JPH04130059A - Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipe - Google Patents
Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipeInfo
- Publication number
- JPH04130059A JPH04130059A JP2251222A JP25122290A JPH04130059A JP H04130059 A JPH04130059 A JP H04130059A JP 2251222 A JP2251222 A JP 2251222A JP 25122290 A JP25122290 A JP 25122290A JP H04130059 A JPH04130059 A JP H04130059A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- pipe
- silicon
- carbon
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- FRIKWZARTBPWBN-UHFFFAOYSA-N [Si].O=[Si]=O Chemical compound [Si].O=[Si]=O FRIKWZARTBPWBN-UHFFFAOYSA-N 0.000 title claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 95
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 38
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 33
- 239000010703 silicon Substances 0.000 claims abstract description 33
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 12
- 239000012808 vapor phase Substances 0.000 claims abstract description 11
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 7
- 239000002131 composite material Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 21
- 238000010304 firing Methods 0.000 claims description 13
- 150000008282 halocarbons Chemical class 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 229910002804 graphite Inorganic materials 0.000 abstract description 7
- 239000010439 graphite Substances 0.000 abstract description 7
- 238000000151 deposition Methods 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 abstract description 4
- 238000001308 synthesis method Methods 0.000 abstract description 3
- 238000001354 calcination Methods 0.000 abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 229910021426 porous silicon Inorganic materials 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 13
- VSTOHTVURMFCGL-UHFFFAOYSA-N [C].O=[Si]=O Chemical compound [C].O=[Si]=O VSTOHTVURMFCGL-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000000815 Acheson method Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- NJNFCDQQEIAOIF-UHFFFAOYSA-N 2-(3,4-dimethoxy-2-methylsulfanylphenyl)ethanamine Chemical compound COC1=CC=C(CCN)C(SC)=C1OC NJNFCDQQEIAOIF-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
り策よ立旦里メ1
本発明は炭化珪素質管および二酸化珪素−炭化珪素の複
合体管の製造方法に関し、より詳細には半導体製造プロ
セスで用いられるプロセスチューブやライナーチューブ
などの材料としての、管状で高純度かつ耐熱性を有する
炭化珪素質管および二酸化珪素−炭化珪素の複合体管の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing silicon carbide tubes and silicon dioxide-silicon carbide composite tubes, and more specifically to process tubes used in semiconductor manufacturing processes. The present invention relates to a method for manufacturing a silicon carbide tube and a silicon dioxide-silicon carbide composite tube that are tubular, have high purity and heat resistance, and are used as materials for liner tubes and the like.
従迷凶J支術
従来、高純度を要求される半導体製造用耐熱パイプ(プ
ロセスチューブ、ライナーチューブ)としては、主に高
純度石英ガラス製のものが用いられていた。石英ガラス
製のパイプは高純度のものが容易に手にはいり、透光性
を有することからパイプの内部が観察できるなどの利点
を有しており、半導体の熱処理用として広く用いられて
きた。しかし、この石英ガラス製のパイプは、1000
℃を越える温度から粘性流動による変形が生し始め、1
150℃以上の熱処理用としてはほとんど使用されてい
ない。Conventionally, heat-resistant pipes (process tubes, liner tubes) for semiconductor manufacturing, which require high purity, have mainly been made of high-purity quartz glass. Pipes made of quartz glass have the advantage of being easily available in high-purity products and having translucency, which allows the inside of the pipe to be observed, and have been widely used for heat treatment of semiconductors. However, this quartz glass pipe has 1000
Deformation due to viscous flow begins to occur at temperatures exceeding 1°C.
It is hardly used for heat treatment at 150°C or higher.
一方、このような高温域での熱処理用としては炭化珪素
質パイプが有望とされている。On the other hand, silicon carbide pipes are considered promising for heat treatment in such high temperature ranges.
炭化珪素は1981年にE、 G、 Achesonが
発見したとされ、この炭化珪素の工業的製造方法として
は、珪石とコークスから下記に示した同相反応(1)式
により合成するAcheson法が世界初のものとして
確立されている。Silicon carbide is said to have been discovered by E. G. Acheson in 1981, and the world's first industrial manufacturing method for silicon carbide was the Acheson method, which synthesized silicon carbide from silica stone and coke using the in-phase reaction formula (1) shown below. It has been established as a.
SiO□+3C−SiC+2CO(1)近年、LSIな
どの半導体を製造するプロセスでは、Siウニ八へどを
ll0D’Cを超える高温領域て熱処理する際の炉心管
やウェハ支持部材として、炭化珪素系の耐熱材料を用い
る比率が増加する傾向にある。ところが、LSIなどの
集積度の向上ととも(二前記炉心管やウェハ支持部材が
含有する微量不純物の31ウエハに対する悪影響が問題
化してきている。SiO□+3C-SiC+2CO (1) In recent years, in the process of manufacturing semiconductors such as LSI, silicon carbide-based materials have been used as core tubes and wafer support members when heat-treating Si sea urchins at high temperatures exceeding 110D'C. The proportion of heat-resistant materials used is increasing. However, with the increase in the degree of integration of LSIs and the like, the adverse effects of trace impurities contained in the reactor core tube and wafer support members on wafers have become a problem.
前述のAcheson法では、珪石、珪砂、水晶粉コロ
イグルシリ力などを珪素源とし、コークス、クールピッ
チ、カーボンブラックなどを炭素源として物理的に混合
した後、これらの混合物を焼成して炭化珪素系の原料と
している。このため、珪素源および炭素源に含まれる金
属不純物および焼成時における緻密化を助長するために
添加される焼結助材中に含まれる不純物に起因して、数
l10PP〜数%の不純物金属元素を炭化珪素系の耐熱
性材料は含有していた。炭化珪素原料に対する厳しい要
求から、気相合成法による炭化珪素原料粉末の製造法も
工業化されており、この高純度炭化珪素原料粉末を焼成
し、緻密な炭化珪素系材料を形成する際に、焼結助材を
用いないS1含浸法も提案されている(特開昭57−4
3553号公報)。In the above-mentioned Acheson method, silica stone, silica sand, quartz powder, coroiglusilica, etc. are used as silicon sources, and coke, cool pitch, carbon black, etc. are used as carbon sources and are physically mixed, and then these mixtures are fired to produce silicon carbide-based materials. It is used as a raw material. For this reason, due to metal impurities contained in the silicon source and carbon source and impurities contained in the sintering aid added to promote densification during firing, impurity metal elements ranging from several 110PP to several percent The silicon carbide-based heat-resistant material contained. Due to the strict requirements for silicon carbide raw materials, the manufacturing method of silicon carbide raw material powder by vapor phase synthesis method has also been industrialized. An S1 impregnation method that does not use a binder has also been proposed (Japanese Patent Laid-Open No. 57-4
Publication No. 3553).
明が解決しようとする課題
しかしながら上記従来技術のところで記載した気相法に
よる合成高純度炭化珪素原料粉末を用いても、この高純
度炭化珪素原料粉末の保管の際に、あるいは炭化珪素粉
末をパイプ状に成形する際に、または成形体を焼成する
際などに容器、治工具あるいは雰囲気からの汚染が生し
る。このように炭化珪素系材料の製造プロセスは複雑で
あり、各プロセスにおいて汚染の危険性があり、このた
め気相法により合成した高純度炭化珪素原料粉末を用い
ても、半導体製造用として十分高純度な炭化珪素質パイ
プを製造することは困難であるといった課題があった。However, even if high-purity silicon carbide raw material powder synthesized by the gas phase method described in the above-mentioned prior art is used, it is difficult to store this high-purity silicon carbide raw material powder or to transfer the silicon carbide powder to pipes. Contamination occurs from containers, tools, or the atmosphere when molding into shapes or firing molded products. The manufacturing process for silicon carbide-based materials is thus complex, and there is a risk of contamination in each process. Therefore, even if high-purity silicon carbide raw material powder synthesized by the vapor phase method is used, it is still high enough for semiconductor manufacturing. There was a problem in that it was difficult to manufacture pure silicon carbide pipes.
唯一、高純度黒鉛製バイブ或いは高純度石英ガラス製パ
イプに気相成長法により直接、炭化珪素質の緻密な厚膜
を形成する場合には、かなり高純度な炭化珪素系パイプ
を製造することができる。Only when forming a dense thick film of silicon carbide directly on a high-purity graphite vibrator or a high-purity quartz glass pipe using the vapor phase growth method, it is possible to manufacture a silicon carbide-based pipe of considerably high purity. can.
しかしながら、この製造方法による場合には炭化珪素質
の成長速度が遅いこと、あるいは製造コストが高いこと
、さらには基材となる黒鉛や石英と炭化珪素質との熱膨
張係数の不整合による破壊などの課題もあり、実用化に
はなお間頌が残っていた。However, when using this manufacturing method, the growth rate of the silicon carbide material is slow, the manufacturing cost is high, and furthermore, there are problems such as failure due to mismatch in thermal expansion coefficient between the base material graphite or quartz and the silicon carbide material. There were also issues, and there was still a long way to go before it could be put into practical use.
本発明は上記した課題に鑑み発明されたものであって、
炭化珪素を合成するに際し、高純度黒鉛製パイプあるい
は高純度石英ガラス製パイプの外表面あるいは内表面に
超高純度な合成石英ガラス多孔体を析出させ、これを珪
素源とし、高純度な半導体製造装置材料等として優れた
炭化珪素質管および二酸化珪素−炭化珪素の複合体管を
、簡素なプロセスでかつ低コストで製造する方法を提供
することを目的としている。The present invention was invented in view of the above-mentioned problems, and
When synthesizing silicon carbide, an ultra-high purity synthetic silica glass porous body is deposited on the outer or inner surface of a high-purity graphite pipe or high-purity quartz glass pipe, and this is used as a silicon source to manufacture high-purity semiconductors. It is an object of the present invention to provide a method for producing silicon carbide tubes and silicon dioxide-silicon carbide composite tubes, which are excellent as equipment materials, through a simple process and at low cost.
課題を解決するための 段
上記目的を達成するために本発明に係る炭化珪素質管の
製造方法は、管状基材の表面に気相合成による石英ガラ
スの多孔体を形成し、該石英ガラスの多孔体中に炭化水
素ガスまたはハロゲン化炭化水素ガスを含有するガスの
熱分解により生成する炭素を析出させ、その後焼成する
ことを特徴としている。Steps to Solve the Problems In order to achieve the above object, a method for manufacturing a silicon carbide tube according to the present invention involves forming a porous body of quartz glass on the surface of a tubular base material by vapor phase synthesis, and It is characterized in that carbon produced by thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas is deposited in a porous body, and then fired.
また上記炭化珪素質管の製造方法において、石英ガラス
の多孔体中に析出する炭素を炭素/二酸イヒ珪素のモル
比で3以上とし、焼成を1600℃以上2500℃以下
の温度で行うことを特徴としている。Further, in the method for manufacturing the silicon carbide tube described above, the carbon precipitated in the porous silica glass body is set to a carbon/silicon dioxide molar ratio of 3 or more, and the firing is performed at a temperature of 1600°C or more and 2500°C or less. It is a feature.
また上記炭化珪素質管の製造方法により製造された炭化
珪素質管にさらに金属シリコンを充填することを特徴と
している。Further, the present invention is characterized in that the silicon carbide tube manufactured by the above method for manufacturing a silicon carbide tube is further filled with metallic silicon.
さらに二酸化珪素−炭化珪素の複合体管の製造方法にお
いて、管状基材の表面に気相合成による石英ガラスの多
孔体を形成し、該石英ガラスの多孔体中に炭化水素ガス
またはハロゲン化炭化水素ガスを含有するガスの熱分解
により生成する炭素を析出させ、前記石英ガラス多孔体
中に析出する前記炭素を炭素/二酸化珪素のモル比で1
以下とし、その後焼成を1600℃以上2000℃以下
の温度で行うことを特徴としている。Furthermore, in the method for manufacturing a silicon dioxide-silicon carbide composite tube, a porous body of quartz glass is formed on the surface of the tubular base material by vapor phase synthesis, and a hydrocarbon gas or a halogenated hydrocarbon is contained in the porous body of quartz glass. Carbon produced by thermal decomposition of a gas containing gas is precipitated, and the carbon precipitated in the silica glass porous body has a carbon/silicon dioxide molar ratio of 1.
It is characterized in that the temperature is as follows, and then firing is performed at a temperature of 1600° C. or higher and 2000° C. or lower.
以下、本発明に係る炭化珪素質管および二酸化珪素−炭
化珪素の複合体管の製造方法をより詳細に説明する。Hereinafter, the method for manufacturing a silicon carbide tube and a silicon dioxide-silicon carbide composite tube according to the present invention will be explained in more detail.
超高純度な合成石英ガラスの製造方法は、MCV D
(Modified Chemical Vapor
Deposition)ン去、 ○ V D (O
utside Vapor Deposition
) ン去、 VAD(〜1apor−phase A
xial Deposition)法などのスート法と
総称される技術が光フアイバー製造などの目的で開発、
実用化されている。The manufacturing method for ultra-high purity synthetic quartz glass is MCV D.
(Modified Chemical Vapor
Deposition), ○ V D (O
utside Vapor Deposition
), VAD(~1apor-phase A
Technologies collectively known as the soot method, such as the xial deposition method, were developed for purposes such as optical fiber manufacturing.
It has been put into practical use.
OVD法は出発材料となる管材あるいは棒材の外側(二
MCVD法は出発材料となる管材の内側に合成石英ガラ
ス微粒子を堆積させる方法であり、円筒形状の多孔質合
成石英ガラス母材を効率よく製造することができる。上
記のOVD法あるいはMCVD法を用い、炭化珪素の原
料となる珪素源(二酸化珪素)を直接パイプ形状とする
ことにより、成形工程などにおけるハンドリングによる
汚染を回避でき、高純度炭化珪素系材料を得ることがで
きる。出発材料となる管状基材としては石英ガラス製パ
イプ、黒鉛製パイプなどの高純度なものが適している。The OVD method is a method in which synthetic quartz glass fine particles are deposited on the outside of a tube or rod as a starting material (the MCVD method is a method in which fine particles of synthetic quartz glass are deposited on the inside of a tube as a starting material). By using the above-mentioned OVD or MCVD method and directly shaping the silicon source (silicon dioxide), which is the raw material for silicon carbide, into a pipe shape, it is possible to avoid contamination due to handling during the molding process, etc., and achieve high purity. A silicon carbide-based material can be obtained.As the starting tubular base material, high-purity materials such as quartz glass pipes and graphite pipes are suitable.
気相合成される石英ガラスの多孔体は、四塩化珪素など
の珪素塩化物を気化させ、火災などの酸化雰囲気中で下
2に示した加(水分解反応(2)または酸化反応(3)
を行わせ、生成した二酸化珪素微粒子を堆積させること
により製造される。A porous body of silica glass synthesized in a vapor phase is produced by vaporizing silicon chloride such as silicon tetrachloride and performing the reactions (water splitting reaction (2) or oxidation reaction (3) shown below in 2) in an oxidizing atmosphere such as a fire.
It is manufactured by depositing the produced silicon dioxide fine particles.
SIC氾4 +2H20−−−→ 5i(h+4HCj
(2)SiCハ+0□ −−w 5iO7+
2Cj、 (3)このようにして製造された気相合成
石英ガラスの多孔体は微粒子を堆積させる段階でHCQ
、 C10などのハロゲン系ガスと分離される為、ハロ
ゲン系ガスが合成容器を腐食して生成する不純物金属化
合物の混入を防止することができ、極めて高純度な二酸
化珪素となる。SIC flood 4 +2H20−−−→ 5i(h+4HCj
(2) SiC +0□ --w 5iO7+
2Cj, (3) The vapor-phase synthetic silica glass porous body produced in this way is coated with HCQ at the stage of depositing fine particles.
, C10 and other halogen gases, it is possible to prevent the contamination of impurity metal compounds that are produced when the halogen gases corrode the synthesis container, resulting in extremely high purity silicon dioxide.
本発明者らは、合成石英ガラスの多孔体を高純度な炭化
水素ガスあるいはハロゲン化炭化水素ガスを含む雰囲気
中で熱処理することにより、前記合成石英ガラスの多孔
体の内部にまで炭素が均一に析出することを考慮し、前
記熱処理により得られたパイプ状二酸化珪素−炭素複合
体を焼成すれば、出発原料が高純度であること、混合及
び成形工程を含まないことに起因して、極めて純度の高
い多孔質炭化珪素質パイプが合成できることを見い出し
た。The present inventors have demonstrated that by heat-treating a porous body of synthetic quartz glass in an atmosphere containing high-purity hydrocarbon gas or halogenated hydrocarbon gas, carbon is uniformly deposited inside the porous body of synthetic quartz glass. Taking into account precipitation, if the pipe-shaped silicon dioxide-carbon composite obtained by the above heat treatment is fired, it will be extremely pure due to the high purity of the starting raw material and the absence of mixing and molding steps. We have discovered that it is possible to synthesize highly porous silicon carbide pipes.
次にこの多孔質炭化珪素質パイプを珪素の融点以上に加
熱し、減圧雰囲気下で溶融した珪素に浸漬して反応焼結
させることにより、あるいは多孔質の炭化珪素質パイプ
を珪素含有ガス、例えば5iCf!−,5iHCfi3
、SiH4等の中から選ばれる何れか少なくとも1種類
よりなるガス雰囲気中で、用いたガス種の分解温度以上
、2000℃以下の温度で熱処理することにより、緻密
な炭化珪素質パイプを容易に得ることができることを見
出した。Next, the porous silicon carbide pipe is heated above the melting point of silicon and immersed in molten silicon under a reduced pressure atmosphere for reaction sintering, or the porous silicon carbide pipe is heated to a temperature above the melting point of silicon, or the porous silicon carbide pipe is heated to a temperature higher than the melting point of silicon, and then immersed in molten silicon under a reduced pressure atmosphere for reaction sintering. 5iCf! −,5iHCfi3
A dense silicon carbide pipe can be easily obtained by heat treatment at a temperature above the decomposition temperature of the used gas species and below 2000°C in a gas atmosphere consisting of at least one selected from , SiH4, etc. I found out that it is possible.
前記(1)式におけるSiO□(二酸化珪素)として超
高純度のパイプ状合成石英ガラスの多孔体を用い、炭化
水素ガスあるいはハロゲン化炭化水素ガスを含む雰囲気
中で熱処理することにより、パイプ状合成石英ガラスの
多孔体の内部にまで均一に炭素が析出し、二酸化珪素と
炭素を微視的に混合した場合と同様な二酸化珪素−炭素
複合体が得られる。このパイプ状の二酸化珪素−炭素複
合体を焼成すれば、高純度な多孔質の炭化珪素質パイプ
が得られる。A pipe-like synthetic quartz glass porous body of ultra-high purity is used as SiO□ (silicon dioxide) in the above formula (1), and heat treatment is performed in an atmosphere containing hydrocarbon gas or halogenated hydrocarbon gas. Carbon is uniformly deposited even inside the porous silica glass, and a silicon dioxide-carbon composite similar to that obtained by microscopically mixing silicon dioxide and carbon is obtained. By firing this pipe-shaped silicon dioxide-carbon composite, a highly pure porous silicon carbide pipe can be obtained.
炭化水素ガスとして、C14,C2H6、CaHa、
C4H+ 。Hydrocarbon gases include C14, C2H6, CaHa,
C4H+.
C2H,、C2H2,C6H6、ハロゲン化炭化水素カ
スとしてCHaCJ、 CILC12,CHCQ 3.
CJ4Cn 2. CJ3C13、(1,2H3Cj
C2H2Ci!2. C2HCj3. C6H3(j!
などが挙げられ、炭化水素ガスあるいはハロゲン化炭化
水素ガスの分解温度以下では熱分解による炭素析出が起
こらず、他方1400℃以上の温度では合成石英カラス
の多孔体の緻密化により、この合成石英ガラスの多孔体
内部への炭素析出が不可能となる。したがって、炭素析
出温度は炭化水素ガスあるいはハロゲン化炭化水素ガス
の分解温度以上、1400℃以下の範囲とする必要があ
る。この炭素析出条件の制御により、種々の炭素モル比
(Si02に対するCのモル比)の二酸化珪素−炭素複
合体を得ることができる。C2H,, C2H2, C6H6, CHaCJ, CILC12, CHCQ as halogenated hydrocarbon residue 3.
CJ4Cn 2. CJ3C13, (1,2H3Cj
C2H2Ci! 2. C2HCj3. C6H3 (j!
Carbon precipitation due to thermal decomposition does not occur below the decomposition temperature of hydrocarbon gas or halogenated hydrocarbon gas, and on the other hand, at temperatures above 1400°C, the porous body of synthetic quartz glass becomes densified. Carbon precipitation inside the porous body becomes impossible. Therefore, the carbon precipitation temperature needs to be in the range from the decomposition temperature of hydrocarbon gas or halogenated hydrocarbon gas to 1400° C. or less. By controlling the carbon precipitation conditions, silicon dioxide-carbon composites having various carbon molar ratios (C to Si02 molar ratio) can be obtained.
次(二二酸化珪素−炭素複合体を炭化珪素とする際の焼
成温度としては、第1図に示した熱力学的計算結果から
(1)式における標準自由エネルギー(△G° )が負
になり始める温度、すなわち約1600℃以上必要であ
ることが分る。一方、焼成温度が2500℃を越える温
度条件を実現する加熱装置は実用的でないので、炭化珪
素を生成させる際の焼成温度は1600℃〜2500℃
の範囲が望ましい。From the thermodynamic calculation results shown in Figure 1, the standard free energy (△G°) in equation (1) is negative as shown in Fig. 1. It can be seen that the starting temperature, that is, approximately 1600°C or higher is required.On the other hand, since a heating device that achieves a temperature condition in which the firing temperature exceeds 2500°C is not practical, the firing temperature when producing silicon carbide is set at 1600°C. ~2500℃
A range of is desirable.
生成する炭化珪素は難焼結性物質であり、石英カラスの
様に緻密化しないので余剰の炭素がなければ多孔体形状
を保持することはできない。したがって、多孔質な炭化
珪素質パイプを得るためには炭素モル比が30以上であ
ることが必要である。The silicon carbide produced is a difficult-to-sinter substance and does not become dense like quartz glass, so it cannot maintain the porous shape unless there is excess carbon. Therefore, in order to obtain a porous silicon carbide pipe, it is necessary that the carbon molar ratio is 30 or more.
このとき焼成温度を2000℃以上とすれば基材として
用いた合成石英ガラスを一酸化珪素として揮発させるこ
とができる。At this time, if the firing temperature is set to 2000° C. or higher, the synthetic quartz glass used as the base material can be volatilized as silicon monoxide.
合成石英ガラス基材の消失方法としては、この他にフッ
化水素水溶液による溶失が考えられ、黒鉛基材の消失方
法としては酸化雰囲気中における加熱が考えられる。Another possible method for the disappearance of the synthetic quartz glass substrate is dissolution with an aqueous hydrogen fluoride solution, and another possible method for the disappearance of the graphite substrate is heating in an oxidizing atmosphere.
このように合成する多孔質炭化珪素の空隙率は、合成石
英ガラスの多孔体の析出時における堆積面温度を制御す
ることや、析出した合成石英カラスの多孔体を熱処理す
ることにより空隙率をコントロールした後に上2処理を
行うことで制御可能である。The porosity of porous silicon carbide synthesized in this way can be controlled by controlling the temperature of the deposition surface during precipitation of the synthetic quartz glass porous body and by heat treating the precipitated synthetic quartz glass porous body. It can be controlled by performing the above two processes after doing this.
最後に、多孔質の炭化珪素質パイプに溶融させた高純度
珪素を含浸させ、緻密な炭化珪素質パイプとする。この
とき加熱炉内の雰囲気としては、溶融した珪素を多孔体
内部にすみやかに浸透させる目的から、減圧状態にして
おくことが望ましい。また、加熱炉内の温度については
珪素の励声以上で、かつ珪素が蒸発しにくい温度範囲で
あることが好ましい。Finally, the porous silicon carbide pipe is impregnated with molten high-purity silicon to form a dense silicon carbide pipe. At this time, it is desirable that the atmosphere in the heating furnace be in a reduced pressure state in order to allow the molten silicon to quickly penetrate into the porous body. Further, the temperature in the heating furnace is preferably higher than the excitation of silicon and within a temperature range in which silicon is difficult to evaporate.
前記炭化珪素質パイプの多孔体内に珪素を浸透させるこ
とにより、この多孔体を構成する余剰の炭素と珪素を下
記に示した(4)式の反応により炭化珪素とすることが
できる。By infiltrating silicon into the porous body of the silicon carbide pipe, excess carbon and silicon constituting the porous body can be converted into silicon carbide through the reaction of equation (4) shown below.
Si+CSiC(4)
あるいは、多孔質の炭化珪素質パイプを珪素含有ガス、
例えば5xCj4.5iHCj3、SiH4等の中から
選ばれる何れか少なくとも1種類よりなるガス雰囲気中
で、用いたガス種の分解温度以上、2000℃以下の温
度て熱処理することにより、前記多孔質炭化珪素質パイ
プの内部にまで金属シリコンの析出を行なわせる。また
、水素、アルゴン等をキャリアガスとして用いてもよい
。この時、用いたガス種の分解温度以下では金属シリコ
ンの析出が起こらず、2000℃を越える温度では大き
なエネルギを必要とするとともに、前記多孔質炭化珪素
質パイプの表面近くへの析出むらを生しるため、より望
ましくは、用いたガス種によっても異なるが、600〜
1200℃の温和な条件で処理することが好ましl/八
へ
またこの時、炭化珪素質パイプに存在する過剰の炭素は
数十nmの非常に微細な粒子であるため、溶融シリコン
、珪素含有ガスあるいは析出した金属シリコンにより容
易に炭化珪素化され、炭化珪素質材料の強度が向上する
。Si+CSiC (4) Alternatively, a porous silicon carbide pipe can be used for silicon-containing gas,
For example, the porous silicon carbide material is heated in a gas atmosphere consisting of at least one selected from 5xCj4.5iHCj3, SiH4, etc., at a temperature above the decomposition temperature of the gas species used and below 2000°C. Metallic silicon is deposited even inside the pipe. Furthermore, hydrogen, argon, or the like may be used as a carrier gas. At this time, precipitation of metallic silicon does not occur below the decomposition temperature of the gas species used, and at temperatures exceeding 2000°C, large amounts of energy are required and uneven precipitation occurs near the surface of the porous silicon carbide pipe. For this reason, it is more preferable to use 600~
It is preferable to process under mild conditions of 1200°C. At this time, excess carbon present in the silicon carbide pipe is very fine particles of several tens of nanometers, so molten silicon and silicon-containing It is easily converted into silicon carbide by gas or precipitated metallic silicon, and the strength of the silicon carbide material is improved.
また、上記したパイプ状二酸化珪素−炭素複合体の炭素
モル比が10以下の場合には、1600℃以上2000
℃以下の温度範囲で焼成すると、前記(1)式で示した
SiC生成反応が起こるとともに、余剰の石英ガラスの
粘性流動により焼結が進行し、緻密なパイプ状二酸化珪
素−炭化珪素の複合体が得られる。この時の炭素モル比
が1.0を越え、30未満である場合には、析出させた
炭素が石英ガラスの粘性流動を疎外するために緻密化で
きず、粉末状の炭化珪素が形成されて多孔体形状を保持
させることができない。従って、緻密なパイプ状二酸化
珪素−炭化珪素の複合体を得るためには炭素モル比が1
0以下であることが必要である。そして、焼成温度の上
限は石英ガラスの揮発が起こらない2000℃以下であ
ることが必要である。In addition, when the carbon molar ratio of the above-mentioned pipe-shaped silicon dioxide-carbon composite is 10 or less,
When fired in a temperature range below ℃, the SiC production reaction shown in equation (1) occurs, and sintering progresses due to the viscous flow of excess quartz glass, forming a dense pipe-shaped silicon dioxide-silicon carbide composite. is obtained. If the carbon molar ratio at this time is more than 1.0 and less than 30, the precipitated carbon will disturb the viscous flow of the silica glass and cannot be densified, resulting in the formation of powdered silicon carbide. The shape of the porous body cannot be maintained. Therefore, in order to obtain a dense pipe-shaped silicon dioxide-silicon carbide composite, the carbon molar ratio is 1.
It needs to be 0 or less. The upper limit of the firing temperature needs to be 2000° C. or lower at which volatilization of the quartz glass does not occur.
作囲
上記した本発明に係る炭化珪素質管の製造方法方法によ
れば、高純度なパイプ状合成石英ガラスの多孔体を炭化
水素ガスあるいはハロゲン化炭化水素ガスを含む雰囲気
中で熱処理することにより、前記パイプ状合成石英ガラ
スの多孔体内部にまで炭素が均一に析出し、これにより
得られた炭素モル比が3.0以上のパイプ状二酸化珪素
−炭素の複合体を16DO℃以上25DO℃以下で焼成
すれば、出発原料が高純度であること、混合および成形
工程を含まないことに起因して、極めて純度の高い多孔
質の炭化珪素質パイプが製造される。According to the above-described method for manufacturing a silicon carbide tube according to the present invention, a porous body of high-purity pipe-shaped synthetic quartz glass is heat-treated in an atmosphere containing hydrocarbon gas or halogenated hydrocarbon gas. , carbon is uniformly precipitated inside the porous body of the pipe-shaped synthetic quartz glass, and the resulting pipe-shaped silicon dioxide-carbon composite having a carbon molar ratio of 3.0 or more is heated at 16 DO to 25 DO When fired, a porous silicon carbide pipe of extremely high purity is produced due to the high purity of the starting materials and the absence of mixing and molding steps.
さらに上記した多孔質な炭化珪素質バイブを、高純度珪
素とともに減圧雰囲気下において珪素の融点以上の温度
まで加熱すれば、溶融した高純度珪素が前記多孔体内部
に浸透し、緻密な炭化珪素質バイブが製造される。Furthermore, if the porous silicon carbide vibrator described above is heated together with high-purity silicon in a reduced pressure atmosphere to a temperature higher than the melting point of silicon, the molten high-purity silicon will penetrate into the inside of the porous body, forming a dense silicon carbide vibrator. A vibrator is manufactured.
あるいは、多孔質の炭化珪素質バイブを珪素含有ガス雰
囲気中で、用いたガス種の分解温度以上、2000℃以
下の温度で熱処理することにより、前記多孔質成形体の
内部にまで金属シリコンの析出が行なわれ、緻密な炭化
珪素質バイブが製造される。Alternatively, by heat-treating a porous silicon carbide vibrator in a silicon-containing gas atmosphere at a temperature above the decomposition temperature of the gas species used and below 2000°C, metallic silicon is deposited even inside the porous molded body. is carried out, and a dense silicon carbide vibe is manufactured.
また、炭素モル比が1.0以下のパイプ状二酸化珪素−
炭素の複合体を1600℃以上2000℃以下の温度範
囲で焼成すれば、上記したのと同様の理由から極めて純
度の高い緻密なパイプ状二酸化珪素−炭化珪素複合体が
得られる。In addition, pipe-shaped silicon dioxide with a carbon molar ratio of 1.0 or less
If a carbon composite is fired in a temperature range of 1,600° C. or higher and 2,000° C. or lower, a dense pipe-shaped silicon dioxide-silicon carbide composite with extremely high purity can be obtained for the same reason as described above.
一族例及び比較例
以下、本発明に係る炭化珪素質管および二酸化珪素−炭
化珪素の複合体管の製造方法の実施例及び比較例につい
て説明する。EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the method for manufacturing silicon carbide pipes and silicon dioxide-silicon carbide composite pipes according to the present invention will be described below.
[実施例1]
OV D法により外径が190mmの高純度合成石英ガ
ラスパイプの外表面に、嵩密度が約0.3 g/am3
、比表面積が約12m”/g、平均粒径が約02μmの
石英ガラス微粒子を析出させた。次に石英ガラス微粒子
を析出させたパイプ状の合成石英ガラスの多孔体を、C
H,ガス100%の雰囲気中において500℃〜150
0℃の温度範囲で4時間加熱処理を行なった。この結果
下記の第1表に示したように、CH4ガスの分解温度で
ある約600℃〜1400℃の温度範囲では合成石英ガ
ラスの多孔体内部にまで炭素が析出し、石英ガラス微粒
子が炭素で被覆されたパイプ状の二酸化珪素−炭素の複
合体を得ることができた。[Example 1] The outer surface of a high-purity synthetic quartz glass pipe with an outer diameter of 190 mm was coated with a bulk density of about 0.3 g/am3 by the OV D method.
, fine silica glass particles having a specific surface area of about 12 m''/g and an average particle size of about 0.02 μm were precipitated.Next, the pipe-shaped porous body of synthetic quartz glass on which the fine quartz glass particles had been precipitated was heated with C.
500°C to 150°C in an atmosphere of 100% H, gas
Heat treatment was performed in a temperature range of 0° C. for 4 hours. As a result, as shown in Table 1 below, in the temperature range of approximately 600°C to 1400°C, which is the decomposition temperature of CH4 gas, carbon precipitates even inside the porous body of synthetic silica glass, and silica glass fine particles become carbonized. A coated pipe-shaped silicon dioxide-carbon composite could be obtained.
しかし、500℃ではCH4ガスの熱分解が起こらず、
1500℃では処理温度まで昇温する過程で合成石英ガ
ラスの緻密化が進み、合成石英ガラスの多孔体の外表面
に炭素が析出するのみであった。However, thermal decomposition of CH4 gas does not occur at 500℃,
At 1500° C., the synthetic quartz glass became densified during the process of increasing the temperature to the treatment temperature, and carbon was only deposited on the outer surface of the porous body of the synthetic quartz glass.
このうち1000℃で処理した場合の二酸化珪素−炭素
の複合体における二酸化珪素と炭素のモル比は、1・8
.5であった。Of these, the molar ratio of silicon dioxide to carbon in the silicon dioxide-carbon composite when treated at 1000°C is 1.8
.. It was 5.
上記の方法において1000℃て処理を行なったパイプ
状の合成石英ガラス−炭素複合体を減圧下、1500℃
〜2000℃の温度範囲で3時間焼成したところ、第2
図に示したX線回折結果から、1600℃以上の温度で
β型炭化珪素の生成が確認された。A pipe-shaped synthetic quartz glass-carbon composite treated at 1000°C in the above method was heated to 1500°C under reduced pressure.
When baked for 3 hours in the temperature range of ~2000℃, the second
From the X-ray diffraction results shown in the figure, it was confirmed that β-type silicon carbide was formed at a temperature of 1600° C. or higher.
この多孔質炭化珪素パイプは不純物金属元素濃度がIP
Pm以下であり、非常に高純度な炭化珪素質材料となっ
ていた。This porous silicon carbide pipe has an impurity metal element concentration of IP
Pm or less, making it an extremely pure silicon carbide material.
上記したパイプ状二酸化珪素−炭素の複合体を減圧雰囲
気下において2D00℃で3時間焼成したところ、基材
として用いた石英ガラスは消失し、嵩密度が約0.3
g/cm3.気孔率が約46%、炭化珪素に対する炭素
のモル比が約5.5である炭素過剰の多孔質炭化珪素質
パイプが得られた。When the pipe-shaped silicon dioxide-carbon composite described above was fired at 2D00°C for 3 hours in a reduced pressure atmosphere, the silica glass used as the base material disappeared and the bulk density was approximately 0.3.
g/cm3. A carbon-excess porous silicon carbide pipe with a porosity of about 46% and a molar ratio of carbon to silicon carbide of about 5.5 was obtained.
次にこの多孔質炭化珪素質パイプを減圧雰囲気下、16
00℃の温度で、炭化珪素コーティングを施した黒鉛る
つぼ中の溶融珪素に浸漬させたところ、多孔体内部にま
で珪素カミ浸透し、緻密な炭化珪素質パイプを得ること
ができた。Next, this porous silicon carbide pipe was heated under a reduced pressure atmosphere for 16 minutes.
When it was immersed in molten silicon in a graphite crucible coated with silicon carbide at a temperature of 00°C, the silicon permeated into the inside of the porous body, making it possible to obtain a dense silicon carbide pipe.
[実施例21
OVD法により外径が190mmの高純度合成石英ガラ
スパイプの外表面(二嵩密度が約03g/cm3、比表
面積が約12m27g、平均粒径が約0.2timの石
英ガラス微粒子を析出させた。次にこのパイプ状の合成
石英ガラスの多孔体を、CH4ガス40%、Arガス6
0%の雰囲気中に於いて1000℃で30分間加熱処理
を行なったところ、前記パイプ状の合成石英ガラスの多
孔体内部にまで炭素が析出し、パイプ状の二酸化珪素−
炭素の複合体が得られた。このときの二酸化珪素と炭素
のモル比は、1.05であった。[Example 21] The outer surface of a high-purity synthetic quartz glass pipe with an outer diameter of 190 mm was prepared by the OVD method (silica glass fine particles having a bulk density of about 03 g/cm3, a specific surface area of about 12 m27 g, and an average particle size of about 0.2 tim). Next, this pipe-shaped synthetic quartz glass porous body was heated with 40% CH4 gas and 6% Ar gas.
When heat treatment was performed at 1000°C for 30 minutes in a 0% atmosphere, carbon was precipitated even inside the pipe-shaped porous body of synthetic quartz glass, and the pipe-shaped silicon dioxide -
A carbon complex was obtained. The molar ratio of silicon dioxide to carbon at this time was 1.05.
上記したパイプ状の二酸化珪素−炭素の複合体を150
0℃〜2200℃の温度範囲で加熱したところ、下記の
第2表に示したように、1500℃ては炭化珪素が生成
せず、2000℃を越える温度では石英ガラスの揮発生
成物であるSiOガスに起因して気泡の生成が著しく、
緻密な材料にならなかった。The pipe-shaped silicon dioxide-carbon composite described above
When heated in the temperature range of 0°C to 2200°C, as shown in Table 2 below, silicon carbide does not form at 1500°C, and SiO, a volatile product of silica glass, forms at temperatures exceeding 2000°C. Significant bubble formation due to gas;
It did not become a dense material.
減圧雰囲気下で1800℃13時間焼成したパイプ状の
二酸化珪素−炭化珪素の複合体はほぼ完全に緻密化して
おり、内径が190闘、厚さが6mm、長さが20mm
のパイプを1200℃て24時間加熱したときの内径の
変形量は11以下であった。The pipe-shaped silicon dioxide-silicon carbide composite fired at 1800°C for 13 hours in a reduced pressure atmosphere is almost completely densified, with an inner diameter of 190mm, a thickness of 6mm, and a length of 20mm.
When the pipe was heated at 1200°C for 24 hours, the amount of deformation of the inner diameter was 11 or less.
(以下余白)
第
表
第
表
兄月じと仇困
本発明に係る炭化珪素質管の製造方法によれば、超高純
度なパイプ状の多孔質合成石英ガラスと気相熱分解炭素
との同相反応により炭化珪素を合成するので、非常に純
度の高いパイプ状の多孔質炭化珪素を得ることができ、
このパイプ状の多孔質炭化珪素に珪素を浸透させること
により高純度で緻密な炭化珪素質管を得ることができる
。(Leaving space below) Table 1. According to the method for manufacturing a silicon carbide pipe according to the present invention, ultra-high purity pipe-shaped porous synthetic quartz glass and vapor-phase pyrolytic carbon are produced in the same phase. Since silicon carbide is synthesized through a reaction, it is possible to obtain pipe-shaped porous silicon carbide with extremely high purity.
By infiltrating this pipe-shaped porous silicon carbide with silicon, a highly pure and dense silicon carbide pipe can be obtained.
また、炭素析出モル比を10以下にして焼成すれば、高
純度で緻密な二酸化珪素−炭化珪素の複合体管を得るこ
とができる。Furthermore, by firing at a carbon deposition molar ratio of 10 or less, a highly pure and dense silicon dioxide-silicon carbide composite tube can be obtained.
従って、半導体製造用治具、例えばシリコンウェハの熱
拡散処理等に使用されるプロセスチューブやライナーチ
ューブ等の耐熱性治具を製作するのに適した、高純度で
強度が高い炭化珪素質管を簡素なプロセスでかつ低コス
トで提供することができる。Therefore, silicon carbide tubes with high purity and high strength are suitable for manufacturing semiconductor manufacturing jigs, such as heat-resistant jigs such as process tubes and liner tubes used in thermal diffusion processing of silicon wafers. It can be provided through a simple process and at low cost.
第1図は上記(1)式における反応の標準自由エネルギ
ー計算結果を示すグラフ、第2図は熱処理温度と炭化珪
素生成範囲との関係を示すグラフである。
特
許
出
願
人
住友金属工業株式会社
代
理
人・FIG. 1 is a graph showing the standard free energy calculation results for the reaction in equation (1) above, and FIG. 2 is a graph showing the relationship between heat treatment temperature and silicon carbide production range. Agent for patent applicant Sumitomo Metal Industries, Ltd.
Claims (4)
孔体を形成し、該石英ガラスの多孔体中に炭化水素ガス
またはハロゲン化炭化水素ガスを含有するガスの熱分解
により生成する炭素を析出させ、その後焼成することを
特徴とする炭化珪素質管の製造方法。(1) A porous body of quartz glass is formed on the surface of a tubular base material by vapor phase synthesis, and carbon is generated by thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas in the porous body of quartz glass. 1. A method for producing a silicon carbide tube, which comprises precipitating and then firing.
酸化珪素のモル比で3以上とし、焼成を1600℃以上
2500℃以下の温度で行うことを特徴とする請求項1
記載の炭化珪素質管の製造方法。(2) Claim 1 characterized in that the carbon precipitated in the porous body of quartz glass has a carbon/silicon dioxide molar ratio of 3 or more, and the firing is performed at a temperature of 1600°C or more and 2500°C or less.
A method of manufacturing the silicon carbide pipe described above.
属シリコンを充填することを特徴とする炭化珪素質管の
製造方法。(3) A method for manufacturing a silicon carbide tube, comprising filling the silicon carbide tube according to claim 1 or 2 with metallic silicon.
孔体を形成し、該石英ガラスの多孔体中に炭化水素ガス
またはハロゲン化炭化水素ガスを含有するガスの熱分解
により生成する炭素を析出させ、前記石英ガラス多孔体
中に析出する前記炭素を炭素/二酸化珪素のモル比で1
以下とし、その後焼成を1600℃以上2000℃以下
の温度で行うことを特徴とする二酸化珪素−炭化珪素の
複合体管の製造方法。(4) A porous body of quartz glass is formed on the surface of a tubular base material by vapor phase synthesis, and carbon is generated by thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas in the porous body of quartz glass. and the carbon precipitated in the silica glass porous body at a carbon/silicon dioxide molar ratio of 1.
A method for producing a silicon dioxide-silicon carbide composite tube, characterized in that the following is followed, and then firing is performed at a temperature of 1600°C or higher and 2000°C or lower.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2251222A JPH04130059A (en) | 1990-09-19 | 1990-09-19 | Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipe |
EP91111425A EP0466109B1 (en) | 1990-07-10 | 1991-07-09 | Process for producing a silicon carbide-base complex |
DE69104918T DE69104918T2 (en) | 1990-07-10 | 1991-07-09 | Method for producing a composite body based on silicon carbide. |
US08/089,615 US5380511A (en) | 1990-07-10 | 1993-07-12 | Process for producing silicon carbide-base complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2251222A JPH04130059A (en) | 1990-09-19 | 1990-09-19 | Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04130059A true JPH04130059A (en) | 1992-05-01 |
Family
ID=17219523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2251222A Pending JPH04130059A (en) | 1990-07-10 | 1990-09-19 | Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04130059A (en) |
-
1990
- 1990-09-19 JP JP2251222A patent/JPH04130059A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4040849A (en) | Polycrystalline silicon articles by sintering | |
JPS6047202B2 (en) | Super hard high purity oriented polycrystalline silicon nitride | |
US5300322A (en) | Molybdenum enhanced low-temperature deposition of crystalline silicon nitride | |
US5380511A (en) | Process for producing silicon carbide-base complex | |
US7939044B2 (en) | Method of manufacturing sub-micron silicon-carbide powder | |
JPS5913442B2 (en) | Manufacturing method of high purity type silicon nitride | |
JP2721678B2 (en) | β-silicon carbide molded body and method for producing the same | |
JPH04130059A (en) | Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipe | |
US20200031722A1 (en) | Method for producing silicon-carbide-based composite | |
JPS62182105A (en) | Improved silicon nitride and manufacture | |
JP2006131451A (en) | Crucible for drawing-up single crystal and its manufacturing method | |
JPS6225605B2 (en) | ||
JPS63166789A (en) | Graphite crucible used in pulling up device for silicon single crystal and production thereof | |
JP2000185981A (en) | Porous molded article of silicon carbide and its production | |
Frolova et al. | Influence of the Gas Atmosphere on the Formation of SiC Fibers upon the Siliconization of Carbon Felt | |
JPH04245924A (en) | Silicon carbide fiber and its production | |
JPH0568433B2 (en) | ||
JPH0474734A (en) | Production of sio2 composite material and silicon carbide | |
JPH0692761A (en) | Sic-cvd coated and si impregnated sic product and its manufacture | |
JPH04139033A (en) | Production of sio2-c composite material and sio2-sic composite material | |
JPH05851A (en) | Silicon carbide-based material and its production | |
JPH04130060A (en) | Production of silicon carbide-based material | |
JP3482480B2 (en) | Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same | |
JPH05124863A (en) | Production of high purity silicon carbide body | |
JPH06345412A (en) | Highly pure silicon nitride-silicon carbide complex fine powder and its production |