JPH04130060A - Production of silicon carbide-based material - Google Patents
Production of silicon carbide-based materialInfo
- Publication number
- JPH04130060A JPH04130060A JP2251223A JP25122390A JPH04130060A JP H04130060 A JPH04130060 A JP H04130060A JP 2251223 A JP2251223 A JP 2251223A JP 25122390 A JP25122390 A JP 25122390A JP H04130060 A JPH04130060 A JP H04130060A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- silicon carbide
- carbon
- porous
- quartz glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 61
- 239000000463 material Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 52
- 239000010703 silicon Substances 0.000 claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 20
- 239000011148 porous material Substances 0.000 claims abstract description 9
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 4
- 238000011049 filling Methods 0.000 claims abstract description 4
- 150000008282 halocarbons Chemical class 0.000 claims abstract description 4
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 48
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 238000003763 carbonization Methods 0.000 claims description 2
- 230000035515 penetration Effects 0.000 claims description 2
- 239000002210 silicon-based material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 11
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 239000012808 vapor phase Substances 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract 1
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 abstract 1
- 238000001308 synthesis method Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 26
- 239000002131 composite material Substances 0.000 description 13
- 239000012535 impurity Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- 229910021426 porous silicon Inorganic materials 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- VSTOHTVURMFCGL-UHFFFAOYSA-N [C].O=[Si]=O Chemical compound [C].O=[Si]=O VSTOHTVURMFCGL-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910021493 α-cristobalite Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
Li上塁且■ユ■
本発明は炭化珪素質材料の製造方法に関し、より詳しく
は特に半導体製造用治具、例えばシリコンウェハの熱拡
散処理等に使用されるプロセスチューブ、ウェハポート
等の耐熱性治具の材料として有用な高純度炭化珪素質材
料の製造方法に関する。[Detailed Description of the Invention] The present invention relates to a method for manufacturing a silicon carbide material, and more particularly to a semiconductor manufacturing jig, such as a process tube used for thermal diffusion treatment of silicon wafers. , relates to a method for manufacturing a high-purity silicon carbide material useful as a material for heat-resistant jigs such as wafer ports.
従乞ヱlL術
従来、高純度を要求される半導体製造用耐熱性治具とし
ては、主として石英ガラス製のものが用いられていた。Conventionally, heat-resistant jigs for semiconductor manufacturing, which require high purity, have mainly been made of quartz glass.
石英ガラス製油具は、極めて純度の高いものを容易に製
作することができ、また透明であることから内部の観察
が容易である等の利点を有している。Quartz glass oil tools have the advantage that they can be easily manufactured with extremely high purity and are transparent, making it easy to observe the inside.
しかし、この石英ガラス製のものは1000 ’Cを越
える濃度から粘性流動による変形が生し始めるため、1
150°C以上の熱処理にはほとんど使用することがで
きず、またα−クリストバライトに変化して失透、破損
するために寿命が短いという欠点があった。However, this quartz glass one begins to deform due to viscous flow at concentrations exceeding 1000'C, so
It could hardly be used for heat treatment at temperatures above 150°C, and it had the disadvantage of a short lifespan because it changed to α-cristobalite, devitrified, and broke.
方、このような欠点を解決し得る材料として、炭化珪素
粉体を成形した多孔質炭化珪素成形体に金属シリコンを
充填した複合体が開発され使用されている。しかしなが
ら、高純度な炭化珪素原料粉は得難く、また、原料配合
、成形、純化処理、焼成等と製造工程が複雑なうえ、フ
ェノールレジン等のバイングーを必要とするため、製造
プロセスにおける汚染および原材料に含有されている不
純物等に起因して高純度な炭化珪素質材料を得ることは
困難であった。On the other hand, as a material capable of solving these drawbacks, a composite material in which a porous silicon carbide molded body formed from silicon carbide powder is filled with metallic silicon has been developed and used. However, high-purity silicon carbide raw material powder is difficult to obtain, and the manufacturing process is complicated, including raw material blending, molding, purification treatment, firing, etc., and it also requires binders such as phenol resin, which can lead to contamination during the manufacturing process. It has been difficult to obtain a highly pure silicon carbide material due to impurities contained in the silicon carbide material.
また、多孔質炭化珪素成形体に金属シリコンを含浸させ
る方法としては、金属シリコンの融点以上に加熱され、
溶融したシリコンを浸透させる方法(特開昭51−85
374号公報、特開昭64−14914号公報、特開平
1−115888号公報等参照)が一般に用いられてい
る。そのほかにも黒鉛加熱体を誘導加熱してシリコンを
蒸発させ、そのシリコンを炭化珪素体に含浸させるシリ
コン含浸法(特開昭57−43553号公報参照)等が
提案されている。In addition, as a method for impregnating a porous silicon carbide molded body with metal silicon, heating is performed above the melting point of metal silicon,
Method of penetrating molten silicon (Japanese Patent Application Laid-Open No. 51-85
374, Japanese Patent Application Laid-Open No. 64-14914, Japanese Patent Application Laid-open No. 1-115888, etc.) are generally used. In addition, a silicon impregnation method (see Japanese Unexamined Patent Application Publication No. 57-43553) has been proposed, in which a graphite heating element is induction heated to evaporate silicon, and a silicon carbide body is impregnated with the silicon.
さらには炭化珪素材の表面に炭化珪素を気相蒸着せしめ
て緻密質炭化珪素膜を形成し、不純物の拡散を抑える方
法が提案されている。Furthermore, a method has been proposed in which silicon carbide is vapor-deposited on the surface of a silicon carbide material to form a dense silicon carbide film to suppress the diffusion of impurities.
発明が解決しようとする課題
従来、半導体製造用に用いられている炭化珪素質材料は
、成形・焼成後に適当な純化処理を行うことによって造
られている。しかしながら、かかる純化処理は複雑な製
造プロセスにおいて汚染され、緻密な焼結体に焼成した
後に施されるため、不純物除去は焼結体の表面層に限定
される。その結果、上記従来法により製造された炭化珪
素質材料製治具て例えばシリコンウェハの熱処理を行う
と、炭化珪素質材料内部のFe等の金属不純物が拡散放
出され、シリコンウェハを汚染するといった課題があっ
た。Problems to be Solved by the Invention Conventionally, silicon carbide materials used for semiconductor manufacturing have been produced by performing appropriate purification treatment after molding and firing. However, such purification treatment is contaminated during the complicated manufacturing process and is performed after firing into a dense sintered body, so impurity removal is limited to the surface layer of the sintered body. As a result, when a silicon carbide material jig manufactured by the above-mentioned conventional method is used to heat treat a silicon wafer, metal impurities such as Fe inside the silicon carbide material are diffused and released, contaminating the silicon wafer. was there.
また、金属シリコンを溶融蒸発させ、炭化珪素体に含浸
させる方法においては、2000 ’C以上の高温を必
要とするため大きなエネルギーを必要とし、また熱衝撃
等にょる熱歪やクラック発生などの課題があった。In addition, the method of melting and vaporizing metallic silicon and impregnating it into a silicon carbide body requires a large amount of energy as it requires a high temperature of 2000'C or more, and there are also problems such as thermal distortion and cracking due to thermal shock etc. was there.
さらに炭化珪素材の表面に炭化珪素を気相蒸着せしめて
緻密質炭化珪素膜を形成し、不純物の拡散を抑える方法
においても、この炭化珪素質材料は、その表面の前記炭
化珪素膜にピンホールが発生したり、炭化珪素膜の炭化
珪素材への密着強度が低く、機械的・熱的衝撃により亀
裂が生じる等の課題があった。Furthermore, even in a method in which silicon carbide is vapor-deposited on the surface of a silicon carbide material to form a dense silicon carbide film to suppress the diffusion of impurities, this silicon carbide material has pinholes in the silicon carbide film on its surface. There were problems such as the occurrence of cracks due to mechanical and thermal shock due to the low adhesion strength of the silicon carbide film to the silicon carbide material.
本発明は上記した課題に鑑み発明されたものであって、
高温下においても変形することがなく、純度が高(、シ
リコンウェハの熱拡散処理中にウェハを汚染することが
ない、半導体製造用治具の材料として有用な炭化珪素質
材料の製造方法を提供することを目的としている。The present invention was invented in view of the above-mentioned problems, and
Provides a method for producing a silicon carbide material that does not deform even under high temperatures, has high purity (and does not contaminate wafers during thermal diffusion treatment of silicon wafers, and is useful as a material for semiconductor manufacturing jigs. It is intended to.
課 ”るための
上記目的を達成するために本発明に係る炭化珪素質材料
の製造方法は、合成石英ガラスの多孔体中に、炭化水素
ガスまたはハロゲン化炭化水素ガスを含有するガスの熱
分解により生成する炭素を析出させ、その後焼成して得
られる多孔質成形体の開気孔中に金属シリコンを充填す
ることを特徴とし、
また、上記炭化珪素質材料の製造方法において、合成石
英ガラスの多孔体中に析出させる炭素を、炭素/二酸化
珪素のモル比で3以上とすることを特徴としている。In order to achieve the above object, the method for producing a silicon carbide material according to the present invention involves thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas in a porous body of synthetic quartz glass. The method for producing a silicon carbide material described above is characterized by precipitating the carbon produced by the process and then filling the open pores of the porous molded body obtained by firing. The carbon deposited in the body is characterized by a carbon/silicon dioxide molar ratio of 3 or more.
また、上記したそれぞれの炭(ヒ珪素質材料の製造方法
において、多孔質成形体に残存する余剰炭素を、充填し
た金属シリコンと反応焼結させることを特徴としている
。Further, each of the above-mentioned methods for producing charcoal (arsenic material) is characterized in that surplus carbon remaining in the porous molded body is reacted and sintered with the filled metal silicon.
さらには、上記したそれぞれの炭化珪素質材料の製造方
法において、多孔質成形体の開気孔中への金属シリコン
の充填が、溶融シリコンの浸透によるものであることを
特徴としている。Furthermore, each of the above-described methods for manufacturing a silicon carbide material is characterized in that the metal silicon is filled into the open pores of the porous molded body by penetration of molten silicon.
また、上記した最初から3つの炭化珪素質材料の製造方
法のそれぞれにおいて、多孔質成形体の開気孔中への金
属シリコンの充填が、珪素含有ガスの熱分解によるもの
であることを特徴としている。Furthermore, in each of the first three methods for manufacturing silicon carbide materials described above, the filling of metallic silicon into the open pores of the porous molded body is characterized by thermal decomposition of a silicon-containing gas. .
本発明に係る炭化珪素質材料の製造方法をさらに詳細に
説明する。The method for producing a silicon carbide material according to the present invention will be explained in more detail.
本発明に係る方法では、前記合成石英カラスの多孔体を
出発物質とすることが必要である。この合成石英ガラス
の多孔体は、平均粒径0.01〜10μmの二酸化珪素
微粒子で構成され、空隙率は40〜80%であり、不純
物含有量の合計がL ppm以下と高純度なものである
6また、バインダの混合・プレス等の成形工程を必要と
しないため、これらプロセスにおける汚染を受けること
が無い。この合成石英ガラスの多孔体を最終製品の形状
に加工しておき、出発原料とする。In the method according to the present invention, it is necessary to use the porous body of synthetic quartz glass as a starting material. This synthetic quartz glass porous body is composed of silicon dioxide fine particles with an average particle size of 0.01 to 10 μm, has a porosity of 40 to 80%, and has a high purity with a total impurity content of L ppm or less. Furthermore, since molding processes such as binder mixing and pressing are not required, there is no contamination during these processes. This porous body of synthetic quartz glass is processed into the shape of a final product and used as a starting material.
本発明に係る方法では、炭化水素ガスあるいはハロゲン
化炭化水素ガス、例えば、CH4、C2H6CaHa、
C4H,。C2H4、C2H2、C2H4Cj2、CJ
aCQ3、C2H,Ci!。In the method according to the invention, a hydrocarbon gas or a halogenated hydrocarbon gas, for example CH4, C2H6CaHa,
C4H,. C2H4, C2H2, C2H4Cj2, CJ
aCQ3, C2H, Ci! .
C2H2Cg2等の中から選ばれる何れか少なくとも1
種類よりなるガス雰囲気中で、用いたガス種の分解温度
以上、1400°C以下の温度で前記合成石英カラスの
多孔体を熱処理することにより、二酸化珪素微粒子から
なるこの多孔体の内部表面にまで粒子径数+nm程度の
熱分解炭素の析出を行なう。この時、用いたガス種の分
解温度以下では熱分解による炭素析出が起こらず、14
00 ℃以上の温度では合成石英ガラスの多孔体の緻密
化により、内部への炭素析出が不可能となる。At least one selected from C2H2Cg2, etc.
By heat-treating the porous body of synthetic quartz glass at a temperature above the decomposition temperature of the gas species used and below 1400°C in a gas atmosphere consisting of various kinds of gases, the inner surface of the porous body made of silicon dioxide fine particles is heated. Pyrolytic carbon having a particle diameter of about several nanometers is precipitated. At this time, carbon precipitation due to thermal decomposition does not occur below the decomposition temperature of the gas species used, and 14
At a temperature of 0.00°C or higher, the porous body of synthetic quartz glass becomes dense, making it impossible for carbon to be deposited inside.
この炭素析出量は、基材である合成石英ガラスの多孔体
中の二酸化珪素に対し、モル比で3以上である必要があ
る。その理由は、二酸化珪素と炭素の反応は、
SiO□十3 C−5iC+2CO(1)で表わされ、
炭素析出量がモル比で3未満であるときには過剰の二酸
化珪素が残存し、この二酸化珪素が熱処理の際にSiO
ガスとなって揮発し、この結果、多孔体の形状が崩れ、
強度の低下あるいは粉体化を起こすことになるからであ
る。The amount of carbon precipitated needs to be 3 or more in molar ratio to silicon dioxide in the porous body of synthetic quartz glass that is the base material. The reason is that the reaction between silicon dioxide and carbon is represented by SiO□13C-5iC+2CO(1),
When the amount of carbon precipitated is less than 3 in molar ratio, excess silicon dioxide remains, and this silicon dioxide becomes SiO during heat treatment.
It evaporates as a gas, and as a result, the shape of the porous body collapses,
This is because strength may be reduced or powdering may occur.
一方、多孔質炭化珪素質材料中に残留している過剰分の
炭素については、金属シリコンを含浸させた際に反応し
、容易に炭化珪素となる。On the other hand, excess carbon remaining in the porous silicon carbide material reacts when impregnated with metal silicon and easily turns into silicon carbide.
次に、合成石英ガラス−炭素複合体を非酸化性雰囲気下
、例えばヘリウム、ネオン、アルゴン、水素等から選ば
れる何れか少なくとも1種類よりなるガス雰囲気下ある
いは真空中で、1600〜2500°Cの温度で焼成す
る。このことにより、熱分解炭素超微粒子が、二酸化珪
素微粒子を極めて速やかに還元し、二酸化珪素微粒子は
完全に炭化珪素化する。この時、1600℃未満では二
酸化珪素と炭素の反応が起こらず、また2500°Cを
越える加熱装置は実用的でないため、焼成温度は160
0〜2500°Cの範囲が望ましい。Next, the synthetic silica glass-carbon composite is heated at 1600 to 2500°C under a non-oxidizing atmosphere, for example, under a gas atmosphere consisting of at least one selected from helium, neon, argon, hydrogen, etc., or in vacuum. Baking at temperature. As a result, the pyrolytic carbon ultrafine particles reduce the silicon dioxide fine particles extremely quickly, and the silicon dioxide fine particles are completely converted into silicon carbide. At this time, the firing temperature is 160°C because the reaction between silicon dioxide and carbon does not occur below 1600°C, and heating equipment that exceeds 2500°C is not practical.
A range of 0 to 2500°C is desirable.
そして、この多孔質成形体に、溶融させた金属シリコン
を含浸させ、緻密な焼結体とする。このとき加熱炉内は
、溶融シリコンを速やかに含浸させるため減圧状態にし
ておくことが好ましい。また、加熱炉温度は金属シリコ
ンの融点以上で、かつ金属シリコンが蒸発しない温度で
あることが必要である。Then, this porous molded body is impregnated with molten metal silicon to form a dense sintered body. At this time, the inside of the heating furnace is preferably kept under reduced pressure in order to quickly impregnate the molten silicon. Further, the heating furnace temperature needs to be higher than the melting point of metal silicon and at a temperature at which metal silicon does not evaporate.
あるいは、上記炭化珪素質の多孔質成形体を珪素含有カ
ス、例えば5tCi!4.5tHC13,5IHn等の
中から選ばれる何れか少なくとも1種類よりなるガス雰
囲気中で、用いたガス種の分解温度以上、2000°C
以下の温度で熱処理することにより、前記多孔質成形体
の内部にまで金属シリコンの析出を行なわせる。また、
水素、アルゴン等をキャリアガスとして用いてもよい。Alternatively, the porous molded body made of silicon carbide may be used as a silicon-containing waste, for example, 5tCi! In a gas atmosphere consisting of at least one selected from 4.5tHC13, 5IHn, etc., at 2000°C above the decomposition temperature of the gas used.
By performing heat treatment at the following temperature, metallic silicon is deposited even into the interior of the porous molded body. Also,
Hydrogen, argon, etc. may be used as a carrier gas.
この時、用いたガス種の分解温度以下では金属シリコン
の析出が起こらず、2000℃を越える温度では大きな
エネルギーを必要とするとともに、前記多孔質成形体の
表面近くへの析出むらを生じるため、より望ましくは、
用いたガス種によっても異なるが、600〜1200°
Cの温和な条件で処理することが好ましい。At this time, precipitation of metallic silicon does not occur below the decomposition temperature of the gas species used, and at temperatures exceeding 2000°C, large amounts of energy are required and uneven precipitation occurs near the surface of the porous molded body. More preferably,
Although it varies depending on the type of gas used, 600 to 1200°
It is preferable to process under mild conditions of C.
またこの時、炭化珪素質の多孔質成形体に存在する過剰
の炭素は数+nmの非常に微細な粒子であるため、溶融
シリコン、珪素含有ガスあるいは析出した金属シリコン
により容易に炭化珪素化され、炭化珪素質材料の強度が
向上する。In addition, at this time, since the excess carbon present in the silicon carbide porous molded body is very fine particles of several nanometers in size, it is easily converted into silicon carbide by molten silicon, silicon-containing gas, or precipitated metallic silicon. The strength of silicon carbide materials is improved.
作囲
VAD(〜1apor−phase Axial
Deposition) i去等による気相合成石英
ガラスは、金属不純物含有量の合計がl ppm以下と
極めて純度が高く、また多孔質であるため、炭素含有ガ
ス雰囲気中で熱処理することにより合成石英ガラスの多
孔体内部にまで炭素を析出させることが可能である。Sakuei VAD (~1apor-phase Axial
Deposition) Vapor-phase synthetic quartz glass produced by irradiation, etc. has extremely high purity with a total metal impurity content of less than 1 ppm, and is porous, so it can be heated in a carbon-containing gas atmosphere to form synthetic quartz glass. It is possible to deposit carbon even inside the porous body.
また合成石英ガラスの多孔体中に析出させる炭素を、炭
素/二酸化珪素のモル比で3以上とすることにより、二
酸化珪素が残存し、この二酸化珪素が熱処理の際にSi
Oガスとなって揮発し、この結果、多孔体の形状が崩れ
、強度の低下あるいは粉体化を起こすといったことも生
しない。Furthermore, by setting the carbon precipitated in the porous body of synthetic quartz glass to a carbon/silicon dioxide molar ratio of 3 or more, silicon dioxide remains, and this silicon dioxide becomes Si during heat treatment.
It volatilizes as O gas, and as a result, the porous body does not lose its shape, lose strength, or become powder.
さらに上記熱処理により二酸化珪素−炭素複合体となっ
たものを焼成することによって、極めて純度が高い炭化
珪素質の多孔質成形体あるいは炭化珪素−炭素質の多孔
質成形体が得られる。Furthermore, by firing the silicon dioxide-carbon composite obtained by the above heat treatment, a porous silicon carbide molded body or a silicon carbide-carbon porous molded body with extremely high purity can be obtained.
次にこの多孔質成形体を金属シリコンの融点以上に加熱
して、真空下で溶融シリコンに浸漬して反応焼結させる
ことにより、緻密な炭化珪素質材料か容易に得られる。Next, this porous molded body is heated to a temperature higher than the melting point of metal silicon, and is immersed in molten silicon under vacuum for reaction sintering, thereby easily obtaining a dense silicon carbide material.
あるいは溶融シリコンを用いる代わりに、前記多孔質成
形体を珪素を含有したガス雰囲気中で熱処理することに
より、前記多孔質成形体の内部表面にまで金属シリコン
を十分析出させるこ、とが可能である。前記多孔質成形
体の内部に過剰の炭素が存在する場合には、前記金属シ
リコンと速やかに反応して炭化珪素となり、炭化珪素質
材料の強度は向上する。Alternatively, instead of using molten silicon, by heat-treating the porous molded body in a silicon-containing gas atmosphere, it is possible to cause metallic silicon to come out even to the inner surface of the porous molded body. be. When excess carbon exists inside the porous molded body, it quickly reacts with the metal silicon to form silicon carbide, and the strength of the silicon carbide material is improved.
上記の方法によると、従来の方法では不可欠な原料の粉
砕、混合、成形等の工程を省略することができ、これら
のプロセスにおける汚染を避けることができるため極め
て高純度な炭化珪素質材料が得られる。According to the above method, it is possible to omit the steps such as crushing, mixing, and molding of raw materials, which are essential in conventional methods, and it is possible to avoid contamination in these processes, resulting in extremely high purity silicon carbide materials. It will be done.
丈籏1四ば」二校例
以下、本発明に係る炭化珪素質材料の製造方法の実施例
及び比較例を説明する。EXAMPLE 2 Examples of the method for manufacturing a silicon carbide material according to the present invention will be described below.
[実施例1]
VAD法により合成した、かさ密度が約0.3g/cm
3、比表面積が約12m2/g、平均粒子径が02μm
の合成石英ガラスの多孔体を、メタンガス100%の雰
囲気下、1000°Cの温度て4時間処理し、二酸化珪
素と炭素のモル比が約85である合成石英ガラスの多孔
体−炭素の複合体を得た。[Example 1] Synthesized by VAD method, bulk density is about 0.3 g/cm
3.Specific surface area is approximately 12m2/g, average particle diameter is 02μm
A synthetic quartz glass porous body was treated in an atmosphere of 100% methane gas at a temperature of 1000°C for 4 hours to produce a synthetic quartz glass porous body-carbon composite with a molar ratio of silicon dioxide and carbon of about 85. I got it.
ついて、この複合体を真空下、2000°Cの温度で3
時間焼成し、かさ密度が約0.8g/cm3.気孔率が
約46%、炭化珪素と炭素とのモル比が約5.5である
多孔質炭化珪素−炭素の複合体である多孔質成形体を得
た。Then, this composite was incubated under vacuum at a temperature of 2000°C for 3
After baking for an hour, the bulk density was about 0.8g/cm3. A porous molded body, which is a porous silicon carbide-carbon composite having a porosity of about 46% and a molar ratio of silicon carbide to carbon of about 5.5, was obtained.
この多孔質成形体を炭化珪素のコーティングを施した黒
鉛製ルツボ内に挿入し、周囲に純度1ONの塊状金属シ
リコンを入れ1600°Cに加熱し、溶融したシリコン
を多孔質成形体の開気孔中に浸透させた。This porous molded body was inserted into a graphite crucible coated with silicon carbide, and a lump of metallic silicon with a purity of 1ON was placed around it and heated to 1600°C, and the molten silicon was poured into the open pores of the porous molded body. infiltrated into.
第1表に得られた炭化珪素質材料の密度及び曲げ強度を
、第2表に金属不純物濃度を示した。Table 1 shows the density and bending strength of the silicon carbide material obtained, and Table 2 shows the metal impurity concentration.
夏上人
免λ去
(単位: ppm)
[比較例1]
同様の合成石゛英ガラスを、メタンガス100%の雰囲
気下、1000°Cの温度て1時間処理したところ、二
酸化珪素と炭素とのモル比が約2.3である合成石英ガ
ラスの多孔体−炭素の複合体を得た。Summer Shonin Release (Unit: ppm) [Comparative Example 1] When similar synthetic quartz glass was treated at a temperature of 1000°C for 1 hour in an atmosphere of 100% methane gas, silicon dioxide and carbon were removed. A composite of porous synthetic quartz glass and carbon having a molar ratio of about 2.3 was obtained.
ついで、この複合体を真空下、2000°Cの温度で3
時間処理したところ、粉体状の炭化珪素となりシリコン
の含浸は不可能であった。This composite was then incubated under vacuum at a temperature of 2000°C for 3
When treated for a period of time, it became powdered silicon carbide, making it impossible to impregnate it with silicon.
[比較例2〕
従来法により製造された半導体用炭化珪素質材料の純度
を比較のために上記第2表に併記した。[Comparative Example 2] The purity of the silicon carbide material for semiconductors manufactured by the conventional method is also listed in the above Table 2 for comparison.
[実施例2]
VAD法により合成した、かさ密度が約0.5g7cm
3、比表面積が約10m27g、平均粒子径が約02u
mの合成石英ガラスの多孔体を、メタンカス100%の
雰囲気下、900°Cの温度で4時間炭化処理を施し、
炭素と二酸化珪素のモル比が約65である合成石英ガラ
スの多孔体−炭素の複合体を得た。[Example 2] Synthesized by VAD method, bulk density is about 0.5g7cm
3. Specific surface area is about 10m27g, average particle size is about 02u
A porous body of synthetic quartz glass of m was subjected to carbonization treatment at a temperature of 900°C for 4 hours in an atmosphere of 100% methane gas,
A composite of porous synthetic quartz glass and carbon in which the molar ratio of carbon to silicon dioxide was about 65 was obtained.
次に、この複合体を真空下、1800°Cの温度で3時
間焼成し、かさ密度が約0.9g/cm3、気孔率が約
32%、炭素と炭化珪素とのモル比が約3.5である炭
化珪素−炭素の複合体(多孔質成形体)を得た。Next, this composite was fired under vacuum at a temperature of 1800°C for 3 hours, and the bulk density was about 0.9 g/cm3, the porosity was about 32%, and the molar ratio of carbon to silicon carbide was about 3. A silicon carbide-carbon composite (porous molded body) No. 5 was obtained.
次に前記多孔質成形体を石英ガラス製の反応管を備えた
電気炉内において、5IHCj3ガスが10voj%、
H2ガスが90voj%の混合ガス雰囲気中で、100
0°Cの温度で処理し、過剰の炭素を析出したジノコン
によって炭化珪素化させた。この処理により、内部まで
シリコンが浸透した緻密な炭化珪素質材料を得ることが
できた。Next, the porous molded body was placed in an electric furnace equipped with a reaction tube made of quartz glass, and 5IHCj3 gas was added at 10voj%.
In a mixed gas atmosphere containing 90 voj% H2 gas, 100
It was treated at a temperature of 0°C and converted into silicon carbide by dinocon, which precipitated excess carbon. Through this treatment, it was possible to obtain a dense silicon carbide material in which silicon penetrated into the interior.
第3表に得られた炭化珪素質材料の密度及び曲げ強度を
、第4表に含有される金属不純物濃度を示した。Table 3 shows the density and bending strength of the silicon carbide material obtained, and Table 4 shows the concentration of metal impurities contained therein.
この実施例に係る炭化珪素質材料4の製造方法によれば
、かさ密度が2.97g/cm3.見掛けの気孔率が0
.82voj%、平均曲げ強度が48.2kgf/mm
2と高強度のものが得られ、不純物はいずれもlppm
未濶の高純度な炭化珪素質材料が得られた。According to the method for manufacturing silicon carbide material 4 according to this example, the bulk density is 2.97 g/cm3. Apparent porosity is 0
.. 82voj%, average bending strength 48.2kgf/mm
2, high strength was obtained, and all impurities were lppm.
An unprecedented high purity silicon carbide material was obtained.
[比較例3]
同様の合成石英カラスの多孔体を、メタンカス100%
の雰囲気下、900°Cの温度で、1時間処理したとこ
ろ、二酸化珪素と炭素とのモル比が約17である合成石
英ガラスの多孔体−炭素の複合体を得た。ついで、この
複合体を真空下、1800°Cの温度て3時間焼成処理
を施したところ、粉体状の炭化珪素となり、後工程であ
る金属シリコンの含浸は不可能であった。[Comparative Example 3] A similar porous body of synthetic quartz glass was made of 100% methane glass.
When the mixture was treated in an atmosphere of 900° C. for 1 hour, a porous synthetic quartz glass-carbon composite having a molar ratio of silicon dioxide to carbon of about 17 was obtained. Then, when this composite was subjected to a firing treatment under vacuum at a temperature of 1800° C. for 3 hours, it became powdered silicon carbide, and it was impossible to impregnate it with metallic silicon as a subsequent step.
[比較例4]
炭化珪素の粉体を有機バインダーを用いて、成形、焼成
し、得られた炭化珪素の多孔体に溶融ジノコンを含浸さ
せて炭化珪素質材料を製造した。[Comparative Example 4] Silicon carbide powder was molded and fired using an organic binder, and the resulting porous silicon carbide was impregnated with molten dinocon to produce a silicon carbide material.
この炭化珪素質材料の密度及び曲げ強度を第3表に、純
度を第4表にそれぞれ示した。かさ密度が3.02g/
cm3.見掛けの気孔率が0.31vog%、平均曲げ
強度が24.8kgf/mm2と比較的強度が低く、不
純物の含有量が多い炭化珪素質材料となった。The density and bending strength of this silicon carbide material are shown in Table 3, and the purity is shown in Table 4. Bulk density is 3.02g/
cm3. The silicon carbide material had an apparent porosity of 0.31 vog%, an average bending strength of 24.8 kgf/mm2, relatively low strength, and a high content of impurities.
(単位: ppm)
光l団と弘里
以上の説明により明らかなよう(二本発明に係る炭化珪
素質材料の製造方法にあっては、半導体製造用治具、例
えばシリコンウェハの熱拡散処理等に使用されるプロセ
スチューブ、ウェハボート等の耐熱性治具を製作するの
に適した高純度で強度が高い炭化珪素質材料を製造する
ことができる。(Unit: ppm) As is clear from the above explanations, the method for manufacturing a silicon carbide material according to the present invention uses semiconductor manufacturing jigs, such as thermal diffusion treatment of silicon wafers, etc. It is possible to produce a high-purity, high-strength silicon carbide material suitable for manufacturing heat-resistant jigs such as process tubes and wafer boats used in
特 許 出 願 人 住友金属工業株式会社 代 理 人・弁理士 井内龍ニSpecial permission Out wish Man Sumitomo Metal Industries Co., Ltd. teenager Reason People/patent attorneys Ryu Iuchi
Claims (5)
ハロゲン化炭化水素ガスを含有するガスの熱分解により
生成する炭素を析出させ、その後焼成して得られる多孔
質成形体の開気孔中に金属シリコンを充填することを特
徴とする炭化珪素質材料の製造方法。(1) Carbon produced by thermal decomposition of a gas containing hydrocarbon gas or halogenated hydrocarbon gas is deposited in a synthetic quartz glass porous body, and then fired into the open pores of the porous molded body obtained. A method for producing a silicon carbide material, characterized by filling it with metallic silicon.
素/二酸化珪素のモル比で3以上とすることを特徴とす
る請求項1記載の炭化珪素質材料の製造方法。(2) The method for producing a silicon carbide-based material according to claim 1, characterized in that the carbon precipitated in the synthetic silica glass porous body has a carbon/silicon dioxide molar ratio of 3 or more.
金属シリコンと反応焼結させることを特徴とする請求項
1又は請求項2記載の炭化珪素質材料の製造方法。(3) The method for producing a silicon carbide material according to claim 1 or 2, characterized in that surplus carbon remaining in the porous molded body is reacted and sintered with the filled metal silicon.
が、溶融シリコンの浸透によるものであることを特徴と
する請求項1乃至請求項3のいずれかの項に記載の炭化
珪素質材料の製造方法。(4) The silicon carbide material according to any one of claims 1 to 3, wherein the metallic silicon is filled into the open pores of the porous molded body by penetration of molten silicon. Method of manufacturing the material.
が、珪素含有ガスの熱分解によるものであることを特徴
とする請求項1乃至請求項3のいずれかの項に記載の炭
化珪素質材料の製造方法。(5) The carbonization according to any one of claims 1 to 3, wherein the metal silicon is filled into the open pores of the porous molded body by thermal decomposition of a silicon-containing gas. A method for producing a silicon material.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2251223A JPH04130060A (en) | 1990-09-19 | 1990-09-19 | Production of silicon carbide-based material |
EP91111425A EP0466109B1 (en) | 1990-07-10 | 1991-07-09 | Process for producing a silicon carbide-base complex |
DE69104918T DE69104918T2 (en) | 1990-07-10 | 1991-07-09 | Method for producing a composite body based on silicon carbide. |
US08/089,615 US5380511A (en) | 1990-07-10 | 1993-07-12 | Process for producing silicon carbide-base complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2251223A JPH04130060A (en) | 1990-09-19 | 1990-09-19 | Production of silicon carbide-based material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04130060A true JPH04130060A (en) | 1992-05-01 |
Family
ID=17219539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2251223A Pending JPH04130060A (en) | 1990-07-10 | 1990-09-19 | Production of silicon carbide-based material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04130060A (en) |
-
1990
- 1990-09-19 JP JP2251223A patent/JPH04130060A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5589116A (en) | Process for preparing a silicon carbide sintered body for use in semiconductor equipment | |
US4891338A (en) | Production of metal carbide articles | |
US4040849A (en) | Polycrystalline silicon articles by sintering | |
JPS5844630B2 (en) | silicone carbide material | |
JPH0774108B2 (en) | Ceramic material mainly composed of silicon powder bonded by reaction in the presence of carbon and method for producing the same | |
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
JPS6356700B2 (en) | ||
US20070138706A1 (en) | Method for preparing metal ceramic composite using microwave radiation | |
Schmidt et al. | Silicon nitride derived from an organometallic polymeric precursor: preparation and characterization | |
US4040848A (en) | Polycrystalline silicon articles containing boron by sintering | |
JPS5983978A (en) | Novel material comprising silicon and manufacture | |
JPS6311589A (en) | Heat resistant tool and manufacture | |
CN108017413A (en) | A kind of method for preparing SiC nanowire in C/SiC composite material surfaces | |
JP2721678B2 (en) | β-silicon carbide molded body and method for producing the same | |
JPH04130060A (en) | Production of silicon carbide-based material | |
EP3597621A1 (en) | Method for producing silicon-carbide-based complex | |
JPS6225605B2 (en) | ||
US5254509A (en) | Production of metal carbide articles | |
JPH03223196A (en) | Melting crucible device | |
RU2160705C2 (en) | Method of production of metallic silicon | |
JPH0359033B2 (en) | ||
JPS63166789A (en) | Graphite crucible used in pulling up device for silicon single crystal and production thereof | |
JP3482480B2 (en) | Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same | |
JP4218853B2 (en) | Carbonaceous crucible for pulling single crystal and method for producing the same | |
JPH08151268A (en) | Production of silicon carbide sintered compact |