JP4791072B2 - Aluminum alloy plate for beverage can body and manufacturing method thereof - Google Patents
Aluminum alloy plate for beverage can body and manufacturing method thereof Download PDFInfo
- Publication number
- JP4791072B2 JP4791072B2 JP2005116727A JP2005116727A JP4791072B2 JP 4791072 B2 JP4791072 B2 JP 4791072B2 JP 2005116727 A JP2005116727 A JP 2005116727A JP 2005116727 A JP2005116727 A JP 2005116727A JP 4791072 B2 JP4791072 B2 JP 4791072B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- less
- aluminum alloy
- beverage
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Rigid Containers With Two Or More Constituent Elements (AREA)
Description
本発明は、缶底(ボトム)成形時ボトムしわ性に優れ、かつ塗装焼付後の耐熱軟化性に優れた飲料缶胴用アルミニウム合金板およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to an aluminum alloy plate for beverage can bodies, which is excellent in bottom wrinkling at the time of can bottom molding and excellent in heat-softening resistance after baking, and a method for producing the same.
アルミニウム合金からなる飲料缶の缶胴体としては、飲料缶胴用アルミニウム合金板に塗油を施し、カッピング、DI成形(Drawing & Ironing : 絞り−しごき)を施して缶胴とし、トリミング、洗浄、乾燥、外面および内面塗装焼付、ネッキングおよびフランジ加工を行い、これに飲料充填、缶蓋の巻き締めを行った2ピース缶が多く用いられている。前記の飲料缶胴用アルミニウム合金板は、アルミニウム合金鋳塊を均質化処理後に熱間圧延を行い、必要に応じて焼鈍処理を施し、次いで冷間圧延を行うことで製造される。通常はこれに加えて焼鈍、脱脂、洗浄、潤滑油塗布等の仕上処理が施される。 As the can body of beverage cans made of aluminum alloy, oil is applied to the aluminum alloy plate for beverage can bodies, cupping and DI molding (Drawing & Ironing) is applied to make the can body, trimming, washing, drying In many cases, two-piece cans are used in which outer surface and inner surface coating baking, necking and flange processing are performed, beverage filling and can lid winding are performed. The aluminum alloy plate for beverage can bodies is manufactured by performing hot rolling after homogenizing an aluminum alloy ingot, performing annealing treatment as necessary, and then performing cold rolling. Usually, in addition to this, finishing treatments such as annealing, degreasing, washing, and lubricating oil application are performed.
近年、飲料缶のコストダウンの必要性から、缶胴の薄肉化(ゲージダウン)ならびに缶蓋の小径化が進んでいる。缶胴体の薄肉化は缶底(ボトム)しわと呼ばれる外観の形状不良を発生し易くさせる。また、缶蓋の小径化については缶同士を積み重ねた時のスタッキング性を確保するため、これに対応した缶胴の缶底接地径の小径化が必要になるが、この缶底接地径の小径化もボトムしわ発生を促進させる。 In recent years, due to the need for cost reduction of beverage cans, the thickness of the can body has been reduced (gauge down) and the diameter of the can lid has been reduced. The thinning of the can body facilitates the appearance of a shape defect called “bottom wrinkle”. In addition, to reduce the diameter of the can lid, in order to ensure stackability when cans are stacked, it is necessary to reduce the diameter of the bottom of the can bottom corresponding to this. Conversion also promotes the generation of bottom wrinkles.
図2を参照して以上のボトムしわ発生のメカニズムを説明する。
飲料缶缶胴体1の薄肉化によって缶側壁2から缶底チャイム部3への材料流入量が増加して座屈やくびれを生じ易くさせ、缶底チャイム部3に缶底(ボトム)しわ3a、…を発生させる。また、缶蓋(図示せず)の小径化によって缶底接地部4の径である缶底接地径の小径化が必要になり、この缶底接地径の小径化によっても缶底チャイム部3座屈現象が生じ易くなり、これによってもボトムしわ3a、…の発生が促進される。
With reference to FIG. 2, the mechanism of the occurrence of the above bottom wrinkles will be described.
The thinning of the beverage can
以上の問題を解決するという要請に基づき特許文献1に記載の缶底成形性に優れた飲料缶胴用アルミニウム合金板およびその製造方法では、出側温度を制御した3パスからなる冷間圧延を行うことが提案された。しかし、この飲料缶胴用アルミニウム合金板およびその製造方法は、きわめて有効な手段ではあっても高い缶胴強度を有しかつボトムしわ性に優れた材料を得るために直接必要な条件を明らかにするものではなく、高精度かつ高効率な生産性の実現という点で更なる検討が必要であった。
Based on the request to solve the above problems, in the aluminum alloy plate for beverage can bodies excellent in can bottom formability described in
一方、特許文献2では、伸び率が5.5%以上、加工硬化指数が0.06以上、かつ、耐力が290N/mm2以下である旨ただ漫然と規定されるのみであって、飲料缶胴用アルミニウム合金板に求められる品質を実現する確実な手段としての検討は未だ不十分であって、高い缶胴強度を有しかつボトムしわ性に優れた材料を高精度かつ高効率で生産することを可能として、今後のさらなる缶胴の薄肉化と缶蓋の小径化に対応することを可能とするという要請には実質的に応え得るものではない。
On the other hand, in
また、特許文献3は、耳率に関し、熱間仕上圧延を、前記熱間粗圧延終了後t秒{t=2.8×104×exp(−0.012×T)(T:熱間粗圧延終了温度℃)}以内に行い、熱間仕上圧延後室温まで冷却する間の再結晶過程で立方体方位優先の再結晶集合組織を十分に得ることによって耳率低減を達成することを精密に検討するものではあるが、ボトムしわ性及び耐熱軟化性を向上するという方向では十分な検討は行われていない。
In addition,
また、特許文献4では、均熱処理の昇温速度及び冷却速度を鋳塊組織のデンドライト・アーム間隔に応じて規定し、Alマトリックスの平均結晶粒径及びMn固溶量を調整することによって耳率を制御するというアルミニウム系熱間圧延板を製造する方法が示されている。
しかし、特許文献4では、均熱処理の昇温速度及び冷却速度に関する検討が行われてはいるものの製造工程全体に渡って昇降温速度を管理してボトムしわ性及び耐熱軟化性をも向上するという検討は行われていない。
However, in Patent Document 4, although the temperature rise rate and cooling rate of soaking are studied, the temperature raising / lowering rate is controlled throughout the entire production process to improve bottom wrinkle resistance and heat softening resistance. No consideration has been given.
ボトムしわ性は、飲料缶胴用アルミニウム合金板の素板強度を下げて素板の伸び率を向上させることで改善されることが明らかになっている。伸び率を向上させるためには、冷間圧延後に焼鈍処理を施すことが有効であるが、コストアップになるとともに缶胴強度が低下する問題があった。今後、さらなる缶胴の薄肉化と缶蓋の小径化に対応するためには、ボトムしわ性に優れ、かつ耐熱軟化性に優れた高強度材料の開発が必要であった。 It has been clarified that the bottom wrinkle property is improved by lowering the strength of the base plate of the aluminum alloy plate for beverage can bodies and increasing the elongation rate of the base plate. In order to improve the elongation, it is effective to perform an annealing treatment after cold rolling, but there is a problem that the cost increases and the strength of the can body decreases. In the future, it was necessary to develop a high-strength material that had excellent bottom wrinkling properties and excellent heat-resistant softening properties in order to respond to further thinning of the can body and smaller diameter of the can lid.
本発明は、以上の従来技術における問題に鑑み、ボトムしわ性に優れかつ高い缶胴強度が得られ、缶胴の更なる薄肉化が可能であって、高い生産精度及び生産性で生産できる表面品質の優れた飲料缶胴用アルミニウム合金板及びその製造方法を提供することを目的とする。 In view of the problems in the prior art described above, the present invention provides a surface that can be produced with high production accuracy and productivity, with excellent bottom wrinkle properties and high can barrel strength, and can be further thinned. An object of the present invention is to provide an aluminum alloy plate for beverage can bodies having excellent quality and a method for producing the same.
本発明者らがボトムしわ発生要因について詳細に検討したところ、材料特性として加工硬化性が高いほど再絞り時の成形力が増加しボトム近傍の円周方向の圧縮応力を緩和しボトムしわを抑制する事を見出した。
さらに、鋭意研究を行った結果、本発明合金に示す所定量を含有したアルミニウム合金で均質化処理、熱間圧延条件をコントロールすることにより、材料の加工硬化現象、ならびに塗装焼付後におけるAl-Cu系の金属間化合物の析出硬化現象が適切に生じるため、優れたボトムしわ性と耐熱軟化性を両立し得ることを見出し、研究を重ねて本発明を完成させるに至った。
The present inventors examined the cause of bottom wrinkles in detail, and the higher the work hardenability as the material properties, the more the forming force at the time of redrawing is increased, and the circumferential compressive stress in the vicinity of the bottom is relaxed to suppress bottom wrinkles. I found something to do.
Furthermore, as a result of earnest research, by homogenizing the aluminum alloy containing the predetermined amount shown in the present invention alloy and controlling the hot rolling conditions, the work hardening phenomenon of the material, as well as the Al-Cu after paint baking Since the precipitation hardening phenomenon of the intermetallic compound of the system occurs appropriately, it has been found that both excellent bottom wrinkle properties and heat-resistant softening properties can be achieved, and the present invention has been completed through repeated research.
すなわち、本発明の飲料缶胴用アルミニウム合金板は、重量比でMg:0.8〜1.5%、Mn:0.5〜1.5%、Fe:0.35〜0.5%、Si:0.20〜0.35%、Cu:0.1〜0.3%、Ti:0.1%以下、B:0.05%以下を含有し、残部Alと不可避的成分を含み、重量比でMn固溶量が0.12〜0.40%、Cu固溶量が0.07〜0.20%であり、材料特性として歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上であると共に導電率が34.0〜39.0%IACSであることを特徴とする。 That is, the aluminum alloy plate for beverage can bodies of the present invention is Mg: 0.8-1.5%, Mn: 0.5-1.5%, Fe: 0.35-0.5% by weight ratio, Si: 0.20 to 0.35%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.05% or less, including the balance Al and inevitable components, The Mn solid solution amount is 0.12 to 0.40% and the Cu solid solution amount is 0.07 to 0.20% by weight ratio, and the change characteristics of the work hardening index (n value) with respect to the strain amount as material characteristics The maximum n value is 0.1 or more, and the electrical conductivity is 34.0 to 39.0% IACS.
また、以上の本発明の飲料缶胴用アルミニウム合金板にあっては、素板の圧延方向における引張強度(BBTS)が320MPa以下であり、塗装焼付相当の熱処理後の圧延方向における耐力(ABYS)が250MPa以上に規定され、引張強度(BBTS)と塗装焼付相当の熱処理後の圧延方向における耐力(ABYS)との差であるBBTS−ABYSが55MPa以下に規定される。 Moreover, in the aluminum alloy plate for beverage can bodies of the present invention described above, the tensile strength (BBTS) in the rolling direction of the base plate is 320 MPa or less, and the proof stress (ABYS) in the rolling direction after heat treatment corresponding to paint baking. Is defined as 250 MPa or more, and BBTS-ABYS, which is the difference between the tensile strength (BBTS) and the yield strength (ABYS) in the rolling direction after heat treatment corresponding to paint baking, is defined as 55 MPa or less.
加えて、本発明の飲料缶胴用アルミニウム合金板の製造方法は、質量比でMg:0.8〜1.5%、Mn:0.5〜1.5%、Fe:0.35〜0.5%、Si:0.20〜0.35%、Cu:0.1〜0.3%、Ti:0.1%以下、B:0.05%以下を含有し、残部Alと不可避的成分を含むアルミニウム合金鋳塊を製造ならびに面削後、550〜620℃の温度域で均質化処理を施し、次いで、冷却速度40℃/時間以上で室温まで冷却した後、熱間粗圧延の開始温度域である400〜500℃まで昇温速度40℃/時間以上で再加熱し、熱間粗圧延を行った後、熱間粗圧延の終了から熱間仕上げ圧延の開始までの滞在時間(HR−HT時間)を20分以内として熱間仕上圧延を出側温度を300〜350℃として行い、次いで、冷間圧延を最終パスの出側温度を140℃以上の温度とし、冷間圧延の最終圧延以外の圧延パスの出側温度を110℃以下として行った後、冷却速度15〜30℃/時間で80℃まで冷却することを特徴とする。 In addition, the manufacturing method of the aluminum alloy plate for beverage can bodies according to the present invention includes Mg: 0.8 to 1.5%, Mn: 0.5 to 1.5%, and Fe: 0.35 to 0 by mass ratio. 0.5%, Si: 0.20 to 0.35%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.05% or less, the remainder being inevitable with Al After producing and chamfering an aluminum alloy ingot containing the components, homogenization treatment is performed in a temperature range of 550 to 620 ° C., and then cooled to room temperature at a cooling rate of 40 ° C./hour or more, and then hot rough rolling is started. Residual time (HR from the end of hot rough rolling to the start of hot finish rolling after reheating at a temperature increase rate of 40 ° C./hour or more to 400 to 500 ° C., which is a temperature range, and performing hot rough rolling. -HT time) within 20 minutes, hot finish rolling is carried out at a delivery temperature of 300 to 350 ° C, The delivery temperature of the final pass rolling and 140 ° C. or higher, after the delivery temperature of the rolling paths other than the final rolling cold rolling was performed with the 110 ° C. or less, 80 ° C. at a cooling rate of 15 to 30 ° C. / Time It is characterized by cooling to .
[作用]
本発明の飲料缶胴用アルミニウム合金板では、MnならびにCuの成分元素が所定量固溶され、かつ加工硬化指数(n値)の変化曲線の最大n値を0.1以上として加工硬化指数(n値)を厳密な指標として規定し、これにより缶成形加工中の加工硬化性を一定以上に保持して優れたボトムしわ性と耐熱軟化性が両立された飲料缶胴用アルミニウム合金板の高精度な生産を可能とした。
[Action]
In the aluminum alloy plate for beverage can bodies of the present invention, a predetermined amount of Mn and Cu component elements are dissolved, and the work hardening index (n value) has a maximum n value of 0.1 or more. n value) is defined as a strict index, which keeps the work hardenability during the can molding process above a certain level and has both excellent bottom wrinkle resistance and heat softening resistance. Enables accurate production.
また、本発明の飲料缶胴用アルミニウム合金板の製造方法によれば、本発明合金に示す所定量を含有したアルミニウム合金で均質化処理後熱間粗圧延までの間の特定の温度域における昇温または冷却速度を熱間粗圧延開始温度と連係して管理し、特定の温度域で熱間粗圧延を開始することにより、MnならびにCuの成分元素が適切に固溶される結果、冷間圧延時あるいは缶成形時における材料の加工硬化現象、ならびに塗装焼付後におけるAl-Cu系の金属間化合物の析出硬化現象が適切に生じるため、優れたボトムしわ性と耐熱軟化性を両立した本発明の飲料缶胴用アルミニウム合金板を製造し得る。 Further, according to the method for producing an aluminum alloy plate for beverage cans of the present invention, the temperature rise in a specific temperature range between the homogenization treatment and hot rough rolling with the aluminum alloy containing the predetermined amount shown in the present invention alloy. The temperature or cooling rate is managed in conjunction with the hot rough rolling start temperature, and by starting the hot rough rolling in a specific temperature range, the constituent elements of Mn and Cu are appropriately dissolved, resulting in cold Since the work hardening phenomenon of the material during rolling or can molding and the precipitation hardening phenomenon of the Al-Cu intermetallic compound after coating baking occur appropriately, the present invention achieves both excellent bottom wrinkle resistance and heat softening resistance An aluminum alloy plate for beverage can bodies can be manufactured.
本発明の飲料缶胴用アルミニウム合金板は、Mn固溶量が0.12〜0.40%、Cu固溶量が0.07〜0.2%であり、かつ材料特性として歪量に対する加工硬化指数(n値)の変化曲線のn値の最大値が0.1以上とされて優れたボトムしわ性と耐熱軟化性を具備する。
また、本発明の飲料缶胴用アルミニウム合金板の製造方法によれば、通常の飲料缶胴用アルミニウム合金板の製造方法における均質化処理および熱間圧延条件を規制することにより本発明の飲料缶胴用アルミニウム合金板を精度良く製造することができる。
The aluminum alloy plate for beverage can bodies of the present invention has a Mn solid solution amount of 0.12 to 0.40%, a Cu solid solution amount of 0.07 to 0.2%, and a material property processing for the strain amount. The maximum value of the n value of the change curve of the curing index (n value) is 0.1 or more, and excellent bottom wrinkle resistance and heat softening resistance are achieved.
Moreover, according to the manufacturing method of the aluminum alloy plate for beverage can bodies of the present invention, the beverage can of the present invention can be controlled by regulating the homogenization treatment and the hot rolling conditions in the ordinary method for manufacturing aluminum alloy plates for beverage can bodies. The aluminum alloy plate for the trunk can be manufactured with high accuracy.
以下に、本発明の飲料缶胴用アルミニウム合金板に関して、合金組成の限定理由を示す。 Below, the reason for limitation of an alloy composition is shown regarding the aluminum alloy plate for drink can bodies of this invention.
[Mgの成分範囲:0.8〜1.5%]
Mgは、それ自体の固溶により缶胴体の強度向上に寄与し、ボトム部の高強度化ならびに加工硬化性の向上に有効である。0.8%未満では必要とされる強度を十分に得ることは難しく、さらに成形加工時に十分な加工硬化が起こらないため、ボトムしわが発生し易くなる。また、1.5%を超えて含有されると強度が高くなり過ぎるため、DI成形性とフランジ成形性が損なわれる。好ましい含有量は1.0〜1.4%である。
[Mg component range: 0.8 to 1.5%]
Mg contributes to improving the strength of the can body by its own solid solution, and is effective in increasing the strength of the bottom portion and improving work hardenability. If it is less than 0.8%, it is difficult to sufficiently obtain the required strength. Further, since sufficient work hardening does not occur during molding, bottom wrinkles are likely to occur. Moreover, since intensity | strength will become high too much when it contains exceeding 1.5%, DI moldability and flange moldability will be impaired. A preferable content is 1.0 to 1.4%.
[Mnの成分範囲:0.5〜1.5%]
Mnは、強度、耐熱軟化性の向上に寄与するとともに、固体潤滑作用を有する高硬度なAl−Mn−Fe−Si系の金属間化合物(α相)の形成に寄与する。このα相は極めて高硬度な金属間化合物であり、DI成形性時に固体潤滑作用により、缶胴材の表面性状を向上させる効果を持つ。0.5%未満ではその効果は十分に得られないとともに、Mnを所定量固溶させることができない。1.5%を超えると、強度が高くなりすぎると共に、Al−Mn−Fe−Si系の粗大な金属間化合物が過多に形成するため、DI成形性およびフランジ成形性が損なわれる。好ましい含有量は0.8〜1.2%である。
[Mn component range: 0.5 to 1.5%]
Mn contributes to the improvement of strength and heat softening resistance, and contributes to the formation of a high hardness Al—Mn—Fe—Si intermetallic compound (α phase) having a solid lubricating action. This α phase is an extremely hard intermetallic compound, and has the effect of improving the surface properties of the can body material by solid lubricating action during DI moldability. If it is less than 0.5%, the effect cannot be sufficiently obtained, and Mn cannot be dissolved in a predetermined amount. If it exceeds 1.5%, the strength becomes too high and an excessive amount of Al-Mn-Fe-Si-based coarse intermetallic compound is formed, so that DI moldability and flange moldability are impaired. A preferable content is 0.8 to 1.2%.
[Feの成分範囲:0.35〜0.5%]
Feは、前記のAl−Mn−Fe−Si系の金属間化合物の形成に寄与する。0.35%未満ではDI成形時、ダイスへの凝着を防止するのに必要な金属間化合物が十分に形成されない。0.5%を超えると材料強度が高くなり過ぎるため、DI成形性およびフランジ成形性が低下する。
[Fe component range: 0.35 to 0.5%]
Fe contributes to the formation of the Al—Mn—Fe—Si intermetallic compound. If it is less than 0.35%, an intermetallic compound necessary for preventing adhesion to the die is not sufficiently formed during DI molding. If it exceeds 0.5%, the material strength becomes too high, and the DI moldability and the flange moldability deteriorate.
[Siの成分範囲:0.20〜0.35%]
Siは、Al−Mn−Fe系の金属間化合物に変態を起こさせ、固体潤滑作用を有するAl−Mn−Fe−Si系の金属間化合物の形成に寄与する。これによって、DI成形時に潤滑不足によるダイス金型へ飲料缶胴用アルミニウム合金板が凝着する不具合を防止する。0.2%未満ではその効果は十分ではなく、缶胴材の表面性状が悪化して焼付不具合が生じる。一方で、0.35%を超えると前記の金属間化合物が多数形成され、再結晶を阻害するため、熱間圧延後に十分な再結晶組織が得られず、その結果、材料強度が著しく上昇してDI成形性が低下する。更にこの場合n値が低下し、ボトムしわ性も低下する。また、耐熱軟化性も悪化する。好ましい成分範囲は0.25〜0.32%である。
[Si component range: 0.20 to 0.35%]
Si transforms the Al—Mn—Fe intermetallic compound and contributes to the formation of an Al—Mn—Fe—Si intermetallic compound having a solid lubricating action. This prevents a problem that the aluminum alloy plate for a beverage can body adheres to a die die due to insufficient lubrication during DI molding. If it is less than 0.2%, the effect is not sufficient, and the surface properties of the can body material are deteriorated to cause a seizure defect. On the other hand, if it exceeds 0.35%, a large number of the intermetallic compounds are formed and recrystallization is inhibited, so that a sufficient recrystallization structure cannot be obtained after hot rolling, and as a result, the material strength is remarkably increased. As a result, DI moldability is reduced. Further, in this case, the n value is lowered and the bottom wrinkle property is also lowered. Moreover, heat-softening property also deteriorates. A preferable component range is 0.25 to 0.32%.
[Cuの成分範囲:0.1〜0.3%]
Cuは、材料強度に寄与する元素であり、製缶時の塗装焼付工程において、Al−Cu−Mg系析出物の生成による析出硬化によって強度向上を付与する。0.1%未満では所定量固溶させることができないとともに、十分な材料強度は得られない。0.3%を超えて含有されると、材料強度が高くなり過ぎるためDI成形性が悪化する。また塗装焼付による軟化が少なすぎてフランジ成形性が低下する。好ましい含有量は0.18〜0.25%である。
[Cu component range: 0.1 to 0.3%]
Cu is an element that contributes to material strength, and imparts strength improvement by precipitation hardening due to the formation of Al-Cu-Mg-based precipitates in the paint baking process during can making. If it is less than 0.1%, a predetermined amount cannot be dissolved, and sufficient material strength cannot be obtained. If the content exceeds 0.3%, the material strength becomes too high, and the DI moldability deteriorates. Also, softening due to paint baking is too small, and flange formability is reduced. A preferable content is 0.18 to 0.25%.
TiおよびBの添加は、結晶粒微細化の効果をもたらす。Tiは0.1%以下、Bは0.05%以下に規制する。Tiの含有量が0.1%を超えると、Al−Ti系の巨大な金属間化合物が生じるため、DI成形加工時に割れやピンホールを発生させて、DI成形性とフランジ成形性は低下する。
一方で、Bの含有量が0.05%を超えると、Ti−B系の巨大な金属間化合物が形成され、成形加工時に割れやピンホールが発生し易くなる。
その他の不可避的不純物として、Znは0.3%以下、Crは0.3%以下、Zrは0.1%以下、Vは0.1%以下であれば、本発明の効果を損なわない程度で許容できる。
The addition of Ti and B brings about the effect of grain refinement. Ti is restricted to 0.1% or less, and B is restricted to 0.05% or less. If the Ti content exceeds 0.1%, an Al-Ti-based huge intermetallic compound is generated, and cracks and pinholes are generated during the DI molding process, and the DI moldability and the flange moldability deteriorate. .
On the other hand, if the content of B exceeds 0.05%, a huge Ti-B intermetallic compound is formed, and cracks and pinholes are likely to occur during molding.
As other inevitable impurities, if Zn is 0.3% or less, Cr is 0.3% or less, Zr is 0.1% or less, and V is 0.1% or less, the effect of the present invention is not impaired. Is acceptable.
以下に本発明の飲料缶胴用アルミニウム合金板の製造方法について説明する。 Below, the manufacturing method of the aluminum alloy plate for drink can bodies of this invention is demonstrated.
[均質化処理]
本発明の合金組成のアルミニウム合金を例えば水冷式半連続鋳造法によって鋳塊(スラブ)に製造する。これを面削した後、鋳塊の溶質原子の偏析を取り除くと共に微細な析出物を固溶させ再結晶しやすくさせるため均質化処理を施す。
均質化処理温度は550〜620℃に規制する。550℃未満では十分な均質化効果は得られず、熱間圧延後再結晶組織とすることができないためDI成形性が低下する。620℃を超えると鋳造表面に膨れが生じ、さらには共晶部分が局所的に融解するため、表面品質が著しく低下する。このとき缶表面品質が損なわれる事は言うまでもないが、DI成形性やフランジ成形性にも悪影響を与える。均質化処理時間は1h以上保持しないとその効果は十分でなく、ある程度の時間保持が必要である。
[Homogenization treatment]
An aluminum alloy having the alloy composition of the present invention is produced into an ingot (slab) by, for example, a water-cooled semi-continuous casting method. After this is chamfered, homogenization is performed to remove segregation of solute atoms in the ingot and to make fine precipitates dissolve and facilitate recrystallization.
The homogenization temperature is regulated to 550 to 620 ° C. If it is less than 550 ° C., a sufficient homogenizing effect cannot be obtained, and a recrystallized structure cannot be obtained after hot rolling, so that DI moldability is lowered. If it exceeds 620 ° C., the cast surface is swollen, and further, the eutectic portion is locally melted, so that the surface quality is remarkably lowered. At this time, it goes without saying that the surface quality of the can is impaired, but it also adversely affects DI moldability and flange moldability. If the homogenization time is not maintained for 1 hour or more, the effect is not sufficient, and a certain amount of time must be maintained.
[均質化処理後熱間粗圧延までの間における昇温速度ならびに冷却速度−熱間粗圧延の開始温度を400〜500℃の温度域に設定し、その400〜500℃の温度域における昇温速度ならびに冷却速度]
均質化処理を施した後熱間圧延を施すが、その際、一旦室温まで40℃/時間以上の冷却速度で冷却した後、40℃/時間以上の昇温速度で再加熱して熱間圧延を開始する。
この熱間粗圧延の開始温度を400〜500℃の温度域に設定し、その400〜500℃の温度域の上限以下の温度域は500℃以下の温度域であって、特に下限も併せて規定する場合には、400〜500℃の温度域である。この400〜500℃の温度域における昇温速度を40℃/時間以上に規制する。これにより、Mn系の金属間化合物の固溶析出をコントロールする。この場合に、昇温速度ならびに冷却速度が40℃/時間未満であると、Mn固溶析出量が減少してボトムしわが悪化する。
[Temperature increase rate between homogenization and hot rough rolling and cooling rate-starting temperature of hot rough rolling is set in a temperature range of 400 to 500 ° C., and the temperature increase in the temperature range of 400 to 500 ° C. Speed and cooling speed]
After the homogenization treatment, hot rolling is performed. At that time, after cooling to room temperature at a cooling rate of 40 ° C./hour or more, reheating at a temperature increase rate of 40 ° C./hour or more is hot rolling. To start.
The starting temperature of this hot rough rolling is set to a temperature range of 400 to 500 ° C., and the temperature range below the upper limit of the temperature range of 400 to 500 ° C. is the temperature range of 500 ° C. or less, and particularly the lower limit is also included. When it prescribes | regulates, it is a 400-500 degreeC temperature range. The temperature increase rate in the temperature range of 400 to 500 ° C. is regulated to 40 ° C./hour or more. Thereby, solid solution precipitation of the Mn-based intermetallic compound is controlled. In this case, if the heating rate and the cooling rate are less than 40 ° C./hour, the Mn solid solution precipitation amount is reduced and the bottom wrinkle is deteriorated.
[熱間粗圧延]
均質化処理後熱間圧延を施すにあたり、熱間粗圧延開始温度を400〜500℃に規制する。400℃未満であると、本発明で規制する熱間圧延終了温度が得られず、再結晶組織が十分形成されないため、必要以上に材料強度が高くなり、DI成形性が低下する。500℃を超えるとMn系の金属間化合物が再固溶するため、Mn固溶量が増加し固溶硬化によって材料強度が上昇するため、DI成形性およびフランジ成形性が低下する。
[Hot rough rolling]
In performing hot rolling after the homogenization treatment, the hot rough rolling start temperature is regulated to 400 to 500 ° C. When the temperature is less than 400 ° C., the hot rolling end temperature regulated by the present invention cannot be obtained, and the recrystallized structure is not sufficiently formed. Therefore, the material strength becomes higher than necessary, and the DI moldability is lowered. When the temperature exceeds 500 ° C., the Mn-based intermetallic compound is re-dissolved, so the amount of Mn solid solution is increased and the material strength is increased by solid solution hardening, so that DI moldability and flange moldability are deteriorated.
[熱間粗圧延の終了から熱間仕上圧延の開始までの滞在時間(HR−HT時間)]
熱間粗圧延の終了から熱間仕上圧延の開始までの滞在時間を20分以内に規制する。これにより、Mnの固溶析出をコントロールする。20分を超えると、Mn系の金属間化合物が多数形成されてMnの固溶量が低下する。
[Residence time from the end of hot rough rolling to the start of hot finish rolling (HR-HT time)]
The stay time from the end of hot rough rolling to the start of hot finish rolling is regulated within 20 minutes. Thereby, solid solution precipitation of Mn is controlled. If it exceeds 20 minutes, a large number of Mn-based intermetallic compounds are formed, and the solid solution amount of Mn decreases.
[熱間仕上圧延]
熱間仕上圧延の終了温度範囲を300〜350℃に規制する。
300℃未満であれば、再結晶組織が十分形成されず材料強度が異常に高くなるため、DI成形性が低下する。更に歪みを異常に蓄えているため加工硬化性(n値)が低くボトムしわ性が悪い。更に耐熱軟化性も悪い。350℃を超えるとMnが析出し易くなるため、Mnの固溶量が低下する。
[Hot finish rolling]
The end temperature range of hot finish rolling is regulated to 300 to 350 ° C.
If it is less than 300 ° C., a recrystallized structure is not sufficiently formed and the material strength becomes abnormally high, so that the DI moldability is lowered. Furthermore, since the strain is stored abnormally, the work curability (n value) is low and the bottom wrinkle property is poor. Furthermore, heat resistance softening property is also bad. If it exceeds 350 ° C., Mn tends to precipitate, so the solid solution amount of Mn decreases.
[熱間圧延板の板厚]
熱間圧延板の板厚は2.5mm以下が好ましい。板厚が2.5mmを超えると冷間圧延率が高くなり、必要以上に材料強度が上昇してDI成形性が低下する。
[Thickness of hot rolled sheet]
The thickness of the hot rolled sheet is preferably 2.5 mm or less. When the plate thickness exceeds 2.5 mm, the cold rolling rate increases, the material strength increases more than necessary, and the DI moldability decreases.
[冷間圧延出側温度]
熱間圧延後冷間圧延を施す。最終冷間圧延の出側温度を140℃以上、それ以外の圧延パスの出側温度を110℃以下とする。最終冷間圧延の出側温度が140℃未満であると、途中パスの冷間圧延で形成された転位密度を減少させることができず、ボトムしわ性が低下する。一方で、途中パスの圧延の出側温度は110℃以下とすることにより、冷間圧延中に形成されるAl−Cu−Mg系やAl−Cu−Mg−Si系の金属間化合物の生成量を抑制しCu固溶量を増加させる。110℃を超えると金属間化合物の生成が促進され、Cu固溶量が減少して塗装焼付後の析出硬化量が減少して耐熱軟化性が低下する。さらに冷間圧延中の析出した析出物により冷間圧延中の加工硬化量が増加し、素板強度が上昇する。そのためDI成形性が悪化する。さらに、最終板の加工硬化性が低下するため、ボトムしわ性が低下する。
[Cold rolling delivery temperature]
Cold rolling is performed after hot rolling. The delivery temperature of the final cold rolling is 140 ° C. or higher, and the delivery temperature of the other rolling passes is 110 ° C. or less. If the delivery temperature of the final cold rolling is less than 140 ° C., the dislocation density formed by the cold rolling in the middle pass cannot be reduced, and the bottom wrinkling property is lowered. On the other hand, the production temperature of Al-Cu-Mg-based and Al-Cu-Mg-Si-based intermetallic compounds formed during cold rolling is set so that the exit side temperature of rolling in the middle pass is 110 ° C or lower. Is suppressed and the amount of Cu solid solution is increased. When it exceeds 110 ° C., the formation of intermetallic compounds is promoted, the amount of Cu solid solution is reduced, the amount of precipitation hardening after baking is reduced, and the heat softening resistance is lowered. Furthermore, the amount of work hardening during cold rolling increases due to the deposits that are precipitated during cold rolling, and the strength of the base plate increases. Therefore, DI moldability deteriorates. Furthermore, since the work hardening property of the final plate is lowered, the bottom wrinkle property is lowered.
[最終冷間圧延の出側冷却速度]
最終冷間圧延出側の冷却速度について、冷却時80℃までの冷却速度を15〜30℃/時間に規制する。これにより、Cuの固溶量をコントロールする。15℃/時間未満であると、Al−Cu系の金属間化合物が多数形成されてCu固溶量が低下するため、塗装焼付後の析出硬化量が減少して耐熱軟化性が低下する。30℃/時間を超えると、材料組織の回復が抑制されるため、ボトムしわ性が低下する。
[Outside cooling rate of final cold rolling]
About the cooling rate of the final cold rolling delivery side, the cooling rate up to 80 ° C. during cooling is regulated to 15 to 30 ° C./hour. Thereby, the amount of solid solution of Cu is controlled. If it is less than 15 ° C./hour, a large number of Al—Cu intermetallic compounds are formed and the amount of Cu solid solution is lowered, so that the amount of precipitation hardening after baking is reduced and the heat resistance softening property is lowered. When it exceeds 30 ° C./hour, the recovery of the material structure is suppressed, so that the bottom wrinkle property is lowered.
[冷間圧延の合計圧延率]
冷間圧延の合計圧延率は70%以上が望ましい。70%未満では必要とされる材料強度を確保できない。
[Total rolling ratio of cold rolling]
The total rolling rate of cold rolling is desirably 70% or more. If it is less than 70%, the required material strength cannot be secured.
以下に本発明の飲料缶胴用アルミニウム合金板における諸特性の限定理由を示す。 The reasons for limiting the characteristics of the aluminum alloy plate for beverage can bodies of the present invention are shown below.
次に、本発明の飲料缶胴用アルミニウム合金板について、素板の引張強度と空焼き後の耐力の限定理由について説明する。素板の引張強度は320MPa以下とする。320MPaを超えると、成形荷重が高くなりすぎDI成形性が低下する。塗装焼付後の耐力は250MPa以上とする。250MPa未満だと耐圧強度が不足し、アルミニウム缶として中身が充填された際、内圧変化に耐える強度を維持できず、缶底のドーム形状が反転するバックリング不具合が生じる。 Next, the reasons for limiting the tensile strength of the base plate and the proof strength after baking are described for the aluminum alloy plate for beverage can bodies of the present invention. The tensile strength of the base plate is set to 320 MPa or less. If it exceeds 320 MPa, the molding load becomes too high and the DI moldability is lowered. The yield strength after baking is set to 250 MPa or more. If the pressure is less than 250 MPa, the pressure resistance is insufficient, and when the contents are filled as an aluminum can, the strength that can withstand changes in internal pressure cannot be maintained, and a buckling problem occurs in which the dome shape of the can bottom is reversed.
[導電率:34.0〜39.0%IACS]
導電率については、その範囲を34.0〜39.0%IACSに規制する。導電率は材料中の固溶元素量と相関する特性値であり、材料中に溶質元素が固溶されることで、固溶硬化による缶胴強度の向上効果と高加工硬化性(すなわちn値)と耐熱軟化性が得られる。39.0%IACSを超えると、固溶元素量が少ないため、その効果は十分に得られず缶胴強度が向上しない。またボトムしわ性、耐熱軟化性も満足しない。一方で、34.0%IACS未満であると、必要以上に固溶硬化してDI成形性、フランジ成形性が低下する。
[Conductivity: 34.0 to 39.0% IACS]
For conductivity, the range is restricted to 34.0-39.0% IACS. Conductivity is a characteristic value that correlates with the amount of solid solution element in the material. When the solute element is dissolved in the material, the effect of improving the strength of the can body by solid solution hardening and high work hardenability (ie n value) ) And heat softening resistance. If it exceeds 39.0% IACS, the amount of the solid solution element is small, so that the effect cannot be sufficiently obtained and the can body strength is not improved. Also, it does not satisfy the bottom wrinkle property and heat softening property. On the other hand, if it is less than 34.0% IACS, the solution is hardened more than necessary and the DI moldability and the flange moldability deteriorate.
[BBTS−ABYS:55MPa以下]
耐熱軟化性の指標として、素板の圧延方向における引張強度(BBTS)と塗装焼付後の圧延方向における耐力(ABYS)の差(BBTS−ABYS)を55MPa以下に規制する。55MPaを超えると、焼付(ベーキング)後、材料軟化量が必要以上に多いため、本願発明のように素板引張強さを低めに規定している場合には塗装焼付後強度が十分確保されず耐圧強度が不足して、アルミニウム缶として中身が充填された際、内圧変化に耐える強度を維持できない。
[BBTS-ABYS: 55 MPa or less]
As an index of heat resistance softening property, the difference (BBTS-ABYS) between the tensile strength (BBTS) in the rolling direction of the base plate and the proof stress (ABYS) in the rolling direction after coating baking is regulated to 55 MPa or less. If it exceeds 55 MPa, after baking (baking), the amount of softening of the material is more than necessary, so if the base plate tensile strength is specified to be low as in the present invention, sufficient strength after coating baking cannot be ensured. When the pressure strength is insufficient and the contents are filled as an aluminum can, the strength that can withstand changes in internal pressure cannot be maintained.
[n値(加工硬化指数)の最大値]
均一塑性ひずみ全域において、図1に示される様に、歪量に対するn値の変化曲線を作成した際、そのn値の最大値が0.1以上であるものとする。これにより成形加工中の加工硬化性が高くなるため、成形力が向上してボトム部の周方向の圧縮歪が緩和されてボトムしわ性が向上する。0.1未満であるとその効果が十分に得られず、ボトムしわ性が低下する。
[Maximum value of n value (work hardening index)]
As shown in FIG. 1, when a change curve of the n value with respect to the strain amount is created in the entire uniform plastic strain, the maximum value of the n value is 0.1 or more. As a result, the work curability during the molding process is increased, so that the molding force is improved, the compressive strain in the circumferential direction of the bottom portion is relaxed, and the bottom wrinkle property is improved. If it is less than 0.1, the effect is not sufficiently obtained, and the bottom wrinkle property is lowered.
[Mn固溶量:0.12〜0.40%]
固溶Mnは冷間圧延時の加工硬化による強度向上と、耐熱軟化性の向上、缶成形時の加工硬化性の向上によるボトムしわ性の改善に寄与する。0.12%未満であると、その効果は十分ではなく加工硬化性が低いため、リドロー成形時にボトムしわが発生し易くなる。
また、缶体強度、耐熱軟化性が満足しない。0.40%を超えると、加工硬化量が過剰になり、強度が上昇してDI成形性が低下する。また、耐熱軟化性が必要以上に向上する結果としてフランジ成形性が低下する。
[Mn solid solution amount: 0.12 to 0.40%]
Solid solution Mn contributes to improvement of strength by work hardening at the time of cold rolling, improvement of heat softening resistance, and improvement of bottom wrinkle by improvement of work hardening at the time of can molding. If it is less than 0.12%, the effect is not sufficient and the work curability is low, so that bottom wrinkles are likely to occur during redraw molding.
Further, the strength of the can and heat softening resistance are not satisfied. If it exceeds 0.40%, the work hardening amount becomes excessive, the strength increases, and the DI moldability decreases. Moreover, flange moldability falls as a result of improving heat-softening property more than necessary.
[Cu固溶量が0.07〜0.20%]
Cu固溶量は、塗装焼付後の強度低下を少なくするのに有効である。0.07%未満であると、その効果は十分ではなく耐軟化性が低下する。0.20%を超えると、材料強度が上昇してDI成形性が低下する。また、耐熱軟化性が必要以上に向上する結果としてフランジ成形性が低下する。
[Cu solid solution amount is 0.07 to 0.20%]
The amount of Cu solid solution is effective in reducing the strength reduction after baking. If it is less than 0.07%, the effect is not sufficient, and the softening resistance is lowered. If it exceeds 0.20%, the material strength increases and the DI moldability decreases. Moreover, flange moldability falls as a result of improving heat-softening property more than necessary.
以下に本発明を実施例に基づき、詳細説明する。
表1の本発明のアルミニウム合金を常法により、溶解鋳造して厚さ500mmのスラブを製造する。このスラブを厚さ480mmに面削し額縁組織を除去した後、600℃×8時間で均質化処理し、室温まで冷却速度が45℃/時間で冷却後、熱間粗圧延の開始温度まで、昇温速度が50℃/時間で再加熱を行う。次いで熱間圧延を行う。熱間粗圧延の開始温度は450℃、熱間仕上圧延の終了温度は330℃で、熱間圧延板の板厚を2.0mmとし、これをコイルに巻取って室温まで冷却する。次いで、冷間圧延を行い、最終冷間圧延の出側の冷却速度を30℃/時間で施し、厚さ0.3mmの飲料缶胴用アルミニウム合金板を製造する。冷間圧延は3パスとし合計圧延率を85%とする。
The present invention will be described in detail below based on examples.
The aluminum alloy of the present invention shown in Table 1 is melt cast by a conventional method to produce a slab having a thickness of 500 mm. After chamfering this slab to a thickness of 480 mm and removing the frame structure, it is homogenized at 600 ° C. × 8 hours, cooled to room temperature at a cooling rate of 45 ° C./hour, and then to the starting temperature of hot rough rolling, Reheating is performed at a heating rate of 50 ° C./hour. Next, hot rolling is performed. The hot rough rolling start temperature is 450 ° C., the hot finish rolling end temperature is 330 ° C., the thickness of the hot rolled plate is 2.0 mm, and this is wound around a coil and cooled to room temperature. Next, cold rolling is performed, and the cooling rate on the outlet side of the final cold rolling is applied at 30 ° C./hour to produce an aluminum alloy plate for beverage can bodies having a thickness of 0.3 mm. Cold rolling is 3 passes and the total rolling rate is 85%.
(比較例1)
合金組成を本発明規定値外とした他は実施例1と同じ方法により、飲料缶胴用アルミニウム合金板を製造した。
(Comparative Example 1)
An aluminum alloy plate for a beverage can body was produced in the same manner as in Example 1 except that the alloy composition was outside the specified value of the present invention.
実施例1で製造した各々のアルミニウム合金について(1)機械的特性、(2)耐熱軟化性、(3)導電率、(4)n値、(5)DI成形性、(6)フランジ成形性、(7)ボトムしわ性、(8)耐圧強度、(9)Mnの固溶量およびCuの固溶量の評価を行った。 For each aluminum alloy produced in Example 1, (1) mechanical properties, (2) heat softening resistance, (3) conductivity, (4) n value, (5) DI formability, (6) flange formability (7) Bottom wrinkle property, (8) Pressure strength, (9) Mn solid solution amount and Cu solid solution amount were evaluated.
(1)機械的特性は、製造した飲料缶胴用アルミニウム合金板の圧延方向における素板の引張強度と空焼き後の耐力を測定した。空焼きとは製缶時の塗装焼付(ベーキング)条件を想定したものであり、205℃×10分で行った。 (1) Mechanical properties were determined by measuring the tensile strength of the base plate in the rolling direction of the manufactured aluminum alloy plate for beverage can bodies and the yield strength after baking. Baking is assumed to be the condition of baking (baking) during can making, and was performed at 205 ° C. for 10 minutes.
(2)耐熱軟化性の指標としてBBTS−ABYSが55MPa以下であるものを良好(○)とし、55MPaを超えるものを不良(×)と判定した。 (2) As an index of heat-resistant softening property, a sample having BBTS-ABYS of 55 MPa or less was evaluated as good (◯), and a sample exceeding 55 MPa was determined as defective (x).
(3)導電率は20℃の恒温室中で保持した後、渦電流法により測定した。 (3) The conductivity was measured by an eddy current method after being kept in a constant temperature room at 20 ° C.
(4)n値については圧延方向に平行な試験片(JIS5号)を用い、均一塑性ひずみ全域において公称歪が0.05%の間隔で公称応力を測定し、この引張試験の結果から真応力と真歪を計算した後、公称歪の前後1%を計算範囲として最小自乗法によってn値を求めた。次いで、計算したn値を用いて真歪に対するn値の変化曲線を作成し、最大n値が0.1以上であるものを良好(○)とし、0.1未満のものを不良(×)とした。 (4) For the n value, a test piece (JIS No. 5) parallel to the rolling direction was used, the nominal stress was measured at intervals of 0.05% in the entire uniform plastic strain, and the true stress was determined from the result of this tensile test. After calculating the true strain, the n value was obtained by the method of least squares with a calculation range of 1% before and after the nominal strain. Next, using the calculated n value, a change curve of the n value with respect to the true strain is created. It was.
(5)DI成形性は一般飲料用の缶胴(内径66mmΦ、側壁板厚100μm、側壁先端板厚150μm)にDI成形し、10000缶の製缶で、割れおよび破断等が全く発生しないで連続製缶できたものを良好(○)とし、割れおよび破断が発生したものを不良(×)として判定した。更に連続製缶できても表面にゴーリングが発生したものは(△)とした。 (5) DI moldability is DI molded into a can body for a general beverage (inner diameter 66 mmΦ, side wall plate thickness 100 μm, side wall tip plate thickness 150 μm). What was able to be made can be judged as good (◯), and those with cracks and fractures were judged as bad (x). Further, even if continuous cans were produced, the case where galling occurred on the surface was marked (Δ).
(6)フランジ成形性はDI成形した缶胴をトリミングならびに洗浄処理した後、205℃×10分で加熱し、次いで、その開口端を4段のネッキング加工し、開口部径の内径(d)を57mmに縮小し、角度90°の円錐状の治具をフランジ割れが発生するまで押し込み、割れの発生した時の開口部の径(D)を測定し、開口部の径の増加率(P)について、P=((D−d)/d)×100(%)より算出した。15%以上のものを合格(○)、15%以下のものを不合格(×)とした。 (6) Flange formability is as follows: DI molded can body is trimmed and washed, then heated at 205 ° C. for 10 minutes, and then the open end is necked in four stages to obtain an inner diameter (d) of the opening diameter. Was reduced to 57 mm, a 90 ° angle conical jig was pushed in until flange cracking occurred, the diameter (D) of the opening when cracking occurred was measured, and the rate of increase in diameter of the opening (P ) Was calculated from P = ((D−d) / d) × 100 (%). Those with 15% or more were judged as acceptable (◯), and those with 15% or less were judged as unacceptable (x).
(7)ボトムしわ性はブランクからカップを絞り、その後、再絞り缶(ブランク径140mmΦ、カップ径87mmΦ、再絞り径66mmΦ)について、缶底テーパー部の起状を形状測定器にて全周の測定を行い、その最大振幅にて評価した。その振幅が180μm以下を良好(○)とし、180μm以上を不良(×)と判定した。 (7) Bottom wrinkle squeezes the cup from the blank, and then the re-drawn can (blank diameter 140 mmΦ, cup diameter 87 mmΦ, redrawn diameter 66 mmΦ) Measurements were made and evaluated at the maximum amplitude. The amplitude of 180 μm or less was judged as good (◯), and 180 μm or more was judged as defective (×).
(8)耐圧強度はDI成形した缶胴を洗浄処理した後、205℃×10分で加熱し、缶胴内部にエアー圧を掛けて缶底ドームが反転する圧力を測定した。反転圧力が650kPa以上のものを良好(○)とし、650kPa以下を不良(×)として判定した。これら調査結果を表2に示す。 (8) The pressure strength was measured by washing the DI-molded can body, heating at 205 ° C. for 10 minutes, applying air pressure to the inside of the can body, and reversing the can bottom dome. A reversal pressure of 650 kPa or higher was judged as good (◯), and a reversal pressure of 650 kPa or lower was judged as defective (x). These survey results are shown in Table 2.
(9)Mnの固溶量およびCuの固溶量は、製造した飲料缶胴用アルミニウム合金板を熱フェノール溶液で溶解し、この試料溶液をろ過することで、残渣(化合物)とろ液(固溶体)をろ別分離させ、ろ別分離後、フェノールに溶け込んだ固溶体中のMnおよびCuをICP発光分析法(誘導結合プラズマ発光分析)を用いて定量した。 (9) The solid solution amount of Mn and the solid solution amount of Cu are obtained by dissolving the produced aluminum alloy plate for beverage can bodies with a hot phenol solution, and filtering this sample solution to obtain a residue (compound) and a filtrate (solid solution). ) Were separated by filtration, and after separation by filtration, Mn and Cu in the solid solution dissolved in phenol were quantified using ICP emission analysis (inductively coupled plasma emission analysis).
表1に本発明例の合金組成を示す。 Table 1 shows the alloy composition of the examples of the present invention.
表2より明らかなように、合金組成が本発明の規定範囲内で、かつ製造条件が本発明を充足する実施例1の各飲料缶胴用アルミニウム合金板(No.1〜No.4)は、いずれもMnの固溶量およびCuの固溶量が本発明の規定範囲にあり、ボトムしわ性に優れ、かつ飲料缶に要求される他の缶特性(DI成形性、フランジ成形性、耐圧強度)、機械的特性が良好であった。これに対して、合金組成が本発明規定外である比較例1の各飲料缶胴用アルミニウム合金板(No.5〜No.14)は種々不具合が発生した。 As apparent from Table 2, the aluminum alloy plates (No. 1 to No. 4) for beverage can bodies of Example 1 whose alloy composition is within the specified range of the present invention and whose manufacturing conditions satisfy the present invention are as follows. In addition, both the solid solution amount of Mn and the solid solution amount of Cu are within the specified range of the present invention, the bottom wrinkle is excellent, and other can characteristics required for beverage cans (DI moldability, flange moldability, pressure resistance) Strength) and mechanical properties were good. On the other hand, the aluminum alloy plates for beverage can bodies (No. 5 to No. 14) of Comparative Example 1 whose alloy composition is outside the scope of the present invention have various problems.
No.5は、Mg量が多く、素板の引張強度が上昇したため、DI成形性とフランジ成形性が悪化した。 No. In No. 5, since the amount of Mg was large and the tensile strength of the base plate was increased, DI moldability and flange moldability were deteriorated.
No.6は、Mg量が少ないため、空焼き後の耐力が本発明規定外となり、耐圧強度に劣る結果となった。さらに、導電率が低くn値の最大値が0.1を超える部分がなく、ボトムしわ性が低下した。 No. No. 6 had a small amount of Mg, so the yield strength after baking was out of the scope of the present invention, resulting in poor pressure strength. Further, the conductivity was low and there was no portion where the maximum value of n exceeded 0.1, and the bottom wrinkle property was lowered.
No.7は、Mn量が多く、素板の引張強度が高くなり過ぎるとともに粗大な金属間化合物が形成したため、DI成形性とフランジ成形性が低下した。 No. In No. 7, since the amount of Mn was large, the tensile strength of the base plate was too high and a coarse intermetallic compound was formed, the DI moldability and the flange moldability were lowered.
No.8は、Mn量が少ないため、固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付きが発生して缶表面が荒れて成形不良となるとともに、Mnの固溶量が少なく、ボトムしわ性が低下した。更に強度が低く耐圧強度が不足している。 No. No. 8 has a small amount of Mn, so that there are few crystallized substances having a solid lubricating action, seizure occurs on the ironing die, the can surface becomes rough and molding becomes poor, and the solid solution amount of Mn is small. Wrinkle decreased. Furthermore, the strength is low and the pressure strength is insufficient.
No.9は、Fe量が多いため、粗大な晶出物を形成してDI成形性およびフランジ成形性が低下した。 No. Since No. 9 had a large amount of Fe, a coarse crystallized product was formed, and DI moldability and flange moldability were lowered.
No.10は、Fe量が少ないため、固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが発生し、缶表面が荒れて成形不良となった。 No. No. 10 had a small amount of Fe, so that the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was rough, and the molding was defective.
No.11は、Si量が多いため、熱間圧延後再結晶組織とすることができず素材強度が異常に上昇している。そのためDI成形性が悪い。またn値が低くボトムしわ性も悪い。熱軟化性も悪いがベースが高強度のため耐圧強度不足にはなっていなかった。 No. No. 11 has a large amount of Si, so it cannot be recrystallized after hot rolling, and the material strength is abnormally increased. Therefore, DI moldability is bad. Also, the n value is low and the bottom wrinkle is poor. Although the thermal softening property was poor, the base was high in strength, so the pressure strength was not insufficient.
No.12は、Si量が少ないため、固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが発生し、缶表面が荒れて成形不良となった。 No. In No. 12, since the amount of Si was small, the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was rough, and molding was poor.
No.13は、Cu量が多いため、Cu固溶量が増大しDI成形性およびフランジ成形性が低下した。 No. In No. 13, since the amount of Cu was large, the amount of Cu solid solution was increased, and DI moldability and flange moldability were lowered.
No.14は、Cu量が少ないため、空焼き後の耐力が本発明規定外となり耐圧強度が劣る結果となった。さらに、Cuの固溶量が少ないため、塗装焼付後の析出硬化量が減少して耐熱軟化性が低下するとともに、n値の最大値が0.1を超える部分がなく導電率が高いためボトムしわが発生した。 No. No. 14 had a small amount of Cu, so the yield strength after baking was out of the scope of the present invention, resulting in poor pressure strength. Furthermore, since the amount of solid solution of Cu is small, the amount of precipitation hardening after baking is reduced, heat softening resistance is lowered, and there is no portion where the maximum value of n exceeds 0.1, and the conductivity is high. Wrinkles occurred.
表1に示した本発明規定組成のアルミニウム合金Aを常法により溶解鋳造して厚さ500mmの板状鋳塊(スラブ)とし厚さ480mmに面削した後、均質化処理と熱間圧延を施す。次に、冷間圧延を行い厚さ0.3mmの飲料缶胴用アルミニウム合金板を製造する。製造条件は本発明の規定値内で種々変化させるものとする。 The aluminum alloy A having the composition defined in the present invention shown in Table 1 is melt-cast by a conventional method to form a plate-like ingot (slab) having a thickness of 500 mm and chamfered to a thickness of 480 mm, followed by homogenization treatment and hot rolling. Apply. Next, cold rolling is performed to produce an aluminum alloy plate for beverage can bodies having a thickness of 0.3 mm. The manufacturing conditions are variously changed within the specified values of the present invention.
(比較例2)
製造条件を本発明規定値外とした他は、実施例2と同じ方法により飲料缶胴用アルミニウム合金板を製造した。
(Comparative Example 2)
An aluminum alloy plate for beverage can bodies was produced by the same method as in Example 2 except that the production conditions were outside the specified values of the present invention.
実施例2または比較例2で得られた各々の飲料缶胴用アルミニウム合金板について、実施例1の場合と同じ方法により、諸特性を調査し良否を判定した。製造条件を表3に示し、調査結果を表4に示す。 About each aluminum alloy plate for drink can bodies obtained in Example 2 or Comparative Example 2, various characteristics were investigated and the quality was determined by the same method as in Example 1. The production conditions are shown in Table 3, and the survey results are shown in Table 4.
表4より明らかなように、本発明実施例2の各飲料缶胴用アルミニウム合金板(No.15〜No.21)は、いずれもMn固溶量およびCu固溶量が本発明の規定範囲にあり、ボトムしわ性に優れ、かつ飲料缶に要求される他の缶特性(DI成形性、フランジ成形性、耐圧強度)、機械的特性が良好であった。これに対して、合金組成が本発明規定外である比較例2の各飲料缶胴用アルミニウム合金板(No.22〜No.35)は種々不具合が発生した。 As is clear from Table 4, each of the aluminum alloy plates for beverage can bodies (No. 15 to No. 21) of Example 2 of the present invention has both the Mn solid solution amount and the Cu solid solution amount within the specified range of the present invention. In addition, the bottom wrinkle was excellent, and other can characteristics (DI moldability, flange moldability, pressure strength) required for beverage cans and mechanical characteristics were good. On the other hand, various troubles occurred in the aluminum alloy plates (No. 22 to No. 35) for beverage can bodies of Comparative Example 2 whose alloy composition was outside the scope of the present invention.
No.22は、均質化処理温度が高いため、鋳塊表面に膨れが生じ共晶部分が融解したため、表面品質が著しく低下して、DI成形性とフランジ成形性が悪化した。 No. In No. 22, since the homogenization temperature was high, the surface of the ingot was swollen and the eutectic portion was melted, so that the surface quality was remarkably lowered and the DI moldability and the flange moldability deteriorated.
No.23は、均質化処理温度が低いため、熱間圧延後再結晶組織とすることができず素材強度が異常に上昇している。そのためDI成形性が悪い。またn値が低くボトムしわ性も悪い。熱軟化性も悪いがベースが高強度のため耐圧強度不足にはなっていなかった。 No. No. 23 has a low homogenization temperature, so that it cannot be recrystallized after hot rolling, and the material strength is abnormally increased. Therefore, DI moldability is bad. Also, the n value is low and the bottom wrinkle is poor. Although the thermal softening property was poor, the base was high in strength, so the pressure strength was not insufficient.
No.24およびNo.25は、均質化処理後、熱間圧延開始までの間の昇温速度および冷却速度が低いため、Mn固溶量が本発明規定外となったため、n値の最大値が0.1を超える部分がなく、導電率が高いためボトムしわが発生した。 No. 24 and no. No. 25, since the heating rate and the cooling rate until the start of hot rolling after the homogenization treatment are low, the Mn solid solution amount is outside the scope of the present invention, so the maximum value of n exceeds 0.1. There was no part and the bottom was wrinkled due to high conductivity.
No.26は、熱間粗圧延の開始温度が高いため、Mn固溶量が高く材料強度が高く耐熱軟化性も高くなりすぎDI成形性およびフランジ成形性が低下した。 No. In No. 26, since the hot rough rolling start temperature was high, the Mn solid solution amount was high, the material strength was high, and the heat softening resistance was too high, and the DI moldability and the flange moldability were lowered.
No.27は、熱間粗圧延の開始温度が低いため、熱間仕上げ圧延の終了温度が低くなり再結晶組織が十分形成されず、DI成形性およびボトムしわ性、耐熱軟化性が悪化した。(ベースが高いため耐圧強度不足にはならなかった。) No. In No. 27, since the start temperature of hot rough rolling was low, the end temperature of hot finish rolling was low, and a recrystallized structure was not sufficiently formed, and DI moldability, bottom wrinkle property, and heat softening property were deteriorated. (Due to the high base, the pressure strength did not become insufficient.)
No.28は、熱間粗圧延の終了から熱間仕上圧延の開始までの滞在時間(HR−HT時間)が長いため、Mn固溶量が本発明規定外となり、n値の最大値が0.1を超える部分がなく導電率が高いためボトムしわが発生した。更に耐圧強度が不足した。 No. No. 28 has a long residence time (HR-HT time) from the end of hot rough rolling to the start of hot finish rolling, so the Mn solid solution amount is outside the scope of the present invention, and the maximum value of n is 0.1. The bottom wrinkle was generated because there was no part that exceeded and the conductivity was high. Furthermore, the pressure strength was insufficient.
No.29は、熱間仕上圧延の終了温度が高いため、Mn固溶量が低下してn値の最大値が0.1を超える部分がなく、かつ導電率が高いためボトムしわ性が悪化した。更に耐圧強度が不足した。 No. In No. 29, since the finish temperature of hot finish rolling was high, the Mn solid solution amount decreased, there was no portion where the maximum value of n exceeded 0.1, and the bottom wrinkle property deteriorated because of the high conductivity. Furthermore, the pressure strength was insufficient.
No.30は、熱間仕上圧延の終了温度が低いため、熱間圧延後再結晶組織とすることができず素材強度が異常に上昇している。そのためDI成形性が悪い。またn値が低くボトムしわ性も悪い。熱軟化性も悪いがベースが高強度のため耐圧強度不足にはなっていなかった。 No. No. 30 has a low finish temperature of hot finish rolling, and thus cannot be made a recrystallized structure after hot rolling, and the material strength is abnormally increased. Therefore, DI moldability is bad. Also, the n value is low and the bottom wrinkle is poor. Although the thermal softening property was poor, the base was high in strength, so the pressure strength was not insufficient.
No.31とNo.32は、冷間圧延の1パス目あるいは2パス目の出側温度が高いため、塗装焼付後の析出硬化量が減少して、Cu固溶量が減少するため、耐熱軟化性が低下するとともに耐圧強度が低下した。さらに、材料の加工硬化性が低下してn値の最大値が0.1を超える部分がなく導電率が高くなりボトムしわ性が悪化した。素板強度が高くDI成形性が悪化した。 No. 31 and no. No. 32, since the exit temperature of the first pass or the second pass of cold rolling is high, the amount of precipitation hardening after baking is reduced, and the amount of Cu solid solution is reduced. The pressure strength decreased. Furthermore, the work hardenability of the material was lowered, there was no portion where the maximum value of n exceeded 0.1, and the conductivity was increased, and the bottom wrinkle property was deteriorated. The base plate strength was high and DI moldability deteriorated.
No.33は、最終冷間圧延の出側温度が低いため、材料の回復が十分ではなくn値が低いためボトムしわ性が低下した。 No. In No. 33, since the exit side temperature of the final cold rolling was low, the recovery of the material was not sufficient and the n value was low, so that the bottom wrinkle property was lowered.
No.34は、最終冷間圧延の出側冷却速度が高いため、材料の回復が十分ではなくn値が低いためボトムしわ性が低下した。 No. No. 34 had a high exit side cooling rate in the final cold rolling, so that the material was not sufficiently recovered and the n value was low, so that the bottom wrinkle property was lowered.
No.35は、最終冷間圧延の出側冷却速度が低いため、Cu固溶量が減少して塗装焼付後の析出硬化量が減少し耐熱軟化性ならびに耐圧強度が低下した。さらに、材料の加工硬化性が低下してn値の最大値が0.1を超える部分がなく導電率が高くなりボトムしわ性が悪化した。 No. No. 35 has a low cooling rate on the exit side of the final cold rolling, so that the amount of Cu solid solution is reduced, the amount of precipitation hardening after baking is reduced, and heat softening resistance and pressure strength are reduced. Furthermore, the work hardenability of the material was lowered, there was no portion where the maximum value of n exceeded 0.1, and the conductivity was increased, and the bottom wrinkle property was deteriorated.
本発明は、炭酸飲料用、ビール用および清涼飲料等の各種飲料缶の缶胴材として使用される飲料缶胴用アルミニウム合金板に関して、ボトムしわ性と耐熱軟化性に優れた飲料缶胴用アルミニウム合金板およびその製造方法として適用することができる。 The present invention relates to an aluminum alloy plate for beverage can bodies used as a can body material for various beverage cans such as carbonated beverages, beer and soft drinks, and aluminum for beverage can bodies excellent in bottom wrinkle resistance and heat softening resistance It can be applied as an alloy plate and a manufacturing method thereof.
1……飲料缶缶胴体、2……缶側壁、3……缶底チャイム部、4……缶底接地部。
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005116727A JP4791072B2 (en) | 2005-04-14 | 2005-04-14 | Aluminum alloy plate for beverage can body and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005116727A JP4791072B2 (en) | 2005-04-14 | 2005-04-14 | Aluminum alloy plate for beverage can body and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006291326A JP2006291326A (en) | 2006-10-26 |
JP4791072B2 true JP4791072B2 (en) | 2011-10-12 |
Family
ID=37412201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005116727A Active JP4791072B2 (en) | 2005-04-14 | 2005-04-14 | Aluminum alloy plate for beverage can body and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4791072B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108368570A (en) * | 2015-12-25 | 2018-08-03 | 株式会社Uacj | Tank body aluminium alloy plate and its manufacturing method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5113411B2 (en) * | 2007-03-29 | 2013-01-09 | 株式会社神戸製鋼所 | Aluminum alloy plate for packaging container and method for producing the same |
JP5204517B2 (en) * | 2008-03-19 | 2013-06-05 | 株式会社神戸製鋼所 | Aluminum alloy plate for battery case and manufacturing method thereof |
WO2014129385A1 (en) * | 2013-02-25 | 2014-08-28 | 株式会社Uacj | Aluminum alloy plate for can body and production method therefor |
JP6912886B2 (en) * | 2014-07-04 | 2021-08-04 | 株式会社Uacj | Aluminum alloy plate for beverage can body and its manufacturing method |
WO2016147816A1 (en) * | 2015-03-19 | 2016-09-22 | 株式会社神戸製鋼所 | Aluminum alloy sheet for can body |
JP6000437B1 (en) * | 2015-03-19 | 2016-09-28 | 株式会社神戸製鋼所 | Aluminum alloy plate for can body |
JP2018003074A (en) * | 2016-06-29 | 2018-01-11 | 株式会社Uacj | Aluminum alloy sheet and manufacturing method therefor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195608A (en) * | 1997-01-07 | 1998-07-28 | Furukawa Electric Co Ltd:The | Production of aluminum alloy sheet for can body low in earing ratio |
JP3657738B2 (en) * | 1997-05-12 | 2005-06-08 | 古河スカイ株式会社 | Method for producing aluminum alloy plate for can body with low ear rate |
JP2001262261A (en) * | 2000-03-22 | 2001-09-26 | Furukawa Electric Co Ltd:The | Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method |
JP4205458B2 (en) * | 2002-03-20 | 2009-01-07 | 株式会社神戸製鋼所 | Aluminum-based hot rolled plate and can body plate using the same |
JP2004244701A (en) * | 2003-02-17 | 2004-09-02 | Kobe Steel Ltd | Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor |
JP4257135B2 (en) * | 2003-03-03 | 2009-04-22 | 古河スカイ株式会社 | Aluminum alloy hard plate for can body |
JP3748438B2 (en) * | 2003-03-31 | 2006-02-22 | 株式会社神戸製鋼所 | Aluminum alloy plate for packaging container and method for producing the same |
-
2005
- 2005-04-14 JP JP2005116727A patent/JP4791072B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108368570A (en) * | 2015-12-25 | 2018-08-03 | 株式会社Uacj | Tank body aluminium alloy plate and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2006291326A (en) | 2006-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4019082B2 (en) | Aluminum alloy plate for bottle cans with excellent high temperature characteristics | |
US9574258B2 (en) | Aluminum-alloy sheet and method for producing the same | |
JP2012092431A (en) | Aluminum alloy cold-rolled sheet for bottle can | |
US9546411B2 (en) | Aluminum-alloy sheet and method for producing the same | |
JPWO2015140833A1 (en) | Aluminum alloy plate for DR can body and manufacturing method thereof | |
JP5568031B2 (en) | Aluminum alloy cold rolled sheet for bottle cans | |
WO2014129385A1 (en) | Aluminum alloy plate for can body and production method therefor | |
JP2009235477A (en) | Aluminum alloy sheet for drink can barrel, and method for producing the same | |
JP4791072B2 (en) | Aluminum alloy plate for beverage can body and manufacturing method thereof | |
JP4019083B2 (en) | Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics | |
JP2008274319A (en) | Method for manufacturing aluminum alloy sheet for beverage can body | |
JP6405014B1 (en) | Aluminum alloy plate for bottle can body and manufacturing method thereof | |
JP6912886B2 (en) | Aluminum alloy plate for beverage can body and its manufacturing method | |
JP3550259B2 (en) | Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same | |
JP4257135B2 (en) | Aluminum alloy hard plate for can body | |
JPH11140576A (en) | Aluminum alloy sheet for can body minimal in dispersion of flange length and its production | |
JP2933501B2 (en) | Method for producing aluminum alloy sheet excellent in formability of DI can bottom | |
JP3871462B2 (en) | Method for producing aluminum alloy plate for can body | |
JP2006283113A (en) | Aluminum alloy sheet for drink can barrel, and method for producing the same | |
JP2008248289A (en) | Aluminum alloy sheet for packaging container and manufacturing method therefor | |
JP3871473B2 (en) | Method for producing aluminum alloy plate for can body | |
JP2001262261A (en) | Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method | |
JP4771726B2 (en) | Aluminum alloy plate for beverage can body and manufacturing method thereof | |
JP4750392B2 (en) | Aluminum alloy plate for bottle-shaped cans | |
JP6435268B2 (en) | Aluminum alloy plate for can end and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110302 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4791072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |