[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04139033A - Production of sio2-c composite material and sio2-sic composite material - Google Patents

Production of sio2-c composite material and sio2-sic composite material

Info

Publication number
JPH04139033A
JPH04139033A JP26159990A JP26159990A JPH04139033A JP H04139033 A JPH04139033 A JP H04139033A JP 26159990 A JP26159990 A JP 26159990A JP 26159990 A JP26159990 A JP 26159990A JP H04139033 A JPH04139033 A JP H04139033A
Authority
JP
Japan
Prior art keywords
composite material
sio2
quartz glass
porous body
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26159990A
Other languages
Japanese (ja)
Inventor
Shigetoshi Hayashi
茂利 林
Kazuhiro Minagawa
和弘 皆川
Tadahisa Arahori
忠久 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26159990A priority Critical patent/JPH04139033A/en
Priority to EP91111425A priority patent/EP0466109B1/en
Priority to DE69104918T priority patent/DE69104918T2/en
Publication of JPH04139033A publication Critical patent/JPH04139033A/en
Priority to US08/089,615 priority patent/US5380511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce a dense, high-purity SiO2-C composite material and SiO2-SiC composite material at low cost by precipitating a specified amt. of carbon in a synthetic quartz glass porous body by thermal decomposition of hydrocarbon gas and then subjecting the glass to heat treatment at specified temp. CONSTITUTION:SiCl4 or the like is thermally decomposed or oxidized in flame, etc., to produce SiO2 fine particles, which are deposited to obtain a synthetic quartz glass having about 0.3g/cm<3> bulk density, about 12m<2>/g specified surface area and about 0.2mum average particle diameter. In this porous body of synthetic quartz glass, carbon is produced and precipitated by <=1.0 molar ratio by thermal decomposition of hydrocarbon gas or halogenated hydrocarbon gas at about 1000 deg.C in order to produce a porous SiO2-C composite material. This SiO2-C composite material is heat-treated at 1200 to <1600 deg.C to obtain a dense SiO2-C composite material, or heat-treated at 1600-2000 deg.C to produce SiC and to obtain a SiO2-SiC composite material.

Description

【発明の詳細な説明】 Ll上り且里玉1 本発明は半導体製造プロセス等において高純度耐熱用材
料として用いることができる、緻密なSiO□−C複合
材およびSiO□−SiC複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing a dense SiO□-C composite material and a SiO□-SiC composite material that can be used as a high-purity heat-resistant material in semiconductor manufacturing processes, etc. Regarding.

藍玉二退術 従来、LSIなどの半導体製造プロセスにおいてシリコ
ンウェハの熱処理時に使用される炉心管や治工具として
は、高純度な石英ガラス製のものが多く用いられてきた
In the past, many furnace tubes and jigs and tools used during heat treatment of silicon wafers in the manufacturing process of semiconductors such as LSIs were made of high-purity quartz glass.

石英ガラス製の場合、高純度なものが比較的容易に製造
できること、1000℃程度の熱処理温度では変質、変
形しないことなどの利点を有している。
In the case of quartz glass, it has the advantage that it can be manufactured with high purity relatively easily, and that it does not change in quality or deform at a heat treatment temperature of about 1000°C.

しかしながら、シリコンウェハを1200℃程度の温度
で熱処理する工程では、石英ガラスの粘性変形が問題と
なり使用することができず、このような高温領域の使用
においては高純度炭化珪素質耐熱材料の適用が試みられ
ている。
However, in the process of heat-treating silicon wafers at a temperature of about 1200°C, viscous deformation of quartz glass becomes a problem, making it unusable, and high-purity silicon carbide heat-resistant materials cannot be used in such high-temperature areas. is being attempted.

炭化珪素は1981年にE、 G、 Achesonに
より発見されたとされ、珪石とコークスとから下記の固
相反応(1)により合成するAcheson法が初の工
業的製造方法となっている。
Silicon carbide is said to have been discovered by E. G. Acheson in 1981, and the Acheson method, in which it is synthesized from silica stone and coke by the following solid phase reaction (1), is the first industrial production method.

5in2+3CSiC+2CO(1) しかし、近年のLSIの集積度の向上とともに、炭化珪
素質耐熱材料を用いた炉心管やシリコンウェハ支持部材
が含有する微量不純物のシリコンウェハに対する悪影響
が問題化してきている。
5in2+3CSiC+2CO (1) However, with the recent improvement in the degree of integration of LSIs, the negative effect on silicon wafers of trace impurities contained in core tubes and silicon wafer support members using silicon carbide heat-resistant materials has become a problem.

そこで、炭化珪素質耐熱材料の高純度化とともに、石英
ガラスの高耐熱化の要求も強くなっている。
Therefore, as well as increasing the purity of silicon carbide heat-resistant materials, there is also an increasing demand for increasing the heat resistance of quartz glass.

明が−しようとする課 高純度炭化珪素質材料の製造方法として発明されたS1
含浸法(特開昭57−43553号公報)であっても、
炭化珪素系原料粉の保管が悪い場合あるいはS1含浸工
程を含む製造プロセスにおいて汚染がある場合には、半
導体熱処理用耐熱材としては不適切な材料となってしま
うといった課題があった。
S1 was invented as a method for producing high-purity silicon carbide materials
Even with the impregnation method (Japanese Patent Application Laid-Open No. 57-43553),
If the silicon carbide-based raw material powder is poorly stored or if there is contamination in the manufacturing process including the S1 impregnation step, there is a problem that the material becomes unsuitable as a heat-resistant material for semiconductor heat treatment.

また純度においては他に顛を見ない合成石英ガラスにつ
いては、耐熱性が不十分であることがら主に1100℃
よりも低い温度域でしか使用できないといった課題があ
った。石英ガラスの耐熱性を向上させる技術としては、
特開平1−126238号公報に示されているように、
石英ガラスの表層に結晶核を生成させ、高温下で耐熱性
の高いクリストバライト相に結晶化させる方法がある。
In addition, synthetic quartz glass, which has no other purity, has insufficient heat resistance, so it is mainly used at temperatures up to 1100℃.
The problem was that it could only be used in a lower temperature range. Technologies to improve the heat resistance of quartz glass include:
As shown in Japanese Patent Application Laid-Open No. 1-126238,
There is a method in which crystal nuclei are generated on the surface layer of quartz glass and crystallized into a highly heat-resistant cristobalite phase at high temperatures.

この方法は耐熱性向上には効果があるが、基材となる石
英ガラスとクリストバライト相との熱膨張係数の差が大
きく、このためクリスバライト相析出後の冷却によりク
ラックが生成し、このクラックがダスト発生の原因とな
ったり、耐熱部材の破壊の原因となるといった課題があ
った。
Although this method is effective in improving heat resistance, there is a large difference in thermal expansion coefficient between the quartz glass base material and the cristobalite phase, so cracks are generated by cooling after the cristobalite phase has been precipitated. There were problems in that it caused dust generation and caused destruction of heat-resistant members.

本発明は上記した課題に鑑み発明されたものであって、
半導体製造プロセス等において比較的低コストな高純度
耐熱材料として用いることができる緻密質の5iOz 
C複合材および5102 SIC複合材の製造方法を提
供することを目的としている。
The present invention was invented in view of the above-mentioned problems, and
Dense 5iOz that can be used as a relatively low-cost, high-purity, heat-resistant material in semiconductor manufacturing processes, etc.
The present invention aims to provide a method for manufacturing C composite and 5102 SIC composite.

課 を”するための 1 上記した目的を達成するために本発明に係るS10□−
C複合材の製造方法は合成石英ガラスの多孔体中に、炭
化水素ガスあるいはハロゲン化炭化水素ガスを含有する
ガスの熱分解により生成する炭素をモル比1.0以下で
析出させて多孔質SiO□−C複合材を生成し、その後
この多孔質SiO□−C複合材を1200℃以上160
0℃未満の温度で熱処理することにより緻密化すること
を特徴としている。
In order to achieve the above-mentioned purpose, S10□- according to the present invention
The manufacturing method of the C composite material is to precipitate carbon produced by thermal decomposition of gas containing hydrocarbon gas or halogenated hydrocarbon gas in a porous body of synthetic quartz glass at a molar ratio of 1.0 or less to form porous SiO2. □-C composite material is produced, and then this porous SiO□-C composite material is heated to 160°C above 1200°C.
It is characterized by being densified by heat treatment at a temperature below 0°C.

また本発明に係る5102−3IG複合材の製造方法は
、合成石英ガラスの多孔体中に、炭化水素ガスあるいは
ハロゲン化炭化水素ガスを含有するガスの熱分解により
生成する炭素をモル比1.0以下で析8させて多孔質S
iO□−C複合材を生成し、その後この多孔質SiO□
−C複合材を1600℃以上2000 ’C以下の温度
で熱処理することによりSiCを生成させることを特徴
としている。
Further, in the method for manufacturing the 5102-3IG composite material according to the present invention, carbon generated by thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas is added to a porous body of synthetic quartz glass at a molar ratio of 1.0. In the following analysis, porous S
produce an iO□-C composite, and then this porous SiO□
It is characterized in that SiC is generated by heat-treating the -C composite material at a temperature of 1600° C. or higher and 2000° C. or lower.

以下、本発明に係る製造方法をより詳細に説明する。Hereinafter, the manufacturing method according to the present invention will be explained in more detail.

気相法による超高純度な合成石英ガラスの製造方法は 
M CV D (Modified Chemical
 Vapor Deposition I法、OV D
  (Outside Vapor Desposi−
tion)法、V A D (Vapor−phase
 Axial Deposi−tionl法などのスー
ト法と総称される技術が光フアイバー製造などの目的で
開発、実用化されている。
The manufacturing method of ultra-high purity synthetic quartz glass using the vapor phase method is
M CV D (Modified Chemical
Vapor Deposition I method, OV D
(Outside Vapor Desposi-
tion) method, V A D (Vapor-phase
Techniques collectively referred to as soot methods, such as the axial deposition method, have been developed and put into practical use for purposes such as manufacturing optical fibers.

気相合成石英ガラスの多孔体は、四塩化珪素などの珪素
塩化物を気化させ、火災などの酸化雰囲気中で下記の加
水分解反応(2)または酸化反応(3)を行わせ、生成
した二酸化珪素微粒子を堆積させることにより製造され
る。
A porous body of vapor-phase synthetic quartz glass is produced by vaporizing silicon chloride such as silicon tetrachloride and performing the following hydrolysis reaction (2) or oxidation reaction (3) in an oxidizing atmosphere such as a fire. Manufactured by depositing silicon fine particles.

5xC14+2H20510□+41(C1(2)SI
C14+0□  −5iOz+2CI□  (3)この
ようにして製造される気相合成石英ガラスの多孔体は微
粒子を堆積させる段階でHCI、c1□などのハロゲン
系ガスと分離される為、ハロゲン系ガスが合成容器を腐
食して生成する不純物金属化合物の混入を防止でき、極
めて高純度な二酸化珪素となり、不純物金属元素含有量
がlppm以下であることが知られている。
5xC14+2H20510□+41(C1(2)SI
C14+0□ -5iOz+2CI□ (3) The porous body of vapor-phase synthetic quartz glass produced in this way is separated from halogen gases such as HCI and c1□ at the stage of depositing fine particles, so halogen gases are synthesized. It is known that it is possible to prevent the contamination of impurity metal compounds produced by corrosion of the container, resulting in extremely high purity silicon dioxide, and that the content of impurity metal elements is 1 ppm or less.

本発明者らは、前記合成石英ガラスの多孔体を高純度な
炭化水素ガスあるいはハロゲン化炭化水素ガスを含む雰
囲気中で熱処理することにより多孔体の内部にまで炭素
が均一に析出することを考慮し、このようにして得られ
た炭素のモル比が1.0以下である5iOz−C多孔体
を1200℃以上、1600℃未満の温度で焼成すれば
、合成石英ガラスの粘性により緻密化が可能であり、出
発原料が高純度であること、原料の混合及び成形工程を
含まないことに起因して、極めて純度の高い緻密な5i
O7−C複合材を製造できることを見出し、本発明を完
成するに至った。
The present inventors have considered that by heat-treating the synthetic quartz glass porous body in an atmosphere containing high-purity hydrocarbon gas or halogenated hydrocarbon gas, carbon is uniformly precipitated even inside the porous body. However, if the 5iOz-C porous body obtained in this way with a carbon molar ratio of 1.0 or less is fired at a temperature of 1200°C or higher and lower than 1600°C, it can be densified due to the viscosity of synthetic silica glass. Due to the high purity of the starting raw materials and the fact that there is no mixing or molding process involved, extremely pure and dense 5i
It was discovered that an O7-C composite material can be produced, and the present invention was completed.

また、同様にして得られた炭素のモル比が1.0以下で
ある5iOz−C多孔体を16(10℃以上の温度で焼
成すれば、析出した炭素と合成石英ガラスから炭化珪素
が生成するととも(二余剰な合成石英ガラスの粘性によ
り緻密化が可能であり、出発原料が高純度であること、
原料の混合及び成形工程を含まないことに起因して、極
めて純度の高い緻密なSiO□−3iC複合材が製造で
きることも見出し、本発明を完成するに至った。
In addition, if a similarly obtained 5iOz-C porous body with a carbon molar ratio of 1.0 or less is fired at a temperature of 16 (10°C or higher), silicon carbide will be generated from the precipitated carbon and synthetic silica glass. Both (2) densification is possible due to the viscosity of the surplus synthetic quartz glass, and the starting material is of high purity,
It has also been discovered that a dense SiO□-3iC composite material with extremely high purity can be produced due to the fact that mixing of raw materials and molding steps are not included, and the present invention has been completed.

旺 上記(1)式における5102 (二酸化珪素)として
超高純度な合成石英ガラスの多孔体を用い、炭化水素ガ
スあるいはハロゲン化炭化水素ガスを含む雰囲気中で熱
処理することにより、合成石英ガラスの多孔体の内部に
まで均一に炭素が析出し、二酸化珪素と炭素を微視的に
混合した場合と同様な5xCh−C多孔体かえられる。
By using a porous body of ultra-high purity synthetic quartz glass as 5102 (silicon dioxide) in formula (1) above, heat treatment is performed in an atmosphere containing hydrocarbon gas or halogenated hydrocarbon gas. Carbon is uniformly deposited even inside the body, resulting in a 5xCh-C porous body similar to that obtained by microscopically mixing silicon dioxide and carbon.

このとき、析出した炭素のモル比が1.0以下である5
iOz−C多孔体を1200℃以上の温度で焼成すれば
、合成石英ガラスの粘性焼結によりSiO□−C多孔体
の緻密化が進行し、1600℃未満では炭素と石英ガラ
スとの反応が起らないので、緻密な5zOz C複合材
が得られる。
At this time, the molar ratio of precipitated carbon is 1.0 or less.
If the iOz-C porous body is fired at a temperature of 1200°C or higher, the densification of the SiO□-C porous body will proceed due to viscous sintering of the synthetic silica glass, and if it is lower than 1600°C, a reaction between carbon and silica glass will occur. Therefore, a dense 5zOz C composite material can be obtained.

このときSiO□−C多孔体中の炭素の二酸化珪素に対
するモル比が1.0をこえる場合には、石英ガラスを被
覆した炭素が石英ガラスの粘性流動による焼結を疎外す
るので、緻密なSiO□−C複合材は得られない。
At this time, if the molar ratio of carbon to silicon dioxide in the SiO□-C porous body exceeds 1.0, the carbon covering the quartz glass will prevent sintering due to the viscous flow of the quartz glass, so the dense SiO □-C composite material cannot be obtained.

また、析出した炭素のモル比が1.0以下である5i0
2−C多孔体を焼成する際に、第1図に示す熱力学的計
算結果から、前記(1)式における標準自由エネルギー
(△G°)が1600℃以上の温度で負になり始め、合
成石英ガラスの一部が炭化珪素となることがわかる。こ
のとき、炭素のモル比が1.0を超える5iO2−C多
孔体では合成石英ガラスの多くが炭化珪素となり、この
炭化珪素が難焼結性物質であることから緻密な5i02
−5iC複合材が得られない。したがって、160(1
″C以上の焼成温度では炭素を析出させた合成石英ガラ
スの多孔体中における炭素のモル比は1.0以下である
ことが必要である。さらに、この組成範囲においても2
000℃を越える温度では下記の(4)式で示される一
酸化珪素の揮発が顕著となり、緻密なSiO□−3iC
複合材は収率良く得られない。
In addition, 5i0 in which the molar ratio of precipitated carbon is 1.0 or less
When firing the 2-C porous material, from the thermodynamic calculation results shown in Figure 1, the standard free energy (△G°) in equation (1) above starts to become negative at a temperature of 1600°C or higher, and the synthesis It can be seen that part of the quartz glass becomes silicon carbide. At this time, in a 5iO2-C porous body in which the molar ratio of carbon exceeds 1.0, most of the synthetic quartz glass becomes silicon carbide, and since silicon carbide is a difficult-to-sinter substance, the dense 5i02
-5iC composite material cannot be obtained. Therefore, 160(1
At a firing temperature of C or higher, the molar ratio of carbon in the porous body of synthetic quartz glass in which carbon is precipitated must be 1.0 or less.Furthermore, even in this composition range,
At temperatures exceeding 000°C, the volatilization of silicon monoxide shown by the following formula (4) becomes remarkable, resulting in a dense SiO□-3iC
Composite materials cannot be obtained in good yield.

SiO2+ CSiO+ GO(4) !籏1巳■ば」立校ヨ 以下、本発明に係るSiO□−C複合材およびSiO□
−5iC複合材の製造方法の実施例および比較例につい
て説明する。
SiO2+ CSiO+ GO(4)! The following describes the SiO□-C composite material and SiO□ according to the present invention.
Examples and comparative examples of the method for manufacturing -5iC composite materials will be described.

VAD法により合成した、高密度的0.3g/cm”、
比表面積が約22rn2/g、平均粒径が約02μmの
合成石英ガラスの多孔体を、CH,ガス濃度が異なる種
々の(Arガスにより希釈)雰囲気中において1000
℃で30分間加熱処理を行ない、合成石英ガラスの多孔
体内部にまで炭素を析出させ、石英ガラス微粒子を炭素
が被覆したSiO□−C多孔体を得た。
High-density 0.3 g/cm" synthesized by VAD method,
A porous body of synthetic quartz glass with a specific surface area of about 22 rn2/g and an average particle size of about 0.2 μm was heated at 1000 °C in various atmospheres with different CH and gas concentrations (diluted with Ar gas).
Heat treatment was performed at .degree. C. for 30 minutes to deposit carbon even into the interior of the synthetic silica glass porous body, thereby obtaining a SiO□-C porous body in which silica glass fine particles were coated with carbon.

この時の二酸化珪素と炭素とのモル比は第1表に示した
ものを得た。
The molar ratios of silicon dioxide and carbon at this time were as shown in Table 1.

ここで得られたS10□−C多孔体をM[E下、150
0℃の温度において3時間焼成したところ、第1表に示
した通り、析出した炭素のモル比が10以下であるSi
O□−C多孔体を焼成した場合、合成石英ガラスの粘性
焼結により5iO7−C多孔体の緻密化が進行し、緻密
なSiO□−C複合材が得らた。このときSiO□−C
多孔体中の炭素の二酸化珪素に対するモル比が1.0を
こえる場合には、石英ガラスを被覆した炭素が石英ガラ
スの粘性流動による焼結を疎外するので、緻密なSiO
□−C複合材は得られなかった。
The S10□-C porous body obtained here was
When fired at a temperature of 0°C for 3 hours, as shown in Table 1, Si with a molar ratio of precipitated carbon of 10 or less was formed.
When the O□-C porous body was fired, densification of the 5iO7-C porous body progressed due to viscous sintering of the synthetic silica glass, and a dense SiO□-C composite material was obtained. At this time, SiO□-C
If the molar ratio of carbon to silicon dioxide in the porous body exceeds 1.0, the carbon covering the silica glass will prevent sintering due to the viscous flow of the silica glass, resulting in a dense SiO
□-C composite material was not obtained.

また、析出した炭素のモル比が10以下である5iOz
−C多孔体の焼成を20[10℃の温度で行なえば、第
1表に示したように、合成石英ガラスの一部が炭化珪素
となり、緻冨なSiO□−5iC複合材が得られた。こ
のとき、炭素のモル比が1.0を超える5in2−C多
孔体では合成石英ガラスの多くが炭化珪素となり、この
炭化珪素が難焼結性物質であることから緻密な5xOa
 SiC複合材が得られなかった。したがって、 2.
000℃の焼成温度では炭素を析8させた合成石英ガラ
スの多孔体中における炭素のモル比は1.0以下である
ことが必要である。
In addition, 5iOz in which the molar ratio of precipitated carbon is 10 or less
If the -C porous body was fired at a temperature of 20[10°C, as shown in Table 1, part of the synthetic quartz glass became silicon carbide, and a dense SiO□-5iC composite material was obtained. . At this time, in a 5in2-C porous body in which the molar ratio of carbon exceeds 1.0, most of the synthetic quartz glass becomes silicon carbide, and since silicon carbide is a difficult-to-sinter substance, it is difficult to sinter, so the dense 5xOa
No SiC composite material was obtained. Therefore, 2.
At a firing temperature of 000° C., the molar ratio of carbon in the porous body of synthetic quartz glass in which carbon has been precipitated must be 1.0 or less.

(以下余白) 第1表 第2表 またVAD法により合成し、た、嵩密度が約0.3g/
cm”、比表面積が約12m27g、平均粒径が約02
μmの合成石英ガラスの多孔体を、CH4ガス40%(
Arガスにより希釈)の雰囲気中において1000℃で
30分間加熱処理を行ない、合成石英ガラスの多孔体内
部にまで炭素が析出し、石英ガラ2ス微粒子を炭素が被
覆したSiO□−C多孔体を得た。この時の二酸化珪素
と炭素とのモル比は、1:0.5であった。
(Margins below) Table 1 Table 2 Also synthesized by VAD method, the bulk density is about 0.3 g/
cm”, specific surface area is approximately 12 m27 g, average particle size is approximately 0.2 cm
A synthetic quartz glass porous body with a diameter of 40% CH4 gas (
Heat treatment was performed at 1000°C for 30 minutes in an atmosphere (diluted with Ar gas), and carbon precipitated even inside the synthetic silica glass porous body. Obtained. The molar ratio of silicon dioxide to carbon at this time was 1:0.5.

ここで得られた5iD2−C多孔体を減圧下、1100
℃〜1600℃の温度範囲において3時間焼成したとこ
ろ、第2表に示した通り1200℃以上1600℃未満
の温度範囲においては5102−C複合材の緻密化が進
行していた。
The 5iD2-C porous material obtained here was heated to 1100°C under reduced pressure.
When the 5102-C composite material was fired for 3 hours in a temperature range of 1,600°C to 1,600°C, densification of the 5102-C composite material progressed in a temperature range of 1,200°C to 1,600°C, as shown in Table 2.

1500℃で焼成した場合には上記SiOg−C複合材
は完全に緻密化し、その歪点温度(粘性係数が1014
’poiseとなる温度)は約1100℃で有り、従来
の石英ガラスよりも高い耐熱性を有していた。
When fired at 1500°C, the SiOg-C composite becomes completely densified, and its strain point temperature (viscosity coefficient is 1014
The temperature at which it becomes 'poise' was approximately 1100°C, and it had higher heat resistance than conventional quartz glass.

このSiO□−C複合材の不純物金属元素濃度は1pp
□以下であり、非常に高純度な5iOz−C複合材とな
っていた。
The impurity metal element concentration of this SiO□-C composite material is 1pp.
□ or less, and it was a very high purity 5iOz-C composite material.

上記した実施例と同様の方法で得られたSiO□−C多
孔体を減圧下、1500℃〜2100℃の温度範囲にお
いて3時間焼成したところ、第2表に示した通り160
0℃以上2000℃以下の温度範囲においてβ型の炭化
珪素が生成しており、緻密なSiO□−5iC複合材と
なっていた。1800℃で焼成した場合、SiO□−5
iC複合材の歪点温度(粘性係数が10′4’pois
eとなる温度)は約1200℃で有り、従来の石英ガラ
スよりも高い耐熱性を有していた。
When the SiO□-C porous body obtained in the same manner as in the above-mentioned example was fired at a temperature range of 1500°C to 2100°C for 3 hours under reduced pressure, the
β-type silicon carbide was generated in a temperature range of 0° C. or higher and 2000° C. or lower, resulting in a dense SiO□-5iC composite material. When fired at 1800℃, SiO□-5
Strain point temperature of iC composite material (viscosity coefficient is 10'4'pois
The temperature at which quartz glass becomes e is about 1200°C, and it has higher heat resistance than conventional quartz glass.

このSiO□−3iC複合材の不純物金属元素濃度は1
.1以下であり、非常に高純度な5LOa−SiC複合
材となっていた。
The impurity metal element concentration of this SiO□-3iC composite is 1
.. 1 or less, resulting in an extremely pure 5LOa-SiC composite material.

及豆五皿里 以上の説明により明らかなように本発明に係るSiO□
−C複合材およびSing−5iC複合材の製造方法に
よれば、合成石英ガラスの多孔体中に、炭化水素ガスあ
るいはハロゲン化炭化水素ガスを含有するガスの熱分解
により生成する炭素なモル比1.0以下で析出させて多
孔質5i02−C複合材を生成し、ソノ後コノ多孔質5
iCh−C複合材をl 200 ℃以上1600℃未満
の温度で熱処理することにより緻密化することを特徴と
し、 また合成石英ガラスの多孔体中に、炭化水素ガスあるい
はハロゲン化炭化水素ガスを含有するガスの熱分解によ
り生成する炭素をモル比1.0以下で析出させて多孔質
5102−C複合材を生成し、その後この多孔質5i0
2−C複合材を1600℃以上2000℃以下の温度で
熱処理することによりSiCを生成させることを特徴と
するので、超高純度な多孔質合成石英ガラスに気相熱分
解炭素を微視的に混合させることができ、この後にガラ
スの粘性流動を利用して緻密化させるので、極めて純度
が高く、シかも石英ガラスよりも耐熱性の高いSiO□
−C複合材および5102 SiC複合材を得ることが
できる。
As is clear from the above explanation, SiO□ according to the present invention
According to the manufacturing method of the -C composite material and the Sing-5iC composite material, the molar ratio of carbon produced by thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas in a porous body of synthetic quartz glass is 1. .0 or less to produce a porous 5i02-C composite, and after sono porous 5
The iCh-C composite material is densified by heat-treating it at a temperature of 1200 °C or more and less than 1600 °C, and contains hydrocarbon gas or halogenated hydrocarbon gas in the porous body of synthetic quartz glass. Carbon produced by thermal decomposition of gas is precipitated at a molar ratio of 1.0 or less to produce a porous 5102-C composite, and then this porous 5i0
It is characterized by generating SiC by heat-treating the 2-C composite material at a temperature of 1,600°C or higher and 2,000°C or lower. SiO□ can be mixed and then densified using the viscous flow of glass, resulting in extremely high purity and even higher heat resistance than quartz glass.
-C composite and 5102 SiC composite can be obtained.

従って、半導体製造プロセスにおいて比較的低コストな
高純度耐熱材料として用いることができる緻密質のSi
O□−C複合材およびSiO□−SiC複合材を提供す
ることができる。
Therefore, dense Si can be used as a relatively low-cost, high-purity, heat-resistant material in semiconductor manufacturing processes.
O□-C composites and SiO□-SiC composites can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は前記(1)式の反応における標準自由エネルギ
ー計算結果を示すグラフである。
FIG. 1 is a graph showing the standard free energy calculation results for the reaction of formula (1).

Claims (2)

【特許請求の範囲】[Claims] (1)合成石英ガラスの多孔体中に、炭化水素ガスある
いはハロゲン化炭化水素ガスを含有するガスの熱分解に
より生成する炭素をモル比1.0以下で析出させて多孔
質SiO_2−C複合材を生成し、その後この多孔質S
iO_2−C複合材を1200℃以上1600℃未満の
温度で熱処理することにより緻密化することを特徴とす
るSiO_2−C複合材の製造方法。
(1) A porous SiO_2-C composite is created by precipitating carbon produced by thermal decomposition of gas containing hydrocarbon gas or halogenated hydrocarbon gas at a molar ratio of 1.0 or less into a porous body of synthetic quartz glass. and then this porous S
A method for producing a SiO_2-C composite material, characterized in that the iO_2-C composite material is densified by heat-treating the iO_2-C composite material at a temperature of 1200°C or more and less than 1600°C.
(2)合成石英ガラスの多孔体中に、炭化水素ガスある
いはハロゲン化炭化水素ガスを含有するガスの熱分解に
より生成する炭素をモル比1.0以下で析出させて多孔
質SiO2−C複合材を生成し、その後この多孔質Si
O_2−C複合材を1600℃以上2000℃以下の温
度で熱処理することによりSiCを生成させることを特
徴とするSiO_2−SiC複合材の製造方法。
(2) A porous SiO2-C composite is created by precipitating carbon produced by thermal decomposition of gas containing hydrocarbon gas or halogenated hydrocarbon gas at a molar ratio of 1.0 or less into a porous body of synthetic quartz glass. and then this porous Si
A method for producing a SiO_2-SiC composite material, comprising generating SiC by heat-treating the O_2-C composite material at a temperature of 1600°C or higher and 2000°C or lower.
JP26159990A 1990-07-10 1990-09-28 Production of sio2-c composite material and sio2-sic composite material Pending JPH04139033A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26159990A JPH04139033A (en) 1990-09-28 1990-09-28 Production of sio2-c composite material and sio2-sic composite material
EP91111425A EP0466109B1 (en) 1990-07-10 1991-07-09 Process for producing a silicon carbide-base complex
DE69104918T DE69104918T2 (en) 1990-07-10 1991-07-09 Method for producing a composite body based on silicon carbide.
US08/089,615 US5380511A (en) 1990-07-10 1993-07-12 Process for producing silicon carbide-base complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26159990A JPH04139033A (en) 1990-09-28 1990-09-28 Production of sio2-c composite material and sio2-sic composite material

Publications (1)

Publication Number Publication Date
JPH04139033A true JPH04139033A (en) 1992-05-13

Family

ID=17364150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26159990A Pending JPH04139033A (en) 1990-07-10 1990-09-28 Production of sio2-c composite material and sio2-sic composite material

Country Status (1)

Country Link
JP (1) JPH04139033A (en)

Similar Documents

Publication Publication Date Title
US5766291A (en) Method for producing heat-resistant synthetic quartz glass
US5380511A (en) Process for producing silicon carbide-base complex
JP2009269792A (en) Silicon melting crucible and mold release agent used for it
JP4781232B2 (en) Silicon melting crucible used in the manufacture of polycrystalline silicon blocks
JPH054834A (en) Oxynitride glass and production thereof
JPH04139033A (en) Production of sio2-c composite material and sio2-sic composite material
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH03109223A (en) Quartz glass and production thereof
JPS58161939A (en) Drawing furnace for optical fiber
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JPH05279049A (en) Production of synthetic quartz glass
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPH0474734A (en) Production of sio2 composite material and silicon carbide
US6763683B2 (en) Method for pure, fused oxide
JPS6346015B2 (en)
JPH04130059A (en) Production of silicon carbide-based pipe and silicon dioxide-silicon carbide combined pipe
JPS62162646A (en) Production of glass fine particle deposit
JPH04224135A (en) Foamed glass and its manufacture
JPH05124863A (en) Production of high purity silicon carbide body
JPH0558676A (en) Production of sio2-sic-si composite material
JPS58176109A (en) Production of alpha-type silicon nitride
JPH03193617A (en) Production of silicon carbide powder
JPH0718520A (en) Production of silicon carbide fiber
JPH10265265A (en) Silicon carbide member and its production
JPS6246965A (en) Sic-si3n4 base composite ceramics and manufacture