[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016155696A - Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery - Google Patents

Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016155696A
JP2016155696A JP2015033329A JP2015033329A JP2016155696A JP 2016155696 A JP2016155696 A JP 2016155696A JP 2015033329 A JP2015033329 A JP 2015033329A JP 2015033329 A JP2015033329 A JP 2015033329A JP 2016155696 A JP2016155696 A JP 2016155696A
Authority
JP
Japan
Prior art keywords
particle powder
nickel
nickel hydroxide
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033329A
Other languages
Japanese (ja)
Other versions
JP6458542B2 (en
Inventor
勝弘 藤田
Katsuhiro Fujita
勝弘 藤田
祐司 三島
Yuji Mishima
祐司 三島
尊久 西尾
Takahisa Nishio
尊久 西尾
琢磨 北條
Takuma Hojo
琢磨 北條
徹也 鹿島
Tetsuya Kashima
徹也 鹿島
竜太 正木
Ryuta Masaki
竜太 正木
貞村 英昭
Hideaki Sadamura
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2015033329A priority Critical patent/JP6458542B2/en
Publication of JP2016155696A publication Critical patent/JP2016155696A/en
Application granted granted Critical
Publication of JP6458542B2 publication Critical patent/JP6458542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel hydroxide particle powder with high filling property and a manufacturing method therefor, a cathode active material particle powder of lithium nickel oxide with high filling property and a manufacturing method therefor and a nonaqueous electrolyte secondary battery having high energy density and excellent heat stability.SOLUTION: There are provided a nickel hydroxide particle powder having crystallite size in a vertical direction to a (00I) face with BET specific surface area of 0.5 to 8.0 m/g of 20 to 100 nm and crystallite size in a parallel direction to the (00I) face of 40 to 300 nm and a cathode active material particle powder of lithium nickel oxide having primary particle diameter of 2 to 15 μm, the amount of Niion to the total nickel amount of 10 mol% or less and BET specific surface area of 0.05 to 0.35 m/g.SELECTED DRAWING: None

Description

本発明は、比表面積が小さく、高結晶性の水酸化ニッケル粒子粉末とその製造方法を提供する。また、一次粒子径が大きく、構造欠陥が少なく、比表面積が小さいリチウムニッケル酸化物の正極活物質粒子粉末とその製造方法を提供する。更に、これを用いた、熱安定性に優れ、高エネルギー密度を持つ非水電解質二次電池を提供する。   The present invention provides a highly crystalline nickel hydroxide particle powder having a small specific surface area and a method for producing the same. The present invention also provides a lithium nickel oxide positive electrode active material particle powder having a large primary particle size, few structural defects, and a small specific surface area, and a method for producing the same. Furthermore, the present invention provides a nonaqueous electrolyte secondary battery that uses this and has excellent thermal stability and high energy density.

近年、携帯電話やパソコン等の電子機器の小型・軽量化に拍車がかかり、これらの駆動用電源として高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、重量、及び体積当たりの充放電容量が大きく、且つ安全性が高いという電池が注目されている。   In recent years, electronic devices such as mobile phones and personal computers have been spurred to be smaller and lighter, and the demand for secondary batteries having high energy density as power sources for driving these devices has increased. Under such circumstances, a battery having a large charge / discharge capacity per unit volume and volume and high safety is drawing attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質粒子粉末の一つとして層状(岩塩型)構造のリチウムニッケル酸化物LiNiOが知られている。該活物質は、代表的な正極活物質リチウムコバルト酸化物LiCoOに比べ、安価でレート特性に優れているため、主に電動工具主電源に利用されている。近年、その特徴を活かして、電気自動車の駆動電源としても利用されつつある。しかしながら、充電時のNi4+イオンを含む脱Li状態での熱安定性に問題があり、また、高エネルギー密度化の観点から、更なる特性改善が求められている。 Conventionally, lithium nickel oxide LiNiO 2 having a layered (rock salt type) structure is known as one of positive electrode active material particle powders useful for a high energy type lithium ion secondary battery having a voltage of 4V class. Since the active material is cheaper and has excellent rate characteristics as compared with a typical positive electrode active material lithium cobalt oxide LiCoO 2 , the active material is mainly used for a power tool main power source. In recent years, taking advantage of its characteristics, it is also being used as a drive power source for electric vehicles. However, there is a problem in thermal stability in a de-Li state containing Ni 4+ ions during charging, and further improvement in characteristics is required from the viewpoint of increasing energy density.

周知の通り、リチウムニッケル酸化物の正極活物質粒子粉末の脱Li状態は熱力学的に準安定相である。200℃程度に加熱すると、層状構造から岩塩構造やスピネル構造へと相転移し、Ni4+からの価数の低下と共に該酸化物結晶から酸素放出が生じる。放出された酸素は電解液と反応し発熱するため、電池の熱安定性に対し、強い影響を与える。該酸素放出量を抑える、又は放出開始温度をより高温側へ移動させることが電池の熱安定性の改善であり、改善の一つの方法として、CoやAlといった異種元素置換が提案されている。(特許文献1)。 As is well known, the Li-free state of the positive electrode active material particle powder of lithium nickel oxide is a thermodynamically metastable phase. When heated to about 200 ° C., a phase transition from a layered structure to a rock salt structure or a spinel structure occurs, and oxygen release occurs from the oxide crystal as the valence from Ni 4+ decreases. Since the released oxygen reacts with the electrolyte and generates heat, it has a strong influence on the thermal stability of the battery. To suppress the oxygen release amount or to move the release start temperature to a higher temperature side is to improve the thermal stability of the battery, and as one method for improvement, substitution of different elements such as Co and Al has been proposed. (Patent Document 1).

一方、リチウムニッケル酸化物の正極活物質粒子粉末の充填性を改善する方法として、一次粒子を大きくすることが挙げられる。その方法の一つとして、原料の水酸化ニッケル粒子粉末の一次粒子径を大きくする方法が提案されている(特許文献2)。また、リチウムニッケル酸化物の粒子粉末の一次粒子径を大きくすることと、該粒子粉末の結晶性を高めることとほぼ同義であるため、一次粒子径が大きなリチウムニッケル酸化物は脱Li状態での熱安定性の向上が期待される。   On the other hand, as a method for improving the filling property of the positive electrode active material particle powder of lithium nickel oxide, increasing the primary particles can be mentioned. As one of the methods, a method of increasing the primary particle diameter of the raw material nickel hydroxide particle powder has been proposed (Patent Document 2). Moreover, since it is almost synonymous with increasing the primary particle diameter of the lithium nickel oxide particle powder and increasing the crystallinity of the particle powder, the lithium nickel oxide having a large primary particle diameter is in the Li-free state. Improvement in thermal stability is expected.

ところで、液相反応の晶析法により凝集粒子径を制御する水酸化ニッケルの製造方法は古くから知られている。該凝集粒子径を大きくする公知の事実として、アルカリ側でのニッケルの溶解度を高めるために、錯化剤によるニッケル錯体を形成させる方法が知られている。この方法は、新たに独立した結晶核を発生させることなく、アルカリ溶液で該錯体を徐々に分解させて、溶解度の低い水酸化ニッケルとして沈殿させる晶析法である(特許文献3)。   By the way, the manufacturing method of nickel hydroxide which controls the aggregated particle diameter by the crystallization method of liquid phase reaction has been known for a long time. As a known fact of increasing the aggregated particle diameter, a method of forming a nickel complex with a complexing agent is known in order to increase the solubility of nickel on the alkali side. This method is a crystallization method in which the complex is gradually decomposed with an alkaline solution and precipitated as nickel hydroxide having low solubility without generating new independent crystal nuclei (Patent Document 3).

近年の晶析技術としては、ニッケル原料、錯化剤、及び中和剤を多段的に滴下し、凝集粒度分布を制御して、高密度な水酸化ニッケルを合成する方法が開示されている(特許文献4)。   As a recent crystallization technique, a nickel raw material, a complexing agent, and a neutralizing agent are dropped in a multistage manner, and a method of synthesizing a high-density nickel hydroxide by controlling the aggregate particle size distribution is disclosed ( Patent Document 4).

特開平10−27611号公報JP-A-10-27611 特開平11−60246号公報Japanese Patent Laid-Open No. 11-60246 特開平7−206438号公報JP-A-7-206438 国際公開第2013/125703号International Publication No. 2013/125703

高充填性の水酸化ニッケル粒子粉末、並びに、高エネルギー密度で熱安定性に優れた二次電池用のリチウムニッケル酸化物の正極活物質粒子粉末は、現在最も要求されているが、未だ十分なものは得られていない。   Highly chargeable nickel hydroxide particle powder and lithium nickel oxide positive electrode active material particle powder for secondary battery with high energy density and excellent thermal stability are currently the most demanded, but still sufficient Nothing has been obtained.

即ち、特許文献2に記載された技術では、水酸化ニッケルの一次粒子径は1〜10μmと大きく、結晶性が高いと思われる。しかしながら、実施例の粒子粉末のタップ密度はいずれも2g/cc以下であり、高充填性とは言い難い。また、該水酸化ニッケルをLi原料と混合、焼成して得られるリチウムニッケル酸化物粒子粉末の一次粒子径は写真から平均値を判断すると2μm未満であり、脱リチウム状態で熱安定性に優れているとは言い難い。   That is, in the technique described in Patent Document 2, the primary particle diameter of nickel hydroxide is as large as 1 to 10 μm, and the crystallinity is considered high. However, the tap density of the particle powders of the examples is 2 g / cc or less, and it is difficult to say that the high filling property. Moreover, the primary particle diameter of the lithium nickel oxide particle powder obtained by mixing and firing the nickel hydroxide with the Li raw material is less than 2 μm as judged from the photograph, and is excellent in thermal stability in the delithiated state. It ’s hard to say.

特許文献3記載の技術は凝集した水酸化ニッケル粒子粉末のメジアン径を10〜20μmと大きくすることである。これに開示された粒子粉末はタップ密度が2g/ccを超えて高く、充填性は高いが、一次粒子径について明記がない。得られた10〜20m/gのBET比表面積から類推すると一次粒子が大きいと予想できず、結晶性が高いとは言い難い。同時に、該水酸化ニッケルをリチウム化した正極活物質粒子粉末が高充填性で熱安定性に優れているとは言い難い。 The technique described in Patent Document 3 is to increase the median diameter of the aggregated nickel hydroxide particle powder to 10 to 20 μm. The particle powder disclosed therein has a high tap density of more than 2 g / cc and a high filling property, but the primary particle size is not specified. By analogy with the obtained BET specific surface area of 10 to 20 m 2 / g, it is difficult to say that the primary particles are large and the crystallinity is high. At the same time, it is difficult to say that the positive electrode active material particle powder obtained by lithiating the nickel hydroxide is highly packable and excellent in thermal stability.

特許文献4記載の技術は水酸化ニッケルの凝集した二次粒子メジアン径を8〜50μmと大きくすることである。これに開示された粒子粉末の凝集粒子径の粒度分布も狭く、タップ密度が1.9g/cc以上と高く、高充填性であるが、一次粒子径について明記がなく、結晶性が高いとは言い難い。また、該水酸化ニッケルをリチウム化した正極活物質粒子粉末が高充填性で熱安定性に優れているとは言い難い。   The technique described in Patent Document 4 is to increase the median diameter of secondary particles in which nickel hydroxide is aggregated to 8 to 50 μm. The particle size distribution of the agglomerated particle diameter of the particle powder disclosed therein is also narrow, the tap density is as high as 1.9 g / cc or more, and it is highly packed, but the primary particle diameter is not specified and the crystallinity is high. It's hard to say. In addition, it is difficult to say that the positive electrode active material particle powder obtained by lithiating the nickel hydroxide has high filling property and excellent thermal stability.

そこで、本発明は、充填性に優れた水酸化ニッケル粒子粉末の提供を技術的課題とする。また、充填性に優れたリチウムニッケル酸化物の正極活物質粒子粉末の提供を技術的課題とする。更にこれを用いた高エネルギー密度を有し、熱安定性に優れた非水電解質二次電池の提供を技術的課題とする。   Then, this invention makes it a technical subject to provide the nickel hydroxide particle powder excellent in the filling property. In addition, a technical problem is to provide a positive electrode active material particle powder of lithium nickel oxide having excellent filling properties. Furthermore, it is a technical subject to provide a non-aqueous electrolyte secondary battery having a high energy density and excellent thermal stability.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、BET比表面積が0.5〜8.0m/g、(00l)面に垂直方向の結晶子サイズが20〜100nm、(00l)面に平行方向の結晶子サイズが40〜300nmであることを特徴とする水酸化ニッケル粒子粉末である(本発明1)。 That is, the present invention has a BET specific surface area of 0.5 to 8.0 m 2 / g, a crystallite size perpendicular to the (00l) plane of 20 to 100 nm, and a crystallite size parallel to the (00l) plane of 40. Nickel hydroxide particle powder characterized by being -300 nm (Invention 1).

また、本発明は、体積基準の凝集粒子のメジアン径(D50)が5〜30μmであり、前記メジアン径D50と該粒子径頻度分布におけるピークの幅(D84−D16)との比(D84−D16)/D50が0.4以下である本発明1に記載の水酸化ニッケル粒子粉末である(本発明2)。 Further, in the present invention, the median diameter (D 50 ) of the volume-based aggregated particles is 5 to 30 μm, and the ratio between the median diameter D 50 and the peak width (D 84 -D 16 ) in the particle diameter frequency distribution. (D 84 -D 16) / D 50 is nickel hydroxide particles according to the present invention 1 is 0.4 or less (present invention 2).

また、本発明は、不純物硫黄Sの含有量が0.15重量%以下である本発明1、又は2に記載の水酸化ニッケル粒子粉末である(本発明3)。   Moreover, this invention is the nickel hydroxide particle powder of this invention 1 or 2 whose content of impurity sulfur S is 0.15 weight% or less (this invention 3).

また、本発明は、Mg、Co、及びAlのうち、少なくとも1種をNiの一部と置換させた本発明1〜3のいずれか一項に記載の水酸化ニッケル粒子粉末である(本発明4)。   Further, the present invention is the nickel hydroxide particle powder according to any one of the present inventions 1 to 3, wherein at least one of Mg, Co, and Al is substituted with a part of Ni (the present invention). 4).

また、本発明は、ニッケル原料、錯化剤、及び中和剤をドラフトチューブと撹拌機を備えた反応器に連続的に滴下し、濃縮器で固液分離することで、反応器内の母液容積を一定にし、反応母液中へのニッケル原料滴下速度を0.02〜0.25[mol/(L・hr)]、錯化剤の濃度を0.3〜1.5mol/L、中和剤の余剰分の濃度を0.02〜0.5mol/L、反応温度を45〜80℃、反応時間を40〜300時間とすることを特徴とする本発明1〜4のいずれかに記載の水酸化ニッケル粒子粉末の製造方法である(本発明5)。   In addition, the present invention continuously drops a nickel raw material, a complexing agent, and a neutralizing agent into a reactor equipped with a draft tube and a stirrer, and solid-liquid separates with a concentrator, so that the mother liquor in the reactor The volume was kept constant, the nickel raw material dropping rate into the reaction mother liquor was 0.02 to 0.25 [mol / (L · hr)], the complexing agent concentration was 0.3 to 1.5 mol / L, and neutralization The concentration of the surplus of the agent is 0.02 to 0.5 mol / L, the reaction temperature is 45 to 80 ° C., and the reaction time is 40 to 300 hours. This is a method for producing nickel hydroxide particle powder (Invention 5).

また、本発明は、本発明5に記載の粒子粉末の製造方法において、ニッケル原料が硫酸ニッケル、又は塩化ニッケルのうち少なくとも1種であり、錯化剤がアンモニア水、硫酸アンモニウム、又は塩化アンモニウムのうち少なくとも1種であり、中和剤が水酸化ナトリウム、炭酸ナトリウム、又は水酸化カリウムのうち少なくとも1種であること特徴とする水酸化ニッケル粒子粉末の製造方法である(本発明6)。   Further, the present invention provides the method for producing particle powder according to the present invention 5, wherein the nickel raw material is at least one of nickel sulfate and nickel chloride, and the complexing agent is ammonia water, ammonium sulfate, or ammonium chloride. It is at least one kind, and the neutralizing agent is at least one kind selected from sodium hydroxide, sodium carbonate, and potassium hydroxide (Invention 6).

また、本発明は、本発明1〜4のいずれかに記載の水酸化ニッケル粒子粉末を用い、リチウム原料と混合後、600〜930℃の温度で焼成することを特徴とするリチウムニッケル酸化物の正極活物質粒子粉末の製造方法である(本発明7)。   Moreover, this invention uses the nickel hydroxide particle powder in any one of this invention 1-4, it mixes with a lithium raw material, and is baked at the temperature of 600-930 degreeC, The lithium nickel oxide characterized by the above-mentioned. It is a manufacturing method of positive electrode active material particle powder (this invention 7).

また、本発明は、一次粒子径が2〜15μm、全ニッケル量に対するNi2+イオンの量が10mol%以下、BET比表面積が0.05〜0.35m/gであることを特徴とするリチウムニッケル酸化物の正極活物質粒子粉末である(本発明8)。 Further, the present invention is characterized in that the primary particle diameter is 2 to 15 μm, the amount of Ni 2+ ions with respect to the total nickel amount is 10 mol% or less, and the BET specific surface area is 0.05 to 0.35 m 2 / g. It is a positive electrode active material particle powder of nickel oxide (Invention 8).

また、本発明は、凝集粒子のメジアン径D50が5〜30μmであり、前記メジアン径D50と該粒子径頻度分布におけるピークの幅(D84−D16)との比(D84−D16)/D50が0.6以下である本発明8に記載のリチウムニッケル酸化物の正極活物質粒子粉末である(本発明9)。 Further, in the present invention, the median diameter D 50 of the aggregated particles is 5 to 30 μm, and the ratio (D 84 -D 16 ) between the median diameter D 50 and the peak width (D 84 -D 16 ) in the particle size frequency distribution. 16) / D 50 is the positive electrode active material particles of the lithium nickel oxide according to the present invention 8 is 0.6 or less (invention 9).

また、本発明は、本発明8、又は9に記載のリチウムニッケル酸化物の正極活物質粒子粉末を、正極活物質の少なくとも一部に用いた非水電解質二次電池である(本発明10)。   Further, the present invention is a nonaqueous electrolyte secondary battery using the positive electrode active material particle powder of lithium nickel oxide according to the present invention 8 or 9 as at least a part of the positive electrode active material (Invention 10). .

本発明に係る水酸化ニッケル粒子粉末は、比表面積が低く、結晶子サイズも大きいため、高充填性を示し、非水電解質二次電池正極活物質の前駆体として好適である。また、本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末は、一次粒子径が大きく、構造欠陥も少なく、比表面積も低いため、成型体密度が高くなり、リチウムニッケル酸化物の正極活物質粒子粉末として好適である。更に、本発明に係る非水電解質二次電池は、前記リチウムニッケル酸化物の正極活物質粒子粉末を用いるため、高容量であり、脱Li状態においてより高温で発熱を開始する。従って、エネルギー密度が高く、且つ、熱安定性に優れた非水電解質二次電池として好適である。   Since the nickel hydroxide particle powder according to the present invention has a low specific surface area and a large crystallite size, it exhibits a high filling property and is suitable as a precursor of a non-aqueous electrolyte secondary battery positive electrode active material. In addition, the positive electrode active material particle powder of lithium nickel oxide according to the present invention has a large primary particle size, few structural defects, and a low specific surface area. Suitable as particle powder. Furthermore, since the non-aqueous electrolyte secondary battery according to the present invention uses the positive electrode active material particle powder of lithium nickel oxide, it has a high capacity and starts to generate heat at a higher temperature in the de-Li state. Therefore, it is suitable as a nonaqueous electrolyte secondary battery having high energy density and excellent thermal stability.

本発明の実施例1−1で得られた水酸化ニッケル粒子粉末のSEM写真である。(1)粒子粉末観察用(低倍率)、(2)一次粒子観察用(中倍率)、(3)結晶子サイズ観察用(高倍率)のSEM写真である。(4)は水酸化ニッケル粒子粉末を樹脂で固め、クロスセクションポリッシャー(CP)で切断し、観察されたSEM写真である。It is a SEM photograph of the nickel hydroxide particle powder obtained in Example 1-1 of the present invention. It is a SEM photograph for (1) particle powder observation (low magnification), (2) for primary particle observation (medium magnification), and (3) for crystallite size observation (high magnification). (4) is an SEM photograph observed by solidifying nickel hydroxide particle powder with resin and cutting it with a cross section polisher (CP). 実施例1−1で得られた水酸化ニッケル粒子粉末の粒度分布である。It is a particle size distribution of the nickel hydroxide particle powder obtained in Example 1-1. 実施例1−1で得られた水酸化ニッケル粒子粉末のX線回折パターンのRietveld解析の結果である。実測値はすべての回折角の範囲で示している。It is the result of Rietveld analysis of the X-ray-diffraction pattern of the nickel hydroxide particle powder obtained in Example 1-1. The actual measurement values are shown in all diffraction angle ranges. 実施例1−1で得られた水酸化ニッケル粒子粉末を原料として、実施例1−2として作製したリチウムニッケル酸化物の正極活物質粒子粉末のSEM写真である。(1)粒子粉末観察用(低倍率)、(2)一次粒子観察用(中倍率)、(3)一次粒子観察用(高倍率)、及び(4)CPによる粒子断面のSEM写真である。It is a SEM photograph of the positive electrode active material particle powder of the lithium nickel oxide produced as Example 1-2 using the nickel hydroxide particle powder obtained in Example 1-1 as a raw material. (1) For particle powder observation (low magnification), (2) For primary particle observation (medium magnification), (3) For primary particle observation (high magnification), and (4) SEM photograph of particle cross section by CP. 実施例2−1で得られた水酸化ニッケル粒子粉末のSEM写真である。It is a SEM photograph of the nickel hydroxide particle powder obtained in Example 2-1. (1)は比較例1−1、及び(2)は比較例2−1で得られた水酸化ニッケル粒子粉末のSEM写真である。(1) is an SEM photograph of the nickel hydroxide particle powder obtained in Comparative Example 1-1 and (2) in Comparative Example 2-1. 比較例1−1で得られた水酸化ニッケル粒子粉末の断面SEM写真である。It is a cross-sectional SEM photograph of the nickel hydroxide particle powder obtained in Comparative Example 1-1. 実施例1−2、及び比較例2−2で得られたリチウムニッケル酸化物の正極活物質粒子粉末に対し、脱Li処理を行ったLi1−aNiO(1−a≒0.2)正極活物質粒子粉末の示差走査熱量測定結果である。Li 1-a NiO 2 (1-a≈0.2) obtained by performing Li removal treatment on the positive electrode active material particles of lithium nickel oxide obtained in Example 1-2 and Comparative Example 2-2 It is a differential scanning calorimetry result of positive electrode active material particle powder.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

まず、本発明に係る水酸化ニッケル粒子粉末について述べる。   First, the nickel hydroxide particle powder according to the present invention will be described.

本発明に係る水酸化ニッケル粒子粉末は、比表面積が小さく、結晶子サイズが大きく、凝集粒子径は比較的大きいが、粒度が揃っていることを特徴とした粒子粉末である。並びに、凝集粒子内部も緻密であり、充填性に優れていることを特徴としている。   The nickel hydroxide particle powder according to the present invention is a particle powder characterized by having a small specific surface area, a large crystallite size, a relatively large aggregate particle diameter, but a uniform particle size. In addition, the inside of the aggregated particles is dense and is characterized by excellent filling properties.

本発明に係る水酸化ニッケル粒子粉末の比表面積は0.5〜8.0m/gである。0.5m/g未満の該粒子粉末を製造することは工業的に困難であり、8.0m/gを超える該粒子粉末は粒子内部の密度が低い傾向にあり、高充填性の観点から好ましくない。好ましくは、該比表面積は0.8〜6.0m/gである。 The specific surface area of the nickel hydroxide particle powder according to the present invention is 0.5 to 8.0 m 2 / g. It is industrially difficult to produce the particle powder having a particle size of less than 0.5 m 2 / g, and the particle powder having a particle size exceeding 8.0 m 2 / g tends to have a low density inside the particle. Is not preferable. Preferably, the specific surface area is 0.8 to 6.0 m 2 / g.

本発明に係る水酸化ニッケル粒子粉末の(00l)面に垂直方向の結晶子サイズは20〜100nmである。20nm未満の場合、該粒子粉末は緻密になりにくく、高充填性の観点から好ましくない。また、該粒子粉末は(00l)面に沿って成長する層状構造であるため、該面に垂直な方向には結晶成長しにくく、100nmを超えて製造することは工業的に困難である。好ましくは、該結晶子サイズは22〜80nmである。   The crystallite size in the direction perpendicular to the (00l) plane of the nickel hydroxide particle powder according to the present invention is 20 to 100 nm. When it is less than 20 nm, the particle powder is difficult to be dense, which is not preferable from the viewpoint of high filling properties. In addition, since the particle powder has a layered structure that grows along the (001) plane, it is difficult for crystals to grow in a direction perpendicular to the plane, and it is industrially difficult to produce a film with a thickness exceeding 100 nm. Preferably, the crystallite size is 22-80 nm.

本発明に係る水酸化ニッケル粒子粉末の(00l)面に平行方向の結晶子サイズは40〜300nmである。40nm未満の場合、該粒子粉末は緻密になりにくく、高充填性の観点から好ましくない。また、300nmを超えて製造することは工業的に困難である。好ましくは、該結晶子サイズは50〜200nmである。   The crystallite size in the direction parallel to the (00l) plane of the nickel hydroxide particle powder according to the present invention is 40 to 300 nm. When it is less than 40 nm, the particle powder is difficult to be dense, which is not preferable from the viewpoint of high filling properties. Moreover, it is industrially difficult to manufacture beyond 300 nm. Preferably, the crystallite size is 50-200 nm.

本発明に係る水酸化ニッケル粒子粉末の(00l)面に垂直方向の結晶子サイズに対する該面に平行方向の結晶子サイズの比は2〜7である。この範囲外の比を有する水酸化ニッケル粒子粉末を製造することは工業的に困難である。好ましくは、2.5〜6である。   The ratio of the crystallite size in the direction parallel to the crystallite size in the direction perpendicular to the (00l) plane of the nickel hydroxide particle powder according to the present invention is 2 to 7. It is industrially difficult to produce nickel hydroxide particle powder having a ratio outside this range. Preferably, it is 2.5-6.

本発明に係る水酸化ニッケル粒子粉末の化学式はβ-Ni(OH)であり、空間群P3―m1の三方晶系の層状構造を有する。ここで、空間群の標記として、3の上に―を記述することが正しいが、便宜上、3−としている。該粒子粉末のニッケルの価数は二価である。また、該粒子粉末にβ-NiOOHやγ-NiOOHを含んでいても問題ではない。 The chemical formula of the nickel hydroxide particle powder according to the present invention is β-Ni (OH) 2 and has a trigonal layered structure of the space group P3-m1. Here, it is correct to describe − on 3 as a space group mark, but for convenience, it is 3−. The particle powder has a nickel valence of two. Further, it does not matter if the particle powder contains β-NiOOH or γ-NiOOH.

本発明に係る水酸化ニッケル粒子粉末は一次粒子が凝集した構造体であり、体積基準の凝集粒子のメジアン径(D50)は5〜30μmが好ましい。5μm未満の場合、タップ密度は低い傾向にあり、高充填性の観点から好ましくない。30μmを超える場合、後述の粒度分布を悪化させる傾向にある。より好ましくは、該メジアン径(D50)は7〜28μmである。 The nickel hydroxide particle powder according to the present invention is a structure in which primary particles are aggregated, and the median diameter (D 50 ) of the volume-based aggregated particles is preferably 5 to 30 μm. If it is less than 5 μm, the tap density tends to be low, which is not preferable from the viewpoint of high filling properties. When exceeding 30 micrometers, it exists in the tendency which worsens the below-mentioned particle size distribution. More preferably, the median diameter (D 50 ) is 7 to 28 μm.

本発明に係る水酸化ニッケル粒子粉末の体積基準の凝集粒子粒度分布において、メジアン径(D50)と該頻度分布のピークの幅(D84−D16)との比(D84−D16)/D50を粒度分布の狭さの目安とし、該値は0.4以下が好ましい。0.4を超える場合、該頻度分布のピークは幅が広いことを意味し、Li原料と混合、焼成で生成するLiNiOの粒度や結晶性に分布が生じやすくなる。より好ましくは、該(D84−D16)/D50は0.38以下である。 In the volume-based aggregate particle size distribution of the nickel hydroxide particle powder according to the present invention, the ratio (D 84 -D 16 ) between the median diameter (D 50 ) and the peak width (D 84 -D 16 ) of the frequency distribution. / the D 50 was a measure of the narrowness of the particle size distribution, it said value is preferably 0.4 or less. When it exceeds 0.4, it means that the peak of the frequency distribution is wide, and the distribution tends to occur in the particle size and crystallinity of LiNiO 2 produced by mixing with Li source and firing. More preferably, the (D 84 -D 16) / D 50 is 0.38 or less.

本発明に係る水酸化ニッケル粒子粉末の不純物硫黄Sの含有量は0.15重量%以下が好ましい。0.15重量%を超える場合、容量の低下や副反応に伴う充放電サイクルの劣化を引き起こす場合がある。   The content of impurity sulfur S in the nickel hydroxide particle powder according to the present invention is preferably 0.15% by weight or less. If it exceeds 0.15% by weight, the capacity may be reduced or the charge / discharge cycle may be deteriorated due to side reactions.

本発明に係る水酸化ニッケル粒子粉末は化学式β-Ni(OH)におけるNiの一部をMg、Co、及びAlのうち少なくとも1種で置換することが可能である。溶液反応時にMg、Co、及びAlの原料溶液を所定量滴下することで目的の粒子粉末は製造できる。該元素で置換された水酸化ニッケル粒子粉末とLi原料との混合、焼成を経て生成するリチウムニッケル酸化物の正極活物質粒子粉末は該元素をより均一に固溶させることが可能である。 In the nickel hydroxide particle powder according to the present invention, a part of Ni in the chemical formula β-Ni (OH) 2 can be substituted with at least one of Mg, Co, and Al. The target particle powder can be produced by dropping predetermined amounts of Mg, Co and Al raw material solutions during the solution reaction. The positive electrode active material particle powder of lithium nickel oxide produced by mixing and firing the nickel hydroxide particle powder substituted with the element and the Li raw material can dissolve the element more uniformly.

本発明に係る水酸化ニッケル粒子粉末におけるMg、Co、及びAlと硫黄Sを除いたNa等の残存不純物元素成分は1000ppm以下が好ましい。該値(1000ppm)を超える場合、電池特性に悪影響を及ぼすこともあるためである。   In the nickel hydroxide particle powder according to the present invention, the residual impurity element components such as Mg, Co, and Na excluding Al and sulfur S are preferably 1000 ppm or less. This is because if the value (1000 ppm) is exceeded, the battery characteristics may be adversely affected.

本発明に係る水酸化ニッケル粒子粉末における500回のタッピングによるタップ密度は2.15〜3.00g/ccが好ましい。2.15g/cc未満の場合、高い充填性とは言い難い。3.00g/ccを超える場合、他の特性を満たす粒子粉末を得ることは難しい。   In the nickel hydroxide particle powder according to the present invention, the tap density by tapping 500 times is preferably 2.15 to 3.00 g / cc. When it is less than 2.15 g / cc, it is difficult to say that the filling property is high. When it exceeds 3.00 g / cc, it is difficult to obtain a particle powder satisfying other characteristics.

次に、本発明に係る水酸化ニッケル粒子粉末の製造方法について述べる。   Next, a method for producing nickel hydroxide particle powder according to the present invention will be described.

本発明に係る水酸化ニッケル粒子粉末の製造方法は、水溶媒からなる反応母液中で該粒子粉末を生成する液相法が採用されており、該凝集粒子径を大きくするために、錯イオンの分解を経由した晶析法を用いている。ニッケル原料、錯化剤、及び中和剤を、また、必要に応じてMg、Co、及びAl原料から選ばれる1種以上を反応器に適宜滴下する。ニッケル原料は目的の水酸化ニッケル粒子粉末を得るための主原料として用いられ、必要により添加するMg、Co、及びAl原料はNiを置換するための添加物原料として用いられる。   The nickel hydroxide particle powder production method according to the present invention employs a liquid phase method for producing the particle powder in a reaction mother liquor composed of an aqueous solvent, and in order to increase the aggregated particle diameter, A crystallization method via decomposition is used. A nickel raw material, a complexing agent, and a neutralizing agent and, if necessary, one or more selected from Mg, Co, and Al raw materials are appropriately added dropwise to the reactor. The nickel raw material is used as a main raw material for obtaining the target nickel hydroxide particle powder, and the Mg, Co, and Al raw materials added as necessary are used as additive raw materials for replacing Ni.

本発明に係る水酸化ニッケル粒子粉末の製造方法において、ニッケル原料は硫酸ニッケル、又は塩化ニッケルのうち少なくとも1種を用いることができる。Mg、Co、及びAl原料は硫酸マグネシウム七水塩、硫酸コバルト七水塩、及び硫酸アルミニウムである。   In the method for producing nickel hydroxide particle powder according to the present invention, the nickel raw material may be at least one of nickel sulfate and nickel chloride. Mg, Co, and Al raw materials are magnesium sulfate heptahydrate, cobalt sulfate heptahydrate, and aluminum sulfate.

本発明に係る水酸化ニッケル粒子粉末の製造方法において、錯化剤はアンモニウムイオン供給体であるアンモニア水、硫酸アンモニウム、又は塩化アンモニウムのうち少なくとも1種を用いることができる。中和剤は水酸化ナトリウム、炭酸ナトリウム、又は水酸化カリウムのうち少なくとも1種を用いることができる。これら列記された原料、及び薬剤は比較的安価で入手しやすいため、工業的に使用することは可能である。   In the method for producing nickel hydroxide particle powder according to the present invention, the complexing agent may be at least one of ammonium water, ammonium sulfate, or ammonium chloride, which is an ammonium ion supplier. As the neutralizing agent, at least one of sodium hydroxide, sodium carbonate, or potassium hydroxide can be used. Since these listed raw materials and drugs are relatively inexpensive and readily available, they can be used industrially.

本発明に係る水酸化ニッケル粒子粉末の製造方法は晶析法に従い、滴下される原料、及び錯化剤と中和剤を均一、且つ、効率的に混合させるために、ドラフトチューブと撹拌機を反応器に備えている。該原料、及び該錯化剤と該中和剤を連続的に滴下することよって、反応母液(水溶液)の体積、反応母液中の錯化剤濃度、及び中和剤の濃度が変動しないように、濃縮器で固液分離を行う。滴下条件が生成する水酸化ニッケル粒子粉末の特性に与える影響を調査し、該粒子の表面以外では、極力、新たな結晶核を発生させることなく、緻密に凝集した水酸化ニッケル粒子を成長させる。   The manufacturing method of the nickel hydroxide particle powder according to the present invention follows a crystallization method, and in order to mix the raw material to be dropped, the complexing agent and the neutralizing agent uniformly and efficiently, a draft tube and a stirrer are used. Equipped with a reactor. By continuously dropping the raw material, the complexing agent and the neutralizing agent, the volume of the reaction mother liquor (aqueous solution), the concentration of the complexing agent in the reaction mother liquor, and the concentration of the neutralizing agent are not changed. Then, solid-liquid separation is performed with a concentrator. The influence of the dropping conditions on the properties of the nickel hydroxide particle powder produced is investigated, and the nickel hydroxide particles that are densely aggregated are grown as much as possible without generating new crystal nuclei outside the surface of the particles.

本発明に係る水酸化ニッケル粒子粉末の製造方法において、晶析法における反応母液体積当たりのニッケル原料の滴下速度は0.02〜0.25[mol/(L・hr)]である。0.02[mol/(L・hr)]未満の場合、該粒子粉末の緻密さや粒度分布の狭さは向上せず、効率的でない。また、0.25[mol/(L・hr)]を超える場合、多数の結晶核が生成し、微細な凝集粒子が生成した。また、該滴下速度がこの範囲であれば、反応中、滴下速度を変更しても構わない。   In the method for producing nickel hydroxide particle powder according to the present invention, the dropping rate of the nickel raw material per volume of the reaction mother liquor in the crystallization method is 0.02 to 0.25 [mol / (L · hr)]. When it is less than 0.02 [mol / (L · hr)], the fineness of the particle powder and the narrowness of the particle size distribution are not improved, which is not efficient. Moreover, when exceeding 0.25 [mol / (L * hr)], many crystal nuclei produced | generated and the fine aggregated particle produced | generated. Moreover, if this dripping rate is this range, you may change dripping rate during reaction.

本発明に係る水酸化ニッケル粒子粉末の製造方法において、錯化剤は溶解度の高いニッケル錯体を形成させるために用いられる。反応母液中の錯化剤の濃度は0.3〜1.5mol/Lである。0.3mol/L未満の場合、ニッケル錯体を形成しにくくなり、生成する水酸化ニッケルの凝集粒子は大きく成長しない。1.5mol/Lを超える場合、溶解度の高いニッケル錯体が過剰に生成され、濃縮器による固液分離の際、液相反応系外に排出され、得られる水酸化ニッケル粒子粉末の収率が低下する。好ましくは0.5〜1.3mol/Lである。   In the method for producing nickel hydroxide particle powder according to the present invention, the complexing agent is used to form a highly soluble nickel complex. The concentration of the complexing agent in the reaction mother liquor is 0.3 to 1.5 mol / L. When it is less than 0.3 mol / L, it becomes difficult to form a nickel complex, and the produced nickel hydroxide aggregated particles do not grow greatly. When the concentration exceeds 1.5 mol / L, a highly soluble nickel complex is excessively generated and is discharged out of the liquid phase reaction system during solid-liquid separation by a concentrator, resulting in a decrease in the yield of the resulting nickel hydroxide particle powder. To do. Preferably it is 0.5-1.3 mol / L.

本発明に係る水酸化ニッケル粒子粉末の製造方法において、中和剤は原料を中和、又はニッケル錯体を分解させ、該粒子粉末の一次粒子、及び凝集粒子を大きく成長させるために用いる。反応母液をアルカリ性に保って水酸化ニッケル粒子粉末を沈殿させるため、酸性を示す該NiSO原料に対し、アルカリ性の中和剤を余剰に添加している。ここで、中和剤の余剰分とは、例えばNiSOの中和に必要なmol数が2倍のNaOH量に対し、それを超えて添加する、反応母液を高pH値に制御するためのNaOHの量を余剰分とする。 In the method for producing nickel hydroxide particle powder according to the present invention, the neutralizing agent is used for neutralizing the raw material or decomposing the nickel complex to grow primary particles and agglomerated particles largely. In order to precipitate the nickel hydroxide particle powder while keeping the reaction mother liquor alkaline, an alkaline neutralizing agent is excessively added to the NiSO 4 raw material exhibiting acidity. Here, the surplus of the neutralizing agent means, for example, that the number of moles necessary for the neutralization of NiSO 4 is more than the amount of NaOH added to control the reaction mother liquor to a high pH value. Let the amount of NaOH be the surplus.

本発明に係る水酸化ニッケル粒子粉末の製造方法において、反応母液中の余剰の中和剤の濃度は0.02〜0.5mol/Lである。0.02mol/L未満の場合、原料の中和、或いは溶解度の高いニッケル錯体が分解されずに、濃縮器による固液分離の際、液相反応系外に排出され水酸化ニッケル粒子粉末の収率が低下する。0.5mol/Lを超える場合、水酸化ニッケルの生成速度が上がり、多数の結晶核が生じて微粒子化し、所望の凝集粒子径を得ることができない。好ましくは0.03〜0.45mol/Lである。   In the method for producing nickel hydroxide particle powder according to the present invention, the concentration of excess neutralizing agent in the reaction mother liquor is 0.02 to 0.5 mol / L. When the concentration is less than 0.02 mol / L, the neutralization of the raw material or the highly soluble nickel complex is not decomposed, and the solid-liquid separation by the concentrator is discharged out of the liquid phase reaction system to collect the nickel hydroxide particle powder. The rate drops. When it exceeds 0.5 mol / L, the production rate of nickel hydroxide is increased, and a large number of crystal nuclei are generated to form fine particles, so that a desired aggregate particle diameter cannot be obtained. Preferably it is 0.03-0.45 mol / L.

本発明に係る水酸化ニッケル粒子粉末の製造方法は、反応母液の温度が45〜80℃の範囲で行われる。45℃未満の場合、該粒子粉末の結晶子が成長せず、比表面積も高くなり、結果として、充填性の低い水酸化ニッケル粒子粉末が得られる。80℃を超える場合、アンモニアの蒸発量が無視できなくなり、工業的な負荷が高くなる、好ましくは、50〜75℃である。   In the method for producing nickel hydroxide particle powder according to the present invention, the temperature of the reaction mother liquor is in the range of 45 to 80 ° C. When the temperature is lower than 45 ° C., the crystallites of the particle powder do not grow and the specific surface area increases, and as a result, nickel hydroxide particle powder with low filling property is obtained. When it exceeds 80 ° C., the amount of evaporation of ammonia cannot be ignored, and the industrial load becomes high, preferably 50 to 75 ° C.

本発明に係る水酸化ニッケル粒子粉末の製造方法における反応時間は、40〜300時間の範囲で行われる。40時間未満の場合、該粒子粉末の結晶子も凝集粒子も成長が不十分であり、比表面積も高くなり、結果として、充填性の低い水酸化ニッケル粒子粉末が得られる。300時間を超える場合、反応母液中の水酸化ニッケル粒子の濃度が高くなりすぎて均一混合が困難になる。好ましくは、50〜200時間である。   The reaction time in the method for producing nickel hydroxide particle powder according to the present invention is in the range of 40 to 300 hours. When the time is less than 40 hours, neither the crystallites nor the aggregated particles of the particle powder grow sufficiently, the specific surface area increases, and as a result, nickel hydroxide particle powder with low filling property is obtained. If it exceeds 300 hours, the concentration of nickel hydroxide particles in the reaction mother liquor becomes too high, and uniform mixing becomes difficult. Preferably, it is 50 to 200 hours.

本発明に係る水酸化ニッケル粒子粉末は、前記液相による晶析反応後、不純物となり得る錯化剤、過剰中和剤、及び中和反応で生じた硫酸塩や塩化物を除去するために、水洗、乾燥することもある。   The nickel hydroxide particle powder according to the present invention is used to remove a complexing agent that can be an impurity after the crystallization reaction in the liquid phase, an excess neutralizing agent, and sulfate and chloride generated by the neutralization reaction. It may be washed with water and dried.

次に、本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末とその製造方法について述べる。   Next, the positive electrode active material particle powder of lithium nickel oxide according to the present invention and the production method thereof will be described.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の化学式はLiNiOであり、Ni3+イオンを有する、空間群R3−mの三方晶系の層状(岩塩)構造をとる。ここで、一般に、空間群の−は3上に書かれるが便宜上このように記載した。また、該粒子粉末のLi、及びNiの一部をMg、Co、及びAlのうち少なくとも1種を置換することが可能である。 The chemical formula of the positive electrode active material particle powder of lithium nickel oxide according to the present invention is LiNiO 2 and takes a trigonal layered (rock salt) structure of space group R3-m having Ni 3+ ions. Here, in general,-in the space group is written on 3 but is described in this way for convenience. Moreover, it is possible to substitute at least one of Mg, Co, and Al for a part of Li and Ni in the particle powder.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の製造方法は、本発明で得られる水酸化ニッケル粒子粉末を前駆体とし、該前駆体をリチウム原料と混合し、獲られた混合物を焼成するものである。リチウム原料は特に限定はしないが、炭酸リチウム、水酸化リチウム、及び水酸化リチウム・一水塩が用いられる   The method for producing positive electrode active material particle powder of lithium nickel oxide according to the present invention uses the nickel hydroxide particle powder obtained in the present invention as a precursor, mixes the precursor with a lithium raw material, and fires the obtained mixture To do. The lithium raw material is not particularly limited, but lithium carbonate, lithium hydroxide, and lithium hydroxide monohydrate are used.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末は前記操作で得られる該前駆体と原料の混合物の焼成による固相反応法を基に作製される。固相反応とは、構成する元素を含む原料を混合し、高温の熱処理により固体原料間での化学反応を促進させ、目的の相を得る方法である。該前駆体との固相反応中のリチウムの拡散を容易にするために、リチウム原料の粒径は微細なものが望ましい。該前駆体と原料の混合は溶媒を用いない乾式法によることが望ましく、原料粉末の混合装置としては、らいかい機、ボールミル、ヘンシェルミキサー、ハイスピードミキサー等を用いることができる。   The positive electrode active material particle powder of lithium nickel oxide according to the present invention is prepared based on a solid phase reaction method by firing a mixture of the precursor and raw material obtained by the above operation. The solid phase reaction is a method of obtaining a target phase by mixing raw materials containing constituent elements and promoting a chemical reaction between solid raw materials by high-temperature heat treatment. In order to facilitate the diffusion of lithium during the solid phase reaction with the precursor, the lithium raw material preferably has a fine particle size. The precursor and the raw material are preferably mixed by a dry method without using a solvent. As a raw material powder mixing device, a raking machine, a ball mill, a Henschel mixer, a high speed mixer, or the like can be used.

周知の通り、リチウムニッケル酸化物において、より高温での焼成時にニッケルの一部がNi2+イオンとなり、結晶中のLiイオンと置換されるという構造欠陥が生じ、電池特性が阻害される。また、より高温における焼成ではNiOが生成することが知られている。(非特許文献1) As is well known, in lithium nickel oxide, a structural defect occurs in which a part of nickel becomes Ni 2+ ions and is replaced with Li + ions in the crystal during firing at a higher temperature, thereby impairing battery characteristics. Further, it is known that NiO is generated by firing at a higher temperature. (Non-Patent Document 1)

〔非特許文献1〕H.Arai、他3名、「Characterization and cathode performance of Li1−xNi1+x prepared with the excess lithium method」、Solid State Ionics、1995年、5月1日、第80巻、p.261−269. [Non-Patent Document 1] Arai, et al., “Characterization and cathode performance of Li 1-x Ni 1 + x O 2 prepared with the exact lithium method”, Solid State Ionics, 1995, 1st volume, 1995, 1st volume. 261-269.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末において、全ニッケル量に対するNi2+イオンの量は10mol%以下であり、構造欠陥は極めて少ない。本発明では水酸化ニッケルの結晶子サイズを大きくすることができ、それを前駆体として低温で焼成しても、大きな一次粒子径のリチウムニッケル酸化物の正極活物質粒子粉末が得られるためである。 In the positive electrode active material particle powder of lithium nickel oxide according to the present invention, the amount of Ni 2+ ions with respect to the total nickel amount is 10 mol% or less, and there are very few structural defects. This is because the crystallite size of nickel hydroxide can be increased in the present invention, and even if it is fired at a low temperature using it as a precursor, a positive active material particle powder of lithium nickel oxide having a large primary particle size can be obtained. .

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の製造方法は、前記混合物を600〜930℃の温度範囲で焼成することを特徴としている。焼成温度が600℃未満の場合、固相反応が十分に進まず、所望のリチウムニッケル酸化物の正極活物質粒子粉末を得ることができない。930℃を超える場合、構造欠陥としてリチウムサイトに置換されたNi2+イオンの量が増大し、NiO不純物相として成長する。好ましくは700〜900℃である。 The method for producing a positive electrode active material particle powder of lithium nickel oxide according to the present invention is characterized in that the mixture is fired in a temperature range of 600 to 930 ° C. When the firing temperature is less than 600 ° C., the solid phase reaction does not proceed sufficiently, and the desired positive electrode active material particle powder of lithium nickel oxide cannot be obtained. When the temperature exceeds 930 ° C., the amount of Ni 2+ ions substituted for lithium sites as structural defects increases and grows as a NiO impurity phase. Preferably it is 700-900 degreeC.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の製造方法における焼成条件として、酸素濃度が高い雰囲気での焼成が望ましい。前記焼成温度の保持時間は5〜15時間程度であり、昇温、降温速度は50〜200℃/時間程度である。焼成炉としては、ガス流通式箱型マッフル炉、ガス流通式回転炉、ローラーハースキルン等を用いることができる。   As a firing condition in the method for producing a positive electrode active material particle powder of lithium nickel oxide according to the present invention, firing in an atmosphere having a high oxygen concentration is desirable. The holding time of the calcination temperature is about 5 to 15 hours, and the temperature raising and lowering rate is about 50 to 200 ° C./hour. As the firing furnace, a gas flow box muffle furnace, a gas flow rotary furnace, a roller hearth kiln, or the like can be used.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の製造方法において、焼成により得られた該粒子粉末を粉砕、分級しても構わない。粉砕装置として、らいかい機、衝撃式微粉砕機、流体粉砕機等がある。粉砕、分級をすることで、該粒子粉末の粒度をより揃えることが可能である。   In the method for producing a positive electrode active material particle powder of lithium nickel oxide according to the present invention, the particle powder obtained by firing may be pulverized and classified. Examples of the pulverizer include a rough machine, an impact pulverizer, and a fluid pulverizer. By pulverizing and classifying, the particle size of the particle powder can be made more uniform.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の一次粒子径は2〜15μmである。2μm未満では脱Li状態での熱安定性が不十分であり、15μmを超えてNi2+の生成を伴う結晶の構造欠陥を少なくすることは工業的に困難である。好ましくは、2.5〜10μmであり、より好ましくは、3〜8μmである。 The primary particle diameter of the positive electrode active material particle powder of lithium nickel oxide according to the present invention is 2 to 15 μm. If it is less than 2 μm, the thermal stability in the de-Li state is insufficient, and it is industrially difficult to reduce the structural defects of the crystal accompanied by the formation of Ni 2+ exceeding 15 μm. Preferably, it is 2.5-10 micrometers, More preferably, it is 3-8 micrometers.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末のBET比表面積は0.05〜0.35m/gである。0.05m/g未満で構造欠陥を少なくすることは工業的に困難である。0.35m/gを超えて、脱Li化合物を作製した時、熱安定性が不十分である。好ましくは、0.07〜0.30m/gである。 The BET specific surface area of the positive electrode active material particle powder of lithium nickel oxide according to the present invention is 0.05 to 0.35 m 2 / g. It is industrially difficult to reduce structural defects at less than 0.05 m 2 / g. When the Li-free compound is produced at a rate exceeding 0.35 m 2 / g, the thermal stability is insufficient. Preferably, it is 0.07-0.30 m < 2 > / g.

本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末の凝集粒子のメジアン径D50は5〜30μmが好ましく、該凝集粒子径の頻度分布におけるピークの幅(D84−D16)との比(D84−D16)/D50は0.6以下が好ましい。狭い粒度分布を得るために、前駆体として用いた水酸化ニッケルの粒度分布が反映されるような条件で該粒子粉末を生成させている。粒度分布が狭い正極活物質粒子粉末は分散性が高く、ハンドリング性が向上する。 The ratio of the positive electrode active material particle median diameter D 50 of aggregated particles of the powder of the lithium nickel oxide according to the present invention is preferably from 5 to 30 [mu] m, the peak width in the frequency distribution of the aggregated particle diameter (D 84 -D 16) (D 84 -D 16) / D 50 is preferably 0.6 or less. In order to obtain a narrow particle size distribution, the particle powder is generated under conditions that reflect the particle size distribution of the nickel hydroxide used as the precursor. The positive electrode active material particle powder having a narrow particle size distribution has high dispersibility, and handling properties are improved.

次に、本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末を用いた非水電解質二次電池について述べる。   Next, a non-aqueous electrolyte secondary battery using the positive electrode active material particle powder of lithium nickel oxide according to the present invention will be described.

本発明に係る正極活物質粒子粉末を用いて正極シートを製造する場合には、常法に従って、導電剤と結着剤を添加し、混合する。導電剤としてはカーボンブラック、グラファイト等が好ましい。結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。溶媒として、例えば、N−メチル−ピロリドンを用いることが好ましい。正極活物質粒子粉末と導電材と結着剤を含むスラリーを蜂蜜状になるまで混練する。得られた正極合剤スラリーを溝が25μm〜500μmのドクターブレードで塗布速度は約60cm/secで集電体上に塗布し、溶媒除去と結着剤軟化のため80〜180℃で乾燥する。集電体には約20μmのAl箔を用いる。正極合剤を塗布した集電体に線圧0.1〜3t/cmのカレンダーロール処理を行って正極シートを得る。   When manufacturing a positive electrode sheet using the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, carbon black, graphite or the like is preferable. As the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable. For example, N-methyl-pyrrolidone is preferably used as the solvent. The slurry containing the positive electrode active material particle powder, the conductive material and the binder is kneaded until it becomes honey. The obtained positive electrode mixture slurry is applied onto a current collector with a doctor blade having a groove of 25 μm to 500 μm at a coating speed of about 60 cm / sec, and dried at 80 to 180 ° C. to remove the solvent and soften the binder. An Al foil of about 20 μm is used for the current collector. The current collector coated with the positive electrode mixture is subjected to a calender roll treatment with a linear pressure of 0.1 to 3 t / cm to obtain a positive electrode sheet.

本発明に係る正極活物質粒子粉末は圧縮成型体密度が高く、BET比表面積が低いため、正極合剤スラリーへの結着剤添加量を低減でき、結果として密度の高い正極シートが得られる。また、メジアン径が1〜7μmの小粒径の正極活物質を混合することでより高密度の正極シートを得ることができる。   Since the positive electrode active material particle powder according to the present invention has a high compression-molded body density and a low BET specific surface area, the amount of binder added to the positive electrode mixture slurry can be reduced, and as a result, a high-density positive electrode sheet is obtained. Moreover, a higher-density positive electrode sheet can be obtained by mixing a positive electrode active material having a small particle diameter with a median diameter of 1 to 7 μm.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、正極と同様のドクターブレード法や金属圧延により負極シートは作製される。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質粒子粉末を用いて製造した対極Liの二次電池は、25℃において、4.3Vの充電後の初期放電容量が、各々155mAh/g以上であり、クーロン効率は70%以上である。   The secondary battery of the counter electrode Li manufactured using the positive electrode active material particle powder according to the present invention has an initial discharge capacity after charging of 4.3 V at 25 ° C. of 155 mAh / g or more, and a Coulomb efficiency of 70. % Or more.

本発明に係る正極活物質を用いた充電状態に相当する脱Li状態の正極活物質粒子粉末の熱分解に対する安定性で評価でき、該脱Li状態は化学的にも作り出すことが可能である。本発明に係る正極活物質粒子粉末を脱Li化したLi1−aNiO(1−a≒0.2)の大気中における発熱開始温度は205℃以上であり、熱安定性に優れている。 The stability of the positive electrode active material particle powder in the de-Li state corresponding to the charged state using the positive electrode active material according to the present invention can be evaluated by the stability against thermal decomposition, and the de-Li state can be created chemically. The Li 1-a NiO 2 (1-a≈0.2) obtained by removing Li from the positive electrode active material particle powder according to the present invention has an exothermic start temperature in the atmosphere of 205 ° C. or higher, and is excellent in thermal stability. .

<作用>
本発明に係る水酸化ニッケル粒子粉末は、比表面積が小さく、結晶子サイズが大きいため、充填性に優れている。従って、それをリチウム原料と混合後、焼成を経て得られるリチウムニッケル酸化物の正極活物質粒子粉末の一次粒子径も大きく、充填性が高い。該粒子粉末を用いた二次電池は、高容量で、且つ、脱Li状態においてより高温で熱分解する傾向にあり、熱安定性に優れている。
<Action>
Since the nickel hydroxide particle powder according to the present invention has a small specific surface area and a large crystallite size, it has excellent filling properties. Therefore, the primary particle diameter of the positive electrode active material particle powder of lithium nickel oxide obtained by mixing it with a lithium raw material and calcining is large, and the filling property is high. The secondary battery using the particle powder has a high capacity and tends to be thermally decomposed at a higher temperature in the de-Li state, and is excellent in thermal stability.

本発明の具体的な実施の例を以下に示す。   Specific examples of implementation of the present invention are shown below.

硫酸ニッケル六水塩NiSO・6HOを所定量純水に溶解し、ニッケル原料溶液とした。錯化剤のアンモニア水NHOH、中和剤の苛性ソーダNaOHは、所定量を純水に希釈して濃度を調整した。添加物原料の硫酸コバルト七水塩CoSO・7HO、硫酸マグネシウム七水塩MgSO・7HO、硫酸アルミニウムAl(SO・16HOも同様に所定量を純水に溶解した。 A predetermined amount of nickel sulfate hexahydrate NiSO 4 .6H 2 O was dissolved in pure water to obtain a nickel raw material solution. A concentration of ammonia water NH 4 OH as a complexing agent and caustic soda NaOH as a neutralizing agent was diluted with pure water to adjust the concentration. Additive amounts of cobalt sulfate heptahydrate CoSO 4 · 7H 2 O, magnesium sulfate heptahydrate MgSO 4 · 7H 2 O, aluminum sulfate Al 2 (SO 4 ) 3 · 16H 2 O to pure water Dissolved.

リチウム原料として、乾式粉砕した水酸化リチウム・一水塩LiOH・HOを用いた。 As a lithium raw material, dry-pulverized lithium hydroxide / monohydrate LiOH / H 2 O was used.

本発明の水酸化ニッケル粒子粉末の粉体評価は以下のように行った。   The powder evaluation of the nickel hydroxide particle powder of the present invention was performed as follows.

試料表面、及び形状を観察するために電界放出形走査型電子顕微鏡(FE−SEM)のS−4300[(株)日立ハイテクノロジーズ]を用いた。また、粒子断面の観察用試料を作製するために、該粒子粉末を樹脂に包埋し、クロスセクションポリッシャー(CP)のSM−09010[日本電子(株)]で切断した。   A field emission scanning electron microscope (FE-SEM) S-4300 [Hitachi High-Technologies Corporation] was used to observe the sample surface and shape. Further, in order to prepare a sample for observing a particle cross section, the particle powder was embedded in a resin and cut with a cross section polisher (CP) SM-09010 [JEOL Ltd.].

試料のBET比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、Macsorb[(株)マウンテック]を用い、測定した。   The BET specific surface area of the sample was measured by drying and degassing the sample under nitrogen gas at 120 ° C. for 45 minutes and then using Macsorb [Mounttech Co., Ltd.].

試料の結晶相の同定と結晶構造パラメータの算出のため、粉末X線回折装置SmartLab[(株)リガク]を用いて測定した。X線回折パターンはCu−Kα、45kV、200mAの条件下で、モノクロメータを通して測定し、最高ピーク強度のcount数が10,000以上になるよう、0.02°のステップで、Step−Scan法で測定した。外部標準試料としてNIST(National Institute of Standards and Technology)のSRM674bのZnO、及びSRM660bのLaBを用い、Rietveld解析プログラムにRIETAN2000を用いた。 In order to identify the crystal phase of the sample and calculate the crystal structure parameters, the measurement was performed using a powder X-ray diffractometer SmartLab [Rigaku Corporation]. The X-ray diffraction pattern was measured through a monochromator under the conditions of Cu-Kα, 45 kV, 200 mA, and the Step-Scan method was performed at a step of 0.02 ° so that the maximum peak intensity count number was 10,000 or more. Measured with ZnO of SRM674b the NIST (National Institute of Standards and Technology ), and LaB 6 of SRM660b used as an external standard sample was used RIETAN2000 the Rietveld analysis program.

水酸化ニッケル粒子粉末のX線回折パターンにおいて、(h0l)面は積層欠陥により回折ピークはブロード化すると非特許参考文献2の報告があり、該結晶面由来のピークを含む回折角35〜42°、47〜56.5°の範囲は、解析には用いなかった。また、(00l)面を板状結晶子面として、結晶子サイズを異方的に取り扱った。   In the X-ray diffraction pattern of nickel hydroxide particle powder, there is a report of Non-Patent Reference 2 that the diffraction peak broadens due to stacking faults on the (hOl) plane, and a diffraction angle of 35 to 42 ° including the peak derived from the crystal plane is reported. The range of 47-56.5 ° was not used for the analysis. In addition, the crystallite size was handled anisotropically with the (00l) plane as a plate-like crystallite plane.

〔非特許文献2〕T.N.Ramesh、他2名、Acta Crystallogr.、「Classification of stacking faults and their stepwise elinlination during the disorder → order transformation of nickel hydroxide」、2006年4月11日、B62巻、p.530−536. [Non-Patent Document 2] N. Ramesh, two others, Acta Crystallogr. , “Classification of stacking faults and ther stepwise elinlination the therder → order transformation of nickel hydride, April 11, 2006, p. 530-536.

試料の体積基準の凝集粒子粒度分布の計測に、レーザー回折・散乱式の粒度分布計[(株)セイシン企業]を用いた。頻度分布のピークの幅として、(D84−D16)を用いた。ここで、Dのn値は累積分布におけるn%のときの粒子径を意味する。即ち、D84とD16は各々の累積分布における84%と16%のときの粒子径である。 A laser diffraction / scattering particle size distribution meter [Seishin Enterprise Co., Ltd.] was used for measuring the volume-based aggregate particle size distribution of the sample. As the width of the peak of the frequency distribution was used (D 84 -D 16). Here, the n value of D n means the particle diameter when n% in the cumulative distribution. That, D 84 and D 16 is a particle diameter when the 84% and 16% in the cumulative distribution of each.

試料の残存硫黄S量は、EMIA−820[(株)ホリバ製作所製]を用いて燃焼炉で酸素気流中にて試料を燃焼させ、定量化した。   The amount of residual sulfur S in the sample was quantified by burning the sample in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Ltd.].

試料のタップ密度は、試料40gを100mlのメスシリンダーに充填し、タンプデンサー(KYT−3000、セイシン企業社製)を用いて、500回タップした後、計測した。   The sample tap density was measured after filling 40 g of a sample into a 100 ml graduated cylinder and tapping 500 times using a tamp denser (KYT-3000, manufactured by Seishin Enterprise Co., Ltd.).

水酸化ニッケル粒子粉末中のNi含有量はキレート滴定にて定量化した。水酸化ニッケル粒子粉末を2.5g精秤し、高濃度塩酸25mlに溶解した後、0.12N塩酸で250mlに調整した。この溶液25mlに、0.005g/mlのCu・EDTA溶液10mlと、10gの塩化アンモニウムを純水で100ccに調整した溶液の5mlを加え、100mlに調整することで測定溶液を得た。電位差自動滴定装置[(株)メトローム]を用い、測定溶液に0.1Mの2Na・EDTAとアンモニアを自動滴定し、水酸化ニッケル粒子粉末中のNi量を求めた。   The Ni content in the nickel hydroxide particle powder was quantified by chelate titration. After 2.5 g of nickel hydroxide particle powder was precisely weighed and dissolved in 25 ml of high-concentration hydrochloric acid, it was adjusted to 250 ml with 0.12N hydrochloric acid. To 25 ml of this solution, 10 ml of a 0.005 g / ml Cu · EDTA solution and 5 ml of a solution prepared by adjusting 10 g of ammonium chloride to 100 cc with pure water were added and adjusted to 100 ml to obtain a measurement solution. Using a potentiometric automatic titration apparatus [Metrohm Co., Ltd.], 0.1M 2Na · EDTA and ammonia were automatically titrated into the measurement solution, and the amount of Ni in the nickel hydroxide particle powder was determined.

本発明のリチウムニッケル酸化物の正極活物質粒子粉末の粉体評価、及びそれを用いた二次電池の評価は以下のように行った。   The powder evaluation of the positive electrode active material particle powder of the lithium nickel oxide of the present invention and the evaluation of the secondary battery using the same were performed as follows.

該正極活物質粒子粉末の主成分元素であるリチウムとニッケル、及び副成分のコバルト、マグネシウム、アルミニウムの含有量は、該試料粉末を20%塩酸で完全に溶解後、ICP発光分光分析装置(ICP−OES)Optima8300[株式会社パーキンエルマージャパン]を用い、検量線法で測定した。同時に不純物量も定量化した。   The contents of lithium and nickel, which are main component elements of the positive electrode active material particle powder, and cobalt, magnesium and aluminum as accessory components are determined by completely dissolving the sample powder with 20% hydrochloric acid, and then an ICP emission spectroscopic analyzer (ICP -OES) Measured by a calibration curve method using Optima 8300 [Perkin Elmer Japan Co., Ltd.]. At the same time, the amount of impurities was quantified.

該正極活物質粒子粉末の一次粒子径は図4(2)に示すようにFE−SEMの中倍率(×5000)の写真から計測した約25個の粒子の一次粒子径の平均を取った。   The primary particle diameter of the positive electrode active material particle powder was the average of the primary particle diameters of about 25 particles measured from a photograph of medium magnification (x5000) of FE-SEM as shown in FIG. 4 (2).

該正極活物質粒子粉末の全ニッケル量に対するNi2+イオンの量Ni2+/(Ni2++Ni3+)はX線回折パターンにおけるRietveld解析を用いた。ここで、全ニッケル量は各相を形成するNi2+イオンとNi3+イオンから成り立っている。該粒子粉末のLiNiOの結晶相において、リチウムサイトに存在するNiはNi2+イオンとみなし、ニッケルサイトに存在するNiはNi3+イオンとみなした。同時に、不純物相NiOに存在するNiもNi2+イオンとみなした。 The amount of Ni 2+ ions Ni 2+ / (Ni 2+ + Ni 3+ ) with respect to the total amount of nickel in the positive electrode active material particle powder used Rietveld analysis in an X-ray diffraction pattern. Here, the total nickel amount is composed of Ni 2+ ions and Ni 3+ ions forming each phase. In the crystalline phase of LiNiO 2 of the particle powder, Ni existing at the lithium site was regarded as Ni 2+ ions, and Ni present at the nickel site was regarded as Ni 3+ ions. At the same time, Ni present in the impurity phase NiO was also regarded as Ni 2+ ions.

該正極活物質粒子粉末のBET比表面積と凝集粒子メジアン径D50は水酸化ニッケルと同装置で測定した。得られた凝集粒子メジアン径D50を用いて、粒度分布の狭さを表わす(D84−D16)/D50が算出した。 Positive electrode active material agglomerate BET specific surface area of the particles the particle median diameter D 50 was measured in the same apparatus and nickel hydroxide. Using aggregate particle median diameter D 50 obtained represents the narrowness of the particle size distribution (D 84 -D 16) / D 50 was calculated.

該正極活物質粒子粉末の圧縮成型体密度は5gの試料を10mmφの治具で2.5t/cmの圧力で圧粉し、成型体の重量と体積から算出した。 The density of the compression molded body of the positive electrode active material particle powder was calculated from the weight and volume of a molded body obtained by compacting a 5 g sample with a 10 mmφ jig at a pressure of 2.5 t / cm 2 .

得られた正極活物質粒子粉末の一次粒子径、全ニッケル量に対するNi2+イオンの量Ni2+/(Ni2++Ni3+)、BET比表面積、凝集粒子メジアン径D50、凝集粒子の粒度分布の狭さの目安(D84−D16)/D50、成型体密度は粉体特性として表2に記した。同時に焼成温度も記した。 The primary particle diameter of the obtained positive electrode active material particle powder, the amount of Ni 2+ ions with respect to the total nickel amount Ni 2+ / (Ni 2+ + Ni 3+ ), the BET specific surface area, the agglomerated particle median diameter D 50 , and the narrow particle size distribution of the agglomerated particles It is the measure (D 84 -D 16) / D 50, compact density illustrated as powder characteristics in Table 2. At the same time, the firing temperature was noted.

得られた正極活物質粒子粉末を用いて、下記製造方法によるCR2032型コインセルでの二次電池特性を評価し、表2に記した。   Using the obtained positive electrode active material particle powder, the secondary battery characteristics in a CR2032-type coin cell by the following production method were evaluated and are shown in Table 2.

正極活物質と導電剤であるアセチレンブラック、グラファイト及び結着剤のポリフッ化ビニリデンを重量比90:3:3:4となるよう精秤し、N−メチル−2−ピロリドンに分散させ、高速混練装置で十分に混合して正極合剤スラリーを調整した。次に該合剤スラリーを集電体のアルミニウム箔にドクターブレードで塗布し、120℃で乾燥して、0.5t/cmに加圧して、約40μmの膜厚の正極シートを作製した。正極シートを16mmφに打ち抜き、正極とした。   The positive electrode active material and the conductive agent acetylene black, graphite, and the binder polyvinylidene fluoride are precisely weighed so as to have a weight ratio of 90: 3: 3: 4, dispersed in N-methyl-2-pyrrolidone, and kneaded at high speed. The positive electrode mixture slurry was prepared by thoroughly mixing with an apparatus. Next, the mixture slurry was applied to an aluminum foil as a current collector with a doctor blade, dried at 120 ° C., and pressurized to 0.5 t / cm to produce a positive electrode sheet having a thickness of about 40 μm. A positive electrode sheet was punched to 16 mmφ to obtain a positive electrode.

負極として、16mmφに打ち抜いた金属リチウム箔[本城金属株式会社]を用いた。   As the negative electrode, a metal lithium foil [Honjo Metal Co., Ltd.] punched to 16 mmφ was used.

セパレーターとして、セルガード#2400[Celgard,LLC]20mmφを用いた。1mol/lのLiPFを溶解したECとDMC(エチレンカーボネート:ジメチルカーボネート=1:2体積比)混合溶媒を電解液として用いた。これら部材を組み立て、CR2032型コインセル[株式会社宝泉]を作製した。 As a separator, Celgard # 2400 [Celgard, LLC] 20 mmφ was used. EC and DMC (ethylene carbonate: dimethyl carbonate = 1: 2 volume ratio) mixed solvent in which 1 mol / l LiPF 6 was dissolved was used as an electrolytic solution. These members were assembled to produce a CR2032-type coin cell [Hosen Co., Ltd.].

電解液や金属リチウムが大気により分解されないよう、アルゴン雰囲気のグローブボックス中で電池の組み立てを行った。   The battery was assembled in a glove box in an argon atmosphere so that the electrolyte and metallic lithium were not decomposed by the air.

25℃における初期放電容量の測定は、0.1Cの定電流下で、放電電圧下限を3.0Vとし、充電上限電圧を4.3Vとした条件の試験を行った。   The measurement of the initial discharge capacity at 25 ° C. was performed under the condition that the lower limit of the discharge voltage was 3.0 V and the upper limit of the charge voltage was 4.3 V under a constant current of 0.1 C.

二次電池の熱安定性の評価のため、充電状態に相当する脱Li状態の正極活物質粒子粉末を化学的に作製し、昇温時の熱量測定を行った。即ち、得られたリチウムニッケル酸化物の正極活物質粒子粉末を6Mの硫酸に7℃で浸漬し、48時間撹拌し、水洗、乾燥することで化学的に脱Li反応を行った。ここで、Ni3+→Ni2++Ni4+という不均化反応を利用し、水洗によって反応溶液中のLi+イオンとNi2+イオンと余剰の(SO2−イオンを取り除き、Ni4+を含むLi1−aNiO(1−a≒0.2)を得ることができる。この脱Li化した正極活物質粒子粉末の示差走査熱量測定(DSC)を実施した。DSC曲線は空気雰囲気下で10℃/minの昇温速度でDSC−6200[Seiko Instruments Inc.]で測定することで得られた。図8に示すように、発熱開始温度は外挿したDSC曲線のベースラインと発熱ピークの低温側の変曲点における接線との交点より求めた。 In order to evaluate the thermal stability of the secondary battery, a positive electrode active material particle powder in a de-Li state corresponding to the charged state was chemically produced, and the calorific value at the time of temperature rise was measured. That is, the obtained lithium nickel oxide positive electrode active material particle powder was immersed in 6 M sulfuric acid at 7 ° C., stirred for 48 hours, washed with water, and dried to chemically remove Li. Here, using a disproportionation reaction of Ni 3+ → Ni 2+ + Ni 4+ , Li + ions, Ni 2+ ions, and excess (SO 4 ) 2− ions in the reaction solution are removed by water washing, and Li containing Ni 4+ is contained. 1-a NiO 2 (1-a≈0.2) can be obtained. Differential scanning calorimetry (DSC) of the delithiated positive electrode active material particles was performed. The DSC curve was obtained by measuring with DSC-6200 [Seiko Instruments Inc.] at a heating rate of 10 ° C./min in an air atmosphere. As shown in FIG. 8, the heat generation start temperature was obtained from the intersection of the extrapolated DSC curve base line and the tangent at the inflection point on the low temperature side of the heat generation peak.

[実施例1−1]
(水酸化ニッケル粒子粉末の作製)
ドラフトチューブ、バッフル、羽根型撹拌機を具備した有効容積10Lの反応器内に、反応母液体積は8L、反応温度は60℃、NHOHは1.2mol/l、NaOHは0.2mol/lになるよう、十分に攪拌をしながら調整した。原料滴下用として、個別の容器に、各々、1.55mol/lのNiSO水溶液、5.41mol/lのNHOH水溶液、5.99mol/lのNaOH水溶液を準備した。反応母液1L当たり0.05mol/hrの速度で該NiSO水溶液を反応器内に滴下し、反応母液体積は一定になるよう、濃縮器で固液分離した。同時に、反応母液中のNHOH濃度を1.2mol/l、NiSO水溶液の中和に対し、余剰なNaOHが0.2mol/lになるよう滴下した。
[Example 1-1]
(Preparation of nickel hydroxide particle powder)
In a reactor having an effective volume of 10 L equipped with a draft tube, a baffle and a blade-type stirrer, the reaction mother liquor volume is 8 L, the reaction temperature is 60 ° C., NH 4 OH is 1.2 mol / l, and NaOH is 0.2 mol / l. Was adjusted with sufficient stirring. For raw material dropping, 1.55 mol / l NiSO 4 aqueous solution, 5.41 mol / l NH 4 OH aqueous solution, and 5.99 mol / l NaOH aqueous solution were prepared in individual containers, respectively. The NiSO 4 aqueous solution was dropped into the reactor at a rate of 0.05 mol / hr per liter of the reaction mother liquor, and solid-liquid separation was performed with a concentrator so that the reaction mother liquor volume was constant. At the same time, the NH 4 OH concentration in the reaction mother liquor was dropped to 1.2 mol / l, and the excess NaOH was added dropwise to 0.2 mol / l with respect to the neutralization of the NiSO 4 aqueous solution.

溶液反応中の反応母液を各時間抜き取り、水洗後、得られた粒子粉末を、レーザー回折・散乱式の粒度分布計で測定した。滴下開始から、凝集粒子の成長が止まりつつあった120時間後に原料滴下を中止し、溶液反応を終了とした。水洗、乾燥を経て、水酸化ニッケル粒子粉末を作製した。   The reaction mother liquor during the solution reaction was withdrawn each time and washed with water, and the obtained particle powder was measured with a laser diffraction / scattering particle size distribution meter. 120 hours after the start of dropping, the starting of dropping of the aggregated particles was stopped, and the dropping of the raw material was stopped to complete the solution reaction. After washing with water and drying, nickel hydroxide particle powder was prepared.

得られた水酸化ニッケル粒子粉末は低倍率SEM写真を図1(1)で示すように、微粉がほとんどなく、粒度が揃っていた。図2、及び表1に示すように、体積基準の粒度分布からのメジアン径D50は6.9μmであり、該体積基準の粒度分布の幅(D84−D16)とD50の比(D84−D16)/D50は0.31と小さく、低倍率SEM写真の粒度とほぼ一致していた。図1(2)のSEM写真で示すように、0.7μm程度の一次粒子が凝集して7μm程度の凝集粒子を形成しており、図1(4)の粒子断面SEM写真で示すように、全体的に緻密な凝集粒子であった。図1(3)の高倍率SEM写真で示すように、厚さ数十nmの結晶子が重なり合って一次粒子を形成しているように観察された。 The obtained nickel hydroxide particle powder had almost no fine powder and had a uniform particle size, as shown in FIG. 2, and as shown in Table 1, the median diameter D 50 of from volume-based particle size distribution is 6.9 [mu] m, the ratio of the width (D 84 -D 16) and D 50 of the particle size distribution of said volume standard ( D 84 -D 16 ) / D 50 was as small as 0.31, and almost coincided with the particle size of the low-magnification SEM photograph. As shown in the SEM photograph of FIG. 1 (2), primary particles of about 0.7 μm aggregate to form aggregated particles of about 7 μm. As shown in the particle cross-sectional SEM photograph of FIG. It was a fine aggregated particle as a whole. As shown in the high-magnification SEM photograph of FIG. 1 (3), it was observed that crystallites with a thickness of several tens of nm overlapped to form primary particles.

図3にX線回折パターンの解析結果を示すように、信頼度因子Rwpは14.2%と低かったため、空間群P3―m1で解析が可能とみなした。六方晶系としての格子定数、a=3.129Å、c=4.637Åが得られ、β―Ni(OH)であることが分かった。(00l)面に垂直方向と平行方向の結晶子サイズは各々32nmと123nmであり、図1(3)のSEM写真における板状粒子のサイズとほぼ同じように観察された。そのため、該サイズの板状の結晶子が重なりあって、0.7μm程度の一次粒子が形成しているとみなした。 As shown in the analysis result of the X-ray diffraction pattern in FIG. 3, since the reliability factor R wp was as low as 14.2%, it was considered that analysis was possible in the space group P3-m1. The lattice constants as a hexagonal system, a = 3.129 Å and c = 4.637 Å were obtained, and it was found that β-Ni (OH) 2 was obtained. The crystallite sizes in the direction perpendicular to and parallel to the (00l) plane were 32 nm and 123 nm, respectively, which were observed almost the same as the size of the plate-like particles in the SEM photograph of FIG. Therefore, it was considered that primary particles of about 0.7 μm were formed by overlapping plate-like crystallites of the size.

BET比表面積は2.9m/gであり、500回のタップ密度は2.25g/ccであり、充填性に優れていることが分かった。また、残存硫黄S量も0.06重量%と低く、高純度であった。 The BET specific surface area was 2.9 m 2 / g, the tap density of 500 times was 2.25 g / cc, and it was found that the filling property was excellent. Further, the amount of residual sulfur S was as low as 0.06% by weight, and the purity was high.

得られた水酸化ニッケル粒子粉末の粉体特性と製造条件を表1に記した。粉体特性として、BET比表面積、(00l)面に垂直(⊥)、及び平行(//)な方向の結晶子サイズ、(00l)面に垂直方向の結晶子サイズに対する該面に平行方向の結晶子サイズの比、凝集粒子メジアン径D50、粒度分布の狭さの目安(D84−D16)/D50、残存硫黄S量、500回タップ密度である。製造条件として、ニッケル原料滴下速度、NHOH濃度、中和余剰NaOH濃度、反応温度、反応時間である。 Table 1 shows the powder characteristics and production conditions of the obtained nickel hydroxide particles. As the powder characteristics, the BET specific surface area, the crystallite size perpendicular (方向) and parallel (//) to the (00l) plane, the crystallite size perpendicular to the (00l) plane, The ratio of the crystallite size, the median diameter of aggregated particle D 50 , the standard of narrowness of particle size distribution (D 84 -D 16 ) / D 50 , the amount of residual sulfur S, and the tap density of 500 times. The production conditions are nickel raw material dropping rate, NH 4 OH concentration, neutralized surplus NaOH concentration, reaction temperature, and reaction time.

[実施例1−2]
(リチウムニッケル酸化物の正極活物質粒子粉末の作製)
得られた水酸化ニッケル粒子粉末のNi含有量はキレート滴定によると10.7mol/kgであった。該粒子粉末を150g計量した。リチウム源として、水酸化リチウムLiOH・HOを仕込み比Li/Ni=1.05mol比となるよう計量した。撹拌羽を有する卓上混合機を用いて、乾式混合後、酸素雰囲気中、860℃―10hで焼成した。得られた試料は乳鉢で粉砕しながら、目開き45μmの篩を用いて分級した。
[Example 1-2]
(Preparation of positive electrode active material particle powder of lithium nickel oxide)
The Ni content of the obtained nickel hydroxide particle powder was 10.7 mol / kg according to chelate titration. 150 g of the particle powder was weighed. As a lithium source, lithium hydroxide LiOH.H 2 O was charged and weighed so that the ratio Li / Ni = 1.05 mol. Using a desktop mixer having stirring blades, after dry mixing, it was fired at 860 ° C. for 10 hours in an oxygen atmosphere. The obtained sample was classified using a sieve having an opening of 45 μm while being pulverized in a mortar.

得られたリチウムニッケル酸化物の正極活物質粒子粉末のSEM写真を図4に示す。図4(1)から判断すると一次粒子径が凝集粒子径に近い値を示した。図4(2)から判断すると一次粒子径は約4μmであった。図4(4)に粒子断面のSEM写真を示すように、緻密な構造体であることが分かった。   An SEM photograph of the obtained positive electrode active material particle powder of lithium nickel oxide is shown in FIG. Judging from FIG. 4 (1), the primary particle size showed a value close to the aggregated particle size. Judging from FIG. 4 (2), the primary particle size was about 4 μm. As shown in the SEM photograph of the cross section of the particle in FIG. 4 (4), it was found to be a dense structure.

得られたリチウムニッケル酸化物の正極活物質粒子粉末の粉体特性を表2に示す。X線回折パターンの解析による全ニッケル量に対するNi2+イオンの量Ni2+/(Ni2++Ni3+)は6mol%であり、該粒子粉末の結晶における構造欠陥が少なかった。該粒子粉末の一次粒子径は大きいため、BET比表面積は0.22m/gと低くかった。凝集粒子のメジアン径D50は7.6μmであり、粒度分布の狭さの目安(D84−D16)/D50は0.49と低く、粒度は揃っていた。図1(1)と図4(1)の低倍率SEM写真を比較しても、実施例1−1で得られた水酸化ニッケル粒子粉末の凝集粒子径と該リチウムニッケル酸化物の正極活物質粒子粉末の粒度は相関が高く、リチウム原料が分解して、ニッケル粒子内へ拡散していることが予想される。圧縮成型体密度も3.3g/ccと高かった。 Table 2 shows the powder characteristics of the obtained positive electrode active material particle powder of lithium nickel oxide. The amount of Ni 2+ ions Ni 2+ / (Ni 2+ + Ni 3+ ) relative to the total amount of nickel by analysis of the X-ray diffraction pattern was 6 mol%, and there were few structural defects in the crystals of the particle powder. Since the primary particle diameter of the particle powder was large, the BET specific surface area was as low as 0.22 m 2 / g. The median diameter D 50 of the agglomerated particles was 7.6 μm, and the standard (D 84 -D 16 ) / D 50 of the narrow particle size distribution was as low as 0.49, and the particle sizes were uniform. Even when the low-magnification SEM photographs of FIG. 1 (1) and FIG. 4 (1) are compared, the aggregated particle diameter of the nickel hydroxide particle powder obtained in Example 1-1 and the positive electrode active material of the lithium nickel oxide The particle size of the particle powder is highly correlated, and it is expected that the lithium raw material is decomposed and diffused into the nickel particles. The density of the compression molded product was as high as 3.3 g / cc.

得られたリチウムニッケル酸化物の正極活物質粒子粉末を正極化し、コインセルにて評価を行った。その初期放電容量と初期クーロン効率は、表2に示すように初期の放電容量は170mAh/gと高く、クーロン効率も高かった。また、脱Li化した試料の熱分析における発熱開始温度は210℃と高く、熱安定性に優れていることが分かった。   The obtained positive electrode active material particle powder of lithium nickel oxide was converted into a positive electrode and evaluated in a coin cell. As shown in Table 2, the initial discharge capacity and initial coulomb efficiency were as high as 170 mAh / g, and the coulomb efficiency was also high. In addition, the exothermic start temperature in the thermal analysis of the de-Li sample was as high as 210 ° C., and it was found that the thermal stability was excellent.

以下の実施例、及び比較例についても同様に、水酸化ニッケル粒子粉末の製造条件と粉体特性を表1に、それを用いて作製されたリチウムニッケル酸化物の正極活物質粒子粉末の焼成温度、粉体特性、及び電池特性を表2に記す。   Similarly, in the following examples and comparative examples, the production conditions and powder characteristics of nickel hydroxide particle powder are shown in Table 1, and the firing temperature of the positive electrode active material particle powder of lithium nickel oxide produced using the same Table 2 shows the powder characteristics and battery characteristics.

[実施例2−1、3−1、4−1]
水酸化ニッケル粒子粉末作製の際、表1の製造条件に従って、ニッケル原料滴下速度、中和余剰NaOH濃度、反応時間を変えて、他は実施例1−1と同様に行った。実施例2−1の結果、図5に示すように、一次粒子径が大きく、緻密な水酸化ニッケル粒子粉末が得られた。表1に示すように、低比表面積、大きな結晶子サイズ、適度な凝集粒子径と狭い凝集粒子粒度分布、低い残存硫黄S量が得られ、高いタップ密度を示す良好な粉体特性が得られた。
[Examples 2-1, 3-1, 4-1]
When producing the nickel hydroxide particle powder, the other steps were performed in the same manner as in Example 1-1, except that the nickel raw material dropping rate, the neutralized excess NaOH concentration, and the reaction time were changed according to the production conditions shown in Table 1. As a result of Example 2-1, as shown in FIG. 5, dense nickel hydroxide particle powder having a large primary particle diameter was obtained. As shown in Table 1, low specific surface area, large crystallite size, moderate agglomerated particle size and narrow agglomerated particle size distribution, low residual sulfur S content are obtained, and good powder characteristics showing high tap density are obtained. It was.

[実施例2−2、3−2、4−2]
実施例2−2、3−2、4−2は各々実施例2−1、3−1、4−1で得られた水酸化ニッケル粒子粉末を用いた。実施例1−2と同様に、各々の水酸化ニッケル粒子粉末を150g計量し、水酸化リチウムLiOH・HOを仕込み比Li/Ni=1.05mol比となるよう計量した。撹拌羽を有する卓上混合機を用いて、乾式混合後、酸素雰囲気中、860℃―10hで焼成した。その後、乳鉢で粉砕しながら、目開き45μmの篩を用いて分級した。
[Examples 2-2, 3-2, 4-2]
In Examples 2-2, 3-2, and 4-2, the nickel hydroxide particle powders obtained in Examples 2-1, 3-1, and 4-1, respectively, were used. In the same manner as in Example 1-2, 150 g of each nickel hydroxide particle powder was weighed, and lithium hydroxide LiOH.H 2 O was weighed so that the ratio Li / Ni = 1.05 mol. Using a desktop mixer having stirring blades, after dry mixing, it was fired at 860 ° C. for 10 hours in an oxygen atmosphere. Then, while pulverizing with a mortar, classification was performed using a sieve having an opening of 45 μm.

得られたリチウムニッケル酸化物の正極活物質粒子粉末は、表2に示すように、一次粒子径が大きく、Ni2+イオンの含有率が低く、比表面積が小さく、水酸化ニッケル粒子粉末の凝集粒子径からほとんど変化が無く、粒度分布が狭いという優れた粉体特性が得られた。成型体密度はいずれも3.3g/cc以上であり、高かった。 As shown in Table 2, the obtained positive electrode active material particle powder of lithium nickel oxide has a large primary particle diameter, a low Ni 2+ ion content, a small specific surface area, and an agglomerated particle of nickel hydroxide particle powder. Excellent powder characteristics with little change in diameter and narrow particle size distribution were obtained. The molded body density was 3.3 g / cc or more and was high.

得られた正極活物質粒子粉末の電池特性として、表2に示すように高容量であり、発熱開始温度も高く、熱安定性に優れていた。   As the battery characteristics of the obtained positive electrode active material particle powder, as shown in Table 2, it had a high capacity, a high heat generation starting temperature, and excellent thermal stability.

[実施例5−1]
水酸化ニッケル粒子粉末の作製において、ニッケル原料滴下速度以外、実施例2と同様の条件で行った。滴下開始から19時間は0.025[mol/(L・hr)]の速度で原料の反応母液への徐滴下を行い、該滴下中に新たに結晶核を発生させないようにした。また、残りの71時間は0.05[mol/(L・hr)]と速度を上げて滴下した。得られた水酸化ニッケル粒子粉末の粉体特性を表1に示すように、凝集粒子径は20.1μmと大きく成長した。
[Example 5-1]
The production of the nickel hydroxide particle powder was performed under the same conditions as in Example 2 except for the nickel raw material dropping speed. For 19 hours from the start of the dropping, the raw material was gradually dropped into the reaction mother liquor at a rate of 0.025 [mol / (L · hr)] so that no new crystal nuclei were generated during the dropping. The remaining 71 hours were added dropwise at a rate of 0.05 [mol / (L · hr)]. As shown in Table 1, the powder characteristics of the obtained nickel hydroxide particle powder showed a large aggregated particle diameter of 20.1 μm.

[実施例5−2]
得られた水酸化ニッケル粒子粉末を元に、実施例1と同様にリチウムニッケル酸化物の正極活物質粒子粉末を作製した。該粒子粉末の特性を表2に示す。
[Example 5-2]
Based on the obtained nickel hydroxide particle powder, a positive electrode active material particle powder of lithium nickel oxide was produced in the same manner as in Example 1. The properties of the particle powder are shown in Table 2.

[実施例6−1、6−2]
Mg原料として硫酸マグネシウムを用い、Ni/Mg=0.98/0.02mol比の溶液を原料溶液とした以外、実施例4−1と同様の条件で行った。実施例1−2の条件に基づき、Li/(Ni+Mg)=1.05のmol比で行った。得られた水酸化ニッケル粒子粉末の粉体特性を表1に、得られたリチウムニッケル酸化物の正極活物質粒子粉末の粉体、及び電池特性を表2に示す。
[Examples 6-1 and 6-2]
This was performed under the same conditions as in Example 4-1, except that magnesium sulfate was used as the Mg raw material and a solution having a Ni / Mg = 0.98 / 0.02 mol ratio was used as the raw material solution. Based on the conditions of Example 1-2, the molar ratio was Li / (Ni + Mg) = 1.05. The powder characteristics of the obtained nickel hydroxide particle powder are shown in Table 1, and the powder of the obtained positive electrode active material particle powder of lithium nickel oxide and the battery characteristics are shown in Table 2.

[比較例1−1〜4−1]
表1記載の数値に従って、ニッケル原料滴下速度、NHOH濃度、中和余剰NaOH濃度、反応温度、及び反応時間を変更して、他の条件は実施例1−1と同様の条件で水酸化ニッケル粒子粉末を作製した。比較例1−1と2−1で得られた水酸化ニッケル粒子粉末のSEM写真を図6に、粉体特性を表1に示す。得られた水酸化ニッケル粒子粉末は緻密でなく、比表面積は高く、結晶子サイズも小さかった。比較例1−1と2−1において、残存硫黄S量も多かった。比較例3−1と4−1において、(D84−D16)/D50が高く、粒度分布が広がっていた。図7の粒子断面のSEM写真からも粒子が密に詰まった様子は無く、得られたタップ密度は低いものが多かった。
[Comparative Examples 1-1 to 4-1]
According to the numerical values described in Table 1, the nickel raw material dropping rate, NH 4 OH concentration, neutralized surplus NaOH concentration, reaction temperature, and reaction time were changed, and other conditions were hydroxylated under the same conditions as in Example 1-1. Nickel particle powder was produced. FIG. 6 shows SEM photographs of the nickel hydroxide particles obtained in Comparative Examples 1-1 and 2-1, and Table 1 shows the powder characteristics. The obtained nickel hydroxide particle powder was not dense, the specific surface area was high, and the crystallite size was small. In Comparative Examples 1-1 and 2-1, the amount of residual sulfur S was also large. In Comparative Examples 3-1 and 4-1, the (D 84 -D 16) / D 50 high, had spread particle size distribution. Also from the SEM photograph of the particle cross section of FIG. 7, there was no appearance that the particles were densely packed, and many of the obtained tap densities were low.

[比較例1−2、2−2、3−2]
比較例1−1、2−1、3−1で得られた水酸化ニッケル粒子粉末を用いて、各々、比較例1−2、2−2、3−2としてLi化した。実施例1−2と同様に、各々、該水酸化ニッケル粒子粉末を150g計量し、水酸化リチウムLiOH・HOを仕込み比Li/Ni=1.05mol比となるよう計量した。撹拌羽を有する卓上混合機を用いて、乾式混合後、酸素雰囲気中、860℃―10hで焼成した。その後、乳鉢で粉砕しながら、目開き45μmの篩を用いて分級した。
[Comparative Examples 1-2, 2-2, 3-2]
Using the nickel hydroxide particle powder obtained in Comparative Examples 1-1, 2-1, and 3-1, Li was formed as Comparative Examples 1-2, 2-2, and 3-2, respectively. In the same manner as in Example 1-2, 150 g of the nickel hydroxide particle powder was weighed, and lithium hydroxide LiOH.H 2 O was charged and weighed so that the ratio Li / Ni = 1.05 mol. Using a desktop mixer having stirring blades, after dry mixing, it was fired at 860 ° C. for 10 hours in an oxygen atmosphere. Then, while pulverizing with a mortar, classification was performed using a sieve having an opening of 45 μm.

得られたリチウムニッケル酸化物の正極活物質粒子粉末は、表2に示すように、Ni2+イオンの量は少ないため構造欠陥が少ないと予想され、また、成型体密度はいずれも高かった。一方、一次粒子径は1μmと小さいものもあり、比表面積は比較的高かった。粒度分布が広いものも得られ、優れた粉体特性とは言い難かった。放電容量は高いものの、脱Li状態の試料のDSCによる発熱開始温度は低く、これを二次電池に用いたときに低温で発熱開始することが予想され、熱安定性に優れているとは言い難かった。 As shown in Table 2, the obtained positive electrode active material particle powder of lithium nickel oxide was expected to have few structural defects because the amount of Ni 2+ ions was small, and the compact density was high. On the other hand, the primary particle size was as small as 1 μm, and the specific surface area was relatively high. A wide particle size distribution was also obtained, and it was difficult to say that the powder characteristics were excellent. Although the discharge capacity is high, the heat generation start temperature by DSC of the sample in the Li-free state is low, and when it is used for a secondary battery, heat generation is expected to start at a low temperature, which is said to be excellent in thermal stability. It was difficult.

[比較例4−2a、4−2b]
比較例4−1で得られた水酸化ニッケル粒子粉末を用いて、実施例1−2と同様にLi原料との混合物を作製した。比較例4−2aは950℃―10hで、比較例4−2bは1000℃―10hで、いずれも酸素雰囲気中にて焼成した。その後、乳鉢で粉砕しながら、目開き45μmの篩を用いて分級した。
[Comparative Examples 4-2a and 4-2b]
Using the nickel hydroxide particle powder obtained in Comparative Example 4-1, a mixture with a Li raw material was produced in the same manner as in Example 1-2. Comparative Example 4-2a was fired in an oxygen atmosphere at 950 ° C.-10 h, and Comparative Example 4-2b was 1000 ° C.-10 h. Then, while pulverizing with a mortar, classification was performed using a sieve having an opening of 45 μm.

得られたリチウムニッケル酸化物の正極活物質粒子粉末は、表2に示すように、一次粒子径は大きく、比表面積は小さいものの、Ni2+イオンを多く含んでいた。粒度分布も広がって悪化し、低い成型体密度を示すものもあった。脱Li状態の試料のDSCによる発熱開始温度は高いものの、電池特性は極端に悪化した。 As shown in Table 2, the obtained positive electrode active material particle powder of lithium nickel oxide had a large primary particle diameter and a small specific surface area, but contained a large amount of Ni 2+ ions. The particle size distribution also spreads and gets worse, and some have a low molded body density. Although the exothermic start temperature by DSC of the sample in the Li-free state was high, the battery characteristics were extremely deteriorated.

本発明に係る水酸化ニッケル粒子粉末は、比表面積が小さく、結晶子サイズが大きい。また、凝集粒子径が整っており、緻密で、充填性に優れている。本発明に係るリチウムニッケル酸化物の正極活物質粒子粉末は、本発明で得られる水酸化ニッケル粒子粉末を前駆体として用いることもできるため、得られる一次粒子径は大きく、充填性に優れ、且つ、脱リチウム状態での熱安定性に優れている。従って、高エネルギー密度を有する熱安定性に優れた二次電池を製造できる。   The nickel hydroxide particle powder according to the present invention has a small specific surface area and a large crystallite size. In addition, the aggregated particle diameter is uniform, dense and excellent in filling properties. Since the positive electrode active material particle powder of the lithium nickel oxide according to the present invention can also use the nickel hydroxide particle powder obtained in the present invention as a precursor, the resulting primary particle size is large, the filling property is excellent, and Excellent thermal stability in delithiated state. Therefore, a secondary battery having high energy density and excellent thermal stability can be manufactured.

本発明は比表面積が小さく、結晶子サイズが大きいため、高い充填性を示す水酸化ニッケル粒子粉末を、低コストで、環境負荷の少ない製法で得ることができる。それを前駆体として作製することもできるリチウムニッケル酸化物の正極活物質粒子粉末は一次粒子径が大きく、構造欠陥も少ない。従って該正極活物質粒子粉末を正極とした非水電解質二次電池は高エネルギー密度を有し、且つ、熱安定性にも優れている。   Since the present invention has a small specific surface area and a large crystallite size, it is possible to obtain a nickel hydroxide particle powder exhibiting a high filling property at a low cost by a production method with a small environmental load. The positive electrode active material particle powder of lithium nickel oxide, which can also be produced as a precursor, has a large primary particle size and few structural defects. Therefore, the non-aqueous electrolyte secondary battery using the positive electrode active material particle powder as a positive electrode has a high energy density and excellent thermal stability.

Claims (10)

BET比表面積が0.5〜8.0m/g、(00l)面に垂直方向の結晶子サイズが20〜100nm、(00l)面に平行方向の結晶子サイズが40〜300nmであることを特徴とする水酸化ニッケル粒子粉末。 The BET specific surface area is 0.5 to 8.0 m 2 / g, the crystallite size perpendicular to the (00l) plane is 20 to 100 nm, and the crystallite size parallel to the (00l) plane is 40 to 300 nm. Characteristic nickel hydroxide particle powder. 体積基準の凝集粒子のメジアン径(D50)が5〜30μmであり、前記メジアン径D50と該粒子径頻度分布におけるピークの幅(D84−D16)との比(D84−D16)/D50が0.4以下である請求項1に記載の水酸化ニッケル粒子粉末。 The median diameter (D 50 ) of the volume-based aggregated particles is 5 to 30 μm, and the ratio (D 84 -D 16 ) between the median diameter D 50 and the peak width (D 84 -D 16 ) in the particle size frequency distribution. ) / nickel hydroxide particles of claim 1 D 50 is 0.4 or less. 不純物硫黄Sの含有量が0.15重量%以下である請求項1、又は2に記載の水酸化ニッケル粒子粉末。   The nickel hydroxide particle powder according to claim 1 or 2, wherein the content of impurity sulfur S is 0.15 wt% or less. Mg、Co、及びAlのうち、少なくとも1種をNiの一部と置換させた請求項1〜3のいずれか一項に記載の水酸化ニッケル粒子粉末。   The nickel hydroxide particle powder according to any one of claims 1 to 3, wherein at least one of Mg, Co, and Al is substituted with a part of Ni. ニッケル原料、錯化剤、及び中和剤をドラフトチューブと撹拌機を備えた反応器に連続的に滴下し、濃縮器で固液分離することで、反応器内の母液容積を一定にし、反応母液中へのニッケル原料滴下速度を0.02〜0.25[mol/(L・hr)]、錯化剤の濃度を0.3〜1.5mol/L、中和剤の余剰分の濃度を0.02〜0.5mol/L、反応温度を45〜80℃、反応時間を40〜300時間とすることを特徴とする請求項1〜4のいずれか一項に記載の水酸化ニッケル粒子粉末の製造方法。   The nickel raw material, complexing agent, and neutralizing agent are continuously dropped into a reactor equipped with a draft tube and a stirrer, and solid-liquid separation is performed by a concentrator, so that the mother liquor volume in the reactor is kept constant and the reaction is performed. The nickel raw material dropping rate into the mother liquor is 0.02 to 0.25 [mol / (L · hr)], the concentration of the complexing agent is 0.3 to 1.5 mol / L, and the concentration of the surplus of the neutralizing agent The nickel hydroxide particles according to claim 1, wherein 0.02 to 0.5 mol / L, reaction temperature is 45 to 80 ° C., and reaction time is 40 to 300 hours. Powder manufacturing method. 請求項5に記載の水酸化ニッケル粒子粉末の製造方法において、ニッケル原料が硫酸ニッケル、又は塩化ニッケルのうち少なくとも1種であり、錯化剤がアンモニア水、硫酸アンモニウム、又は塩化アンモニウムのうち少なくとも1種であり、中和剤が水酸化ナトリウム、炭酸ナトリウム、又は水酸化カリウムのうち少なくとも1種である水酸化ニッケル粒子粉末の製造方法。   6. The method for producing nickel hydroxide particle powder according to claim 5, wherein the nickel raw material is at least one of nickel sulfate and nickel chloride, and the complexing agent is at least one of ammonia water, ammonium sulfate and ammonium chloride. The method for producing nickel hydroxide particle powder, wherein the neutralizing agent is at least one of sodium hydroxide, sodium carbonate, or potassium hydroxide. 請求項1〜4のいずれか一項に記載の水酸化ニッケル粒子粉末を用い、リチウム原料と混合後、600〜930℃の温度で焼成するリチウムニッケル酸化物の正極活物質粒子粉末の製造方法。   The manufacturing method of the positive electrode active material particle powder of the lithium nickel oxide baked at the temperature of 600-930 degreeC after mixing with a lithium raw material using the nickel hydroxide particle powder as described in any one of Claims 1-4. 一次粒子径が2〜15μm、全ニッケル量に対するNi2+イオンの量が10mol%以下、BET比表面積が0.05〜0.35m/gであることを特徴とするリチウムニッケル酸化物の正極活物質粒子粉末。 Positive electrode active of lithium nickel oxide, characterized in that the primary particle size is 2 to 15 μm, the amount of Ni 2+ ions relative to the total nickel amount is 10 mol% or less, and the BET specific surface area is 0.05 to 0.35 m 2 / g. Substance particle powder. 凝集粒子のメジアン径D50が5〜30μmであり、前記メジアン径D50と粒子径頻度分布におけるピークの幅(D84−D16)との比(D84−D16)/D50が0.6以下である請求項8に記載のリチウムニッケル酸化物の正極活物質粒子粉末。 The median diameter D 50 of the aggregated particles is 5 to 30 μm, and the ratio (D 84 −D 16 ) / D 50 of the median diameter D 50 to the peak width (D 84 −D 16 ) in the particle size frequency distribution is 0. The positive electrode active material particle powder of lithium nickel oxide according to claim 8, which is .6 or less. 請求項8、又は9に記載のリチウムニッケル酸化物の正極活物質粒子粉末を、正極活物質の少なくとも一部に用いた非水電解質二次電池。   A non-aqueous electrolyte secondary battery using the positive electrode active material particle powder of lithium nickel oxide according to claim 8 or 9 as at least a part of the positive electrode active material.
JP2015033329A 2015-02-23 2015-02-23 Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery Active JP6458542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033329A JP6458542B2 (en) 2015-02-23 2015-02-23 Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033329A JP6458542B2 (en) 2015-02-23 2015-02-23 Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2016155696A true JP2016155696A (en) 2016-09-01
JP6458542B2 JP6458542B2 (en) 2019-01-30

Family

ID=56824876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033329A Active JP6458542B2 (en) 2015-02-23 2015-02-23 Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6458542B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103488A1 (en) * 2017-11-22 2019-05-31 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and manufacturing method therefor
JP2020037496A (en) * 2018-09-03 2020-03-12 住友金属鉱山株式会社 Method for producing nickel-containing hydroxide
CN111600015A (en) * 2020-07-27 2020-08-28 金驰能源材料有限公司 Narrow-distribution small-granularity spherical nickel-cobalt-manganese hydroxide precursor and preparation method thereof
US11424447B2 (en) 2017-11-22 2022-08-23 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery and method for preparing the same
US20230327104A1 (en) * 2020-08-13 2023-10-12 Johnson Matthey Public Limited Company Cathode materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340427A (en) * 1993-05-28 1994-12-13 Sumitomo Metal Mining Co Ltd Production of nickel hydroxide for non-sintered alkaline battery
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JP2002304992A (en) * 2001-02-01 2002-10-18 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its evaluation method
JP2004533397A (en) * 2001-07-06 2004-11-04 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Nickel hydroxide and method for producing the same
JP2013018705A (en) * 2006-03-31 2013-01-31 Cs Energy Materials Ltd POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340427A (en) * 1993-05-28 1994-12-13 Sumitomo Metal Mining Co Ltd Production of nickel hydroxide for non-sintered alkaline battery
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JP2002304992A (en) * 2001-02-01 2002-10-18 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its evaluation method
JP2004533397A (en) * 2001-07-06 2004-11-04 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Nickel hydroxide and method for producing the same
JP2013018705A (en) * 2006-03-31 2013-01-31 Cs Energy Materials Ltd POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103488A1 (en) * 2017-11-22 2019-05-31 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and manufacturing method therefor
US11424447B2 (en) 2017-11-22 2022-08-23 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery and method for preparing the same
JP2020037496A (en) * 2018-09-03 2020-03-12 住友金属鉱山株式会社 Method for producing nickel-containing hydroxide
JP7031535B2 (en) 2018-09-03 2022-03-08 住友金属鉱山株式会社 Method for producing nickel-containing hydroxide
CN111600015A (en) * 2020-07-27 2020-08-28 金驰能源材料有限公司 Narrow-distribution small-granularity spherical nickel-cobalt-manganese hydroxide precursor and preparation method thereof
CN111600015B (en) * 2020-07-27 2020-11-13 金驰能源材料有限公司 Narrow-distribution small-granularity spherical nickel-cobalt-manganese hydroxide precursor and preparation method thereof
US20230327104A1 (en) * 2020-08-13 2023-10-12 Johnson Matthey Public Limited Company Cathode materials

Also Published As

Publication number Publication date
JP6458542B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
US8592085B2 (en) Nickel-cobalt-maganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5229472B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
TWI485920B (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JP5464322B2 (en) Method for producing lithium iron phosphate particle powder, lithium iron phosphate particle powder having olivine structure, positive electrode material sheet using the lithium iron phosphate particle powder, and nonaqueous solvent secondary battery
JP6658534B2 (en) Nickel-containing composite hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
US20200044248A1 (en) Production method of lithium-containing composite oxide and lithium-containing composite oxide
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2016197611A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2009119104A1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
WO2013146287A1 (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP6458542B2 (en) Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP7397409B2 (en) Li-Ni composite oxide particles and non-aqueous electrolyte secondary battery
JP2015201431A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2014197556A (en) Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material
JP5206948B2 (en) Cobalt oxyhydroxide particle powder and method for producing the same
JPWO2018123995A1 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery
JP2008123815A (en) Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP5354112B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6458542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250