JPH1069910A - Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery - Google Patents
Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary batteryInfo
- Publication number
- JPH1069910A JPH1069910A JP8325932A JP32593296A JPH1069910A JP H1069910 A JPH1069910 A JP H1069910A JP 8325932 A JP8325932 A JP 8325932A JP 32593296 A JP32593296 A JP 32593296A JP H1069910 A JPH1069910 A JP H1069910A
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- mol
- lithium
- aqueous solution
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、充放電容量が高
く、サイクル数の増加によっても容量の低下の少ない、
安定性に優れた新規なリチウムニッケル複合酸化物、そ
の製造方法及び二次電池用正極活物質に関する。BACKGROUND OF THE INVENTION The present invention relates to a high charge / discharge capacity and a small decrease in capacity even when the number of cycles is increased.
The present invention relates to a novel lithium nickel composite oxide having excellent stability, a method for producing the same, and a positive electrode active material for a secondary battery.
【0002】[0002]
【従来の技術】近年、小型電子機器類の携帯化に伴い、
ニッケル/カドニウム電池に代わる小型軽量で高エネル
ギー密度を有するリチウム二次電池の需要が高まってい
る。2. Description of the Related Art In recent years, as portable electronic devices have become more portable,
There is an increasing demand for a lithium secondary battery that is small and lightweight and has a high energy density in place of a nickel / cadmium battery.
【0003】かかるリチウム二次電池に使用し得る正極
活物質としては、リチウムをインタカレートおよびデイ
ンタカレートすることができる層状化合物であるLiC
oO2やLiNiO2が知られている。その中でも、Li
NiO2はLiCoO2より高電気容量であるため期待さ
れている。As a positive electrode active material that can be used in such a lithium secondary battery, LiC which is a layered compound capable of intercalating and deintercalating lithium is used.
oO 2 and LiNiO 2 are known. Among them, Li
NiO 2 is expected because of its higher electric capacity than LiCoO 2 .
【0004】通常、LiNiO2はLi成分(LiOH、
Li2CO3、LiNO3等)と、Ni成分(水酸化物、炭
酸化物等)とをそれぞれ粉末形態で混合した後反応させ
るいわゆる乾式法によって製造されるため、長時間高温
焼成する必要があり、特に、Niの場合は、2価から3
価になり難く、長時間高温焼成が必須となる。その結果
結晶成長は進むが、その反面Liの揮散があったり、N
iOの副生が生じて純度の低下を来す。Usually, LiNiO 2 is composed of a Li component (LiOH,
And Li 2 CO 3, LiNO 3, etc.), because it is produced by the so-called dry method of reacting after mixing Ni component (hydroxides, carbonates, etc.) and to a respective powder form, it must be long high temperature firing In particular, in the case of Ni, divalent to trivalent
It is difficult to obtain a high value, and high-temperature firing for a long time is essential. As a result, crystal growth proceeds, but on the other hand, there is volatilization of Li or N
The purity of iO is reduced due to by-products of iO.
【0005】これに対し、先に本発明者は、特願平6−
80895号発明(特開平8−130013号公報)に
於いて、湿式法を用いて均一なLi成分とNi成分の前
駆体を作ることにより短時間焼成で、高純度且つ結晶性
の高いLiNiO2を製造することに成功した。On the other hand, the inventor of the present invention has disclosed in Japanese Patent Application No. Hei.
In the invention of No. 80895 (JP-A-8-130013), LiNiO 2 of high purity and high crystallinity can be produced in a short time by producing a uniform precursor of Li component and Ni component using a wet method. Succeeded in manufacturing.
【0006】しかしながらLiNiO2では、多くのL
iが脱離すると(充電時)、二次元構造であるため構造
が不安定となり、このためLi二次電池のサイクル性が
悪いという本質的な問題を完全に克服することはできな
かった。従って、特願平6−80895号の技術を用い
ても、ある程度サイクル特性の改善効果は認められた
が、100サイクル以上の長期サイクル特性に於いては
まだ不充分であった。このようなことから、Niの一部
を他の成分(第三成分)で置き換え構造を安定化する試み
は多数行われている。例えば、特開昭63−29905
6号公報には、Coを固溶させたLiyNixCo1-xO2
(但し、式中、xは0<x≦0.75であり、yはy≦1
である)、また特開平5−283076号公報には、L
iNiO2にTi、V、Mn又はFeを固溶させたLiy
Ni1-xMexO2(式中、MeはTi、V、Mn及びFe
のうちのいずれかを示し、xは0<x<0.6であり、
yは0.2<y≦1.3である)示される正極活物質が
それぞれ開示されている。However, in LiNiO 2 , many L
When i is desorbed (during charging), the structure becomes unstable due to the two-dimensional structure, so that the essential problem of poor cyclability of the Li secondary battery could not be completely overcome. Therefore, even if the technique of Japanese Patent Application No. 6-80895 was used, the effect of improving the cycle characteristics was recognized to some extent, but the long-term cycle characteristics of 100 cycles or more were still insufficient. For this reason, many attempts have been made to stabilize the structure by replacing a part of Ni with another component (third component). For example, JP-A-63-29905
No. 6 discloses Li y Ni x Co 1-x O 2 in which Co is dissolved.
(Where x is 0 <x ≦ 0.75, and y is y ≦ 1
And JP-A-5-283076 discloses L.
Li y in which Ti, V, Mn or Fe is dissolved in iNiO 2
Ni 1-x Me x O 2 (where Me is Ti, V, Mn and Fe
X is 0 <x <0.6, and
(y is 0.2 <y ≦ 1.3).
【0007】しかしながら、これら第三成分を固溶させ
る方法も、上記乾式法というべき方法で行っており、第
三成分を均一に固溶させることは困難であり、どうして
も第三成分の量を増やしたり、高温長時間焼成、何回か
の粉砕工程等を施す必要がでてくる。このため、前記L
iNiO2と同様にLiの揮散があったり、NiOの副
生が生じて純度が低下するためサイクル性の改善が充分
ではなかった。また、乾式法は、長時間焼成、粉砕工程
等が必要なため生産効率の悪い不経済な方法であった。[0007] However, the method of dissolving the third component is also performed by a method called the above-mentioned dry method, and it is difficult to uniformly dissolve the third component. In addition, it is necessary to perform high-temperature and long-time firing, and to perform several pulverizing steps. For this reason, the L
As in the case of iNiO 2 , Li was volatilized and NiO was produced as a by-product to lower the purity, so that the cycleability was not sufficiently improved. In addition, the dry method is an uneconomical method with poor production efficiency due to the necessity of a long-time firing and pulverization step.
【0008】しかも、これら乾式法では、どうしても焼
成時間が長くなるため、結晶化度と純度とを高く保ちな
がら、粒度の大きさを自在に調整することは不可能であ
った。[0008] In addition, in these dry methods, since the calcination time is inevitably long, it is impossible to freely adjust the particle size while keeping the crystallinity and purity high.
【0009】このような中で充填密度を高くするため球
状物を作ろうとする試みはなされており、例えば特開平
7−105950号公報では、球状のNi(OH)2を用
いて、5μm〜50μmのLiNiO2球状粒子を製造
することが開示されている。この技術は、単に充填密度
を高める目的で、出発原料として球状のNi(OH)2を
用い、そのまま乾式法で球状のLiNiO2を得る技術で
あり、特にLiNiO2としての一次粒子径及び純度に留
意したものではなく、満足できるものではなかった。特
開平6−333562号公報ではミストドライ法を用
い、0.1〜1.1μmの球状物を製造する技術が開示さ
れている。この技術では、粒径が細かすぎて電池に使用
した場合、セパレータを通過してしまう等電池として実
用的でないこと、特にLiNiO2の場合には、一次粒子
が細かすぎると貯蔵安定性が貧弱であり、そのため吸湿
して良好な電池特性を安定して出せない等の問題を有し
ていた。In such a situation, attempts have been made to produce a spherical material in order to increase the packing density. For example, in Japanese Patent Application Laid-Open No. Hei 7-105950, spherical Ni (OH) 2 To produce LiNiO 2 spherical particles. This technique uses spherical Ni (OH) 2 as a starting material and obtains LiNiO 2 in a spherical form by a dry method for the purpose of simply increasing the packing density. In particular, the primary particle diameter and purity of LiNiO 2 are reduced. It was not something to keep in mind and was not satisfactory. Japanese Patent Application Laid-Open No. Hei 6-333562 discloses a technique for producing spherical products having a diameter of 0.1 to 1.1 μm by using a mist dry method. In this technique, when used in a battery because the particle size is too small, it is not practical as a battery, such as passing through a separator. In particular, in the case of LiNiO 2 , storage stability is poor if primary particles are too small. Therefore, there has been a problem that moisture absorption causes a failure to stably provide good battery characteristics.
【0010】さらに、高温下、例えば自動車の車内等に
日中放置すると、常温に戻しても正極活物質の劣化が大
きく、放電性能が悪くなり、電池としての性能が大きく
低下することが知られている。[0010] Further, it is known that when left at high temperatures, for example, in a car, during the daytime, even when the temperature is returned to normal temperature, the positive electrode active material is greatly deteriorated, the discharge performance is deteriorated, and the performance as a battery is greatly reduced. ing.
【0011】高温下での正極活物質の劣化を防止する方
法として、一次粒子径が細かいほど劣化が顕著であるこ
とから、活物質の一次粒子径をいかに大きくするかが注
目されている。As a method of preventing the deterioration of the positive electrode active material at a high temperature, since the smaller the primary particle diameter is, the more remarkable the deterioration is, attention has been paid to how to increase the primary particle diameter of the active material.
【0012】正極活物質の一次粒子径を大きくし、高温
での貯蔵安定性あるいは放電特性を改良する方法として
は、例えば、LiCoO2系では、焼成条件の改良によ
り一次粒子径を大きくする試みが報告されている〔特開
平6−243897号公報(0.1〜2.0μm)、特
開平6−325791号公報(0.01〜5μm)およ
び特開平7−14579号公報(0.01〜5μ
m)〕。As a method of increasing the primary particle diameter of the positive electrode active material and improving the storage stability or discharge characteristics at high temperatures, for example, in the case of LiCoO 2 , attempts have been made to increase the primary particle diameter by improving the firing conditions. JP-A-6-243897 (0.1-2.0 μm), JP-A-6-325793 (0.01-5 μm) and JP-A-7-14579 (0.01-5 μm)
m)].
【0013】また特開平8−55624号公報では、原
料ソースに酸化Biを加えることにより、結晶子の平均
径を2μm以上としている等LiCoO2系では一次粒
子径を大きくすることは容易である。In Japanese Patent Application Laid-Open No. 8-55624, it is easy to increase the primary particle diameter in a LiCoO 2 system, for example, by adding Bi oxide to a raw material source to make the average diameter of crystallites 2 μm or more.
【0014】一方、LiNiO2系ではこのような一次粒
子を大きく成長させた例は未だ見あたらない。この理由
は前述した如く、LiNiO2あるいは第三成分(M)を
加えたLiyNi1-xMxO2の合成においては反応性が悪
いため、目的物を得るためには高温で長時間焼成する必
要があり、Liが揮散し易くなるからである。その結果
として結晶成長が進み難く且つ格子欠陥が多い不完全な
結晶となる。このため許容される温度範囲内のできる限
りの高温度で焼成を行うしかなく、結果として一次粒子
は1μm未満の細かいものしか得られない。[0014] On the other hand, in the LiNiO 2 system, no example of such primary particles grown large has yet been found. The reason for this is that, as described above, in the synthesis of Li y Ni 1-x M x O 2 to which LiNiO 2 or the third component (M) is added, the reactivity is poor. This is because baking must be performed, and Li is easily volatilized. As a result, an incomplete crystal in which crystal growth hardly proceeds and which has many lattice defects is obtained. For this reason, calcination must be performed at as high a temperature as possible within the allowable temperature range, and as a result, only fine particles having a primary particle size of less than 1 μm are obtained.
【0015】[0015]
【発明が解決しようとする課題】本発明は、結晶が充分
に発達し且つ純度が高く、しかも、充放電容量が高く安
定性に優れた新規なリチウムニッケル複合酸化物、一次
粒子径の大きさや形を自在に設定できる該リチウムニッ
ケル複合酸化物の製造方法、及びこの複合酸化物を有効
成分として含有する二次電池用正極活物質を提供するこ
とを目的とする。DISCLOSURE OF THE INVENTION The present invention relates to a novel lithium-nickel composite oxide having sufficiently developed crystals, high purity, high charge / discharge capacity and excellent stability, a large primary particle size, It is an object of the present invention to provide a method for producing the lithium-nickel composite oxide whose shape can be freely set, and a positive electrode active material for a secondary battery containing the composite oxide as an active ingredient.
【0016】[0016]
【課題を解決する手段】本発明者らは、下記一般式(I) Liy-x1Ni1-x2MxO2 (I) (式中、MはCo、Al、Fe、Mg又はMn、x=x
1+x2であり、xは0<x≦0.5、x1は0≦x1<
0.2、x2は0<x2≦0.5であり、yは0.9≦y
≦1.3である)で示される結晶が充分に発達し且つ純
度が高く、しかも、高充放電容量の安定性に優れた新規
なリチウムニッケル複合酸化物を湿式法によって創出し
た。本発明の製法は、目的とするリチウムニッケル複合
酸化物の一次粒子径の大きさや形を自在に設定し得ると
いう特長を有する。Means for Solving the Problems The inventors of the present invention have the following general formula (I): Li y-x1 Ni 1-x2 M x O 2 (I) (where M is Co, Al, Fe, Mg or Mn, x = x
1 + x is 2, x is 0 <x ≦ 0.5, x 1 is 0 ≦ x 1 <
0.2, x 2 is 0 <x 2 ≦ 0.5, y is 0.9 ≦ y
≦ 1.3), a novel lithium nickel composite oxide having a sufficiently developed crystal with high purity and excellent stability of high charge / discharge capacity was created by a wet method. The production method of the present invention has a feature that the size and shape of the primary particle diameter of the intended lithium nickel composite oxide can be freely set.
【0017】すなわち、本発明は、一般式(I) Liy-x1Ni1-x2MxO2 (I) [但し、式中、MはAl、Fe、Co、Mn及びMgか
らなる群から選ばれた1種を示し、x=x1+x2(ここ
で、(i) MがAl又はFeである場合は、0<x≦
0.2を示し、x1は0、x2はxを示し、(ii) MがC
o又はMnの場合は、0<x≦0.5を示し、x1は
0、x2はxを示し、(iii) MがMgである場合は、0
<x≦0.2を示し、x1は0<x1<0.2、x2は0<
x2<0.2を示す)、yは0.9≦y≦1.3を示す]
で示され、X線回折のミラー指数hklにおける(0
03)面及び(104)面での回折ピーク比(003)
/(104)が1.2以上、(006)面及び(10
1)面での回折ピーク比(006)/(101)が0.
13以下、BET表面積が0.1〜2m2/g、全Ni
に対するNi3+の割合が99重量%以上、平均粒径Dが
5〜100μm、粒度分布の10%が0.5D以上、9
0%が2D以下、走査型電子顕微鏡(SEM)で観察し
て表面に凸凹のある球状二次粒子であって、この球状二
次粒子を構成する一次粒子径が、SEMで観察して長径
の粒径が0.2〜3.0μmの範囲に分布している均一な
粒子で且つその長径の平均粒径が0.3〜2.0μmであ
ることを特徴とするリチウムニッケル複合酸化物であ
る。That is, the present invention relates to a compound represented by the general formula (I): Li y-x1 Ni 1-x2 M x O 2 (I) wherein M is a group consisting of Al, Fe, Co, Mn and Mg. X = x 1 + x 2 (where (i) when M is Al or Fe, 0 <x ≦
Indicates 0.2, x 1 is 0, x 2 represents the x, (ii) M is C
o For or Mn, indicates 0 <x ≦ 0.5, x 1 is 0, x 2 represents the x, if it is (iii) M is Mg is, 0
<Shows the x ≦ 0.2, x 1 is 0 <x 1 <0.2, x 2 is 0 <
x 2 <0.2), and y represents 0.9 ≦ y ≦ 1.3]
And (0) at the Miller index hkl of X-ray diffraction.
Diffraction peak ratio on the 03) and (104) planes (003)
/ (104) is 1.2 or more, (006) plane and (10)
1) The diffraction peak ratio (006) / (101) on the plane is 0.1.
13 or less, BET surface area of 0.1 to 2 m 2 / g, total Ni
The ratio of Ni 3+ to 99% by weight or more, the average particle diameter D is 5 to 100 μm, and the particle size distribution
0% is 2D or less, is a spherical secondary particle having an uneven surface when observed by a scanning electron microscope (SEM), and the primary particle diameter of the spherical secondary particle is longer than that of a long particle observed by SEM. A lithium-nickel composite oxide characterized by being uniform particles having a particle diameter distributed in a range of 0.2 to 3.0 μm and having an average major particle diameter of 0.3 to 2.0 μm. .
【0018】さらに、本発明は一般式(I) Liy-x1Ni1-x2MxO2 (I) [但し、式中、MはAl、Fe、Co、Mn及びMgか
らなる群から選ばれた1種を示し、x=x1+x2(ここ
で、(i) MがAl又はFeである場合は、0<x≦
0.2を示し、x1は0、x2はxを示し、(ii) MがC
o又はMnの場合は、0<x≦0.5を示し、x1は
0、x2はxを示し、(iii) MがMgである場合は、0
<x≦0.2を示し、x1は0<x1<0.2、x2は0<
x2<0.2を示す)、yは0.9≦y≦1.3を示す]
で示され、X線回折のミラー指数hklにおける(0
03)面および(104)面での回折ピーク比(00
3)/(104)が1.2以上、(006)面および
(101)面での回折ピーク比(006)/(101)
が0.13以下、SEMで観察した一次粒子の平均長径
が1〜10μmであることを特徴とするリチウムニッケ
ル複合酸化物である。Further, the present invention relates to a compound represented by the general formula (I): Li y-x1 Ni 1-x2 M x O 2 (I) wherein M is selected from the group consisting of Al, Fe, Co, Mn and Mg. X = x 1 + x 2 (where (i) when M is Al or Fe, 0 <x ≦
Indicates 0.2, x 1 is 0, x 2 represents the x, (ii) M is C
o For or Mn, indicates 0 <x ≦ 0.5, x 1 is 0, x 2 represents the x, if it is (iii) M is Mg is, 0
<Shows the x ≦ 0.2, x 1 is 0 <x 1 <0.2, x 2 is 0 <
x 2 <0.2), and y represents 0.9 ≦ y ≦ 1.3]
And (0) at the Miller index hkl of X-ray diffraction.
Diffraction peak ratios (00) on the 03) and (104) planes
3) / (104) is 1.2 or more, diffraction peak ratio on (006) plane and (101) plane (006) / (101)
Is not more than 0.13, and the average major axis of primary particles observed by SEM is 1 to 10 μm.
【0019】[0019]
【発明の実施の形態】本発明に係る上記一般式表示のリ
チウムニッケル複合酸化物は具体的に次の一般式(Ia)
〜(Ic)に大別することができる。BEST MODE FOR CARRYING OUT THE INVENTION The lithium nickel composite oxide represented by the above general formula according to the present invention is specifically represented by the following general formula (Ia)
To (Ic).
【0020】LiyNi1-xMxO2 (Ia) (但し、式中、Mが、Al又はFeを示し、xが、0<
x≦0.2を示し、yは0.9≦y≦1.3を示す)で
示されるリチウムニッケル複合酸化物は、それ自体Li
MO2の形にしても電池特性を有しないAl又はFeを
3価の形で少量且つ均一に固溶させ、構造を安定化さ
せ、サイクル特性を向上させた複合酸化物である。Li y Ni 1-x M x O 2 (Ia) (wherein, M represents Al or Fe, and x represents 0 <
x ≦ 0.2, and y represents 0.9 ≦ y ≦ 1.3).
This is a composite oxide in which Al or Fe, which does not have battery characteristics even in the form of MO 2 , is dissolved in a trivalent form in a small amount and uniformly, thereby stabilizing the structure and improving the cycle characteristics.
【0021】xの値が0.01未満であれば、Al又は
Feの固溶量が少なく、構造の安定化が不充分であり、
サイクル性が悪くなるので好ましくない。又、xの値が
0.2を越えると、固溶が不充分で不純物が生じて放電
容量が急激に低下し、高容量を目的とするリチウム二次
電池の正極活物質としての本来の機能を失う。If the value of x is less than 0.01, the amount of solid solution of Al or Fe is small, and the stabilization of the structure is insufficient.
It is not preferable because the cycle property is deteriorated. On the other hand, when the value of x exceeds 0.2, the solid solution is insufficient, impurities are generated, and the discharge capacity is rapidly reduced, and the original function as a positive electrode active material of a lithium secondary battery for high capacity is intended. Lose.
【0022】また、下記一般式(Ib) LiyNi1-xMxO2 (Ib) (但し、式中、Mが、Co又はMnを示し、xが0<x
≦0.5を示し、yは0.9≦y≦1.3を示す)で示
されるリチウムニッケル複合酸化物は、それ自体もLi
MO2の形になれば、電池特性を有するCo又はMn
を、比較的多量に固溶させ、構造を安定化させ且つ高い
電池容量を保持させた複合酸化物である。xの値が0.
01未満であれば、Co又はMnの固溶量が少なく、構
造の安定性が不充分であり好ましくない。In addition, the following general formula (Ib) Li y Ni 1-x M x O 2 (Ib) (wherein, M represents Co or Mn, and x represents 0 <x
.Ltoreq.0.5 and y represents 0.9.ltoreq.y.ltoreq.1.3).
In the form of MO 2 , Co or Mn having battery characteristics
Is a solid oxide in which a relatively large amount is dissolved to stabilize the structure and maintain a high battery capacity. If the value of x is 0.
If it is less than 01, the solid solution amount of Co or Mn is small, and the stability of the structure is insufficient, which is not preferable.
【0023】xの値が0.5を越えると、コバルトの場
合は固溶量が多過ぎて放電容量が低下するばかりでな
く、高価なコバルトを多量に固溶させるので経済的にも
有利でない。又、マンガンの場合は、本来放電容量が小
さく、xの値が0.5を越えると、高容量を目的とする
リチウム二次電池の正極活物質としての本来の機能を失
う。If the value of x exceeds 0.5, in the case of cobalt, the amount of solid solution is too large to lower the discharge capacity, and also expensive cobalt is dissolved in a large amount, so that it is not economically advantageous. . In the case of manganese, the discharge capacity is originally small, and if the value of x exceeds 0.5, the original function as a positive electrode active material of a lithium secondary battery intended for high capacity is lost.
【0024】一般式(I)において、MがMgである下記
一般式(Ic) Liy-x1Ni1-x2MgxO2 (Ic) (式中、x=x1+x2であり、xは0<x≦0.2、x
1は0<x1<0.2、x2は0<x2<0.2、yは0.9
≦y≦1.3を示す)で示されるリチウムニッケル複合
酸化物は、それ自体電池特性を有することがないマグネ
シウムをリチウム層の一部とニッケル層の一部に均一に
固溶させ、構造を安定化させ、サイクル特性を向上させ
た複合酸化物である。xの値が0.01未満であればM
gの固溶量が少なく、構造の安定性が不充分であり好ま
しくない。xの値が0.2を越えると、固溶が不充分で
不純物が生じて放電容量が急激に低下し、高容量を目的
とするリチウム二次電池の正極活物質としての本来の機
能を失う。In the general formula (I), the following general formula (Ic) wherein M is Mg: Li y-x1 Ni 1-x2 Mg x O 2 (Ic) (where x = x 1 + x 2 and x Is 0 <x ≦ 0.2, x
1 is 0 <x 1 <0.2, x 2 is 0 <x 2 <0.2, and y is 0.9
≦ y ≦ 1.3), the magnesium having no battery characteristics per se is uniformly dissolved in a part of the lithium layer and a part of the nickel layer to form a structure. It is a composite oxide that is stabilized and has improved cycle characteristics. If the value of x is less than 0.01, M
g is small, and the stability of the structure is insufficient, which is not preferable. When the value of x exceeds 0.2, the solid solution is insufficient and impurities are generated, so that the discharge capacity is rapidly reduced, and the original function as a positive electrode active material of a lithium secondary battery for high capacity is lost. .
【0025】本発明の上記リチウムニッケル複合酸化物
は、後述する湿式−噴霧乾燥法による球状品と、この噴
霧乾燥品を焼成原料として使用したプレス法による大き
な一次粒子品とにより構成されている。The lithium nickel composite oxide of the present invention is composed of a spherical product obtained by a wet-spray drying method described later and a large primary particle product obtained by a press method using the spray-dried product as a raw material for firing.
【0026】まず、噴霧乾燥法を用いた球状品について
説明する。この球状品は次の特性を有する。First, a spherical product using the spray drying method will be described. This spherical article has the following properties.
【0027】第一の特徴は、X線解析で不純物が検出さ
れず、純度が高いことである。しかもX線回折のミラー
指数hklにおける(003)面及び(104)面での
回折ピーク比(003)/(004)が1.2以上であり、
(006)面及び(101)面での回折ピーク比(00
6)/(101)が0.13以下、Ni全体に対するN
i3+の割合が99重量%以上と高純度である。The first feature is that impurities are not detected by X-ray analysis and the purity is high. Moreover, the diffraction peak ratio (003) / (004) on the (003) plane and the (104) plane at the Miller index hkl of X-ray diffraction is 1.2 or more,
Diffraction peak ratio at (006) plane and (101) plane (00
6) / (101) is 0.13 or less, N
High purity with i 3+ ratio of 99% by weight or more.
【0028】通常Niの一部を他の成分(第三成分)に
置換すると、構造の安定性は高まるが、置換量に比例し
て純度が低下する。Usually, when a part of Ni is replaced by another component (third component), the stability of the structure is increased, but the purity is reduced in proportion to the amount of the replacement.
【0029】本発明では、Al、Fe、Mg、Co又は
Mnを固溶させているにも拘わらず、高純度の複合酸化
物とすることができる。即ち、第三成分であるAl又は
Feは構造中で3価の価数をとるためLiの出入りによ
るNiの構造不安定性を解消することができる。Mgの
場合は、Mgがリチウム層の一部とニッケル層の一部に
固溶して構造の不安定性を解消することができる。Co
又はMnも、均一に固溶させると、Liの出入りによる
Niの構造不安定性を解消することができる。これら第
三成分を必要以上に多量にならないよう極力少量且つ均
一に固溶させることが本発明の最大の特徴である。According to the present invention, a high-purity composite oxide can be obtained although Al, Fe, Mg, Co or Mn is dissolved in a solid solution. That is, since the third component, Al or Fe, has a trivalent valence in the structure, the structural instability of Ni due to inflow and outflow of Li can be eliminated. In the case of Mg, Mg is dissolved in a part of the lithium layer and a part of the nickel layer, so that the instability of the structure can be eliminated. Co
Alternatively, when Mn is uniformly dissolved, the structural instability of Ni due to the inflow and outflow of Li can be eliminated. The most important feature of the present invention is to make the third component as small and uniform as possible so as not to be unnecessarily large.
【0030】このことは、後述する水液法(湿式法)と
も言うべき製法及び後に述べる一次粒子の大きさとも相
関しており、特定範囲の一次粒子で構成されていること
で、品質的に安定した高純度且つ結晶性の高い組成物を
得ることができる。This is correlated with a manufacturing method which can be called a water-liquid method (wet method) which will be described later, and a size of primary particles which will be described later. A stable, highly pure and highly crystalline composition can be obtained.
【0031】第二の特徴はSEMで観察して長径の粒径
が0.2〜3.0μmの範囲に分布している均一な粒子
でその長径の平均粒径が0.3〜2.0μmである一次
粒子で構成されている点である。The second feature is that uniform particles having a long diameter distributed in the range of 0.2 to 3.0 μm as observed by SEM are uniform particles having an average long diameter of 0.3 to 2.0 μm. In that the primary particles are
【0032】一般的にLiMO2で表される層間化合物に
おいて、Liの出入りを考えたときに一次粒子の大きさ
が重要である。一次粒子が細かい程固体内部のイオン伝
導度がよく、且つ外部とのLiの出入りがし易い。Generally, in the intercalation compound represented by LiMO 2 , the size of primary particles is important when considering the inflow and outflow of Li. The finer the primary particles, the better the ionic conductivity inside the solid, and the easier it is for Li to enter and exit from the outside.
【0033】一方、結晶化度という点からは0.2μm
以下の一次粒子では結晶が充分に発達せず、必然的に純
度の低いものになる。又、0.2μm以下では、貯蔵安
定性が貧弱であり、そのため吸湿して良好な電池特性を
安定して出せない。さらには、品質の安定という観点か
らも一次粒子の粒度が揃っていることが望ましい。上記
観点より、本願発明者らは鋭意検討した結果、SEMで
観察して長径の粒径が0.2〜3.0μmの範囲に分布
している均一な粒子で且つその長径の平均粒径が0.3
〜2.0μm、好ましくは0.3〜1.0μmである本
発明品が好適な性能を有することを見い出した。On the other hand, from the viewpoint of crystallinity, 0.2 μm
In the following primary particles, the crystals do not sufficiently develop and necessarily have low purity. On the other hand, when the thickness is less than 0.2 μm, the storage stability is poor, so that it is not possible to stably exhibit good battery characteristics due to moisture absorption. Furthermore, it is desirable that the primary particles have a uniform particle size from the viewpoint of quality stability. From the above viewpoints, the inventors of the present invention have conducted intensive studies, and as a result, observed by SEM, uniform particles having a long diameter distributed in a range of 0.2 to 3.0 μm and having an average long diameter. 0.3
It has been found that the products of the present invention having a thickness of from 2.0 to 2.0 μm, preferably from 0.3 to 1.0 μm, have suitable performance.
【0034】第三の特徴は、後述する湿式−噴霧乾燥法
により球状とされ、この球状二次粒子の平均粒径Dが5
〜300μm、粒度分布の10%が0.5D以上、90
%が2D以下、SEM観察でわかるように表面が凸凹状
態になっていることである。The third feature is that the particles are formed into a spherical shape by a wet-spray drying method described later, and the spherical secondary particles have an average particle diameter D of 5%.
300300 μm, 10% of particle size distribution is 0.5D or more, 90
% Is 2D or less, which means that the surface is in an uneven state as can be seen by SEM observation.
【0035】又、この球状二次粒子のSEMで観察した
粒子径比(長径/短径)は、焼成後解砕した際に僅かに
粒子径比の大きなものが含まれることがあっても、通常
は最大で1.5以下、平均で1.2以下の範囲におさま
り、その90%以上が1.3以下に分布している粒度の
そろった粒子である。The particle diameter ratio (major axis / minor axis) of the spherical secondary particles observed by SEM may be slightly larger when the particles are crushed after firing. Usually, the particles fall within a range of 1.5 or less at the maximum and 1.2 or less on average, and 90% or more of the particles are particles having a uniform particle size distributed to 1.3 or less.
【0036】このような物性から最密充填に適している
ばかりでなく、例えば電池に使用した場合は、電解液、
導電剤等との接触面積が大きくなり、外部とのLiの出
入りということからも有利であることが分かる。From these properties, not only is it suitable for close packing, but for example, when used in batteries, the electrolyte,
It can be seen that the contact area with the conductive agent or the like is increased, and this is advantageous from the fact that Li enters and exits from the outside.
【0037】この球状二次粒子の粒度は、5〜100μ
mまで所望により設定できるが、電池材料として使用す
る場合は、加工性から平均粒径が5〜30μm程度のも
のが望ましい。又、BET比表面積が0.1〜2m2/g
であり、電池材料として使用した場合、電解液の粘度を
上げることがないので、誘電率の低下を引き起こさな
い。The particle size of the spherical secondary particles is 5 to 100 μm.
m can be set as desired, but when used as a battery material, an average particle size of about 5 to 30 μm is desirable from the viewpoint of workability. Further, the BET specific surface area is 0.1 to 2 m 2 / g.
When used as a battery material, the viscosity of the electrolyte does not increase, so that the dielectric constant does not decrease.
【0038】本発明の一般式(I)で示されるリチウムニ
ッケル複合酸化物は以下に述べる製造方法により製造す
ることができる。The lithium nickel composite oxide represented by the general formula (I) of the present invention can be produced by the following production method.
【0039】本発明のリチウムニッケル複合酸化物は、
一般式(II) Ni1-xMp x(OH)2-nz(An-)[z+(px-2x)/n]・mH2O (II) (式中、MはAl、Fe、Co、Mn及びMgからなる
群から選ばれた1種を示し、pはMの価数で2≦p≦3
を示し、An-はn価のアニオン、x、z及びmはそれぞ
れ0<x≦0.2、0.03≦z≦0.3、0≦m<2
の範囲を満足する正の数を示す)で示され、塩基性金属
塩と、水溶性リチウム化合物とを水媒体中で、Li/
(Ni+M)のモル比=0.9〜1.3の条件下で反応
させ、得られたスラリーを噴霧乾燥後、酸化雰囲気下で
約600℃〜900℃、約4時間以上で焼成することに
より製造することができる。The lithium nickel composite oxide of the present invention comprises:
Formula (II) Ni 1-x M p x (OH) 2-nz (A n-) [z + (px-2x) / n] · mH 2 O (II) ( wherein, M is Al, Fe, Represents one selected from the group consisting of Co, Mn and Mg, where p is the valence of M and 2 ≦ p ≦ 3
Wherein A n− is an n-valent anion, x, z and m are respectively 0 <x ≦ 0.2, 0.03 ≦ z ≦ 0.3, 0 ≦ m <2
And a basic metal salt and a water-soluble lithium compound in an aqueous medium in the form of Li /
The reaction is performed under the condition of a molar ratio of (Ni + M) = 0.9 to 1.3, the obtained slurry is spray-dried, and then fired in an oxidizing atmosphere at about 600 ° C. to 900 ° C. for about 4 hours or more. Can be manufactured.
【0040】水溶性リチウム化合物及び塩基性金属塩と
しては、焼成時に揮散する陰イオンを含むものが使用さ
れる。As the water-soluble lithium compound and the basic metal salt, those containing anions that volatilize during firing are used.
【0041】リチウム化合物としては、例えば、LiO
H、LiNO3、Li2CO3又はこれらの水和物等の中か
ら1種又は2種以上を選択することができる。As the lithium compound, for example, LiO
One or more of H, LiNO 3 , Li 2 CO 3, or a hydrate thereof can be selected.
【0042】上記一般式(II)表示の塩基性金属塩にお
いて、An-としては、例えば、NO3 -、Cl-、Br-、
CH3COO-、CO3 2-、SO4 2-等で示される化合物か
ら選択することができる。[0042] In basic metal salt of the general formula (II) display, A as the n-, for example, NO 3 -, Cl -, Br -,
It can be selected from compounds represented by CH 3 COO − , CO 3 2− , SO 4 2− and the like.
【0043】上記一般式(II)に於いて、Mpのpは、
MがAl又はFeの場合は3価であり、ハイドロタルサ
イト類化合物となっている。(但し、Feの場合は、2
価のものが一部含まれている場合があるが、リチウム化
合物との反応、乾燥工程等で3価になり易く、特に問題
はない。)MがCo又はMnの場合は、pは2価であっ
ても、3価であっても、更にはこれらの混合物であって
も同様に使用でき、特に問題はない。MがMgの場合
は、pは2価となる。In the above general formula (II), p of M p is
When M is Al or Fe, it is trivalent and is a hydrotalcite compound. (However, in the case of Fe, 2
Although a part of the compound may be partially contained, it is liable to become trivalent in a reaction with a lithium compound, a drying step, and the like, and there is no particular problem. ) When M is Co or Mn, p may be divalent, trivalent, or a mixture thereof, and there is no particular problem. When M is Mg, p is divalent.
【0044】これらの化合物において収率、反応性、資
源の有効利用及び酸化促進効果等の観点からリチウム化
合物としてはLiOHを、又、一般式(II)表示の塩基
性金属塩としては、An-がNO3 -である塩基性金属硝酸
塩を選択した組み合わせが電池特性の観点から特に好ま
しい。In these compounds, from the viewpoints of yield, reactivity, effective utilization of resources and oxidation promoting effect, LiOH is used as the lithium compound, and A n is used as the basic metal salt represented by the general formula (II). A combination in which a basic metal nitrate in which — is NO 3 — is selected from the viewpoint of battery characteristics.
【0045】塩基性金属塩としては、均一性の観点から
一次粒子の結晶子がシェーラー(Scherrer)法
で測定して0.1μm以下の細かな粒子であることが推
奨される。As the basic metal salt, it is recommended that the crystallites of the primary particles are fine particles of 0.1 μm or less as measured by Scherrer method from the viewpoint of uniformity.
【0046】又、この細かな粒子は、BET比表面積が
10m2/g以上、好ましくは40m2/g以上、より望
ましくは100m2/g以上のものが表面の反応性の観
点から好ましい。尚、BET比表面積に関しては、水液
中の塩基性金属塩を乾燥して測定する際、乾燥時に微粒
子である一次粒子が凝集し、この凝集体のBET比表面
積を測定していることになり、凝集が強固な場合はチッ
ソガスが入り込まず小さな値となる。従って、実際に水
液中でリチウム化合物と反応する塩基性金属塩の比表面
積は、より大きな値を示し、反応性の高い表面となって
いるが、上記実情より10m2以上とした。The fine particles preferably have a BET specific surface area of 10 m 2 / g or more, preferably 40 m 2 / g or more, and more preferably 100 m 2 / g or more from the viewpoint of surface reactivity. Incidentally, with respect to the BET specific surface area, when the basic metal salt in the aqueous solution is dried and measured, the primary particles which are fine particles are aggregated at the time of drying, and the BET specific surface area of the aggregate is measured. When the cohesion is strong, nitrogen gas does not enter and the value is small. Therefore, the specific surface area of the basic metal salt that reacts with the lithium compound actually in Mizueki indicates a larger value, but has a highly reactive surface, was 10 m 2 or more than the above circumstances.
【0047】この特定組成の塩基性金属塩は層状構造を
しており、化学組成及び結晶構造が共にNi1-xMx(O
H)2に近い物であり、しかも上記説明したように微結
晶で表面が活性に富んでいるため、LiOH等のリチウ
ム化合物を加えると、極めて良好なLiy-x1Ni1-x2M
xO2の前駆物質を形成する。The basic metal salt having this specific composition has a layered structure, and both the chemical composition and the crystal structure are Ni 1-x M x (O
H) It is a substance close to 2 and, as described above, is microcrystalline and has a high surface activity. Therefore, when a lithium compound such as LiOH is added, very good Li y-x1 Ni 1-x2 M
forming a precursor x O 2.
【0048】このような特定組成の塩基性金属塩を用い
た場合のみ、本発明の高純度で結晶の完全度の高いLi
y-x1Ni1-x2MxO2が得られる。Ni1-xMx(OH)2は
リチウム化合物との反応性が塩基性金属塩に劣り、逆
に、塩基性金属塩において、アニオン量が多くなると、
層状構造から外れてくるとともに、焼成時にアニオンが
Liy-x1Ni1-x2MxO2の生成に対して阻害的に作用
し、高純度で結晶の完全度の高い目的化合物を得ること
ができない。Only when a basic metal salt having such a specific composition is used, the Li of the present invention having high purity and high crystal perfection is used.
y-x1 Ni 1-x2 M x O 2 can be obtained. Ni 1-x M x (OH) 2 is inferior in reactivity with a lithium compound to a basic metal salt, and conversely, in a basic metal salt, when the amount of anions increases,
As well as deviating from the layered structure, the anion at the time of calcination acts to inhibit the formation of Li y-x1 Ni 1-x2 M x O 2 , and it is possible to obtain the target compound with high purity and high crystal perfection. Can not.
【0049】ここで用いる塩基性金属塩は、Ni1-xMx
塩の水溶液に、Ni1-xMx塩に対して、約0.7〜0.
95当量、好ましくは約0.8〜0.95当量のアルカ
リを約80℃以下の反応条件下で加えて反応させること
により、製造することができる。ここで用いるアルカリ
としては、例えば水酸化ナトリウム等のアルカリ金属類
の水酸化物、水酸化カルシウム等のアルカリ土類金属類
の水酸化物、アミン類等である。なお、この塩基性金属
塩は合成後20〜70℃で0.1〜10時間熟成すると
さらに好ましい。次いで、水洗により副生成物を取り除
き、リチウム化合物を加える。The basic metal salt used here is Ni 1-x M x
An aqueous solution of a salt, with respect to Ni 1-x M x salt, about 0.7 to 0.
It can be produced by adding and reacting 95 equivalents, preferably about 0.8 to 0.95 equivalents of an alkali under reaction conditions of about 80 ° C. or lower. Examples of the alkali used here include hydroxides of alkali metals such as sodium hydroxide, hydroxides of alkaline earth metals such as calcium hydroxide, and amines. It is more preferable that the basic metal salt is aged at 20 to 70 ° C. for 0.1 to 10 hours after the synthesis. Next, by-products are removed by washing with water, and a lithium compound is added.
【0050】この様な反応によって得られたスラリーの
乾燥は噴霧乾燥法によって行う。瞬時に乾燥でき且つ球
状物を得ることができる噴霧乾燥法は、球状造粒性、組
成物の均一性(棚式乾燥、バンドドライ乾燥等の乾燥時
間のかかる乾燥法では、表面にLiが移行し、不均一な
組成物となる。)の観点から好適である。The slurry obtained by such a reaction is dried by a spray drying method. The spray drying method, which can be dried instantaneously and can obtain a spherical substance, is based on the spherical granulation property, uniformity of the composition (in a drying method requiring a long drying time such as shelf drying, band drying, etc., Li migrates to the surface). And a non-uniform composition is obtained).
【0051】湿式法、噴霧乾燥法を用いて得た組成が均
一な球状物をそのまま焼成する場合は、焼成温度600
〜800℃、好ましくは700〜750℃、焼成時間4
時間以上、望ましくは約4〜20時間程度、酸素気流下
で行えば良い。焼成時間が20時間以上であればコスト
アップとなるばかりでなく、Liの揮散に伴い、Niの
3価の割合が却って低くなり、純度の悪いものとなる。When sintering a spherical product having a uniform composition obtained by a wet method or a spray drying method as it is, a sintering temperature of 600.
To 800 ° C, preferably 700 to 750 ° C, firing time 4
It may be carried out in an oxygen stream for more than an hour, preferably about 4 to 20 hours. If the calcination time is 20 hours or more, not only does the cost increase, but also the volatilization of Li causes the trivalent ratio of Ni to be rather low, resulting in poor purity.
【0052】この焼成に関する乾式法による既知の技術
では、Li成分とNi成分がどうしても不均一であるた
め、Li成分とNi成分が反応して、Niが2価から3
価になる際、どうしても2価から3価になりがたいNi
に対して、少なくとも20時間以上の焼成が要求されて
いたことからみると、本発明の均一な噴霧乾燥品をその
まま焼成する製法は極めて経済的であり優位である。In the known technique of the dry method relating to the calcination, since the Li component and the Ni component are absolutely inhomogeneous, the Li component and the Ni component react, and Ni becomes divalent to trivalent.
When it comes to valence, Ni is difficult to become trivalent from divalent
In view of the fact that firing for at least 20 hours is required, the manufacturing method of the present invention for firing a uniform spray-dried product as it is is very economical and advantageous.
【0053】次に、本発明の一次粒子の大きな複合酸化
物塩、その製造方法及びこの複合酸化物を有効成分とし
て含有する二次電池用正極活物質について以下に詳細に
述べる。Next, the composite oxide salt having a large primary particle of the present invention, a method for producing the same, and a positive electrode active material for a secondary battery containing this composite oxide as an active ingredient will be described in detail below.
【0054】この大きな一次粒子品の平均長径は1〜1
0μmである。The average major axis of this large primary particle product is 1 to 1
0 μm.
【0055】上記説明した噴霧乾燥法による球状品を電
池の正極活物質として使用すれば第三成分の金属の種類
や固溶量を適宜設定することにより、所望の電池容量を
保持しながら顕著なサイクル特性の改善が充分見られ
る。しかし、安全性に関する認識が社会一般でより求め
られ、実際に使用される電池では、万が一の過酷な条件
での使用も想定されるべきであるという議論が高まって
いる。特に、正極活物質以外の他の電池材料(陰極、電
解液、セパレータ等)を含んだ複合的な電池としての安
全性に対する機能が未成熟な現状では、高温時での使用
に耐え得るリチウム二次電池の正極活物質が強く求めら
れている。If the above-described spherical product obtained by the spray drying method is used as the positive electrode active material of the battery, the type of the third component metal and the amount of solid solution can be appropriately set so that the desired battery capacity can be maintained. The cycle characteristics are sufficiently improved. However, there is an increasing demand for public awareness of safety, and there is growing debate that batteries that are actually used should be expected to be used under severe conditions. In particular, in the current situation where the function for safety as a composite battery including other battery materials (cathode, electrolyte, separator, etc.) other than the positive electrode active material is immature, lithium batteries that can withstand use at high temperatures There is a strong demand for positive electrode active materials for secondary batteries.
【0056】本発明はこのニーズに対してなされたもの
であり、以下の特性を有する正極活物質を提供する。The present invention has been made to meet this need, and provides a positive electrode active material having the following characteristics.
【0057】即ち、組成は上記球状品と同様であり、そ
の特性は、X線回折のミラー指数hklにおける(00
3)面および(104)面での回折ピーク比(003)/(1
04)が1.2以上、(006)面および(101)面
での回折ピーク比(006)/(101)が0.13以
下、SEMで観察した一次粒子の平均長径が1〜10μ
m、より好ましくは2〜10μmであることを特徴とす
る。That is, the composition is the same as that of the above-mentioned spherical product, and the characteristic is (00) in the Miller index hkl of X-ray diffraction.
Diffraction peak ratio at (3) and (104) planes (003) / (1)
04) is 1.2 or more, the diffraction peak ratio (006) / (101) on the (006) plane and the (101) plane is 0.13 or less, and the average major axis of primary particles observed by SEM is 1 to 10 μm.
m, more preferably 2 to 10 μm.
【0058】該リチウムニッケル複合酸化物は、結晶が
充分に発達した一次粒子の平均長径が大きく、且つより
安定性に優れた新規なリチウムニッケル複合酸化物であ
る。The lithium-nickel composite oxide is a novel lithium-nickel composite oxide in which primary particles having sufficiently developed crystals have a large average major axis and are more excellent in stability.
【0059】また、この一次粒子を大きくした正極活物
質は、前記噴霧乾燥品と同様にNi全体に対するNi3+
の割合が99%以上と高純度であることが好ましい。B
ET比表面積も0.01〜1m2/gと粒子が大きくなっ
た分小さく、電池材料として使用した場合、電解液の粘
度を上げることがなく、且つ電解液との反応性も小さ
い。Also, the positive electrode active material having the primary particles increased is made of Ni 3+
Is preferably as high as 99% or more. B
The ET specific surface area is as small as 0.01 to 1 m 2 / g due to the increase in the particles. When used as a battery material, the viscosity of the electrolytic solution is not increased, and the reactivity with the electrolytic solution is small.
【0060】本発明の一次粒子が大きいリチウムニッケ
ル複合酸化物は、前記一般式(II)で示される塩基性金
属塩を出発原料として、これに水溶性リチウムを水媒体
中でLi/Ni+M又はLi/Niのモル比が0.9〜
1.3となる条件下で反応させ、得られたスラリーを噴
霧乾燥し、この噴霧乾燥品をプレス成形することによっ
て得られる。The lithium-nickel composite oxide having a large primary particle according to the present invention is obtained by using a basic metal salt represented by the above general formula (II) as a starting material and adding water-soluble lithium to an aqueous medium in the form of Li / Ni + M or Li / Ni + M. / Ni molar ratio is 0.9-
The reaction is carried out under the condition of 1.3, the obtained slurry is spray-dried, and this spray-dried product is obtained by press molding.
【0061】製造方法としては、噴霧乾燥品をプレス成
形してから焼成する方法と噴霧乾燥品を一旦焼成してか
らプレス成形し、次いで再焼成する方法が適用される。As a production method, a method of press-forming a spray-dried product and firing it, or a method of once firing a spray-dried product, press-forming the same, and then refiring are applied.
【0062】第1の製造方法は、噴霧乾燥品をプレス成
形後、酸化雰囲気下600℃〜900℃で約4時間以上
焼成する方法である。The first production method is a method in which a spray-dried product is press-molded and then fired in an oxidizing atmosphere at 600 ° C. to 900 ° C. for about 4 hours or more.
【0063】上記噴霧乾燥法により得られた球状品は、
流動性、成形性、充填性に優れ、そのまま常法に従っ
て、例えばブリネル硬度計を使用して、静的圧力が通常
500〜3000kg/cm2、好ましくは800〜1
500kg/cm2でプレス成形品とすることができ
る。The spherical product obtained by the above spray drying method is
It is excellent in fluidity, moldability and filling property, and has a static pressure of usually 500 to 3000 kg / cm 2 , preferably 800 to 1 according to a conventional method, for example, using a Brinell hardness tester.
It can be formed into a press-formed product at 500 kg / cm 2 .
【0064】プレス成形は、分子間移動距離が短くな
り、焼成時の結晶成長を促進するという点で極めて有意
義である。The press molding is extremely significant in that the intermolecular movement distance is reduced and the crystal growth during firing is promoted.
【0065】上記プレス成形品はそのまま焼成すること
ができる。The above press-formed product can be fired as it is.
【0066】焼成温度は、通常、600〜900℃、好
ましくは750〜800℃であり、酸素気流下、焼成時
間は通常4時間以上、好ましくは10〜72時間で行
う。The calcination temperature is usually 600 to 900 ° C., preferably 750 to 800 ° C., and the calcination time is usually 4 hours or more, preferably 10 to 72 hours under an oxygen stream.
【0067】プレス成形により、焼成中に一次粒子の結
晶成長が促進され、大きな一次粒子を持つ複合酸化物を
得ることができる。By the press molding, the crystal growth of primary particles is promoted during firing, and a composite oxide having large primary particles can be obtained.
【0068】この球状品をプレスして成形する方法は、
前記球状品をそのまま焼成する方法と異なり、焼成時間
が20時間以上であっても、圧縮されているため接触面
が小さくなり、Liの揮散、NiOの副生が生じ難く、
高純度且つ結晶化度の高い複合酸化物を得ることができ
る。The method of pressing and molding this spherical product is as follows.
Unlike the method of firing the spherical article as it is, even if the firing time is 20 hours or more, the contact surface becomes smaller because of compression, and the volatilization of Li and the by-product of NiO hardly occur.
A composite oxide having high purity and high crystallinity can be obtained.
【0069】第2の製造方法は、噴霧乾燥品をそのまま
酸化雰囲気下600℃〜900℃で約0.5時間以上焼
成し、次いで得られた焼成品を必要ならば粉砕した後、
第1の製造方法と同様にプレス成形し、さらに酸化雰囲
気下600℃〜900℃で約1時間以上再焼成する方法
であり、この方法は第1の製造方法に比較して焼成に要
する総時間を短くする利点を有する。In the second production method, the spray-dried product is directly baked in an oxidizing atmosphere at 600 ° C. to 900 ° C. for about 0.5 hour or more, and the obtained baked product is pulverized if necessary.
Press molding in the same manner as in the first manufacturing method, and re-firing at 600 ° C. to 900 ° C. for about 1 hour or more in an oxidizing atmosphere. This method requires a total time required for firing compared to the first manufacturing method. Has the advantage of being shorter.
【0070】尚、前記噴霧乾燥による球状品は、そのま
ま長時間焼成しても一次粒子は大きくならない。The spherical particles obtained by the spray drying do not increase the primary particles even if they are calcined for a long time.
【0071】20時間焼成でも平均粒径2μ以下、72
時間焼成で平均粒径2〜3μm程度である。Even after firing for 20 hours, the average particle size is 2 μm or less,
The average particle size after firing for about 2 to 3 μm.
【0072】又、乾式法でプレス成形を行っても後記比
較例で示す如く、20時間焼成品の平均粒径は1μm以
下である。このまま焼成時間を伸ばしても粒径はあまり
変わらない。Further, even if press molding is performed by a dry method, as shown in a comparative example described later, the average particle size of the product fired for 20 hours is 1 μm or less. Even if the firing time is extended, the particle size does not change much.
【0073】従って、本発明に係る湿式法、噴霧乾燥
法、プレス成形法を組み合わせた製造方法は、一次粒子
を大きくする上で極めて有利である。Therefore, the production method according to the present invention, which is a combination of the wet method, the spray drying method and the press molding method, is extremely advantageous in increasing the primary particles.
【0074】しかも、プレスすることにより、明確な原
因は不明であるが、粉同志及びLi分子とNi分子等の
分子間の移動距離が減少するため長時間焼成してもLi
の揮散及びNiOの副生が抑えられ、高純度且つ結晶度
の高い複合酸化物を得る事ができる。Further, although the cause is not clear by pressing, the distance between powder and the movement between Li molecules and Ni molecules is reduced.
And the by-product of NiO are suppressed, and a composite oxide having high purity and high crystallinity can be obtained.
【0075】尚、この1次粒子の大きい複合酸化物は後
記実施例により明らかな如く、一次粒子が大きいため反
応性に乏しく、電池容量は小さくなるがその分安定性
(サイクル性、高温安定性)は増大する。The composite oxide having a large primary particle has a low reactivity due to a large primary particle and a small battery capacity, as will be apparent from the examples described later. ) Increases.
【0076】このようにして得られたリチウムニッケル
複合酸化物焼成品は、用途に応じて所望の粒度に適宣粉
砕すればよい。The calcined product of lithium nickel composite oxide thus obtained may be suitably ground to a desired particle size depending on the application.
【0077】本発明のリチウムニッケル複合酸化物は、
後記実施例、比較例から明らかなように二次電池の正極
活物質として用いると130〜200mAh/gの高放
電容量化が図られ、100回目の充放電サイクル経過後
も10%以下の容量衰退率であり、安定しているため、
有効に利用できる。The lithium nickel composite oxide of the present invention
As will be apparent from Examples and Comparative Examples described later, when used as a positive electrode active material of a secondary battery, a high discharge capacity of 130 to 200 mAh / g can be achieved, and a capacity decrease of 10% or less even after the 100th charge / discharge cycle. Rate and stable
Can be used effectively.
【0078】以下、実施例で本発明をより詳しく説明す
る。Hereinafter, the present invention will be described in more detail with reference to examples.
【0079】尚、焼成物のBET比表面積測定方法、シ
ェーラー法による一次粒子の測定法、焼成物のNiの3
価の測定法は以下の通りである。The method for measuring the BET specific surface area of the fired product, the method of measuring the primary particles by the Scherrer method,
The method for measuring the value is as follows.
【0080】[BET比表面積測定方法]焼成物をそのま
ま試料としてセルに秤りとり、窒素30%、ヘリウム7
0%の混合ガスの流動下において加熱脱気したものを、
BET1点連続流動法により測定した。BET比表面積
測定機器は、ユアサアイオニクス(株)製 MONOSO
RBを使用した。[Method of Measuring BET Specific Surface Area] The fired product was weighed as a sample as it was in a cell, and nitrogen 30%, helium 7
What was heated and degassed under the flow of 0% mixed gas,
It was measured by the BET one-point continuous flow method. The BET specific surface area measuring instrument is manufactured by MONOSO manufactured by Yuasa Ionics Co., Ltd.
RB was used.
【0081】[シェーラー法]結晶に歪みがなくて結晶子
の大きさが均一で、回折線の幅の拡がりが結晶子の大き
さだけに基づくと仮定し、下記式(1)より結晶子の大き
さを求める方法である。[Scherrer method] Assuming that the crystal has no distortion and the crystallite size is uniform, and the spread of the diffraction line width is based only on the crystallite size. This is a method to determine the size.
【0082】 Dhkl=(kλ)/(βcosθ) …… (式1) 式中、Dhkl(オングストローム)は、(hkl)面
に垂直方向の結晶子の大きさ、λ(オングストローム)は
X線の波長、β(rad)は回折線幅、θ(゜)は回折
角、kは定数を示す。Dhkl = (kλ) / (βcosθ) (Equation 1) In the expression, Dhkl (angstrom) is the size of a crystallite in a direction perpendicular to the (hkl) plane, and λ (angstrom) is the wavelength of X-ray. , Β (rad) indicates a diffraction line width, θ (゜) indicates a diffraction angle, and k indicates a constant.
【0083】[Ni3+の測定法]Ni3+は、全Niに対す
る百分率で示し、酸化還元滴定により測定した。試料
0.2gを0.25MのFeSO4−3.6N硫酸溶液に溶
解し、濃燐酸2mlを加えた後、0.1Nの過マンガン
酸カリウムで滴定する。同様に空試験を行い、下記式2
より試料中の全Niに対するNi3+%を求める。式2に
おいてfは0.1Nの過マンガン酸カリウム溶液のファ
クター、X0は空試験滴定量(ml)、Xは滴定量(m
l)、mは試料量(g)、BはNiの含量(%)、Aは
5.871である。[0083] [Measurement of Ni 3+] Ni 3+ represents a percentage of the total Ni, was determined by a redox titration. A sample (0.2 g) is dissolved in a 0.25 M FeSO 4 -3.6 N sulfuric acid solution, 2 ml of concentrated phosphoric acid is added, and the mixture is titrated with 0.1 N potassium permanganate. Similarly, a blank test was performed, and the following equation 2
Then, Ni 3+ % based on the total Ni in the sample is determined. In Formula 2, f is a factor of a 0.1N potassium permanganate solution, X 0 is a blank test titer (ml), and X is a titer (m
l) and m are sample amounts (g), B is Ni content (%), and A is 5.871.
【0084】 試料中の全Niに対するNi3+の割合(%)= 〔fX(X0−X)×A×10〕/(m×B) …… (式2)The ratio (%) of Ni 3+ to all Ni in the sample = [fX (X 0 −X) × A × 10] / (m × B) (Formula 2)
【0085】[0085]
実施例1 Al/(Ni+Al)モル比=0.03となるように
2.0mol/lの硝酸アルミニウムと、硝酸ニッケル
の混合水溶液を調製し、この混合水溶液と2.0mol
/lの水酸化ナトリウム水溶液をpH9.0となるよう
に同時添加を行い、温度50℃、強攪拌下に連続的に6
0分間で添加した。得られた反応物を濾別、水洗後、水
に懸濁させることにより1mol/lのNi0.97Al
0.03(OH)2(NO3)0.03スラリーを得た。このスラリ
ー中の(Ni+Al)に対し原子比がLi/(Ni+A
l)=1.05に相当する量の3.5mol/l水酸化
リチウム水溶液を用意し、前記スラリーに滴下し反応さ
せた後、噴霧乾燥を行った。得られた乾燥物をアルミナ
製ボートに入れ管状炉(山田電気製TF−630型)に
て酸素雰囲気中で750℃、5時間焼成した。焼成物の
化学組成は、Li1.03Ni0.97Al0.03O2であった。Example 1 A mixed aqueous solution of 2.0 mol / l of aluminum nitrate and nickel nitrate was prepared so that the molar ratio of Al / (Ni + Al) was 0.03.
/ L sodium hydroxide aqueous solution was simultaneously added so as to have a pH of 9.0, and continuously added at a temperature of 50 ° C under strong stirring.
Added in 0 minutes. The obtained reaction product was separated by filtration, washed with water, and suspended in water to give 1 mol / l of Ni 0.97 Al.
0.03 (OH) 2 (NO 3 ) 0.03 slurry was obtained. Atomic ratio of Li / (Ni + A) to (Ni + Al) in this slurry
l) An aqueous solution of 3.5 mol / l lithium hydroxide corresponding to 1.05 was prepared, dropped into the slurry, reacted, and then spray-dried. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace (TF-630 type manufactured by Yamada Electric). The chemical composition of the fired product was Li 1.03 Ni 0.97 Al 0.03 O 2 .
【0086】実施例2 Al/(Ni+Al)モル比=0.02となるように
2.0mol/lの硝酸アルミニウムと、硝酸ニッケル
の混合水溶液を調製し、この混合水溶液と2.0mol
/lの水酸化ナトリウム水溶液をpH9.5となるよう
に同時添加を行い、温度50℃、強攪拌下に連続的に6
0分間で添加した。得られた反応物を濾過、水洗後、水
に懸濁させることにより1mol/lのNi0.98Al
0.02(OH)2(NO3)0.02スラリーを得た。このスラリ
ーのNiに対し原子比がLi/(Ni+Al)=1.0
3に相当する量の3.5mol/l水酸化リチウム水溶
液を前記スラリーに滴下し反応させた後、噴霧乾燥を行
った。得られた乾燥物をアルミナ製ボートに入れ管状炉
にて酸素雰囲気中で750℃、5時間焼成した。焼成物
の化学組成は、Li1.01Ni0.98Al0.02O2であっ
た。Example 2 A mixed aqueous solution of 2.0 mol / l of aluminum nitrate and nickel nitrate was prepared so that the molar ratio of Al / (Ni + Al) = 0.02.
/ L sodium hydroxide aqueous solution was simultaneously added so as to have a pH of 9.5.
Added in 0 minutes. The obtained reaction product was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.98 Al.
0.02 (OH) 2 (NO 3 ) 0.02 slurry was obtained. The atomic ratio of this slurry to Ni is Li / (Ni + Al) = 1.0.
After an amount of 3.5 mol / l aqueous lithium hydroxide solution corresponding to 3 was dropped into the slurry and reacted, spray drying was performed. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product was Li 1.01 Ni 0.98 Al 0.02 O 2 .
【0087】実施例3 Al/(Ni+Al)モル比=0.1となるように2.0m
ol/lの硝酸アルミニウムと、硝酸ニッケルの混合水
溶液を調製し、この混合水溶液と1.0mol/lの水
酸化ナトリウム水溶液をpH8.5となるように同時添
加を行い、温度25℃で強攪拌下に連続的に添加し、得
られた反応物を濾過、水洗後、水に懸濁させることによ
り1mol/lのNi0.9Al0.1(OH)2(NO3)0.1ス
ラリーを得た。このスラリーのNiに対し原子比がLi
/(Ni+Al)=1.05に相当する量の3.5mo
l/l水酸化リチウム水溶液を滴下し反応させた後、噴
霧乾燥を行った。得られた乾燥物をアルミナ製ボートに
入れ管状炉にて酸素雰囲気中で750℃、5時間焼成し
た。焼成物の化学組成は、LiNi0.9Al0.1O2であ
った。Example 3 2.0 m so that the Al / (Ni + Al) molar ratio = 0.1
ol / l of a mixed aqueous solution of aluminum nitrate and nickel nitrate was prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide were simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction product was filtered, washed with water, and suspended in water to obtain a 1 mol / l Ni 0.9 Al 0.1 (OH) 2 (NO 3 ) 0.1 slurry. The atomic ratio of this slurry to Ni is Li
/(Ni+Al)=3.5mo in an amount corresponding to 1.05
After a 1 / l aqueous solution of lithium hydroxide was added dropwise and reacted, spray drying was performed. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product was LiNi 0.9 Al 0.1 O 2 .
【0088】実施例4 Al/(Ni+Al)モル比=0.2となるように2.0m
ol/lの硝酸アルミニウムと、硝酸ニッケルの混合水
溶液を調製し、この混合水溶液と1.0mol/lの水
酸化ナトリウム水溶液をpH8.5となるように同時添
加を行い、温度25℃で強攪拌下に連続的に添加し、得
られた反応物を濾過、水洗後、水に懸濁させることによ
り1mol/lのNi0.8Al0.2(OH)2(NO3)0.2ス
ラリーを得た。このスラリーのNiに対し原子比がLi
/(Ni+Al)=1.05に相当する量の3.5mo
l/l水酸化リチウム水溶液を滴下し反応させた後、噴
霧乾燥を行った。得られた乾燥物をアルミナ製ボートに
入れ管状炉にて酸素雰囲気中で750℃、5時間焼成し
た。焼成物の化学組成は、Li1.01Ni0.8Al0.2O2
であった。Example 4 2.0 m so that the Al / (Ni + Al) molar ratio = 0.2
ol / l of a mixed aqueous solution of aluminum nitrate and nickel nitrate was prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide were simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction product was filtered, washed with water, and suspended in water to obtain a 1 mol / l Ni 0.8 Al 0.2 (OH) 2 (NO 3 ) 0.2 slurry. The atomic ratio of this slurry to Ni is Li
/(Ni+Al)=3.5mo in an amount corresponding to 1.05
After a 1 / l aqueous solution of lithium hydroxide was added dropwise and reacted, spray drying was performed. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product is Li 1.01 Ni 0.8 Al 0.2 O 2
Met.
【0089】実施例5 実施例3で得た噴霧乾燥品をブリネル硬度計を用い、1
000kg/cm2の静的圧力でプレス成形を行った。Example 5 The spray-dried product obtained in Example 3 was analyzed using a Brinell hardness tester.
Press molding was performed at a static pressure of 000 kg / cm 2 .
【0090】成型品はアルミナ製ボートに入れ管状炉に
て酸素雰囲気中で750℃、72時間焼成し、放冷後、
解砕してLiNi0.9Al0.1O2粉体を得た。The molded product was placed in an alumina boat, fired at 750 ° C. for 72 hours in an oxygen atmosphere in a tubular furnace, and allowed to cool.
This was crushed to obtain a LiNi 0.9 Al 0.1 O 2 powder.
【0091】実施例6 Fe/(Ni+Fe)モル比=0.03となるように
2.0mol/lの硝酸鉄と、硝酸ニッケルの混合水溶
液を調製し、この混合水溶液と2.0mol/lの水酸
化ナトリウム水溶液をpH9.5となるように同時添加
を行い、温度50℃、強攪拌下に連続的に60分間で添
加した。得られた反応物を濾過、水洗後、水に懸濁させ
ることにより1mol/lのNi0.97Fe0.03(OH)
2(NO3)0.03スラリーを得た。このスラリーの(Ni+
Fe)に対し原子比がLi/(Ni+Fe)=1.03
に相当する量の3.5mol/l水酸化リチウム水溶液
を用意し、前記スラリーに滴下し反応させた後、噴霧乾
燥を行った。得られた乾燥物をアルミナ製ボートに入れ
管状炉にて酸素雰囲気中で750℃、5時間焼成した。
焼成物の化学組成は、Li1.02Ni0.97Fe0.03O2で
あった。Example 6 A mixed aqueous solution of 2.0 mol / l of iron nitrate and nickel nitrate was prepared so that the molar ratio of Fe / (Ni + Fe) = 0.03. An aqueous sodium hydroxide solution was simultaneously added so as to have a pH of 9.5, and was continuously added at a temperature of 50 ° C. with vigorous stirring for 60 minutes. The obtained reaction product was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.97 Fe 0.03 (OH).
2 (NO 3 ) 0.03 slurry was obtained. (Ni +
Fe / atomic ratio of Li / (Ni + Fe) = 1.03
A 3.5 mol / l aqueous lithium hydroxide solution was prepared in an amount corresponding to the above, and the mixture was dropped into the slurry and reacted, followed by spray drying. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace.
The chemical composition of the fired product was Li 1.02 Ni 0.97 Fe 0.03 O 2 .
【0092】実施例7 Fe/(Ni+Fe)モル比=0.1となるように2.0m
ol/lの硝酸鉄と、硝酸ニッケルの混合水溶液を調製
し、この混合水溶液と1.0mol/lの水酸化ナトリ
ウム水溶液をpH8.5となるように同時添加を行い、
温度25℃で強攪拌下に連続的に添加し、得られた反応
物を濾過、水洗後、水に懸濁させることにより1mol
/lのNi0.9Fe0.1(OH)2(NO3)0.1スラリーを得
た。このスラリーのNiに対し原子比がLi/(Ni+
Al)=1.05に相当する量の3.0mol/l水酸
化リチウム水溶液を滴下し反応させた後、噴霧乾燥を行
った。得られた乾燥物をアルミナ製ボートに入れ管状炉
にて酸素雰囲気中で750℃、5時間焼成した。焼成物
の化学組成は、LiNi0.9Fe0.1O2であった。Example 7 2.0 m so that the molar ratio of Fe / (Ni + Fe) = 0.1.
ol / l of an aqueous solution of iron nitrate and nickel nitrate is prepared, and this mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5.
The mixture was continuously added at a temperature of 25 ° C. with vigorous stirring, and the obtained reaction product was filtered, washed with water, and then suspended in water to give 1 mol.
/ L of Ni 0.9 Fe 0.1 (OH) 2 (NO 3 ) 0.1 slurry was obtained. Atomic ratio of Li / (Ni +
(Al) = 3.05 mol / l aqueous solution of lithium hydroxide in an amount corresponding to 1.05 was added dropwise and reacted, followed by spray drying. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product was LiNi 0.9 Fe 0.1 O 2 .
【0093】実施例8 Fe/(Ni+Fe)モル比=0.2となるように2.0m
ol/lの硝酸鉄と、硝酸ニッケルの混合水溶液を調製
し、この混合水溶液と1.0mol/lの水酸化ナトリ
ウム水溶液をpH8.5となるように同時添加を行い、
温度25℃で強攪拌下に連続的に添加し、得られた反応
物を濾過、水洗後、水に懸濁させることにより1mol
/lのNi0.8Fe0.2(OH)2(NO3)0.2スラリーを得
た。このスラリーのNiに対し原子比がLi/(Ni+
Al)=1.05に相当する量の3.0mol/l水酸
化リチウム水溶液を滴下し反応させた後、噴霧乾燥を行
った。得られた乾燥物をアルミナ製ボートに入れ管状炉
にて酸素雰囲気中で750℃、5時間焼成した。焼成物
の化学組成は、LiNi0.8Fe0.2O2であった。Example 8 2.0 m so that the molar ratio of Fe / (Ni + Fe) = 0.2.
ol / l of an aqueous solution of iron nitrate and nickel nitrate is prepared, and this mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5.
The mixture was continuously added at a temperature of 25 ° C. with vigorous stirring, and the obtained reaction product was filtered, washed with water, and then suspended in water to give 1 mol.
/ L of Ni 0.8 Fe 0.2 (OH) 2 (NO 3 ) 0.2 slurry was obtained. Atomic ratio of Li / (Ni +
(Al) = 3.05 mol / l aqueous solution of lithium hydroxide in an amount corresponding to 1.05 was added dropwise and reacted, followed by spray drying. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product was LiNi 0.8 Fe 0.2 O 2 .
【0094】実施例9 実施例7で得た噴霧乾燥品をブリネル硬度計を用い、1
000kg/cm2の静的圧力でプレス成形を行った。Example 9 The spray-dried product obtained in Example 7 was treated with a Brinell hardness tester to obtain 1
Press molding was performed at a static pressure of 000 kg / cm 2 .
【0095】成型品はアルミナ製ボートに入れ管状炉に
て酸素雰囲気中で750℃、20時間焼成し、放冷後、
解砕してLiNi0.9Fe0.1O2粉体を得た。The molded product was placed in an alumina boat, calcined at 750 ° C. for 20 hours in an oxygen atmosphere in a tubular furnace, and allowed to cool.
This was crushed to obtain LiNi 0.9 Fe 0.1 O 2 powder.
【0096】実施例10 Mn/(Ni+Mn)モル比=0.03となるように1.0
mol/lの硝酸マンガンと、硝酸ニッケルの混合水溶
液を調製し、この混合水溶液と1.0mol/lの水酸
化ナトリウム水溶液をpH8.5、温度25℃で強攪拌
下に連続的に添加し、得られた反応物を濾過、水洗後、
水に懸濁させることにより1mol/lのNi0.97Mn
0.03(OH)1.97(NO3)0.03スラリーを得た(尚、この
塩基性硝酸塩の乾燥物のBET比表面積は147.18
m2/gであり、又一次粒子径(結晶子)は、シェーラ
ー法によりXRDの2θ=60度付近のピークの半値幅
から求めた値が44.1オングストロームであっ
た。)。この懸濁液のNiに対し原子比がLi/(Ni
+Mn)=1.05に相当する量の3.0mol/l水
酸化リチウム水溶液を滴下し反応させた後、噴霧乾燥を
行った。得られた乾燥ゲルをアルミナ製ボートに入れ管
状炉にて酸素雰囲気中で750℃、5時間焼成し、乳鉢
で塊砕してLiNi0.97Mn0.03O2粉体を得た。Example 10 1.0 was selected so that the molar ratio of Mn / (Ni + Mn) was 0.03.
A mixed aqueous solution of mol / l manganese nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous sodium hydroxide solution are continuously added at pH 8.5 and a temperature of 25 ° C under strong stirring, After filtering the obtained reaction product and washing with water,
1 mol / l Ni 0.97 Mn by suspending in water
0.03 (OH) 1.97 (NO 3 ) 0.03 slurry was obtained (the BET specific surface area of the dried basic nitrate was 147.18).
m 2 / g, and the primary particle diameter (crystallite) was 44.1 angstroms as determined from the half width of the peak near 2θ = 60 ° in XRD by the Scherrer method. ). The atomic ratio of Li / (Ni
+ Mn) = 1.05, an aqueous solution of 3.0 mol / l lithium hydroxide was added dropwise and reacted, and then spray-dried. The resulting dried gel was placed in an alumina boat, calcined in an oxygen atmosphere at 750 ° C. for 5 hours in a tubular furnace, and crushed in a mortar to obtain LiNi 0.97 Mn 0.03 O 2 powder.
【0097】実施例11 Mn/(Ni+Mn)モル比=0.1となるように1.
0mol/lの硝酸マンガンと、硝酸ニッケルの混合水
溶液を調製し、この混合水溶液と1.0mol/lの水
酸化ナトリウム水溶液をpH8.5となるように同時添
加を行い、温度25℃で強攪拌下に連続的に添加し、得
られた反応物を濾過、水洗後、水に懸濁させることによ
り1mol/lのNi0.9Mn0.1(OH)1.9(NO3)0.1
スラリーを得た。このスラリーのNiに対し原子比がL
i/(Ni+Mn)=1.05に相当する量の3.0m
ol/l水酸化リチウム水溶液を滴下し反応させた後、
噴霧乾燥を行った。得られた乾燥物をアルミナ製ボート
に入れ管状炉にて酸素雰囲気中で750℃、5時間焼成
し、LiNi0.9Mn0.1O2粉体を得た。Example 11 The following procedure was performed so that the molar ratio of Mn / (Ni + Mn) = 0.1.
A mixed aqueous solution of 0 mol / l manganese nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous sodium hydroxide solution are simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction mixture was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.9 Mn 0.1 (OH) 1.9 (NO 3 ) 0.1.
A slurry was obtained. The atomic ratio of this slurry to Ni is L
3.0 m in an amount corresponding to i / (Ni + Mn) = 1.05
ol / l aqueous solution of lithium hydroxide was dropped and reacted.
Spray drying was performed. The obtained dried product was put in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace to obtain LiNi 0.9 Mn 0.1 O 2 powder.
【0098】実施例12 Mn/(Ni+Mn)モル比=0.4となるように1.0m
ol/lの硝酸マンガンと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5となるように同時添加を
行い、温度25℃で強攪拌下に連続的に添加し、得られ
た反応物を濾過、水洗後、水に懸濁させることにより1
mol/lのNi0.6Mn0.4(OH)1.7(NO3)0.3スラ
リーを得た。このスラリーのNiに対し原子比がLi/
(Ni+Mn)=1.05に相当する量の3.0mol
/l水酸化リチウム水溶液を滴下し反応させた後、噴霧
乾燥を行った。得られた乾燥物をアルミナ製ボートに入
れ管状炉にて酸素雰囲気中で750℃、5時間焼成し、
LiNi0.6Mn0.4O2粉体を得た。Example 12 1.0 m so that the molar ratio of Mn / (Ni + Mn) = 0.4.
ol / l of manganese nitrate and nickel nitrate was prepared, and the mixed aqueous solution and 1.0 mol / l of sodium hydroxide aqueous solution were simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction mixture was filtered, washed with water, and suspended in water.
A mol / l Ni 0.6 Mn 0.4 (OH) 1.7 (NO 3 ) 0.3 slurry was obtained. The atomic ratio of Li / Ni to this slurry is Li /
(Ni + Mn) = 3.0 mol in an amount corresponding to 1.05
After reacting by dropwise addition of an aqueous solution of / l lithium hydroxide, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace,
LiNi 0.6 Mn 0.4 O 2 powder was obtained.
【0099】実施例13 実施例11で得た噴霧乾燥品をブリネル硬度計を用い、
1000kg/cm2の静的圧力でプレス成形を行っ
た。Example 13 The spray-dried product obtained in Example 11 was measured using a Brinell hardness tester.
Press molding was performed at a static pressure of 1000 kg / cm 2 .
【0100】成型品はアルミナ製ボートに入れ管状炉に
て酸素雰囲気中で750℃、20時間焼成し、放冷後、
解砕してLiNi0.9Mn0.1O2を得た。The molded product was placed in an alumina boat, calcined in an oxygen atmosphere at 750 ° C. for 20 hours in a tubular furnace, and allowed to cool.
This was crushed to obtain LiNi 0.9 Mn 0.1 O 2 .
【0101】実施例14 Co/(Ni+Co)モル比=0.03となるように2.
0mol/lの硝酸コバルトと、硝酸ニッケルの混合水
溶液を調製し、この混合水溶液と2.0mol/lの水
酸化ナトリウム水溶液をpH9.0となるように同時添
加を行い、温度40℃、強攪拌下に連続的に60分間で
添加した。得られた反応物を濾過、水洗後、水に懸濁さ
せることにより1mol/lのNi0.97Co0.03(OH)
2(NO3)0.03スラリーを得た。このスラリー中の(Ni
+Co)に対し原子比がLi/(Ni+Co)=1.0
5に相当する量の3.5mol/l水酸化リチウム水溶
液を用意し、前記スラリーに滴下し反応させた後、噴霧
乾燥を行った。得られた乾燥物をアルミナ製ボートに入
れ管状炉にて酸素雰囲気中で750℃、5時間焼成し
た。焼成物の化学組成は、Li1.03Ni0.97Co0.03O
2であった。Example 14 The procedure was repeated so that the molar ratio of Co / (Ni + Co) = 0.03.
A mixed aqueous solution of 0 mol / l cobalt nitrate and nickel nitrate was prepared, and the mixed aqueous solution and a 2.0 mol / l aqueous sodium hydroxide solution were simultaneously added so as to have a pH of 9.0. The lower was added continuously over 60 minutes. The obtained reaction product was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.97 Co 0.03 (OH).
2 (NO 3 ) 0.03 slurry was obtained. The (Ni
+ Co) with an atomic ratio of Li / (Ni + Co) = 1.0
A 3.5 mol / l aqueous solution of lithium hydroxide in an amount corresponding to 5 was prepared, dropped into the slurry, reacted, and then spray-dried. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product is Li 1.03 Ni 0.97 Co 0.03 O
Was 2 .
【0102】実施例15 Co/(Ni+Co)モル比=0.1となるように1.0m
ol/lの硝酸コバルトと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5となるように同時添加を
行い、温度25℃で強攪拌下に連続的に添加し、得られ
た反応反応物を濾過、水洗後、水に懸濁させることによ
り1mol/lのNi0.9Co0.1(OH)1.9(NO3)0.1
スラリーを得た。この懸濁液のNiに対し原子比がLi
/(Ni+Co)=1.05に相当する量の3.0mol
/l水酸化リチウム水溶液を滴下し反応させた後、噴霧
乾燥を行った。得られた乾燥物をアルミナ製ボートに入
れ管状炉にて酸素雰囲気中で750℃、5時間焼成し、
LiNi0.9Co0.1O2粉体を得た。Example 15 1.0 m so that the Co / (Ni + Co) molar ratio was 0.1.
ol / l of a mixed aqueous solution of cobalt nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction mixture was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.9 Co 0.1 (OH) 1.9 (NO 3 ) 0.1.
A slurry was obtained. The atomic ratio of this suspension to Ni is Li
/ (Ni + Co) = 3.0 mol in an amount corresponding to 1.05
After reacting by dropwise addition of an aqueous solution of / l lithium hydroxide, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace,
LiNi 0.9 Co 0.1 O 2 powder was obtained.
【0103】実施例16 Co/(Ni+Co)モル比=0.2となるように1.0m
ol/lの硝酸コバルトと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5となるように同時添加を
行い、温度25℃で強攪拌下に連続的に添加し、得られ
た反応物を濾過、水洗後、水に懸濁させることにより1
mol/lのNi0.8Co0.2(OH)1.8(NO3)0.2スラ
リーを得た。このスラリーのNiに対し原子比がLi/
(Ni+Co)=1.05に相当する量の3.0mol
/l水酸化リチウム水溶液を滴下し反応させた後、噴霧
乾燥を行った。得られた乾燥物をアルミナ製ボートに入
れ管状炉にて酸素雰囲気中で750℃、5時間焼成し、
LiNi0.8Co0.2O2粉体を得た。Example 16 1.0 m so that the molar ratio Co / (Ni + Co) = 0.2.
ol / l of a mixed aqueous solution of cobalt nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction mixture was filtered, washed with water, and suspended in water.
A mol / l Ni 0.8 Co 0.2 (OH) 1.8 (NO 3 ) 0.2 slurry was obtained. The atomic ratio of Li / Ni to this slurry is Li /
3.0 mol of (Ni + Co) = 1.05
After reacting by dropwise addition of an aqueous solution of / l lithium hydroxide, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace,
LiNi 0.8 Co 0.2 O 2 powder was obtained.
【0104】実施例17 Co/(Ni+Co)モル比=0.3となるように1.0m
ol/lの硝酸コバルトと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5となるように同時添加を
行い、温度25℃で強攪拌下に連続的に添加し、得られ
た沈殿物を濾過、水洗後、水に懸濁させることにより1
mol/lのNi0.7Co0.3(OH)1.7(NO3)0.3スラ
リーを得た。このスラリーのNiに対し原子比がLi/
(Ni+Co)=1.05に相当する量の3.0mol
/l水酸化リチウム水溶液を滴下し反応させた後、噴霧
乾燥を行った。得られた乾燥物をアルミナ製ボートに入
れ管状炉にて酸素雰囲気中で750℃、5時間焼成し、
LiNi0.7Co0.3O2粉体を得た。Example 17 1.0 m so that the molar ratio of Co / (Ni + Co) = 0.3.
ol / l of a mixed aqueous solution of cobalt nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The precipitate obtained was filtered, washed with water, and suspended in water.
A 0.3 mol / l Ni 0.7 Co 0.3 (OH) 1.7 (NO 3 ) 0.3 slurry was obtained. The atomic ratio of Li / Ni to this slurry is Li /
3.0 mol of (Ni + Co) = 1.05
After reacting by dropwise addition of an aqueous solution of / l lithium hydroxide, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace,
LiNi 0.7 Co 0.3 O 2 powder was obtained.
【0105】実施例18 Co/(Ni+Co)モル比=0.4となるように1.0m
ol/lの硝酸コバルトと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5となるように同時添加を
行い、温度25℃で強攪拌下に連続的に添加し、得られ
た沈殿物を濾過、水洗後、水に懸濁させることにより1
mol/lのNi0.6Co0.4(OH)1.7(NO3)0.3スラ
リーを得た。このスラリーのNiに対し原子比がLi/
(Ni+Co)=1.05に相当する量の3.0mol/
l水酸化リチウム水溶液を滴下し反応させた後、噴霧乾
燥を行った。得られた乾燥物をアルミナ製ボートに入れ
管状炉にて酸素雰囲気中で750℃、5時間焼成し、乳
鉢で解砕して、LiNi0.6Co0.4O2粉体を得た。Example 18 1.0 m so that the molar ratio Co / (Ni + Co) = 0.4.
ol / l of a mixed aqueous solution of cobalt nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The precipitate obtained was filtered, washed with water, and suspended in water.
A 0.3 mol / l Ni 0.6 Co 0.4 (OH) 1.7 (NO 3 ) 0.3 slurry was obtained. The atomic ratio of Li / Ni to this slurry is Li /
(Ni + Co) = 1.05 3.0 mol /
After 1 l aqueous solution of lithium hydroxide was dropped and reacted, spray drying was performed. The obtained dried product was put in an alumina boat, calcined in an oxygen atmosphere at 750 ° C. for 5 hours in a tubular furnace, and crushed in a mortar to obtain LiNi 0.6 Co 0.4 O 2 powder.
【0106】実施例19 Co/(Ni+Co)モル比=0.2となるように1.0m
ol/lの硝酸コバルトと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH11.5、温度25℃で強撹拌
下に連続的に添加し、得られた反応混合物を濾過、水洗
後、水に懸濁させることにより1mol/lのNi0.8
Co0.2(OH)1.7(NO3)0.3のスラリーを得た。こ
の懸濁液のNiに対しモル比がLi/(Ni+Co)=
1.05に相当する量の3.0mol/l水酸化リチウ
ム水溶液を滴下し反応させた後、噴霧乾燥を行った。得
られた噴霧乾燥品はブリネル硬度計を用い、1300k
g/cm2の静的圧力でプレス成形を行った。成型品は
アルミナ製ボートに入れ管状炉にて酸素雰囲気中で75
0℃、72時間焼成し、放冷後、解砕してLiNi0.8
Co0.2O2粉体を得た。Example 19 1.0 m so that the molar ratio of Co / (Ni + Co) = 0.2.
ol / l of a cobalt nitrate and nickel nitrate mixed aqueous solution was prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous sodium hydroxide solution were continuously added at pH 11.5 and a temperature of 25 ° C. under strong stirring, The obtained reaction mixture was filtered, washed with water, and suspended in water to give 1 mol / l Ni 0.8 %.
A slurry of Co 0.2 (OH) 1.7 (NO 3 ) 0.3 was obtained. The molar ratio of this suspension to Ni is Li / (Ni + Co) =
After an aqueous solution of 3.0 mol / l lithium hydroxide in an amount corresponding to 1.05 was dropped and reacted, spray drying was performed. The obtained spray-dried product was measured using a Brinell hardness tester at 1300 k.
Press molding was performed at a static pressure of g / cm 2 . The molded product is placed in an alumina boat and placed in a tubular furnace in an oxygen atmosphere for 75 minutes.
Baking at 0 ° C. for 72 hours, after cooling, crushing and LiNi 0.8
A Co 0.2 O 2 powder was obtained.
【0107】実施例20 実施例15で得られた噴霧乾燥品をブリネル硬度計で1
000kg/cm2の静的圧力でプレス成形を行った。
プレス成型品をアルミナ製ボートに入れ管状炉にて酸素
雰囲気中で750℃、20時間焼成し、放冷後、解砕し
てLiNi0.9Co0.1O2粉体を得た。Example 20 The spray-dried product obtained in Example 15 was measured for 1
Press molding was performed at a static pressure of 000 kg / cm 2 .
The press-formed product was placed in an alumina boat, fired in a tubular furnace at 750 ° C. for 20 hours in an oxygen atmosphere, allowed to cool, and then crushed to obtain a LiNi 0.9 Co 0.1 O 2 powder.
【0108】実施例21 Mg/(Ni+Mg)モル比=0.049となるように
1.0mol/lの硝酸マグネシウムと、硝酸ニッケル
の混合水溶液を調製し、この混合水溶液と1.0mol
/lの水酸化ナトリウム水溶液をpH11.0、温度2
5℃で強攪拌下に連続的に添加し、得られた反応混合物
を濾過、水洗後、水に懸濁させることにより1mol/
lのNi0.951Mg0.049(OH)1.7(NO3)0.3スラリー
を得た(尚、この塩基性硝酸塩の乾燥物のBET比表面
積は169.4m2/gであり、又一次粒子径(結晶子)
は、シェーラー法により、XRDの2θ=60度付近の
ピーク半値幅から求めた値が32.3オングストローム
であった。)。このスラリーのNiに対し原子比がLi
/(Ni+Mg)=1.0に相当する量の3.0mol
/l水酸化リチウム水溶液を滴下し反応させた後、噴霧
乾燥を行った。得られた乾燥物をアルミナ製ボートに入
れ管状炉にて酸素雰囲気中で750℃、5時間焼成し、
乳鉢で塊砕してLiNi0.97Mg0.05O2粉体を得た。Example 21 A mixed aqueous solution of 1.0 mol / l of magnesium nitrate and nickel nitrate was prepared so that the molar ratio of Mg / (Ni + Mg) was 0.049.
/ L aqueous sodium hydroxide solution at pH 11.0, temperature 2
The mixture was continuously added at 5 ° C. with vigorous stirring, and the resulting reaction mixture was filtered, washed with water, and then suspended in water to give 1 mol / mol.
1 of Ni 0.951 Mg 0.049 (OH) 1.7 (NO 3 ) 0.3 slurry (the BET specific surface area of the dried basic nitrate was 169.4 m 2 / g, and the primary particle size (crystallite )
The value obtained from the peak half-width at around 2θ = 60 ° in XRD by the Scherrer method was 32.3 Å. ). The atomic ratio of this slurry to Ni is Li
/(Ni+Mg)=3.0 mol in an amount corresponding to 1.0
After reacting by dropwise addition of an aqueous solution of / l lithium hydroxide, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace,
The mixture was crushed in a mortar to obtain LiNi 0.97 Mg 0.05 O 2 powder.
【0109】実施例22 実施例15で得られた噴霧乾燥品をそのままアルミナ製
ボートに入れ管状炉にて酸素雰囲気中で750℃、5時
間焼成し、放冷後、粉砕し、ブリネル硬度計で1300
kg/cm2の静的圧力でプレス成形を行った。プレス
成型品を再びアルミナ製ボートに入れ管状炉にて酸素雰
囲気中で800℃、1時間再焼成し、放冷後、解砕して
LiNi0.9Co0.1O2粉体を得た。Example 22 The spray-dried product obtained in Example 15 was directly placed in an alumina boat, calcined in an oxygen atmosphere at 750 ° C. for 5 hours in a tubular furnace, allowed to cool, pulverized, and then measured with a Brinell hardness tester. 1300
Press molding was performed at a static pressure of kg / cm 2 . The press-formed product was put again in an alumina boat, refired in an oxygen atmosphere at 800 ° C. for 1 hour in a tubular furnace, allowed to cool, and then crushed to obtain a LiNi 0.9 Co 0.1 O 2 powder.
【0110】比較例1 2.0mol/lの硝酸ニッケル水溶液500mlに
1.0mol/lの水酸化ナトリウム水溶液とをNa/
Niモル比=1.9に相当する1900mlを攪拌下に
添加し得られた反応混合物を濾過、水洗後、水に懸濁さ
せることにより1mol/lのNi(OH)1.97(NO3)
0.03スラリーを得た。このスラリーのNiに対し原子比
がLi/Ni=1.05に相当する量の3.5mol/l
水酸化リチウム水溶液を用意し、前記スラリーに滴下し
反応させた後、噴霧乾燥を行った。得られた乾燥ゲルを
アルミナ製ボートに入れ管状炉にて酸素雰囲気中で75
0℃で5時間焼成した。焼成物の化学組成は、Li1.02
NiO2であった。Comparative Example 1 A 1.0 mol / l aqueous solution of sodium hydroxide was added to 500 ml of a 2.0 mol / l aqueous solution of nickel nitrate.
1900 ml corresponding to a Ni molar ratio of 1.9 was added under stirring, and the resulting reaction mixture was filtered, washed with water, and suspended in water to give 1 mol / l of Ni (OH) 1.97 (NO 3 ).
A 0.03 slurry was obtained. 3.5 mol / l of an amount corresponding to an atomic ratio of Li / Ni = 1.05 to Ni of the slurry
An aqueous solution of lithium hydroxide was prepared, dropped into the slurry and allowed to react, and then spray-dried. The obtained dried gel was placed in an alumina boat and placed in a tubular furnace in an oxygen atmosphere for 75 minutes.
Baking was performed at 0 ° C. for 5 hours. The chemical composition of the fired product is Li 1.02
NiO 2 .
【0111】比較例2 水酸化リチウム1.05モル、水酸化ニッケル0.97
モル及び水酸化アルミニウム0.03モルを乳鉢で充分
乾式混合粉砕した後、直径14×厚さ2mmの大きさに
ペレット化し、これを酸素雰囲気中で750℃で5時間
焼成した。焼成物の化学組成はLi1.04Ni0.97Al
0.03O2であった。Comparative Example 2 1.05 mol of lithium hydroxide, 0.97 of nickel hydroxide
Mol and 0.03 mol of aluminum hydroxide were sufficiently dry-mixed and pulverized in a mortar, and then pelletized to a size of 14 mm in diameter and 2 mm in thickness, and calcined at 750 ° C. for 5 hours in an oxygen atmosphere. The chemical composition of the fired product is Li 1.04 Ni 0.97 Al
0.03 O 2 .
【0112】比較例3 水酸化リチウム1.05モル、水酸化ニッケル0.97モ
ル及び酸化鉄0.03モルを乳鉢で充分乾式混合粉砕し
た後、直径14×厚さ2mmの大きさにペレット化し、
これを酸素雰囲気中で750℃で5時間焼成した。焼成
物の化学組成はLi1.04Ni0.97Fe0.03O2であっ
た。Comparative Example 3 1.05 mol of lithium hydroxide, 0.97 mol of nickel hydroxide and 0.03 mol of iron oxide were thoroughly dry-mixed and pulverized in a mortar, and then pelletized to a size of 14 mm in diameter and 2 mm in thickness. ,
This was fired at 750 ° C. for 5 hours in an oxygen atmosphere. The chemical composition of the fired product was Li 1.04 Ni 0.97 Fe 0.03 O 2 .
【0113】比較例4 水酸化リチウム1.05モル、水酸化ニッケル0.97
モル及び二酸化マンガン0.03モルを乳鉢で充分乾式
混合粉砕した後、直径14×厚さ2mmの大きさにペレ
ット化し、これを酸素雰囲気中で750℃で5時間焼成
した。焼成物の化学組成はLi1.04Ni0.97Mn0.03O
2であった。Comparative Example 4 1.05 mol of lithium hydroxide, 0.97 of nickel hydroxide
Mol and 0.03 mol of manganese dioxide were sufficiently dry-mixed and pulverized in a mortar, and then pelletized to a size of 14 mm in diameter and 2 mm in thickness, and calcined at 750 ° C. for 5 hours in an oxygen atmosphere. The chemical composition of the fired product is Li 1.04 Ni 0.97 Mn 0.03 O
Was 2 .
【0114】比較例5 水酸化リチウム1.05モル、水酸化ニッケル0.97
モル及び水酸化コバルト0.03モルを乳鉢で充分乾式
混合粉砕した後、直径14×厚さ2mmの大きさにペレ
ット化し、これを酸素雰囲気中で750℃で5時間焼成
した。焼成物の化学組成はLi1.04Ni0.97Co0.03O
2であった。Comparative Example 5 1.05 mol of lithium hydroxide, 0.97 of nickel hydroxide
Mol and 0.03 mol of cobalt hydroxide were thoroughly dry-mixed and pulverized in a mortar, and then pelletized to a size of 14 mm in diameter x 2 mm in thickness, and calcined at 750 ° C for 5 hours in an oxygen atmosphere. The chemical composition of the fired product is Li 1.04 Ni 0.97 Co 0.03 O
Was 2 .
【0115】比較例6 水酸化リチウム1.05モル、水酸化ニッケル0.97
モル及び酸化マグネシウム0.03モルを乳鉢で充分乾
式混合粉砕した後、直径14×厚さ2mmの大きさにペ
レット化し、これを酸素雰囲気中で750℃で5時間焼
成した。焼成物の化学組成はLi1.04Ni0.97Mg0.03
O2であった。Comparative Example 6 1.05 mol of lithium hydroxide, 0.97 of nickel hydroxide
After sufficiently dry-mixing and pulverizing 0.03 mol of magnesium oxide and 0.03 mol of magnesium oxide in a mortar, the mixture was pelletized into a size of 14 mm in diameter and 2 mm in thickness, and calcined at 750 ° C for 5 hours in an oxygen atmosphere. The chemical composition of the fired product is Li 1.04 Ni 0.97 Mg 0.03
It was O 2.
【0116】比較例7 Al/(Ni+Al)モル比=0.3となるように2.0m
ol/lの硝酸アルミニウムと、硝酸ニッケルの混合水
溶液を調製し、この混合水溶液と1.0mol/lの水
酸化ナトリウム水溶液をpH8.5となるように同時添
加を行い、温度25℃で強攪拌下に連続的に添加し、得
られた沈殿物を濾過、水洗後、水に懸濁させることによ
り1mol/lのNi0.7Al0.3(OH)2(NO3)0.3ス
ラリーを得た。このスラリーのNiに対し原子比がLi
/(Ni+Al)=1.05に相当する量の3.0mo
l/l水酸化リチウム水溶液を滴下し反応させた後、噴
霧乾燥を行った。得られた乾燥物をアルミナ製ボートに
入れ管状炉にて酸素雰囲気中で750℃、5時間焼成し
た。焼成物の化学組成は、LiNi0.7Al0.3O2であ
った。Comparative Example 7 2.0 m so that the Al / (Ni + Al) molar ratio = 0.3.
ol / l of a mixed aqueous solution of aluminum nitrate and nickel nitrate was prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide were simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The resulting precipitate was filtered, washed with water, and suspended in water to obtain a 1 mol / l Ni 0.7 Al 0.3 (OH) 2 (NO 3 ) 0.3 slurry. The atomic ratio of this slurry to Ni is Li
/ (Ni + Al) = 3.0mo in an amount corresponding to 1.05
After a 1 / l aqueous solution of lithium hydroxide was added dropwise and reacted, spray drying was performed. The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product was LiNi 0.7 Al 0.3 O 2 .
【0117】比較例8 Fe/(Ni+Fe)モル比=0.3となるように2.0m
ol/lの硝酸鉄と、硝酸ニッケルの混合水溶液を調製
し、この混合水溶液と1.0mol/lの水酸化ナトリ
ウム水溶液をpH8.5で同時添加を行い、温度25℃
で強攪拌下に連続的に添加し、得られた反応混合物を濾
過、水洗後、水に懸濁させることにより1mol/lの
Ni0.7Fe0.3(OH)2(NO3)0.3スラリーを得た。こ
のスラリーのNiに対し原子比がLi/(Ni+Fe)
=1.05に相当する量の3.0mol/l水酸化リチ
ウム水溶液を滴下し反応させた後、噴霧乾燥を行った。
得られた乾燥物をアルミナ製ボートに入れ管状炉にて酸
素雰囲気中で750℃、5時間焼成した。焼成物の化学
組成は、LiNi0.7Fe0.3O2であった。Comparative Example 8 2.0 m so that the molar ratio of Fe / (Ni + Fe) = 0.3.
ol / l of an aqueous solution of iron nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added at pH 8.5, and the temperature is 25 ° C.
The reaction mixture was filtered, washed with water, and suspended in water to obtain a 1 mol / l Ni 0.7 Fe 0.3 (OH) 2 (NO 3 ) 0.3 slurry. . The atomic ratio of this slurry to Ni is Li / (Ni + Fe).
After an aqueous solution of 3.0 mol / l lithium hydroxide in an amount corresponding to 1.05 was dropped and reacted, spray drying was performed.
The obtained dried product was put in an alumina boat and fired at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace. The chemical composition of the fired product was LiNi 0.7 Fe 0.3 O 2 .
【0118】比較例9 Mg/(Ni+Mg)モル比=0.3となるように1.0m
ol/lの硝酸マグネシウムと、硝酸ニッケルの混合水
溶液を調製し、この混合水溶液と1.0mol/lの水
酸化ナトリウム水溶液をpH11.0、温度25℃で強
攪拌下に連続的に添加し、得られた反応混合物を濾過、
水洗後、水に懸濁させることにより1mol/lのNi
0.7Mg0.3(OH)1.7(NO3)0.3スラリーを得た。この
スラリーのNiに対し原子比がLi/(Ni+Mg)=
1.0に相当する量の3.0mol/l水酸化リチウム
水溶液を滴下し反応させた後、噴霧乾燥を行った。得ら
れた乾燥物をアルミナ製ボートに入れ管状炉にて酸素雰
囲気中で750℃、5時間焼成し、LiNi0.7Mg0.3
O2粉体を得た。Comparative Example 9 1.0 m so that the molar ratio of Mg / (Ni + Mg) = 0.3.
ol / l of magnesium nitrate and nickel nitrate to prepare a mixed aqueous solution, and this mixed aqueous solution and 1.0 mol / l of sodium hydroxide aqueous solution were continuously added at pH 11.0 at a temperature of 25 ° C under strong stirring, Filtering the resulting reaction mixture,
After washing with water, 1 mol / l Ni
A slurry of 0.7 Mg 0.3 (OH) 1.7 (NO 3 ) 0.3 was obtained. The atomic ratio of the slurry to Ni is Li / (Ni + Mg) =
After an aqueous solution of 3.0 mol / l lithium hydroxide in an amount corresponding to 1.0 was added dropwise and reacted, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined at 750 ° C. for 5 hours in an oxygen atmosphere in a tubular furnace to obtain LiNi 0.7 Mg 0.3
O 2 powder was obtained.
【0119】比較例10 Mn/(Ni+Mn)モル比=0.6となるように1.0m
ol/lの硝酸マンガンと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5、温度25℃で強攪拌下
に連続的に添加し、得られた反応混合物を濾過、水洗
後、水に懸濁させることにより1mol/lのNi0.4
Mn0.6(OH)1.7(NO3)0.3スラリーを得た。このス
ラリーのNiに対し原子比がLi/(Ni+Mn)=
1.05に相当する量の3.0mol/l水酸化リチウ
ム水溶液を滴下し反応させた後、噴霧乾燥を行った。得
られた乾燥物をアルミナ製ボートに入れ管状炉にて酸素
雰囲気中で750℃、5時間焼成し、LiNi0.4Mn
0.6O2粉体を得た。COMPARATIVE EXAMPLE 10 1.0 m so that the molar ratio of Mn / (Ni + Mn) = 0.6.
ol / l of manganese nitrate and nickel nitrate was prepared, and the mixed aqueous solution and 1.0 mol / l of sodium hydroxide aqueous solution were continuously added at pH 8.5 and at a temperature of 25 ° C. under strong stirring. The obtained reaction mixture was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.4
A slurry of Mn 0.6 (OH) 1.7 (NO 3 ) 0.3 was obtained. The atomic ratio of this slurry to Ni is Li / (Ni + Mn) =
After an aqueous solution of 3.0 mol / l lithium hydroxide in an amount corresponding to 1.05 was dropped and reacted, spray drying was performed. The obtained dried product was placed in an alumina boat and calcined in an oxygen atmosphere at 750 ° C. for 5 hours in a tubular furnace to obtain LiNi 0.4 Mn.
0.6 O 2 powder was obtained.
【0120】比較例11 Co/(Ni+Co)モル比=0.6となるように1.0m
ol/lの硝酸コバルトと、硝酸ニッケルの混合水溶液
を調製し、この混合水溶液と1.0mol/lの水酸化
ナトリウム水溶液をpH8.5となるように同時添加を
行い、温度25℃で強攪拌下に連続的に添加し、得られ
た反応混合物を濾過、水洗後、水に懸濁させることによ
り1mol/lのNi0.4Co0.6(OH)1.7(NO3)0.3
スラリーを得た。このスラリーのNiに対し原子比がL
i/(Ni+Co)=1.05に相当する量の3.0m
ol/l水酸化リチウム水溶液を滴下し反応させた後、
噴霧乾燥を行った。得られた乾燥物をアルミナ製ボート
に入れ管状炉にて酸素雰囲気中で750℃、5時間焼成
し、乳鉢で解砕して、LiNi0.4Co0.6O2粉体を得
た。Comparative Example 11 1.0 m so that the molar ratio of Co / (Ni + Co) = 0.6.
ol / l of a mixed aqueous solution of cobalt nitrate and nickel nitrate is prepared, and the mixed aqueous solution and a 1.0 mol / l aqueous solution of sodium hydroxide are simultaneously added so as to have a pH of 8.5, and strongly stirred at a temperature of 25 ° C. The reaction mixture was filtered, washed with water, and suspended in water to give 1 mol / l of Ni 0.4 Co 0.6 (OH) 1.7 (NO 3 ) 0.3.
A slurry was obtained. The atomic ratio of this slurry to Ni is L
i / (Ni + Co) = 1.05 = 3.0m
ol / l aqueous solution of lithium hydroxide was dropped and reacted.
Spray drying was performed. The obtained dried product was put in an alumina boat, calcined in an oxygen atmosphere at 750 ° C. for 5 hours in a tubular furnace, and crushed in a mortar to obtain LiNi 0.4 Co 0.6 O 2 powder.
【0121】比較例12 水酸化リチウム1.05モル、水酸化ニッケル0.9モ
ル及び水酸化アルミニウム0.1モルを乳鉢で充分乾式
混合粉砕した後、ブリネル硬度計を用い、1000kg
/cm2の静的圧力でプレス成形を行った。成型品はア
ルミナ製ボートに入れ、管状炉にて酸素雰囲気中で75
0℃で20時間焼成し、放冷後、解砕してLiNi0.9
Al0.1O2粉体を得た。Comparative Example 12 1.05 mol of lithium hydroxide, 0.9 mol of nickel hydroxide and 0.1 mol of aluminum hydroxide were thoroughly dry-mixed and pulverized in a mortar, and then 1000 kg using a Brinell hardness tester.
Press molding was performed at a static pressure of / cm 2 . The molded product is placed in an alumina boat and placed in a tubular furnace in an oxygen atmosphere for 75 minutes.
Baking at 0 ° C. for 20 hours, leaving to cool, crushing and LiNi 0.9
An Al 0.1 O 2 powder was obtained.
【0122】比較例13 水酸化リチウム1.05モル、水酸化ニッケル0.9モ
ル及び酸化鉄0.1モルを乳鉢で充分乾式混合粉砕した
後、ブリネル硬度計を用い、1000kg/cm2の静
的圧力でプレス成形を行った。成型品はアルミナ製ボー
トに入れ、管状炉にて酸素雰囲気中で750℃で20時
間焼成し、放冷後、解砕してLiNi0.9Fe0.1O2粉体
を得た。Comparative Example 13 1.05 mol of lithium hydroxide, 0.9 mol of nickel hydroxide and 0.1 mol of iron oxide were thoroughly dry-mixed and pulverized in a mortar, and then subjected to a static pressure of 1000 kg / cm 2 using a Brinell hardness tester. Press molding was performed at a target pressure. The molded product was placed in an alumina boat, fired at 750 ° C. for 20 hours in an oxygen atmosphere in a tubular furnace, allowed to cool, and then crushed to obtain LiNi 0.9 Fe 0.1 O 2 powder.
【0123】比較例14 水酸化リチウム1.05モル、水酸化ニッケル0.9モ
ル及び二酸化マンガン0.1モルを乳鉢で充分乾式混合
粉砕した後、ブリネル硬度計を用い、1000kg/c
m2の静的圧力でプレス成形を行った。成型品はアルミ
ナ製ボートに入れ、管状炉にて酸素雰囲気中で750℃
で20時間焼成し、放冷後、解砕してLiNi0.9Mn
0.1O2粉体を得た。Comparative Example 14 1.05 mol of lithium hydroxide, 0.9 mol of nickel hydroxide and 0.1 mol of manganese dioxide were thoroughly dry-mixed and pulverized in a mortar, and then subjected to 1000 kg / c using a Brinell hardness tester.
Press molding was performed at a static pressure of m 2 . The molded product is placed in an alumina boat and placed in a tube furnace in an oxygen atmosphere at 750 ° C.
For 20 hours, allowed to cool, then crushed to obtain LiNi 0.9 Mn
0.1 O 2 powder was obtained.
【0124】比較例15 水酸化リチウム1.05モル、水酸化ニッケル0.9モ
ル及び水酸化コバルト0.1モルを乳鉢で充分乾式混合
粉砕した後、ブリネル硬度計を用い、1000kg/c
m2の静的圧力でプレス成形を行った。成型品はアルミ
ナ製ボートに入れ、管状炉にて酸素雰囲気中で750℃
で20時間焼成し、放冷後、解砕してLiNi0.9Co
0.1O2粉体を得た。Comparative Example 15 1.05 mol of lithium hydroxide, 0.9 mol of nickel hydroxide and 0.1 mol of cobalt hydroxide were thoroughly dry-mixed and pulverized in a mortar, and then subjected to 1000 kg / c using a Brinell hardness tester.
Press molding was performed at a static pressure of m 2 . The molded product is placed in an alumina boat and placed in a tube furnace in an oxygen atmosphere at 750 ° C.
For 20 hours, allowed to cool, and then crushed to obtain LiNi 0.9 Co
0.1 O 2 powder was obtained.
【0125】上記実施例1〜22及び比較例1〜15で
得られた複合酸化物のX線解析図より得たX線のピーク
比(003)/(104)、(006)/(104)、
BET比表面積、Ni3+の割合、レーザー式マイクロト
ラックで測定した二次粒子の平均径及びSEM写真より
得た一次粒子の長径は、表1、表2に示す。X-ray peak ratios (003) / (104), (006) / (104) of X-rays obtained from X-ray analysis diagrams of the composite oxides obtained in Examples 1 to 22 and Comparative Examples 1 to 15 described above. ,
Tables 1 and 2 show the BET specific surface area, the ratio of Ni 3+ , the average diameter of the secondary particles measured by a laser microtrack, and the long diameter of the primary particles obtained from the SEM photograph.
【0126】[0126]
【表1】 [Table 1]
【0127】[0127]
【表2】 [Table 2]
【0128】又、湿式法で使用した塩基性金属塩(II)
の一次粒子径を表3に示す。The basic metal salt (II) used in the wet method
Table 3 shows the primary particle size.
【0129】[0129]
【表3】 [Table 3]
【0130】尚、噴霧乾燥して焼成した複合酸化物の長
径の粒径は、全て0.2〜3.0μmの範囲内であった。Incidentally, the major particle diameters of the composite oxides fired by spray drying were all in the range of 0.2 to 3.0 μm.
【0131】試験法1 実施例1、2、6、14及び比較例1、2、3、5で得
た複合酸化物を使用して、以下の電池テスト(充放電テ
スト)を行った。Test Method 1 Using the composite oxides obtained in Examples 1, 2, 6, and 14 and Comparative Examples 1, 2, 3, and 5, the following battery test (charge / discharge test) was performed.
【0132】正極材料には、上記各実施例で得られたリ
チウムニッケル複合酸化物と導電性結合剤(ポリテトラ
フロロエチレン−アセチレンブラック)を2:1重量比
の割合で混合後、この混合物を厚さ0.5mm、直径1
8mmのペレット状に成形した。これをプレス機を用い
ステンレス製プレスバンドメッシュ1t/cm2の圧力
で圧着させ正極合剤成型物とした。In the positive electrode material, the lithium nickel composite oxide obtained in each of the above examples and a conductive binder (polytetrafluoroethylene-acetylene black) were mixed at a weight ratio of 2: 1. 0.5mm thick, 1 diameter
It was formed into an 8 mm pellet. This was pressed with a press machine at a pressure of 1 t / cm 2 of stainless steel press band mesh to obtain a positive electrode mixture molded product.
【0133】負極物質としては、リチウム金属シートを
直径18mmに打ち抜いたものを使用した。ステンレス
製コイン型セルに正極合剤成型物を入れ、1mol/l
のLiPF6をプロピレンカーボネート:エチレンカー
ボネート(1:4重量比)に溶解した電解液を適量注入
した。その上にセパレータ及び負極剤を設置し負極ケー
スをかしめることにより試験用リチウム二次電池を得
た。これらの作製は、全てアルゴン雰囲気下で行った。
正極活物質の性能は、得られたリチウム二次電池につい
て充放電を行い、初期充電容量と充放電の繰り返しによ
る放電容量の低下を調べることで評価した。尚、充放電
は1mAの定電流で、3.0〜4.3Vの間の電圧規制
で行った。As the negative electrode material, a lithium metal sheet punched out to a diameter of 18 mm was used. Put the positive electrode mixture molding in a stainless steel coin cell, 1 mol / l
Of LiPF 6 in propylene carbonate: ethylene carbonate (1: 4 weight ratio) was injected in an appropriate amount. A separator and a negative electrode agent were placed thereon, and the negative electrode case was swaged to obtain a test lithium secondary battery. These fabrications were all performed under an argon atmosphere.
The performance of the positive electrode active material was evaluated by charging / discharging the obtained lithium secondary battery and examining the initial charge capacity and the decrease in discharge capacity due to repeated charge / discharge. The charge and discharge were performed at a constant current of 1 mA and a voltage regulation between 3.0 and 4.3 V.
【0134】この電池試験の結果〔初期放電容量(mA
h/g)、100回目の放電容量(mAh/g)及び1
00回目の放電容量の減衰率(%)〕は表4、表5に示
す通りであった。The result of this battery test [initial discharge capacity (mA)
h / g), the 100th discharge capacity (mAh / g) and 1
The decay rate (%) of the 00th discharge capacity] was as shown in Tables 4 and 5.
【0135】[0135]
【表4】 [Table 4]
【0136】[0136]
【表5】 [Table 5]
【0137】試験法2 実施例1〜22及び比較例1〜15の複合酸化物を用い
て以下の電池テスト(充放電テスト)を行った。Test Method 2 The following battery test (charge / discharge test) was performed using the composite oxides of Examples 1 to 22 and Comparative Examples 1 to 15.
【0138】正極材料には、上記各実施例、各比較例で
得られたリチウムニッケル複合酸化物を88重量%、導
電剤としてアセチレンブラック6.0重量%、結合剤と
してテトラフルオロエチレン6.0重量%の混合比で混
合し、次いでステンレスメッシュ上に圧縮成形を行い厚
さ5mm、直径18mmのペレットを得た。得られたペ
レットを200℃で2時間乾燥し正極材料とした。The cathode material was 88% by weight of the lithium nickel composite oxide obtained in each of the above Examples and Comparative Examples, 6.0% by weight of acetylene black as a conductive agent, and 6.0% of tetrafluoroethylene as a binder. The mixture was mixed at a mixing ratio of% by weight, and then compression molded on a stainless steel mesh to obtain a pellet having a thickness of 5 mm and a diameter of 18 mm. The obtained pellet was dried at 200 ° C. for 2 hours to obtain a positive electrode material.
【0139】負極材料には圧延リチウム金属シートをス
テンレス基盤上に圧着したものを用い、隔膜にはポリプ
ロピレン製多孔質膜(商品名「セルガード2502」,
ヘキストジャパン(株)製)とグラスフィルターろ紙を用
いた。As the negative electrode material, a rolled lithium metal sheet pressed on a stainless steel substrate was used, and as the diaphragm, a porous film made of polypropylene (trade name “Celgard 2502”,
Hoechst Japan Co., Ltd.) and glass filter paper.
【0140】電解液には1M LiClO4を溶解させた
エチレンカーボネート/ジメチルメトキシエタン(1:
1重量比)を用い、試験用セル(半解放型セル)の組立
から仕上げまでをアルゴン置換したドライボックス中で
行った。このリチウム電池を0.4mA/cm2の定電流
密度にて、3.0〜4.3Vの間で充放電を行った。In the electrolyte, ethylene carbonate / dimethylmethoxyethane (1: 1) in which 1M LiClO 4 was dissolved was used.
(1 weight ratio), from the assembly of the test cell (semi-open type cell) to the finishing, was performed in a dry box in which argon was replaced. This lithium battery was charged and discharged at a constant current density of 0.4 mA / cm 2 between 3.0 and 4.3 V.
【0141】この電池試験の結果〔初期放電容量(mA
h/g)、100回目の放電容量(mAh/g)及び1
00回目の放電容量の減衰率(%)〕は表6、表7に示
すとおりであった。The results of this battery test [initial discharge capacity (mA)
h / g), the 100th discharge capacity (mAh / g) and 1
The decay rate (%) of the 00th discharge capacity] was as shown in Tables 6 and 7.
【0142】[0142]
【表6】 [Table 6]
【0143】[0143]
【表7】 [Table 7]
【0144】試験法3 本発明で得られた複合酸化物の高温下での安定性の指標
として、充電後の正極材料の発熱反応温度を以下のよう
な方法で測定を行った。Test Method 3 As an indicator of the stability of the composite oxide obtained in the present invention at high temperatures, the exothermic reaction temperature of the positive electrode material after charging was measured by the following method.
【0145】試験法2で作成した試験用セルを用い、充
電後の正極を不活性ガス下DSC(株式会社リガク製
「THERMOFLEX TAS200」)による熱分
析を行い、発熱反応温度の測定を行った。Using the test cell prepared in Test Method 2, the positive electrode after charging was subjected to a thermal analysis by DSC ("THERMOFLEX TAS200" manufactured by Rigaku Corporation) under an inert gas, and the exothermic reaction temperature was measured.
【0146】その結果、比較例1では208.0℃、実
施例15では224.3℃、実施例20では237.6
℃に発熱ピークが認められた。As a result, in Comparative Example 1, 208.0 ° C., in Example 15, 224.3 ° C., and in Example 20, 237.6 ° C.
An exothermic peak was observed at ° C.
【0147】LiNiO2にCoなどを入れると発熱ピー
クの温度上昇が認められ、さらに同一組成でも一次粒子
の大きい正極材料の方が発熱ピーク温度が高く、高温下
での安定性が高まっていることが分かる。When Co or the like is added to LiNiO 2 , an increase in the temperature of the exothermic peak is observed. Further, even with the same composition, the positive electrode material having a large primary particle has a higher exothermic peak temperature, and the stability at high temperatures is enhanced. I understand.
【0148】[0148]
【発明の効果】以上説明したように、本発明によれば Liy-x1Ni1-x2MxO2 (式中、MはAl、Fe、Co、Mn及びMgからなる
群から選ばれた1種を示し、x=x1+x2を示し、x1
は0≦x1<0.2、x2は0<x2≦0.5、xは0<
x≦0.5であり、yは0.9≦y≦1.3である)で示
される新規なリチウムニッケル複合酸化物であって、結
晶が充分に発達し且つ純度が高く、しかも、高放電容量
の安定性に優れた二次電池用正極活物質を提供すること
ができる。As described above, according to the present invention, Li y-x1 Ni 1-x2 M x O 2 (where M is selected from the group consisting of Al, Fe, Co, Mn and Mg) represents one, indicates x = x 1 + x 2, x 1
Is 0 ≦ x 1 <0.2, x 2 is 0 <x 2 ≦ 0.5, and x is 0 <
x ≦ 0.5 and y is 0.9 ≦ y ≦ 1.3), wherein the crystal is sufficiently developed and the purity is high. A positive electrode active material for a secondary battery having excellent discharge capacity stability can be provided.
【図1】 実施例1で得た複合酸化物のX線回折図(X
RD)。FIG. 1 is an X-ray diffraction diagram of the composite oxide obtained in Example 1 (X
RD).
【図2】 実施例1で得た複合酸化物のSEM写真(1
50倍)。FIG. 2 is an SEM photograph (1) of the composite oxide obtained in Example 1.
50 times).
【図3】 実施例1で得た複合酸化物のSEM写真(3
0000倍)。FIG. 3 is an SEM photograph (3) of the composite oxide obtained in Example 1.
0000 times).
【図4】 実施例1で得た複合酸化物の粒度分布。FIG. 4 is a particle size distribution of the composite oxide obtained in Example 1.
【図5】 実施例5で得た複合酸化物のXRD。FIG. 5 is an XRD of the composite oxide obtained in Example 5.
【図6】 実施例5で得た複合酸化物のSEM写真(1
0000倍)。FIG. 6 is an SEM photograph (1) of the composite oxide obtained in Example 5.
0000 times).
【図7】 実施例6で得た複合酸化物のXRD。7 is an XRD of the composite oxide obtained in Example 6. FIG.
【図8】 実施例6で得た複合酸化物のSEM写真(1
50倍)。FIG. 8 is an SEM photograph (1) of the composite oxide obtained in Example 6.
50 times).
【図9】 実施例6で得た複合酸化物のSEM写真(3
0000倍)。FIG. 9 is an SEM photograph (3) of the composite oxide obtained in Example 6.
0000 times).
【図10】 実施例6で得た複合酸化物の粒度分布。FIG. 10 is a particle size distribution of the composite oxide obtained in Example 6.
【図11】 実施例9で得た複合酸化物のXRD。FIG. 11 is an XRD of the composite oxide obtained in Example 9.
【図12】 実施例9で得た複合酸化物のSEM写真
(10000倍)。FIG. 12 is a SEM photograph (× 10000) of the composite oxide obtained in Example 9.
【図13】 実施例10で得た複合酸化物のXRD。FIG. 13 is an XRD of the composite oxide obtained in Example 10.
【図14】 実施例10で得た複合酸化物のSEM写真
(30000倍)。FIG. 14 is a SEM photograph (30000 times) of the composite oxide obtained in Example 10.
【図15】 実施例10で得た複合酸化物の粒度分布。FIG. 15 is a particle size distribution of the composite oxide obtained in Example 10.
【図16】 実施例13で得た複合酸化物のXRD。FIG. 16 is an XRD of the composite oxide obtained in Example 13.
【図17】 実施例13で得た複合酸化物のSEM写真
(10000倍)。FIG. 17 is a SEM photograph (× 10000) of the composite oxide obtained in Example 13.
【図18】 実施例14で得た複合酸化物のXRD。FIG. 18 is an XRD of the composite oxide obtained in Example 14.
【図19】 実施例14で得た複合酸化物のSEM写真
(150倍)。FIG. 19 is an SEM photograph (× 150) of the composite oxide obtained in Example 14.
【図20】 実施例14で得た複合酸化物のSEM写真
(10000倍)。FIG. 20 is an SEM photograph (× 10000) of the composite oxide obtained in Example 14.
【図21】 実施例14で得た複合酸化物の粒度分布。FIG. 21 is a particle size distribution of the composite oxide obtained in Example 14.
【図22】 実施例16で得た複合酸化物のXRD。FIG. 22 is an XRD of the composite oxide obtained in Example 16.
【図23】 実施例16で得た複合酸化物のSEM写真
(1000倍)。FIG. 23 is a SEM photograph (× 1000) of the composite oxide obtained in Example 16.
【図24】 実施例16で得た複合酸化物のSEM写真
(10000倍)。FIG. 24 is an SEM photograph (× 10000) of the composite oxide obtained in Example 16.
【図25】 実施例16で得た複合酸化物の粒度分布。FIG. 25 is a particle size distribution of the composite oxide obtained in Example 16.
【図26】 実施例19で得た複合酸化物のXRD。FIG. 26 is an XRD of the composite oxide obtained in Example 19.
【図27】 実施例19で得た複合酸化物のSEM写真
(10000倍)。FIG. 27 is a SEM photograph (× 10000) of the composite oxide obtained in Example 19.
【図28】 実施例21で得た複合酸化物のXRD。FIG. 28 is an XRD of the composite oxide obtained in Example 21.
【図29】 実施例21で得た複合酸化物のSEM写真
(50倍)。FIG. 29 is an SEM photograph (× 50) of the composite oxide obtained in Example 21.
【図30】 実施例21で得た複合酸化物のSEM写真
(30000倍)。FIG. 30 is an SEM photograph (30000 times) of the composite oxide obtained in Example 21.
【図31】 実施例21で得た複合酸化物の粒度分布。FIG. 31 shows a particle size distribution of the composite oxide obtained in Example 21.
【図32】 比較例1で得た複合酸化物のXRD。FIG. 32 is an XRD of the composite oxide obtained in Comparative Example 1.
【図33】 比較例1で得た複合酸化物のSEM写真
(1000倍)。FIG. 33 is an SEM photograph (× 1000) of the composite oxide obtained in Comparative Example 1.
【図34】 比較例1で得た複合酸化物のSEM写真
(10000倍)。FIG. 34 is an SEM photograph (10000 times) of the composite oxide obtained in Comparative Example 1.
【図35】 比較例1で得た複合酸化物の粒度分布。FIG. 35 shows a particle size distribution of the composite oxide obtained in Comparative Example 1.
【図36】 比較例5で得た複合酸化物のXRD。36 is an XRD of the composite oxide obtained in Comparative Example 5. FIG.
【図37】 比較例5で得た複合酸化物のSEM写真
(3500倍)。FIG. 37 is a SEM photograph (3500 times) of the composite oxide obtained in Comparative Example 5.
【図38】 比較例5で得た複合酸化物のSEM写真
(10000倍)。FIG. 38 is an SEM photograph (10000 times) of the composite oxide obtained in Comparative Example 5.
【図39】 比較例15で得た複合酸化物のXRD。FIG. 39 is an XRD of the composite oxide obtained in Comparative Example 15.
【図40】 比較例15で得た複合酸化物のSEM写真
(20000倍)。FIG. 40 is an SEM photograph (× 20000) of the composite oxide obtained in Comparative Example 15.
【手続補正書】[Procedure amendment]
【提出日】平成8年12月26日[Submission date] December 26, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Correction target item name] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0039[Correction target item name] 0039
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0039】本発明のリチウムニッケル複合酸化物は、
一般式(II) Ni1−xMp x(OH)2−nz(An−)[2+(px−2x)/ n] ・mH2O (II) (式中、MはAl、Fe、Co、Mn及びMgからなる
群から選ばれた1種を示し、pはMの価数で2≦p≦3
を示し、An−はn価のアニオン、x、z及びmはそれ
ぞれ0<x≦0.2、0.03≦z≦0.3、0≦m<
2の範囲を満足する正の数を示す)で示される塩基性金
属塩と、水溶性リチウム化合物とを水媒体中で、Li/
(Ni+M)のモル比=0.9〜1.3の条件下で反応
させ、得られたスラリーを噴霧乾燥後、酸化雰囲気下で
約600℃〜900℃、約4時間以上で焼成することに
より製造することができる。The lithium nickel composite oxide of the present invention comprises:
Formula (II) Ni 1-x M p x (OH) 2-nz (A n-) [2+ (px-2x) / n] · mH 2 O (II) ( wherein, M is Al, Fe, Represents one selected from the group consisting of Co, Mn and Mg, where p is the valence of M and 2 ≦ p ≦ 3
Are shown, A n-n-valent anion, x, respectively z and m 0 <x ≦ 0.2,0.03 ≦ z ≦ 0.3,0 ≦ m <
A positive number that satisfies the range of 2) and a water-soluble lithium compound in an aqueous medium with Li /
The reaction is performed under the condition of a molar ratio of (Ni + M) = 0.9 to 1.3, the obtained slurry is spray-dried, and then fired in an oxidizing atmosphere at about 600 ° C. to 900 ° C. for about 4 hours or more. Can be manufactured.
【手続補正3】[Procedure amendment 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0060[Correction target item name] 0060
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0060】本発明の一次粒子が大きいリチウムニッケ
ル複合酸化物は、前記一般式(II)で示される塩基性
金属塩を出発原料として、これに水溶性リチウムを水媒
体中でLi/(Ni+M)のモル比が0.9〜1.3と
なる条件下で反応させ、得られたスラリーを噴霧乾燥
し、この噴霧乾燥品をプレス成形することによって得ら
れる。The lithium-nickel composite oxide having a large primary particle according to the present invention is prepared by using a basic metal salt represented by the above general formula (II) as a starting material and adding water-soluble lithium to an aqueous medium in the form of Li / (Ni + M). Are reacted under the condition that the molar ratio of the resulting mixture is 0.9 to 1.3, the obtained slurry is spray-dried, and the spray-dried product is obtained by press molding.
───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平8−148147 (32)優先日 平8(1996)5月17日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平8−150127 (32)優先日 平8(1996)5月21日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平8−181587 (32)優先日 平8(1996)6月20日 (33)優先権主張国 日本(JP) (72)発明者 藤森 和美 富山県中新川郡上市町横法音寺55番地 富 士化学工業株式会社内 (72)発明者 町 たまき 富山県中新川郡上市町横法音寺55番地 富 士化学工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. 8-148147 (32) Priority date Hei 8 (1996) May 17 (33) Priority claim country Japan (JP) (31) Priority Claim number Japanese Patent Application No. 8-150127 (32) Priority Date Hei 8 (1996) May 21 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 8-181587 (32) Priority June 8 (1996) June 20, (33) Priority Country Japan (JP) (72) Inventor Kazumi Fujimori 55 Yokohoonji, Kamiichi-cho, Nakashinkawa-gun, Toyama Prefecture Fuji Chemical Co., Ltd. (72) Invention Town Tamaki 55, Yokohoonji, Kamiichi-cho, Nakashinagawa-Gun, Toyama Prefecture Inside Fuji Chemical Industry Co., Ltd.
Claims (7)
らなる群から選ばれた1種、x=x1+x2(ここで、 (i) MがAl又はFeである場合は、0<x≦0.2
を示し、x1は0、x2はxを示し、 (ii) MがCo又はMnの場合は、0<x≦0.5を示
し、x1は0、x2はxを示し、 (iii) MがMgである場合は、0<x≦0.2を示し、
x1は0<x1<0.2、x2は、0<x2<0.2を示
す)、yは0.9≦y≦1.3を示す] で示され、X線
回折のミラー指数hklにおける(003)面及び(1
04)面での回折ピーク比(003)/(104)が
1.2以上、(006)面及び(101)面での回折ピ
ーク比(006)/(101)が0.13以下、BET
表面積が0.1〜2m2/g、全Niに対するNi3+の
割合が99重量%以上、平均粒径Dが5〜100μm、
粒度分布の10%が0.5D以上、90%が2D以下、
走査型電子顕微鏡(SEM)で観察して表面に凸凹のある
球状二次粒子であって、この球状二次粒子を構成する一
次粒子径が、SEMで観察して長径の粒径が0.2〜3.
0μmの範囲に分布している均一な粒子で且つその長径
の平均粒径が0.3〜2.0μmであることを特徴とする
リチウムニッケル複合酸化物。1. A general formula (I) Li y-x1 Ni 1-x2 M x O 2 (I) wherein M is 1 selected from the group consisting of Al, Fe, Co, Mn and Mg. Species, x = x 1 + x 2 (where (i) when M is Al or Fe, 0 <x ≦ 0.2
Where x 1 is 0, x 2 is x, (ii) when M is Co or Mn, 0 <x ≦ 0.5, x 1 is 0, x 2 is x, iii) when M is Mg, 0 <x ≦ 0.2;
x 1 is 0 <x 1 <0.2, x 2 is 0 <shows the x 2 <0.2), y is indicated by 'showing a 0.9 ≦ y ≦ 1.3, the X-ray diffraction (003) plane and (1) at Miller index hkl
(04) plane diffraction peak ratio (003) / (104) is 1.2 or more, (006) plane and (101) plane diffraction peak ratio (006) / (101) is 0.13 or less, BET
A surface area of 0.1 to 2 m 2 / g, a ratio of Ni 3+ to all Ni of 99% by weight or more, an average particle diameter D of 5 to 100 μm,
10% of the particle size distribution is 0.5D or more, 90% is 2D or less,
Observed by a scanning electron microscope (SEM), the particles are spherical secondary particles having irregularities on the surface. ~ 3.
A lithium-nickel composite oxide comprising uniform particles distributed in a range of 0 μm and having an average major particle diameter of 0.3 to 2.0 μm.
らなる群から選ばれた1種を示し、pはMの価数で2≦
p≦3を示し、An-はn価のアニオン、x、z及びmは
それぞれ0<x≦0.2、0.03≦z≦0.3、0≦
m<2の範囲を満足する正の数を示す)で示され、塩基
性金属塩と、水溶性リチウム化合物とを水媒体中で、L
i/(Ni+M)のモル比が0.9〜1.3となる条件
下で反応させ、得られたスラリーを噴霧乾燥後、酸化雰
囲気下で約600℃〜900℃、約4時間以上で焼成す
ることを特徴とする請求項1記載のリチウムニッケル複
合酸化物の製造方法。Wherein formula (II) Ni 1-x M p x (OH) 2-nz (A n-) [z + (px-2x) / n] · mH 2 O (II) ( In the formula , M is one selected from the group consisting of Al, Fe, Co, Mn and Mg, and p is the valence of M and 2 ≦
p <3, where A n− is an n-valent anion, and x, z and m are respectively 0 <x ≦ 0.2, 0.03 ≦ z ≦ 0.3, 0 ≦
m <2). A basic metal salt and a water-soluble lithium compound are dissolved in an aqueous medium by L
The reaction is performed under the condition that the molar ratio of i / (Ni + M) is 0.9 to 1.3, and the obtained slurry is spray-dried and then fired in an oxidizing atmosphere at about 600 ° C. to 900 ° C. for about 4 hours or more. The method for producing a lithium nickel composite oxide according to claim 1, wherein
らなる群から選ばれた1種を示し、x=x1+x2(ここ
で、 (i) MがAl又はFeである場合は、0<x≦0.2
を示し、x1は0、x2はxを示し、 (ii) MがCo又はMnの場合は、0<x≦0.5を示
し、x1は0、x2はxを示し、 (iii) MがMgである場合は、0<x≦0.2を示し、
x1は0<x1<0.2、x2は0<x2<0.2を示
す)、yは0.9≦y≦1.3を示す] で示され、X線
回折のミラー指数hklにおける(003)面および
(104)面での回折ピーク比(003)/(104)
が1.2以上、(006)面および(101)面での回
折ピーク比(006)/(101)が0.13以下、S
EMで観察した一次粒子の平均長径が1〜10μmであ
ることを特徴とするリチウムニッケル複合酸化物。3. A general formula (I) Li y-x1 Ni 1-x2 M x O 2 (I) wherein M is 1 selected from the group consisting of Al, Fe, Co, Mn and Mg. X = x 1 + x 2 (where (i) when M is Al or Fe, 0 <x ≦ 0.2
Where x 1 is 0, x 2 is x, (ii) when M is Co or Mn, 0 <x ≦ 0.5, x 1 is 0, x 2 is x, iii) when M is Mg, 0 <x ≦ 0.2;
x 1 is represented by 0 <x 1 <0.2, x 2 represents the 0 <x 2 <0.2), y represents a 0.9 ≦ y ≦ 1.3], the X-ray diffraction mirror Diffraction peak ratio at (003) and (104) planes at index hkl (003) / (104)
Is not less than 1.2, the diffraction peak ratio (006) / (101) on the (006) plane and the (101) plane is not more than 0.13, and S
A lithium-nickel composite oxide, characterized in that the primary particles have an average major axis of 1 to 10 μm as observed by EM.
群から選ばれた1種を示し、pはMの価数を示し2≦p
≦3、An-はn価のアニオン、x、z及びmはそれぞれ
0<x≦0.2、0.03≦z≦0.3、0≦m<2の
範囲を満足する正の数を示す)で示される塩基性金属塩
と水溶性リチウム化合物とを水媒体中で、Li/(Ni
+M)のモル比が0.9〜1.3となる条件下で反応さ
せ、得られたスラリーを噴霧乾燥し、噴霧乾燥品をプレ
ス成形後、酸化雰囲気下600℃〜900℃で約4時間
以上焼成することを特徴とする請求項3記載のリチウム
ニッケル複合酸化物の製造方法。Wherein said general formula (II) Ni 1-x M p x (OH) 2-nz (A n-) [z + (px-2x) / n] · mH 2 O (II) ( wherein, M represents one kind selected from the group consisting of Al, Fe, Co, Mn and Mg, p represents the valence of M, and 2 ≦ p
≦ 3, A n− is an n-valent anion, x, z and m are positive numbers satisfying the ranges of 0 <x ≦ 0.2, 0.03 ≦ z ≦ 0.3 and 0 ≦ m <2, respectively. ) And a water-soluble lithium compound in an aqueous medium, Li / (Ni
+ M) is reacted under the condition that the molar ratio is 0.9 to 1.3, the obtained slurry is spray-dried, and the spray-dried product is press-molded, and then is heated at 600 ° C. to 900 ° C. for about 4 hours in an oxidizing atmosphere. 4. The method for producing a lithium nickel composite oxide according to claim 3, wherein the firing is performed.
群から選ばれた1種を示し、pはMの価数を示し2≦p
≦3、An-はn価のアニオン、x、z及びmはそれぞれ
0<x≦0.2、0.03≦z≦0.3、0≦m<2の
範囲を満足する正の数を示す}で示される塩基性金属塩
と水溶性リチウム化合物とを水媒体中で、Li/(Ni
+M)のモル比が0.9〜1.3となる条件下で反応さ
せ、得られたスラリーを噴霧乾燥し、噴霧乾燥品をその
まま酸化雰囲気下600℃〜900℃で約0.5時間以
上焼成し、次に得られた焼成品を粉砕、プレス成形後、
さらに酸化雰囲気下600℃〜900℃で約1時間以上
再焼成することを特徴とする請求項3記載のリチウムニ
ッケル複合酸化物の製造方法。5. The general formula (II) Ni 1-x M p x (OH) 2-nz (A n-) [z + (px-2x) / n] · mH 2 O (II) ( wherein, M Represents one selected from the group consisting of Al, Fe, Co, Mn and Mg, p represents the valence of M, and 2 ≦ p
≦ 3, A n− is an n-valent anion, x, z and m are positive numbers satisfying the ranges of 0 <x ≦ 0.2, 0.03 ≦ z ≦ 0.3 and 0 ≦ m <2, respectively. In a water medium, a basic metal salt represented by} and a water-soluble lithium compound are Li / (Ni
+ M) is reacted under the condition that the molar ratio is 0.9 to 1.3, and the obtained slurry is spray-dried. Firing, then pulverize the obtained fired product, press molding,
4. The method for producing a lithium nickel composite oxide according to claim 3, further comprising refiring at a temperature of 600 to 900 [deg.] C. for at least one hour in an oxidizing atmosphere.
複合酸化物を有効成分として含有することを特徴とする
二次電池用正極活物質。6. A positive electrode active material for a secondary battery, comprising the lithium nickel composite oxide according to claim 1 or 3 as an active ingredient.
10%以下であることを特徴とする請求項6記載のリチ
ウム二次電池用正極活物質。7. The positive electrode active material for a lithium secondary battery according to claim 6, wherein the decay rate of the discharge capacity at the 100th cycle is 10% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08325932A JP3130813B2 (en) | 1995-11-24 | 1996-11-22 | Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32981195 | 1995-11-24 | ||
JP2597696 | 1996-01-18 | ||
JP11542896 | 1996-04-12 | ||
JP14814796 | 1996-05-17 | ||
JP15012796 | 1996-05-21 | ||
JP8-181587 | 1996-06-20 | ||
JP8-115428 | 1996-06-20 | ||
JP8-150127 | 1996-06-20 | ||
JP18158796 | 1996-06-20 | ||
JP8-25976 | 1996-06-20 | ||
JP7-329811 | 1996-06-20 | ||
JP8-148147 | 1996-06-20 | ||
JP08325932A JP3130813B2 (en) | 1995-11-24 | 1996-11-22 | Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1069910A true JPH1069910A (en) | 1998-03-10 |
JP3130813B2 JP3130813B2 (en) | 2001-01-31 |
Family
ID=27564083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08325932A Expired - Lifetime JP3130813B2 (en) | 1995-11-24 | 1996-11-22 | Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130813B2 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000285918A (en) * | 1999-03-31 | 2000-10-13 | Kawatetsu Mining Co Ltd | Material for positive electrode of lithium secondary battery |
JP2001135314A (en) * | 1999-11-05 | 2001-05-18 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same |
JP2002208401A (en) * | 2001-01-09 | 2002-07-26 | Toshiba Electronic Engineering Corp | Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery |
JP2002211931A (en) * | 2001-01-10 | 2002-07-31 | Toyota Central Res & Dev Lab Inc | Lithium nickel compound oxide for active material for positive electrode of lithium secondary battery |
JP2002289261A (en) * | 2001-01-16 | 2002-10-04 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
JP2003034536A (en) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing laminar lithium nickel manganese complex oxide powder |
JP2003034537A (en) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing laminar lithium nickel manganese complex oxide powder |
JP2003068299A (en) * | 2001-08-24 | 2003-03-07 | Yuasa Corp | Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same |
JP2003086183A (en) * | 2001-09-13 | 2003-03-20 | Matsushita Electric Ind Co Ltd | Positive electrode active material and nonaqueous electrolyte secondary battery containing the same |
US6551744B1 (en) | 2000-07-27 | 2003-04-22 | Matsushita Electric Industrial Co., Ltd. | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2005015282A (en) * | 2003-06-26 | 2005-01-20 | Mitsubishi Chemicals Corp | Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide |
JP2005302507A (en) * | 2004-04-12 | 2005-10-27 | Sumitomo Metal Mining Co Ltd | Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
CN1311576C (en) * | 2003-06-26 | 2007-04-18 | 丰田自动车株式会社 | Positive electrode active material and use thereof |
US7309543B2 (en) | 2003-05-13 | 2007-12-18 | Mitsubishi Chemical Corporation | Layered lithium-nickel-based compound oxide powder and its production process |
JP2008037749A (en) * | 1996-08-12 | 2008-02-21 | Toda Kogyo Corp | Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery |
US7341805B2 (en) | 2000-11-16 | 2008-03-11 | Hitachi Maxell, Ltd. | Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide |
JP2008056561A (en) * | 2007-09-07 | 2008-03-13 | Mitsubishi Chemicals Corp | Lithium nickel manganese composite oxide and positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery |
CN100377394C (en) * | 2004-02-17 | 2008-03-26 | 三星Sdi株式会社 | Positive active material for lithium secondary battery and method of preparing same |
JP2008115075A (en) * | 2001-11-22 | 2008-05-22 | Hitachi Maxell Ltd | Composite oxide containing lithium and nonaqueous secondary battery using the same |
JP2008214186A (en) * | 2000-05-30 | 2008-09-18 | Agc Seimi Chemical Co Ltd | Lithium-transition metal compound oxide |
US7455933B2 (en) | 2002-11-06 | 2008-11-25 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
JP2009021251A (en) * | 2007-07-16 | 2009-01-29 | Samsung Sdi Co Ltd | Cathode active material of lithium secondary cell, its forming method, and lithium secondary cell |
US7541114B2 (en) | 2002-03-01 | 2009-06-02 | Panasonic Corporation | Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery |
US7579114B2 (en) | 2001-09-13 | 2009-08-25 | Panasonic Corporation | Method of preparing positive electrode active material |
US7592100B2 (en) | 2001-03-22 | 2009-09-22 | Panasonic Corporation | Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same |
JP2009266712A (en) * | 2008-04-28 | 2009-11-12 | Sakai Chem Ind Co Ltd | Positive active material for lithium secondary battery and its manufacturing method |
JP2010538956A (en) * | 2007-09-14 | 2010-12-16 | サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン | Powders containing elongated particles and their use to produce solid oxide fuel cell electrodes |
JP2011071103A (en) * | 2009-08-25 | 2011-04-07 | Toshiba Corp | Positive electrode, nonaqueous electrolyte battery, and battery pack |
US7927741B2 (en) | 2007-01-26 | 2011-04-19 | Mitsui Mining & Smelting Co., Ltd. | Lithium transition metal oxide having layered structure |
WO2011049185A1 (en) * | 2009-10-22 | 2011-04-28 | 戸田工業株式会社 | Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery |
US7935443B2 (en) | 2001-06-27 | 2011-05-03 | Panasonic Corporation | Lithium nickel-manganese-cobalt oxide positive electrode active material |
US7939200B2 (en) | 2003-11-07 | 2011-05-10 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
US8153297B2 (en) | 2002-08-05 | 2012-04-10 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2012084552A (en) * | 2012-02-01 | 2012-04-26 | Gs Yuasa Corp | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same |
US8349287B2 (en) | 2001-10-25 | 2013-01-08 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2015056384A (en) * | 2013-09-13 | 2015-03-23 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JP2015103331A (en) * | 2013-11-22 | 2015-06-04 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | Positive electrode active material, and lithium ion secondary battery |
US9391325B2 (en) | 2002-03-01 | 2016-07-12 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
JP2016155696A (en) * | 2015-02-23 | 2016-09-01 | 戸田工業株式会社 | Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery |
JPWO2017169184A1 (en) * | 2016-03-30 | 2019-02-07 | パナソニックIpマネジメント株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
JP2022159119A (en) * | 2021-03-31 | 2022-10-17 | エコプロ ビーエム カンパニー リミテッド | Positive electrode active material and lithium secondary battery using the same |
JP2022553657A (en) * | 2020-07-14 | 2022-12-26 | 蜂巣能源科技股▲ふん▼有限公司 | Cobalt-Free Cathode Materials and Preparation Methods Thereof, and Lithium Ion Battery Cathodes and Lithium Batteries |
JP2023500640A (en) * | 2020-01-17 | 2023-01-10 | 蜂巣能源科技股▲ふん▼有限公司 | Cobalt-free layered positive electrode material, manufacturing method thereof, and lithium ion battery |
US12113213B2 (en) * | 2013-07-24 | 2024-10-08 | Sumitomo Metal Mining Co., Ltd. | Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method for same, and non-aqueous electrolyte secondary battery |
-
1996
- 1996-11-22 JP JP08325932A patent/JP3130813B2/en not_active Expired - Lifetime
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008037749A (en) * | 1996-08-12 | 2008-02-21 | Toda Kogyo Corp | Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery |
JP4519959B2 (en) * | 1999-03-31 | 2010-08-04 | Jfeミネラル株式会社 | Positive electrode material for lithium secondary battery |
JP2000285918A (en) * | 1999-03-31 | 2000-10-13 | Kawatetsu Mining Co Ltd | Material for positive electrode of lithium secondary battery |
JP2001135314A (en) * | 1999-11-05 | 2001-05-18 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same |
JP4682388B2 (en) * | 1999-11-05 | 2011-05-11 | 三菱化学株式会社 | Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same |
JP2008214186A (en) * | 2000-05-30 | 2008-09-18 | Agc Seimi Chemical Co Ltd | Lithium-transition metal compound oxide |
JP4280012B2 (en) * | 2000-05-30 | 2009-06-17 | Agcセイミケミカル株式会社 | Lithium transition metal composite oxide |
US6551744B1 (en) | 2000-07-27 | 2003-04-22 | Matsushita Electric Industrial Co., Ltd. | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7341805B2 (en) | 2000-11-16 | 2008-03-11 | Hitachi Maxell, Ltd. | Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide |
JP2002208401A (en) * | 2001-01-09 | 2002-07-26 | Toshiba Electronic Engineering Corp | Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery |
JP4697504B2 (en) * | 2001-01-10 | 2011-06-08 | 株式会社豊田中央研究所 | Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same |
JP2002211931A (en) * | 2001-01-10 | 2002-07-31 | Toyota Central Res & Dev Lab Inc | Lithium nickel compound oxide for active material for positive electrode of lithium secondary battery |
JP2002289261A (en) * | 2001-01-16 | 2002-10-04 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
US7718318B2 (en) | 2001-03-22 | 2010-05-18 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7682747B2 (en) | 2001-03-22 | 2010-03-23 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7592100B2 (en) | 2001-03-22 | 2009-09-22 | Panasonic Corporation | Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same |
US7935443B2 (en) | 2001-06-27 | 2011-05-03 | Panasonic Corporation | Lithium nickel-manganese-cobalt oxide positive electrode active material |
JP2003034536A (en) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing laminar lithium nickel manganese complex oxide powder |
JP2003034537A (en) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing laminar lithium nickel manganese complex oxide powder |
JP4674423B2 (en) * | 2001-07-19 | 2011-04-20 | 三菱化学株式会社 | Method for producing layered lithium nickel manganese composite oxide powder |
JP4649801B2 (en) * | 2001-08-24 | 2011-03-16 | 株式会社Gsユアサ | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same |
JP2003068299A (en) * | 2001-08-24 | 2003-03-07 | Yuasa Corp | Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same |
US7670723B2 (en) | 2001-09-13 | 2010-03-02 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
US7816036B2 (en) | 2001-09-13 | 2010-10-19 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same |
JP2003086183A (en) * | 2001-09-13 | 2003-03-20 | Matsushita Electric Ind Co Ltd | Positive electrode active material and nonaqueous electrolyte secondary battery containing the same |
US7579114B2 (en) | 2001-09-13 | 2009-08-25 | Panasonic Corporation | Method of preparing positive electrode active material |
US8658125B2 (en) | 2001-10-25 | 2014-02-25 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8349287B2 (en) | 2001-10-25 | 2013-01-08 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP2008115075A (en) * | 2001-11-22 | 2008-05-22 | Hitachi Maxell Ltd | Composite oxide containing lithium and nonaqueous secondary battery using the same |
US9391325B2 (en) | 2002-03-01 | 2016-07-12 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
US7541114B2 (en) | 2002-03-01 | 2009-06-02 | Panasonic Corporation | Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery |
US8241790B2 (en) | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8153297B2 (en) | 2002-08-05 | 2012-04-10 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7455933B2 (en) | 2002-11-06 | 2008-11-25 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
US7923147B2 (en) | 2003-05-13 | 2011-04-12 | Mitsubishi Chemical Corporation | Layered lithium-nickel-based compound oxide powder and its prodution process |
US7309543B2 (en) | 2003-05-13 | 2007-12-18 | Mitsubishi Chemical Corporation | Layered lithium-nickel-based compound oxide powder and its production process |
JP2005015282A (en) * | 2003-06-26 | 2005-01-20 | Mitsubishi Chemicals Corp | Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide |
CN1311576C (en) * | 2003-06-26 | 2007-04-18 | 丰田自动车株式会社 | Positive electrode active material and use thereof |
US7939200B2 (en) | 2003-11-07 | 2011-05-10 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
CN100377394C (en) * | 2004-02-17 | 2008-03-26 | 三星Sdi株式会社 | Positive active material for lithium secondary battery and method of preparing same |
JP2005302507A (en) * | 2004-04-12 | 2005-10-27 | Sumitomo Metal Mining Co Ltd | Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US7927741B2 (en) | 2007-01-26 | 2011-04-19 | Mitsui Mining & Smelting Co., Ltd. | Lithium transition metal oxide having layered structure |
JP2009021251A (en) * | 2007-07-16 | 2009-01-29 | Samsung Sdi Co Ltd | Cathode active material of lithium secondary cell, its forming method, and lithium secondary cell |
US8999578B2 (en) | 2007-07-16 | 2015-04-07 | Samsung Sdi Co., Ltd. | Positive electrode active materials for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same |
JP2008056561A (en) * | 2007-09-07 | 2008-03-13 | Mitsubishi Chemicals Corp | Lithium nickel manganese composite oxide and positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery |
US8895203B2 (en) | 2007-09-14 | 2014-11-25 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Powder containing elongated grains and the use thereof for producing an electrode for a solid oxide fuel cell |
JP2010538956A (en) * | 2007-09-14 | 2010-12-16 | サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン | Powders containing elongated particles and their use to produce solid oxide fuel cell electrodes |
JP2009266712A (en) * | 2008-04-28 | 2009-11-12 | Sakai Chem Ind Co Ltd | Positive active material for lithium secondary battery and its manufacturing method |
JP2011071103A (en) * | 2009-08-25 | 2011-04-07 | Toshiba Corp | Positive electrode, nonaqueous electrolyte battery, and battery pack |
US9634328B2 (en) | 2009-08-25 | 2017-04-25 | Kabushiki Kaisha Toshiba | Positive electrode |
US9843044B2 (en) | 2009-08-25 | 2017-12-12 | Kabushiki Kaisha Toshiba | Positive electrode |
WO2011049185A1 (en) * | 2009-10-22 | 2011-04-28 | 戸田工業株式会社 | Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery |
JP2012084552A (en) * | 2012-02-01 | 2012-04-26 | Gs Yuasa Corp | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same |
US12113213B2 (en) * | 2013-07-24 | 2024-10-08 | Sumitomo Metal Mining Co., Ltd. | Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method for same, and non-aqueous electrolyte secondary battery |
JP2015056384A (en) * | 2013-09-13 | 2015-03-23 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JP2015103331A (en) * | 2013-11-22 | 2015-06-04 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | Positive electrode active material, and lithium ion secondary battery |
JP2016155696A (en) * | 2015-02-23 | 2016-09-01 | 戸田工業株式会社 | Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery |
JPWO2017169184A1 (en) * | 2016-03-30 | 2019-02-07 | パナソニックIpマネジメント株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
JP2023500640A (en) * | 2020-01-17 | 2023-01-10 | 蜂巣能源科技股▲ふん▼有限公司 | Cobalt-free layered positive electrode material, manufacturing method thereof, and lithium ion battery |
JP2022553657A (en) * | 2020-07-14 | 2022-12-26 | 蜂巣能源科技股▲ふん▼有限公司 | Cobalt-Free Cathode Materials and Preparation Methods Thereof, and Lithium Ion Battery Cathodes and Lithium Batteries |
JP2022159119A (en) * | 2021-03-31 | 2022-10-17 | エコプロ ビーエム カンパニー リミテッド | Positive electrode active material and lithium secondary battery using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3130813B2 (en) | 2001-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3130813B2 (en) | Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery | |
US6045771A (en) | Lithium-nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery | |
JP4131521B2 (en) | Lithium nickel cobalt composite oxide, process for producing the same, and positive electrode active material for secondary battery | |
KR101131479B1 (en) | Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it | |
EP2492243B1 (en) | Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery | |
KR100694567B1 (en) | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these | |
JP7398015B2 (en) | Single-crystal multi-component cathode material, manufacturing method and use thereof | |
US9214676B2 (en) | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery | |
JP5199522B2 (en) | Spinel-type lithium / manganese composite oxide, its production method and use | |
KR20120099118A (en) | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery | |
KR20140138780A (en) | Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery | |
JPH11302020A (en) | Lithium manganese compound oxide, its production and its use | |
US20140349188A1 (en) | Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
US20060188780A1 (en) | Lithium-nickel-manganese composite oxide, processes for producing the same, and use of the same | |
WO2015076323A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery | |
JP2000072443A (en) | Production of lithium manganese multiple oxide and its use | |
JP4760805B2 (en) | Lithium nickel cobalt composite oxide, production method thereof, and positive electrode active material for secondary battery | |
JP5206948B2 (en) | Cobalt oxyhydroxide particle powder and method for producing the same | |
JP2001146426A (en) | Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same | |
KR102533325B1 (en) | Lithium transition metal composite oxide and manufacturing method | |
JP5099328B2 (en) | Lithium nickel cobalt composite oxide, production method thereof, and positive electrode active material for secondary battery | |
JP6527972B1 (en) | Method of manufacturing positive electrode active material for secondary battery | |
JP7515738B2 (en) | Positive electrode material for lithium-ion secondary battery and method for preparing same | |
KR100668050B1 (en) | Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same | |
JPH11135123A (en) | Positive active material for lithium secondary battery and secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |