[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11218473A - Method and device for preparing sample for section transmission electron microscope - Google Patents

Method and device for preparing sample for section transmission electron microscope

Info

Publication number
JPH11218473A
JPH11218473A JP10021197A JP2119798A JPH11218473A JP H11218473 A JPH11218473 A JP H11218473A JP 10021197 A JP10021197 A JP 10021197A JP 2119798 A JP2119798 A JP 2119798A JP H11218473 A JPH11218473 A JP H11218473A
Authority
JP
Japan
Prior art keywords
sample
observation
mask
electron microscope
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021197A
Other languages
Japanese (ja)
Inventor
Junji Tanimura
純二 谷村
Osamu Wada
理 和田
Yasushi Uehara
康 上原
Hiroshi Kurokawa
博志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10021197A priority Critical patent/JPH11218473A/en
Publication of JPH11218473A publication Critical patent/JPH11218473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly prepare an observation sample of the section transmission electron microscope(TEM) of a small region in a short time by preparing a mask with a material that has a slower sputter speed than an observation sample in advance, placing the mask at the observation point of the sample, and processing the sample by ion beams. SOLUTION: A material with a slower sputter speed than an observation sample is processed as a mask. A protection wire 3 as the mask is attached to the tip of a manipulator 4. After the protection wire 3 is lead to an observation point by using micrometers 5, 6, and 7 in X, Y, and Z directions, the observation sample 1 is sputtered by an argon ion beam 9. After sputtering for approximately one hour, ion beams are stopped and the protection wire 3 is moved, thus allowing a shaded part to remain in a thin plate shape and a section observation part is included in that part. The observation sample is inserted into a TEM, and the TEM observation is done from the direction of the section by using electron rays for TEM observation, thus the section TEM observation of a specific small region can be done.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、透過電子顕微鏡
(TEM)観察するために、イオンビームを用いて特定
微小領域の断面試料を加工する方法及び装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for processing a cross-sectional sample of a specific minute area using an ion beam for observation with a transmission electron microscope (TEM).

【0002】[0002]

【従来の技術】特定微小領域断面TEM観察試料作製に
おける従来技術は、液体ガリウムイオン源、イオンビー
ムを集束する集束レンズ、イオンビームを走査する偏向
レンズ、保護膜を作製するタングステンを含む有機金属
ガス、試料移動機構、を備えた集束イオンビーム装置
(FIB)を用いる。まず、試料表面に有機金属ガスを
導入・付着させ、数十nmに集束させたガリウムイオン
ビームを観察箇所に走査し、ガリウムイオンビームのエ
ネルギーにより観察箇所付近で有機金属ガスを分解さ
せ、観察箇所付近の表面にタングステン保護膜を形成す
る。その後、数十nmに集束させたガリウムイオンビー
ムを観察箇所の周囲に走査して試料をスパッタし、観察
箇所のみを厚さ100nm程度残して断面TEM観察可
能な試料とする。
2. Description of the Related Art Conventional techniques for preparing a TEM observation sample of a cross section of a specific minute area include a liquid gallium ion source, a focusing lens for focusing an ion beam, a deflection lens for scanning an ion beam, and an organic metal gas containing tungsten for forming a protective film. A focused ion beam apparatus (FIB) having a sample moving mechanism is used. First, an organometallic gas is introduced and adhered to the sample surface, and a gallium ion beam focused to several tens of nanometers is scanned over an observation location, and the organometallic gas is decomposed near the observation location by the energy of the gallium ion beam. A tungsten protective film is formed on a nearby surface. After that, the sample is sputtered by scanning the gallium ion beam focused to several tens of nm around the observation point, and a cross-section TEM observation sample is obtained while leaving only the observation point at a thickness of about 100 nm.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術はタングステン保護膜の形成及び試料のスパッタ加工
に集束させたイオンビームを用いる必要があるため、細
いイオン源を得るためのガリウム液体金属を用いたイオ
ン銃、イオンビームを集束させる集束レンズ、イオンビ
ームを走査させる偏向レンズを必要とし、装置が大規模
・高価なものになる欠点があった。また、細く集束させ
たイオンビームを用いるためイオン電流が数nA以下
で、加工に長時間を要する欠点があった。更に、イオン
ビームとしてガリウムイオンを用いるため試料への加工
ダメージが大きく、後のTEM観察像が鮮明でなくなる
欠点もあった。
However, in the prior art, it is necessary to use a focused ion beam for the formation of a tungsten protective film and the sputtering of a sample. Therefore, a gallium liquid metal is used to obtain a thin ion source. It requires an ion gun, a focusing lens for focusing the ion beam, and a deflecting lens for scanning the ion beam, and has a drawback that the apparatus becomes large-scale and expensive. In addition, since a thinly focused ion beam is used, the ion current is several nA or less, and there is a disadvantage that a long time is required for processing. Furthermore, since gallium ions are used as an ion beam, there is a disadvantage that processing damage to a sample is large, and a later TEM observation image is not clear.

【0004】本発明は上記の欠点を解消することを目的
になされたものであり、集束したイオンビームを用いず
に短時間で特定微小領域の断面透過電子顕微鏡(TE
M)観察試料を作製することを目的とする。更に加工の
際の試料へのダメージを低減して、特定微小領域の断面
透過電子顕微鏡(TEM)観察試料を作製することを目
的とする。また、集束イオンビームを用いないで透過電
子顕微鏡(TEM)試料を作成できる簡単な試料作成装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and a cross-sectional transmission electron microscope (TE) of a specific minute region can be obtained in a short time without using a focused ion beam.
M) The purpose is to produce an observation sample. It is another object of the present invention to produce a cross-sectional transmission electron microscope (TEM) observation sample of a specific minute region while reducing damage to the sample during processing. It is another object of the present invention to provide a simple sample preparation apparatus capable of preparing a transmission electron microscope (TEM) sample without using a focused ion beam.

【0005】[0005]

【課題を解決するための手段】この発明に係る透過電子
顕微鏡試料の作成方法は、観察試料よりもスパッタ速度
が遅い材料でマスクを予め作成する工程と、このマスク
を試料の観察箇所に載置する工程とイオンビームにより
試料を加工する工程とを有する。
According to the present invention, there is provided a method for preparing a transmission electron microscope sample, comprising the steps of: forming a mask in advance using a material having a lower sputter rate than the observation sample; And a step of processing the sample with an ion beam.

【0006】また、集束していないイオンビームを用い
て全面をスパッタ加工するものでも良い。
[0006] Alternatively, the entire surface may be sputtered using an unfocused ion beam.

【0007】また、マスクとしてカーボンナノチューブ
にタングステンを真空蒸着した細線を用いても良い。
[0007] A thin line obtained by vacuum-depositing tungsten on carbon nanotubes may be used as a mask.

【0008】また、スパッタイオンとしてアルゴンガス
を用いても良い。
Further, argon gas may be used as sputter ions.

【0009】この発明に係る断面透過電子顕微鏡の試料
の作製装置は、試料をスパッタエッチングするイオンビ
ームスパッタ室内に、試料を載置する台と、加工箇所を
観察する顕微鏡と、マスクを保持して試料表面に載置す
るX、Y、Z方向に移動可能なマニュピュレータとを備
えたものである。
An apparatus for preparing a sample of a cross-sectional transmission electron microscope according to the present invention comprises a stage for mounting a sample, a microscope for observing a processed portion, and a mask in an ion beam sputtering chamber for sputter etching the sample. And a manipulator mounted on the sample surface and movable in X, Y, and Z directions.

【0010】また、アルゴンガスイオンにより全面をス
パッタエッチングするものでも良い。
In addition, the entire surface may be sputter-etched with argon gas ions.

【0011】[0011]

【発明の実施の形態】次に、図面を参照しながら本発明
の特定微小領域断面透過電子顕微鏡観察試料の作製方法
及び作製装置について詳細に説明する。 実施の形態1 図1は本発明の一実施の形態である特定微小領域断面透
過電子顕微鏡(TEM)観察試料作製装置の構成図であ
る。マスクである保護用ワイヤ3はマニピュレータ4の
先端に取り付けられており、X方向マイクロメータ5、
Y方向マイクロメータ6、Z方向マイクロメータ7を用
いて観察試料1の観察箇所へ導かれる。その際、観察箇
所と保護用ワイヤ3の位置関係を顕微鏡12により知る
ことができる。アルゴンガスボンベ13から供給された
アルゴンガスがアノード11、カソード10間でイオン
化、加速されて真空容器8内に照射される。アルゴンガ
スの加速電圧は5kVである。観察試料1は試料台2に
固定されておりアルゴンイオンビーム9により照射され
てエッチング加工される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a method and an apparatus for manufacturing a sample of a cross section of a specific minute area observed by a transmission electron microscope according to the present invention will be described in detail with reference to the drawings. Embodiment 1 FIG. 1 is a configuration diagram of an apparatus for preparing a specimen for observation of a cross section of a specific minute area transmission electron microscope (TEM) according to an embodiment of the present invention. The protection wire 3 as a mask is attached to the tip of the manipulator 4, and the X-direction micrometer 5,
The sample is guided to the observation position of the observation sample 1 using the Y direction micrometer 6 and the Z direction micrometer 7. At this time, the positional relationship between the observation point and the protection wire 3 can be known by the microscope 12. The argon gas supplied from the argon gas cylinder 13 is ionized and accelerated between the anode 11 and the cathode 10 and irradiated into the vacuum vessel 8. The acceleration voltage of the argon gas is 5 kV. The observation sample 1 is fixed to a sample table 2 and is irradiated with an argon ion beam 9 to be etched.

【0012】図2は本発明を利用した断面TEM観察試
料の作製手順を示す斜視説明図である。マスクとしての
保護用ワイヤ3はマニピュレータ4の先端に取り付けら
れており、X、Y、Z方向のマイクロメータにより観察
箇所14に導かれる。保護用ワイヤを観察箇所14に導
いた後、アルゴンイオンビーム9により観察試料1はス
パッタされる。加速電圧5kV、イオン電流1mAのア
ルゴンイオンビーム9で1時間スパッタした後、イオン
ビームを止め、保護用ワイヤを移動させると保護用ワイ
ヤ3のためにアルゴンイオンビーム9の影になった部分
が薄い板状になって残り、この部分に断面観察箇所14
が含まれている。本観察試料をTEM内に挿入して、T
EM観察用電子線15で断面方向からTEM観察を行
う。以上により、特定微小領域の断面TEM観察が可能
となる。
FIG. 2 is an explanatory perspective view showing a procedure for producing a cross-sectional TEM observation sample using the present invention. The protection wire 3 as a mask is attached to the tip of the manipulator 4, and is guided to the observation site 14 by a micrometer in the X, Y, and Z directions. After guiding the protective wire to the observation site 14, the observation sample 1 is sputtered by the argon ion beam 9. After sputtering for 1 hour with an argon ion beam 9 having an acceleration voltage of 5 kV and an ion current of 1 mA, the ion beam is stopped and the protective wire is moved. It remains in the shape of a plate, and the cross-section observation portion 14
It is included. This observation sample is inserted into the TEM and T
TEM observation is performed from the cross-sectional direction with the electron beam 15 for EM observation. As described above, the cross-sectional TEM observation of the specific minute region becomes possible.

【0013】予め用意した観察試料よりもスパッタ速度
が遅い材料をマスクとして加工することで、タングステ
ン保護膜を形成する必要が無くなり、集束したイオンビ
ームを用いる必要が無くなる。このために細いイオンビ
ームを得るための液体ガリウムイオン源、集束レンズ、
走査レンズを備えた集束イオンビーム装置(FIB)が
不要となり、簡易な装置で短時間に特定微小領域断面T
EM観察試料が作製できる。またアルゴンイオンをスパ
ッタイオンとして用いることができ、試料加工の際のダ
メージを低減できる。
By processing using a material having a lower sputtering rate than a previously prepared observation sample as a mask, it is not necessary to form a tungsten protective film, and it is not necessary to use a focused ion beam. For this purpose, a liquid gallium ion source for obtaining a thin ion beam, a focusing lens,
A focused ion beam device (FIB) equipped with a scanning lens is not required, and the cross section of a specific minute region T
An EM observation sample can be prepared. In addition, argon ions can be used as sputter ions, so that damage during sample processing can be reduced.

【0014】図3は保護用ワイヤの作製方法を示した斜
視説明図である。カーボンナノチューブ16に真空蒸着
装置内でタングステン蒸着膜17を蒸着して保護用ワイ
ヤを得る。カーボンナノチューブの径は6nm程度であ
り、保護用ワイヤの径はタングステン蒸着膜厚の2倍と
なる。これにより加工残厚をタングステン蒸着膜により
制御できる。保護用ワイヤはマニピュレータに粘着によ
り取り付ける。以上により極細線保護ワイヤを作製す
る。
FIG. 3 is an explanatory perspective view showing a method of manufacturing a protective wire. A tungsten deposition film 17 is deposited on the carbon nanotubes 16 in a vacuum deposition apparatus to obtain a protective wire. The diameter of the carbon nanotube is about 6 nm, and the diameter of the protective wire is twice as large as the thickness of the tungsten film. Thus, the remaining processing thickness can be controlled by the tungsten deposition film. The protective wire is attached to the manipulator by adhesive. Thus, an extra fine wire protection wire is manufactured.

【0015】実施の形態2 図4は本発明の特定微小領域断面TEM観察試料作製装
置の他の実施の形態の構成図である。マスクとしての保
護用ワイヤ3はマニピュレータ4の先端に取り付けられ
ており、マニピュレータはマニピュレータ制御機構22
により観察試料1の観察箇所へ導かれる。その際、観察
箇所と保護用ワイヤ3の位置関係は走査電子顕微鏡(S
EM)18及びSEM18から照射された1次電子のエ
ネルギーにより物体から放出される2次電子を検出する
2次電子検出器19により知ることができる。20はS
EM18を制御するコンピュータ、21は2次電子検出
器からの検出信号を画像として表示するCRTである。
SEM18により観察箇所と保護用ワイヤ3の位置関係
を観察できるため、保護ワイヤ3を正確に観察位置に導
くことが可能となる。
Embodiment 2 FIG. 4 is a configuration diagram of another embodiment of the apparatus for preparing a TEM observation sample of a cross section of a specific minute region of the present invention. The protection wire 3 as a mask is attached to the tip of the manipulator 4, and the manipulator is controlled by a manipulator control mechanism 22.
Is guided to the observation site of the observation sample 1. At this time, the positional relationship between the observation point and the protective wire 3 is determined by the scanning electron microscope (S
EM) 18 and a secondary electron detector 19 that detects secondary electrons emitted from an object by the energy of the primary electrons emitted from the SEM 18. 20 is S
A computer that controls the EM 18 and a CRT 21 that displays a detection signal from the secondary electron detector as an image.
Since the positional relationship between the observation point and the protection wire 3 can be observed by the SEM 18, the protection wire 3 can be accurately guided to the observation position.

【0016】アルゴンガスボンベ13から供給されたア
ルゴンガスがアノード11、カソード10間でイオン
化、加速されて真空容器8内に照射される。アルゴンガ
スの加速電圧は5kVである。観察試料1は試料台2に
固定されておりアルゴンイオンビーム9により照射され
る。本実施例の形態を利用した断面TEM観察試料の作
製手順、保護用ワイヤ3の作製方法は図2及び図3と同
様である。
The argon gas supplied from the argon gas cylinder 13 is ionized and accelerated between the anode 11 and the cathode 10 and is irradiated into the vacuum vessel 8. The acceleration voltage of the argon gas is 5 kV. The observation sample 1 is fixed on a sample table 2 and irradiated with an argon ion beam 9. The procedure for producing a cross-sectional TEM observation sample and the method for producing the protective wire 3 using the form of this embodiment are the same as those shown in FIGS.

【0017】[0017]

【発明の効果】この発明に係る透過電子顕微鏡試料の作
成方法は、試料よりもスパッタ速度が遅い材料でマスク
を予め作成する工程と、このマスクを試料の観察箇所に
載置する工程と、マスクが載置された試料をイオンビー
ムでスパッタ加工する工程とを有しているので、集束イ
オンビーム装置は不要となり、簡単なイオンビームスパ
ッタ装置で短時間に断面透過電子顕微鏡試料を作成でき
る効果がある。
According to the method for preparing a transmission electron microscope sample according to the present invention, there are provided a step of preparing a mask in advance by using a material having a lower sputtering rate than the sample, a step of mounting the mask at an observation position of the sample, and a step of: And a step of sputtering the sample on which is mounted with an ion beam, so that a focused ion beam apparatus is not required, and the effect that a simple ion beam sputtering apparatus can prepare a cross-sectional transmission electron microscope sample in a short time can be obtained. is there.

【0018】また、スパッタイオンとしてアルゴンを用
いることが好ましい。これにより加工の際に試料に与え
るダメージを少なくできる。
Further, it is preferable to use argon as sputter ions. This can reduce damage to the sample during processing.

【0019】この発明に係る断面透過電子顕微鏡試料の
作製装置は、試料をスパッタエッチングするイオンビー
ムスパッタ室内に、試料を載置する台と、加工箇所を観
察する顕微鏡と、マスクを保持して試料表面に載置する
X、Y、Z方向に移動できるマニピュレータとを備えて
いるので、集束イオンビーム装置に比し装置構成が簡単
になる効果がある。
An apparatus for preparing a cross-sectional transmission electron microscope sample according to the present invention includes a stage for mounting a sample, a microscope for observing a processed portion, and a sample holding a mask in an ion beam sputter chamber for sputter etching the sample. Since the apparatus includes the manipulator mounted on the surface and movable in the X, Y, and Z directions, there is an effect that the apparatus configuration is simplified as compared with the focused ion beam apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の断面透過電子顕微鏡(TEM)観察
試料の作製装置の一実施の形態の構成図である。
FIG. 1 is a configuration diagram of an embodiment of an apparatus for producing a cross-sectional transmission electron microscope (TEM) observation sample of the present invention.

【図2】 本発明の断面透過電子顕微鏡(TEM)観察
試料作製手順を示す説明図である。
FIG. 2 is an explanatory view showing a procedure for preparing a cross-sectional transmission electron microscope (TEM) observation sample of the present invention.

【図3】 本発明でマスクとして用いる保護用ワイヤの
作製方法を示した説明図である。
FIG. 3 is an explanatory view showing a method for manufacturing a protective wire used as a mask in the present invention.

【図4】 本発明の断面透過電子顕微鏡(TEM)観察
試料の作製装置の他の実施の形態を示す構成図である。
FIG. 4 is a configuration diagram showing another embodiment of the apparatus for producing a cross-sectional transmission electron microscope (TEM) observation sample of the present invention.

【符号の説明】[Explanation of symbols]

1 観察試料 2 試料台 3 マスク 4 マニピュレー
タ 8 真空容器 9 アルゴンイオ
ンビーム 10 カソード 11 アノード 12 顕微鏡 14 観察箇所 16 カーボンナノチューブ 17 タングステ
ン蒸着膜
DESCRIPTION OF SYMBOLS 1 Observation sample 2 Sample stand 3 Mask 4 Manipulator 8 Vacuum container 9 Argon ion beam 10 Cathode 11 Anode 12 Microscope 14 Observation place 16 Carbon nanotube 17 Tungsten vapor deposition film

フロントページの続き (72)発明者 黒川 博志 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内(72) Inventor Hiroshi Kurokawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 特定微小領域の断面透過電子顕微鏡の試
料を作製する方法であって、試料よりもスパッタ速度が
遅い材料で予めマスクを作成する工程と、このマスクを
試料の観察箇所に載置する工程と、イオンビームを用い
てマスクが載置された試料をスパッタ加工する工程とを
有する断面透過電子顕微鏡試料の作製方法。
1. A method for producing a sample of a cross-sectional transmission electron microscope of a specific minute region, wherein a mask is prepared in advance by using a material having a lower sputtering rate than the sample, and the mask is placed on an observation position of the sample. And a step of sputtering the sample on which the mask is mounted using an ion beam.
【請求項2】 集束していないイオンビームを用いて全
面をスパッタ加工することを特徴とする請求項1記載の
断面透過電子顕微鏡試料の作製方法。
2. The method for producing a cross-sectional transmission electron microscope sample according to claim 1, wherein the entire surface is subjected to sputtering using an unfocused ion beam.
【請求項3】 マスクとしてカーボンナノチューブにタ
ングステンを真空蒸着した細線を用いることを特徴とす
る請求項1または2のいずれかに記載の断面透過電子顕
微鏡試料の作製方法。
3. The method for producing a cross-sectional transmission electron microscope sample according to claim 1, wherein a thin wire obtained by vacuum-depositing tungsten on carbon nanotubes is used as a mask.
【請求項4】 スパッタイオンとしてアルゴンを用いる
ことを特徴とする請求項1ないし3のいずれかに記載の
断面透過電子顕微鏡試料の作製方法。
4. The method for preparing a cross-sectional transmission electron microscope sample according to claim 1, wherein argon is used as sputter ions.
【請求項5】 試料をスパッタエッチングするイオンビ
ームスパッタ室内に、試料を載置する台と、加工箇所を
観察する顕微鏡と、マスクを保持して試料表面に載置す
るX、Y、Z方向に移動可能なマニュピュレータとを備
えた断面透過電子顕微鏡試料の作製装置。
5. An ion beam sputtering chamber for sputter-etching a sample, a stage for mounting the sample, a microscope for observing a processed portion, and a X-, Y-, and Z-direction for holding a mask and mounting the sample on the surface of the sample. An apparatus for producing a cross-sectional transmission electron microscope sample comprising a movable manipulator.
【請求項6】 アルゴンガスイオンにより全面をスパッ
タエッチングすることを特徴とする請求項5記載の断面
透過電子顕微鏡試料の作製装置。
6. The apparatus for preparing a cross-sectional transmission electron microscope sample according to claim 5, wherein the entire surface is sputter-etched with argon gas ions.
JP10021197A 1998-02-02 1998-02-02 Method and device for preparing sample for section transmission electron microscope Pending JPH11218473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021197A JPH11218473A (en) 1998-02-02 1998-02-02 Method and device for preparing sample for section transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021197A JPH11218473A (en) 1998-02-02 1998-02-02 Method and device for preparing sample for section transmission electron microscope

Publications (1)

Publication Number Publication Date
JPH11218473A true JPH11218473A (en) 1999-08-10

Family

ID=12048255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021197A Pending JPH11218473A (en) 1998-02-02 1998-02-02 Method and device for preparing sample for section transmission electron microscope

Country Status (1)

Country Link
JP (1) JPH11218473A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201002A (en) * 2005-01-20 2006-08-03 Jeol Ltd Sample holder, and ion beam processing device
JP2007194096A (en) * 2006-01-20 2007-08-02 Hitachi High-Technologies Corp Charged particle beam device and pick-up method of test piece using charged particle beam device
JP2008215979A (en) * 2007-03-02 2008-09-18 Jeol Ltd Mask for ion milling sample manufacturing apparatus, and the sample manufacturing device
JP2008258149A (en) * 2007-03-12 2008-10-23 Sii Nanotechnology Inc Apparatus for working and observing sample, and method of working and observing cross section
WO2013022917A3 (en) * 2011-08-08 2013-04-11 Omniprobe, Inc. Method for processing samples held by a nanomanipulator
JP2013205017A (en) * 2012-03-27 2013-10-07 Nippon Steel & Sumitomo Metal Apparatus and method for preparing minute thin film sample for transmission electron microscope
CN103645073A (en) * 2013-11-22 2014-03-19 上海华力微电子有限公司 Method for preparing TEM sample
JP2016212956A (en) * 2015-04-28 2016-12-15 株式会社日立ハイテクノロジーズ Mask, method for using mask, and ion milling device including mask
EP2487479A3 (en) * 2011-02-09 2017-07-19 Leica Mikrosysteme GmbH Device and method for preparing samples
CN112083022A (en) * 2019-06-12 2020-12-15 苏试宜特(上海)检测技术有限公司 Specific micro-area calibration method based on plane sample rotary section sample
CN112985942A (en) * 2021-02-25 2021-06-18 深圳大学 Device and method for preparing transmission electron microscope sample through micron-sized fixed-point transfer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201002A (en) * 2005-01-20 2006-08-03 Jeol Ltd Sample holder, and ion beam processing device
JP2007194096A (en) * 2006-01-20 2007-08-02 Hitachi High-Technologies Corp Charged particle beam device and pick-up method of test piece using charged particle beam device
JP2008215979A (en) * 2007-03-02 2008-09-18 Jeol Ltd Mask for ion milling sample manufacturing apparatus, and the sample manufacturing device
JP2008258149A (en) * 2007-03-12 2008-10-23 Sii Nanotechnology Inc Apparatus for working and observing sample, and method of working and observing cross section
EP2487479A3 (en) * 2011-02-09 2017-07-19 Leica Mikrosysteme GmbH Device and method for preparing samples
US8759765B2 (en) 2011-08-08 2014-06-24 Omniprobe, Inc. Method for processing samples held by a nanomanipulator
WO2013022917A3 (en) * 2011-08-08 2013-04-11 Omniprobe, Inc. Method for processing samples held by a nanomanipulator
JP2013205017A (en) * 2012-03-27 2013-10-07 Nippon Steel & Sumitomo Metal Apparatus and method for preparing minute thin film sample for transmission electron microscope
CN103645073A (en) * 2013-11-22 2014-03-19 上海华力微电子有限公司 Method for preparing TEM sample
JP2016212956A (en) * 2015-04-28 2016-12-15 株式会社日立ハイテクノロジーズ Mask, method for using mask, and ion milling device including mask
CN112083022A (en) * 2019-06-12 2020-12-15 苏试宜特(上海)检测技术有限公司 Specific micro-area calibration method based on plane sample rotary section sample
CN112083022B (en) * 2019-06-12 2024-05-24 苏试宜特(上海)检测技术股份有限公司 Specific micro-area calibration method based on plane sample-to-section sample
CN112985942A (en) * 2021-02-25 2021-06-18 深圳大学 Device and method for preparing transmission electron microscope sample through micron-sized fixed-point transfer
CN112985942B (en) * 2021-02-25 2022-10-14 深圳大学 Device and method for preparing transmission electron microscope sample through micron-sized fixed-point transfer

Similar Documents

Publication Publication Date Title
JP5600371B2 (en) Sputtering coating of protective layer for charged particle beam processing
US7002152B2 (en) Sample preparation for transmission electron microscopy
JP5086706B2 (en) Plane view sample preparation
EP1998356B1 (en) In-Situ STEM Sample Preparation
US20110163068A1 (en) Multibeam System
JP5055011B2 (en) Ion source
EP1210723B1 (en) Shaped and low density focused ion beams
US8269194B2 (en) Composite focused ion beam device, and processing observation method and processing method using the same
WO2011118744A1 (en) Composite charged-particle-beam apparatus
KR102571504B1 (en) Method for the in situ preparation of microscopic specimens
CN108666196B (en) Charged particle beam device and sample processing method
US20190259574A1 (en) Charged particle beam apparatus and sample processing observation method
JPH11218473A (en) Method and device for preparing sample for section transmission electron microscope
JP5384786B2 (en) Charged beam device and mirror body thereof
JP2000500265A (en) Ion thinning method and apparatus in high resolution transmission electron microscope
JPS62223957A (en) Hybrid charged particle optical system
JPH08329876A (en) Method and device for preparing observation specimen
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
JPH10162769A (en) Ion beam work device
JP4902712B2 (en) Atom probe analysis method
Latif Nanofabrication using focused ion beam
JPH09186138A (en) Ion beam processing apparatus
JPS6325660B2 (en)
EP4376047A2 (en) Particle beam system
JP7214262B2 (en) Charged particle beam device, sample processing method