Sony Corp 固体撮像素子およびカメラシステム
US9554115B2 (en) * 2012-02-27 2017-01-24 Semiconductor Components Industries, Llc Imaging pixels with depth sensing capabilities
JP2014049727A (ja) 2012-09-04 2014-03-17 Canon Inc 固体撮像装置
JP6164867B2 (ja) * 2013-02-21 2017-07-19 キヤノン株式会社 固体撮像装置、その制御方法、および制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083407A (ja) * 1999-09-13 2001-03-30 Canon Inc 撮像装置
JP2001250931A (ja) * 2000-03-07 2001-09-14 Canon Inc 固体撮像装置およびこれを用いた撮像システム
JP2012164942A (ja) 2011-02-09 2012-08-30 Canon Inc 半導体装置の製造方法、及び固体撮像装置の製造方法
JP2013172210A (ja) * 2012-02-17 2013-09-02 Canon Inc 撮像装置

Also Published As

Publication number Publication date
US10403672B2 (en) 2019-09-03
CN105210363A (zh) 2015-12-30
KR20160132342A (ko) 2016-11-18
US20160141326A1 (en) 2016-05-19
JP2015177429A (ja) 2015-10-05
TW201537983A (zh) 2015-10-01
CN105210363B (zh) 2019-08-09
KR102369398B1 (ko) 2022-03-04
TWI653892B (zh) 2019-03-11
JP6075646B2 (ja) 2017-02-08
WO2015141161A1 (en) 2015-09-24
KR20220025945A (ko) 2022-03-03

Similar Documents

Publication Publication Date Title
KR102542664B1 (ko) 고체 촬상 장치 및 그 구동 방법, 및 전자 기기
US11902678B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
JP5821315B2 (ja) 電子機器、電子機器の駆動方法
US9591244B2 (en) Solid-state imaging device having plural hybrid pixels with dual storing function
JP6709738B2 (ja) 固体撮像素子および電子機器
US20180295303A1 (en) Imaging element
WO2018105334A1 (ja) 固体撮像素子及び電子機器

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)