[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6435268B2 - Aluminum alloy plate for can end and manufacturing method thereof - Google Patents

Aluminum alloy plate for can end and manufacturing method thereof Download PDF

Info

Publication number
JP6435268B2
JP6435268B2 JP2015544889A JP2015544889A JP6435268B2 JP 6435268 B2 JP6435268 B2 JP 6435268B2 JP 2015544889 A JP2015544889 A JP 2015544889A JP 2015544889 A JP2015544889 A JP 2015544889A JP 6435268 B2 JP6435268 B2 JP 6435268B2
Authority
JP
Japan
Prior art keywords
less
rolling
aluminum alloy
ear
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015544889A
Other languages
Japanese (ja)
Other versions
JPWO2015064290A1 (en
Inventor
建穂 大場
建穂 大場
鈴木 覚
覚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Publication of JPWO2015064290A1 publication Critical patent/JPWO2015064290A1/en
Application granted granted Critical
Publication of JP6435268B2 publication Critical patent/JP6435268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Description

本発明は、飲料缶等の缶エンドに使用されるアルミニウム合金板及びその製造方法に関するものである。   The present invention relates to an aluminum alloy plate used for a can end such as a beverage can and a method for producing the same.

缶エンド用アルミニウム合金としては、強度や成形性の観点から、従来よりJIS5082合金(Al−4.5Mg合金)、5182合金(Al−4.5Mg−0.35Mn合金)、或いは5052合金(Al−2.5Mg−0.25Cr合金)などのAl−Mg系合金が広く用いられている。そして、ビール缶や炭酸飲料缶などの内圧(正の内圧:いわゆる陽圧)の加わる缶の缶エンド材としては、耐圧強度の観点から、これらのうちでも、特に強度を有する5182合金材が多用されている。   As aluminum alloys for can ends, from the viewpoint of strength and formability, JIS5082 alloy (Al-4.5Mg alloy), 5182 alloy (Al-4.5Mg-0.35Mn alloy), or 5052 alloy (Al- Al-Mg alloys such as 2.5Mg-0.25Cr alloy are widely used. And as a can end material of a can to which an internal pressure (positive internal pressure: so-called positive pressure) such as a beer can or a carbonated beverage can is applied, among these, a 5182 alloy material having particularly strong strength is often used. Has been.

この缶エンドの製造は、所定の缶エンド用アルミニウム合金板から円形の缶エンド素板を打ち抜き、これを成形して作られる。まず、缶エンド用アルミニウム合金板は、所定の合金組成の鋳塊を均質化処理し、これを熱間圧延、冷間圧延、中間焼鈍、最終冷間圧延の工程を経て、厚さ0.2〜0.3mmのAl合金板とし、更にこの板を塗装焼付して焼付塗装コイルとする。次に、缶エンドの成形は、前記の焼付塗装コイルを用いてシェル工程(焼付塗装板コイルからエンドの形に打ち抜き、外周部を形成)、カーリング工程(外周部の縁を内側に曲げる)、コンバージョンプレス工程(内側パネルに凹凸部、スコア、リベット等の加工を行う)を経て、最終の缶エンドとされる。   The can end is manufactured by punching a circular can end base plate from a predetermined aluminum alloy plate for a can end, and then forming it. First, an aluminum alloy plate for can ends is obtained by homogenizing an ingot of a predetermined alloy composition, and subjecting the ingot to a thickness of 0.2 after going through hot rolling, cold rolling, intermediate annealing, and final cold rolling. A 0.3 mm Al alloy plate is coated and baked to form a baked coating coil. Next, the can end is formed by using the above-mentioned baking coating coil, shell process (punching from the baking coating plate coil into the shape of the end, forming the outer peripheral portion), curling step (bending the edge of the outer peripheral portion inward), The final can end is obtained through a conversion press process (processing the concave and convex portions, scores, rivets and the like on the inner panel).

缶エンドを缶ボディに取り付けるにあたっては、缶ボディの縁部に缶エンドを巻き締め加工する必要があるが、缶エンド材の深絞り耳率が高い場合、この巻き締め加工において、巻き締め不良が生じるおそれがある。具体的には、アルミニウム合金板の耳率が高い場合、成形された缶エンド体のカール部の高さ(カールハイト)が円周方向にて均一とはならない。カールハイトが円周方向で不均一になってしまうと、缶ボディとの巻き締める際に、カールハイトが部分的に高い箇所にて缶ボディ体と点接触してしまい、カールハイトが低い箇所では、十分な巻き締めがなされない不具合が生じてしまう。そのため、缶エンド用アルミニウム合金板には、出来るだけ耳率の低いことが要求されている。   When attaching the can end to the can body, it is necessary to wind the can end around the edge of the can body. May occur. Specifically, when the ear ratio of the aluminum alloy plate is high, the height (curl height) of the curled portion of the molded can end body is not uniform in the circumferential direction. If the curl height becomes uneven in the circumferential direction, when winding with the can body, the curl height will be in point contact with the can body part at a part where the curl height is partially high, and at the part where the curl height is low This causes a problem that sufficient winding is not performed. Therefore, the aluminum alloy plate for can ends is required to have as low an ear rate as possible.

近年、飲料缶のコストダウンの必要性から缶エンド用アルミニウム合金板については、薄肉化が進んでおり、前記アルミニウム合金板の高強度化が望まれている。高強度化に伴い、缶エンド用アルミニウム合金板として更に要求される特性としては、前記の耳率の低いこと、及び、強度の異方性、例えば圧延方向に対して0°、45°、90°の各方向の引張強さの最大値と最小値の差が小さいことが挙げられる。缶エンドの製造工程は前記の通りであるが、この中でもリベット成形は、前記缶エンドの製造工程で適用されるその他の成形加工と比較して過酷な加工であり、強度の異方性が大きい場合、加工に伴う材料の変形が円周方向にて均一とはならず、局所的な変形により割れが生じる不具合を招く。仮に割れが生じなかったとしても加工後のリベット部の寸法が円周方向にて均一とはならず、後にタブをリベット部に固定する際に、正しく固定されず、その結果、開缶不良に繋がる等の不具合を招く場合がある。   In recent years, aluminum alloy plates for can ends have been made thinner due to the need for cost reduction of beverage cans, and it is desired to increase the strength of the aluminum alloy plates. Along with the increase in strength, the properties further required as an aluminum alloy plate for can ends include a low ear ratio and anisotropy of strength, for example, 0 °, 45 °, 90 ° with respect to the rolling direction. The difference between the maximum value and the minimum value of the tensile strength in each direction of ° is small. The manufacturing process of the can end is as described above. Among them, the rivet molding is a severe process compared with other molding processes applied in the manufacturing process of the can end, and the strength anisotropy is large. In this case, the deformation of the material accompanying the processing is not uniform in the circumferential direction, which causes a problem that a crack occurs due to local deformation. Even if cracking does not occur, the dimension of the rivet part after processing is not uniform in the circumferential direction, and when fixing the tab to the rivet part later, it is not fixed correctly, resulting in poor opening of the can. In some cases, it may lead to problems such as being connected.

一方、上記の特性を有する缶エンド用アルミニウム合金板の製造方法としては、環境負荷軽減の要求も高まる中で、中間焼鈍工程の省略も望まれており、その検討もなされている。中間焼鈍を省略する工程は、中間焼鈍を施す工程に比べると、前記のコストダウンや環境負荷軽減の観点で有利であるとともに、冷間圧延率を高く設定しやすいため、高強度化が可能である。このため、日本国外の缶エンド材では、中間焼鈍を省略した工程が多用されている。しかしながら、中間焼鈍を省略した工程の場合、中間焼鈍の熱処理条件(温度、時間)や中間焼鈍前までの冷間圧延率、中間焼鈍後の冷間圧延率の変更等による耳制御は適用できないため、耳率の制御が制限されてしまう。   On the other hand, as a method for producing an aluminum alloy plate for can ends having the above-mentioned characteristics, it is desired to omit the intermediate annealing step while the demand for reducing the environmental load is increasing, and the investigation has been made. The process of omitting the intermediate annealing is advantageous in terms of cost reduction and environmental load reduction as compared with the process of performing the intermediate annealing, and it is easy to set the cold rolling rate high, so that the strength can be increased. is there. For this reason, in the can end material outside Japan, a process in which intermediate annealing is omitted is frequently used. However, in the case of the process omitting the intermediate annealing, the ear control by changing the heat treatment conditions (temperature, time) of the intermediate annealing, the cold rolling rate before the intermediate annealing, the cold rolling rate after the intermediate annealing, etc. cannot be applied. Control of the ear rate will be limited.

このような中間焼鈍工程を省略した缶エンド用アルミニウム合金板としては、例えば特許文献1、2に示されるようなものが提案されている。また、中間焼鈍工程を省略した缶ボディ用アルミニウム合金板としては、例えば特許文献3に示されるようなものが提案されている。   As an aluminum alloy plate for can ends that omits such an intermediate annealing step, for example, those shown in Patent Documents 1 and 2 have been proposed. Further, as an aluminum alloy plate for a can body that omits the intermediate annealing step, for example, the one shown in Patent Document 3 has been proposed.

特開2003−129293号公報JP 2003-129293 A 特開2011−052290号公報JP 2011-052290 A 特開2006−89828号公報JP 2006-89828 A

特許文献1においては、合金組成と製造条件の最適化とにより、リベット成形性やスコア加工性、耐ブローアップ性に優れるアルミニウム合金板が提案されている。しかし、実施例の耐力は最大で318N/mmであり、薄肉化の要求に応えるだけの缶エンド材の強度としては十分ではない。また、耳率の制御に関しても全く配慮されていない。Patent Document 1 proposes an aluminum alloy plate that is excellent in rivet formability, score processability, and blow-up resistance by optimizing the alloy composition and manufacturing conditions. However, the proof stress of the example is 318 N / mm 2 at the maximum, which is not sufficient as the strength of the can end material that can meet the demand for thinning. Also, no consideration is given to the control of the ear rate.

特許文献2においては、合金組成と耳率、強度、製造条件等を規定した缶エンド用アルミニウム合金板が提案されており、熱間圧延工程に関しては、粗熱間圧延工程におけるパス毎の圧延率、圧延温度と時間、熱間仕上げ圧延工程の終了温度、冷却速度についての条件は記載されている。しかし、熱間仕上げ圧延工程における圧下率や歪み速度については全く記載がなく、耳制御の観点では未だ改善の余地を残していた。   Patent Document 2 proposes an aluminum alloy sheet for can ends that defines the alloy composition, ear ratio, strength, production conditions, and the like. Regarding the hot rolling process, the rolling rate for each pass in the rough hot rolling process. The conditions concerning the rolling temperature and time, the finishing temperature of the hot finish rolling process, and the cooling rate are described. However, there is no description about the rolling reduction and strain rate in the hot finish rolling process, and there is still room for improvement from the viewpoint of ear control.

一方、特許文献3においては、熱間仕上げ圧延工程における圧下率や歪み速度についての記載はあるものの、ボトル形状の飲料缶に用いられるアルミニウム合金板に関するものである。従って、缶エンド用のアルミニウム合金板とは合金組成、均質化処理条件も異なるため、これをそのまま缶エンド用アルミニウム合金板に直ちに適用することは困難である。   On the other hand, Patent Document 3 relates to an aluminum alloy plate used for a bottle-shaped beverage can, although there is a description of the reduction rate and strain rate in the hot finish rolling process. Therefore, since the alloy composition and the homogenization treatment conditions are different from those of the aluminum alloy plate for can end, it is difficult to immediately apply this to the aluminum alloy plate for can end as it is.

本発明は前記課題に鑑みてなされたものであり、缶エンドに適したアルミニウム合金材として、高強度で且つ強度の異方性が小さく、低い耳率を有する缶エンド用アルミニウム合金板、及び該アルミニウム合金板を低コストで製造する方法を提供することを目的とする。   The present invention has been made in view of the above problems. As an aluminum alloy material suitable for a can end, an aluminum alloy plate for a can end having high strength, low strength anisotropy, and low ear ratio, It aims at providing the method of manufacturing an aluminum alloy plate at low cost.

本発明者らは、高強度で且つ強度の異方性が小さく、低い耳率を有する缶エンド用アルミニウム合金板を低コストで提供すべく、中間焼鈍を省略した工程における耳制御に関して鋭意研究した結果、アルミニウム合金の組成を適切に調整すると、最終板の耳率及び強度の異方性が低下傾向になることを見出した。また、熱間圧延工程における熱間仕上げ圧延工程の条件を適正に調整することで、最終板の耳率及び強度の異方性を容易に制御できることを見出した。本発明者らは、本知見を下に、缶エンド用として好適な本発明を完成させるに至った。   The present inventors have intensively studied ear control in a process in which intermediate annealing is omitted in order to provide an aluminum alloy plate for can ends having high strength, low strength anisotropy, and low ear ratio at low cost. As a result, it was found that when the composition of the aluminum alloy is appropriately adjusted, the ear ratio and strength anisotropy of the final plate tend to decrease. Further, it has been found that the ear ratio and strength anisotropy of the final plate can be easily controlled by appropriately adjusting the conditions of the hot finish rolling step in the hot rolling step. Based on this finding, the present inventors have completed the present invention suitable for can ends.

すなわち、本発明の缶エンド用アルミニウム合金板は、mass%で、Si:0.01%以上0.2%以下、Fe:0.01%以上0.35%以下、Cu:0.01%以上0.15%以下、Mn:0.2%以上0.5%未満、Mg:4.0%以上5.以下を含有し、残部Al及び不可避的不純物からなるアルミニウム合金から構成され、塗装焼付け後において、圧延方向に対して0°、45°、90°方向に引張試験をしたときの耐力の最小値が320N/mm以上370N/mm以下、かつ、引張強さの最大値と最小値の差が25N/mm以下であって、耳率が7%未満であることを特徴とする。 That is, the aluminum alloy plate for can ends of the present invention is mass%, Si: 0.01% to 0.2%, Fe: 0.01% to 0.35%, Cu: 0.01% or more 0.15% or less, Mn: 0.2% or more and less than 0.5%, Mg: 4.0% or more and 5. 1 % or less , composed of an aluminum alloy composed of the balance Al and unavoidable impurities, and the minimum yield strength when subjected to tensile tests in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction after baking value 320N / mm 2 or more 370N / mm 2 or less, and the difference of tensile strength the maximum value and the minimum value of is not more 25 N / mm 2 or less, wherein the ear rate is less than 7%.

また、本発明の缶エンド用アルミニウム合金板の製造方法は、mass%で、Si:0.01%以上0.2%以下、Fe:0.01%以上0.35%以下、Cu:0.01%以上0.15%以下、Mn:0.2%以上0.5%未満、Mg:4.0%以上5.以下を含有し、残部Al及び不可避的不純物からなる合金鋳塊に450℃以上530℃以下で0.5時間以上15時間以内の均質化処理を施した後、熱間圧延を施すにあたり、熱間仕上げ圧延の総圧下率が88%以上94%以下、かつ最終パスでの歪み速度を60sec−1以上130sec−1以下、終了温度を310℃以上370℃以下となるように行い、その後、最終板厚まで焼鈍を施すことなく、84%以上94%以下の冷間圧延率にて最終板厚とすることにより、塗装焼付け後において、圧延方向に対して0°、45°、90°方向に引張試験をしたときの耐力の最小値が320N/mm以上370N/mm以下、かつ、引張強さの最大値と最小値の差が25N/mm以下であって、耳率が7%未満である合金板を製造することを特徴とする。 Moreover, the manufacturing method of the aluminum alloy plate for can ends of the present invention is mass%, Si: 0.01% to 0.2%, Fe: 0.01% to 0.35%, Cu: 0.00. 01% or more and 0.15% or less, Mn: 0.2% or more and less than 0.5%, Mg: 4.0% or more and 5. In performing hot rolling after homogenizing the alloy ingot containing 1 % or less and comprising the balance Al and inevitable impurities at 450 ° C. or more and 530 ° C. or less for 0.5 hour or more and 15 hours or less, the total rolling reduction of hot finish rolling is 88% or more 94% or less, and a strain rate of the final pass 60 sec -1 or more 130Sec -1 or less, do as the end temperature becomes 310 ° C. or higher 370 ° C. or less, then, Without annealing to the final sheet thickness, by setting the final sheet thickness at a cold rolling rate of 84% or more and 94% or less, the direction of 0 °, 45 °, and 90 ° with respect to the rolling direction after painting and baking. tensile minimum value of the yield strength of when the test is 320N / mm 2 or more 370N / mm 2 or less in and the difference between the maximum value and the minimum value of the tensile strength is not more 25 N / mm 2 or less, the ear rate 7 Made of alloy plate that is less than Characterized in that it.

本発明に係るアルミニウム合金板によれば、中間焼鈍工程を省略したにもかかわらず、高強度で且つ異方性が小さく、耳率の低い缶エンド用アルミニウム合金板を提供することが可能になる。また、本発明に係る製造方法によれば、中間焼鈍工程を省略しても、アルミニウム合金板の強度、異方性及び耳率を容易に制御することが可能になる。   ADVANTAGE OF THE INVENTION According to the aluminum alloy plate which concerns on this invention, it becomes possible to provide the aluminum alloy plate for can ends with a high intensity | strength, a small anisotropy, and a low ear rate, although the intermediate annealing process was abbreviate | omitted. . Moreover, according to the manufacturing method which concerns on this invention, even if an intermediate annealing process is abbreviate | omitted, it becomes possible to control easily the intensity | strength of an aluminum alloy plate, anisotropy, and an ear rate.

以下、本発明の缶エンド用アルミニウム合金板及びその製造方法について詳細に説明する。
[A.缶エンド用アルミニウム合金板]
本発明の缶エンド用アルミニウム合金板は、所定の合金組成、塗装焼付け後の耐力及び耳率を有する。以下に、これらについて順に説明する。
Hereinafter, the aluminum alloy plate for can ends of the present invention and the manufacturing method thereof will be described in detail.
[A. Aluminum alloy plate for can end]
The aluminum alloy plate for can ends of the present invention has a predetermined alloy composition, proof strength after painting and baking, and ear rate. Below, these are demonstrated in order.

[A−1.アルミニウム合金の組成]
アルミニウム合金は、mass%で、Si:0.01%以上0.2%以下、Fe:0.01%以上0.35以下、Cu:0.01%以上0.15%以下、Mn:0.2%以上0.5%未満、Mg:4.0%以上5.5%未満を含有し、残部Al及び不可避的不純物から構成される。以下において、各成分の限定理由について説明する。
[A-1. Composition of aluminum alloy]
The aluminum alloy is mass%, Si: 0.01% to 0.2%, Fe: 0.01% to 0.35, Cu: 0.01% to 0.15%, Mn: 0.00%. It contains 2% or more and less than 0.5%, Mg: 4.0% or more and less than 5.5%, and is composed of the balance Al and inevitable impurities. Below, the reason for limitation of each component is demonstrated.

(Si:0.01%以上0.2%以下)
Siは精錬前のアルミ原材料中から存在する不可避的不純物成分であり、Al(Fe、Mn)Si系化合物、MgSi等の第2相粒子形成に影響を及ぼす。Si量が0.01%未満ではアルミ原材料の製造コストが過大となり、一方0.2%を超えれば、上記の第2相粒子の生成と粗大化が生じ、熱間圧延工程における立方体方位の成長を抑制し耳率の悪化や、リベット成形時に割れが生じる等の成形性の低下を招くおそれがある。そこで、Si量は0.01%以上0.2%以下の範囲内とした。好ましくは、0.05%以上0.2%以下の範囲内である。
(Si: 0.01% or more and 0.2% or less)
Si is an unavoidable impurity component present in the aluminum raw material before refining, and affects the formation of second phase particles such as Al (Fe, Mn) Si-based compounds and Mg 2 Si. If the amount of Si is less than 0.01%, the production cost of the aluminum raw material becomes excessive. On the other hand, if it exceeds 0.2%, the generation and coarsening of the above-mentioned second phase particles occur, and the cubic orientation growth in the hot rolling process occurs. There is a possibility that deterioration of formability such as deterioration of the ear rate and cracking during rivet molding may be caused. Therefore, the Si amount is set in the range of 0.01% to 0.2%. Preferably, it is in the range of 0.05% or more and 0.2% or less.

(Fe:0.01%以上0.35%以下)
FeはSiと同様に精錬前のアルミ原材料中から存在する不可避的不純物成分であり、Al(Fe、Mn)Si系化合物等の第2相粒子形成に影響を及ぼす。Fe量が0.01%未満ではアルミ原材料の製造コストが過大となり、一方0.35%を超えれば、上記の第2相粒子の生成と粗大化が生じ、熱間圧延工程における立方体方位の成長を抑制し耳率の悪化や、リベット成形時に割れが生じる等の成形性の低下を招くおそれがある。そこで、Fe量は0.01%以上0.35%以下の範囲内とした。好ましくは、0.05%以上0.35%以下の範囲内である。
(Fe: 0.01% or more and 0.35% or less)
Fe, like Si, is an inevitable impurity component present in the raw aluminum material before refining, and affects the formation of second phase particles such as Al (Fe, Mn) Si-based compounds. If the Fe content is less than 0.01%, the production cost of the aluminum raw material becomes excessive. On the other hand, if it exceeds 0.35%, the above-mentioned second phase particles are generated and coarsened, and the cube orientation grows in the hot rolling process. There is a possibility that deterioration of formability such as deterioration of the ear rate and cracking during rivet molding may be caused. Therefore, the amount of Fe is set in the range of 0.01% to 0.35%. Preferably, it is in the range of 0.05% or more and 0.35% or less.

(Cu:0.01%以上0.15%以下)
Cuは強度向上と熱処理時の材料軟化を抑制するために有効な元素である。Cu量が0.01%未満では十分な効果が得られず、一方0.15%を超えれば、強度が高くなり過ぎてリベット成形時に割れが生じる等の低下を招くおそれがある。そこで、Cu量は0.01%以上0.15%以下の範囲内とした。好ましくは、0.03%以上0.15%以下の範囲内である。
(Cu: 0.01% or more and 0.15% or less)
Cu is an effective element for improving strength and suppressing material softening during heat treatment. If the amount of Cu is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.15%, the strength becomes too high, and there is a risk of causing a decrease such as cracking during rivet molding. Therefore, the amount of Cu is set within a range of 0.01% to 0.15%. Preferably, it is in the range of 0.03% to 0.15%.

(Mn:0.2%以上0.5%未満)
Mnは強度向上と熱処理時の材料軟化を抑制するために有効な元素であり、Al(Fe、Mn)Si系化合物等の第2相粒子形成に影響を及ぼす。Mn量が0.2%未満では十分な効果が得られず、一方0.5%以上では、上記の第2相粒子の生成と粗大化が生じ、熱間圧延工程における立方体方位の成長を抑制し耳率の悪化や、強度が高くなり過ぎてリベット成形時に割れが生じる等の成形性の低下を招くおそれがある。そこで、Mn量は0.2%以上0.5%未満の範囲内とした。好ましくは、0.3%以上0.5%未満の範囲内である。
(Mn: 0.2% or more and less than 0.5%)
Mn is an element effective for improving strength and suppressing material softening during heat treatment, and affects the formation of second phase particles such as Al (Fe, Mn) Si-based compounds. When the amount of Mn is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, when the amount is 0.5% or more, the above-mentioned second phase particles are generated and coarsened, and the growth of the cube orientation is suppressed in the hot rolling process. There is a risk of deterioration of moldability, such as deterioration of the ear rate and cracking during rivet molding due to excessive strength. Therefore, the amount of Mn is set in the range of 0.2% or more and less than 0.5%. Preferably, it is in the range of 0.3% or more and less than 0.5%.

(Mg:4.0%以上5.5%未満)
Mgはそれ自体の固溶硬化による強度向上に有効であるばかりでなく、Siと共にMgSi等の第2相粒子形成に影響を及ぼす。また、冷間圧延時に導入される転位との相互作用に基づく加工硬化による強度向上を期待することができ、従ってMgは缶エンド用アルミニウム合金として必要な強度を付与するために不可欠な元素である。Mg量が4.0%未満ではその効果が十分に得られず、一方5.5%以上では、熱間加工性が悪くなるため生産性の低下を招き、また、強度が高くなり過ぎてリベット成形時に割れ生じる等の成形性の低下を招くおそれがある。更には、熱間圧延工程における立方体方位の成長を抑制し耳率の悪化を招くおそれがある。そこで、Mg量は4.0%以上5.5%未満の範囲内とした。好ましくは、4.2%以上5.2%以下の範囲内である。
(Mg: 4.0% or more and less than 5.5%)
Mg not only is effective in improving the strength by solid solution hardening of itself, but also affects the formation of second phase particles such as Mg 2 Si together with Si. In addition, strength improvement by work hardening based on the interaction with dislocations introduced during cold rolling can be expected. Therefore, Mg is an indispensable element for imparting the necessary strength as an aluminum alloy for can ends. . If the amount of Mg is less than 4.0%, the effect cannot be obtained sufficiently. On the other hand, if it exceeds 5.5%, the hot workability deteriorates, resulting in a decrease in productivity, and the strength becomes too high and the rivet is too high. There is a risk of causing a decrease in moldability such as cracking during molding. Furthermore, there is a possibility that the growth of cube orientation in the hot rolling process is suppressed and the ear rate is deteriorated. Therefore, the amount of Mg is set within a range of 4.0% or more and less than 5.5%. Preferably, it is in the range of 4.2% to 5.2%.

(他の元素)
以上の各元素の他は、基本的にはAlおよび不可避的不純物とすれば良いが、通常アルミニウム合金に添加される上記以外の元素も、特性に大きな影響を与えない範囲内で許容される。例えば、鋳造時の微細化剤として添加されるTiやBは、Ti単独では0.1%以下、またTiとBを同時に添加する場合はそれぞれ0.1%以下、0.01%以下であれば支障はなく、また強度向上のために添加されることがあるCrやV、Zrは、それぞれ0.1%以下、Znは0.4%以下であれば特に問題はない。
(Other elements)
In addition to the above elements, basically, Al and inevitable impurities may be used, but other elements usually added to the aluminum alloy are allowed within a range that does not greatly affect the characteristics. For example, Ti or B added as a finening agent during casting may be 0.1% or less when Ti is used alone, or 0.1% or less and 0.01% or less when Ti and B are added simultaneously. If Cr, V, and Zr, which may be added to improve strength, are each 0.1% or less and Zn is 0.4% or less, there is no particular problem.

[A−2.耐力及び引張強さ]
塗装焼付け後の耐力及び引張強さは、アルミニウム合金板を缶エンドとして使用する際、耐圧強度及びリベット成形性に影響する。圧延された材料には強度異方性、即ち、圧延方向に対して0°、45°、90°方向の各方向に引張試験をしたときの各方向の強度には差があり、本発明における缶エンド用アルミニウム合金板においても、圧延方向(0°方向)に対して90°方向の強度が最も高く、次いで0°方向、45°方向の強度が最も低くなる事が多い。このような強度異方性を持つアルミニウム合金板を缶エンドに適用した場合、缶エンドに内圧が加わったときには強度の低い方向から優先的に変形し、バックリングに至る場合が多い。また、強度異方性が大きい場合には、リベット成形時の加工に伴う材料の変形が円周方向にて均一とはならず、局所的な変形により割れが生じる不具合を招く。仮に割れが生じなかったとしても加工後のリベット部の寸法が円周方向にて均一とはならず、後にタブをリベット部に固定する際に、正しく固定されず、その結果、開缶不良に繋がる等の不具合を招く場合がある。従って、本発明における缶エンド用アルミニウム合金板においては、耐圧強度を満足する観点より、塗装焼付け後の圧延方向に対して0°、45°、90°方向に引張応力を加えた際の耐力の最小値を規定し、また、リベット成形性を満足する観点より、圧延方向に対して0°、45°、90°方向に引張応力を加えた際の引張強さの最大値と最小値の差を規定する。
[A-2. Yield strength and tensile strength]
The yield strength and tensile strength after paint baking affect the pressure strength and rivet formability when an aluminum alloy plate is used as a can end. The rolled material has strength anisotropy, that is, there is a difference in strength in each direction when a tensile test is performed in each direction of 0 °, 45 °, and 90 ° with respect to the rolling direction. Also in the aluminum alloy plate for can ends, the strength in the 90 ° direction is the highest with respect to the rolling direction (0 ° direction), and the strength in the 0 ° direction and the 45 ° direction is often the lowest. When an aluminum alloy plate having such strength anisotropy is applied to the can end, when an internal pressure is applied to the can end, the aluminum alloy plate is often preferentially deformed from the direction of low strength and often leads to buckling. Further, when the strength anisotropy is large, the deformation of the material accompanying the processing at the time of rivet forming is not uniform in the circumferential direction, which causes a problem that a crack occurs due to local deformation. Even if cracking does not occur, the dimension of the rivet part after processing is not uniform in the circumferential direction, and when fixing the tab to the rivet part later, it is not fixed correctly, resulting in poor opening of the can. In some cases, it may lead to problems such as being connected. Therefore, in the aluminum alloy plate for can ends in the present invention, from the viewpoint of satisfying the pressure resistance, the yield strength when tensile stress is applied in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction after coating baking. The difference between the maximum value and the minimum value of the tensile strength when tensile stress is applied in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction from the viewpoint of defining the minimum value and satisfying the rivet formability. Is specified.

(塗装焼付け後における圧延方向に対して0°、45°、90°方向に引張応力を加えた際の耐力(320N/mm以上370N/mm以下))
塗装焼付け後の耐力の最小値が320N/mm未満では、内圧が加わる陽圧缶用缶エンドに適用した場合に、要求される耐圧強度を満たし得ない場合があり、特に缶エンドを従来よりも薄肉化した場合には、缶エンドが内圧に耐えられなくなってしまうおそれがある。一方、塗装焼付け後の耐力が370N/mmを超えれば、缶エンドの成形時、特にリベット部の成形時に割れが多発してしまうおそれがある。更には、缶エンドのシンク部が内圧により反転した際に割れが生じ易くなってしまう場合もある。そこで、塗装焼付け後の耐力は320N/mm以上370N/mm以下の範囲内とした。
(0 °, 45 °, yield strength upon the addition of a tensile stress in the direction of 90 ° (320N / mm 2 or more 370N / mm 2 or less with respect to the rolling direction after baking))
If the minimum value of the proof stress after paint baking is less than 320 N / mm 2 , the required pressure strength may not be satisfied when applied to a positive pressure can end where internal pressure is applied. If the thickness of the can end is reduced, the can end may not be able to withstand the internal pressure. On the other hand, if the proof stress after paint baking exceeds 370 N / mm 2 , cracking may occur frequently when forming the can end, particularly when forming the rivet portion. Furthermore, when the sink portion of the can end is reversed by the internal pressure, cracking may easily occur. Therefore, yield strength after baking was 320N / mm 2 or more 370N / mm 2 within the following ranges.

(塗装焼付け後における圧延方向に対して0°、45°、90°方向に引張応力を加えた際の引張強さの最大値と最小値の差(25N/mm以下))
塗装焼付け後の引張強さの最大値と最小値の差は、アルミニウム合金板を缶エンドとして使用する際、リベット成形性に影響する。塗装焼付け後の引張強さの最大値と最小値の差が25N/mmを超えれば、リベット成形時、加工に伴う材料の変形が円周方向にて均一とはならず、局所的な変形により割れが生じる不具合を招く。仮に割れが生じなかったとしても加工後のリベット部の寸法が円周方向にて均一とはならず、後にタブをリベット部に固定する際に、正しく固定されず、その結果、開缶不良に繋がる等の不具合を招く場合がある。そこで、塗装焼付け後の引張強さの最大値と最小値の差は、25N/mm以下とした。
(Difference between the maximum and minimum values of tensile strength when applying tensile stress in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction after paint baking (25 N / mm 2 or less))
The difference between the maximum value and the minimum value of tensile strength after paint baking affects the rivet formability when an aluminum alloy sheet is used as a can end. If the difference between the maximum value and the minimum value of tensile strength after paint baking exceeds 25 N / mm 2 , the deformation of the material accompanying processing will not be uniform in the circumferential direction during rivet forming, and local deformation This causes the problem of cracking. Even if cracking does not occur, the dimension of the rivet part after processing is not uniform in the circumferential direction, and when fixing the tab to the rivet part later, it is not fixed correctly, resulting in poor opening of the can. In some cases, it may lead to problems such as being connected. Therefore, the difference between the maximum value and the minimum value of the tensile strength after baking is set to 25 N / mm 2 or less.

[A−3.耳率(7%未満)]
耳の発生は、缶エンドと缶ボディとの巻き締め性に影響する。前述の通り、缶エンドを缶ボディに取り付けるにあたっては、缶ボディの縁部に缶エンドを巻き締め加工する必要があるが、缶エンド材の深絞り耳率が高い場合、この巻き締め加工において、巻き締め不良が生じるおそれがある。具体的には、アルミニウム合金板の耳率が高い場合、成形された缶エンド体のカール部の高さ(カールハイト)が円周方向にて均一とはならない。カールハイトが円周方向で不均一になってしまうと、缶ボディ体との巻き締める際に、カールハイトが部分的に高い箇所にて缶ボディ体と点接触してしまうため、カールハイトが低い箇所では、十分な巻き締めがなされない不具合が生じてしまう。そのため、缶エンド用アルミニウム合金板には、出来るだけ耳率の低いことが要求されている。この耳率は、アルミニウム合金板を絞りカップを成形した後、圧延方向に対してカップ高さを測定し、次式(1)より算出したものである。
耳率(%)=[{(45°耳の平均値)−(0°−90°耳の平均値)}/(45°耳及び0°−90°耳の平均値の最小値)]×100・・・(1)
[A-3. Ear rate (less than 7%)]
The occurrence of the ear affects the tightness of the can end and the can body. As described above, when attaching the can end to the can body, it is necessary to wind the can end around the edge of the can body. There is a risk of poor tightening. Specifically, when the ear ratio of the aluminum alloy plate is high, the height (curl height) of the curled portion of the molded can end body is not uniform in the circumferential direction. If the curl height becomes uneven in the circumferential direction, the curl height is low because the curl height is partly in contact with the can body when tightening with the can body. At the location, there is a problem that sufficient winding is not performed. Therefore, the aluminum alloy plate for can ends is required to have as low an ear rate as possible. This ear ratio is calculated from the following equation (1) by measuring the cup height in the rolling direction after forming the drawn cup from the aluminum alloy plate.
Ear rate (%) = [{(average value of 45 ° ear) − (average value of 0 ° −90 ° ear)} / (minimum value of average value of 45 ° ear and 0 ° −90 ° ear)] × 100 ... (1)

ここで、45°耳とは、45°位置、135°位置、225°位置及び315°位置の耳高さ、0°−90°耳とは、0°位置、90°位置、180°位置及び270°位置の耳高さをそれぞれ意味し、0°、90°位置と45°位置を比較して0°、90°位置が高い場合をマイナス、45°位置が高い場合をプラスで表すものとする。   Here, the 45 ° ear is the ear height at the 45 ° position, the 135 ° position, the 225 ° position and the 315 ° position, and the 0 ° -90 ° ear is the 0 ° position, the 90 ° position, the 180 ° position, and It means the ear height at 270 ° position, and 0 °, 90 ° position and 45 ° position are compared and 0 °, 90 ° position is high when minus, and 45 ° position is high when plus. To do.

耳率が7%以上では、缶ボディとの巻き締め加工において巻き締め不良が生じるおそれがある。従って、本発明に係る缶エンド用アルミニウム合金板では、耳率を7%未満と規定する。   When the ear rate is 7% or more, there is a risk that a winding failure may occur in the winding process with the can body. Therefore, in the aluminum alloy plate for can ends according to the present invention, the ear rate is defined as less than 7%.

[B.缶エンド用アルミニウム合金板の製造方法]
次に、本発明の缶エンド用アルミニウム合金板の製造方法について詳述する。本発明の缶エンド用アルミニウム合金板は、鋳造工程、均質化処理工程、熱間圧延工程、及び冷間圧延工程によって製造される。以下、製造工程毎に詳述する。
[B. Method for producing aluminum alloy plate for can end]
Next, the manufacturing method of the aluminum alloy plate for can ends of this invention is explained in full detail. The aluminum alloy plate for can ends of the present invention is manufactured by a casting process, a homogenization process, a hot rolling process, and a cold rolling process. Hereinafter, it explains in full detail for every manufacturing process.

[B−1.鋳造工程]
まず、上述の合金組成を有するアルミニウム合金溶湯は、常法に従ってDC鋳造(半連続鋳造)される。鋳造速度は、特に規定するものではないが、30mm/min以上60mm/minの範囲内であれば特に問題はない。
[B-1. Casting process]
First, a molten aluminum alloy having the above-described alloy composition is DC cast (semi-continuous casting) according to a conventional method. The casting speed is not particularly specified, but there is no particular problem as long as it is within the range of 30 mm / min to 60 mm / min.

[B−2.均質化処理工程(450℃以上530℃以下で0.5時間以上15時間以内の均質化処理)]
DC鋳造により得られた鋳塊は、均質化処理が施される。均質化処理は、鋳塊の偏析を均質化する目的で行なわれるとともに、後の熱間圧延工程での再結晶挙動に影響する。均質化処理の温度が450℃未満では、十分な均質化の効果が得られず、また、金属間化合物の分布状態が微細で密となり、後の熱間圧延工程での再結晶を阻害するとともに、熱間仕上げ圧延後の材料の再結晶化に必要な温度の確保が困難となってしまう。その結果、最終板の45°耳が強くなり過ぎてしまい、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。一方、530℃を超えれば、局所的な溶融が発生して表面品質が低下してしまい、また、粗大な金属間化合物を生成、成長させてしまうため、リベット成形時に割れが生じる等の成形性の低下を招くおそれがある。均質化処理の保持時間が0.5時間未満では、均質化処理の効果を確実に得ることが出来ず、15時間を超えれば、金属間化合物を成長させてしまうため、リベット成形時に割れが生じる等の成形性の低下を招くおそれがある。
[B-2. Homogenization treatment process (homogenization treatment at 450 to 530 ° C for 0.5 to 15 hours)]
The ingot obtained by DC casting is subjected to a homogenization process. The homogenization treatment is performed for the purpose of homogenizing the segregation of the ingot and affects the recrystallization behavior in the subsequent hot rolling process. If the temperature of the homogenization treatment is less than 450 ° C., sufficient homogenization effect cannot be obtained, and the distribution state of the intermetallic compound becomes fine and dense, which inhibits recrystallization in the subsequent hot rolling process. It becomes difficult to secure the temperature necessary for recrystallization of the material after hot finish rolling. As a result, the 45 ° ears of the final plate become too strong, and the strength anisotropy of the final plate may become too large. On the other hand, if it exceeds 530 ° C., local melting occurs and the surface quality deteriorates, and a coarse intermetallic compound is generated and grown, so that formability such as cracking during rivet molding occurs. There is a risk of lowering. If the retention time of the homogenization treatment is less than 0.5 hours, the effect of the homogenization treatment cannot be obtained with certainty. If the retention time exceeds 15 hours, an intermetallic compound grows, so that cracking occurs during rivet forming. There is a possibility that the moldability such as the above may be lowered.

[B−3.熱間圧延工程(熱間仕上げ圧延の総圧下率を88%以上94%以下、且つ最終パスでの歪み速度を60sec−1以上130sec−1以下、終了温度を310℃以上370℃以下)]
均質化処理後には、直ちに、或いは一旦冷却後に再加熱して、熱間圧延を開始する。熱間圧延においては、リバース式熱間粗圧延機を用いて熱間粗圧延を行った後、3段または4段のタンデム式熱間仕上げ圧延機を用いて熱間仕上げ圧延を行う。
[B-3. Hot-rolling process (94% 88% or more of the total rolling reduction of hot finish rolling below, and the strain rate at the final pass 60 sec -1 or more 130Sec -1 or less, 370 ° C. or less end temperature 310 ° C. or higher)
After the homogenization treatment, hot rolling is started immediately or once after cooling and reheating. In hot rolling, hot rough rolling is performed using a reverse hot rough rolling mill, and then hot finish rolling is performed using a three-stage or four-stage tandem hot finish rolling mill.

熱間粗圧延は、前述のようにリバース式熱間粗圧延機を用いて熱間粗圧延を施すが、材料温度の低下、高温保持による更なる金属間化合物の核生成、成長を抑えるため、できるだけ短時間に圧延を施し、次工程となる熱間仕上げ圧延に移行させることが望ましい。この熱間粗圧延の開始温度は特に限定しないが、前記均質化処理温度(460℃以上530℃以下)との関係から、通常は430℃以上530℃以下の範囲内であれば特に問題はない。また、熱間粗圧延終了温度は、次の熱間仕上げ圧延の終了温度(310℃以上370℃以下)との関係から、400℃以上480℃以下の範囲内であれば特に問題はない。   As described above, hot rough rolling is performed by using a reverse hot rough rolling machine, as described above, to reduce material temperature, further nucleation of intermetallic compounds due to high temperature holding, and to suppress growth, It is desirable to perform rolling in as short a time as possible and shift to hot finish rolling as the next step. Although the starting temperature of this hot rough rolling is not particularly limited, there is no particular problem as long as it is usually in the range of 430 ° C. or higher and 530 ° C. or lower in relation to the homogenization temperature (460 ° C. or higher and 530 ° C. or lower). . The hot rough rolling end temperature is not particularly problematic as long as it is within the range of 400 ° C. or higher and 480 ° C. or lower in relation to the end temperature of the next hot finish rolling (310 ° C. or higher and 370 ° C. or lower).

熱間仕上げ圧延は、熱間粗圧延板に3段または4段のタンデム式熱間仕上げ圧延機を用いて、総圧下率88%以上94%以下、且つ最終パスでの歪み速度を60sec−1以上130sec−1以下、終了温度を310℃以上370℃以下となるように施す。Hot finish rolling uses a three or four-stage tandem hot finish rolling mill on a hot rough rolled sheet, and a total rolling reduction of 88% or more and 94% or less and a strain rate in the final pass of 60 sec −1. It is applied so that the end temperature is not lower than 130 sec −1 and the end temperature is not lower than 310 ° C. and not higher than 370 ° C.

熱間仕上げ圧延を3段または4段のタンデム圧延機を用いて行うのは、パス間の滞留時間が短いため、パス間の材料回復及び再結晶が抑制されることによって、熱間仕上げ圧延後の状態で、立方体方位再結晶核のベースとなるS方位を適度に発達させることができるためであり、その後の再結晶における立方体方位の生成を促進させるためである。一方、リバース式圧延機の場合では、パス間の滞留時間が長いため、パス間の材料回復及び再結晶が促進し、熱間仕上げ圧延後の状態でS方位の発達が不足し、その後の再結晶における立方体方位の生成が抑制され、最終板で45°耳が強くなり過ぎてしまい、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。   Hot finish rolling is performed using a three- or four-stage tandem mill because the residence time between passes is short, so that material recovery and recrystallization between passes are suppressed, so that after hot finish rolling This is because the S orientation serving as the base of the cubic orientation recrystallization nucleus can be appropriately developed in this state, and the generation of the cubic orientation in the subsequent recrystallization is promoted. On the other hand, in the case of a reverse type rolling mill, since the residence time between passes is long, material recovery and recrystallization between passes are promoted, and the development of the S orientation is insufficient in the state after hot finish rolling. The generation of the cubic orientation in the crystal is suppressed, and the 45 ° ear is too strong in the final plate, and the strength anisotropy of the final plate may be excessively increased.

また、熱間仕上げ圧延の総圧下率が88%未満では、圧下量の不足による材料への歪み導入量の過小、加工発熱の不足によって、熱間仕上げ圧延終了後の材料の再結晶化を阻害するおそれがある。更に、熱間仕上げ圧延後のS方位の発達が不足し、その後の再結晶における立方体方位の生成が抑制され、最終板で45°耳が強くなり過ぎてしまう。また、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。一方、総圧下率が94%を超えれば、粗大な金属間化合物の周囲からの比較的ランダムな方位の再結晶組織の生成が促進され、相対的に立方体方位の生成が抑制され、最終板で45°耳が強くなり過ぎてしまい、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。更には、加工発熱が過大となり材料温度が高くなり過ぎて、圧延ロールと材料との間で凝着が生じ、材料表面が劣化してしまうおそれがある。   Also, if the total rolling reduction of hot finish rolling is less than 88%, recrystallization of the material after hot finish rolling is hindered due to insufficient strain introduction into the material due to insufficient rolling reduction and insufficient heat generation during processing. There is a risk. Furthermore, the development of the S orientation after hot finish rolling is insufficient, the generation of cube orientation in subsequent recrystallization is suppressed, and the 45 ° ear becomes too strong in the final plate. In addition, the strength anisotropy of the final plate may be excessively increased. On the other hand, if the total rolling reduction exceeds 94%, the generation of a recrystallized structure having a relatively random orientation from the periphery of a coarse intermetallic compound is promoted, and the generation of a cubic orientation is relatively suppressed, and the final plate There is a possibility that the 45 ° ear becomes too strong and the strength anisotropy of the final plate becomes too large. Furthermore, the processing heat generation becomes excessive and the material temperature becomes too high, causing adhesion between the rolling roll and the material, which may deteriorate the material surface.

最終パスでの歪み速度が60sec−1未満では、熱間仕上げ圧延後の再結晶における立方体方位の発達が不十分となり、最終板で45°耳が強くなり過ぎてしまい、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。一方、最終パスでの歪み速度が130sec−1を超えれば、総圧下率が高すぎた場合と同様に、やはり立方体方位の発達が不十分となり、最終板で45°耳が強くなり過ぎてしまい、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。If the strain rate in the final pass is less than 60 sec −1 , the development of the cube orientation in the recrystallization after hot finish rolling becomes insufficient, and the 45 ° ear becomes too strong in the final plate, along with the strength of the final plate. There is a possibility that the anisotropy becomes too large. On the other hand, if the strain rate in the final pass exceeds 130 sec −1 , as in the case where the total rolling reduction is too high, the cube orientation is still insufficiently developed and the 45 ° ear becomes too strong in the final plate. At the same time, the strength anisotropy of the final plate may become too large.

熱間仕上げ圧延の終了温度が310℃未満では、熱間仕上げ圧延終了後に材料全体に再結晶化が十分になされず、最終板で45°耳が高くなり過ぎると共に最終板の強度異方性が大きくなり過ぎてしまうおそれがあり、更には、強度が過剰となり、リベット成形時に割れが生じる等の成形性の低下を招く。加えて、冷間圧延工程においてエッジ割れが発生する場合もある。一方、熱間仕上げ圧延の終了温度が370℃を超えれば、圧延ロールと材料との間で凝着が生じ、表面品質の劣化を招くおそれがある。   If the finish temperature of hot finish rolling is less than 310 ° C., the entire material is not sufficiently recrystallized after the finish of hot finish rolling, and the final plate has an excessively high 45 ° ear and the strength anisotropy of the final plate is increased. There is a possibility that it will become too large, and furthermore, the strength will be excessive, leading to a decrease in moldability such as cracking during rivet molding. In addition, edge cracks may occur in the cold rolling process. On the other hand, if the finish temperature of hot finish rolling exceeds 370 ° C., adhesion occurs between the rolling roll and the material, which may cause deterioration of the surface quality.

[B−4.冷間圧延工程(84%以上94%以下)]
以上のようにして熱間仕上げ圧延を行った後には、その後の巻き取りから冷却の過程において板の保有熱により再結晶(自己再結晶)が生起される。このように再結晶が生起された熱間仕上げ圧延板に対しては、その後、製品となる最終板厚まで冷間圧延を施すが、その間には焼鈍処理を一切施さない。
[B-4. Cold rolling process (84% to 94%)]
After hot finish rolling is performed as described above, recrystallization (self-recrystallization) is caused by the retained heat of the plate in the subsequent winding to cooling process. The hot-finished rolled sheet on which recrystallization has occurred in this way is then cold-rolled to the final thickness of the product, but no annealing process is performed during that time.

一般に焼鈍処理の実施は、耳率の制御や強度の調整、また、圧延された材料の回復や再結晶化により圧延加工性の向上、製品の成形性を確保する狙いがあるが、本発明のように成分や製造方法を適切に規定することにより、熱間圧延後、冷間圧延終了までの間の焼鈍工程を省略することが可能となる。   In general, the annealing treatment has the aim of controlling the ear ratio and adjusting the strength, and improving the rolling processability and ensuring the formability of the product by recovering and recrystallizing the rolled material. Thus, it becomes possible to omit the annealing process after hot rolling until the end of cold rolling by appropriately defining the components and the manufacturing method.

冷間圧延率が84%未満では、十分な加工硬化が得られず、内圧が加わるアルミニウム合金エンド材として必要な強度を得ることができない。一方、冷間圧延率が94%を超えれば、45°耳成分である圧延集合組織が発達し過ぎて45°耳が強くなり過ぎ、それと共に最終板の強度異方性が大きくなり過ぎてしまうおそれがある。また、材料に導入される転位密度が過剰になって、缶エンドの成形時、特にリベット部の成形時に割れが多発してしまうおそれがある。更には、缶エンドのシンク部が内圧により反転した際に割れが生じ易くなってしまう場合もある。   If the cold rolling rate is less than 84%, sufficient work hardening cannot be obtained, and the strength required as an aluminum alloy end material to which an internal pressure is applied cannot be obtained. On the other hand, if the cold rolling rate exceeds 94%, the rolling texture that is the 45 ° ear component develops too much, the 45 ° ear becomes too strong, and the strength anisotropy of the final plate becomes too large. There is a fear. Further, the dislocation density introduced into the material becomes excessive, and there is a risk that cracks frequently occur when the can end is formed, particularly when the rivet portion is formed. Furthermore, when the sink portion of the can end is reversed by the internal pressure, cracking may easily occur.

冷間圧延により所定の製品厚みまで圧延されたアルミニウム合金冷延板については、その後に表面(片面もしくは両面)にエポキシ系或いはビニル系の塗料やPET等の樹脂フィルムを塗膜し、塗料の焼付けやフィルムの熱融着のための熱処理(塗膜形成処理)を施して、最終的に缶エンド用アルミニウム合金塗装板とする。ここで、塗膜形成処理の最適な熱処理条件は、塗料や塗膜の種類によって異なるが、熱処理温度は180〜280℃程度、熱処理時間は1〜60秒程度とすることが好ましい。なお、実際上は、使用する塗料や塗膜の種類に最適な熱処理条件に応じて、材料の組成や冷間圧延率を調整することにより、塗装板の材料強度を調節することが可能であり、要は最終的に320N/mm以上370N/mm以下の耐力の塗装板とすれば良い。For aluminum alloy cold-rolled sheets that have been rolled to a predetermined product thickness by cold rolling, an epoxy or vinyl paint or PET resin film is applied on the surface (one or both sides), and the paint is baked. Heat treatment (coating film forming treatment) for heat fusion of the film and film is finally performed to obtain an aluminum alloy coated plate for can ends. Here, although the optimal heat treatment conditions for the coating film forming process vary depending on the type of paint or coating film, the heat treatment temperature is preferably about 180 to 280 ° C. and the heat treatment time is preferably about 1 to 60 seconds. In practice, it is possible to adjust the material strength of the coated plate by adjusting the material composition and the cold rolling rate according to the heat treatment conditions that are optimal for the type of paint and coating used. in short finally it may be the coated plate of 320N / mm 2 or more 370N / mm 2 or less of yield strength.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに制限されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not restrict | limited to these.

[実施例1:発明例1〜17及び比較例1〜7]
表1に示す組成のアルミニウム合金をDC鋳造法により鋳造し、得られた鋳塊に対して490℃×1時間の均質化処理を施した後、リバース式熱間粗圧延機により熱間粗圧延を行い、さらに4段のタンデム式熱間仕上げ圧延機により熱間仕上げ圧延を施した。熱間粗圧延は、開始温度485℃で行った。また、熱間仕上げ圧延は、材料温度440℃(±5℃)で開始し、総圧下率90.7%、最終仕上げパスの圧延速度90sec−1で行い、材料の出側コイル温度を345℃(±5℃)に制御した。その後、最終冷延率90%にて冷間圧延し、エポキシ系の塗料で塗装し、260℃×20secで焼付け処理を施した。なお、表1の記号A〜Qの合金は、本発明の成分組成範囲内のものであり、記号R〜Xは本発明の成分組成範囲から外れている比較例の合金である。

Figure 0006435268
[Example 1: Invention Examples 1 to 17 and Comparative Examples 1 to 7]
An aluminum alloy having the composition shown in Table 1 was cast by a DC casting method, and the resulting ingot was homogenized at 490 ° C. for 1 hour, and then hot rough rolled by a reverse hot rough rolling machine. Further, hot finish rolling was performed by a four-stage tandem hot finish rolling mill. Hot rough rolling was performed at a starting temperature of 485 ° C. The hot finish rolling is started at a material temperature of 440 ° C. (± 5 ° C.), is performed at a total rolling reduction of 90.7%, and a rolling speed of the final finish pass is 90 sec −1. (± 5 ° C.). Thereafter, it was cold-rolled at a final cold rolling rate of 90%, painted with an epoxy paint, and baked at 260 ° C. for 20 seconds. In addition, the alloys of symbols A to Q in Table 1 are within the component composition range of the present invention, and symbols R to X are alloys of comparative examples that are out of the component composition range of the present invention.
Figure 0006435268

上記のようにして得られた缶エンド用アルミニウム合金板について、塗装焼付け後の耐力、耳率を評価した。また、上記製法により製作されたアルミニウム合金板を用いてフルフォーム形状の蓋を作製し、巻き締め性とリベット成形性を評価した。そして、外観観察により表面品質について評価した。表2に結果を示す。

Figure 0006435268
(※1)異方性は、圧延方向に対して、0°、45°、90°方向における最大値と最小値の差を示す。About the aluminum alloy plate for can ends obtained as mentioned above, the proof stress after coating baking and the ear rate were evaluated. In addition, a full-form lid was produced using the aluminum alloy plate produced by the above-described production method, and the winding property and the rivet formability were evaluated. And surface quality was evaluated by appearance observation. Table 2 shows the results.
Figure 0006435268
(* 1) Anisotropy indicates the difference between the maximum value and the minimum value in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction.

以下に評価方法について説明する。   The evaluation method will be described below.

(塗装後強度)
JIS5号試験片を使用して、圧延方向に対して0°、45°、90°方向で引張試験を実施し、0°、45°、90°方向における耐力を測定した。耐力の最小値が320N/mm以上370N/mm以下を合格(○)とし、320N/mm未満或いは370N/mmを超えるものを不合格(×)とした。なお、以下において、「耐力の最小値」を単に「塗装後耐力」と記す。
(Strength after painting)
Using a JIS No. 5 test piece, a tensile test was performed in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, and the yield strength in the 0 °, 45 °, and 90 ° directions was measured. Minimum pass a 320N / mm 2 or more 370N / mm 2 or less of yield strength and (○), those of more than 320N / mm 2 less than or 370N / mm 2 was judged as failure (×). In the following, “the minimum value of proof stress” will be simply referred to as “proof strength after painting”.

JIS5号試験片を使用して、圧延方向に対して0°、45°、90°方向で引張試験を実施し、0°、45°、90°方向における引張強さの最大値と最小値の差を測定した。0°、45°、90°方向の最大値と最小値の差が25N/mm以下を合格(○)とし、25N/mmを超えるものと不合格(×)とした。なお、以下において、「最大値と最小値の差」を単に「異方性」と記す。Using a JIS No. 5 test piece, tensile tests were conducted in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, and the maximum and minimum tensile strengths in the 0 °, 45 °, and 90 ° directions were measured. The difference was measured. The difference between the maximum value and the minimum value in the directions of 0 °, 45 °, and 90 ° was 25 N / mm 2 or less as acceptable (◯), and the difference between 25 and 25 N / mm 2 was regarded as unacceptable (x). In the following, “difference between the maximum value and the minimum value” is simply referred to as “anisotropic”.

(耳率)
パンチ径33mm、パンチ肩R1.5mm、ブランク径57mm、しわ押さえ400kgfで絞りカップを成形した後、圧延方向に対してカップ高さを測定し、次式(2)より耳率を算出した。
耳率(%)=[{(45°耳の平均値)−(0°−90°耳の平均値)}/(45°耳及び0°−90°耳の平均値の最小値)]×100・・・(2)
(Ear rate)
After forming a drawn cup with a punch diameter of 33 mm, a punch shoulder R of 1.5 mm, a blank diameter of 57 mm, and a wrinkle presser of 400 kgf, the cup height was measured in the rolling direction, and the ear ratio was calculated from the following equation (2).
Ear rate (%) = [{(average value of 45 ° ear) − (average value of 0 ° −90 ° ear)} / (minimum value of average value of 45 ° ear and 0 ° −90 ° ear)] × 100 ... (2)

ここで、45°耳とは、45°位置、135°位置、225°位置及び315°位置の耳高さを意味し、0°−90°耳とは、0°位置、90°位置、180°位置及び270°位置の耳高さをそれぞれ意味する。また、上記計算式では、45°耳の場合はプラス(+)、0−90°耳の場合はマイナス(−)で表記した。耳率が−7%以上+7%以下を合格(○)とし、−7%未満或いは+7%を超えるものを不合格(×)とした。   Here, the 45 ° ear means the ear height at the 45 ° position, the 135 ° position, the 225 ° position, and the 315 ° position, and the 0 ° -90 ° ear means the 0 ° position, the 90 ° position, and the 180 ° position. It means the ear height at the ° position and 270 ° position, respectively. In the above calculation formula, the 45 ° ear is represented by plus (+), and the 0-90 ° ear is represented by minus (−). An ear rate of −7% or more and + 7% or less was regarded as acceptable (◯), and a value of less than −7% or exceeding + 7% was regarded as unacceptable (×).

(巻き締め性)
全10個の蓋を内圧付与により反転させた際に、缶エンドと缶ボディとの巻き締め部外れが生じなかった場合を合格(○)とし、巻き締め外れが一つでも生じた場合を不合格(×)とした。
(Tightening property)
When all the 10 lids are inverted by applying internal pressure, the case where the end of the can and the body of the can do not come off is judged as pass (○). It was set as a pass (x).

(リベット成形性)
全20個の蓋を成形後、目視によりリベット部の割れの有無を調べ、割れが無い場合を合格(○)とし、割れが有る場合を不合格(×)とした。
(Rivet formability)
After forming all 20 lids, the presence or absence of cracks in the rivet portion was visually inspected. The case where there were no cracks was judged as acceptable (O), and the case where there were cracks was judged as unacceptable (X).

(表面品質)
塗装後或いは蓋成形後、目視にて特に問題がないものを良好と判定して合格(○)とし、スジ等の表面欠が生じたものは不良として不合格(×)とした。
(Surface quality)
After coating or lid molding, those that had no particular problem with the naked eye were judged good and judged as acceptable (O), and those with surface defects such as streaks were judged as unacceptable (X).

表2から明らかなように、発明例1〜17では、アルミニウム合金板の塗装後耐力、異方性、耳率、巻き締め性、リベット成形性、表面品質の全てが合格であった。   As apparent from Table 2, in Invention Examples 1 to 17, all of the post-coating proof stress, anisotropy, ear rate, winding property, rivet formability, and surface quality of the aluminum alloy plate were acceptable.

これに対して、比較例1では、アルミニウム合金板のSi含有量が多過ぎたため、異方性、耳率、巻き締め性、リベット成形性が不合格であった。   On the other hand, in Comparative Example 1, since the Si content of the aluminum alloy plate was too large, the anisotropy, the ear rate, the winding property, and the rivet formability were unacceptable.

比較例2では、アルミニウム合金板のFe含有量が多過ぎたため、異方性、耳率、巻き締め性、リベット成形性が不合格であった。   In Comparative Example 2, since the Fe content of the aluminum alloy plate was too large, the anisotropy, the ear rate, the winding property, and the rivet formability were unacceptable.

比較例3では、アルミニウム合金板のCu含有量が多過ぎたため、塗装後耐力、リベット成形性が不合格であった。   In Comparative Example 3, since the Cu content of the aluminum alloy plate was too large, the post-coating proof stress and rivet formability were unacceptable.

比較例4では、アルミニウム合金板のMn含有量が少な過ぎたため、塗装後耐力が不合格であった。   In Comparative Example 4, since the Mn content of the aluminum alloy plate was too small, the proof stress after coating was unacceptable.

比較例5では、アルミニウム合金板のMn含有量が多過ぎたため、塗装後耐力、異方性、耳率、巻き締め性、リベット成形性が不合格であった。   In Comparative Example 5, since the Mn content of the aluminum alloy plate was too large, the post-coating proof stress, anisotropy, ear rate, winding property, and rivet formability were unacceptable.

比較例6では、アルミニウム合金板のMg含有量が少な過ぎたため、塗装後耐力が不合格であった。   In Comparative Example 6, since the Mg content of the aluminum alloy plate was too small, the proof stress after coating was unacceptable.

比較例7では、アルミニウム合金板のMg含有量が多過ぎたため、塗装後耐力、異方性、耳率、巻き締め性、リベット成形性が不合格であった。   In Comparative Example 7, since the Mg content of the aluminum alloy plate was too large, the post-coating proof stress, anisotropy, ear rate, winding property, and rivet formability were unacceptable.

[実施例2:発明例18〜26及び比較例8〜18]
表1中の本発明に相当する合金M、K、Oのアルミニウム合金をDC鋳造により鋳造し、得られた鋳塊に対して、表3に示す製造条件により、均質化処理、熱間圧延、冷間圧延を施し、その後エポキシ系の塗料で塗装し、260℃×20secで焼付け処理を施した。なお、表3の比較例15は、熱間仕上げ圧延をリバース式圧延機にて行った比較例であり、また、比較例17は、熱間圧延後、中間焼鈍を急速加熱、急速冷却する連続焼鈍(CAL)にて行った比較例である。

Figure 0006435268
[Example 2: Invention Examples 18 to 26 and Comparative Examples 8 to 18]
Alloys M, K, and O corresponding to the present invention in Table 1 were cast by DC casting, and the obtained ingots were subjected to homogenization treatment, hot rolling, according to the production conditions shown in Table 3. Cold-rolling was performed, and then an epoxy-based paint was applied, followed by baking at 260 ° C. × 20 sec. In addition, the comparative example 15 of Table 3 is a comparative example which performed hot finish rolling with the reverse type rolling mill, and the comparative example 17 is a continuous heating and rapid cooling of the intermediate annealing after the hot rolling. It is a comparative example performed by annealing (CAL).
Figure 0006435268

上記のようにして得られた缶エンド用アルミニウム合金板について、前記実施例1と同様に、塗装焼付け後の耐力、耳率を評価した。また、アルミニウム合金板を用いてフルフォーム形状の蓋を作製し、巻き締め性とリベット成形性を評価した。そして、外観観察により表面品質について評価した。表4に結果を示す。

Figure 0006435268
About the aluminum alloy plate for can ends obtained as described above, in the same manner as in Example 1, the proof stress after painting and baking and the ear rate were evaluated. In addition, a full-form lid was produced using an aluminum alloy plate, and the tightening property and rivet formability were evaluated. And surface quality was evaluated by appearance observation. Table 4 shows the results.
Figure 0006435268

表4から明らかなように、発明例18〜26では、アルミニウム合金板の塗装焼付け後の耐力、異方性、耳率、巻き締め性、リベット成形性、表面品質の全てが合格であった。   As apparent from Table 4, in Invention Examples 18 to 26, all of the proof stress, anisotropy, ear rate, roll-fastness, rivet formability, and surface quality after baking of the aluminum alloy plate were acceptable.

比較例8では、均質化処理温度が低過ぎたため、異方性、耳率、巻き締め性が不合格であった。   In Comparative Example 8, since the homogenization treatment temperature was too low, the anisotropy, the ear rate, and the tightening property were unacceptable.

比較例9では、均質化処理時間が短過ぎたため、異方性、耳率、巻き締め性が不合格であった。   In Comparative Example 9, since the homogenization time was too short, the anisotropy, the ear rate, and the tightening property were unacceptable.

比較例10では、熱間仕上げ圧延総圧下率が低過ぎたため、異方性、耳率、巻き締め性が不合格であった。   In Comparative Example 10, since the hot finish rolling total rolling reduction was too low, the anisotropy, the ear rate, and the tightening property were unacceptable.

比較例11では、熱間仕上げ圧延総圧下率が高過ぎたため、異方性、耳率、巻き締め性、表面品質が不合格であった。   In Comparative Example 11, since the hot finish rolling total rolling reduction was too high, the anisotropy, ear ratio, winding property, and surface quality were unacceptable.

比較例12では、熱間仕上げ圧延最終パス歪み速度が遅過ぎたため、異方性、耳率、巻き締め性が不合格であった。   In Comparative Example 12, since the hot finish rolling final pass strain rate was too slow, the anisotropy, the ear rate, and the tightening property were unacceptable.

比較例13では、熱間仕上げ圧延最終パス歪み速度が速過ぎたため、異方性、耳率、巻き締め性、表面品質が不合格であった。   In Comparative Example 13, the hot finish rolling final pass strain rate was too high, so the anisotropy, ear rate, winding property, and surface quality were unacceptable.

比較例14では、熱間仕上げ圧延終了温度が低過ぎたため、異方性、耳率、巻き締め性、リベット性形成が不合格であった。   In Comparative Example 14, since the hot finish rolling end temperature was too low, the anisotropy, the ear rate, the winding property, and the rivet formation were unacceptable.

比較例15では、熱間仕上げ圧延をリバース式圧延機で行ったため、異方性、耳率、巻き締め性が不合格であった。   In Comparative Example 15, since hot finish rolling was performed with a reverse rolling mill, the anisotropy, ear rate, and winding property were unacceptable.

比較例16では、最終冷延率が低過ぎたため、塗装後耐力が不合格であった。   In Comparative Example 16, since the final cold rolling rate was too low, the post-painting proof stress was unacceptable.

比較例17では、中間焼鈍を施し最終冷延率が低過ぎたため、塗装後耐力が不合格であった。   In Comparative Example 17, the intermediate annealing was performed and the final cold rolling rate was too low, so the proof stress after coating was unacceptable.

比較例18では、最終冷延率が高過ぎたため、異方性、耳率、巻き締め性、リベット成形性が不合格であった。   In Comparative Example 18, since the final cold rolling rate was too high, the anisotropy, ear rate, winding property, and rivet formability were unacceptable.

本発明に係る缶エンド用アルミニウム合金板及びその製造方法により、中間焼鈍工程を省略した方法で、高強度で且つ異方性が小さく、耳率の低い缶エンド用アルミニウム合金板が提供される。   The aluminum alloy plate for can ends according to the present invention and the manufacturing method thereof provide an aluminum alloy plate for can ends with high strength, low anisotropy, and low ear ratio by a method in which the intermediate annealing step is omitted.

Claims (3)

mass%で、Si:0.01%以上0.2%以下、Fe:0.01%以上0.35%以下、Cu:0.01%以上0.15%以下、Mn:0.2%以上0.5%未満、Mg:4.0%以上5.以下を含有し、残部Al及び不可避的不純物からなるアルミニウム合金から構成され、塗装焼付け後において、圧延方向に対して0°、45°、90°方向に引張試験をしたときの耐力の最小値が320N/mm以上370N/mm以下、かつ、引張強さの最大値と最小値の差が25N/mm以下であって、耳率が7%未満であることを特徴とする缶エンド用アルミニウム合金板。 In mass%, Si: 0.01% to 0.2%, Fe: 0.01% to 0.35%, Cu: 0.01% to 0.15%, Mn: 0.2% or more Less than 0.5%, Mg: 4.0% or more 1 % or less , composed of an aluminum alloy composed of the balance Al and unavoidable impurities, and the minimum yield strength when subjected to tensile tests in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction after baking value 320N / mm 2 or more 370N / mm 2 or less, and, cans difference between the maximum value and the minimum value of the tensile strength is not more 25 N / mm 2 or less, wherein the ear rate is less than 7% Aluminum alloy plate for end. mass%で、Si:0.01%以上0.2%以下、Fe:0.01%以上0.35%以下、Cu:0.01%以上0.15%以下、Mn:0.2%以上0.5%未満、Mg:4.0%以上5.以下を含有し、残部Al及び不可避的不純物からなる合金鋳塊に450℃以上530℃以下で0.5時間以上15時間以内の均質化処理を施した後、熱間圧延を施すにあたり、熱間仕上げ圧延の総圧下率が88%以上94%以下、かつ最終パスでの歪み速度を60sec−1以上130sec−1以下、終了温度を310℃以上370℃以下となるように行い、その後、最終板厚まで焼鈍を施すことなく、84%以上94%以下の冷間圧延率にて最終板厚とすることにより、塗装焼付け後において、圧延方向に対して0°、45°、90°方向に引張試験をしたときの耐力の最小値が320N/mm以上370N/mm以下、かつ、引張強さの最大値と最小値の差が25N/mm以下であって、耳率が7%未満である合金板を製造することを特徴とする缶エンド用アルミニウム合金板の製造方法。 In mass%, Si: 0.01% to 0.2%, Fe: 0.01% to 0.35%, Cu: 0.01% to 0.15%, Mn: 0.2% or more Less than 0.5%, Mg: 4.0% or more In performing hot rolling after homogenizing the alloy ingot containing 1 % or less and comprising the balance Al and inevitable impurities at 450 ° C. or more and 530 ° C. or less for 0.5 hour or more and 15 hours or less, the total rolling reduction of hot finish rolling is 88% or more 94% or less, and a strain rate of the final pass 60 sec -1 or more 130Sec -1 or less, do as the end temperature becomes 310 ° C. or higher 370 ° C. or less, then, Without annealing to the final sheet thickness, by setting the final sheet thickness at a cold rolling rate of 84% or more and 94% or less, the direction of 0 °, 45 °, and 90 ° with respect to the rolling direction after painting and baking. tensile minimum value of the yield strength of when the test is 320N / mm 2 or more 370N / mm 2 or less in and the difference between the maximum value and the minimum value of the tensile strength is not more 25 N / mm 2 or less, the ear rate 7 Made of alloy plate that is less than Method of manufacturing a can end for an aluminum alloy sheet, characterized by. タンデム式熱間仕上げ圧延機により前記熱間仕上げ圧延を施すことを特徴とする請求項記載の缶エンドアルミニウム合金板の製造方法。 The method for producing a can end aluminum alloy sheet according to claim 2, wherein the hot finish rolling is performed by a tandem hot finish rolling mill.
JP2015544889A 2013-10-30 2014-10-02 Aluminum alloy plate for can end and manufacturing method thereof Active JP6435268B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013225381 2013-10-30
JP2013225381 2013-10-30
PCT/JP2014/076367 WO2015064290A1 (en) 2013-10-30 2014-10-02 Aluminum alloy plate for can ends, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2015064290A1 JPWO2015064290A1 (en) 2017-03-09
JP6435268B2 true JP6435268B2 (en) 2018-12-05

Family

ID=53003903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015544889A Active JP6435268B2 (en) 2013-10-30 2014-10-02 Aluminum alloy plate for can end and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6435268B2 (en)
CN (1) CN105658827B (en)
WO (1) WO2015064290A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385044A (en) * 2018-03-06 2018-08-10 东北大学 A kind of preparation method of 5182 aluminum alloy plate materials of body of a motor car
EP3741875A1 (en) * 2019-05-24 2020-11-25 Constellium Rolled Products Singen GmbH & Co.KG Aluminium alloy sheet product with improved surface aspect

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073058A (en) * 1999-07-01 2001-03-21 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can end excellent in blowup resistance and its production
JP3694859B2 (en) * 2000-09-29 2005-09-14 古河スカイ株式会社 Aluminum alloy hard plate for can lid and manufacturing method thereof
JP4256791B2 (en) * 2004-01-19 2009-04-22 株式会社神戸製鋼所 Aluminum alloy plate for packaging container tab and manufacturing method thereof
JP2007023340A (en) * 2005-07-15 2007-02-01 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP4915068B2 (en) * 2005-09-09 2012-04-11 東洋製罐株式会社 Aluminum alloy can lid with excellent corrosion resistance and adhesion and method for producing the same
JP2008019467A (en) * 2006-07-11 2008-01-31 Furukawa Sky Kk Aluminum alloy sheet with excellent surface quality after chromating for can end, and its manufacturing method
JP5080150B2 (en) * 2007-07-03 2012-11-21 古河スカイ株式会社 Manufacturing method of aluminum alloy plate for high-strength cap with excellent openability and ear rate
JP2009221567A (en) * 2008-03-18 2009-10-01 Furukawa-Sky Aluminum Corp Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JP2010053367A (en) * 2008-08-26 2010-03-11 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can end, and method for manufacturing the same
JP5581254B2 (en) * 2010-03-31 2014-08-27 株式会社神戸製鋼所 Aluminum alloy plate for tab and manufacturing method thereof
JP2011080155A (en) * 2010-11-22 2011-04-21 Furukawa-Sky Aluminum Corp Aluminum alloy sheet for can body having satisfactory bottom wrinkle property
JP5356359B2 (en) * 2010-11-26 2013-12-04 住友軽金属工業株式会社 Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
US20120237694A1 (en) * 2011-01-19 2012-09-20 Golden Aluminum, Inc. Aluminum alloy coating process and method
CN103014445B (en) * 2012-12-27 2014-11-26 亚洲铝业(中国)有限公司 5052 aluminum alloy end stock substrate and production method thereof

Also Published As

Publication number Publication date
CN105658827B (en) 2017-11-21
CN105658827A (en) 2016-06-08
WO2015064290A1 (en) 2015-05-07
JPWO2015064290A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
WO2015140833A1 (en) Aluminum alloy sheet for dr can body and manufacturing method therefor
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP5356359B2 (en) Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
CN111108223B (en) Aluminum alloy plate for bottle and can and method for producing same
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP2016141886A (en) Aluminum alloy sheet for can top
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP3850542B2 (en) Aluminum alloy plate excellent in curling property and winding property and method for producing the same
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2017166052A (en) Aluminum alloy sheet for packaging container tab
JP4467443B2 (en) Method for producing aluminum alloy plate
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JPH11256292A (en) Manufacture of aluminum alloy sheet for can body
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP2007051307A (en) Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6435268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250