[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5765228B2 - 二次電池用多孔膜及び二次電池 - Google Patents

二次電池用多孔膜及び二次電池 Download PDF

Info

Publication number
JP5765228B2
JP5765228B2 JP2011534278A JP2011534278A JP5765228B2 JP 5765228 B2 JP5765228 B2 JP 5765228B2 JP 2011534278 A JP2011534278 A JP 2011534278A JP 2011534278 A JP2011534278 A JP 2011534278A JP 5765228 B2 JP5765228 B2 JP 5765228B2
Authority
JP
Japan
Prior art keywords
polymer
outer layer
porous membrane
meth
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011534278A
Other languages
English (en)
Other versions
JPWO2011040474A1 (ja
Inventor
脇坂 康尋
康尋 脇坂
信和 開発
信和 開発
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43826288&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5765228(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2011534278A priority Critical patent/JP5765228B2/ja
Publication of JPWO2011040474A1 publication Critical patent/JPWO2011040474A1/ja
Application granted granted Critical
Publication of JP5765228B2 publication Critical patent/JP5765228B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、多孔膜に関し、さらに詳しくはリチウムイオン二次電池などに用いられる、高いレート特性を有する多孔膜に関する。また本発明は、かかる多孔膜を有する二次電池に関する。
実用化されている電池の中でも、リチウムイオン二次電池は最も高いエネルギー密度を示し、特に小型エレクトロニクス用に多く使用されている。また、小型用途に加えて自動車用途への展開も期待されている。その中で、リチウムイオン二次電池の高容量化・長寿命化と、安全性のさらなる向上が要望されている。
リチウムイオン二次電池には、一般に正極と負極との間の短絡を防ぐ為にポリエチレンやポリプロピレン等のポリオレフィン系の有機セパレーターが用いられている。ポリオレフィン系の有機セパレーターは200℃以下で溶融する物性を有している為、内部及びまたは外部の刺激により電池が高温になる場合、収縮や溶融などの体積変化がおこり、その結果、正極及び負極の短絡、電気エネルギーの放出などにより爆発などが起こる恐れがある。
そこで、このような問題を解決するため、ポリエチレン系有機セパレーター上又は電極上に無機粒子などの非導電性粒子を含有する層を形成することが提案されている。
例えば、特許文献1では、非導電性粒子および樹脂バインダーからなり、正極および負極の少なくとも一方の表面に接着されている多孔膜をセパレーターとして用いることが提案されている。多孔膜は、非導電性粒子および溶剤に溶解させた樹脂バインダーからなるスラリーを、極板表面に塗布し、乾燥することにより形成される。前記スラリーに用いる樹脂バインダーとして、フッ素樹脂、ポリオレフィン樹脂などが提案されている。
また、特許文献2では、電極上にアルミナやシリカ、ポリエチレン樹脂などの非導電性粒子を含む微粒子スラリーを用いて形成されてなる多孔性保護膜が開示されている。
さらに、特許文献3では、多孔膜の伸び率を制御したり、多孔膜の厚さ方向における樹脂バインダーの分布状態を制御したりすることにより、電池の製造工程で発生する電極合剤の脱落による内部短絡を多孔膜により抑止することが開示されている。
しかしながら、特許文献2や3の場合も、特許文献1と同様に無機微粒子などの非導電性粒子を脱落させずに電極上に塗工する際、多孔膜の強度が不十分であるため、割れ易く、電池の製造工程において極板から多孔膜が脱落することがある。それにより、内部短絡の誘発に繋がる安全性の低下、及び電池の生産歩留まりが低下する。特に、捲回形リチウムイオン二次電池の場合、正極と負極とが、両電極の間にセパレーターを介在させて渦巻状に捲回される。捲き始めの部分においては、曲率半径が小さいため、曲げ応力が大きくなり、多孔膜が割れやすい。
このように特許文献1〜3によれば、無機粒子などの非導電性粒子を含む多孔膜を形成することにより電気的短絡の防止及び熱的な収縮の抑制を果たすことはできる。しかしながら、多孔膜の強度が不十分であるため、割れ易く、電池の製造工程において極板から多孔膜が脱落してしまい、内部短絡を誘発に繋がる安全性の低下、及び電池の生産歩留まりが低下するという問題がある。また、いずれの特許文献においても、リチウムイオン伝導性を維持しながら多孔膜強度のさらなる向上を図ることは難しい。
特開平10−106530号公報(対応米国特許第5948464号明細書) 特開平7−220759号公報 WO2005−011043号公報(対応米国特許第7396612号明細書)
従って、本発明は、上記のような従来技術に鑑みてなされたものであって、リチウムイオン伝導性を維持しながら、強度が向上され、割れが生じにくいリチウムイオン二次電池などの二次電池に用いられる多孔膜を提供することを目的としている。
本発明者らが上記課題を解決すべく鋭意検討した結果、無機粒子などの非導電性粒子とともに、特定の構造及び特定の官能基を有するバインダーを使用することにより、非導電性粒子を含むスラリーの分散性や粘度特性を制御することができ、多孔性を十分に制御したまま、多孔膜の均一薄膜塗工が可能となった。その結果、リチウムイオン伝導性を維持しながら、多孔膜強度が改良され、多孔膜の割れが抑えられることを見出し、本発明を完成するに至った。
上記課題を解決する本発明は、下記事項を要旨として含む。
(1)多孔膜用バインダー、及び非導電性粒子を含んでなり、前記多孔膜用バインダーが、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子である、二次電池用多孔膜。
(2)前記親水性官能基が、スルホン酸基、カルボキシル基、水酸基、及びエポキシ基からなる群から選ばれる少なくとも一つである上記(1)記載の二次電池用多孔膜。
(3)前記外層が、さらに、(メタ)アクリロニトリルの重合単位及び(メタ)アクリル酸エステルの重合単位を含むポリマーである上記(1)又は(2)に記載の二次電池用多孔膜。
(4)多孔膜用バインダー、非導電性粒子、及び溶媒を含み、前記多孔膜用バインダーが、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子である、二次電池多孔膜用スラリー。
(5)多孔膜用バインダー、非導電性粒子、及び溶媒を含み、前記多孔膜用バインダーが、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子である、二次電池多孔膜用スラリーを基材に塗布する工程、及び前記スラリーが塗布された基材を乾燥する工程を含む、二次電池用多孔膜の製造方法。
(6)電極合剤層用バインダー及び電極活物質を含んでなる電極合剤層が、集電体に付着してなり、かつ電極合剤層の表面に、上記(1)〜(3)のいずれかに記載の多孔膜が積層されてなる二次電池用電極。
(7)有機セパレーター上に、上記(1)〜(3)のいずれかに記載の多孔膜が積層されてなる二次電池用セパレーター。
(8)正極、負極、セパレーター及び電解液を含む二次電池であって、前記正極、負極及びセパレーターの少なくともいずれかに、上記(1)〜(3)のいずれかに記載の多孔膜が積層されてなる、二次電池。
本発明によれば、多孔膜用バインダーとして、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子を用いることにより、非導電性粒子を含むスラリーの分散性や粘度特性を制御することができ、多孔性を十分に制御したまま、多孔膜の均一薄膜塗工が可能となり、その結果、リチウムイオン伝導性を高度に維持しつつ、強度及び割れが改良された多孔膜が提供される。
以下に本発明を詳述する。
本発明の二次電池用多孔膜は、多孔膜用バインダー及び非導電性粒子を含んでなる。
(非導電性粒子)
本発明に用いる非導電性粒子は、リチウムイオン二次電池やニッケル水素二次電池などの使用環境下で安定に存在し、電気化学的にも安定であることが望まれる。例えば各種の無機粒子や有機粒子を使用することができる。本発明でいう非導電性粒子は、バインダーとして用いる前記ポリマー粒子とは異なるものである。
無機粒子としては、酸化アルミニウム、ベーマイト、酸化鉄、酸化珪素、酸化マグネシウム、酸化チタン、BaTiO、ZrO、アルミナ−シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化珪素、窒化硼素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイトなどの粘土微粒子;タルク、モンモリロナイトなどの粘土; ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト等の鉱物資源由来物質あるいはそれらの人造物からなる粒子等が用いられる。これらの粒子は必要に応じて元素置換、表面処理、固溶体化等されていてもよく、また単独でも2種以上の組合せからなるものでもよい。これらの中でも電解液中での安定性と電位安定性の観点から酸化物粒子であることが好ましい。
有機粒子としては、ポリスチレン、ポリエチレン、ポリイミド、メラミン系樹脂、フェノール系樹脂、セルロース、セルロース変成体(カルボキシメチルセルロースなど)、ポリプロピレン、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートなど)、ポリフェニレンサルファイド、ポリアラミド、ポリアミドイミド、ポリイミドなど各種高分子からなる粒子等が用いられる。これらの中でも、有機粒子を構成する高分子としては、電解液中での安定性と電位安定性の観点から、ポリフェニレンサルファイド、ポリアラミド、ポリアミドイミド、ポリイミドが好ましい。なお、粒子を形成する上記高分子は、混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体、架橋体等であっても使用できる。有機粒子を形成する高分子は、2種以上の高分子からなっても問題は無い。
本発明において、用いる非導電性粒子としては、金属溶出を少なくでき、レート特性や高温サイクル特性をより向上させることができる点で、有機粒子が好ましい。
また、カーボンブラック、グラファイト、SnO、ITO、金属粉末などの導電性金属及び導電性を有する化合物や酸化物の微粉末の表面を、非電気伝導性の物質で表面処理することによって、電気絶縁性を持たせて非導電性粒子として使用することも可能である。これらの非導電性粒子は、2種以上併用して用いてもかまわない。
本発明においては、非導電性粒子として、金属異物の含有量が100ppm以下のものを用いることが好ましい。金属異物または金属イオンが多く含まれる非導電性粒子を用いると、後述する多孔膜用スラリー中において、前記金属異物又は金属イオンが溶出し、これが多孔膜用スラリー中のポリマーとイオン架橋を起こし、多孔膜用スラリーが凝集し結果として多孔膜の多孔性が下がりレート特性が悪化する恐れがある。前記金属としては、特にイオン化しやすいFe、NiおよびCr等の含有が最も好ましくない。従って、非導電性粒子中の金属含有量としては好ましくは100ppm以下、更に好ましくは50ppm以下である。上記含有量が少ないほど電池特性の劣化が起こりにくくなる。ここでいう「金属異物」とは、非導電性粒子以外の金属単体を意味する。非導電性粒子中の金属異物の含有量は、ICP(Inductively Coupled Plasma)を用いて測定することができる。
本発明に用いる非導電性粒子の平均粒子径(体積平均のD50平均粒子径)は、好ましくは5nm以上10μm以下、より好ましくは10nm以上5μm以下である。非導電性粒子の平均粒子径を前記範囲とすることにより、分散状態の制御と均質な所定の厚みの膜が得られ易くなる。非導電性粒子の平均粒子径を、50nm以上2μm以下の範囲にすると、分散、塗布の容易さ、空隙のコントロール性に優れるので特に好ましい。
また、これらの粒子のBET比表面積は、粒子の凝集を抑制し、後述する多孔膜用スラリーの流動性を好適化する観点から具体的には、0.9〜200m/gであることが好ましく、1.5〜150m/gであることがより好ましい。
本発明に用いる非導電性粉子の形状は、球状、針状、棒状、防錐状、板状等特に限定されないが、球状、針状、防錐状が好ましい。また、非導電性粒子として、アスペクト比が、5以上1000以下、より好ましくは7以上800以下、より好ましくは9以上600以下のものを用いると、非導電性粒子が多孔膜中に均一に配向し、垂直方向の突き刺し強度が高い多孔膜を形成することができる。アスペクト比は、長尺方向の長さ/長尺方向に直交する方向の幅(直径)で表される値であり、SEMにより撮影した画像からアスペクト比=長尺方向の長さ/長尺方向に直交する方向の幅(直径)を求め、10個の粒子の平均値より求めることができる。また、非導電性粒子として、多孔性粒子を使用することもできる。
多孔膜中の非導電性粒子の含有量は、好ましくは5〜99重量%、より好ましくは50〜98重量%である。多孔膜中の非導電性粒子の含有量を、前記範囲とすることにより、高い熱安定性と強度を示す多孔膜を得ることができる。
(多孔膜用バインダー)
本発明に用いる多孔膜用バインダーは、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子である。
本発明に用いる多孔膜用バインダーは、化学構造が異なる2以上のポリマーの相が異相構造を形成してなるポリマー粒子により構成される。本発明において、異相構造とは、化学構造が異なる2以上のポリマーの相が異相構造を形成してなる粒子において、粒子が、単一の均一相ではなく、互いに異なる2以上の相から構成されることを意味する。
本発明において、多孔膜用バインダーが異相構造を有することにより、後述する多孔膜用スラリーの分散性、粒度特性が向上し、スラリーの粘性変化を小さくすることができ、薄膜を均一に塗工することができる。その結果、多孔性を十分に制御したまま、密着性を上げることができ、多孔膜の割れを防止するという優れた効果が得られる。
本発明に用いる前記ポリマー粒子の異相構造は、粒子の内層と外層という二つの相を備え、粒子の内層はビニル単量体成分を重合してなるポリマーで構成され、粒子の外層は親水性官能基を有する単量体成分を重合してなるポリマーで構成される。
ポリマー粒子を構成する2以上のポリマーの中には、ガラス転移温度(以下、Tgという)が異なる2種のポリマーが含まれることが好ましい。本発明において、ポリマー粒子のガラス転移温度は、室温において多孔膜に柔軟性を与えることができ、多孔膜のロール巻き取り時や捲回時のひび、多孔膜層の欠け等を抑制することができる観点より、粒子の内層を形成するポリマーのガラス転移温度が−60℃以上20℃以下で、外層を形成するポリマーのガラス転移温度が0℃以上であることが好ましく、粒子の内層を形成するポリマーのガラス転移温度が−50℃以上10℃以下で、外層を形成するポリマーのガラス転移温度が0℃以上50℃以下であることがより好ましい。ポリマーのガラス転移温度は、構成する単量体の使用割合などを変更することによって調製可能である。
本発明の多孔膜用バインダーは、ビニル単量体成分を重合してなるポリマーを内層とする。
ビニル単量体成分を構成する単量体としては、脂肪族ビニル単量体、(メタ)アクリル酸エステル単量体、アミド基含有(メタ)アクリル単量体、多官能ジ(メタ)アクリル単量体、芳香族ビニル単量体などが例示される。本発明において、アクリル酸およびメタクリル酸のことを(メタ)アクリル酸と、アクリルおよびメタアクリルのことを(メタ)アクリルと、アクリロニトリルおよびメタクリロニトリルのことを(メタ)アクリロニトリルと、アリルおよびメタアリルのことを(メタ)アリルと、アクリロイルおよびメタアクリロイルのことを(メタ)アクリロイルと、それぞれ略記することがある。
脂肪族ビニル単量体としては、(メタ)アクリル酸エステル単量体、アミド基含有(メタ)アクリル単量体、多官能性ジ(メタ)アクリル単量体、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテルなどが挙げられる。
(メタ)アクリル酸エステル単量体としては、非カルボニル性酸素原子に結合するアルキル基の炭素数が1〜5であるアクリル酸エステル又はメタクリル酸エステルが挙げられ、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、及びアクリル酸ペンチルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル、及びメタクリル酸ペンチルなどのメタクリル酸エステル;が挙げられる。
アミド基含有(メタ)アクリル単量体としては、アクリルアミド、メタクリルアミド、N−メチロール(メタ)アクリルアミドが挙げられる。
多官能性ジ(メタ)アクリル単量体としては、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレートなどが挙げられる。
芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ジビニルベンゼンなどが挙げられる。
本発明において、内層を構成するポリマー中のビニル成分として、脂肪族ビニル単量体が好ましく、(メタ)アクリル酸エステル単量体やアクリロニトリルであることがより好ましい。また、ビニル成分として(メタ)アクリル酸エステル単量体を用いる場合は、アクリル酸エチルやアクリル酸n−ブチルがより好ましい。前記脂肪族ビニル単量体は、単独または組み合わせて使用してもよい。
内層を構成するポリマー中のビニル単量体成分の含有割合は、全単量体単位の80重量%以上、好ましくは90重量%、より好ましくは95重量%、特に好ましくは100重量%である。内層を構成するポリマー中のビニル単量体成分の含有割合を前記範囲とすることにより、割れが発生しにくくなる。
内層を構成するポリマーは、ビニル単量体成分以外に共重合可能な単量体単位を含有していてもよい。共重合可能な単量体としては、共役ジエン系単量体、非共役ジエン系単量体などが例示される。共役ジエン単量体としては、1,3−ブタジエン、クロロプレン、ピペリレンなどが挙げられる。非共役ジエン単量体としては、1,2−ブタジエン、1,4−ペンタジエン、ジシクロペンタジエン、ノルボルネン、エチリデンノルボルネン、ヘキサジエン、ノルボルナジエンなどが挙げられる。
内層を構成するポリマー中のビニル単量体成分以外の含有割合は、全単量体単位の20重量%以下、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは0重量%である。
これらの単量体は、1種単独でまたは2種以上を併せて使用することができる。
本発明の多孔膜用バインダーは、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする。
親水性官能基を有する単量体成分としては、−OH基(水酸基)、−COOH基(カルボキシル基)、−SOH基(スルホン酸基)、エポキシ基、−PO基、−PO(OH)(OR)基(Rは炭化水素基を表す)、及び低級ポリオキシアルキレン基からなる群から選ばれる少なくとも一つの親水性官能基を有する単量体成分が挙げられる。親水性官能基としては、これらの中でも、スルホン酸基、カルボキシル基、水酸基及びエポキシ基からなる群から選ばれる少なくとも一つであることが好ましく、スルホン酸基、エポキシ基からなる群から選ばれる少なくとも一つであることがより好ましく、スルホン酸基であることが特に好ましい。外層にスルホン酸基を有する単量体成分を重合したポリマーを使用すると、非導電性粒子の分散安定性に優れ、その結果、多孔膜層の均一薄膜塗工が可能であり、レート特性に優れる。
外層に親水性官能基を存在させること、すなわち、粒子表面近傍に親水性官能基があることで非導電性粒子の表面と相互作用しやすく、非導電性粒子の分散安定化に優れた効果を示す。
水酸基を有する単量体としては、(メタ)アリルアルコール、3−ブテン−1−オール、5−ヘキセン−1−オールなどのエチレン性不飽和アルコール;アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、マレイン酸−ジ−2−ヒドロキシエチル、マレイン酸ジ−4−ヒドロキシブチル、イタコン酸ジ−2−ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR−COO−(CnH2nO)m−H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシフタレート、2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2−ヒドロキシエチルビニルエーテル、2−ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル−2−ヒドロキシエチルエーテル、(メタ)アリル−2−ヒドロキシプロピルエーテル、(メタ)アリル−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシブチルエーテル、(メタ)アリル−3−ヒドロキシブチルエーテル、(メタ)アリル−4−ヒドロキシブチルエーテル、(メタ)アリル−6−ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル−2−クロロ−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシ−3−クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル−2−ヒドロキシエチルチオエーテル、(メタ)アリル−2−ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
カルボキシル基を有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。モノカルボン酸誘導体としては、2−エチルアクリル酸、2−エチルメタクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、β−ジアミノアクリル酸などが挙げられる。ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。
また、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などのジカルボン酸の酸無水物などの加水分解によりカルボン酸基を生成する単量体も使用することができる。
また、スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
エポキシ基を含有する単量体としては、炭素―炭素二重結合およびエポキシ基を含有する単量体とハロゲン原子およびエポキシ基を含有する単量体が挙げられる。
炭素―炭素二重結合およびエポキシ基を含有する単量体としては、たとえば、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o−アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5−エポキシ−2−ペンテン、3,4−エポキシ−1−ビニルシクロヘキセン、1,2−エポキシ−5,9−シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4−エポキシ−1−ブテン、1,2−エポキシ−5−ヘキセン、1,2−エポキシ−9−デセンなどのアルケニルエポキシド;グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル−4−ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル−4−メチル−3−ペンテノエート、3−シクロヘキセンカルボン酸のグリシジルエステル、4−メチル−3−シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類;が挙げられる。
−PO基及び/又は−PO(OH)(OR)基(Rは炭化水素基を表す)を有する単量体としては、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。
低級ポリオキシアルキレン基を含有する単量体としては、ポリ(エチレンオキシド)等のポリ(アルキレンオキシド)などが挙げられる。
外層を構成するポリマー中の親水性官能基を有する単量体の重合単位の含有割合は、重合時の前記親水性官能基を有する単量体量として単量体全量100重量%に対して好ましくは0.5〜40重量%、より好ましくは2〜20重量%の範囲である。外層を構成するポリマー中の親水性官能基を有する単量体の重合単位の含有割合を、前記範囲とすることにより、非導電性粒子の表面と適度に相互作用して非導電性粒子の分散安定化に優れた効果を示す。
外層を構成するポリマー中の親水性官能基を有する単量体の含有量は、ポリマー製造時の単量体仕込み比により制御できる。
本発明においては、外層を構成するポリマーは、親水性官能基を有する単量体の重合単位に加えて、さらに、(メタ)アクリロニトリルの重合単位及び(メタ)アクリル酸エステルの重合単位を含むポリマーであることが好ましい。
外層を構成するポリマーが、さらに、(メタ)アクリロニトリルの重合単位及び(メタ)アクリル酸エステルの重合単位を含むことにより、多孔膜スラリーの分散性、粘性変化、および多孔膜の柔軟性など特性全体のバランスに優れた効果を示す。
(メタ)アクリロニトリルとしては、アクリロニトリル、メタクリロニトリルが挙げられる。中でもアクリロニトリルが好ましい。(メタ)アクリロニトリルの重合単位の含有割合は、重合時のアクリロニトリル量として単量体全量100重量%に対して、好ましくは3〜30重量%の範囲である。(メタ)アクリロニトリルの重合単位の含有割合が、前記範囲にあることで、ポリマーの運動性を適度に保ち、非導電性粒子の分散安定化及び多孔膜の柔軟性に優れた効果を示す。
(メタ)アクリル酸エステルとしては、非カルボニル性酸素原子に結合するアルキル基の炭素数が1〜5であるアクリル酸エステル又はメタクリル酸エステルが挙げられ、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、及びアクリル酸ペンチルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル、及びメタクリル酸ペンチルなどのメタクリル酸エステル;が挙げられる。中でもアクリル酸エチル、アクリル酸n−ブチルが好ましい。
(メタ)アクリル酸エステルの重合単位の含有割合は、重合時の(メタ)アクリル酸エステル量として単量体全量100重量%に対して好ましくは70〜95重量%の範囲である。(メタ)アクリル酸エステルの重合単位の含有割合が前記範囲にあることで、ポリマーの運動性を適度に保ち、非導電性粒子の分散安定化及び多孔膜の柔軟性に優れた効果を示す。
外層を構成するポリマーは、親水性官能基を有する単量体成分、(メタ)アクリロニトリル、及び(メタ)アクリル酸エステル以外に、これらと共重合可能な単量体の重合単位を含有していてもよい。共重合可能な単量体としては、内層で例示した共重合可能な単量体を使用することができる。
親水性官能基を有する単量体成分、(メタ)アクリロニトリルの重合単位、(メタ)アクリル酸エステルの重合単位以外の含有割合は、全重合単位の好ましくは0〜10重量%、より好ましくは0〜5重量%である。
これらの単量体は、1種単独でまたは2種以上を併せて使用することができる。
本発明に用いる多孔膜用バインダーの重合方法は特に限定はされず、通常の重合法、例えば、乳化重合法や懸濁重合法、分散重合法、シード重合法などの二段重合による方法によって得ることができる。本発明で用いられる異相構造を有する複合ポリマー粒子の製造方法の具体例としては、内層を構成するポリマーに対応するモノマー成分を常法により重合し、重合転化率が20〜100%、好ましくは40〜100%、より好ましくは80〜100%まで重合し、引き続き、外層を構成するポリマーとなるモノマー成分を添加し、常法により重合させる方法(二段重合法)、別々に合成されたラテックス状の2種類以上のポリマー粒子を室温〜300℃ 、好ましくは50〜200℃で、2〜100時間、好ましくは4〜50時間攪拌混合し複合ポリマー粒子を得る方法などが挙げられる。
これらの重合法において用いられる分散剤は、通常のラテックスの合成で使用されるものでよく、具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸−スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性ポリマーなどが例示される。これらの分散剤は単独でも2種類以上を組合せ用いてもよい。分散剤の添加量は任意に設定でき、単量体総量100重量部に対して通常0.01〜10重量部程度である。重合条件によっては分散剤を使用しなくてもよい。
重合開始剤は、通常の乳化重合、分散重合、懸濁重合、シード重合などで用いられるものでよく、例えば、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩;過酸化水素;ベンソイルパーオキサイド、クメンハイドロパーオキサイドなどの有機過酸化物などがある。これらは単独で、または酸性亜硫酸ナトリウム、チオ硫酸ナトリウム、アスコルビン酸などのような還元剤と組合せたレドックス系重合開始剤であってもよい。また、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、4,4’−アゾビス(4−シアノペンタノイック酸)などのアゾ化合物;2,2’−アゾビス(2−アミノジプロパン)ジヒドロクロライド、2,2’−アゾビス(N,N’−ジメチレンイソブチルアミジン)、2,2’−アゾビス(N,N’−ジメチレンイソブチルアミジン)ジヒドロクロライドなどのアミジン化合物;などを使用することもできる。これらは単独で、または2種類以上を組合せ用いることができる。重合開始剤の使用量は、単量体総重量100重量部に対して0.01〜10重量部、好ましくは0.1〜5重量部である。
重合温度および重合時間は、重合法や使用する重合開始剤の種類などにより任意に選択できるが、通常、重合温度は約50〜200℃であり、重合時間は0.5〜20時間程度である。さらに、重合に際しては通常知られている添加剤、例えばアミンなどの重合助剤を併用することもできる。
本発明に用いる多孔膜用バインダーは、ポリマーの製造工程において、ポリマー分散液に含まれる粒子状の金属を除去する粒子状金属除去工程を経て得られたものであることが好ましい。ポリマー分散液に含まれる粒子状金属成分の含有量が10ppm以下であることにより、後述する多孔膜用スラリー中のポリマー間の経時での金属イオン架橋を防止し、粘度上昇を防ぐことができる。さらに二次電池の内部短絡や充電時の溶解・析出による自己放電増大の懸念が少なく、電池のサイクル特性や安全性が向上する。
前記粒子状金属除去工程におけるポリマー分散液から粒子状の金属成分を除去する方法は特に限定されず、例えば、濾過フィルターによる濾過により除去する方法、振動ふるいにより除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、除去対象が金属成分であるため磁力により除去する方法が好ましい。磁力により除去する方法としては、金属成分が除去できる方法であれば特に限定はされないが、生産性および除去効率を考慮すると、好ましくはポリマーの製造ライン中に磁気フィルターを配置することで行われる。
多孔膜中の多孔膜用バインダーの含有割合は、好ましくは0.1〜10重量%、更に好ましくは0.5〜5重量%、最も好ましくは0.5〜3重量%である。多孔膜中の多孔膜用バインダーの含有割合が、前記範囲にあることで、非導電性粒子同士の結着性、並びに、電極又はセパレーターへの結着性を維持しながらも、リチウムの移動を阻害し抵抗が増大することを抑制することができる。
ポリマー粒子における内層と外層との割合は、電解液への膨潤度を所定の範囲内に制御しつつも、高いレート特性を有する為に、その組成、架橋度などにより異なるが、外層:内層との割合が、重量比で10:90〜90:10、更に好ましくは30:70〜70:30である。外層と内層との割合が、前記割合であることにより、多孔膜スラリーの分散性、粘性変化、および多孔膜の柔軟性など特性全体に優れた効果を示す。
また、ポリマー粒子の重量平均分子量の範囲は、その構造、架橋度などにより異なるが、例えば、テトラヒドロフラン(THF)を展開溶媒としたゲル・パーミエーション・クロマトグラフィーで測定した標準ポリスチレン換算値で10,000〜1,500,000、更に好ましくは50,000〜1,000,000である。ポリマー粒子の重量平均分子量が上記範囲にあることにより、非導電性粒子へのポリマー粒子の吸着安定性が高く、ポリマー粒子による橋かけ凝集も起こらず、優れた分散性を示す。
本発明で用いるポリマー粒子の形状は、球形であっても異形であってもあるいは不定形であってもよく、特に制限はないが、その個数平均粒子径は、通常0.01〜2μm、好ましくは0.03〜1μm、特に好ましくは0.05〜0.5μmである。ポリマー粒子の粒子径が大きすぎると、多孔膜用バインダーとして使用する場合に、非導電性粒子と接触し難くなり、結着性が低下する。逆にポリマー粒子の粒子径が小さ過ぎると、結着性を維持するのに必要なバインダーの量が多くなりすぎてしまう。なお、ここでいう粒子径は、透過型電子顕微鏡写真でポリマー粒子100個の粒子の長径と短径とを測定し、その平均値として算出された値である。
多孔膜には、分散剤、レベリング剤、酸化防止剤、前記ポリマー粒子以外の結着剤、増粘剤、電解液分解抑制等の機能を有する電解液添加剤等の、他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は用いる非導電性粒子に応じて選択される。多孔膜中の分散剤の含有割合は、電池特性に影響が及ばない範囲が好ましく、具体的には10重量%以下である。
レベリング剤としてはアルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記界面活性剤を混合することにより、塗工時に発生するはじきを防止したり、電極の平滑性を向上させることができる。
酸化防止剤としてはフェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が200〜1000、好ましくは600〜700のポリマー型フェノール化合物が好ましく用いられる。
多孔膜用バインダーとして、前記ポリマー粒子の他に、後述の電極合剤層用バインダーに使用されるポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体、軟質重合体などを用いることができる。
増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル−ブタジエン共重合体水素化物などが挙げられる。増粘剤の使用量がこの範囲であると、塗工性や、電極合剤層や有機セパレーターとの密着性が良好である。本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。
電解液添加剤は、後述する電極合剤層スラリー中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子などが挙げられる。前記ナノ微粒子を混合することにより多孔膜形成用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる多孔膜のレベリング性を向上させることができる。
前記他の成分の多孔膜中の含有割合は、電池特性に影響が及ばない範囲が好ましく、具体的には各成分10重量%以下、他の成分の含有割合の合計が20重量%以下である。
(多孔膜の製造方法)
本発明の多孔膜を製造する方法としては、1)非導電性粒子、多孔膜用バインダー及び溶媒を含む多孔膜用スラリーを所定の基材上に塗布し、次いで乾燥する方法;2)非導電性粒子、多孔膜用バインダー及び溶媒を含む多孔膜用スラリーに基材を浸漬後、これを乾燥する方法;3)非導電性粒子、多孔膜用バインダー及び溶媒を含む多孔膜用スラリーを、剥離フィルム上に塗布、成膜し、得られた多孔膜を所定の基材上に転写する方法;が挙げられる。この中でも、1)多孔膜用スラリーを基材に塗布し、次いで乾燥する方法が、多孔膜の膜厚を制御しやすいことから最も好ましい。
本発明の多孔膜の製造方法は、上記多孔膜用スラリーを基材に塗布し、次いで乾燥することを特徴とする。
(多孔膜用スラリー)
本発明の多孔膜用スラリーは、非導電性粒子、多孔膜用バインダー、及び溶媒を含む。
非導電性粒子、多孔膜用バインダーとしては、多孔膜で説明したものを用いる。
溶媒としては、上記固形分(非導電性粒子、多孔膜用バインダーおよびその他の成分)、を均一に分散し得るものであれば特に制限されない。
多孔膜用スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミドなどのアミド類があげられる。
これらの溶媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、非導電性粒子の分散性にすぐれ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で除去できるので好ましい。具体的には、アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN−メチルピロリドン、またはこれらの混合溶媒が好ましい。
多孔膜用スラリーの固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10〜50重量%程度である。
また、多孔膜用スラリーには、非導電性粒子、多孔膜用バインダー、上述した他の成分及び溶媒のほかに、さらに分散剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
(多孔膜用スラリー製法)
多孔膜用スラリーの製法は、特に限定はされず、上記非導電性粒子、多孔膜用バインダー、及び溶媒と必要に応じ添加される他の成分を混合して得られる。
本発明においては上記成分を用いることにより混合方法や混合順序にかかわらず、非導電性粒子が高度に分散された多孔膜用スラリーを得ることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定されず、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどを使用することができるが、中でも高い分散シェアを加えることができる、ビーズミル、ロールミル、フィルミックス等の高分散装置を使用することが特に好ましい。
多孔膜用スラリーの粘度は、均一塗工性、スラリー経時安定性の観点から、好ましくは10mPa・s〜10,000mPa・s、更に好ましくは50〜500mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
本発明の多孔膜の製造方法において、基材は、特に限定はされないが、本発明の多孔膜は、特に二次電池用の電極上もしくは有機セパレーター上に形成されることが好ましい。その中でも、特に二次電池用の電極表面に形成されることがより好ましい。本発明の多孔膜を二次電池の電極表面上に形成することにより、有機セパレーターが熱による収縮を起こしても、正極・負極間の短絡を起こすことがなく高い安全性が保たれる。加えて、本発明の多孔膜を二次電池電極表面上に形成することにより、有機セパレーターがなくても、多孔膜がセパレーターとしての機能を果たすことができ、低コストでの電池作製が可能になる。また、有機セパレーターを用いた場合においても、有機セパレーター表面に形成されている孔を埋めることがなく、より高いレート特性を発現することができる。
本発明の多孔膜の製造方法においては、電極や有機セパレーター以外の基材上に形成してもよい。本発明の多孔膜を、電極や有機セパレーター以外の基材上に形成した場合は、多孔膜を基材から剥離し、直接電池を組み立てる時に、電極上や有機セパレーター上に積層することにより使用することができる。
多孔膜用スラリーを基材上へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。中でも、均一な多孔膜が得られる点でディップ法やグラビア法が好ましい。
乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥温度は、使用する溶媒の種類によってかえることができる。溶媒を完全に除去するために、例えば、N−メチルピロリドン等の揮発性の低い溶媒を用いる場合には送風式の乾燥機で120℃以上の高温で乾燥させることが好ましい。逆に揮発性の高い溶媒を用いる場合には100℃以下の低温において乾燥させることもできる。多孔膜を後述する有機セパレーター上に形成する際は、有機セパレーターの収縮を起こさずに乾燥させることが必要の為、100℃以下の低温での乾燥が好ましい。
次いで、必要に応じ、金型プレスやロールプレスなどを用い、加圧処理により電極合剤層と多孔膜との密着性を向上させることもできる。ただし、この際、過度に加圧処理を行うと、多孔膜の空隙率が損なわれることがあるため、圧力および加圧時間を適宜に制御する。
多孔膜の膜厚は、特に限定はされず、多孔膜の用途あるいは適用分野に応じて適宜に設定されるが、薄すぎると均一な膜を形成できず、逆に厚すぎると電池内での体積(重量)あたりの容量(capacity)が減ることから、0.5〜50μmが好ましく、0.5〜10μmがより好ましい。
本発明の多孔膜は、二次電池電極の電極合剤層または有機セパレーターの表面に成膜され、電極合剤層の保護膜あるいはセパレーターとして特に好ましく用いられる。多孔膜が成膜される二次電池電極は特に限定はされず、各種の構成の電極に対して、本発明の多孔膜は成膜されうる。また、多孔膜は、二次電池の正極、負極の何れの表面に成膜されてもよく、正極、負極の両者に成膜されてもよい。
本発明の多孔膜は、非導電性粒子が多孔膜用バインダーを介して結着されてなり、非導電性粒子間の空隙が形成された構造を有する。この空隙中には電解液が浸透可能であるため、電池反応を阻害することはない。
(二次電池用電極)
本発明の二次電池用電極は、電極合剤層用バインダー及び電極活物質を含んでなる電極合剤層が、集電体に付着してなり、かつ電極合剤層の表面に、前記多孔膜を有してなる。
(電極活物質)
本発明の二次電池用電極に用いられる電極活物質は、電極が利用される二次電池に応じて選択すればよい。前記二次電池としては、リチウムイオン二次電池やニッケル水素二次電池が挙げられる。
本発明の二次電池用電極を、リチウムイオン二次電池正極用に用いる場合、リチウムイオン二次電池正極用の電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。
無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、レート特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1〜50μm、好ましくは1〜20μmである。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ電極用スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
本発明の二次電池用電極を、リチウムイオン二次電池負極用に用いる場合、リチウムイオン二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。電極活物質は、機械的改質法により表面に導電性付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、レート特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1〜50μm、好ましくは15〜30μmである。
本発明の二次電池用電極を、ニッケル水素二次電池正極用に用いる場合、ニッケル水素二次電池正極用の電極活物質(正極活物質)としては、水酸化ニッケル粒子が挙げられる。水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がアルカリ熱処理されたコバルト化合物で被覆されていてもよい。また、水酸化ニッケル粒子には、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等の添加剤が含まれていてもよい。
本発明の二次電池用電極を、ニッケル水素二次電池負極用に用いる場合、ニッケル水素二次電池負極用の電極活物質(負極活物質)としては、水素吸蔵合金粒子は、電池の充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよく、特に限定はされないが、AB5型系、TiNi系及びTiFe系の水素吸蔵合金からなる粒子が好ましい。具体的には、例えば、LaNi5、MmNi5(Mmはミッシュメタル)、LmNi5(LmはLaを含む希土類元素から選ばれる少なくとも一種)及びこれらの合金のNiの一部をAl,Mn,Co,Ti,Cu,Zn,Zr,Cr及びB等から選択される1種以上の元素で置換した多元素系の水素吸蔵合金粒子を用いることができる。特に、一般式:LmNiwCoxMnyAlz(原子比w,x,y,zの合計値は4.80≦w+x+y+z≦5.40である)で表される組成を有する水素吸蔵合金粒子は、充放電サイクルの進行に伴う微粉化が抑制されて充放電サイクル寿命が向上するので好適である。
(電極合剤層用バインダー)
本発明において、電極合剤層は、電極活物質の他に、電極合剤層用バインダーを含む。電極合剤層用バインダーを含むことにより電極中の電極合剤層の結着性が向上し、電極の捲回時等の工程上においてかかる機械的な力に対する強度が上がり、また電極中の電極合剤層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。
電極合剤層用バインダーとしては様々な樹脂成分を用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
更に、下に例示する軟質重合体も電極合剤層用バインダーとして使用することができる。
ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
液状ポリエチレン、ポリプロピレン、ポリ−1−ブテン、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴムなどのフッ素含有軟質重合体;
天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。
電極合剤層における電極合剤層用バインダーの量は、電極活物質100重量部に対して、好ましくは0.1〜5重量部、より好ましくは0.2〜4重量部、特に好ましくは0.5〜3重量部である。電極合剤層における電極合剤層用バインダー量が前記範囲であることにより、電池反応を阻害せずに、電極合剤層から活物質が脱落するのを防ぐことができる。
電極合剤層用バインダーは、電極を作製するために溶液もしくは分散液として調製される。その時の粘度は、通常1mPa・s〜300,000mPa・sの範囲、好ましくは50mPa・s〜10,000mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
本発明において、電極合剤層には、導電性付与材や補強材を含有していてもよい。導電性付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合に放電レート特性を改善したりすることができる。導電性付与材や補強剤の使用量は、電極活物質100重量部に対して通常0〜20重量部、好ましくは1〜10重量部である。
電極合剤層は、電極合剤層用バインダー、電極活物質及び溶媒を含むスラリー(以下、「電極合剤層形成用スラリー」と呼ぶことがある。)を集電体に付着させて形成することができる。
溶媒としては、前記結着剤を溶解または粒子状に分散するものであればよいが、溶解するものが好ましい。電極合剤層用バインダーを溶解する溶媒を用いると、電極合剤層用バインダーが表面に吸着することにより電極活物質などの分散が安定化する。
電極合剤層形成用スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;エチルメチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。
電極合剤層形成用スラリーは、増粘剤を含有してもよい。電極合剤層形成用スラリーに用いる溶媒に可溶な重合体が用いられる。増粘剤としては、本発明の多孔膜で例示した増粘剤を用いることができる。増粘剤の使用量は、電極活物質100重量部に対して、0.5〜1.5重量部が好ましい。増粘剤の使用量がこの範囲であると、塗工性、集電体との密着性が良好である。
さらに、電極合剤層形成用スラリーには、上記成分の他に、電池の安定性や寿命を高めるため、トリフルオロプロピレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6−ジオキサスピロ[4,4]ノナン−2,7−ジオン、12−クラウン−4−エーテル等が使用できる。また、これらは後述する電解液に含有せしめて用いてもよい。
電極合剤層形成用スラリーにおける溶媒の量は、電極活物質や電極合剤層用バインダーなどの種類に応じ、塗工に好適な粘度になるように調整して用いる。具体的には、電極合剤層形成用スラリー中の、電極活物質、電極合剤層用バインダーおよび導電性付与材などの他の添加剤を合わせた固形分の濃度が、好ましくは30〜90重量%、より好ましくは40〜80重量%となる量に調整して用いられる。
電極合剤層形成用スラリーは、電極活物質、電極合剤層用バインダー、必要に応じ添加される導電性付与材などのその他の添加剤、および溶媒を、混合機を用いて混合して得られる。混合は、上記の各成分を一括して混合機に供給し、混合してもよい。電極合剤層形成用スラリーの構成成分として、電極活物質、電極合剤層用バインダー、導電性付与材及び増粘剤を用いる場合には、導電性付与材および増粘剤を溶媒中で混合して導電性付与材を微粒子状に分散させ、次いで電極合剤層用バインダー、電極活物質を添加してさらに混合することが、得られるスラリーの分散性が向上できるので好ましい。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができるが、ボールミルを用いると導電性付与材や電極活物質の凝集を抑制できるので好ましい。
電極合剤層形成用スラリーの粒度は、好ましくは35μm以下であり、さらに好ましくは25μm以下である。スラリーの粒度が上記範囲にあると、導電材の分散性が高く、均質な電極が得られる。
集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましく、リチウムイオン二次電池の負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものが好ましい。集電体は、電極合剤層の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極合剤層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
電極合剤層の製造方法は、前記集電体の少なくとも片面、好ましくは両面に電極合剤層を層状に結着させる方法であればよい。例えば、前記電極合剤層形成用スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極合剤層を形成する。電極合剤層形成用スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
次いで、金型プレスやロールプレスなどを用い、加圧処理により電極の電極合剤層の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5%〜15%、より好ましくは7%〜13%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量を得るのが難しく、電極合剤層が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。
電極合剤層の厚みは、正極、負極とも、通常5〜300μmであり、好ましくは10〜250μmである。
(二次電池用セパレーター)
本発明の二次電池用セパレーターは、有機セパレーター上に、前記多孔膜を有してなる。
有機セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や芳香族ポリアミド樹脂を含んでなるセパレーターなどの公知のものが用いられる。
本発明に用いる有機セパレーターとしては、電子伝導性がなくイオン伝導性があり、有機溶媒の耐性が高い、孔径の微細な多孔質膜が用いられ、例えばポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。これらの中でも、前述の多孔膜用スラリーの塗工性が優れ、セパレーター全体の膜厚を薄くし電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
有機セパレーターの厚さは、通常0.5〜40μm、好ましくは1〜30μm、更に好ましくは1〜10μmである。この範囲であると電池内でのセパレーターによる抵抗が小さくなり、また有機セパレーターへの塗工時の作業性が良い。
本発明において、有機セパレーターの材料として用いるポリオレフィン系の樹脂としては、ポリエチレン、ポリプロピレン等のホモポリマー、コポリマー、更にはこれらの混合物が挙げられる。ポリエチレンとしては、低密度、中密度、高密度のポリエチレンが挙げられ、突き刺し強度や機械的な強度の観点から、高密度のポリエチレンが好ましい。また、これらのポリエチレンは柔軟性を付与する目的から2種以上を混合しても良い。これらポリエチレンに用いる重合触媒も特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒などが挙げられる。機械強度と高透過性を両立させる観点から、ポリエチレンの粘度平均分子量は10万以上1200万以下が好ましく、より好ましくは20万以上300万以下である。ポリプロピレンとしては、ホモポリマー、ランダムコポリマー、ブロックコポリマーが挙げられ、一種類または二種類以上を混合して使用することができる。また重合触媒も特に制限はなく、チーグラー・ナッタ系触媒やメタロセン系触媒などが挙げられる。また立体規則性にも特に制限はなく、アイソタクチックやシンジオタクチックやアタクチックを使用することができるが、安価である点からアイソタクチックポリプロピレンを使用するのが望ましい。さらに本発明の効果を損なわない範囲で、ポリオレフィンにはポリエチレン或いはポリプロピレン以外のポリオレフィン及び酸化防止剤、核剤などの添加剤を適量添加してもよい。
ポリオレフィン系の有機セパレーターを作製する方法としては、公知公用のものが用いられ、例えば、ポリプロピレン、ポリエチレンを溶融押し出しフィルム製膜した後に、低温でアニーリングさせ結晶ドメインを成長させて、この状態で延伸を行い非晶領域を延ばす事で微多孔膜を形成する乾式方法;炭化水素溶媒やその他低分子材料とポリプロピレン、ポリエチレンを混合した後に、フィルム形成させて、次いで、非晶相に溶媒や低分子が集まり島相を形成し始めたフィルムを、この溶媒や低分子を他の揮発し易い溶媒を用いて除去する事で微多孔膜が形成される湿式方法;などが選ばれる。この中でも、抵抗を下げる目的で、大きな空隙を得やすい点で、乾式方法が好ましい。
本発明に用いる有機セパレーターは、強度や硬度、熱収縮率を制御する目的で、他のフィラーや繊維化合物を含んでもよい。また、前記多孔膜を積層する際に、密着性を向上させたり、電解液との表面張力を下げて液の含浸性を向上させる目的で、あらかじめ低分子化合物や高分子化合物で被覆処理したり、紫外線などの電磁線処理、コロナ放電・プラズマガスなどのプラズマ処理を行っても良い。特に、電解液の含浸性が高く前記多孔膜との密着性を得やすい点から、カルボン酸基、水酸基及びスルホン酸基などの極性基を含有する高分子化合物で被覆処理するのが好ましい。
(二次電池)
本発明の二次電池は、正極、負極、セパレーター及び電解液を含み、前記正極、負極及びセパレーターの少なくともいずれかに、前記多孔膜が積層されてなる。
前記二次電池としては、リチウムイオン二次電池、ニッケル水素二次電池等挙げられるが、安全性向上が最も求められており多孔膜導入効果が最も高いこと、加えてレート特性向上が課題として挙げられていることからリチウムイオン二次電池が好ましい。以下、リチウムイオン二次電池に使用する場合について説明する。
(電解液)
リチウムイオン二次電池用の電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
リチウムイオン二次電池用の電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類;1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;が好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
また前記電解液には添加剤を含有させて用いることも可能である。添加剤としては前述の電極合剤層スラリー中に使用されるビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。
リチウムイオン二次電池用の電解液中における支持電解質の濃度は、通常1〜30重量%、好ましくは5重量%〜20重量%である。また、支持電解質の種類に応じて、通常0.5〜2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。用いる電解液の濃度が低いほど重合体粒子の膨潤度が大きくなるので、電解液の濃度によりリチウムイオン伝導度を調節することができる。
上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質や前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を挙げることができる。
セパレーターとしては、上述の二次電池用セパレーターで例示された有機セパレーターが挙げられる。正極及び負極としては、前記二次電池用電極で例示された結着剤及び電極活物質を含んでなる電極合剤層が集電体に付着してなるものが挙げられる。
本発明の二次電池において、多孔膜が積層されてなる正極や負極としては、前記二次電池用電極を正極や負極として用いればよく、多孔膜が積層されてなるセパレーターとしては、前記二次電池用セパレーターをセパレーターとして用いればよい。
リチウムイオン二次電池の具体的な製造方法としては、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。本発明の多孔膜は正極又は負極、セパレーターのいずれかに形成されてなる。また独立で多孔膜のみでの積層も可能である。必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
(実施例)
以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り重量基準である。
実施例および比較例において、各種物性は以下のように評価する。
<多孔膜用スラリー特性:スラリー安定性>
JIS Z8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により、スラリー作製1時間後のスラリー粘度(η1h)と5時間後のスラリー粘度(η5h)を測定し、下記式によりスラリー粘度変化率を求め、以下の基準で判定した。粘度変化率が低いほどスラリー安定性に優れることを示す。
スラリー粘度変化率(%)=100×(η5h−η1h)/η1h
A:10%未満
B:10%以上20%未満
C:20%以上30%未満
D:30%以上
<多孔膜用スラリー特性:分散性>
直径1cmの試験管内に高さ5cmまで多孔膜用スラリーを入れ、試験サンプルとする。1種の試料の測定につき5本の試験サンプルを調製する。前記試験サンプルを机上に垂直に設置する。設置した多孔膜用スラリーの状態を10日間観測し、下記の基準により判定する。5本のサンプルでの沈降に有するまでにかかった時間・日数(平均沈降所要時間(日数)という)をそれぞれもとめ、それらの平均沈降所要時間(日数)をそれぞれ求め、それらの平均沈降所要時間(日数)を沈降が見られた日とする。2相分離が見られないほど分散性に優れることを示す。
A:10日後にも2相分離がみられない。
B:6〜10日後に2相分離がみられる。
C:2〜5日後に2相分離がみられる。
D:1日後に2相分離がみられる。
E:3時間以内に2相分離が見られる。
<電極特性:柔軟性>
電極またはセパレーターを幅3cm×長さ9cmの矩形に切って試験片とする。多孔膜用スラリーを塗工していない側の面を下にして机上に置き、長さ方向の中央(端部から2.5cmの位置)、塗工していない側の面に直径1mmのステンレス棒を短手方向に横たえて設置する。このステンレス棒を中心にして試験片を多孔膜層が外側になるように180度折り曲げる。10枚の試験片について試験し、各試験片の多孔膜層の折り曲げた部分について、ひび割れまたは剥がれの有無を観察し、下記の基準により判定する。ひび割れまたは剥がれが少ないほど、多孔膜が柔軟性、すなわち伸強度に優れることを示す。
A:10枚中全てにひび割れまたは剥がれがみられない
B:10枚中1〜3枚にひび割れまたは剥がれがみられる
C:10枚中4〜9枚にひび割れまたは剥がれがみられる
D:10枚中全てにひび割れまたは剥がれがみられる
<電池特性:レート特性>
10セルのフルセルコイン型電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量aを求める。その後0.1Cの定電流法によって4.3Vまで充電しその後1Cにて3.0Vまで放電し、1C放電容量bを求める。10セルの平均値を測定値とし、1C放電容量bと0.1C放電容量aの電気容量の比(=b/a×100(%))で表される容量保持率を求め、これをレート特性の評価基準とする。この値が高いほどレート特性に優れることを示す。
SA:93%以上
A:90%以上93%未満
B:80%以上90%未満
C:50%以上80%未満
D:50%未満
<電池特性:高温サイクル特性>
10セルのフルセルコイン型電池を50℃雰囲気下、0.2Cの定電流法によって4.3Vに充電し、3.0Vまで放電する充放電を繰り返し電気容量を測定した。10セルの平均値を測定値とし、50サイクル終了時の電気容量xと5サイクル終了時の電気容量yとの比(=x/y×100(%))で表される充放電容量保持率を求め、これをサイクル特性の評価基準とする。この値が高いほど高温サイクル特性に優れることを示す。
SA:85%以上
A:80%以上85%未満
B:70%以上80%未満
C:50%以上70%未満
D:30%以上50%未満
E:30%未満
(実施例1)
<ポリマーの作製>
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル48.5部、アクリル酸エチル41.5部、アクリロニトリル5部、スチレン5部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合を開始した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸n−ブチル5部、アクリル酸エチル76部、アクリロニトリル16.5部、グリシジルメタクリレート2.0部、2−アクリルアミド2−メチルプロパンスルホン酸0.5部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子A水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。
得られた重合体粒子Aは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。また、この重合体粒子Aの内層のガラス転移温度は−20℃、外層のガラス転移温度は0℃であった。重合体粒子Aの内層と外層の割合は、50:50であった。また、重合体粒子Aの個数平均粒子径は、300nmであった。重合体粒子Aの外層のエポキシ基及びスルホン酸基の合計含有割合は単量体(グリシジルメタクリレート、2−アクリルアミド2−メチルプロパンスルホン酸)の割合で2.5%、外層の(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は97.5%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
<多孔膜用スラリーの作成>
非導電性粒子(酸化アルミニウム、平均粒径0.3μm、鉄含有量<20ppm)と、重合体Aとを、100:2.5の含有割合(固形分相当比)となるように混合し、更に水を固形分濃度が30%になるように混合させてビーズミルを用いて分散させ多孔膜用スラリーを調製した。得られた多孔膜用スラリーの安定性及び分散性を測定した。結果を表2に示す。
<負極用電極組成物および負極の製造>
負極活物質として粒子径20μm、比表面積4.2m/gのグラファイト98部と、負極合剤層用バインダーとしてPVDF(ポリフッ化ビニリデン)を固形分相当で5部を混合し、更にN−メチルピロリドンを加えてプラネタリーミキサーで混合してスラリー状の負極用電極組成物(負極合剤層形成用スラリー)を調製した。この負極用電極組成物を厚さ10μmの銅箔の片面に塗布し、110℃で3時間乾燥した後、ロールプレスして厚さ60μmの負極合剤層を有する負極を得た。
<正極用電極組成物および正極の製造>
正極活物質としてスピネル構造を有するマンガン酸リチウム95部に、正極合剤層用バインダーとしてPVDF(ポリフッ化ビニリデン)を固形分相当で3部を加え、さらに、アセチレンブラック2部、N−メチルピロリドン20部を加えて、プラネタリーミキサーで混合してスラリー状の正極用電極組成物(正極合剤層形成用スラリー)を調製した。この正極用電極組成物を厚さ18μmのアルミニウム箔に塗布し、120℃で3時間乾燥した後、ロールプレスして厚さ70μmの正極合剤層を有する正極を得た。
<多孔膜付電極の作成>
前記多孔膜用スラリーを、負極に負極活物質層が完全に覆われるように、厚さ3μmで塗工し、次いで110℃で20分間乾燥することにより、多孔膜を形成し多孔膜付電極を作製した。作製した多孔膜付電極の柔軟性を評価した。結果を表2に示す。
<電池の作製>
次いで、得られた正極を直径13mm、負極を14mmφの円形に切り抜いた。正極電極の正極活物質層面側に直径18mm、厚さ25μmの円形ポリプロピレン製多孔膜からなるセパレーターを介在させて、互いに電極活物質層が対向し、外装容器底面に正極のアルミニウム箔が接触するように配置し、更に負極の銅箔上にエキスパンドメタルを入れ、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液(EC/DEC=1/2、1M LiPF)を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約3.2mmのリチウムイオン二次電池を製造した(コインセルCR2032)。得られた電池についてレート特性及び高温サイクル特性を測定した。結果を表2に示す。
(実施例2)
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル70部、アクリル酸エチル25部、アクリロニトリル5部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸エチル80部、アクリロニトリル18部、グリシジルメタクリレート2.0部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子B水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られた重合体粒子Bは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。また、この重合体粒子Bの内層のガラス転移温度は−30℃、外層のガラス転移温度は5℃であった。重合体粒子Bの内層と外層の割合は、50:50であった。また、重合体粒子Bの個数平均粒子径は、150nmであった。重合体B粒子の外層のエポキシ基の含有割合は単量体(グリシジルメタクリレート)の割合で2.0%、(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は98%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
重合体粒子Aのかわりに重合体粒子Bを用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、ならびに高温サイクル特性を評価した。結果を表2に示す。
(実施例3)
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル95部、アクリロニトリル5部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸エチル70部、アクリロニトリル18部、メタクリル酸メチル10部、グリシジルメタクリレート2.0部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子C水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られた重合体粒子Cは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。また、この重合体粒子Cの内層のガラス転移温度は−38℃、外層のガラス転移温度は15℃であった。重合体粒子Cの内層と外層の割合は、50:50であった。また、重合体粒子Cの個数平均粒子径は、200nmであった。重合体粒子Cの外層のエポキシ基の含有割合は単量体(グリシジルメタクリレート)の割合で2.0%、(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は98%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
重合体粒子Aのかわりに重合体粒子Cを用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(実施例4)
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル85部、アクリロニトリル10部、スチレン5部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸エチル84.5部、アクリロニトリル15部、アクリル酸0.5部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子D水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られた重合体粒子Dは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。重合体粒子Dの水分散液の濃度は8重量%であった。また、この重合体粒子Dの内層のガラス転移温度は−28℃、外層のガラス転移温度は0℃であった。重合体粒子Dの内層と外層の割合は、50:50であった。また、重合体粒子Dの個数平均粒子径は、400nmであった。重合体粒子Dの外層のカルボキシル基の含有割合は単量体(アクリル酸)の割合で0.5%、(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は99.5%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
重合体粒子Aのかわりに重合体粒子Dを用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(実施例5)
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル55部、アクリル酸エチル30部、アクリロニトリル14部、グリシジルメタクリレート1部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸エチル69.5部、アクリロニトリル30部、メタクリル酸ヒドロキシエチル0.5部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子E水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られた重合体粒子Eは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。また、この重合体粒子Eの内層のガラス転移温度は−10℃、外層のガラス転移温度は15℃であった。重合体粒子Eの内層と外層の割合は、50:50であった。また、重合体粒子Eの個数平均粒子径は、300nmであった。重合体粒子Eの外層の水酸基の含有割合は単量体(メタクリル酸ヒドロキシエチル)の割合で0.5%、(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は99.5%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
重合体粒子Aのかわりに重合体粒子Eを用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(実施例6)
<ポリマーの作製>
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル48.5部、アクリル酸エチル41.5部、アクリロニトリル5部、スチレン5部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸n−ブチル5部、アクリル酸エチル76部、アクリロニトリル16.5部、グリシジルメタクリレート2部、メタクリル酸ヒドロキシエチル0.5部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子F水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られた重合体粒子Fは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。
また、この重合体粒子Fの内層のガラス転移温度は−20℃、外層のガラス転移温度は0℃であった。重合体粒子Fの内層と外層の割合は、50:50であった。また、重合体粒子Fの個数平均粒子径は、300nmであった。重合体粒子Fの外層のエポキシ基及び水酸基の合計含有割合は単量体(グリシジルメタクリレート、メタクリル酸ヒドロキシエチル)の割合で2.5%、(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は97.5%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
重合体粒子Aのかわりに重合体粒子Fを用いたこと以外は、実施例1と同様に、多孔膜用スラリーを作製した。多孔膜用スラリーの安定性及び分散性を評価した。結果を表2に示す。
<多孔膜付セパレーターの作製>
前記多孔膜用スラリーを、幅65mm、長さ500mm、厚さ25μmの乾式法により製造された単層のポリプロピレン製セパレーター(気孔率55%)上に乾燥後の厚さが3μmになるようにワイヤーバーを用いて塗工し、次いで80℃で30分間乾燥することにより、多孔膜を形成し多孔膜付セパレーターを得た。得られた多孔膜付セパレーターの柔軟性を評価した。その結果を表2に示す。
<電池の作製>
次いで、得られた正極を直径13mm、負極を直径14mm、多孔膜付セパレーターを直径18mmの円形に切り抜いた。正極電極の正極合剤層面側に、多孔膜付セパレーターを、多孔膜層が正極合剤層面側に対向するように介在させ、互いに電極合剤層が対向し、外装容器底面に正極のアルミニウム箔が接触するように配置し、更に負極の銅箔上にエキスパンドメタルを入れ、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液(EC/DEC=1/2、1M LiPF6)を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約3.2mmのリチウムイオン二次電池を製造した(コインセルCR2032)。得られた電池についてレート特性、及び高温サイクル特性を測定した。結果を表2に示す。
(実施例7)
酸化アルミニウムのかわりに、板状ベーマイト(平均粒子径1μm、アスペクト比10)を用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、ならびに高温サイクル特性を評価した。結果を表2に示す。
(実施例8)
酸化アルミニウムのかわりに、芳香族ポリアミド短繊維(コポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミドからなる単繊維繊度:0.55dtex(0.5de)、カット長:1mmの短繊維、アスペクト比200、融点187℃、帝人社製、「テクノーラ」)を用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、ならびに高温サイクル特性を評価した。結果を表2に示す。
(実施例9)
酸化アルミニウムのかわりに、ポリフェニレンスルファイド短繊維(融点285℃、アスペクト比200)を用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、ならびに高温サイクル特性を評価した。結果を表2に示す。
(実施例10)
酸化アルミニウムのかわりに、芳香族ポリアミド短繊維(コポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミドからなる単繊維繊度:0.55dtex(0.5de)、カット長:1mmの短繊維、アスペクト比200、融点187℃、帝人社製、「テクノーラ」)を用いたこと以外は、実施例6と同様にして、多孔膜用スラリー、多孔膜付セパレーター及び電池を作製した。そして、実施例6と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付セパレーターの柔軟性、電池のレート特性、ならびに高温サイクル特性を評価した。結果を表2に示す。
(比較例1)
重合体粒子Aのかわりにポリアクリロニトリル(PAN)粒子を用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(比較例2)
重合体粒子Aのかわりにポリフッ化ビニリデン(PVDF)粒子を用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(比較例3)
重合体粒子Aのかわりにポリアクリル酸ブチル(PBA)粒子を用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(比較例4)
撹拌機付きのオートクレーブに、イオン交換水300部、アクリル酸n−ブチル48.5部、アクリル酸エチル41.5部、アクリロニトリル10部、ドデシルベンゼンスルホン酸ナトリウム20部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分攪拌した後、80℃に加温し重合した。固形分濃度から求めた重合転化率がほぼ98%となった時、さらにイオン交換水200部、アクリル酸n−ブチル5部、アクリル酸エチル78部、アクリロニトリル17部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、重合体粒子G水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られた重合体粒子Gは、内層と外層とからなる異相構造を有するポリマー粒子であることが確認された。また、この重合体粒子Gの内層のガラス転移温度は−20℃、外層のガラス転移温度は0℃であった。重合体粒子Gの内層と外層の割合は、50:50であった。また、重合体粒子Gの個数平均粒子径は、400nmであった。重合体粒子Gの外層の親水性官能基の含有割合は0%、(メタ)アクリロニトリル及び(メタ)アクリル酸エステルの重合単位の割合は100%、内層のビニル単量体成分の含有割合は単量体の割合で100%であった。結果を表1に示す。
重合体粒子Aのかわりに重合体粒子Gを用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
(比較例5)
<ポリマーの作製>
撹拌機付きのオートクレーブに、イオン交換水200部、アクリル酸n−ブチル66.9部、アクリル酸エチル16部、アクリロニトリル16.5部、グリシジルメタクリレート0.5部、2−アクリルアミド2−メチルプロパンスルホン酸0.1部、ドデシルベンゼンスルホン酸ナトリウム10部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、80℃に加温して重合し、重合体粒子H水分散液を得た。固形分濃度から求めた重合転化率はほぼ98%であった。得られた重合体粒子Hは、単相構造を有するポリマー粒子であることが確認された。また、この重合体粒子Hのガラス転移温度は−10℃であった。また、重合体粒子Hの個数平均粒子径は、100nmであった。結果を表1に示す。重合体粒子Hのエポキシ基及びスルホン酸基の合計含有割合は単量体(グリシジルメタクリレート、2−アクリルアミド2−メチルプロパンスルホン酸)の割合で0.6%であった。
重合体粒子Aのかわりに重合体粒子Hを用いたこと以外は、実施例1と同様に、多孔膜用スラリー、多孔膜付電極及び電池を作製した。そして、実施例1と同様に、多孔膜用スラリーの安定性及び分散性、多孔膜付電極の柔軟性、電池のレート特性、並びに高温サイクル特性を評価した。結果を表2に示す。
Figure 0005765228
Figure 0005765228
表1及び表2の結果より、多孔膜用バインダーとしてビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子を用いることで、リチウムイオン伝導性を維持しながら多孔膜の強度が改良され、多孔膜の割れを抑制しながらも高いレート特性、高温サイクル特性を示すことができる。
一方、多孔膜用バインダーとして単層構造を有するポリマー粒子を用いたものもの(比較例1〜3,5)や、異相構造を有してはいるが、親水性官能基を有する単量体成分を含まないポリマーを外層としたポリマー粒子を用いたもの(比較例4)は、スラリー安定性・スラリー分散性、多孔膜の柔軟性、レート特性及び高温サイクル特性が劣る。

Claims (22)

  1. 多孔膜用バインダー、及び非導電性粒子を含んでなり、
    前記多孔膜用バインダーが、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子であり、
    前記ビニル単量体成分を構成する単量体は、脂肪族ビニル単量体、(メタ)アクリル酸エステル単量体、アミド基含有(メタ)アクリル単量体、多官能ジ(メタ)アクリル単量体、芳香族ビニル単量体のいずれかを含み、
    ポリマー粒子における内層と外層との割合は、重量比(外層:内層)で10:90〜70:30である、二次電池用多孔膜。
  2. 前記親水性官能基が、スルホン酸基、カルボキシル基、水酸基、及びエポキシ基からなる群から選ばれる少なくとも一つを含む請求項1記載の二次電池用多孔膜。
  3. 前記外層が、さらに、(メタ)アクリロニトリルの重合単位及び(メタ)アクリル酸エステルの重合単位を含むポリマーである請求項1又は2に記載の二次電池用多孔膜。
  4. 前記外層を構成するポリマー中の、親水性官能基を有する単量体の重合単位の含有割合は、重合時の前記親水性官能基を有する単量体量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して0.5〜40重量%である請求項1〜3のいずれか1項に記載の二次電池用多孔膜。
  5. 前記外層を構成するポリマー中の、親水性官能基を有する単量体の重合単位の含有割合は、重合時の前記親水性官能基を有する単量体量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して2〜20重量%である請求項1〜3のいずれか1項に記載の二次電池用多孔膜。
  6. 前記内層を構成するポリマーのガラス転移温度が−60℃以上20℃以下であり、前記外層を構成するポリマーのガラス転移温度が0℃以上である請求項1〜5のいずれか1項に記載の二次電池用多孔膜。
  7. 前記内層を構成するポリマー中のビニル単量体成分の含有割合は、前記内層を構成するポリマーの全単量体単位の80重量%以上である請求項1〜6のいずれか1項に記載の二次電池用多孔膜。
  8. 前記外層を構成するポリマー中の(メタ)アクリロニトリルの重合単位の含有割合は、前記外層を構成するポリマーの重合時の(メタ)アクリロニトリル量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して、3〜30重量%の範囲である請求項3に記載の二次電池用多孔膜。
  9. 前記外層を構成するポリマー中の(メタ)アクリル酸エステルの重合単位の含有割合は、前記外層を構成するポリマーの重合時の(メタ)アクリル酸エステル量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して、70〜95重量%の範囲である請求項3に記載の二次電池用多孔膜。
  10. 多孔膜用バインダー、非導電性粒子、及び溶媒を含み、
    前記多孔膜用バインダーが、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子であり、
    前記ビニル単量体成分を構成する単量体は、脂肪族ビニル単量体、(メタ)アクリル酸エステル単量体、アミド基含有(メタ)アクリル単量体、多官能ジ(メタ)アクリル単量体、芳香族ビニル単量体のいずれかを含み、
    ポリマー粒子における内層と外層との割合は、重量比(外層:内層)で10:90〜70:30である、二次電池多孔膜用スラリー。
  11. 前記親水性官能基が、スルホン酸基、カルボキシル基、水酸基、及びエポキシ基からなる群から選ばれる少なくとも一つを含む請求項10記載の二次電池多孔膜用スラリー。
  12. 前記外層が、さらに、(メタ)アクリロニトリルの重合単位及び(メタ)アクリル酸エステルの重合単位を含むポリマーである請求項10又は11に記載の二次電池多孔膜用スラリー。
  13. 前記外層を構成するポリマー中の、親水性官能基を有する単量体の重合単位の含有割合は、重合時の前記親水性官能基を有する単量体量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して0.5〜40重量%である請求項10〜12のいずれか1項に記載の二次電池多孔膜用スラリー。
  14. 前記外層を構成するポリマー中の、親水性官能基を有する単量体の重合単位の含有割合は、重合時の前記親水性官能基を有する単量体量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して2〜20重量%である請求項10〜12のいずれか1項に記載の二次電池多孔膜用スラリー。
  15. 前記内層を構成するポリマーのガラス転移温度が−60℃以上20℃以下であり、前記外層を構成するポリマーのガラス転移温度が0℃以上である請求項10〜14のいずれか1項に記載の二次電池多孔膜用スラリー。
  16. 前記内層を構成するポリマー中のビニル単量体成分の含有割合は、前記内層を構成するポリマーの全単量体単位の80重量%以上である請求項10〜15のいずれか1項に記載の二次電池多孔膜用スラリー。
  17. 前記外層を構成するポリマー中の(メタ)アクリロニトリルの重合単位の含有割合は、前記外層を構成するポリマーの重合時の(メタ)アクリロニトリル量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して、3〜30重量%の範囲である請求項12に記載の二次電池多孔膜用スラリー。
  18. 前記外層を構成するポリマー中の(メタ)アクリル酸エステルの重合単位の含有割合は、前記外層を構成するポリマーの重合時の(メタ)アクリル酸エステル量として、前記外層を構成するポリマーの重合時の単量体全量100重量%に対して、70〜95重量%の範囲である請求項12に記載の二次電池多孔膜用スラリー。
  19. 多孔膜用バインダー、非導電性粒子、及び溶媒を含み、
    前記多孔膜用バインダーが、ビニル単量体成分を重合してなるポリマーを内層とし、親水性官能基を有する単量体成分を重合してなるポリマーを外層とする異相構造を有するポリマー粒子であり、
    前記ビニル単量体成分を構成する単量体は、脂肪族ビニル単量体、(メタ)アクリル酸エステル単量体、アミド基含有(メタ)アクリル単量体、多官能ジ(メタ)アクリル単量体、芳香族ビニル単量体のいずれかを含み、
    ポリマー粒子における内層と外層との割合は、重量比(外層:内層)で10:90〜70:30である、二次電池多孔膜用スラリーを基材に塗布する工程、及び前記スラリーが塗布された基材を乾燥する工程を含む、二次電池用多孔膜の製造方法。
  20. 電極合剤層用バインダー及び電極活物質を含んでなる電極合剤層が、集電体に付着してなり、かつ電極合剤層の表面に、請求項1〜のいずれかに記載の多孔膜を有してなる二次電池用電極。
  21. 有機セパレーター上に、請求項1〜のいずれかに記載の多孔膜を有してなる二次電池用セパレーター。
  22. 正極、負極、セパレーター及び電解液を含む二次電池であって、前記正極、負極及びセパレーターの少なくともいずれかに、請求項1〜のいずれかに記載の多孔膜を有してなる、二次電池。
JP2011534278A 2009-09-30 2010-09-29 二次電池用多孔膜及び二次電池 Active JP5765228B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011534278A JP5765228B2 (ja) 2009-09-30 2010-09-29 二次電池用多孔膜及び二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009226410 2009-09-30
JP2009226410 2009-09-30
JP2011534278A JP5765228B2 (ja) 2009-09-30 2010-09-29 二次電池用多孔膜及び二次電池
PCT/JP2010/066961 WO2011040474A1 (ja) 2009-09-30 2010-09-29 二次電池用多孔膜及び二次電池

Publications (2)

Publication Number Publication Date
JPWO2011040474A1 JPWO2011040474A1 (ja) 2013-02-28
JP5765228B2 true JP5765228B2 (ja) 2015-08-19

Family

ID=43826288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011534278A Active JP5765228B2 (ja) 2009-09-30 2010-09-29 二次電池用多孔膜及び二次電池

Country Status (6)

Country Link
US (1) US8852788B2 (ja)
EP (1) EP2485302B1 (ja)
JP (1) JP5765228B2 (ja)
KR (1) KR101615792B1 (ja)
CN (1) CN102640329B (ja)
WO (1) WO2011040474A1 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
KR101187767B1 (ko) 2010-03-17 2012-10-05 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
JP5990804B2 (ja) 2010-07-19 2016-09-14 オプトドット コーポレイション 電気化学電池用セパレータ
KR20130119456A (ko) * 2010-11-24 2013-10-31 도요타지도샤가부시키가이샤 전지 및 전지의 제조 방법
JP2014511901A (ja) * 2011-03-13 2014-05-19 ポーラス パワー テクノロジーズ 充填剤入り微細孔膜の後処理
WO2012165624A1 (ja) * 2011-06-03 2012-12-06 富士シリシア化学株式会社 セパレータ、電気化学素子、及びセパレータの製造方法
US20140101930A1 (en) * 2011-06-13 2014-04-17 Nitto Denko Corporation Method for producing separator for nonaqueous electrolyte electricity storage devices and method for producing nonaqueous electrolyte electricity storeage device
US20140141314A1 (en) * 2011-07-01 2014-05-22 Zeon Corporation Porous membrane for secondary batteries, method for producing same, and use of same
RU2014122731A (ru) * 2011-11-07 2015-12-20 Дэнки Кагаку Когио Кабусики Кайся Связующая композиция для электрода
CN102386346B (zh) * 2011-11-22 2014-01-08 深圳市金钒能源科技有限公司 一种密封圈离子膜一体化组件的生产方法
WO2013146515A1 (ja) 2012-03-28 2013-10-03 日本ゼオン株式会社 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
US20150099156A1 (en) * 2012-04-10 2015-04-09 Sumitomo Chemical Company, Limited Use for resin, resin composition, separator for nonaqueous-electrolyte secondary battery, method for manufacturing said separator, and nonaqueous-electrolyte secondary battery
US9178198B2 (en) * 2012-06-01 2015-11-03 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
ES2441428B1 (es) * 2012-07-04 2016-02-05 Abengoa Solar New Technologies, S.A. Formulación de tintas con base de nanopartículas cerámicas
US10153473B2 (en) 2012-07-26 2018-12-11 Asahi Kasei E-Materials Corporation Separator for electricity storage device, laminate and porous film
TW201412385A (zh) * 2012-08-30 2014-04-01 Dainippon Ink & Chemicals 微多孔膜、其製造方法、電池用分離器以及非水電解質二次電池分離器用樹脂組成物
EP2897198A1 (en) * 2012-09-11 2015-07-22 JSR Corporation Composition for producing protective film, protective film, and electricity storage device
CN104521031B (zh) * 2012-10-05 2017-07-11 Lg化学株式会社 隔板以及包括其的电化学装置
KR101535199B1 (ko) 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
EP2978045B1 (en) * 2013-03-21 2019-11-06 Zeon Corporation Slurry for lithium ion secondary battery porous film, separator for lithium ion secondary battery, and lithium ion secondary battery
JP6323449B2 (ja) * 2013-04-22 2018-05-16 東レ株式会社 積層多孔質膜及びその製造方法ならびに電池用セパレータ
CN104124415A (zh) * 2013-04-28 2014-10-29 深圳华粤宝电池有限公司 复合凝胶聚合物电解质及其制备方法及应用
CN110591131B (zh) 2013-04-29 2023-01-24 奥普图多特公司 具有增加的热导率的纳米多孔复合分隔物
CN105324868B (zh) 2013-07-10 2018-06-05 日本瑞翁株式会社 锂离子二次电池用粘接剂、锂离子二次电池用隔板、及锂离子二次电池
KR102203792B1 (ko) 2013-07-10 2021-01-14 제온 코포레이션 리튬 이온 2 차 전지용 다공막 조성물, 리튬 이온 2 차 전지용 세퍼레이터, 리튬 이온 2 차 전지용 전극, 및 리튬 이온 2 차 전지
JP5708872B1 (ja) * 2013-09-24 2015-04-30 東洋インキScホールディングス株式会社 非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータ、非水二次電池電極および非水二次電池
KR20150071792A (ko) * 2013-12-18 2015-06-29 한화케미칼 주식회사 이차전지 양극활물질용 수계 바인더의 제조방법
JP6547630B2 (ja) 2014-01-27 2019-07-24 日本ゼオン株式会社 リチウムイオン二次電池用電極及びリチウムイオン二次電池
US10196495B2 (en) * 2014-05-13 2019-02-05 Celgard, Llc Functionalized porous membranes and methods of manufacture and use
WO2015198534A1 (ja) 2014-06-27 2015-12-30 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
CN105440770B (zh) * 2014-06-30 2021-05-04 四川茵地乐材料科技集团有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
WO2016017066A1 (ja) * 2014-07-30 2016-02-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
US10186699B2 (en) 2014-08-28 2019-01-22 Zeon Corporation Laminate for non-aqueous secondary battery, and method for manufacturing non-aqueous secondary battery member
JP6658536B2 (ja) 2014-11-18 2020-03-04 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物の製造方法
KR102439851B1 (ko) * 2014-11-21 2022-09-01 삼성에스디아이 주식회사 이차전지용 세퍼레이터 및 이를 포함하는 이차전지
US10319972B2 (en) * 2014-11-21 2019-06-11 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable battery including the same
CN107004811B (zh) * 2014-12-09 2020-10-23 东丽株式会社 二次电池用隔膜、二次电池用隔膜的制造方法及二次电池
JP6515574B2 (ja) * 2015-02-20 2019-05-22 日本ゼオン株式会社 非水系二次電池機能層用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
KR102563082B1 (ko) * 2015-03-20 2023-08-02 니폰 제온 가부시키가이샤 비수계 이차전지 기능층용 조성물, 비수계 이차전지용 기능층 및 비수계 이차전지
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US11584861B2 (en) * 2016-05-17 2023-02-21 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable lithium battery including the same
US10913809B2 (en) 2016-06-17 2021-02-09 Cornell University Cross-linked polymeric material
JP7020416B2 (ja) * 2016-08-25 2022-02-16 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池、および非水系二次電池用電極の製造方法
JP6536524B2 (ja) * 2016-10-03 2019-07-03 トヨタ自動車株式会社 セパレータ一体電極板、及びこれを用いた蓄電素子
JP7107301B2 (ja) * 2017-03-08 2022-07-27 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法
WO2019017213A1 (ja) * 2017-07-21 2019-01-24 日本ゼオン株式会社 非水系二次電池用積層体および非水系二次電池、並びに、非水系二次電池の製造方法
KR102183660B1 (ko) * 2017-07-26 2020-11-26 주식회사 엘지화학 리튬-황 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
TWI639270B (zh) 2017-09-29 2018-10-21 輝能科技股份有限公司 可撓電池
CN107946523B (zh) * 2017-10-31 2021-07-23 旭成(福建)科技股份有限公司 一种锂离子电池用基膜层结构及制备方法
JP7306272B2 (ja) * 2017-12-27 2023-07-11 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
US20210075017A1 (en) * 2017-12-27 2021-03-11 Zeon Corporation Composition for non-aqueous secondary battery functional layer, battery member for non-aqueous secondary battery, method of producing laminate for non-aqueous secondary battery, and non-aqueous secondary battery
KR102526758B1 (ko) * 2018-01-09 2023-04-27 삼성전자주식회사 복합막, 이를 포함한 음극 구조체 및 리튬전지, 및 복합막 제조방법
JP7400713B2 (ja) * 2018-03-27 2023-12-19 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
JPWO2019225404A1 (ja) * 2018-05-24 2021-06-17 日本ゼオン株式会社 電極材料、電極、蓄電デバイス、およびスラリー組成物
JP2018170281A (ja) * 2018-05-31 2018-11-01 旭化成株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
CN109244336B (zh) * 2018-11-01 2022-03-11 上海恩捷新材料科技有限公司 一种湿法共混锂离子电池隔膜及其制备方法
KR20200139016A (ko) * 2019-06-03 2020-12-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US20220320516A1 (en) * 2019-07-31 2022-10-06 Zeon Corporation Binder composition for non-aqueous secondary battery heat-resistant layer, slurry composition for non-aqueous secondary battery heat-resistant layer, heat-resistant layer for non-aqueous secondary battery, and non-aqueous secondary battery
CN112151761A (zh) * 2020-10-22 2020-12-29 珠海冠宇电池股份有限公司 一种锂负极及其制备方法和应用
CN113036312A (zh) * 2021-02-20 2021-06-25 上海恩捷新材料科技有限公司 一种有机高分子颗粒涂覆复合隔膜及其制备方法
CN114039167B (zh) * 2021-11-09 2023-10-03 惠州市旭然新能源有限公司 一种多孔性锂离子电池隔膜及制备方法和锂离子电池
WO2023189442A1 (ja) * 2022-03-31 2023-10-05 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池
KR20240110739A (ko) * 2023-01-04 2024-07-16 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 바인더, 분리막, 극판, 전극 조립체, 배터리셀, 배터리 및 전기기기
WO2024145894A1 (zh) * 2023-01-06 2024-07-11 宁德时代新能源科技股份有限公司 隔膜及其制备方法、电池和用电装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2002056896A (ja) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2002075458A (ja) * 2000-09-04 2002-03-15 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2002117834A (ja) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池用正極および非水系二次電池
WO2005011043A1 (ja) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
WO2005029614A1 (ja) * 2003-09-18 2005-03-31 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
JP2005222780A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2006185887A (ja) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2006519883A (ja) * 2003-06-03 2006-08-31 エルジー・ケム・リミテッド 分散剤が化学結合された電極用複合バインダー重合体
JP2007035541A (ja) * 2005-07-29 2007-02-08 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法
WO2008097013A1 (en) * 2007-02-05 2008-08-14 Lg Chem, Ltd. Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
JP2008234879A (ja) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd リチウムイオン二次電池
WO2009123168A1 (ja) * 2008-03-31 2009-10-08 日本ゼオン株式会社 多孔膜および二次電池電極
WO2010074202A1 (ja) * 2008-12-26 2010-07-01 日本ゼオン株式会社 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (ja) 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
US5948464A (en) 1996-06-19 1999-09-07 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
KR100754746B1 (ko) * 2007-03-07 2007-09-03 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2002056896A (ja) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2002075458A (ja) * 2000-09-04 2002-03-15 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2002117834A (ja) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池用正極および非水系二次電池
JP2006519883A (ja) * 2003-06-03 2006-08-31 エルジー・ケム・リミテッド 分散剤が化学結合された電極用複合バインダー重合体
WO2005011043A1 (ja) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
WO2005029614A1 (ja) * 2003-09-18 2005-03-31 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
JP2005222780A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2006185887A (ja) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007035541A (ja) * 2005-07-29 2007-02-08 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法
WO2008097013A1 (en) * 2007-02-05 2008-08-14 Lg Chem, Ltd. Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
JP2008234879A (ja) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd リチウムイオン二次電池
WO2009123168A1 (ja) * 2008-03-31 2009-10-08 日本ゼオン株式会社 多孔膜および二次電池電極
WO2010074202A1 (ja) * 2008-12-26 2010-07-01 日本ゼオン株式会社 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2011040474A1 (ja) 2013-02-28
CN102640329A (zh) 2012-08-15
US20120189898A1 (en) 2012-07-26
KR20120091029A (ko) 2012-08-17
EP2485302A1 (en) 2012-08-08
EP2485302A4 (en) 2013-08-07
KR101615792B1 (ko) 2016-04-26
EP2485302B1 (en) 2017-03-08
CN102640329B (zh) 2015-11-25
US8852788B2 (en) 2014-10-07
WO2011040474A1 (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5765228B2 (ja) 二次電池用多孔膜及び二次電池
JP5742717B2 (ja) 二次電池用多孔膜及び二次電池
JP5561276B2 (ja) 多孔膜及び二次電池
JP5549739B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP5605591B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
JP5522422B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP5621772B2 (ja) 二次電池用電極及び二次電池
JP5867731B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池及び二次電池多孔膜の製造方法
JP5598472B2 (ja) 二次電池用多孔膜及び二次電池
WO2010024328A1 (ja) 多孔膜、二次電池電極及びリチウムイオン二次電池
WO2012057324A1 (ja) 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池
WO2010016476A1 (ja) リチウムイオン二次電池用電極
WO2011148970A1 (ja) 二次電池用正極及び二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5765228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250