[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015140833A1 - Aluminum alloy sheet for dr can body and manufacturing method therefor - Google Patents

Aluminum alloy sheet for dr can body and manufacturing method therefor Download PDF

Info

Publication number
WO2015140833A1
WO2015140833A1 PCT/JP2014/001635 JP2014001635W WO2015140833A1 WO 2015140833 A1 WO2015140833 A1 WO 2015140833A1 JP 2014001635 W JP2014001635 W JP 2014001635W WO 2015140833 A1 WO2015140833 A1 WO 2015140833A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
plate
annealing
temperature
hot
Prior art date
Application number
PCT/JP2014/001635
Other languages
French (fr)
Japanese (ja)
Inventor
聖誠 田添
鈴木 覚
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to JP2016508302A priority Critical patent/JP6326485B2/en
Priority to PCT/JP2014/001635 priority patent/WO2015140833A1/en
Priority to CN201480077133.7A priority patent/CN106103760B/en
Publication of WO2015140833A1 publication Critical patent/WO2015140833A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the present invention relates to an aluminum alloy for a DR can body having excellent deep drawability and a low ear rate, and a method for producing the same.
  • Aluminum alloys such as A3004 and A3104 in JIS standards are used as body materials for aluminum cans because they have excellent formability and corrosion resistance.
  • the ear rate will be described.
  • a cup after deep drawing has a high portion (mountain) and a low portion (valley) at the upper end of the circumferential portion.
  • the difference between the average value of the peak height and the average value of the valley height divided by the average value of the valley height is referred to as the ear rate.
  • the productivity is adversely affected, for example, a defective portion is generated at the time of winding with the can lid, or the trimming amount is increased and the yield is lowered.
  • the shape of the ear there are a 0/90 degree ear with a mountain in the 0/90 degree direction with respect to the rolling direction and a 45 degree ear with a mountain in the 45 degree direction with respect to the rolling direction.
  • Each ear has a correlation with the texture, and the Cube orientation: (001) ⁇ 100> is known to develop 0/90 degree ears, and the ⁇ fiber, which is a rolled texture, is known to develop 45 degree ears. ing. When the cold rolling rate increases, the ⁇ fiber develops and the 45-degree ear becomes prominent.
  • a good balance between the Cube orientation and the rolling texture particularly the S and R orientations: ⁇ 123 ⁇ ⁇ 634> is required.
  • the DR can body is mainly used for food containers, and demand is expected to increase as the world population increases.
  • the DR can body is currently manufactured by a manufacturing method including an intermediate annealing process.
  • a manufacturing method including an intermediate annealing process.
  • a box-type annealing furnace hereinafter referred to as “batch furnace”
  • CAL continuous annealing furnace
  • the manufacturing cost of CAL increases, and the capital investment for increasing the production capacity is large. Therefore, in order to reduce the cost, it is necessary to manufacture in a batch furnace, but there is a problem that ear control is more strict and 45-degree ears are more easily developed than CAL.
  • the DR can body is formed only by deep drawing, a high degree of deep drawing formability is required. Specifically, high deep drawability and reduction of wrinkles during deep drawing. Deep drawability is evaluated by the limit draw ratio. If the deep drawability is not good, cracks are likely to occur during molding. In addition, when wrinkles occur during deep drawing, the surface quality of the product is significantly reduced. In recent years, the demand for surface quality has become increasingly severe.
  • Patent Document 1 describes a method for producing an aluminum alloy sheet for packaging having deep drawability and redrawability.
  • Patent Document 2 describes a method for producing a packaging aluminum alloy having high strength and low directionality.
  • Patent Documents 3 to 5 describe aluminum alloy sheets having a low ear ratio that define the hot-rolled sheet, the intermediate annealed sheet, the Cube orientation of the final sheet, and the rolled texture as a technique related to the texture described above. Yes.
  • Patent Document 1 the ear is controlled by the homogenization treatment and the cold rolling rate, but it is not possible to obtain a sufficiently low ear rate when intermediate annealing is performed in a batch furnace. Moreover, in the aluminum alloy of patent document 2, since there exists high intensity
  • Patent Documents 3 to 5 control the metal structure
  • the use is limited to DI cans.
  • DI can applications a high cold rolling rate is achieved without using an intermediate annealing process. Since the super hard material used has a high yield strength, wrinkles are likely to occur during deep drawing, and it is not suitable for DR cans.
  • the hot-rolled sheet structure of Patent Document 5 is a partially recrystallized structure, a partially recrystallized structure cannot be obtained unless the sheet temperature is low. Therefore, the rolling speed, which is one of the manufacturing conditions, must be reduced, and there is a problem that the productivity is lowered and the manufacturing cost is increased.
  • JP-A 63-145758 Japanese Unexamined Patent Publication No. 1-198454 JP 2001-40461 A JP 2004-244701 A JP 2004-263253 A
  • the present inventors have successfully developed the S orientation in the matrix in the metal structure before the intermediate annealing step to suppress precipitation at the time of recrystallization. It has been found that an aluminum alloy plate having an excellent ear ratio can be obtained. That is, it is known that the Cube orientation and the S orientation have a rotational relationship of 40 degrees around the ⁇ 111> axis as the crystal orientation, and the Cube orientation is easy to grow in the S orientation matrix. Therefore, by developing the S orientation, the Cube orientation is easily grown. In addition, the precipitate inhibits recrystallization, suppresses the formation of the Cube orientation, and promotes the formation of the R orientation. Therefore, by sufficiently developing the S orientation and suppressing the number of precipitated particles, an excellent ear ratio was obtained even in the intermediate annealing process using a batch furnace.
  • the presence or absence of wrinkles during deep drawing is due to the yield strength after baking.
  • the yield strength after baking is reduced, the generation of wrinkles is suppressed, but since the tensile strength is also reduced, the deep drawability is also inferior.
  • the present invention is an aluminum alloy found on the basis of the above knowledge, has a low ear ratio even when a batch furnace is used, and has an excellent deep drawability, an aluminum alloy for DR can body, In addition, an object is to provide a manufacturing method thereof.
  • the present invention is characterized in that the primary cold rolling rate is appropriately controlled.
  • the primary cold rolling rate is appropriately controlled.
  • the S orientation can be developed.
  • PSN that is recrystallized from around the crystallized product becomes prominent, and the metal structure becomes a random structure with a reduced Cube orientation density.
  • the primary cold rolling rate is appropriately controlled.
  • the S orientation is developed into a structure before the intermediate annealing process, and the number of precipitated particles in the structure before the intermediate annealing process and the precipitation during recrystallization are suppressed. It is.
  • the growth of the Cube orientation in the annealing process can be promoted. That is, the development of the 0/90 degree ear is promoted, and an excellent ear rate is obtained by a good balance with the secondary cold rolling process. Further, in the secondary cold rolling process, by controlling appropriate proof stress and tensile strength, good deep drawability and aesthetics that can withstand high surface quality can be obtained.
  • Si 0.10 to 0.60 mass%, Fe: 0.10 to 0.80 mass%, Cu: 0.05 to 0.25 mass%, Mn: 0.80 to 1.50 mass %, Mg: 0.80 to 1.30 mass%, and is made of an aluminum alloy composed of the balance Al and inevitable impurities, and the final plate is obtained from the aluminum alloy ingot through at least a hot rolled plate and an intermediate annealed plate.
  • the hot-rolled sheet has a conductivity of 36.0 to 43.0% IACS.
  • the Cube orientation density (CubeO) in the intermediate annealing plate is 4.00 or more times the random orientation density, and the CubeO and the R orientation density (RO). And the ratio (CubeO / RO) to 1.00 or more.
  • the present invention provides the method for producing an aluminum alloy plate for a DR can body according to any one of claims 1 to 3, wherein Si: 0.10 to 0.60 mass%, Fe: 0.00. Contains 10 to 0.80 mass%, Cu: 0.05 to 0.25 mass%, Mn: 0.80 to 1.50 mass%, Mg: 0.80 to 1.30 mass%, and is composed of the balance Al and inevitable impurities.
  • a casting process for casting an aluminum alloy, a homogenization process for homogenizing the ingot, a hot rolling process for hot rolling the homogenized ingot, and a primary cold rolling process for the hot rolled plate A method for producing an aluminum alloy plate for a DR can body, comprising: an intermediate annealing step for annealing the primary cold rolled plate; and a secondary cold rolling step for the intermediate annealed plate.
  • the ingot is treated at 580 to 620 ° C. for 1 to 12 hours, and the hot rolling step is performed at a start temperature of 450 to 610 ° C. It consists of a hot rough rolling stage at 450 to 550 ° C. and a hot finish rolling stage at an end temperature of 330 to 380 ° C., and the rolling rate of the primary cold rolling process is 85 to 95%.
  • the intermediate annealing process The primary cold-rolled sheet is heated to an annealing temperature of 300 to 450 ° C. at an average heating rate of 10 to 100 ° C./hour in a temperature range of 200 ° C. or higher, and then held at the annealing temperature for 1 to 4 hours.
  • the rolling rate in the secondary cold rolling process was 20 to 40%.
  • the method according to the fourth or fifth aspect further includes a final annealing step of annealing the secondary cold rolled sheet after the secondary cold rolling step.
  • the present invention is as described in claim 6, wherein in the final annealing step, the secondary cold-rolled sheet is annealed at 140 to 190 ° C. with an average temperature increase rate of 10 to 80 ° C./hour in a temperature range of 200 ° C. or higher. The temperature was raised to a temperature and then held at the annealing temperature for 2 to 4 hours.
  • an aluminum alloy for a DR can body having a low ear ratio and excellent deep drawability even when a batch furnace is used can be obtained.
  • Aluminum alloy plate for DR can body The aluminum alloy plate for DR can body according to the present invention is made of an aluminum alloy having a predetermined alloy composition, and the final plate has a characteristic of a specific orientation density (CubeO). Later, it has a predetermined strength.
  • CubeO specific orientation density
  • Si 0.10 to 0.60 mass%
  • Mg 2 Si-based particles are precipitated during final annealing and coating baking, thereby contributing to an increase in strength. If the Si content is less than 0.10 mass% (hereinafter referred to as “%”), this effect cannot be obtained, and high-purity metal must be used at the time of casting, which increases raw material costs. On the other hand, if it exceeds 0.60%, the precipitated particles increase, so that recrystallization is hindered in the hot rolling process and the intermediate annealing process. As a result, the formation of the Cube orientation is suppressed, and the ear rate of the final plate is deteriorated.
  • a preferable content of Si is 0.20 to 0.50%.
  • Fe 0.10 to 0.80%
  • the solid solution precipitation state of Mn is controlled by the inclusion of Fe, and the deep drawability is improved by uniformly dispersing the Mn-based crystallized product. If the Fe content is less than 0.10%, this effect cannot be obtained, and high-purity ingots must be used at the time of casting, which increases raw material costs. On the other hand, when it exceeds 0.80%, coarse Al—Fe—Mn—Si based crystallized substances increase, and recrystallization in a high dislocation density region around the crystallized substances called PSN becomes dominant. As a result, the Cube orientation density is lowered, and the ear rate of the final plate is deteriorated.
  • a preferable content of Fe is 0.30 to 0.60%.
  • Cu 0.05 to 0.25% Due to the inclusion of Cu, Al—Cu—Mg and Al—Cu—Mg—Si particles are deposited during final annealing and paint baking, contributing to an increase in strength. If the Cu content is less than 0.05%, this effect cannot be obtained, and if it exceeds 0.25%, the strength becomes too high and the deep drawability deteriorates. A preferable content of Cu is 0.10 to 0.25%.
  • Mn 0.80 to 1.50% Containing Mn contributes to an increase in strength. If the Mn content is less than 0.80%, sufficient strength cannot be obtained. On the other hand, if it exceeds 1.50%, the strength becomes too high and the deep drawability deteriorates. A preferable content of Mn is 0.80 to 1.10%.
  • Mg 0.80 to 1.30% Containing Mg contributes to an increase in strength due to solid solution. Further, the formation of Si and Mg 2 Si-based particles contributes to an increase in strength during final annealing and paint baking. If the Mg content is less than 0.80%, this effect cannot be obtained. On the other hand, if it exceeds 1.30%, the strength becomes too high and the deep drawability deteriorates. A preferable content of Mg is 0.90 to 1.25%.
  • the aluminum alloy may contain 0.05% or less of Ti, B, V, etc. as inevitable impurities, and 0.15% or less as a whole.
  • the Cube orientation density (hereinafter referred to as “CubeO”) in the final plate is 2.00 times or more than the random orientation density
  • CubeO and S orientation density (hereinafter referred to as “SO”) Ratio (CubeO / SO) is defined as 0.40 to 1.00.
  • the shape of the ear is determined by CubeO and the balance between CubeO and the rolling texture.
  • CubeO is less than 2.00 times the random orientation, or CubeO / SO is less than 0.40, the 45-degree ear develops and the ear rate deteriorates.
  • CubeO / SO exceeds 1.00, a good balance between the 0/90 degree ear and the 45 degree ear cannot be obtained, and the ear rate is similarly deteriorated.
  • CubeO is preferably 3.00 or more times the random orientation density.
  • the upper limit value of the magnification is not particularly specified, but is naturally determined by the composition and manufacturing conditions of the aluminum alloy, and in the present invention, the upper limit value is set to 7.00 times.
  • CubeO / SO is preferably 0.50 to 1.00.
  • the strength of the aluminum alloy plate for DR can body according to the present invention is defined as having a yield strength of 180 to 220 MPa and a tensile strength of 230 MPa or more after baking.
  • the yield strength after baking is less than 180 MPa, the strength of the DR can body is insufficient.
  • the yield strength after baking is over 220 MPa, wrinkles are generated during deep drawing and surface quality is deteriorated.
  • the yield strength after baking is preferably 190 to 210 MPa.
  • the limit drawing ratio is lowered and the deep drawability is poor.
  • the tensile strength after baking is 235 MPa or more.
  • the upper limit value of the tensile strength after baking is not particularly specified, but it is naturally determined by the composition and manufacturing conditions of the aluminum alloy, and the upper limit value is set to 255 MPa in the present invention.
  • CubeO in the intermediate annealed plate is 4.00 times or more than the random orientation density
  • the ratio (CubeO / RO) between CubeO and R orientation density (hereinafter referred to as “RO”) is 1.
  • it is defined as 00 or more.
  • CubeO is preferably 4.50 or more times the random orientation density.
  • the upper limit value of the magnification is not particularly specified, but is naturally determined by the composition of the aluminum alloy and the manufacturing conditions, and the upper limit value is set to 10 times in the present invention.
  • CubeO / RO is preferably 1.00 or more. Although the upper limit value of CubeO / RO is not particularly defined, it is naturally determined by the composition and manufacturing conditions of the aluminum alloy, and in the present invention, the upper limit value is set to 5.00.
  • the aluminum alloy plate for DR can body according to the present invention includes a casting step of casting the aluminum alloy having the above-mentioned predetermined composition; a homogenization treatment step of homogenizing the ingot; A hot rolling step for hot rolling the homogenized ingot; a primary cold rolling step for the hot rolled plate; an intermediate annealing step for annealing the primary cold rolled plate at 300 to 450 ° C; and an intermediate annealed plate A secondary cold rolling step.
  • the ingot cast in the casting step is preferably subjected to heat treatment at a temperature of 580 to 620 ° C. for 1 to 12 hours.
  • the treatment temperature is less than 580 ° C. and the treatment time is less than 1 hour, the homogenization effect is insufficient.
  • the number of precipitated particles during the hot rolling process increases, recrystallization after the hot rolling process is hindered.
  • CubeO also decreases in the recrystallized grains. Since CubeO of this hot-rolled sheet becomes one of the nuclei of Cube-oriented grains during intermediate annealing, it is important not to lower it.
  • the temperature of the homogenization treatment step is more preferably 580 to 610 ° C., and the treatment time is further preferably 1 to 4 hours.
  • Hot rolling process After the homogenization process, the ingot is subjected to a hot rolling process.
  • the hot rolling process includes a hot rough rolling stage and a hot finish rolling stage.
  • the start temperature is 450 to 610 ° C.
  • the end temperature is 450 to 550 ° C.
  • the starting temperature is less than 450 ° C.
  • precipitation of intermetallic compounds occurs and the temperature of the rolled sheet decreases.
  • the rolled structure remains in the structure after the hot finish rolling, and the 45-degree ears of the final plate are developed.
  • the starting temperature exceeds 610 ° C.
  • the surface of the rolled sheet is oxidized, and a defect occurs on the surface of the rolled sheet during rolling, resulting in a deterioration in quality.
  • the end temperature is less than 450 ° C.
  • seizure occurs on the surface of the rolled sheet, and the surface quality deteriorates.
  • the rolling time in the hot rough rolling stage and the hot finish rolling stage is not particularly limited, but is preferably within 20 minutes. It is more preferable that the start temperature of the hot rough rolling step is 470 to 580 ° C. and the end temperature is 450 to 530 ° C.
  • the rolled plate is subjected to the hot finish rolling stage.
  • the end temperature is preferably set to 330 to 380 ° C.
  • the end temperature is less than 330 ° C.
  • the driving force for recrystallization is insufficient.
  • the rolling texture remains on the rolled plate, and the 45 ° ears of the final plate develop and the ear rate deteriorates.
  • productivity also falls.
  • the end temperature exceeds 380 ° C., seizure occurs on the surface of the rolled sheet, and the surface quality deteriorates. It is more preferable that the end temperature of the hot finish rolling step is 330 to 370 ° C.
  • the electrical conductivity of the hot rolled sheet after the hot rolling step is preferably 36.0 to 43.0% IACS.
  • the electrical conductivity is less than 36.0% IACS, the solution is in a highly solid state, the deep drawability is lowered, and cracking occurs during can making.
  • the electrical conductivity exceeds 43.0% IACS precipitates in the hot-rolled sheet increase and the R orientation is preferentially formed during intermediate annealing, so the 45-degree ear development of the final sheet is remarkable. become.
  • the electrical conductivity of the hot rolled sheet is more preferably 36.0 to 42.0% IACS.
  • the total rolling rate in the entire hot rolling process is not particularly specified, but is preferably 80 to 95%. If it is less than 80%, the S orientation density in the hot-rolled sheet decreases, the 0/90 degree ear during self-annealing becomes weak, and if it exceeds 95%, the recrystallization driving force becomes too high and the ear becomes no-ear, This leads to a decrease in Cube orientation density during intermediate annealing.
  • the total rolling rate in the entire hot rolling process is more preferably 85 to 93%.
  • the rolling rate in the primary cold rolling process is preferably 85 to 95%.
  • the rolling rate in the primary cold rolling process is more preferably 87 to 93%.
  • Intermediate annealing step After the primary cold rolling, the cold rolled sheet is subjected to an intermediate annealing step.
  • the intermediate annealing step the primary cold-rolled sheet is first heated to an annealing temperature of 300 to 450 ° C. at an average heating rate of 10 to 100 ° C./hour in a temperature range of 200 ° C. or higher, and then at this annealing temperature. It is preferable to hold for 1 to 4 hours.
  • an intermediate annealing plate in which CubeO is 4 times or more with respect to the random orientation and CubeO / RO is 1 or more is obtained.
  • the average rate of temperature increase in the temperature range of 200 ° C. or higher is less than 10 ° C./hour.
  • competition between recrystallization and precipitation becomes remarkable, and the formation of the R orientation is rapidly promoted.
  • the temperature exceeds 100 ° C./hour a temperature gradient is generated between the inner winding and the outer winding of the coil to cause a difference in thermal expansion, and the overlapping plates are rubbed with each other to deteriorate the surface quality.
  • the reason why the temperature range is limited to 200 ° C. or more is that recrystallization and precipitation compete.
  • the average rate of temperature increase in the temperature range of 200 ° C. or higher is more preferably 15 to 80 ° C./hour.
  • the annealing temperature is less than 300 ° C. and the annealing time is less than 1 hour, a complete recrystallized structure cannot be obtained.
  • the annealing temperature exceeds 450 ° C.
  • the cold rolling oil is baked on the surface of the intermediate annealing plate and the surface quality is deteriorated.
  • the annealing time exceeds 4 hours, productivity deteriorates.
  • the annealing temperature is more preferably 330 to 400 ° C., and the annealing time is further preferably 2 to 4 hours.
  • Secondary cold rolling step The intermediate annealed plate after the intermediate annealing step is subjected to the secondary cold rolling step.
  • the rolling rate in the secondary cold rolling process is preferably 20 to 40%. When the rolling rate is less than 20%, the strength is insufficient. As a result, the strength of the can cannot be obtained, and cracks occur during deep drawing. When the rolling rate exceeds 40%, the yield strength becomes too high, and the ratio between the tensile strength and the yield strength becomes small. As a result, cracks and wrinkles occur during deep drawing. Further, when the rolling rate exceeds 40%, the rolling texture develops, so that the 45 degree ear becomes stronger.
  • a final annealing step of annealing the secondary cold rolled sheet may be further provided. Thereby, material strength and ductility can be adjusted, and it becomes possible to aim at the further improvement of a moldability.
  • the temperature is raised to an annealing temperature of 140 to 190 ° C. at an average temperature increase rate of 10 to 80 ° C./hour, and then held at the annealing temperature for 2 to 4 hours.
  • the productivity is deteriorated.
  • the productivity is deteriorated.
  • it exceeds 80 ° C./hour the amount of heat input becomes insufficient and the effect of annealing cannot be obtained sufficiently, and only the manufacturing cost increases.
  • the annealing temperature is less than 140 ° C. and the annealing time is less than 2 hours, the effect of annealing becomes insufficient.
  • the annealing temperature exceeds 190 ° C., the softening proceeds too much and the material strength decreases.
  • productivity deteriorates.
  • the annealing temperature is more preferably 160 to 180 ° C., and the annealing time is further preferably 2 to 3 hours.
  • An ingot was produced by DC casting using an aluminum alloy having the composition of A to U shown in Table 1 according to a conventional method.
  • the ingot was homogenized, hot rolled, primary cold rolled, intermediate annealed, secondary cold rolled, and final annealed under the conditions shown in Table 2 to produce a final product having a thickness of 0.22 mm.
  • tissue observation were performed.
  • the conductivity was measured using an eddy current conductivity measuring device and using copper as a reference sample.
  • the structure was observed by polishing the plate cross section (L-ST surface) using the Barker method.
  • the case where it was a complete recrystallized structure was evaluated as ⁇ , and the case where the rolled structure remained was evaluated as x.
  • the intermediate annealed plate was subjected to structure observation and texture evaluation.
  • the plate cross section (L-ST plane) was evaluated in the same manner as the hot-rolled plate.
  • the texture evaluation was performed by the SEM-EBSD method on the plate surface using OIM manufactured by TSL. CubeO and RO were evaluated without considering the tilt angle.
  • the final plate was further evaluated for strength, ear coverage, surface quality, and deep drawability.
  • intensity strength, it implemented in the rolling direction and the parallel direction using the JIS5 test piece, and measured the yield strength and tensile strength after baking.
  • the baking conditions were 205 ° C. ⁇ 10 minutes.
  • the ear ratio was calculated from the following equation by measuring a cup height in the rolling direction after forming a cup by squeezing a blank having a diameter of 57 mm with a 33 mm punch.
  • Ear rate (%) ⁇ (average mountain height ⁇ average valley height) / average cup height ⁇ ⁇ 100
  • the others were regarded as unacceptable (x).
  • x the surface quality
  • the case where the DR could be continuously formed without cracking was determined to be acceptable ( ⁇ ), and the others were rejected.
  • Comparative Example 25 the Si content of the aluminum alloy was large, and the amount of intermetallic compound deposited was large. As a result, the formation of the Cube orientation was suppressed, leading to the development of 45-degree ears and the ear rate deteriorated.
  • Comparative Example 26 the Fe content of the aluminum alloy was large, and coarse crystals were increased. As a result, recrystallization around the crystallized substance became dominant at the time of recrystallization, leading to the development of 45-degree ears of the final plate, and the ear rate was deteriorated.
  • Comparative Example 44 the primary cold rolling rate is high, the recrystallization driving force before annealing is increased, the formation amount of the Cube orientation is decreased, and the 45-degree ear of the final plate is developed, leading to deterioration of the ear rate. Also, cracks occurred during deep drawing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

Provided is an aluminum alloy for DR can bodies, the alloy having a low earing rate and excellent deep drawing properties even when a batch furnace is used, and a manufacturing method therefor. An aluminum alloy sheet for DR can bodies and a manufacturing method therefor, the aluminum alloy sheet being obtained from an aluminum alloy containing Si: 0.10-0.60 mass% (% below), Fe: 0.10-0.80%, Cu: 0.05-0.25%, Mn: 0.80-1.50%, Mg: 0.80-1.30% and the remainder being obtained from Al and unavoidable impurities and the aluminum alloy sheet being made into a final sheet after passing from an ingot of said aluminum alloy to a hot-rolled sheet and to a process-annealed sheet. In the final sheet, the cube orientation density (CubeO) is 2.00 or more times the random orientation density and the ratio (CubeO/SO) of CubeO to the S orientation density (SO) is 0.40-1.00. After baking, the aluminum alloy sheet has a yield strength of 180-220 MPa and a tensile strength of at least 230 MPa.

Description

DR缶ボディ用アルミニウム合金板及びその製造方法Aluminum alloy plate for DR can body and manufacturing method thereof
 本発明は、深絞り性に優れ、かつ、耳率の小さいDR缶ボディ用アルミニウム合金及びその製造方法に関する。 The present invention relates to an aluminum alloy for a DR can body having excellent deep drawability and a low ear rate, and a method for producing the same.
 JIS規格におけるA3004やA3104といったアルミニウム合金は優れた成形性と耐食性を有することから、アルミニウム缶のボディ材として用いられている。アルミニウム缶のボディは、深絞り成形のみで製造されるDR缶と、深絞り成形としごき成形で製造されるDI缶がある。これらアルミニウム缶において、耳率は重要な特性である。ここで、耳率について説明する。通常、深絞り成形後のカップには、円周部における上端において高い部分(山)と低い部分(谷)が生じる。この山高さの平均値と谷高さの平均値の差を谷高さの平均値で除したものを耳率と呼ぶ。耳率が劣悪の場合には、缶蓋との巻き締め時に不良箇所が発生したり、トリミング量が増加して歩留が低下するなど生産性に悪影響を及ぼす。 Aluminum alloys such as A3004 and A3104 in JIS standards are used as body materials for aluminum cans because they have excellent formability and corrosion resistance. There are two types of aluminum can bodies: DR cans manufactured only by deep drawing and DI cans manufactured by deep drawing and ironing. Ear rate is an important property in these aluminum cans. Here, the ear rate will be described. Usually, a cup after deep drawing has a high portion (mountain) and a low portion (valley) at the upper end of the circumferential portion. The difference between the average value of the peak height and the average value of the valley height divided by the average value of the valley height is referred to as the ear rate. When the ear rate is inferior, the productivity is adversely affected, for example, a defective portion is generated at the time of winding with the can lid, or the trimming amount is increased and the yield is lowered.
 耳の形状としては、圧延方向に対して0/90度方向に山が立つ0/90度耳と、圧延方向に対して45度方向に山が立つ45度耳がある。それぞれの耳について集合組織との相関性があり、Cube方位:(001)<100>は0/90度耳を発達させ、圧延集合組織であるβファイバーは45度耳を発達させることが知られている。なお、冷間圧延率が高くなると、βファイバーが発達して45度耳が顕著となる。優れた耳率を得るためには、Cube方位と圧延集合組織、特にS及びR方位:{123}<634>の良好なバランスが必要である。 As the shape of the ear, there are a 0/90 degree ear with a mountain in the 0/90 degree direction with respect to the rolling direction and a 45 degree ear with a mountain in the 45 degree direction with respect to the rolling direction. Each ear has a correlation with the texture, and the Cube orientation: (001) <100> is known to develop 0/90 degree ears, and the β fiber, which is a rolled texture, is known to develop 45 degree ears. ing. When the cold rolling rate increases, the β fiber develops and the 45-degree ear becomes prominent. In order to obtain an excellent ear ratio, a good balance between the Cube orientation and the rolling texture, particularly the S and R orientations: {123} <634> is required.
 上記DR缶ボディは食品用容器が主な用途であり、世界の人口増加に伴い需要は増加していくものと予想される。DR缶ボディは、現在、中間焼鈍工程を備える製造方法によって製造されており、中間焼鈍には箱型焼鈍炉(以下、「バッチ炉」と記す)と連続焼鈍炉(以下「CAL」と記す)が用いられている。製造コストはCALの方が嵩み、生産能力を増やすための設備投資も多額となる。そのため、低コスト化を図るためにはバッチ炉で製造する必要があるが、CALに比べて耳の制御が厳しく45度耳が発達し易い難点がある。 The DR can body is mainly used for food containers, and demand is expected to increase as the world population increases. The DR can body is currently manufactured by a manufacturing method including an intermediate annealing process. For the intermediate annealing, a box-type annealing furnace (hereinafter referred to as “batch furnace”) and a continuous annealing furnace (hereinafter referred to as “CAL”). Is used. The manufacturing cost of CAL increases, and the capital investment for increasing the production capacity is large. Therefore, in order to reduce the cost, it is necessary to manufacture in a batch furnace, but there is a problem that ear control is more strict and 45-degree ears are more easily developed than CAL.
 また、DR缶ボディは深絞りのみで成形されることから、高度の深絞り成形性が要求される。具体的には、高深絞り性と深絞り成形時のしわの発生低減である。深絞り性は限界絞り比で評価され、深絞り性が良好でなければ成形時に割れが発生し易くなる。また、深絞り成形時にしわが発生すると、製品の表面品質を著しく低下させる。近年になって、表面品質への要求は益々厳しくなっている。 Also, since the DR can body is formed only by deep drawing, a high degree of deep drawing formability is required. Specifically, high deep drawability and reduction of wrinkles during deep drawing. Deep drawability is evaluated by the limit draw ratio. If the deep drawability is not good, cracks are likely to occur during molding. In addition, when wrinkles occur during deep drawing, the surface quality of the product is significantly reduced. In recent years, the demand for surface quality has become increasingly severe.
 特許文献1には、深絞り性や再絞り性を有する包装用アルミニウム合金板の製造方法が記載されている。また、特許文献2には、高強度で、かつ低方向性を有する包装用アルミニウム合金の製造方法が記載されている。また、特許文献3~5には、上述の集合組織に関する技術として、熱延板、中間焼鈍板、最終板のCube方位や圧延集合組織を規定した低耳率を有するアルミニウム合金板が記載されている。 Patent Document 1 describes a method for producing an aluminum alloy sheet for packaging having deep drawability and redrawability. Patent Document 2 describes a method for producing a packaging aluminum alloy having high strength and low directionality. Patent Documents 3 to 5 describe aluminum alloy sheets having a low ear ratio that define the hot-rolled sheet, the intermediate annealed sheet, the Cube orientation of the final sheet, and the rolled texture as a technique related to the texture described above. Yes.
 特許文献1においては、均質化処理や冷間圧延率で耳の制御を図っているが、これだけではバッチ炉で中間焼鈍を行った場合に十分な低耳率を得ることはできない。また、特許文献2のアルミニウム合金では、高強度のために深絞り成形時にしわが発生する虞がある。上述のように表面品質への要求が高まっていることから、特許文献2のアルミニウム合金をDRボディ材に適用するのは困難である。 In Patent Document 1, the ear is controlled by the homogenization treatment and the cold rolling rate, but it is not possible to obtain a sufficiently low ear rate when intermediate annealing is performed in a batch furnace. Moreover, in the aluminum alloy of patent document 2, since there exists high intensity | strength, there exists a possibility that a wrinkle may generate | occur | produce at the time of deep drawing. Since the demand for surface quality is increasing as described above, it is difficult to apply the aluminum alloy of Patent Document 2 to the DR body material.
 一方、特許文献3~5の技術では金属組織を制御しているものの、用途がDI缶用に限定されている。DI缶用途では、中間焼鈍工程を用いず高冷間圧延率となる。用いる超硬質材は高耐力のため、深絞り成形時にしわが発生し易くDR缶用には適していない。また、特許文献5の熱延板組織は部分再結晶組織であるため、板温度が低くなければ部分再結晶組織を得ることができない。従って、製造条件の一つである圧延速度を低下せざるを得ず、生産性の低下と製造コスト高を招く問題がある。 On the other hand, although the techniques of Patent Documents 3 to 5 control the metal structure, the use is limited to DI cans. In DI can applications, a high cold rolling rate is achieved without using an intermediate annealing process. Since the super hard material used has a high yield strength, wrinkles are likely to occur during deep drawing, and it is not suitable for DR cans. Moreover, since the hot-rolled sheet structure of Patent Document 5 is a partially recrystallized structure, a partially recrystallized structure cannot be obtained unless the sheet temperature is low. Therefore, the rolling speed, which is one of the manufacturing conditions, must be reduced, and there is a problem that the productivity is lowered and the manufacturing cost is increased.
特開昭63-145758号公報JP-A 63-145758 特開平1-198454号公報Japanese Unexamined Patent Publication No. 1-198454 特開2001-40461号公報JP 2001-40461 A 特開2004-244701号公報JP 2004-244701 A 特開2004-263253号公報JP 2004-263253 A
発明が解決しようする課題Problems to be solved by the invention
 本発明者らは、種々の実験及び検討を重ねた結果、中間焼鈍工程前の金属組織において、S方位をマトリクス中に十分に発達させて再結晶時の析出を抑制することにより、バッチ炉でも優れた耳率を有するアルミニウム合金板が得られることを見出した。すなわち、Cube方位とS方位には結晶方位として<111>軸回り40度の回転関係があり、S方位のマトリクスにおいてCube方位は成長し易いことが知られている。そこで、このS方位を発達させることでCube方位を成長し易くさせるものである。また、析出物は再結晶を阻害してCube方位の形成を抑制し、R方位形成を促進させる。そこで、S方位を十分に発達させて析出粒子数を抑制することにより、バッチ炉を用いた中間焼鈍工程においても優れた耳率が得られるようにした。 As a result of repeating various experiments and studies, the present inventors have successfully developed the S orientation in the matrix in the metal structure before the intermediate annealing step to suppress precipitation at the time of recrystallization. It has been found that an aluminum alloy plate having an excellent ear ratio can be obtained. That is, it is known that the Cube orientation and the S orientation have a rotational relationship of 40 degrees around the <111> axis as the crystal orientation, and the Cube orientation is easy to grow in the S orientation matrix. Therefore, by developing the S orientation, the Cube orientation is easily grown. In addition, the precipitate inhibits recrystallization, suppresses the formation of the Cube orientation, and promotes the formation of the R orientation. Therefore, by sufficiently developing the S orientation and suppressing the number of precipitated particles, an excellent ear ratio was obtained even in the intermediate annealing process using a batch furnace.
 また、深絞り成形時のしわの発生の有無は、空焼き後における耐力に起因するものでる。空焼き後の耐力が低下するとしわの発生は抑制されるが、引張強度も低下するので深絞り性も劣る。そこで、冷間圧延率を制御することで耐力と引張強度を適切に調整し、これにより、良好な深絞り性を維持しつつ、しわの発生を抑制できることを見出した。 Also, the presence or absence of wrinkles during deep drawing is due to the yield strength after baking. When the yield strength after baking is reduced, the generation of wrinkles is suppressed, but since the tensile strength is also reduced, the deep drawability is also inferior. Thus, it has been found that by controlling the cold rolling rate, the proof stress and the tensile strength are appropriately adjusted, thereby suppressing the generation of wrinkles while maintaining a good deep drawability.
 本発明は、以上の知見を基にして見出されたアルミニウム合金であって、バッチ炉を用いた場合でも低耳率を有し、かつ、深絞り性に優れたDR缶ボディ用アルミニウム合金、ならびに、その製造方法の提供を目的とする。 The present invention is an aluminum alloy found on the basis of the above knowledge, has a low ear ratio even when a batch furnace is used, and has an excellent deep drawability, an aluminum alloy for DR can body, In addition, an object is to provide a manufacturing method thereof.
 本発明は、一次冷間圧延率を適切に制御することを特徴とするものである。一次冷間圧延率を高くすることで、S方位を発達させることができる。しかしながら、一次冷間圧延率が高過ぎる場合には、晶出物周りからの再結晶であるPSNが顕著となり、金属組織はCube方位密度が低下したランダム組織となる。その結果、0/90度耳を発達させることができず、45度耳の発達を招くことが判明した。そこで、一次冷間圧延率を適切に制御することにより、S方位を中間焼鈍工程前の組織に発達させ、かつ、中間焼鈍工程前の組織における析出粒子数及び再結晶時の析出を抑制するものである。これにより、焼鈍工程におけるCube方位の成長を促進させることができる。すなわち、0/90度耳の発達を促し、二次冷間圧延工程との良好なバランスにより優れた耳率を得るものである。また、二次冷間圧延工程において、適切な耐力と引張強度を制御することで、良好な深絞り性と高表面品質に耐えうる美観とが得られる。 The present invention is characterized in that the primary cold rolling rate is appropriately controlled. By increasing the primary cold rolling rate, the S orientation can be developed. However, when the primary cold rolling rate is too high, PSN that is recrystallized from around the crystallized product becomes prominent, and the metal structure becomes a random structure with a reduced Cube orientation density. As a result, it was found that 0/90 degree ears could not be developed, leading to 45 degree ear development. Therefore, by appropriately controlling the primary cold rolling rate, the S orientation is developed into a structure before the intermediate annealing process, and the number of precipitated particles in the structure before the intermediate annealing process and the precipitation during recrystallization are suppressed. It is. Thereby, the growth of the Cube orientation in the annealing process can be promoted. That is, the development of the 0/90 degree ear is promoted, and an excellent ear rate is obtained by a good balance with the secondary cold rolling process. Further, in the secondary cold rolling process, by controlling appropriate proof stress and tensile strength, good deep drawability and aesthetics that can withstand high surface quality can be obtained.
 本発明は請求項1において、Si:0.10~0.60mass%、Fe:0.10~0.80mass%、Cu:0.05~0.25mass%、Mn:0.80~1.50mass%、Mg:0.80~1.30mass%を含有し、残部Al及び不可避不純物よりなるアルミニウム合金からなり、当該アルミニウム合金の鋳塊から少なくとも熱間圧延板と中間焼鈍板を経て最終板としたアルミニウム合金板であって、最終板におけるCube方位密度(CubeO)がランダム方位密度に対して2.00倍以上であり、かつ、CubeOとS方位密度(SO)との比(CubeO/SO)が0.40~1.00であり、空焼き後において、180~220MPaの耐力及び230MPa以上の引張強度を有することを特徴とするDR缶ボディ用アルミニウム合金板とした。 In the present invention, Si: 0.10 to 0.60 mass%, Fe: 0.10 to 0.80 mass%, Cu: 0.05 to 0.25 mass%, Mn: 0.80 to 1.50 mass %, Mg: 0.80 to 1.30 mass%, and is made of an aluminum alloy composed of the balance Al and inevitable impurities, and the final plate is obtained from the aluminum alloy ingot through at least a hot rolled plate and an intermediate annealed plate. An aluminum alloy plate in which the Cube orientation density (CubeO) in the final plate is 2.00 times or more than the random orientation density, and the ratio of CubeO to S orientation density (SO) (CubeO / SO) is DR which is 0.40 to 1.00 and has a proof stress of 180 to 220 MPa and a tensile strength of 230 MPa or more after baking. And an aluminum alloy plate for a body.
 本発明は請求項2では請求項1において、前記熱間圧延板の導電率が36.0~43.0%IACSであるものとした。 In the second aspect of the present invention, in the first aspect, the hot-rolled sheet has a conductivity of 36.0 to 43.0% IACS.
 本発明は請求項3では請求項1又は2において、前記中間焼鈍板におけるCube方位密度(CubeO)がランダム方位密度に対して4.00倍以上であり、かつ、CubeOとR方位密度(RO)との比(CubeO/RO)が1.00以上であるものとした。 According to a third aspect of the present invention, in the first or second aspect, the Cube orientation density (CubeO) in the intermediate annealing plate is 4.00 or more times the random orientation density, and the CubeO and the R orientation density (RO). And the ratio (CubeO / RO) to 1.00 or more.
 本発明は請求項4において、請求項1~3のいずれか一項に記載のDR缶ボディ用アルミニウム合金板の製造方法であって、Si:0.10~0.60mass%、Fe:0.10~0.80mass%、Cu:0.05~0.25mass%、Mn:0.80~1.50mass%、Mg:0.80~1.30mass%を含有し、残部Al及び不可避不純物よりなるアルミニウム合金を鋳造する鋳造工程と、鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板の一次冷間圧延工程と、一次冷間圧延板を焼鈍する中間焼鈍工程と、中間焼鈍板の二次冷間圧延工程と、を備えることを特徴とするDR缶ボディ用アルミニウム合金板の製造方法とした。 The present invention provides the method for producing an aluminum alloy plate for a DR can body according to any one of claims 1 to 3, wherein Si: 0.10 to 0.60 mass%, Fe: 0.00. Contains 10 to 0.80 mass%, Cu: 0.05 to 0.25 mass%, Mn: 0.80 to 1.50 mass%, Mg: 0.80 to 1.30 mass%, and is composed of the balance Al and inevitable impurities. A casting process for casting an aluminum alloy, a homogenization process for homogenizing the ingot, a hot rolling process for hot rolling the homogenized ingot, and a primary cold rolling process for the hot rolled plate A method for producing an aluminum alloy plate for a DR can body, comprising: an intermediate annealing step for annealing the primary cold rolled plate; and a secondary cold rolling step for the intermediate annealed plate.
 本発明は請求項5では請求項4において、前記均質化処理工程において、鋳塊が580~620℃で1~12時間処理され、前記熱間圧延工程が、開始温度450~610℃で終了温度450~550℃の熱間粗圧延段階と終了温度330~380℃の熱間仕上圧延段階とからなり、前記一次冷間圧延工程の圧延率が85~95%であり、前記中間焼鈍工程において、一次冷間圧延板が200℃以上の温度域での平均昇温速度10~100℃/時間をもって300~450℃の焼鈍温度まで昇温され、次いで当該焼鈍温度で1~4時間保持され、前記二次冷間圧延工程の圧延率が20~40%であるものとした。 According to a fifth aspect of the present invention, in the fourth aspect of the present invention, in the homogenization step, the ingot is treated at 580 to 620 ° C. for 1 to 12 hours, and the hot rolling step is performed at a start temperature of 450 to 610 ° C. It consists of a hot rough rolling stage at 450 to 550 ° C. and a hot finish rolling stage at an end temperature of 330 to 380 ° C., and the rolling rate of the primary cold rolling process is 85 to 95%. In the intermediate annealing process, The primary cold-rolled sheet is heated to an annealing temperature of 300 to 450 ° C. at an average heating rate of 10 to 100 ° C./hour in a temperature range of 200 ° C. or higher, and then held at the annealing temperature for 1 to 4 hours. The rolling rate in the secondary cold rolling process was 20 to 40%.
 本発明は請求項6では請求項4又は5において、前記二次冷間圧延工程後において、二次冷間圧延板を焼鈍する最終焼鈍工程を更に備えるものとした。 In the sixth aspect of the present invention, the method according to the fourth or fifth aspect further includes a final annealing step of annealing the secondary cold rolled sheet after the secondary cold rolling step.
 本発明は請求項7では請求項6において、前記最終焼鈍工程において、二次冷間圧延板が200℃以上の温度域での平均昇温速度10~80℃/時間をもって140~190℃の焼鈍温度まで昇温され、次いで当該焼鈍温度で2~4時間保持されるものとした。 In the present invention, the present invention is as described in claim 6, wherein in the final annealing step, the secondary cold-rolled sheet is annealed at 140 to 190 ° C. with an average temperature increase rate of 10 to 80 ° C./hour in a temperature range of 200 ° C. or higher. The temperature was raised to a temperature and then held at the annealing temperature for 2 to 4 hours.
 本発明により、バッチ炉を用いた場合でも低耳率を有し、かつ、深絞り性に優れたDR缶ボディ用アルミニウム合金が得られる。 According to the present invention, an aluminum alloy for a DR can body having a low ear ratio and excellent deep drawability even when a batch furnace is used can be obtained.
1.DR缶ボディ用アルミニウム合金板
 本発明に係るDR缶ボディ用アルミニウム合金板は、所定の合金組成のアルミニウム合金からなり、最終板が特定の方位密度(CubeO)の特徴を有し、更に、空焼き後において、所定の強度を有する。
1. Aluminum alloy plate for DR can body The aluminum alloy plate for DR can body according to the present invention is made of an aluminum alloy having a predetermined alloy composition, and the final plate has a characteristic of a specific orientation density (CubeO). Later, it has a predetermined strength.
1.1.アルミニウム合金の組成
 まず、アルミニウム合金組成に関する各成分の限定理由について説明する。
1.1. Composition of aluminum alloy First, the reason for limitation of each component regarding an aluminum alloy composition is demonstrated.
Si:0.10~0.60mass%
 Siの含有により、最終焼鈍時及び塗装焼付時にMgSi系粒子が析出して強度上昇に寄与する。Si含有量が0.10mass%(以下、「%」と記す)未満ではこの効果は得られず、また、鋳造時に高純度の地金を用いなければならず原料コストが増加する。一方、0.60%を超えると析出粒子が増加するため、熱間圧延工程及び中間焼鈍工程において再結晶化が阻害される。その結果、Cube方位の形成が抑制され、最終板の耳率が悪化する。なお、Siの好ましい含有量は、0.20~0.50%である。
Si: 0.10 to 0.60 mass%
By containing Si, Mg 2 Si-based particles are precipitated during final annealing and coating baking, thereby contributing to an increase in strength. If the Si content is less than 0.10 mass% (hereinafter referred to as “%”), this effect cannot be obtained, and high-purity metal must be used at the time of casting, which increases raw material costs. On the other hand, if it exceeds 0.60%, the precipitated particles increase, so that recrystallization is hindered in the hot rolling process and the intermediate annealing process. As a result, the formation of the Cube orientation is suppressed, and the ear rate of the final plate is deteriorated. A preferable content of Si is 0.20 to 0.50%.
Fe:0.10~0.80%
 Feの含有によりMnの固溶析出状態が制御され、Mn系晶出物が均一に分散することにより深絞り成形性が向上する。Fe含有量が0.10%未満ではこの効果は得られず、また鋳造時に高純度の地金を用いなければならず原料コストが増加する。一方、0.80%を超えると粗大なAl-Fe-Mn-Si系晶出物が増加し、PSNと呼ばれる晶出物周りの高転位密度領域における再結晶が支配的となる。その結果、Cube方位密度が低下し、最終板の耳率が悪化する。なお、Feの好ましい含有量は、0.30~0.60%である。
Fe: 0.10 to 0.80%
The solid solution precipitation state of Mn is controlled by the inclusion of Fe, and the deep drawability is improved by uniformly dispersing the Mn-based crystallized product. If the Fe content is less than 0.10%, this effect cannot be obtained, and high-purity ingots must be used at the time of casting, which increases raw material costs. On the other hand, when it exceeds 0.80%, coarse Al—Fe—Mn—Si based crystallized substances increase, and recrystallization in a high dislocation density region around the crystallized substances called PSN becomes dominant. As a result, the Cube orientation density is lowered, and the ear rate of the final plate is deteriorated. A preferable content of Fe is 0.30 to 0.60%.
Cu:0.05~0.25%
 Cuの含有により、最終焼鈍時及び塗装焼付時にAl-Cu-Mg系及びAl-Cu-Mg-Si系の粒子が析出して、強度上昇に寄与する。Cu含有量が0.05%未満ではこの効果は得られず、0.25%を超えると強度が高くなり過ぎて、深絞り成形性が悪化する。なお、Cuの好ましい含有量は、0.10~0.25%である。
Cu: 0.05 to 0.25%
Due to the inclusion of Cu, Al—Cu—Mg and Al—Cu—Mg—Si particles are deposited during final annealing and paint baking, contributing to an increase in strength. If the Cu content is less than 0.05%, this effect cannot be obtained, and if it exceeds 0.25%, the strength becomes too high and the deep drawability deteriorates. A preferable content of Cu is 0.10 to 0.25%.
Mn:0.80~1.50%
 Mnの含有により、強度の上昇に寄与する。Mn含有量が0.80%未満では十分な強度を得ることはできない。一方、1.50%を超えると強度が高くなり過ぎて、深絞り成形性が悪化する。なお、Mnの好ましい含有量は、0.80~1.10%である。
Mn: 0.80 to 1.50%
Containing Mn contributes to an increase in strength. If the Mn content is less than 0.80%, sufficient strength cannot be obtained. On the other hand, if it exceeds 1.50%, the strength becomes too high and the deep drawability deteriorates. A preferable content of Mn is 0.80 to 1.10%.
Mg:0.80~1.30%
 Mgの含有により、固溶による強度上昇に寄与する。また、SiとMgSi系粒子の形成により、最終焼鈍時及び塗装焼付時の強度上昇にも寄与する。Mg含有量が0.80%未満ではこの効果は得られない。一方、1.30%を超えると強度が高くなり過ぎて、深絞り成形性が悪化する。なお、Mgの好ましい含有量は、0.90~1.25%である。
Mg: 0.80 to 1.30%
Containing Mg contributes to an increase in strength due to solid solution. Further, the formation of Si and Mg 2 Si-based particles contributes to an increase in strength during final annealing and paint baking. If the Mg content is less than 0.80%, this effect cannot be obtained. On the other hand, if it exceeds 1.30%, the strength becomes too high and the deep drawability deteriorates. A preferable content of Mg is 0.90 to 1.25%.
 上記アルミニウム合金は、不可避的不純物としてTi、B、V等をそれぞれ0.05%以下、全体で0.15%以下含有していてもよい。 The aluminum alloy may contain 0.05% or less of Ti, B, V, etc. as inevitable impurities, and 0.15% or less as a whole.
1.2.方位密度の特徴(1)
 次に、本発明に係るDR缶ボディ用アルミニウム合金板の方位密度の特徴について説明する。本発明では、最終板におけるCube方位密度(以下、「CubeO」と記す)をランダム方位密度に対して2.00倍以上とし、かつ、CubeOとS方位密度(以下、「SO」と記す)との比(CubeO/SO)を0.40~1.00と規定する。
1.2. Characteristics of orientation density (1)
Next, the feature of the orientation density of the aluminum alloy plate for DR can body according to the present invention will be described. In the present invention, the Cube orientation density (hereinafter referred to as “CubeO”) in the final plate is 2.00 times or more than the random orientation density, and CubeO and S orientation density (hereinafter referred to as “SO”) Ratio (CubeO / SO) is defined as 0.40 to 1.00.
 耳の形状は、CubeO、ならびに、CubeOと圧延集合組織とのバランスにより決定される。CubeOがランダム方位に対して2.00倍未満、又は、CubeO/SOが0.40未満の場合には、45度耳が発達して耳率の悪化を招く。一方、CubeO/SOが1.00を超える場合には、0/90度耳と45度耳との良好なバランスが得られず、同様に耳率の悪化を招く。 The shape of the ear is determined by CubeO and the balance between CubeO and the rolling texture. When CubeO is less than 2.00 times the random orientation, or CubeO / SO is less than 0.40, the 45-degree ear develops and the ear rate deteriorates. On the other hand, when CubeO / SO exceeds 1.00, a good balance between the 0/90 degree ear and the 45 degree ear cannot be obtained, and the ear rate is similarly deteriorated.
 CubeOは、ランダム方位密度に対して3.00倍以上であるのが好ましい。なお、この倍率の上限値は特に規定するものではないが、アルミニウム合金の組成及び製造条件によって自ずと決まり、本発明では上限値を7.00倍とする。また、CubeO/SOは、好ましくは0.50~1.00である。 CubeO is preferably 3.00 or more times the random orientation density. The upper limit value of the magnification is not particularly specified, but is naturally determined by the composition and manufacturing conditions of the aluminum alloy, and in the present invention, the upper limit value is set to 7.00 times. CubeO / SO is preferably 0.50 to 1.00.
1.3.強度の特徴
 次に、本発明に係るDR缶ボディ用アルミニウム合金板の強度について説明する。本発明では、空焼き後において、180~220MPaの耐力及び230MPa以上の引張強度を有するものと規定する。空焼き後の耐力が180MPa未満の場合は、DR缶ボディとして強度不足となる。一方、空焼き後の耐力が220MPaを超える場合は、深絞り成形時にしわが発生して表面品質が低下する。空焼き後の耐力は、190~210MPaとするのが好ましい。また、空焼き後における引張強度が230MPa未満の場合は、限界絞り比が低下して深絞り性に劣る。なお、空焼き後における引張強度は、235MPa以上であるのが好ましい。ここで、空焼き後における引張強度の上限値は特に規定するものではないが、アルミニウム合金の組成及び製造条件によって自ずと決まり、本発明では上限値を255MPaとする。
1.3. Strength Characteristics Next, the strength of the aluminum alloy plate for DR can body according to the present invention will be described. In the present invention, it is defined as having a yield strength of 180 to 220 MPa and a tensile strength of 230 MPa or more after baking. When the yield strength after baking is less than 180 MPa, the strength of the DR can body is insufficient. On the other hand, when the yield strength after baking is over 220 MPa, wrinkles are generated during deep drawing and surface quality is deteriorated. The yield strength after baking is preferably 190 to 210 MPa. Moreover, when the tensile strength after baking is less than 230 MPa, the limit drawing ratio is lowered and the deep drawability is poor. In addition, it is preferable that the tensile strength after baking is 235 MPa or more. Here, the upper limit value of the tensile strength after baking is not particularly specified, but it is naturally determined by the composition and manufacturing conditions of the aluminum alloy, and the upper limit value is set to 255 MPa in the present invention.
1.4.方位密度の特徴(2)
 次に、本発明に係るDR缶ボディ用アルミニウム合金板の更なる方位密度の特徴について説明する。本発明では、中間焼鈍板におけるCubeOをランダム方位密度に対して4.00倍以上とし、かつ、CubeOとR方位密度(以下、「RO」と記す)との比(CubeO/RO)を1.00以上と規定するのが好ましい。
1.4. Characteristics of orientation density (2)
Next, the further feature of orientation density of the aluminum alloy plate for DR can body according to the present invention will be described. In the present invention, CubeO in the intermediate annealed plate is 4.00 times or more than the random orientation density, and the ratio (CubeO / RO) between CubeO and R orientation density (hereinafter referred to as “RO”) is 1. Preferably, it is defined as 00 or more.
 CubeOがランダム方位密度に対して4倍未満、又は、CubeO/ROが1.00未満の場合には、中間焼鈍板における0/90度耳の発達が不十分で、二次冷間圧延時の45度耳発達が顕著となり耳率が悪化する。 When CubeO is less than 4 times the random orientation density, or CubeO / RO is less than 1.00, the development of 0/90 degree ears in the intermediate annealed sheet is insufficient, and at the time of secondary cold rolling The 45 degree ear development becomes remarkable and the ear rate is deteriorated.
 CubeOは、ランダム方位密度に対して4.50倍以上であるのが好ましい。なお、この倍率の上限値は特に規定するものではないが、アルミニウム合金の組成及び製造条件によって自ずと決まり、本発明では上限値を10倍とする。また、CubeO/ROは、好ましくは1.00以上である。CubeO/ROの上限値は特に規定するものではないが、アルミニウム合金の組成及び製造条件によって自ずと決まり、本発明では上限値を5.00とする。 CubeO is preferably 4.50 or more times the random orientation density. The upper limit value of the magnification is not particularly specified, but is naturally determined by the composition of the aluminum alloy and the manufacturing conditions, and the upper limit value is set to 10 times in the present invention. CubeO / RO is preferably 1.00 or more. Although the upper limit value of CubeO / RO is not particularly defined, it is naturally determined by the composition and manufacturing conditions of the aluminum alloy, and in the present invention, the upper limit value is set to 5.00.
2.DR缶ボディ用アルミニウム合金板の製造方法
 本発明に係るDR缶ボディ用アルミニウム合金板は、上記所定の組成のアルミニウム合金を鋳造する鋳造工程と;鋳塊を均質化処理する均質化処理工程と;均質化処理した鋳塊を熱間圧延する熱間圧延工程と;熱間圧延板の一次冷間圧延工程と;一次冷間圧延板を300~450℃で焼鈍する中間焼鈍工程と;中間焼鈍板の二次冷間圧延工程と;を備える。
2. Manufacturing method of aluminum alloy plate for DR can body The aluminum alloy plate for DR can body according to the present invention includes a casting step of casting the aluminum alloy having the above-mentioned predetermined composition; a homogenization treatment step of homogenizing the ingot; A hot rolling step for hot rolling the homogenized ingot; a primary cold rolling step for the hot rolled plate; an intermediate annealing step for annealing the primary cold rolled plate at 300 to 450 ° C; and an intermediate annealed plate A secondary cold rolling step.
2-1.鋳造工程
 上記合金組成のアルミニウム合金を、半連続鋳造法によって鋳造し鋳塊を作成する。
2-1. Casting process An aluminum alloy having the above alloy composition is cast by a semi-continuous casting method to produce an ingot.
2-2.均質化処理工程
 均質化処理工程では、鋳造工程で鋳造した鋳塊を580~620℃の温度で1~12時間の熱処理を施すのが好ましい。処理温度が580度℃未満及び処理時間が1時間未満の場合は、均質化効果が不十分となる。また、熱間圧延工程中の析出粒子数が多くなるので、熱間圧延工程後の再結晶化が阻害される。その結果、熱間圧延板中に圧延組織が残存し、再結晶粒においてもCubeOが低下する。この熱間圧延板のCubeOは、中間焼鈍時のCube方位粒の核の一つとなるものであるため、低下させないことが重要である。また、処理温度が620℃を超えると鋳塊表面において酸化や膨れが生じ、表面品質の低下を招く。なお、処理時間が12時間を超えても効果の更なる向上が得られず、生産性を悪化させる。なお、均質化処理工程の温度は、580~610℃とするのが更に好ましく、処理時間は1~4時間とするのが更に好ましい。
2-2. Homogenization treatment step In the homogenization treatment step, the ingot cast in the casting step is preferably subjected to heat treatment at a temperature of 580 to 620 ° C. for 1 to 12 hours. When the treatment temperature is less than 580 ° C. and the treatment time is less than 1 hour, the homogenization effect is insufficient. In addition, since the number of precipitated particles during the hot rolling process increases, recrystallization after the hot rolling process is hindered. As a result, a rolled structure remains in the hot-rolled sheet, and CubeO also decreases in the recrystallized grains. Since CubeO of this hot-rolled sheet becomes one of the nuclei of Cube-oriented grains during intermediate annealing, it is important not to lower it. On the other hand, when the treatment temperature exceeds 620 ° C., oxidation or blistering occurs on the ingot surface, leading to deterioration of the surface quality. In addition, even if processing time exceeds 12 hours, the further improvement of an effect is not acquired and productivity deteriorates. The temperature of the homogenization treatment step is more preferably 580 to 610 ° C., and the treatment time is further preferably 1 to 4 hours.
2-3.熱間圧延工程
 均質化処理工程の後に、鋳塊を熱間圧延工程にかける。熱間圧延工程は、熱間粗圧延段階と熱間仕上圧延段階とからなる。熱間粗圧延段階では、開始温度を450~610℃とし、終了温度を450~550℃とするのが好ましい。開始温度が450℃未満の場合は、金属間化合物の析出が起こり、かつ、圧延板の温度が低下する。その結果、熱間仕上圧延上がりの組織において圧延組織が残存し、最終板の45度耳が発達してしまう。開始温度が610℃を超える場合は、圧延板の表面が酸化し、圧延中に圧延板表面に不具合が発生して品質が低下する。また、終了温度が450℃未満の場合は、1パス当たりの圧下量を低下させて変形抵抗を抑制する必要があるため、生産性が低下する。一方、終了温度が550℃を超える場合は、圧延板の表面に焼付きが発生して表面品質が低下する。熱間粗圧延段階と熱間仕上圧延段階における圧延時間は特に限定するものではないが、20分以内とするのが好ましい。なお、熱間粗圧延段階の開始温度を470~580℃とし、終了温度を450~530℃とするのが更に好ましい。
2-3. Hot rolling process After the homogenization process, the ingot is subjected to a hot rolling process. The hot rolling process includes a hot rough rolling stage and a hot finish rolling stage. In the hot rough rolling stage, it is preferable that the start temperature is 450 to 610 ° C. and the end temperature is 450 to 550 ° C. When the starting temperature is less than 450 ° C., precipitation of intermetallic compounds occurs and the temperature of the rolled sheet decreases. As a result, the rolled structure remains in the structure after the hot finish rolling, and the 45-degree ears of the final plate are developed. When the starting temperature exceeds 610 ° C., the surface of the rolled sheet is oxidized, and a defect occurs on the surface of the rolled sheet during rolling, resulting in a deterioration in quality. Further, when the end temperature is less than 450 ° C., it is necessary to suppress the deformation resistance by reducing the amount of reduction per pass, and thus the productivity is lowered. On the other hand, when the end temperature exceeds 550 ° C., seizure occurs on the surface of the rolled sheet, and the surface quality deteriorates. The rolling time in the hot rough rolling stage and the hot finish rolling stage is not particularly limited, but is preferably within 20 minutes. It is more preferable that the start temperature of the hot rough rolling step is 470 to 580 ° C. and the end temperature is 450 to 530 ° C.
 熱間粗圧延段階の後に、圧延板を熱間仕上圧延段階にかける。熱間仕上圧延段階では、終了温度を330~380℃とするのが好ましい。終了温度が330℃未満の場合は、再結晶の駆動力が不足する。その結果、圧延板に圧延集合組織が残存してしまい、最終板の45度耳が発達して耳率が悪化する。また、圧延速度を抑制する必要があるため、生産性も低下する。終了温度が380℃を超える場合は、圧延板の表面に焼付きが発生して表面品質が低下する。なお、熱間仕上圧延段階の終了温度を、330~370℃とするのが更に好ましい。 After the hot rough rolling stage, the rolled plate is subjected to the hot finish rolling stage. In the hot finish rolling stage, the end temperature is preferably set to 330 to 380 ° C. When the end temperature is less than 330 ° C., the driving force for recrystallization is insufficient. As a result, the rolling texture remains on the rolled plate, and the 45 ° ears of the final plate develop and the ear rate deteriorates. Moreover, since it is necessary to suppress a rolling speed, productivity also falls. When the end temperature exceeds 380 ° C., seizure occurs on the surface of the rolled sheet, and the surface quality deteriorates. It is more preferable that the end temperature of the hot finish rolling step is 330 to 370 ° C.
 熱間圧延工程後における熱間圧延板の導電率は、36.0~43.0%IACSとするのが好ましい。導電率が36.0%IACS未満の場合は、高固溶状態となり、深絞り成形性が低下して製缶時に割れが発生する。一方、導電率が43.0%IACSを超える場合は、熱間圧延板中の析出物が増加して中間焼鈍時にR方位が優先的に形成されるため、最終板の45度耳発達が顕著になる。熱間圧延板の導電率は、36.0~42.0%IACSとするのが更に好ましい。 The electrical conductivity of the hot rolled sheet after the hot rolling step is preferably 36.0 to 43.0% IACS. When the electrical conductivity is less than 36.0% IACS, the solution is in a highly solid state, the deep drawability is lowered, and cracking occurs during can making. On the other hand, when the electrical conductivity exceeds 43.0% IACS, precipitates in the hot-rolled sheet increase and the R orientation is preferentially formed during intermediate annealing, so the 45-degree ear development of the final sheet is remarkable. become. The electrical conductivity of the hot rolled sheet is more preferably 36.0 to 42.0% IACS.
 熱間圧延工程全体における総圧延率については特に規定するものではないが、80~95%とするのが好ましい。80%は未満では、熱延板におけるS方位密度が低下し、自己焼鈍時の0/90度耳が弱くなり、95%を超えると再結晶駆動力が高くなりすぎ耳がノーイヤー化して、それぞれ中間焼鈍時のCube方位密度低下につながる。熱間圧延工程全体における総圧延率は、85~93%とするのが更に好ましい。 The total rolling rate in the entire hot rolling process is not particularly specified, but is preferably 80 to 95%. If it is less than 80%, the S orientation density in the hot-rolled sheet decreases, the 0/90 degree ear during self-annealing becomes weak, and if it exceeds 95%, the recrystallization driving force becomes too high and the ear becomes no-ear, This leads to a decrease in Cube orientation density during intermediate annealing. The total rolling rate in the entire hot rolling process is more preferably 85 to 93%.
2-4.一次冷間圧延工程
 熱間圧延工程後に、熱間圧延板を一次冷間圧延工程にかける。一次冷間圧延工程の圧延率は、85~95%とするのが好ましい。圧延率が85%未満の場合は、Cube方位の核生成サイトであるS方位の発達が不十分であり、圧延率が95%を超える場合は、晶出物周りの核生成であるPSNが顕著となり、二次冷間圧延で45度耳が発達し、耳率の悪化につながる。なお、一次冷間圧延工程の圧延率は、87~93%とするのが更に好ましい。
2-4. Primary cold rolling process After the hot rolling process, the hot rolled sheet is subjected to the primary cold rolling process. The rolling rate in the primary cold rolling process is preferably 85 to 95%. When the rolling rate is less than 85%, the development of the S orientation, which is the nucleation site of the Cube orientation, is insufficient, and when the rolling rate exceeds 95%, PSN which is the nucleation around the crystallized material is remarkable. Thus, 45 degree ears are developed by secondary cold rolling, which leads to deterioration of the ear rate. The rolling rate in the primary cold rolling process is more preferably 87 to 93%.
2-5.中間焼鈍工程
 一次冷間圧延後に、冷間圧延板は中間焼鈍工程にかけられる。中間焼鈍工程では、まず、200℃以上の温度域での平均昇温速度10~100℃/時間をもって一次冷間圧延板が300~450℃の焼鈍温度まで昇温され、次いで、この焼鈍温度で1~4時間保持されるのが好ましい。このような中間焼鈍工程により、CubeOがランダム方位に対して4倍以上であり、かつ、CubeO/ROが1以上となる中間焼鈍板が得られる。
2-5. Intermediate annealing step After the primary cold rolling, the cold rolled sheet is subjected to an intermediate annealing step. In the intermediate annealing step, the primary cold-rolled sheet is first heated to an annealing temperature of 300 to 450 ° C. at an average heating rate of 10 to 100 ° C./hour in a temperature range of 200 ° C. or higher, and then at this annealing temperature. It is preferable to hold for 1 to 4 hours. By such an intermediate annealing step, an intermediate annealing plate in which CubeO is 4 times or more with respect to the random orientation and CubeO / RO is 1 or more is obtained.
 200℃以上の温度域での平均昇温速度が10℃/時間未満の場合は、再結晶と析出の競合が顕著となり、R方位の形成が急激に促進される。一方、100℃/時間を超える場合は、コイルの内巻きと外巻きで温度勾配が発生して熱膨張差が生じ、重なり合う板同士が擦れて表面品質が低下する。また、温度域を200℃以上に限定したのは、再結晶と析出が競合するためである。なお、200℃以上の温度域での平均昇温速度は、15~80℃/時間とするのが更に好ましい。 When the average rate of temperature increase in the temperature range of 200 ° C. or higher is less than 10 ° C./hour, competition between recrystallization and precipitation becomes remarkable, and the formation of the R orientation is rapidly promoted. On the other hand, when the temperature exceeds 100 ° C./hour, a temperature gradient is generated between the inner winding and the outer winding of the coil to cause a difference in thermal expansion, and the overlapping plates are rubbed with each other to deteriorate the surface quality. The reason why the temperature range is limited to 200 ° C. or more is that recrystallization and precipitation compete. The average rate of temperature increase in the temperature range of 200 ° C. or higher is more preferably 15 to 80 ° C./hour.
 焼鈍温度が300℃未満及び焼鈍時間が1時間未満の場合は、完全再結晶組織を得ることができない。また、焼鈍温度が450℃を超える場合は、冷間圧延油が中間焼鈍板の表面に焼付いて表面品質が低下する。焼鈍時間が4時間を超える場合は、生産性が悪化する。なお、焼鈍温度は330~400℃とするのが更に好ましく、焼鈍時間は2~4時間とするのが更に好ましい。 When the annealing temperature is less than 300 ° C. and the annealing time is less than 1 hour, a complete recrystallized structure cannot be obtained. On the other hand, when the annealing temperature exceeds 450 ° C., the cold rolling oil is baked on the surface of the intermediate annealing plate and the surface quality is deteriorated. When the annealing time exceeds 4 hours, productivity deteriorates. The annealing temperature is more preferably 330 to 400 ° C., and the annealing time is further preferably 2 to 4 hours.
2-6.二次冷間圧延工程
 中間焼鈍工程後の中間焼鈍板は、二次冷間圧延工程にかけられる。二次冷間圧延工程の圧延率は、20~40%とするのが好ましい。圧延率が20%未満の場合は、強度が不足する。その結果、缶体強度が得られず、また、深絞り成形時に割れが発生する。圧延率が40%を超える場合は、耐力が高くなり過ぎ、引張強度と耐力の比も小さくなる。その結果、深絞り成形時に割れやしわが発生する。圧延率が40%を超える場合は更に、圧延集合組織が発達することから、45度耳も強くなる。
2-6. Secondary cold rolling step The intermediate annealed plate after the intermediate annealing step is subjected to the secondary cold rolling step. The rolling rate in the secondary cold rolling process is preferably 20 to 40%. When the rolling rate is less than 20%, the strength is insufficient. As a result, the strength of the can cannot be obtained, and cracks occur during deep drawing. When the rolling rate exceeds 40%, the yield strength becomes too high, and the ratio between the tensile strength and the yield strength becomes small. As a result, cracks and wrinkles occur during deep drawing. Further, when the rolling rate exceeds 40%, the rolling texture develops, so that the 45 degree ear becomes stronger.
2-7.最終焼鈍工程
 二次冷間圧延後に、二次冷間圧延板を焼鈍する最終焼鈍工程を更に備えるようにしてもよい。これにより、材料強度と延性を調整することができ、更なる成形性の向上を図ることが可能となる。最終焼鈍工程では、平均昇温速度10~80℃/時間をもって140~190℃の焼鈍温度まで昇温され、次いで当該焼鈍温度で2~4時間保持される。
2-7. Final annealing step After the secondary cold rolling, a final annealing step of annealing the secondary cold rolled sheet may be further provided. Thereby, material strength and ductility can be adjusted, and it becomes possible to aim at the further improvement of a moldability. In the final annealing step, the temperature is raised to an annealing temperature of 140 to 190 ° C. at an average temperature increase rate of 10 to 80 ° C./hour, and then held at the annealing temperature for 2 to 4 hours.
 平均昇温速度が10℃/時間未満の場合は、生産性が悪化する。一方、80℃/時間を超える場合は、入熱量が不十分となり焼鈍の効果が十分に得られず、製造コストのみが高くなってしまう。また、焼鈍温度が140℃未満及び焼鈍時間が2時間未満の場合は、焼鈍の効果が不十分となる。焼鈍温度が190℃を超える場合は、軟化が進行しすぎて材料強度が低下してしまう。焼鈍時間が4時間を超える場合は、生産性が悪化する。なお、焼鈍温度は160~180℃とするのが更に好ましく、焼鈍時間は2~3時間とするのが更に好ましい。 When the average heating rate is less than 10 ° C./hour, the productivity is deteriorated. On the other hand, when it exceeds 80 ° C./hour, the amount of heat input becomes insufficient and the effect of annealing cannot be obtained sufficiently, and only the manufacturing cost increases. Further, when the annealing temperature is less than 140 ° C. and the annealing time is less than 2 hours, the effect of annealing becomes insufficient. When the annealing temperature exceeds 190 ° C., the softening proceeds too much and the material strength decreases. When the annealing time exceeds 4 hours, productivity deteriorates. The annealing temperature is more preferably 160 to 180 ° C., and the annealing time is further preferably 2 to 3 hours.
 本発明の実施例について、以下に記載する本発明例と比較例に基づいて説明する。これらの実施例は本発明の一実施形態を示すものであり、本発明はこれに限定されるものではない。 Examples of the present invention will be described based on the present invention examples and comparative examples described below. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
 表1に示すA~Uの組成を有するアルミニウム合金を常法に従い、DC鋳造法により鋳塊を製造した。鋳塊に均質化処理、熱間圧延、一次冷間圧延、中間焼鈍、二次冷間圧延、最終焼鈍をそれぞれ表2に示す条件で行い、厚さ0.22mmの最終製品を製造した。 An ingot was produced by DC casting using an aluminum alloy having the composition of A to U shown in Table 1 according to a conventional method. The ingot was homogenized, hot rolled, primary cold rolled, intermediate annealed, secondary cold rolled, and final annealed under the conditions shown in Table 2 to produce a final product having a thickness of 0.22 mm.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 熱間圧延板、中間焼鈍板及び最終板について評価を行った。まず、熱間圧延板については、導電率測定と組織観察を行った。導電率は渦電流導電率測定装置を用いて、銅を基準試料に用いて測定した。組織観察はバーカー法を用いて板断面(L-ST面)研磨して観察した。組織観察では、完全再結晶組織となっている場合を○、圧延組織が残存していた場合を×として評価した。 Evaluation was made on hot-rolled sheets, intermediate-annealed sheets, and final sheets. First, about a hot-rolled board, electrical conductivity measurement and structure | tissue observation were performed. The conductivity was measured using an eddy current conductivity measuring device and using copper as a reference sample. The structure was observed by polishing the plate cross section (L-ST surface) using the Barker method. In the structure observation, the case where it was a complete recrystallized structure was evaluated as ◯, and the case where the rolled structure remained was evaluated as x.
 次に、中間焼鈍板について、組織観察と集合組織評価を行った。組織観察については、板断面(L-ST面)を熱間圧延板と同様に評価した。集合組織評価は、TSL社製OIMを用いて板表面をSEM-EBSD法によって行なった。なお、CubeO及びROは、傾角を考慮せずに評価した。 Next, the intermediate annealed plate was subjected to structure observation and texture evaluation. For structure observation, the plate cross section (L-ST plane) was evaluated in the same manner as the hot-rolled plate. The texture evaluation was performed by the SEM-EBSD method on the plate surface using OIM manufactured by TSL. CubeO and RO were evaluated without considering the tilt angle.
 最終板については、板厚方向において表面から1/4の部分についてX線回折装置を用いて評価した。ここでも、CubeO及びSOは、中間焼鈍板と同様に傾角を考慮せずに評価した。 For the final plate, a quarter portion from the surface in the thickness direction was evaluated using an X-ray diffractometer. Also here, CubeO and SO were evaluated without considering the tilt angle as in the case of the intermediate annealing plate.
 最終板については更に、強度、耳率、表面品質、深絞り性も評価した。強度については、JIS5号試験片を用いて圧延方向と平行方向で実施し、空焼き後における耐力及び引張強度を測定した。なお、空焼き条件は、205℃×10分間とした。なお、耐力については、185~220MPaを合格とし、引張強さ耐力については、230MPa以上を合格とし、両方が合格の場合を評価(強度)が合格とし、少なくともいずれか一方が不合格の場合を評価(強度)が不合格とした。
 耳率は直径57mmのブランクを33mmのパンチで絞ってカップを成形した後、圧延方向に対してカップ高さを測定し、次式より算出した。
  耳率(%)={(山高さ平均-谷高さ平均)/平均カップ高さ}×100
耳率については2.8%以下を合格(○)とし、それ以外を不合格(×)とした。表面品質については、しわ、膨れ、焼付、表面傷、表面酸化のいずれもが発生しなかったものを合格(○)とし、それ以外を不合格とした。深絞り性については、われが発生せずに連続してDR成形できた場合を合格(○)とし、それ以外を不合格とした。
The final plate was further evaluated for strength, ear coverage, surface quality, and deep drawability. About intensity | strength, it implemented in the rolling direction and the parallel direction using the JIS5 test piece, and measured the yield strength and tensile strength after baking. The baking conditions were 205 ° C. × 10 minutes. For proof stress, pass 185 to 220 MPa, and for tensile strength proof, pass 230 MPa or more. Evaluation (strength) was rejected.
The ear ratio was calculated from the following equation by measuring a cup height in the rolling direction after forming a cup by squeezing a blank having a diameter of 57 mm with a 33 mm punch.
Ear rate (%) = {(average mountain height−average valley height) / average cup height} × 100
Regarding the ear rate, 2.8% or less was regarded as acceptable (◯), and the others were regarded as unacceptable (x). As for the surface quality, no wrinkles, blisters, seizures, surface scratches or surface oxidation occurred, and the others were regarded as acceptable (◯), and the others were regarded as unacceptable. Regarding the deep drawability, the case where the DR could be continuously formed without cracking was determined to be acceptable (◯), and the others were rejected.
 以上の評価結果を、表3、4に示す。 The above evaluation results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 本発明例1~24では、熱間圧延及び焼鈍時の析出が抑制され、適正な集合組織を得ることができると共に良好な耳率を示した。また、適正な強度も得られ、深絞り成形時に割れやしわの発生もなく、深絞り性と低耳率を有するアルミニウム合金が得られた。 In Invention Examples 1 to 24, precipitation during hot rolling and annealing was suppressed, an appropriate texture could be obtained, and a good ear rate was exhibited. Also, an appropriate strength was obtained, and there was no generation of cracks or wrinkles during deep drawing, and an aluminum alloy having deep drawability and low ear ratio was obtained.
 比較例25では、アルミニウム合金のSi含有量が多く、金属間化合物の析出量が多くなった。その結果、Cube方位の形成が抑制されたため45度耳の発達を招き、耳率が悪化した。 In Comparative Example 25, the Si content of the aluminum alloy was large, and the amount of intermetallic compound deposited was large. As a result, the formation of the Cube orientation was suppressed, leading to the development of 45-degree ears and the ear rate deteriorated.
 比較例26では、アルミニウム合金のFe含有量が多く、粗大な晶出物が多くなった。その結果、再結晶時に晶出物周りの再結晶が支配的となり、最終板の45度耳の発達を招き耳率が悪化した。 In Comparative Example 26, the Fe content of the aluminum alloy was large, and coarse crystals were increased. As a result, recrystallization around the crystallized substance became dominant at the time of recrystallization, leading to the development of 45-degree ears of the final plate, and the ear rate was deteriorated.
 比較例27では、Cu含有量が少なかったため耐力及び引張強度が低下した。その結果、深絞り成形時に割れが発生した。 In Comparative Example 27, since the Cu content was small, the yield strength and the tensile strength were lowered. As a result, cracks occurred during deep drawing.
 比較例29では、Mn含有量が少なかったため耐力及び引張強度が低下した。その結果、深絞り成形時に割れが発生した。 In Comparative Example 29, since the Mn content was small, the yield strength and the tensile strength were lowered. As a result, cracks occurred during deep drawing.
 比較例31では、Mg含有量が少なかったため材料強度が低下した。その結果、深絞り成形時に割れが発生した。 In Comparative Example 31, since the Mg content was small, the material strength decreased. As a result, cracks occurred during deep drawing.
 比較例28では、Cu含有量が多かったため耐力が高くなり過ぎた。そのため、深絞り成形時にしわが発生し表面品質の低下を招いた。 In Comparative Example 28, the yield strength was too high because of the high Cu content. For this reason, wrinkles are generated during deep drawing, resulting in deterioration of the surface quality.
 比較例30では、Mn含有量が多かったため耐力が高くなり過ぎた。そのため、深絞り成形時にしわが発生し表面品質の低下を招いた。 In Comparative Example 30, the yield strength was too high due to the high Mn content. For this reason, wrinkles are generated during deep drawing, resulting in deterioration of the surface quality.
 比較例32では、Mg含有量が多かったため耐力が高くなり過ぎた。そのため、深絞り成形時にしわが発生し、表面品質の低下を招いた。 In Comparative Example 32, the yield strength was too high due to the high Mg content. For this reason, wrinkles were generated during deep drawing, resulting in deterioration of the surface quality.
 比較例33では、均質化温度が低かったため、第二相粒子により再結晶が阻害され、熱延板組織において圧延組織が残存した。その結果、再結晶の駆動力が高くなり過ぎ、中間焼鈍板の集合組織がランダム化したため、最終板の45度耳の発達を招き耳率が悪化した。 In Comparative Example 33, since the homogenization temperature was low, recrystallization was inhibited by the second phase particles, and the rolled structure remained in the hot rolled sheet structure. As a result, the driving force for recrystallization became too high and the texture of the intermediate annealed plate was randomized, leading to the development of the 45-degree ears of the final plate and the ear rate deteriorated.
 比較例35では、均質化時間が短かく、かつ、熱間仕上圧延の終了温度が低かったため、第二相粒子により再結晶が阻害され、熱延板組織において圧延組織が残存した。その結果、再結晶の駆動力が高くなり過ぎ、中間焼鈍板の集合組織がランダム化したため、最終板の45度耳の発達を招き耳率が悪化した。 In Comparative Example 35, since the homogenization time was short and the finishing temperature of hot finish rolling was low, recrystallization was inhibited by the second phase particles, and the rolled structure remained in the hot rolled sheet structure. As a result, the driving force for recrystallization became too high and the texture of the intermediate annealed plate was randomized, leading to the development of the 45-degree ears of the final plate and the ear rate deteriorated.
 比較例34では、均質化温度が高く、かつ、熱間粗圧延の開始温度及び終了温度が高かったため、膨れ、表面酸化及び焼付けが発生して表面品質が低下した。 In Comparative Example 34, since the homogenization temperature was high and the start temperature and end temperature of hot rough rolling were high, swelling, surface oxidation, and baking occurred, and the surface quality deteriorated.
 比較例36では、熱間粗圧延の開始温度及び終了温度が低く、かつ、熱間仕上圧延の終了温度が低かったため、再結晶の駆動力が低下して圧延組織が残存した。その結果、中間焼鈍時においてCube方位の形成が抑制され、45度耳の発達を招き耳率が悪化した。 In Comparative Example 36, since the start temperature and end temperature of hot rough rolling were low and the end temperature of hot finish rolling was low, the driving force of recrystallization decreased and the rolling structure remained. As a result, the formation of the Cube orientation was suppressed during the intermediate annealing, leading to the development of 45 degree ears and the ear rate being deteriorated.
 比較例37では、熱間仕上圧延の終了温度が高く、表面に焼付が発生した。また、二次冷間圧延率が高く、耐力が高くなり過ぎ、しわが発生した。これに加え、二次冷間圧延率が高かったことから、45度耳の発達を招き耳率が悪化した。 In Comparative Example 37, the finish temperature of hot finish rolling was high, and seizure occurred on the surface. Moreover, the secondary cold rolling rate was high, the proof stress was too high, and wrinkles were generated. In addition to this, the secondary cold rolling rate was high, leading to the development of 45 degree ears and worsening of the ear rate.
 比較例38では、熱間仕上圧延の終了温度が低く、かつ、中間焼鈍温度が低くかった。その結果、圧延組織が残存し、最終板において45度耳の発達を招き耳率が悪化した。 In Comparative Example 38, the finish temperature of hot finish rolling was low, and the intermediate annealing temperature was low. As a result, the rolled structure remained, leading to the development of 45-degree ears in the final plate, and the ear rate deteriorated.
 比較例39では、熱間仕上圧延の終了温度が低く、かつ、中間焼鈍時の昇温速度が遅かった。その結果、再結晶と析出が競合し、Cube方位の形成を阻害し、最終板の45度耳の発達を招き耳率が悪化した。 In Comparative Example 39, the finish temperature of hot finish rolling was low, and the rate of temperature increase during intermediate annealing was slow. As a result, recrystallization and precipitation competed to inhibit the formation of the Cube orientation, leading to the development of 45-degree ears in the final plate, and the ear rate deteriorated.
 比較例40では、中間焼鈍時の昇温速度が速過ぎたため、板同士が擦れて表面傷が発生した。 In Comparative Example 40, the rate of temperature increase during the intermediate annealing was too fast, and the plates were rubbed to cause surface scratches.
 比較例41では、二次冷間圧延率が小さく耐力及び引張強度が低下した。その結果、深絞り成形時に割れが発生した。また、中間焼鈍温度が高く、冷延油の焼付きが発生した。 In Comparative Example 41, the secondary cold rolling rate was small and the proof stress and tensile strength were reduced. As a result, cracks occurred during deep drawing. Moreover, the intermediate annealing temperature was high, and seizure of cold-rolled oil occurred.
 比較例42では、熱間仕上圧延の終了温度が低く、かつ、中間焼鈍時間が短かった。その結果、圧延組織が残存し、最終板において45度耳が発達して耳率の悪化を招いた。 In Comparative Example 42, the finish temperature of hot finish rolling was low and the intermediate annealing time was short. As a result, a rolled structure remained, and 45-degree ears developed in the final plate, leading to deterioration of the ear rate.
 比較例43では、一次冷間圧延率が小さく、マトリクス中にS方位を十分に発達させることができなかった。その結果、Cube方位の核生成サイトが減少して、最終板で45度耳が発達して耳率の悪化を招いた。 In Comparative Example 43, the primary cold rolling rate was small, and the S orientation could not be sufficiently developed in the matrix. As a result, the number of nucleation sites in the Cube orientation decreased, and the ears developed 45 degrees on the final plate, leading to a deterioration in the ear rate.
 比較例44では、第一次冷間圧延率が高く焼鈍前の再結晶駆動力が大きくなり、Cube方位の形成量が小さくなって最終板の45度耳が発達して耳率の悪化を招き、また深絞り成形時に割れが発生した。 In Comparative Example 44, the primary cold rolling rate is high, the recrystallization driving force before annealing is increased, the formation amount of the Cube orientation is decreased, and the 45-degree ear of the final plate is developed, leading to deterioration of the ear rate. Also, cracks occurred during deep drawing.
 上述のように、集合組織および強度を制御することで、箱型焼鈍炉を用いた中間焼鈍工程においても、低耳率及び良好な深絞り性を得ることが可能となった。また、連続焼鈍炉を用いないため製造コストを抑制することができると同時に、設備投資においてもコストを抑制することが期待される。 As described above, by controlling the texture and strength, it was possible to obtain a low ear ratio and good deep drawability even in an intermediate annealing process using a box-type annealing furnace. Moreover, since the continuous annealing furnace is not used, the manufacturing cost can be suppressed, and at the same time, the cost is expected to be reduced in equipment investment.

Claims (7)

  1.  Si:0.10~0.60mass%、Fe:0.10~0.80mass%、Cu:0.05~0.25mass%、Mn:0.80~1.50mass%、Mg:0.80~1.30mass%を含有し、残部Al及び不可避不純物よりなるアルミニウム合金からなり、当該アルミニウム合金の鋳塊から少なくとも熱間圧延板と中間焼鈍板を経て最終板としたアルミニウム合金板であって、最終板におけるCube方位密度(CubeO)がランダム方位密度に対して2.00倍以上であり、かつ、CubeOとS方位密度(SO)との比(CubeO/SO)が0.40~1.00であり、空焼き後において、180~220MPaの耐力及び230MPa以上の引張強度を有することを特徴とするDR缶ボディ用アルミニウム合金板。 Si: 0.10 to 0.60 mass%, Fe: 0.10 to 0.80 mass%, Cu: 0.05 to 0.25 mass%, Mn: 0.80 to 1.50 mass%, Mg: 0.80 to 1. An aluminum alloy plate containing an aluminum alloy composed of the balance Al and unavoidable impurities, including 1.30 mass%, and having been made into a final plate through at least a hot rolled plate and an intermediate annealed plate from the ingot of the aluminum alloy, The Cube orientation density (CubeO) in the plate is 2.00 times or more than the random orientation density, and the ratio of CubeO to S orientation density (SO) (CubeO / SO) is 0.40 to 1.00. An aluminum alloy for a DR can body characterized by having a yield strength of 180 to 220 MPa and a tensile strength of 230 MPa or more after baking. .
  2.  前記熱間圧延板の導電率が36.0~43.0%IACSである、請求項1に記載のDR缶ボディ用アルミニウム合金板。 The aluminum alloy plate for DR can body according to claim 1, wherein the electrical conductivity of the hot rolled plate is 36.0 to 43.0% IACS.
  3.  前記中間焼鈍板におけるCube方位密度(CubeO)がランダム方位密度に対して4.00倍以上であり、かつ、CubeOとR方位密度(RO)との比(CubeO/RO)が1.00以上である、請求項1又は2に記載のDR缶ボディ用アルミニウム合金板。 The Cube orientation density (CubeO) in the intermediate annealing plate is 4.00 times or more than the random orientation density, and the ratio of CubeO to R orientation density (RO) (CubeO / RO) is 1.00 or more. The aluminum alloy plate for DR can body according to claim 1 or 2.
  4.  請求項1~3のいずれか一項に記載のDR缶ボディ用アルミニウム合金板の製造方法であって、Si:0.10~0.60mass%、Fe:0.10~0.80mass%、Cu:0.05~0.25mass%、Mn:0.80~1.50mass%、Mg:0.80~1.30mass%を含有し、残部Al及び不可避不純物よりなるアルミニウム合金を鋳造する鋳造工程と;鋳塊を均質化処理する均質化処理工程と;均質化処理した鋳塊を熱間圧延する熱間圧延工程と;熱間圧延板の一次冷間圧延工程と;一次冷間圧延板を焼鈍する中間焼鈍工程と;中間焼鈍板の二次冷間圧延工程と;を備えることを特徴とするDR缶ボディ用アルミニウム合金板の製造方法。 The method for producing an aluminum alloy plate for a DR can body according to any one of claims 1 to 3, wherein Si: 0.10 to 0.60 mass%, Fe: 0.10 to 0.80 mass%, Cu A casting process for casting an aluminum alloy containing 0.05 to 0.25 mass%, Mn: 0.80 to 1.50 mass%, Mg: 0.80 to 1.30 mass%, and the balance Al and inevitable impurities; A homogenization process for homogenizing the ingot; a hot rolling process for hot rolling the homogenized ingot; a primary cold rolling process for the hot rolled sheet; and annealing the primary cold rolled sheet A method for producing an aluminum alloy plate for a DR can body, comprising: an intermediate annealing step to perform; and a secondary cold rolling step for the intermediate annealing plate.
  5.  前記均質化処理工程において、鋳塊が580~620℃で1~12時間処理され、前記熱間圧延工程が、開始温度450~610℃で終了温度450~550℃の熱間粗圧延段階と終了温度330~380℃の熱間仕上圧延段階とからなり、前記一次冷間圧延工程の圧延率が85~95%であり、前記中間焼鈍工程において、一次冷間圧延板が200℃以上の温度域での平均昇温速度10~100℃/時間をもって300~450℃の焼鈍温度まで昇温され、次いで当該焼鈍温度で1~4時間保持され、前記二次冷間圧延工程の圧延率が20~40%である、請求項4に記載のDR缶ボディ用アルミニウム合金板の製造方法。 In the homogenization step, the ingot is treated at 580 to 620 ° C. for 1 to 12 hours, and the hot rolling step ends with a hot rough rolling step with a start temperature of 450 to 610 ° C. and an end temperature of 450 to 550 ° C. A hot finish rolling stage at a temperature of 330 to 380 ° C., wherein a rolling rate of the primary cold rolling process is 85 to 95%, and in the intermediate annealing process, the primary cold rolled sheet has a temperature range of 200 ° C. or higher. The temperature is increased to an annealing temperature of 300 to 450 ° C. at an average temperature increase rate of 10 to 100 ° C./hour, and then maintained at the annealing temperature for 1 to 4 hours. The rolling rate in the secondary cold rolling step is 20 to The manufacturing method of the aluminum alloy plate for DR can bodies of Claim 4 which is 40%.
  6.  前記二次冷間圧延工程後において、二次冷間圧延板を焼鈍する最終焼鈍工程を更に備える、請求項4又は5に記載のDR缶ボディ用アルミニウム合金板の製造方法。 The method for producing an aluminum alloy plate for a DR can body according to claim 4 or 5, further comprising a final annealing step of annealing the secondary cold rolled plate after the secondary cold rolling step.
  7.  前記最終焼鈍工程において、二次冷間圧延板が200℃以上の温度域での平均昇温速度10~80℃/時間をもって140~190℃の焼鈍温度まで昇温され、次いで当該焼鈍温度で2~4時間保持される、請求項6に記載のDR缶ボディ用アルミニウム合金板の製造方法。
     
    In the final annealing step, the secondary cold-rolled sheet is heated to an annealing temperature of 140 to 190 ° C. at an average heating rate of 10 to 80 ° C./hour in a temperature range of 200 ° C. or higher, and then 2 ° C. at the annealing temperature. The method for producing an aluminum alloy plate for a DR can body according to claim 6, which is maintained for 4 hours.
PCT/JP2014/001635 2014-03-20 2014-03-20 Aluminum alloy sheet for dr can body and manufacturing method therefor WO2015140833A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016508302A JP6326485B2 (en) 2014-03-20 2014-03-20 Aluminum alloy plate for DR can body and manufacturing method thereof
PCT/JP2014/001635 WO2015140833A1 (en) 2014-03-20 2014-03-20 Aluminum alloy sheet for dr can body and manufacturing method therefor
CN201480077133.7A CN106103760B (en) 2014-03-20 2014-03-20 Aluminum alloy sheet for DR can body and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/001635 WO2015140833A1 (en) 2014-03-20 2014-03-20 Aluminum alloy sheet for dr can body and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2015140833A1 true WO2015140833A1 (en) 2015-09-24

Family

ID=54143861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001635 WO2015140833A1 (en) 2014-03-20 2014-03-20 Aluminum alloy sheet for dr can body and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP6326485B2 (en)
CN (1) CN106103760B (en)
WO (1) WO2015140833A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532241A (en) * 2015-12-17 2018-01-02 诺维尔里斯公司 Aluminium micro-structural and associated method for highly moulding product
JP2018123376A (en) * 2017-02-01 2018-08-09 株式会社Uacj Aluminum alloy sheet and manufacturing method therefor
JP2019518867A (en) * 2016-05-02 2019-07-04 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy with improved formability and related method
EP3234208B1 (en) 2014-12-19 2020-04-29 Novelis Inc. Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof
CN112122882A (en) * 2019-06-25 2020-12-25 西南铝业(集团)有限责任公司 Production process of pure aluminum alloy O-state plate
EP3875629A1 (en) * 2020-03-03 2021-09-08 Elvalhalcor Hellenic Copper and Aluminium Industry S.A. Method and installation for producing aluminum can sheet
EP4050115A1 (en) 2021-02-26 2022-08-31 Constellium Rolled Products Singen GmbH & Co.KG Durable aluminium alloy sheet for decorative applications
RU2829769C1 (en) * 2020-03-03 2024-11-05 Хелленик Рисеч Сентр Фор Металз С.А. Method and apparatus for producing aluminum sheet for making cans

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437583B2 (en) * 2017-02-27 2018-12-12 株式会社Uacj Aluminum alloy plate for magnetic disk substrate, manufacturing method thereof, and magnetic disk using the aluminum alloy plate for magnetic disk substrate
JP6402229B1 (en) * 2017-09-28 2018-10-10 株式会社Uacj Aluminum alloy substrate for magnetic disk, manufacturing method thereof, and magnetic disk using the aluminum alloy substrate for magnetic disk

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080452A (en) * 1998-09-03 2000-03-21 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for deep drawing
JP2000256774A (en) * 1999-03-08 2000-09-19 Sky Alum Co Ltd Hot rolled sheet for aluminum can body material, and can body sheet using the same
JP2004263253A (en) * 2003-03-03 2004-09-24 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel, and production method therefor
JP2006037148A (en) * 2004-07-26 2006-02-09 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681405A (en) * 1995-03-09 1997-10-28 Golden Aluminum Company Method for making an improved aluminum alloy sheet product
JP4019082B2 (en) * 2005-03-25 2007-12-05 株式会社神戸製鋼所 Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP3913260B1 (en) * 2005-11-02 2007-05-09 株式会社神戸製鋼所 Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080452A (en) * 1998-09-03 2000-03-21 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for deep drawing
JP2000256774A (en) * 1999-03-08 2000-09-19 Sky Alum Co Ltd Hot rolled sheet for aluminum can body material, and can body sheet using the same
JP2004263253A (en) * 2003-03-03 2004-09-24 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel, and production method therefor
JP2006037148A (en) * 2004-07-26 2006-02-09 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel and its production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3234208B1 (en) 2014-12-19 2020-04-29 Novelis Inc. Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof
US10604826B2 (en) 2015-12-17 2020-03-31 Novelis Inc. Aluminum microstructure for highly shaped products and associated methods
CN107532241A (en) * 2015-12-17 2018-01-02 诺维尔里斯公司 Aluminium micro-structural and associated method for highly moulding product
JP2019518867A (en) * 2016-05-02 2019-07-04 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy with improved formability and related method
JP7138396B2 (en) 2017-02-01 2022-09-16 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
JP2018123376A (en) * 2017-02-01 2018-08-09 株式会社Uacj Aluminum alloy sheet and manufacturing method therefor
CN112122882A (en) * 2019-06-25 2020-12-25 西南铝业(集团)有限责任公司 Production process of pure aluminum alloy O-state plate
EP3875629A1 (en) * 2020-03-03 2021-09-08 Elvalhalcor Hellenic Copper and Aluminium Industry S.A. Method and installation for producing aluminum can sheet
WO2021175761A1 (en) 2020-03-03 2021-09-10 Elvalhalcor Hellenic Copper And Aluminium Industry S.A. Method and installation for producing aluminum can sheet
CN115151675A (en) * 2020-03-03 2022-10-04 希腊金属研究中心公司 Method and apparatus for manufacturing aluminum can panels
RU2829769C1 (en) * 2020-03-03 2024-11-05 Хелленик Рисеч Сентр Фор Металз С.А. Method and apparatus for producing aluminum sheet for making cans
EP4050115A1 (en) 2021-02-26 2022-08-31 Constellium Rolled Products Singen GmbH & Co.KG Durable aluminium alloy sheet for decorative applications
WO2022179856A1 (en) 2021-02-26 2022-09-01 Constellium Rolled Products Singen Gmbh & Co.Kg Durable aluminium alloy sheet for decorative applications

Also Published As

Publication number Publication date
CN106103760A (en) 2016-11-09
JP6326485B2 (en) 2018-05-16
JPWO2015140833A1 (en) 2017-04-06
CN106103760B (en) 2018-06-05

Similar Documents

Publication Publication Date Title
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP6433380B2 (en) Aluminum alloy rolled material
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP2012188704A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP4257135B2 (en) Aluminum alloy hard plate for can body
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP2016160511A (en) Aluminum alloy sheet for negative pressure can-top
WO2018143376A1 (en) Aluminum alloy sheet and production method therefor
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
US11499209B2 (en) Superplastic-forming aluminum alloy plate and production method therefor
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP4202894B2 (en) Mg-containing Al alloy
JP2009256722A (en) Aluminum alloy sheet for forming, and its manufacturing method
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2006257470A (en) Method for manufacturing aluminum alloy sheet for can lid
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201606965

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14885922

Country of ref document: EP

Kind code of ref document: A1