JPH11218473A - Method and device for preparing sample for section transmission electron microscope - Google Patents
Method and device for preparing sample for section transmission electron microscopeInfo
- Publication number
- JPH11218473A JPH11218473A JP10021197A JP2119798A JPH11218473A JP H11218473 A JPH11218473 A JP H11218473A JP 10021197 A JP10021197 A JP 10021197A JP 2119798 A JP2119798 A JP 2119798A JP H11218473 A JPH11218473 A JP H11218473A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- observation
- mask
- electron microscope
- transmission electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 34
- 229910052786 argon Inorganic materials 0.000 claims abstract description 18
- 238000004544 sputter deposition Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002041 carbon nanotube Substances 0.000 claims description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 238000001659 ion-beam spectroscopy Methods 0.000 claims description 3
- 238000000992 sputter etching Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 description 13
- CKHJYUSOUQDYEN-UHFFFAOYSA-N gallium(3+) Chemical compound [Ga+3] CKHJYUSOUQDYEN-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- -1 gallium ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、透過電子顕微鏡
(TEM)観察するために、イオンビームを用いて特定
微小領域の断面試料を加工する方法及び装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for processing a cross-sectional sample of a specific minute area using an ion beam for observation with a transmission electron microscope (TEM).
【0002】[0002]
【従来の技術】特定微小領域断面TEM観察試料作製に
おける従来技術は、液体ガリウムイオン源、イオンビー
ムを集束する集束レンズ、イオンビームを走査する偏向
レンズ、保護膜を作製するタングステンを含む有機金属
ガス、試料移動機構、を備えた集束イオンビーム装置
(FIB)を用いる。まず、試料表面に有機金属ガスを
導入・付着させ、数十nmに集束させたガリウムイオン
ビームを観察箇所に走査し、ガリウムイオンビームのエ
ネルギーにより観察箇所付近で有機金属ガスを分解さ
せ、観察箇所付近の表面にタングステン保護膜を形成す
る。その後、数十nmに集束させたガリウムイオンビー
ムを観察箇所の周囲に走査して試料をスパッタし、観察
箇所のみを厚さ100nm程度残して断面TEM観察可
能な試料とする。2. Description of the Related Art Conventional techniques for preparing a TEM observation sample of a cross section of a specific minute area include a liquid gallium ion source, a focusing lens for focusing an ion beam, a deflection lens for scanning an ion beam, and an organic metal gas containing tungsten for forming a protective film. A focused ion beam apparatus (FIB) having a sample moving mechanism is used. First, an organometallic gas is introduced and adhered to the sample surface, and a gallium ion beam focused to several tens of nanometers is scanned over an observation location, and the organometallic gas is decomposed near the observation location by the energy of the gallium ion beam. A tungsten protective film is formed on a nearby surface. After that, the sample is sputtered by scanning the gallium ion beam focused to several tens of nm around the observation point, and a cross-section TEM observation sample is obtained while leaving only the observation point at a thickness of about 100 nm.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来技
術はタングステン保護膜の形成及び試料のスパッタ加工
に集束させたイオンビームを用いる必要があるため、細
いイオン源を得るためのガリウム液体金属を用いたイオ
ン銃、イオンビームを集束させる集束レンズ、イオンビ
ームを走査させる偏向レンズを必要とし、装置が大規模
・高価なものになる欠点があった。また、細く集束させ
たイオンビームを用いるためイオン電流が数nA以下
で、加工に長時間を要する欠点があった。更に、イオン
ビームとしてガリウムイオンを用いるため試料への加工
ダメージが大きく、後のTEM観察像が鮮明でなくなる
欠点もあった。However, in the prior art, it is necessary to use a focused ion beam for the formation of a tungsten protective film and the sputtering of a sample. Therefore, a gallium liquid metal is used to obtain a thin ion source. It requires an ion gun, a focusing lens for focusing the ion beam, and a deflecting lens for scanning the ion beam, and has a drawback that the apparatus becomes large-scale and expensive. In addition, since a thinly focused ion beam is used, the ion current is several nA or less, and there is a disadvantage that a long time is required for processing. Furthermore, since gallium ions are used as an ion beam, there is a disadvantage that processing damage to a sample is large, and a later TEM observation image is not clear.
【0004】本発明は上記の欠点を解消することを目的
になされたものであり、集束したイオンビームを用いず
に短時間で特定微小領域の断面透過電子顕微鏡(TE
M)観察試料を作製することを目的とする。更に加工の
際の試料へのダメージを低減して、特定微小領域の断面
透過電子顕微鏡(TEM)観察試料を作製することを目
的とする。また、集束イオンビームを用いないで透過電
子顕微鏡(TEM)試料を作成できる簡単な試料作成装
置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and a cross-sectional transmission electron microscope (TE) of a specific minute region can be obtained in a short time without using a focused ion beam.
M) The purpose is to produce an observation sample. It is another object of the present invention to produce a cross-sectional transmission electron microscope (TEM) observation sample of a specific minute region while reducing damage to the sample during processing. It is another object of the present invention to provide a simple sample preparation apparatus capable of preparing a transmission electron microscope (TEM) sample without using a focused ion beam.
【0005】[0005]
【課題を解決するための手段】この発明に係る透過電子
顕微鏡試料の作成方法は、観察試料よりもスパッタ速度
が遅い材料でマスクを予め作成する工程と、このマスク
を試料の観察箇所に載置する工程とイオンビームにより
試料を加工する工程とを有する。According to the present invention, there is provided a method for preparing a transmission electron microscope sample, comprising the steps of: forming a mask in advance using a material having a lower sputter rate than the observation sample; And a step of processing the sample with an ion beam.
【0006】また、集束していないイオンビームを用い
て全面をスパッタ加工するものでも良い。[0006] Alternatively, the entire surface may be sputtered using an unfocused ion beam.
【0007】また、マスクとしてカーボンナノチューブ
にタングステンを真空蒸着した細線を用いても良い。[0007] A thin line obtained by vacuum-depositing tungsten on carbon nanotubes may be used as a mask.
【0008】また、スパッタイオンとしてアルゴンガス
を用いても良い。Further, argon gas may be used as sputter ions.
【0009】この発明に係る断面透過電子顕微鏡の試料
の作製装置は、試料をスパッタエッチングするイオンビ
ームスパッタ室内に、試料を載置する台と、加工箇所を
観察する顕微鏡と、マスクを保持して試料表面に載置す
るX、Y、Z方向に移動可能なマニュピュレータとを備
えたものである。An apparatus for preparing a sample of a cross-sectional transmission electron microscope according to the present invention comprises a stage for mounting a sample, a microscope for observing a processed portion, and a mask in an ion beam sputtering chamber for sputter etching the sample. And a manipulator mounted on the sample surface and movable in X, Y, and Z directions.
【0010】また、アルゴンガスイオンにより全面をス
パッタエッチングするものでも良い。In addition, the entire surface may be sputter-etched with argon gas ions.
【0011】[0011]
【発明の実施の形態】次に、図面を参照しながら本発明
の特定微小領域断面透過電子顕微鏡観察試料の作製方法
及び作製装置について詳細に説明する。 実施の形態1 図1は本発明の一実施の形態である特定微小領域断面透
過電子顕微鏡(TEM)観察試料作製装置の構成図であ
る。マスクである保護用ワイヤ3はマニピュレータ4の
先端に取り付けられており、X方向マイクロメータ5、
Y方向マイクロメータ6、Z方向マイクロメータ7を用
いて観察試料1の観察箇所へ導かれる。その際、観察箇
所と保護用ワイヤ3の位置関係を顕微鏡12により知る
ことができる。アルゴンガスボンベ13から供給された
アルゴンガスがアノード11、カソード10間でイオン
化、加速されて真空容器8内に照射される。アルゴンガ
スの加速電圧は5kVである。観察試料1は試料台2に
固定されておりアルゴンイオンビーム9により照射され
てエッチング加工される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a method and an apparatus for manufacturing a sample of a cross section of a specific minute area observed by a transmission electron microscope according to the present invention will be described in detail with reference to the drawings. Embodiment 1 FIG. 1 is a configuration diagram of an apparatus for preparing a specimen for observation of a cross section of a specific minute area transmission electron microscope (TEM) according to an embodiment of the present invention. The protection wire 3 as a mask is attached to the tip of the manipulator 4, and the X-direction micrometer 5,
The sample is guided to the observation position of the observation sample 1 using the Y direction micrometer 6 and the Z direction micrometer 7. At this time, the positional relationship between the observation point and the protection wire 3 can be known by the microscope 12. The argon gas supplied from the argon gas cylinder 13 is ionized and accelerated between the anode 11 and the cathode 10 and irradiated into the vacuum vessel 8. The acceleration voltage of the argon gas is 5 kV. The observation sample 1 is fixed to a sample table 2 and is irradiated with an argon ion beam 9 to be etched.
【0012】図2は本発明を利用した断面TEM観察試
料の作製手順を示す斜視説明図である。マスクとしての
保護用ワイヤ3はマニピュレータ4の先端に取り付けら
れており、X、Y、Z方向のマイクロメータにより観察
箇所14に導かれる。保護用ワイヤを観察箇所14に導
いた後、アルゴンイオンビーム9により観察試料1はス
パッタされる。加速電圧5kV、イオン電流1mAのア
ルゴンイオンビーム9で1時間スパッタした後、イオン
ビームを止め、保護用ワイヤを移動させると保護用ワイ
ヤ3のためにアルゴンイオンビーム9の影になった部分
が薄い板状になって残り、この部分に断面観察箇所14
が含まれている。本観察試料をTEM内に挿入して、T
EM観察用電子線15で断面方向からTEM観察を行
う。以上により、特定微小領域の断面TEM観察が可能
となる。FIG. 2 is an explanatory perspective view showing a procedure for producing a cross-sectional TEM observation sample using the present invention. The protection wire 3 as a mask is attached to the tip of the manipulator 4, and is guided to the observation site 14 by a micrometer in the X, Y, and Z directions. After guiding the protective wire to the observation site 14, the observation sample 1 is sputtered by the argon ion beam 9. After sputtering for 1 hour with an argon ion beam 9 having an acceleration voltage of 5 kV and an ion current of 1 mA, the ion beam is stopped and the protective wire is moved. It remains in the shape of a plate, and the cross-section observation portion 14
It is included. This observation sample is inserted into the TEM and T
TEM observation is performed from the cross-sectional direction with the electron beam 15 for EM observation. As described above, the cross-sectional TEM observation of the specific minute region becomes possible.
【0013】予め用意した観察試料よりもスパッタ速度
が遅い材料をマスクとして加工することで、タングステ
ン保護膜を形成する必要が無くなり、集束したイオンビ
ームを用いる必要が無くなる。このために細いイオンビ
ームを得るための液体ガリウムイオン源、集束レンズ、
走査レンズを備えた集束イオンビーム装置(FIB)が
不要となり、簡易な装置で短時間に特定微小領域断面T
EM観察試料が作製できる。またアルゴンイオンをスパ
ッタイオンとして用いることができ、試料加工の際のダ
メージを低減できる。By processing using a material having a lower sputtering rate than a previously prepared observation sample as a mask, it is not necessary to form a tungsten protective film, and it is not necessary to use a focused ion beam. For this purpose, a liquid gallium ion source for obtaining a thin ion beam, a focusing lens,
A focused ion beam device (FIB) equipped with a scanning lens is not required, and the cross section of a specific minute region T
An EM observation sample can be prepared. In addition, argon ions can be used as sputter ions, so that damage during sample processing can be reduced.
【0014】図3は保護用ワイヤの作製方法を示した斜
視説明図である。カーボンナノチューブ16に真空蒸着
装置内でタングステン蒸着膜17を蒸着して保護用ワイ
ヤを得る。カーボンナノチューブの径は6nm程度であ
り、保護用ワイヤの径はタングステン蒸着膜厚の2倍と
なる。これにより加工残厚をタングステン蒸着膜により
制御できる。保護用ワイヤはマニピュレータに粘着によ
り取り付ける。以上により極細線保護ワイヤを作製す
る。FIG. 3 is an explanatory perspective view showing a method of manufacturing a protective wire. A tungsten deposition film 17 is deposited on the carbon nanotubes 16 in a vacuum deposition apparatus to obtain a protective wire. The diameter of the carbon nanotube is about 6 nm, and the diameter of the protective wire is twice as large as the thickness of the tungsten film. Thus, the remaining processing thickness can be controlled by the tungsten deposition film. The protective wire is attached to the manipulator by adhesive. Thus, an extra fine wire protection wire is manufactured.
【0015】実施の形態2 図4は本発明の特定微小領域断面TEM観察試料作製装
置の他の実施の形態の構成図である。マスクとしての保
護用ワイヤ3はマニピュレータ4の先端に取り付けられ
ており、マニピュレータはマニピュレータ制御機構22
により観察試料1の観察箇所へ導かれる。その際、観察
箇所と保護用ワイヤ3の位置関係は走査電子顕微鏡(S
EM)18及びSEM18から照射された1次電子のエ
ネルギーにより物体から放出される2次電子を検出する
2次電子検出器19により知ることができる。20はS
EM18を制御するコンピュータ、21は2次電子検出
器からの検出信号を画像として表示するCRTである。
SEM18により観察箇所と保護用ワイヤ3の位置関係
を観察できるため、保護ワイヤ3を正確に観察位置に導
くことが可能となる。Embodiment 2 FIG. 4 is a configuration diagram of another embodiment of the apparatus for preparing a TEM observation sample of a cross section of a specific minute region of the present invention. The protection wire 3 as a mask is attached to the tip of the manipulator 4, and the manipulator is controlled by a manipulator control mechanism 22.
Is guided to the observation site of the observation sample 1. At this time, the positional relationship between the observation point and the protective wire 3 is determined by the scanning electron microscope (S
EM) 18 and a secondary electron detector 19 that detects secondary electrons emitted from an object by the energy of the primary electrons emitted from the SEM 18. 20 is S
A computer that controls the EM 18 and a CRT 21 that displays a detection signal from the secondary electron detector as an image.
Since the positional relationship between the observation point and the protection wire 3 can be observed by the SEM 18, the protection wire 3 can be accurately guided to the observation position.
【0016】アルゴンガスボンベ13から供給されたア
ルゴンガスがアノード11、カソード10間でイオン
化、加速されて真空容器8内に照射される。アルゴンガ
スの加速電圧は5kVである。観察試料1は試料台2に
固定されておりアルゴンイオンビーム9により照射され
る。本実施例の形態を利用した断面TEM観察試料の作
製手順、保護用ワイヤ3の作製方法は図2及び図3と同
様である。The argon gas supplied from the argon gas cylinder 13 is ionized and accelerated between the anode 11 and the cathode 10 and is irradiated into the vacuum vessel 8. The acceleration voltage of the argon gas is 5 kV. The observation sample 1 is fixed on a sample table 2 and irradiated with an argon ion beam 9. The procedure for producing a cross-sectional TEM observation sample and the method for producing the protective wire 3 using the form of this embodiment are the same as those shown in FIGS.
【0017】[0017]
【発明の効果】この発明に係る透過電子顕微鏡試料の作
成方法は、試料よりもスパッタ速度が遅い材料でマスク
を予め作成する工程と、このマスクを試料の観察箇所に
載置する工程と、マスクが載置された試料をイオンビー
ムでスパッタ加工する工程とを有しているので、集束イ
オンビーム装置は不要となり、簡単なイオンビームスパ
ッタ装置で短時間に断面透過電子顕微鏡試料を作成でき
る効果がある。According to the method for preparing a transmission electron microscope sample according to the present invention, there are provided a step of preparing a mask in advance by using a material having a lower sputtering rate than the sample, a step of mounting the mask at an observation position of the sample, and a step of: And a step of sputtering the sample on which is mounted with an ion beam, so that a focused ion beam apparatus is not required, and the effect that a simple ion beam sputtering apparatus can prepare a cross-sectional transmission electron microscope sample in a short time can be obtained. is there.
【0018】また、スパッタイオンとしてアルゴンを用
いることが好ましい。これにより加工の際に試料に与え
るダメージを少なくできる。Further, it is preferable to use argon as sputter ions. This can reduce damage to the sample during processing.
【0019】この発明に係る断面透過電子顕微鏡試料の
作製装置は、試料をスパッタエッチングするイオンビー
ムスパッタ室内に、試料を載置する台と、加工箇所を観
察する顕微鏡と、マスクを保持して試料表面に載置する
X、Y、Z方向に移動できるマニピュレータとを備えて
いるので、集束イオンビーム装置に比し装置構成が簡単
になる効果がある。An apparatus for preparing a cross-sectional transmission electron microscope sample according to the present invention includes a stage for mounting a sample, a microscope for observing a processed portion, and a sample holding a mask in an ion beam sputter chamber for sputter etching the sample. Since the apparatus includes the manipulator mounted on the surface and movable in the X, Y, and Z directions, there is an effect that the apparatus configuration is simplified as compared with the focused ion beam apparatus.
【図1】 本発明の断面透過電子顕微鏡(TEM)観察
試料の作製装置の一実施の形態の構成図である。FIG. 1 is a configuration diagram of an embodiment of an apparatus for producing a cross-sectional transmission electron microscope (TEM) observation sample of the present invention.
【図2】 本発明の断面透過電子顕微鏡(TEM)観察
試料作製手順を示す説明図である。FIG. 2 is an explanatory view showing a procedure for preparing a cross-sectional transmission electron microscope (TEM) observation sample of the present invention.
【図3】 本発明でマスクとして用いる保護用ワイヤの
作製方法を示した説明図である。FIG. 3 is an explanatory view showing a method for manufacturing a protective wire used as a mask in the present invention.
【図4】 本発明の断面透過電子顕微鏡(TEM)観察
試料の作製装置の他の実施の形態を示す構成図である。FIG. 4 is a configuration diagram showing another embodiment of the apparatus for producing a cross-sectional transmission electron microscope (TEM) observation sample of the present invention.
1 観察試料 2 試料台 3 マスク 4 マニピュレー
タ 8 真空容器 9 アルゴンイオ
ンビーム 10 カソード 11 アノード 12 顕微鏡 14 観察箇所 16 カーボンナノチューブ 17 タングステ
ン蒸着膜DESCRIPTION OF SYMBOLS 1 Observation sample 2 Sample stand 3 Mask 4 Manipulator 8 Vacuum container 9 Argon ion beam 10 Cathode 11 Anode 12 Microscope 14 Observation place 16 Carbon nanotube 17 Tungsten vapor deposition film
フロントページの続き (72)発明者 黒川 博志 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内(72) Inventor Hiroshi Kurokawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation
Claims (6)
料を作製する方法であって、試料よりもスパッタ速度が
遅い材料で予めマスクを作成する工程と、このマスクを
試料の観察箇所に載置する工程と、イオンビームを用い
てマスクが載置された試料をスパッタ加工する工程とを
有する断面透過電子顕微鏡試料の作製方法。1. A method for producing a sample of a cross-sectional transmission electron microscope of a specific minute region, wherein a mask is prepared in advance by using a material having a lower sputtering rate than the sample, and the mask is placed on an observation position of the sample. And a step of sputtering the sample on which the mask is mounted using an ion beam.
面をスパッタ加工することを特徴とする請求項1記載の
断面透過電子顕微鏡試料の作製方法。2. The method for producing a cross-sectional transmission electron microscope sample according to claim 1, wherein the entire surface is subjected to sputtering using an unfocused ion beam.
ングステンを真空蒸着した細線を用いることを特徴とす
る請求項1または2のいずれかに記載の断面透過電子顕
微鏡試料の作製方法。3. The method for producing a cross-sectional transmission electron microscope sample according to claim 1, wherein a thin wire obtained by vacuum-depositing tungsten on carbon nanotubes is used as a mask.
ことを特徴とする請求項1ないし3のいずれかに記載の
断面透過電子顕微鏡試料の作製方法。4. The method for preparing a cross-sectional transmission electron microscope sample according to claim 1, wherein argon is used as sputter ions.
ームスパッタ室内に、試料を載置する台と、加工箇所を
観察する顕微鏡と、マスクを保持して試料表面に載置す
るX、Y、Z方向に移動可能なマニュピュレータとを備
えた断面透過電子顕微鏡試料の作製装置。5. An ion beam sputtering chamber for sputter-etching a sample, a stage for mounting the sample, a microscope for observing a processed portion, and a X-, Y-, and Z-direction for holding a mask and mounting the sample on the surface of the sample. An apparatus for producing a cross-sectional transmission electron microscope sample comprising a movable manipulator.
タエッチングすることを特徴とする請求項5記載の断面
透過電子顕微鏡試料の作製装置。6. The apparatus for preparing a cross-sectional transmission electron microscope sample according to claim 5, wherein the entire surface is sputter-etched with argon gas ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10021197A JPH11218473A (en) | 1998-02-02 | 1998-02-02 | Method and device for preparing sample for section transmission electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10021197A JPH11218473A (en) | 1998-02-02 | 1998-02-02 | Method and device for preparing sample for section transmission electron microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11218473A true JPH11218473A (en) | 1999-08-10 |
Family
ID=12048255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10021197A Pending JPH11218473A (en) | 1998-02-02 | 1998-02-02 | Method and device for preparing sample for section transmission electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11218473A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006201002A (en) * | 2005-01-20 | 2006-08-03 | Jeol Ltd | Sample holder, and ion beam processing device |
JP2007194096A (en) * | 2006-01-20 | 2007-08-02 | Hitachi High-Technologies Corp | Charged particle beam device and pick-up method of test piece using charged particle beam device |
JP2008215979A (en) * | 2007-03-02 | 2008-09-18 | Jeol Ltd | Mask for ion milling sample manufacturing apparatus, and the sample manufacturing device |
JP2008258149A (en) * | 2007-03-12 | 2008-10-23 | Sii Nanotechnology Inc | Apparatus for working and observing sample, and method of working and observing cross section |
WO2013022917A3 (en) * | 2011-08-08 | 2013-04-11 | Omniprobe, Inc. | Method for processing samples held by a nanomanipulator |
JP2013205017A (en) * | 2012-03-27 | 2013-10-07 | Nippon Steel & Sumitomo Metal | Apparatus and method for preparing minute thin film sample for transmission electron microscope |
CN103645073A (en) * | 2013-11-22 | 2014-03-19 | 上海华力微电子有限公司 | Method for preparing TEM sample |
JP2016212956A (en) * | 2015-04-28 | 2016-12-15 | 株式会社日立ハイテクノロジーズ | Mask, method for using mask, and ion milling device including mask |
EP2487479A3 (en) * | 2011-02-09 | 2017-07-19 | Leica Mikrosysteme GmbH | Device and method for preparing samples |
CN112083022A (en) * | 2019-06-12 | 2020-12-15 | 苏试宜特(上海)检测技术有限公司 | Specific micro-area calibration method based on plane sample rotary section sample |
CN112985942A (en) * | 2021-02-25 | 2021-06-18 | 深圳大学 | Device and method for preparing transmission electron microscope sample through micron-sized fixed-point transfer |
-
1998
- 1998-02-02 JP JP10021197A patent/JPH11218473A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006201002A (en) * | 2005-01-20 | 2006-08-03 | Jeol Ltd | Sample holder, and ion beam processing device |
JP2007194096A (en) * | 2006-01-20 | 2007-08-02 | Hitachi High-Technologies Corp | Charged particle beam device and pick-up method of test piece using charged particle beam device |
JP2008215979A (en) * | 2007-03-02 | 2008-09-18 | Jeol Ltd | Mask for ion milling sample manufacturing apparatus, and the sample manufacturing device |
JP2008258149A (en) * | 2007-03-12 | 2008-10-23 | Sii Nanotechnology Inc | Apparatus for working and observing sample, and method of working and observing cross section |
EP2487479A3 (en) * | 2011-02-09 | 2017-07-19 | Leica Mikrosysteme GmbH | Device and method for preparing samples |
US8759765B2 (en) | 2011-08-08 | 2014-06-24 | Omniprobe, Inc. | Method for processing samples held by a nanomanipulator |
WO2013022917A3 (en) * | 2011-08-08 | 2013-04-11 | Omniprobe, Inc. | Method for processing samples held by a nanomanipulator |
JP2013205017A (en) * | 2012-03-27 | 2013-10-07 | Nippon Steel & Sumitomo Metal | Apparatus and method for preparing minute thin film sample for transmission electron microscope |
CN103645073A (en) * | 2013-11-22 | 2014-03-19 | 上海华力微电子有限公司 | Method for preparing TEM sample |
JP2016212956A (en) * | 2015-04-28 | 2016-12-15 | 株式会社日立ハイテクノロジーズ | Mask, method for using mask, and ion milling device including mask |
CN112083022A (en) * | 2019-06-12 | 2020-12-15 | 苏试宜特(上海)检测技术有限公司 | Specific micro-area calibration method based on plane sample rotary section sample |
CN112083022B (en) * | 2019-06-12 | 2024-05-24 | 苏试宜特(上海)检测技术股份有限公司 | Specific micro-area calibration method based on plane sample-to-section sample |
CN112985942A (en) * | 2021-02-25 | 2021-06-18 | 深圳大学 | Device and method for preparing transmission electron microscope sample through micron-sized fixed-point transfer |
CN112985942B (en) * | 2021-02-25 | 2022-10-14 | 深圳大学 | Device and method for preparing transmission electron microscope sample through micron-sized fixed-point transfer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5600371B2 (en) | Sputtering coating of protective layer for charged particle beam processing | |
US7002152B2 (en) | Sample preparation for transmission electron microscopy | |
JP5086706B2 (en) | Plane view sample preparation | |
EP1998356B1 (en) | In-Situ STEM Sample Preparation | |
US20110163068A1 (en) | Multibeam System | |
JP5055011B2 (en) | Ion source | |
EP1210723B1 (en) | Shaped and low density focused ion beams | |
US8269194B2 (en) | Composite focused ion beam device, and processing observation method and processing method using the same | |
WO2011118744A1 (en) | Composite charged-particle-beam apparatus | |
KR102571504B1 (en) | Method for the in situ preparation of microscopic specimens | |
CN108666196B (en) | Charged particle beam device and sample processing method | |
US20190259574A1 (en) | Charged particle beam apparatus and sample processing observation method | |
JPH11218473A (en) | Method and device for preparing sample for section transmission electron microscope | |
JP5384786B2 (en) | Charged beam device and mirror body thereof | |
JP2000500265A (en) | Ion thinning method and apparatus in high resolution transmission electron microscope | |
JPS62223957A (en) | Hybrid charged particle optical system | |
JPH08329876A (en) | Method and device for preparing observation specimen | |
US7180061B2 (en) | Method for electron beam-initiated coating for application of transmission electron microscopy | |
JPH10162769A (en) | Ion beam work device | |
JP4902712B2 (en) | Atom probe analysis method | |
Latif | Nanofabrication using focused ion beam | |
JPH09186138A (en) | Ion beam processing apparatus | |
JPS6325660B2 (en) | ||
EP4376047A2 (en) | Particle beam system | |
JP7214262B2 (en) | Charged particle beam device, sample processing method |