以下、本発明につき更に詳しく説明する。
上記のように、高反射基板上でパターンを形成するための適度な吸収を有し、露光後のパターン形状と密着性と段差基板での埋め込み特性が良好で、また、イオンインプランテーションを行う際のイオンインプラント耐性を有するポジ型レジスト材料が求められていた。
本発明者らは、上記目的を達成するため、近年要望されるArF露光でパターンを形成した後にイオンインプランテーションを行うためのレジスト材料を得るべく鋭意検討を重ねた。
本発明者らは、高反射基板で露光するために、波長193nmのArFエキシマレーザーに適度な吸収を有するフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂を用いることを考えた。しかし、フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインを前記特許文献7に挙げられているような酸不安定基を繰り返し単位として有するメタクリレートに共重合して導入した場合、基板反射を抑え無機基板での密着性を向上させることはできるが、段差基板上での埋め込み特性を向上させることはできない。埋め込み特性を向上させるには、低分子体を添加することが効果的であるが、酸不安定基を有する樹脂の分子量を下げると酸の拡散が大きくなって解像性を劣化させる。フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのモノマーの添加はベーク中の昇華成分の発生や、PEB中の酸拡散の増大により解像性能の低下につながる。
そこで、本発明者らは、カルボキシル基の水素原子が環構造を有する酸不安定基で置換された構造を有する繰り返し単位を含む重量平均分子量が1,000〜500,000の範囲である高分子化合物と、フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂とをブレンドした樹脂を、ポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いれば極めて有効であることを知見し、本発明を完成させたものである。
以下、本発明について更に詳しく説明する。
本発明に係るポジ型レジスト材料は、カルボキシル基の水素原子が環構造を有する酸不安定基で置換された構造を有する繰り返し単位を含む高分子化合物と、置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂とをベース樹脂として含有し、更に、光酸発生剤を含有するものである。
本発明のポジ型レジスト材料は、特に高反射の段差基板上での解像性と埋め込み特性と密着性に優れ、高解像性を有し、プロセス適応性に優れ、露光後のパターン形状が良好である。従って、これらの優れた特性を有することから実用性が極めて高く、超LSI用のイオンインプランテーションプロセス用レジスト材料及びマスクパターン形成材料として非常に有効である。
カルボキシル基の水素原子が環構造を有する酸不安定基で置換された構造を有する繰り返し単位としては、好ましくは下記一般式(1)で示される繰り返し単位aが挙げられる。
(式中、R
1は水素原子又はメチル基である。Xは単結合、エステル基,エーテル基及びラクトン環から選ばれる1種又は2種以上を有する炭素数1〜14の連結基、又はナフチレン基であり、R
2は環構造を有する酸不安定基である。)
上記一般式(1)で示される、環構造を有する酸不安定基で置換された構造を有する繰り返し単位aを得るためのモノマーMaとしては、下記一般式で示すことができる。
(ここで、R
1、R
2、Xは前述の通りである。)
この場合、Xの炭素数1〜14の連結基としては、直鎖状、分岐状又は環状のアルキレン基,フェニレン基,ナフチレン基等のアリーレン基、及びこれらのアルキレン基とアリーレン基が結合したアラルキレン基等が挙げられる。また、Xのラクトン環を有する炭素数1〜14の連結基としては、下記のものを例示することができる。
繰り返し単位aを得るためのモノマーMaとしては、具体的には下記に例示される。
上記一般式(1)中のR
2の酸不安定基は、種々選定されるが、同一でも異なっていてもよく、特に下記一般式(A−1)で示されるものが挙げられる。
(式中、R34は炭素数1〜16の直鎖状、分岐状又は環状のアルキル基、炭素数6〜10のアリール基、炭素数2〜16のアルケニル基であり、酸素原子、硫黄原子などを含んでいてもよい。R35とR36は互いに結合してこれらが結合する炭素原子と共に炭素数3〜20、特に4〜16の非芳香環を形成する。)
式(A−1)の酸不安定基としては、下記式(A−1)−1〜(A−1)−10で示される基等を具体的に挙げることができる。
また、R
2としては、下記式(A−1)−11〜(A−1)−18で示される基等も好ましく使用できる。
式(A−1)−1〜(A−1)−10、(A−1)−11〜(A−1)−18中、R
43は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、又は炭素数6〜20のフェニル基、ナフチレン基等のアリール基を示す。R
44、R
45は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。
前記一般式(1)で示される繰り返し単位aとしては、特に好ましくは、下記一般式(3)に示されるエキソ体構造を有する(メタ)アクリル酸エステルの繰り返し単位が好ましく挙げられる。
(式中、R
1は前述の通り、R
c3は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基又は炭素数6〜20の置換されていてもよいアリール基を示す。R
c4〜R
c9及びR
c12、R
c13はそれぞれ独立に水素原子又は炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示し、R
c10、R
c11は水素原子又は炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示す。R
c4とR
c5、R
c6とR
c8、R
c6とR
c9、R
c7とR
c9、R
c7とR
c13、R
c8とR
c12、R
c10とR
c11又はR
c11とR
c12は互いに環を形成していてもよく、その場合には環の形成に関与する基は炭素数1〜15のヘテロ原子を含んでもよい2価の炭化水素基を示す。またR
c4とR
c13、R
c10とR
c13又はR
c6とR
c8は隣接する炭素に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい。また、本式により、鏡像体も表す。)
ここで、上記一般式(3)に示すエキソ構造を有する繰り返し単位を得るためのエステル体のモノマーとしては特開2000−327633号公報に示されている。具体的には下記に挙げることができるが、これらに限定されることはない。
また、酸不安定基を有する繰り返し単位aとしては、下記式(4)に示されるフランジイル基、テトラヒドロフランジイル基又はオキサノルボルナンジイル基を有する(メタ)アクリル酸エステルの繰り返し単位を挙げることができる。
(式中、R
1は前述の通りである。R
c14、R
c15はそれぞれ独立に炭素数1〜10の直鎖状、分岐状又は環状の1価炭化水素基を示す。R
c14、R
c15は互いに結合してこれらが結合する炭素原子と共に脂肪族炭化水素環を形成してもよい。R
c16はフランジイル基、テトラヒドロフランジイル基又はオキサノルボルナンジイル基から選ばれる2価の基を示す。R
c17は水素原子又はヘテロ原子を含んでもよい炭素数1〜10の直鎖状、分岐状又は環状の1価炭化水素基を示す。)
フランジイル基、テトラヒドロフランジイル基又はオキサノルボルナンジイル基を有する酸不安定基で置換された繰り返し単位を得るためのモノマーは、下記に例示される。なお、Acはアセチル基、Meはメチル基を示す。
また、上記一般式(1)中のR
2の環構造を有する酸不安定基としては、下記一般式(A−2)で示される酸不安定基も挙げることができる。
(式中、R
19は水素原子、炭素数1〜4のアルキル基、アルコキシ基、アルカノイル基又はアルコキシカルボニル基である。m19は1〜4の整数である。)
式(A−2)で示される酸不安定基によって置換されたカルボキシル基を有するモノマーは、具体的には下記に例示される。
また、本発明において、ベース樹脂として用いる前記高分子化合物が、前記一般式(1)で示される繰り返し単位aに加えて、ヒドロキシ基、カルボキシル基、ラクトン環、カーボネート基、チオカーボネート基、カルボニル基、環状アセタール基、エーテル基、エステル基、スルホン酸エステル基、シアノ基及びアミド基から選ばれる密着性基を有する繰り返し単位bを含む高分子化合物(該高分子化合物に含まれる全繰り返し単位に対する前記繰り返し単位a及び前記繰り返し単位bのモル比は、0<a<1.0、0<b<1.0、0.2≦a+b≦1.0の範囲である。)であることが好ましい。
ヒドロキシ基、カルボキシル基、ラクトン環、カーボネート基、チオカーボネート基、カルボニル基、環状アセタール基、エーテル基、エステル基、スルホン酸エステル基、シアノ基及びアミド基から選ばれる密着性基を有する繰り返し単位bを得るためのモノマーとしては、具体的には下記に例示することができる。
ヒドロキシ基を有するモノマーの場合、重合時にヒドロキシ基をエトキシエトキシ基などの酸によって脱保護し易いアセタール基で置換しておいて重合後に弱酸と水によって脱保護を行ってもよいし、アセチル基、ホルミル基、ピバロイル基等で置換しておいて重合後にアルカリ加水分解を行ってもよい。
本発明の高分子化合物は、上記一般式(1)で示される繰り返し単位a、密着性基を有する繰り返し単位b以外の繰り返し単位を共重合することもでき、下記一般式(5)で示されるスルホニウム塩c1、c2、c3の繰り返し単位cを共重合することができる。特開平4−230645号公報、特開2005−84365号公報、特開2006−045311号公報には、特定のスルホン酸が発生する重合性オレフィンを有するスルホニウム塩、ヨードニウム塩が提案されている。特開2006−178317号公報には、スルホン酸が主鎖に直結したスルホニウム塩が提案されている。
(式中、R
20、R
24、R
28は水素原子又はメチル基、R
21は単結合、フェニレン基、−O−R−、又は−C(=O)−W−R−である。Wは酸素原子又はNH、Rは炭素数1〜6の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基又はフェニレン基であり、カルボニル基(−CO−)、エステル基(−COO−)、エーテル基(−O−)又はヒドロキシ基を含んでいてもよい。R
22、R
23、R
25、R
26、R
27、R
29、R
30、R
31は同一又は異種の炭素数1〜12の直鎖状、分岐状又は環状のアルキル基であり、カルボニル基、エステル基又はエーテル基を含んでいてもよく、又は炭素数6〜12のアリール基、炭素数7〜20のアラルキル基又はチオフェニル基を表す。Z
0は単結合、メチレン基、エチレン基、フェニレン基、フッ素化されたフェニレン基、−O−R
32−、又は−C(=O)−Z
1−R
32−である。Z
1は酸素原子又はNH、R
32は炭素数1〜6の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基又はフェニレン基であり、カルボニル基、エステル基、エーテル基又はヒドロキシ基を含んでいてもよい。M
−は非求核性対向イオンを表す。0≦c1≦0.5、0≦c2≦0.5、0≦c3≦0.5、0≦c1+c2+c3≦0.5である。)
このように、ポリマー(高分子化合物)主鎖に酸発生剤を結合させることによって酸拡散を小さくし、酸拡散のぼけによる解像性の低下を防止できる。また、酸発生剤が均一に分散することによってエッジラフネス(LER、LWR)が改善される。
M−の非求核性対向イオンとしては、塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸を挙げることができる。
M
−の非求核性対向イオンとしては、更には、下記一般式(K−1)に示されるα位がフルオロ置換されたスルホネート、下記一般式(K−2)に示されるα,β位がフルオロ置換されたスルホネートが挙げられる。
一般式(K−1)中、R102は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、炭素数2〜20のアルケニル基、又は炭素数6〜20のアリール基であり、エーテル基、エステル基、カルボニル基、ラクトン環、又はフッ素原子を有していてもよい。
一般式(K−2)中、R103は水素原子、炭素数1〜30の直鎖状、分岐状又は環状のアルキル基、アシル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基、又はアリーロキシ基であり、エーテル基、エステル基、カルボニル基、又はラクトン環を有していてもよい。
また、下記一般式(6)に示されるインデンd1、アセナフチレンd2、クロモンd3、クマリンd4、ノルボルナジエンd5などの繰り返し単位dを共重合することもできる。
(式中、R
110〜R
114は水素原子、炭素数1〜30のアルキル基、一部又は全てがハロゲン原子で置換されたアルキル基、ヒドロキシ基、アルコキシ基、アルカノイル基又はアルコキシカルボニル基、又は炭素数6〜10のアリール基、ハロゲン原子、又は1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール基である。Xはメチレン基、酸素原子、又は硫黄原子である。0≦d1≦0.4、0≦d2≦0.4、0≦d3≦0.4、0≦d4≦0.4、0≦d5≦0.4、0≦d1+d2+d3+d4+d5≦0.5である。)
上記繰り返し単位a、b、c、d以外に共重合できる繰り返し単位eとしては、スチレン、ビニルナフタレン、ビニルアントラセン、ビニルピレン、メチレンインダンなどに由来するものが挙げられる。
本発明の高分子化合物を合成するには、1つの方法としては、繰り返し単位a〜eを与えるモノマーのうち所望のモノマーを、有機溶剤中、ラジカル重合開始剤を加えて加熱重合を行い、共重合体の高分子化合物を得ることができる。
重合時に使用する有機溶剤としてはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン、シクロヘキサン、シクロペンタン、メチルエチルケトン、γ−ブチロラクトン等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。
ヒドロキシスチレン、ヒドロキシビニルナフタレンを共重合する場合は、ヒドロキシスチレン、ヒドロキシビニルナフタレンの代わりにアセトキシスチレン、アセトキシビニルナフタレンを用い、重合後上記アルカリ加水分解によってアセトキシ基を脱保護してヒドロキシスチレン単位、ヒドロキシビニルナフタレン単位にする方法もある。
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
ここで、繰り返し単位a、b、c、d、eの割合は、0<a≦1.0、0≦b≦0.9、0≦c≦0.5、0≦d≦0.5、0≦e≦0.5、特に0.1≦a≦0.9、0.1≦b≦0.9、0≦c≦0.4、0≦d≦0.4、0≦e≦0.4であり、好ましくは0.15≦a≦0.8、0.2≦b≦0.8、0≦c≦0.3、0≦d≦0.3、0≦e≦0.3、より好ましくは0.20≦a≦0.7、0.25≦b≦0.7、0≦c≦0.25、0≦d≦0.25、0≦e≦0.25である。ここで、c=c1+c2+c3、d=d1+d2+d3+d4+d5である。この場合、繰り返し単位a〜eの合計はa+b+c+d+e=1である。
本発明のポジ型レジスト材料に用いられる本発明の高分子化合物は、重量平均分子量が1,000〜500,000である。好ましくは2,000〜30,000である。重量平均分子量が小さすぎるとレジスト材料が耐熱性に劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなってしまう。
なお、重量平均分子量(Mw)は溶剤としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の測定値である(以下、同じ)。
更に、本発明のポジ型レジスト材料に用いられる本発明の高分子化合物においては、多成分共重合体の分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するために、露光後パターン上に異物が見られたり、パターンの形状が悪化したりする。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する多成分共重合体の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
また、組成比率や分子量分布や分子量が異なる2つ以上の本発明に係る高分子化合物を用いることも可能である。
本発明のポジ型レジスト材料は、前述の高分子化合物に加えて置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂をブレンドしたものをベース樹脂とすることを特徴とする。フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂をブレンドすることによって、波長193nmのArFエキシマレーザーにおける適度な吸収を有することにより基板反射を抑える効果がある。ノボラック樹脂は分子量分布が広く、分子量自体が低いために段差基板上での埋め込み特性に優れ、モノマー成分の添加に比べて昇華成分の発生と酸拡散の増大を抑えることができ、無機基板上の密着性を向上させることもできる。
本発明の置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂としては、下記一般式(2)で示される繰り返し単位を有するノボラック樹脂が好ましい。
(式中、R
3、R
4は水素原子、又は酸不安定基である。R
5、R
6、R
7は水素原子、ハロゲン原子、ヒドロキシ基及び炭素数1〜4のアルコキシ基のいずれか、又は、ヒドロキシ基、アルコキシ基、アシロキシ基、エーテル基及びスルフィド基のいずれかを有していてもよい、炭素数1〜10の直鎖状、分岐状又は環状のアルキル基、炭素数2〜10のアルケニル基、又は炭素数6〜10のアリール基である。R
8は水素原子、又は、ヒドロキシ基、アルコキシ基、エーテル基及びチオエーテル基のいずれかを有していてもよい炭素数1〜6の直鎖状、分岐状又は環状のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜10のアリール基である。Yは−C(=O)−、−S(=O)
2−、であり、m、n、p、q、rは1又は2である。)
上記一般式(2)で示される繰り返し単位を有するノボラック樹脂を得るためのモノマーとしては、具体的には下記に例示することが出来る。
置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインをノボラック化する場合、他のモノマーと共縮合することが出来る。共縮合できるモノマーとしては具体的には、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2−t−ブチルフェノール、3−t−ブチルフェノール、4−t−ブチルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、3,5−ジフェニルフェノール、2−ナフチルフェノール、3−ナフチルフェノール、4−ナフチルフェノール、4−トリチルフェノール、レゾルシノール、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、カテコール、4−t−ブチルカテコール、2−メトキシフェノール、3−メトキシフェノール、2−プロピルフェノール、3−プロピルフェノール、4−プロピルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、2−メトキシ−5−メチルフェノール、2−t−ブチル−5−メチルフェノール、ピロガロール、チモール、イソチモール、4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジメチル−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジアリル−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジフルオロ−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジフェニル−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,2’ジメトキシ−4,4’−(9H−フルオレン−9−イリデン)ビスフェノール、2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、3,3,3’,3’−テトラメチル−2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、3,3,3’,3’,4,4’−ヘキサメチル−2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−5,5’−ジオール、5,5‘−ジメチル−3,3,3’,3’−テトラメチル−2,3,2’,3’−テトラヒドロ−(1,1’)−スピロビインデン−6,6’−ジオール、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,4−ジヒドロキシナフタレン、2,5−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,8−ジヒドロキシナフタレンを挙げることができる。ジヒドロキシナフタレンと共縮合できる化合物としては、1−ナフトール、2−ナフトール、2−メチル−1−ナフトール、4−メトキシ−1−ナフトール、7−メトキシ−2−ナフトール、6−メトキシ−2−ナフトール、3−メトキシ−2−ナフトール、1,4−ジメトキシナフタレン、1,5−ジメトキシナフタレン、1,6−ジメトキシナフタレン、1,7−ジメトキシナフタレン、1,8−ジメトキシナフタレン、2,3−ジメトキシナフタレン、2,6−ジメトキシナフタレン、2,7−ジメトキシナフタレン、3−ヒドロキシ−ナフタレン−2−カルボン酸メチル、ナフタレン、1−メチルナフタレン、2−メチルナフタレン、1,2−ジメチルナフタレン、1,3−ジメチルナフタレン、1,4−ジメチルナフタレン、1,5−ジメチルナフタレン、1,6−ジメチルナフタレン、1,7−ジメチルナフタレン、1,8−ジメチルナフタレン、2,3−ジメチルナフタレン、2,6−ジメチルナフタレン、2,7−ジメチルナフタレン、1−エチルナフタレン、2−エチルナフタレン、1−プロピルナフタレン、2−プロピルナフタレン、1−ブチルナフタレン、2−ブチルナフタレン、1−フェニルナフタレン、1−シクロヘキシルナフタレン、1−シクロペンチルナフタレン、1,1’−ビ(2−ナフトール)、o−クレゾール、m−クレゾール、p−クレゾール、インデン、ヒドロキシアントラセン、アセナフチレン、アセナフテン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、1,5−ジメチルナフタレン、6,6’−(9H−フルオレン−9−イリデン)ビス−2−ナフトールを挙げることができる。
ノボラック樹脂のアルカリ溶解速度が速すぎるとレジストパターンの膜減りを生じさせることがある。アルカリ溶解速度を低下させるためにヒドロキシ基が1つのナフトールあるいはヒドロキシ基がアルコキシ基で置換されたアルコキシナフタレン、ジアルコキシナフタレンを共縮合すること、あるいはフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインノボラック樹脂のヒドロキシ基を酸不安定基で置換することが有効である。
置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインをノボラック樹脂にする場合、アルデヒド類を加えてノボラック化する。ノボラック化することによって分子量が増大し、ベーク時の低分子量体によるアウトガスやパーティクルの発生を抑えることができる。
ここで用いられるアルデヒド類としては、例えばホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、メトキシベンズアルデヒド、フェニルベンズアルデヒド、トリチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、シクロペンチルベンズアルデヒド、t−ブチルベンズアルデヒド、ナフタレンアルデヒド、ヒドロキシナフタレンアルデヒド、アントラセンアルデヒド、フルオレンアルデヒド、ピレンアルデヒド、メトキシナフタレンアルデヒド、ジメトキシナフタレンアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、ナフタレンアセトアルデヒド、置換又は非置換のカルボキシルナフタレンアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−クロロベンズアルデヒド、m−クロロベンズアルデヒド、p−クロロベンズアルデヒド、o−ニトロベンズアルデヒド、m−ニトロベンズアルデヒド、p−ニトロベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒド、フルフラール、フランカルボキシアルデヒド、チオフェンアルデヒド等を挙げることができる。これらのうち、特にホルムアルデヒドを好適に用いることができる。これらのアルデヒド類は、単独で又は2種以上を組み合わせて用いることができる。
上記アルデヒド類の使用量は、フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレイン1モルに対して0.2〜5モルが好ましく、より好ましくは0.5〜2モルである。
置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインとアルデヒド類の縮合反応に触媒を用いることもできる。具体的には塩酸、硝酸、硫酸、ギ酸、シュウ酸、酢酸、メタンスルホン酸、カンファースルホン酸、トシル酸、トリフルオロメタンスルホン酸等の酸性触媒を挙げることができる。
これらの酸性触媒の使用量は、フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレイン類1モルに対して1×10−5〜5×10−1モルである。
上記(2)式で示される繰り返し単位を有する置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのノボラック樹脂の分子量は、重量平均分子量で400〜20,000の範囲である。好ましくは500〜10,000、より好ましくは600〜10,000である。分子量が小さい方が埋め込み特性に優れるが、酸拡散が拡大することによってリソグラフィー特性が劣化することがあるので、埋め込み特性とリソグラフィー特性の観点で最適化することが好ましい。埋め込み特性とリソグラフィー特性の両立を行うための一つの方法としては、未重合のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインをできるだけカットすることであり、低分子の2量体、3量体もできるだけ少ない量にすることが好ましい。
本発明の、カルボキシル基の水素原子が環構造を有する酸不安定基で置換された構造を有する繰り返し単位を含む高分子化合物と、置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれる1種以上のノボラック樹脂との好ましいブレンド比率は、前記高分子化合物が50〜98質量%であり、置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれるノボラック樹脂が2〜50質量%の範囲である。置換又は非置換のフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインから選ばれるノボラック樹脂は、アルカリ可溶性であるために、ブレンド比率が高い場合に現像後のレジストパターンに膜減りが生じる場合がある。また、フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのノボラック樹脂の波長193nmにおける吸収のために、このブレンド比率が高すぎると、現像後のレジストパターンがテーパー形状になることがある。上記のブレンド比率であれば、このような恐れがないために好ましい。
本発明のポジ型レジスト材料は、高エネルギー線に感応して酸を発生する化合物(光酸発生剤)を含有する。光酸発生剤の成分としては、高エネルギー線照射により酸を発生する化合物であればいずれでも構わない。好適な光酸発生剤としてはスルホニウム塩、ヨードニウム塩、スルホニルジアゾメタン、N−スルホニルオキシイミド、オキシム−O−スルホネート型酸発生剤等があり、これらは単独であるいは2種以上混合して用いることができる。
光酸発生剤の具体例としては、特開2008−111103号公報の段落(0122)〜(0142)に記載されている。
特開2008−158339号公報に記載されているα位がフッ素化されていないスルホン酸、及びカルボン酸のスルホニウム塩、ヨードニウム塩、アンモニウム塩等のオニウム塩をクエンチャーとして用いることもできる。α位がフッ素化されたスルホン酸、イミド酸、メチド酸はカルボン酸エステルの酸不安定基を脱保護させるために必要であるが、α位がフッ素化されていないオニウム塩との塩交換によってα位がフッ素化されていないスルホン酸、及びカルボン酸が放出される。α位がフッ素化されていないスルホン酸、及びカルボン酸は脱保護反応を起こさないために、クエンチャーとして機能する。特にα位がフッ素化されていないスルホン酸、及びカルボン酸のスルホニウム塩、ヨードニウム塩は光分解性があるために、光強度が強い部分のクエンチ能が低下すると共にα位がフッ素化されたスルホン酸、イミド酸、メチド酸の濃度が増加する。これによって露光部分のコントラストが向上する。α位がフッ素化されていないスルホン酸、及びカルボン酸のスルホニウム塩、ヨードニウム塩、アンモニウム塩等のオニウム塩は、α位がフッ素化されたスルホン酸、イミド酸、メチド酸の拡散を抑える効果が高い。これは、交換後のオニウム塩の分子量が大きいために、動きにくくなっていることによる。α位がフッ素化されていないスルホン酸、及びカルボン酸のスルホニウム塩、ヨードニウム塩、アンモニウム塩等のオニウム塩や、酸によってアミン化合物が発生するカルバメート化合物の添加は、酸拡散の制御の観点から重要である。
なお、光酸発生剤の配合量は、ベース樹脂(前記高分子化合物及びフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのノボラック樹脂)100質量部に対し0.01〜100質量部、特に0.1〜80質量部とすることが好ましい。
本発明のレジスト材料は、更に、有機溶剤、塩基性化合物、界面活性剤、溶解制御剤、アセチレンアルコール類のいずれか1つ以上を含有することができる。
有機溶剤の具体例としては特開2008−111103号公報の段落(0144)〜(0145)、塩基性化合物としては段落(0146)〜(0164)、界面活性剤としては段落(0165)〜(0166)、溶解制御剤としては特開2008−122932号公報の段落(0155)〜(0178)、アセチレンアルコール類は段落(0179)〜(0182)に記載されている。また、酸によってアミンが発生する化合物を添加することもでき、例えば特許第3790649号公報記載のカルバメート基を有する化合物を用いることができる。特開2008−239918号公報に記載のポリマー型のクエンチャーを添加することもできる。これは、コート後のレジスト表面に配向することによってパターン後のレジストの矩形性を高める。ポリマー型クエンチャーは、液浸露光用の保護膜を適用したときのパターンの膜減りやパターントップのラウンディングを防止する効果もある。
有機溶剤の配合量は、ベース樹脂100質量部に対し50〜10,000質量部、特に100〜5,000質量部であることが好ましい。また、ベース樹脂100質量部に対し、溶解制御剤は0〜50質量部、特に0〜40質量部、塩基性化合物は0〜100質量部、特に0.001〜50質量部、界面活性剤は0〜10質量部、特に0.0001〜5質量部の配合量とすることが好ましい。
以上のような本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料の用途としては、例えば、半導体回路形成におけるリソグラフィーだけでなく、マスク回路パターンの形成、あるいはマイクロマシーン、薄膜磁気ヘッド回路形成にも応用することができる。
本発明のポジ型レジスト材料は、例えば有機溶剤と、好ましくは上記一般式(1)で示される繰り返し単位aを含む高分子化合物と、好ましくは上記一般式(2)で示される繰り返し単位を有するフェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのノボラック樹脂と、光酸発生剤、塩基性化合物を含む本発明の化学増幅ポジ型レジスト材料を、種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を適用することができる。
本発明のパターン形成方法は、例えば本発明のポジ型レジスト材料を、集積回路製造用の基板(Si、SiO2、SiN、SiON、TiN、WSi、BPSG、SOG、有機反射防止膜等)あるいはマスク回路製造用の基板(Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.1〜2.0μmとなるように塗布する。これをホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間プリベークする。
イオンインプランテーションプロセスに用いる場合は、下地はSi基板が多く用いられる。レジスト膜と基板との間に有機反射防止膜(BARC)を敷くことは、レジスト膜の密着性向上によってパターン倒れ防止に効果的であるが、レジストパターンの開口部分がBARC膜で覆われているためにイオンを打ち込むことができない。そのため、イオンインプランテーション用レジスト膜はSi基板上に直接形成される。このため、下地からの反射が大きくなるだけでなく密着性低下によるパターン倒れが問題となる。
密着性向上のために、基板をヘキサメチルジシラザン(HMDS)処理を行うことは有効である。HMDSの分解によってSi基板のシラノールをトリメチルシリル基に変えることによって疎水性が向上し、レジスト膜と同程度の表面エネルギーとなることによって接着力が向上する。
レジスト膜の上に反射防止膜(トップコート)を形成することもできる。トップコートとしては、レジスト膜とインターミキシングしないこと、現像時に剥離可能であることから、水溶性のトップコートが主に用いられている。また、後述する液浸露光用の高撥水性のトップコートを形成することもできる。液浸用トップコートは、液浸露光だけでなくドライ露光においても適用することができる。
次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線、真空紫外線(軟X線)等の高エネルギー線から選ばれる光源で目的とするパターンを所定のマスクを通じてもしくは直接露光を行う。露光量は1〜200mJ/cm2程度、特に10〜100mJ/cm2、又は0.1〜100μC/cm2程度、特に0.5〜50μC/cm2となるように露光することが好ましい。次に、ホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間ポストエクスポージャベーク(PEB)する。
更に、0.1〜15質量%、好ましくは2〜10質量%のテトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド(TEAH)、テトラプロピルアンモニウムヒドロキシド(TPAH)、テトラブチルアンモニウムヒドロキシド(TBAH)、コリンヒドロキシド、モルフォリン、トリメチルアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、アンモニア、水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液の現像液を用い、3秒〜3分間、好ましくは5秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより、光を照射した部分は現像液に溶解し、露光されなかった部分は溶解せず、基板上に目的のポジ型のパターンが形成される。
なお、本発明のポジ型レジスト材料は、特に高エネルギー線の中でもエキシマレーザー電子線、真空紫外線(軟X線)、X線、γ線、シンクロトロン放射線による微細パターニングに好適であり、これらの中でも波長193nmのArFエキシマレーザーによる微細パターニングが最適である。ArFエキシマレーザーによるパターニングはレンズをウエハーの間が大気中あるいは窒素雰囲気中であるドライ露光であってもよいが、液体を挿入する液浸露光であってもよい。
ArF液浸リソグラフィーにおいては液浸溶剤として純水、又はアルカンなどの屈折率が1以上で、露光波長に高透明の液体が用いられる。液浸リソグラフィーでは、プリベーク後のレジスト膜と投影レンズの間に、純水やその他の液体を挿入する。これによってNAが1.0以上のレンズ設計が可能となり、より微細なパターン形成が可能になる。液浸リソグラフィーはArFリソグラフィーを45nmノードまで延命させるための重要な技術である。液浸露光の場合は、レジスト膜上に残った水滴残りを除去するための露光後の純水リンス(ポストソーク)を行ってもよいし、レジスト膜からの溶出物を防ぎ、膜表面の滑水性を上げるために、プリベーク後のレジスト膜上に保護膜を形成させてもよい。液浸リソグラフィーに用いられるレジスト保護膜としては、例えば、水に不溶でアルカリ現像液に溶解する1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール残基を有する高分子化合物をベースとし、炭素数4以上のアルコール系溶剤、炭素数8〜12のエーテル系溶剤、及びこれらの混合溶剤に溶解させた材料が好ましい。レジスト膜形成後に、純水リンスを行うことによって膜表面からの酸発生剤などの抽出、あるいはパーティクルの洗い流しを行ってもよく、露光後に膜上に残った水を取り除くためのリンス(ポストソーク)を行ってもよい。
レジスト材料として、レジスト表面の撥水性を上げるための添加剤を加えてもよい。このものは、フルオロアルコール基を有する高分子体であり、スピンコート後のレジスト表面に配向することによって表面エネルギーを低下させ、滑水性が向上する。このような材料は、特開2007−297590号公報、特開2008−122932号公報に示される。このような撥水性向上剤は、保護膜を使用しないで液浸露光を行う場合は必須の添加剤であるが、ドライ露光の場合でも添加することができる。スピンコート後のレジスト表面が撥水性向上剤で覆われることによって酸やアミンの蒸発と再付着を防いでケミカルフレアの発生を防止することができる。
イオン打ち込み耐性とフルオロカーボン系ガスを用いたエッチング耐性とはある程度相関があると言われている。ノボラック樹脂ベースのi線レジスト材料よりもヒドロキシスチレンベースのKrFレジスト材料の方がエッチング耐性とイオン打ち込み耐性が低下し、KrFレジスト材料よりも脂環族構造のArFレジスト材料の方がエッチング耐性とイオン打ち込み耐性が低下している。ArFレジスト材料は、脂環族構造だけではイオン打ち込み耐性が足りず、耐性を高める必要がある。本発明のポジ型レジスト材料は、イオン打ち込み耐性を有するために、イオンインプランテーションを好適に行うことができる。
以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、重量平均分子量(Mw)は、溶剤としてテトラヒドロフランを用いたGPCによるポリスチレン換算重量平均分子量を示す。
(合成例1)高分子化合物の合成
ポジ型レジスト材料に用いる高分子化合物として、各々のモノマーを組み合わせてテトラヒドロフラン(THF)溶剤下で共重合反応を行い、メタノールに晶出し、更にヘキサンで洗浄を繰り返した後に単離、乾燥して、以下に示す組成の高分子化合物(ポリマー1〜12及び比較ポリマー1)を得た。得られた高分子化合物の組成は1H−NMR、分子量及び分散度はTHF溶剤によるゲルパーミエーションクロマトグラフィーにより確認した。
ポリマー1
分子量(Mw)=7,300
分散度(Mw/Mn)=1.73
ポリマー2
分子量(Mw)=7,100
分散度(Mw/Mn)=1.70
ポリマー3
分子量(Mw)=6,800
分散度(Mw/Mn)=1.76
ポリマー4
分子量(Mw)=9,500
分散度(Mw/Mn)=1.91
ポリマー5
分子量(Mw)=8,900
分散度(Mw/Mn)=1.89
ポリマー6
分子量(Mw)=7,600
分散度(Mw/Mn)=1.69
ポリマー7
分子量(Mw)=6,600
分散度(Mw/Mn)=1.98
ポリマー8
ポリマー8
分子量(Mw)=6,800
分散度(Mw/Mn)=1.93
ポリマー9
分子量(Mw)=7,600
分散度(Mw/Mn)=1.69
ポリマー10
分子量(Mw)=7,900
分散度(Mw/Mn)=1.79
ポリマー11
分子量(Mw)=7,300
分散度(Mw/Mn)=1.74
ポリマー12
分子量(Mw)=7,700
分散度(Mw/Mn)=1.97
比較ポリマー1
分子量(Mw)=9,300
分散度(Mw/Mn)=1.79
(合成例2)ノボラック樹脂の合成
フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、その他共縮合化合物、37質量%ホルマリン水溶液、シュウ酸を加え、100℃で24時間撹拌した。反応後、メチルイソブチルケトン500mlに溶解し、十分な水洗により触媒と金属不純物を除去し、溶剤を減圧除去し、150℃,2mmHgまで減圧し、水分、未反応モノマーを除き、以下に示すノボラック樹脂1〜18、及び同様にして比較ノボラック樹脂1,2を得た。
なお、ノボラック樹脂6の場合は37質量%ホルマリン水溶液を6−ヒドロキシ−2−ナフトアルデヒド、ノボラック樹脂7の場合は37質量%ホルマリン水溶液を3−フランカルボキシアルデヒド、ノボラック樹脂8の場合は37質量%ホルマリン水溶液を3−チオフェンアルデヒドに変えてノボラック樹脂を得た。
ノボラック樹脂13は37質量%ホルマリン水溶液を50質量%の下記アルデヒド1のジオキサン溶液に、ノボラック樹脂14は37質量%ホルマリン水溶液を50質量%のアルデヒド2のジオキサン溶液に、ノボラック樹脂15は37質量%ホルマリン水溶液を50質量%のアルデヒド3のジオキサン溶液に、ノボラック樹脂16は37%質量%ホルマリン水溶液を50質量%のアルデヒド4のジオキサン溶液に、ノボラック樹脂17は37質量%ホルマリン水溶液を50質量%のアルデヒド5、ノボラック樹脂18は37質量%ホルマリン水溶液を50質量%のアルデヒド6のジオキサン溶液に変えてノボラック樹脂を得た。
ノボラック樹脂1
分子量(Mw)=3,600
分散度(Mw/Mn)=4.60
ノボラック樹脂2
分子量(Mw)=5,800
分散度(Mw/Mn)=4.77
ノボラック樹脂3
分子量(Mw)=3,100
分散度(Mw/Mn)=3.88
ノボラック樹脂4
分子量(Mw)=5,300
分散度(Mw/Mn)=2.64
ノボラック樹脂5
分子量(Mw)=6,200
分散度(Mw/Mn)=5.20
ノボラック樹脂6
分子量(Mw)=4,100
分散度(Mw/Mn)=4.16
ノボラック樹脂7
分子量(Mw)=3,500
分散度(Mw/Mn)=3.65
ノボラック樹脂8
分子量(Mw)=4,100
分散度(Mw/Mn)=4.10
ノボラック樹脂9
分子量(Mw)=2,900
分散度(Mw/Mn)=3.90
ノボラック樹脂10
分子量(Mw)=5,100
分散度(Mw/Mn)=4.80
ノボラック樹脂11
分子量(Mw)=3,300
分散度(Mw/Mn)=4.30
ノボラック樹脂12
分子量(Mw)=2,500
分散度(Mw/Mn)=3.70
ノボラック樹脂13
分子量(Mw)=3,200
分散度(Mw/Mn)=3.60
ノボラック樹脂14
分子量(Mw)=3,300
分散度(Mw/Mn)=3.70
ノボラック樹脂15
分子量(Mw)=2,500
分散度(Mw/Mn)=3.60
ノボラック樹脂16
分子量(Mw)=2,800
分散度(Mw/Mn)=3.90
ノボラック樹脂17
分子量(Mw)=2,900
分散度(Mw/Mn)=4.90
ノボラック樹脂18
分子量(Mw)=3,900
分散度(Mw/Mn)=5.90
ノボラック樹脂19
分子量(Mw)=3,800
分散度(Mw/Mn)=4.33
比較ノボラック樹脂1
分子量(Mw)=1,800
分散度(Mw/Mn)=3.33
比較ノボラック樹脂2
分子量(Mw)=6,900
分散度(Mw/Msn)=5.53
(実施例1〜30、比較例1〜6)
上記で合成した高分子化合物及びノボラック樹脂を、界面活性剤としてのFC−4430(住友スリーエム(株)製)を100ppmの濃度で溶解させた溶剤に表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料を調製した。
表1中の各組成は次の通りである。
ポリマー1〜12、ノボラック樹脂1〜19、比較ポリマー1、比較ノボラック樹脂1,2:上記合成例で得られたもの
有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
CyH(シクロヘキサノン)
塩基性化合物:Quencher1〜4(下記構造式参照)
(実施例2−1〜2−30、比較例2−1〜2−6)
ArF露光実験
表1に示されるレジスト材料を、ヘキサメチルジシラザン(HMDS)ベーパープライムしたSi基板にスピンコートし、ホットプレートを用いて110℃で60秒間ベークし、レジスト膜の厚みを200nmにした。これをArFエキシマレーザースキャナー((株)ニコン製、NSR−S307E,NA0.85、σ0.93、2/3輪帯照明、6%ハーフトーン位相シフトマスク)を用いて90nmライン,180nmピッチのパターンを露光し、露光後直ちに表2に記載の温度で60秒間PEBし、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で30秒間現像を行って、90nmラインアンドスペースパターンを得、この時の感度とパターンの断面形状をSEMにて観察した。結果を表2に示す。
(実施例3−1〜3−30、比較例3−1〜3−6)
CF 4 /CHF 3 系ガスでのエッチング試験
表1に示されるレジスト材料をシリコン基板上に塗布して、110℃で60秒間ベークし、膜厚200nmのレジスト膜を形成し、下記条件でCF4/CHF3系ガスでのエッチング試験を行った。この場合、東京エレクトロン(株)製ドライエッチング装置TE−8500を用い、エッチング前後のポリマー膜の膜厚差を測定し、1分あたりのエッチング速度を求めた。結果を表3に示す。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
レジスト密着性試験
表1に示されるレジスト材料を、ヘキサメチルジシラザン(HMDS)ベーパープライムせずにSi基板にスピンコートし、ホットプレートを用いて110℃で60秒間ベークし、レジスト膜の厚みを200nmにした。これをArFエキシマレーザースキャナー((株)ニコン製、NSR−S307E,NA0.85、σ0.93、コンベンショナル照明、バイナリーマスク)を用いて300nmライン,600nmピッチのパターンを露光し、露光後直ちに表2に記載の温度で60秒間PEBし、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で30秒間現像を行って、300nmラインアンドスペースパターンが剥がれているかどうかを光学顕微鏡にて観察した。結果を表3に示す。
埋め込み試験
Si基板上に作製された膜厚300nmのSiO2膜のピッチ360nm,直径180nmのホールパターンの段差基板上に、平板上基板でレジスト膜の厚みが200nmになる条件でスピンコートし、ホットプレートを用いて110℃で60秒間ベークした。基板を割断し、SEMを用いて酸化膜のホールの底までレジスト膜が埋まっているかどうかを観察した。結果を表3に示す。
表2,3の結果より、環構造を有する酸不安定基を有していない(メタ)アクリレートの高分子化合物を用いたレジスト材料(比較例1)は、酸不安定基の溶解阻止性が不十分なため現像後のパターンがテーパー形状となり、エッチング耐性(即ちイオンインプラント耐性)も低かった。フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのノボラック樹脂をブレンドしない場合(比較例2)は埋め込み特性と密着性が不十分であった。ヒドロキシナフタレンノボラック樹脂をブレンドした場合(比較例3)は、密着性が不十分であり、現像後のレジストパターンのスペース部分に残渣が残った。クレゾールノボラック樹脂をブレンドした場合(比較例4)は、強い吸収のためにArF露光で垂直なパターンを得ることができなかった。フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのモノマーをブレンドした場合(比較例5、6)は酸拡散とアルカリ溶解速度が大きくなりすぎて、現像後のレジストパターンがテーパー形状になってしまった。
本発明の、フェノールフタレイン、フェノールレッド、クレゾールフタレイン、クレゾールレッド、チモールフタレインのノボラック樹脂と環状の酸不安定基を有する高分子化合物をブレンドして用いたポジ型レジスト材料は、十分な解像力、感度、パターン形状、密着性、エッチング耐性及び埋め込み特性を有しており、また、フルオロカーボンに対するエッチング耐性も十分であることからイオンインプランテーションプロセス用レジスト材料として優れた特性を有していることが分かった。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。