JP5678670B2 - 超音波センサー、触覚センサー、および把持装置 - Google Patents
超音波センサー、触覚センサー、および把持装置 Download PDFInfo
- Publication number
- JP5678670B2 JP5678670B2 JP2011000977A JP2011000977A JP5678670B2 JP 5678670 B2 JP5678670 B2 JP 5678670B2 JP 2011000977 A JP2011000977 A JP 2011000977A JP 2011000977 A JP2011000977 A JP 2011000977A JP 5678670 B2 JP5678670 B2 JP 5678670B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- sensor
- reflector
- unit
- elastic film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims description 98
- 238000001514 detection method Methods 0.000 claims description 85
- 239000000758 substrate Substances 0.000 claims description 64
- 238000004364 calculation method Methods 0.000 claims description 59
- 238000003860 storage Methods 0.000 claims description 29
- 238000003491 array Methods 0.000 claims description 24
- 239000012528 membrane Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 239000013598 vector Substances 0.000 description 67
- 238000010008 shearing Methods 0.000 description 53
- 239000004744 fabric Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 20
- 238000005259 measurement Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- XEEYBQQBJWHFJM-RNFDNDRNSA-N iron-60 Chemical compound [60Fe] XEEYBQQBJWHFJM-RNFDNDRNSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 230000008054 signal transmission Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 235000008429 bread Nutrition 0.000 description 5
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 5
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 5
- 230000001902 propagating effect Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- -1 Polydimethylsiloxane Polymers 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/25—Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/081—Touching devices, e.g. pressure-sensitive
- B25J13/082—Grasping-force detectors
- B25J13/083—Grasping-force detectors fitted with slippage detectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/026—Acoustical sensing devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/22—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
- G01L5/226—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
- G01L5/228—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping using tactile array force sensors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Robotics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Acoustics & Sound (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Human Computer Interaction (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Manipulator (AREA)
Description
ここで、本発明の超音波トランスデューサーとは、例えば、基板の表面に対して直交する平面視で、矩形状に形成された超音波素子により、平面波として伝搬される超音波が発信されるものであってもよい。また、複数の超音波素子をアレイ状に配設した超音波アレイであり、これらの超音波素子から発信される超音波の合成波により平面波として伝搬される超音波が発信されるものであってもよい。
このような構造では、超音波トランスデューサーから超音波が発信される超音波発信タイミングから、当該超音波トランスデューサーで超音波を受信する超音波受信タイミングまでの時間(TOFデータ)を計測することで、超音波トランスデューサーから超音波反射体までの距離を検出することができる。
また、弾性膜に接触物が接触して弾性膜が弾性変形すると、超音波反射体は、弾性膜の変形に応じた位置に移動される。また、音響屈折部により超音波が屈折される方向は一定方向となるため、TOFデータに基づいて超音波の移動距離が算出できれば、超音波反射体の移動後の位置座標をもとめることができ、超音波反射体の移動量および移動方向、すなわち、弾性膜の歪み量と歪み方向を算出することが可能となる。また、このような弾性膜の歪み量および歪み方向から、弾性膜に作用する剪断力や正圧力をも算出することが可能となる。
このような構成では、超音波トランスデューサーが配設された基板上に音響屈折部、弾性膜を形成し、弾性膜中に超音波反射体を埋設させる積層構成で超音波センサーを構成できるため、例えば、従来のように構造体を磁力により折り曲げて基板上に立体的な構造体を形成するような構成に比べて、構成を簡略化でき、生産性も良好となり、生産コストも低減させることができる。
また、球面の超音波反射体は、複数の反射面を有する多面体に比べて形成しやすく、製造コストも低減させることができる。
ここで、超音波が音響屈折部から弾性膜に超音波が伝搬する際、スネルの法則に従って、超音波の屈折角が決定され、これは、音響屈折部内の音速、弾性膜内の音速、および音響屈折から傾斜平面に入射する超音波の入射角により決定され、上記式(1)の関係を満たす。したがって、上記式(1)を満たす傾斜平面を有する音響屈折部を設けることで、超音波トランスデューサーから発信された超音波を超音波反射体に向かって精度よく導くことができ、超音波反射体により反射された超音波を超音波トランスデューサーに向かって精度よく導くことができる。
このため、各超音波トランスデューサーに対して超音波発信タイミングから超音波受信タイミングまでの時間を計測することで、超音波反射体の位置座標を算出することができ、超音波反射体の移動量および移動方向を容易に算出することができる。
このような構成では、例えば、相関データとして、応力に対する接触物の接触面の粗さデータが記録されている場合、弾性膜に接触した接触物の粗さを求めることができ、粗さからさらに接触物の接触面の素材を求めることもできる。また、相関データとして、応力に対する接触物の接触面の素材が記録されている場合では、算出された応力から、直接接触物の接触面における素材を検出することもできる。さらには、相関データとして、例えば、応力に対する接触物の柔らかさデータが記録されている場合、例えばパン生地の捏ね状態などを、触覚センサーで判別して最適な捏ね状態であるか否かを判断することもできる。
また、上述したように、把持装置を構成する触覚センサーは、基板上に、超音波トランスデューサー、音響屈折体、超音波反射体が埋設された弾性膜を積層させただけの簡単な構成を有するものであり、容易に製造可能であるため、このような触覚センサーを用いた把持装置においても、同様に簡単な構成とすることができ、製造も容易となる。
以下、本発明に係る第一実施形態の触覚センサーについて、図面に基づいて説明する。
〔1.触覚センサーの構成〕
図1は、第一実施形態の触覚センサー1のセンサー本体10(超音波センサー)の概略構成を示す平面図であり、図2は、センサー本体10のXZ平面断面の概略構成を示す断面図であり、図3は、センサー本体10のYZ平面断面の概略構成を示す断面図である。
なお、第一実施形態では、超音波センサーとして、センサー本体10が1つ設けられた例を示すが、これに限定されず、超音波センサーとして、これらのセンサー本体10が複数設けられる構成としてもよい。また、複数のセンサー本体10がアレイ状に配設された構成を有する超音波センサーについては、後述の第五実施形態において説明する。
基板11は、例えばSiにより形成され、厚み寸法が例えば200μmに形成されている。この基板11には、図1〜図3に示すように、1つの超音波反射体17に対して、5つの開口部111が形成されている。具体的には、図1に示すように、基板11を厚み方向から見た平面視(センサー平面視)において、超音波反射体の設置位置を原点とし、図1の左右方向にX軸方向、上下方向にY軸方向を設定した場合、開口部111は、座標位置(a,0)、(−a,0)、(0,a)、(0,−a)、(0,0)にそれぞれ設けられている。
なお、この開口部111は、基板11の厚み方向から当該基板11を見る平面視(センサー平面視)において、円形状に形成されているが、例えば矩形上などに形成されていてもよい。また、基板11厚み方向を貫通する開口部111を例示したが、例えば、基板11の弾性膜16側の面(図2、図3における上側)にエッチング等により凹状溝を形成して開口部111とする構成としてもよい。さらには、基板11上に支持膜14を形成する構成を例示したが、基板11の弾性膜16とは反対側の面(図2、図3の下側)からエッチング等により凹状溝を形成し、溝底部を支持膜14とし溝内部を開口部111とする構成としてもよい。
超音波アレイ12(12A,12B,12C,12D,12E)は、センサー平面視において、開口部111の内側領域に配置されている。ここで、座標(a,0)には、第一超音波アレイ12Aが配置され、座標(−a,0)には、第二超音波アレイ12Bが配置され、座標(0,a)には、第三超音波アレイ12Cが配置され、座標(0,−a)には、第四超音波アレイ12Dが配置され、座標(0,0)には、第五超音波アレイ12Eが配置されている。
これらの超音波アレイ12は、開口部111、開口部111を閉塞する支持膜14(メンブレン141)、およびメンブレン141上に形成される圧電体21により構成された超音波素子20が、例えばXY方向に均等間隔で配置されるアレイ構造に配列されることで構成されている。1つの超音波アレイ12に配置される超音波素子20としては、基板11のサイズ、超音波反射体17のサイズ、発信する超音波の信号強度等により適宜設定されるが、例えばXY方向に4行4列の超音波素子20が配置される。
また、以降の説明において、図1に示すようなセンサー平面視において、支持膜14のうち、開口部111を閉塞する領域をメンブレン141と称す。
圧電膜22は、21は、例えばPZT(ジルコン酸チタン酸鉛:lead zirconate titanate)を厚み寸法が例えば500nmとなる膜状に成膜することで形成される。なお、本実施形態では、圧電膜22としてPZTを用いるが、膜の応力変化により電荷を発生することが可能な素材であれば、いかなる素材を用いてもよく、例えばチタン酸鉛(PbTiO3)、ジルコン酸鉛(PbZrO3)、チタン酸鉛ランタン((Pb、La)TiO3)、窒化アルミ(AlN)、酸化亜鉛(ZnO)、ポリフッ化ビニリデン(PVDF)などを用いてもよい。
また、上部電極24は、厚み寸法が例えば50nmに形成される膜状の電極である。この上部電極24は、圧電膜22の上面を覆って形成される。
また、支持膜14上には、下部電極23の外周部から延出する下部電極線(図示略)、および上部電極24の外周部から延出する上部電極(図示略)が、それぞれ形成されている。これらの電極線は、例えば基板11の外周部に設けられる図示しない端子パッドまで引き出され、端子パッドから後述する制御部30に接続される。
ここで、複数の超音波素子20から同時に超音波が発信されると、これらの超音波は互いに強め合い、基板11に対して直交する方向に平面波として伝搬する超音波がビーム状に発信される。この時、センサー平面視における超音波アレイ12の径が、ビーム状の超音波のビーム径となる。
また、超音波アレイ12は、音響レンズ15または弾性膜16から戻ってきた超音波を受信し、受信信号を制御部30に出力する。具体的には、電極23,24間に電圧が印可されていない状態で、音響レンズ15から超音波が入力され、支持膜14が振動すると、圧電膜22が支持膜14の振動により伸縮する。この伸縮量に応じて圧電膜22の下部電極23側および上部電極24側で電位差が発生し、下部電極23および上部電極24に圧電膜22からの電流が流れて電気信号(受信信号)が出力される。
音響レンズ15は、基板11上で、超音波アレイ12A〜12Dを覆って形成されている。なお、本実施形態では、センサー平面視において、超音波反射体17と重なる位置に設けられる第五超音波アレイ12E上には、音響レンズ15が配置されない構成を例示するが、例えば、第五超音波アレイ12E上にも、平板上の音響レンズ15が設けられていてもよい。
つまり、この音響レンズ15は、各超音波アレイ12A〜12Dの直上領域(ビーム状の超音波の発信方向)に、超音波反射体17と対向するように傾斜する傾斜平面151〜154を備えており、この傾斜平面151〜154により、超音波アレイ12A〜12Dから発信された超音波の進行方向を屈折させて変更させる。このような音響レンズ15としては、弾性膜16と音響インピーダンスが異なる素材により形成されていればよく、より具体的には、弾性膜16中を進行する超音波の伝搬速度(弾性膜16中の音速)よりも、音響レンズ15中を進行する超音波の伝搬速度(音響レンズ15中の音速)が速くなるように、音響レンズ15および弾性膜16が選択される。このような弾性膜16としては、例えば天然ゴム(超音波の伝搬速度:1500m/s)、シリコーンゴム(超音波の伝搬速度:1000m/s)、PDMS(Polydimethylsiloxane、超音波の伝搬速度:900〜1000m/s)などを用いることができ、音響レンズ15としては、例えばシリコン(超音波の伝搬速度:8400m/s)、石英(超音波の伝搬速度:5900m/s)、ガラス(超音波の伝搬速度:4000〜5300m/s)、ナイロン(超音波の伝搬速度:2600m/s)、ポリスチレン(超音波の伝搬速度:2350m/s)、ポリエチレン(超音波の伝搬速度:1900m/s)などを用いることができる。
上述のように、X軸またはY軸に対して角度θ1で傾斜する傾斜平面151〜154に対して、超音波アレイ12から基板11に対して直交する方向に超音波が発信されると、その超音波は、図4に示すように、傾斜平面151〜154と弾性膜16との境界で屈折する。
この時、超音波は、音響レンズ15中の音速をC1、弾性膜16中の音速をC2とすると、スネルの法則に基づいて、上記した式(1)に示すように、傾斜平面151〜154の法線方向に対して、θ2の角度で屈折される。したがって、傾斜平面151〜154の法線方向に対してθ2の角度の方向に超音波反射体17が存在すれば、超音波アレイ12から発信された超音波が超音波反射体17に到達して反射されることになる。
弾性膜16は、上述のような支持膜14、超音波アレイ12を覆って形成される膜であり、第五超音波アレイ12Eの保護膜としても機能する。この弾性膜16としては、本実施形態では、例えばPDMS(PolyDiMethylSiloxane)を用いるが、これに限定されず、上述したように、音響レンズ15よりも、媒体中を伝搬する超音波の速度が小さい弾性を有する合成樹脂であればよい。また、弾性膜16の厚み寸法(基板11の表面から弾性膜16の表面までの寸法)としては、特に限定されないが、例えば300μmに形成されている。
この超音波反射体17は、図1〜図3に示すように、球体形状に形成されている。このような超音波反射体17では、超音波反射体17の中心点が超音波ビームのビーム径内に存在すれば、超音波反射体17の球面のいずれか一点の法線方向が、超音波ビームの進行方向と同一方向となり、その超音波を元の経路上に反射させることが可能となる。
図6は、触覚センサー1の概略構成を示すブロック図である。
制御部30は、図6に示すように、素子切替回路31と、送受信切替回路32と、送受信切替制御部33と、超音波信号発信回路34と、時間計測部35と、記憶部36と、演算処理部37と、を備えている。なお、素子切替回路31、送受信切替回路32、送受信切替制御部33、および超音波信号発信回路34により本発明の超音波発信制御部が構成される。
本実施形態の触覚センサー1では、1つの超音波アレイ12から超音波の送受信が実施されている間、他の超音波アレイ12への駆動信号の出力、および他の超音波アレイ12からの受信信号の受信は実施しない。これにより、駆動対象となった超音波アレイ12では、他の超音波アレイ12から発信された超音波を受信してしまい、ノイズが検出される不都合や、駆動対象以外の超音波アレイ12から受信信号が検出されてしまう不都合を回避できる。
この素子切替回路31は、例えば、各超音波アレイ12の下部電極線および上部電極線に接続される端子群を備え、送受信切替制御部33から入力される指令信号に基づいて、指令信号に対応する超音波アレイ12に対応した端子群と、送受信切替回路32とを接続する。また、駆動させない超音波アレイ12に対応した端子群は、例えば、下部電極線および上部電極線の双方をGNDに接続するなどすることで、駆動させない構成としてもよい。
具体的には、送受信切替制御部33から超音波発信モードに切り替える旨の制御信号が入力された場合、送受信切替回路32は、超音波信号発信回路34から入力された駆動信号を、センサー本体10の超音波アレイ12A〜12Eに出力可能なスイッチング状態に切り替わる。
一方、送受信切替回路32は、送受信切替制御部33から超音波受信モードに切り替える旨の制御信号が入力された場合、センサー本体10の超音波アレイ12A〜12Eから入力される受信信号を時間計測部35に出力可能なスイッチング状態に切り替わる。
具体的には、送受信切替制御部33は、例えば触覚センサー1の電源がON状態に切り替わると、まず、超音波発信モードに切り替える処理を実施する。この処理では、送受信切替制御部33は、送受信切替回路32に超音波発信モードに切り替える旨の制御信号を出力し、超音波信号発信回路34から駆動信号を出力させる旨の制御信号を出力する。また、送受信切替制御部33は、図示しない計時部(タイマー)により計測される時間を監視し、超音波発信モードから所定の発信時間経過後に、超音波受信モードに切り替える処理を実施する。ここで発信時間は、超音波アレイ12から例えば1〜2周波数のバースト波が発信される時間程度に設定されていればよい。超音波受信モードでは、送受信切替制御部33は、送受信切替回路32に超音波受信モードに切り替える旨の制御信号を出力して、送受信切替回路32を、超音波アレイ12から入力される受信信号を時間計測部35に入力可能な接続状態にスイッチングさせる。
具体的には、時間計測部35は、送受信切替制御部33が超音波発信モードに切り替える処理を実施した超音波発信タイミング、すなわち超音波アレイ12から超音波が発信されてからの時間をカウントする。なお、送受信切替制御部33は、超音波発信タイミングで、計時部でカウントされる時間をリセットする。そして、送受信切替制御部33が超音波受信モードに切り替える処理を実施し、超音波アレイ12で受信された反射超音波に応じた受信信号が送受信切替回路32から時間計測部35に入力されると、時間計測部35は、その入力されたタイミングでの時間(TOFデータ:Time Of Flightデータ)を取得する。また、取得したTOFデータは、演算処理部37に入力される。
具体的には、記憶部36には、弾性膜16のヤング率、弾性膜16における超音波の音速、演算処理部37により実施される各種プログラムなどが予め記憶される。また、演算処理部37で算出された各種データが記憶される構成などとしてもよい。さらに、記憶部36には、音響レンズ15の傾斜平面151〜154の基板11に対する傾斜角度θ1や、音響レンズ17により屈折される超音波の角度θ2が記録されてもよい。
応力算出部372は、移動量算出部371により算出された弾性膜16の歪み量と、記憶部36に予め記憶されている弾性膜16のヤング率とに基づいて、弾性膜16に作用する応力を算出する。
移動量算出部371の歪み量の算出方法(超音波反射体17の移動量算出方法)、および応力算出部372の応力算出方法の詳細については、後述する。
次に、上記のような触覚センサー1による、正圧力および剪断力の測定動作について、図7、図8に基づいて、詳細に説明する。なお、ここでは、超音波反射体17のY軸方向への移動量の検出、弾性膜16に作用するY軸方向への剪断力の検出は、X軸方向への移動量の検出、弾性膜16に作用するY軸方向への剪断力の検出と同様の処理により算出することができるため、ここでの説明は簡略する。
図7は、第一実施形態の触覚センサー1における応力算出処理のフローチャートである。図8は、図2に示す触覚センサー1において、弾性膜16に接触物Lが接触して弾性膜16が弾性変形した状態を示す断面図である。
この後、制御部30は、素子設定変数nに対応する超音波素子を駆動させてTOFデータを取得する処理を実施する。
これにより、時間計測部35は、受信信号が入力されると、タイマーの時間を取得、すなわち、超音波が、超音波アレイ12から発信されて超音波反射体17により反射されて超音波アレイ12に戻ってくるまでの時間(TOFデータ)を取得する(ステップS4)。また、時間計測部35は、取得したTOFデータを記憶部36に記憶させる。
ここで、記憶部36には、先に記憶されたTOFデータと、新たに記憶されたTOFデータとの比較処理を実施するために、取得したTOFデータを蓄積して記憶する。例えば、記憶部36には、ループm−1回目に取得したTOFデータと、ループm回目に取得したTOFデータとが記憶される。
ここで、制御部30は、素子設定変数nが4以下であると判断した場合、素子設定変数nに1を加算し(ステップS6)、ステップS2〜ステップS4の処理を繰り返し実施する。
また、記憶部36に記憶されたTOFデータに変動がない場合、すなわち、ループm−1回目のTOFデータと、ループm回目のTOFデータとの差が予め設定された閾値の範囲内である場合、制御部30は、再びステップS1〜ステップS5の処理(ループm+1回目の処理)を実施させる。
このように、取得したTOFデータに変動がある場合、触覚センサー1は、弾性膜16に接触部Lが接触して、図8に示すように、弾性膜16が弾性変形していることを意味する。
このステップS9では、以下のようにして超音波反射体17の移動量が算出される。
すなわち、超音波反射体17が初期位置P0に位置する状態でのTOFデータがT0であり、超音波反射体17が位置P1に移動した際のTOFデータがT1である場合、移動量算出部371は、次式によりTOFデータの変動量に対する移動量Mを算出する。なお、超音波アレイ12から発信された超音波が反射点171により反射されて発信元の超音波アレイ12に戻る経路は、超音波反射体17が初期位置に位置する状態と、超音波反射体17が移動位置に位置する場合とで異なるため、超音波が音響レンズ15内を通過する距離(時間)、弾性膜16内を通過する距離(時間)もそれぞれ異なるが、これら音響レンズ15内を通過する距離(時間)の差は極めて小さく、超音波反射体17の移動量の算出において無視できるものである。
ここで、超音波反射体17が球体であるので、上記したように、超音波反射体17の表面上の1点の反射点の法線方向が、1つの超音波アレイ12から発信された超音波の超音波反射体17への入射方向と同一となる。したがって、図2〜4に示すように、第一超音波アレイ12Aから発信された超音波の反射点を第一反射点171A、第二超音波アレイ12Bから発信された超音波の反射点を第二反射点171Bとすると、これらの反射点171A,171Bで反射された超音波がそれぞれ超音波発信元である超音波アレイ12A,12Bに最初に到達する。
図5は、図4において、超音波反射体の移動方向および移動量を示す図である。
超音波反射体17のXZ平面での移動ベクトル(XZ移動ベクトル(C))は、図4および図5に示すように、第一法線ベクトル(A)の第二反射点171Bの接線方向と同一方向で、第一法線ベクトル(A)のスカラ量をcos{90−2(θ1−θ2)}で除した大きさのスカラ量を有するベクトル(第一演算ベクトル(A´))、第二法線ベクトル(B)の第一反射点171Aの接線方向と同一方向で、第二法線ベクトル(B)のスカラ量をcos{90−2(θ1−θ2)}で除した大きさのスカラ量を有するベクトル(第二演算ベクトル(B´))の合成ベクトルで表され、以下のベクトル式が成立する。
また、移動量算出部371は、上記(3)式に示すベクトル式に基づいて、XZ移動ベクトル(C)を算出することで、超音波反射体17の移動後の座標位置を算出することができる。さらに、移動量算出部371は、このXZ移動ベクトル(C)を、X軸方向に沿う成分であるX剪断方向ベクトル(x)と、Z軸方向に沿う成分である正圧方向ベクトル(z)とに分解する。ここで、X剪断方向ベクトル(x)の絶対値が超音波反射体17のX軸方向に沿う移動量となり、弾性膜16のX軸方向への歪み量となる。また、正圧方向ベクトル(z)の絶対値が超音波反射体17のZ軸方向に沿う移動量となり、弾性膜16のZ軸方向への歪み量となる。
したがって、移動量算出部371は、第五超音波アレイ12Eから出力される受信信号により算出した超音波反射体17のZ軸方向の測定移動量と、式(2)に基づいて算出されたZ軸方向の算出移動量とを比較し、これらの差が予め設定された規定値以上となる場合、測定移動量をZ軸方向の移動量として設定する。また、この場合、移動量算出部371は、測定移動量に基づいた正圧方向ベクトル(z)を設定し、式(2)に基づいてX剪断方向ベクトル(x)を補正する処理をしてもよい。
そして、移動量算出部371は、YZ移動ベクトルをさらにZ軸方向成分の正圧方向ベクトルと、Y軸方向成分のY剪断方向ベクトルに分解する。この正圧方向ベクトルが弾性膜16のZ軸方向の歪み量となり、Y剪断方向ベクトルが弾性膜16のZ軸方向の歪み量となる。
そして、移動量算出部371は、算出された超音波反射体17の移動量を記憶部36に記憶する。
具体的には、応力算出部372は、記憶部36に記憶された弾性膜16のヤング率を読み出し、移動量算出部371により算出された弾性膜16のX軸方向への歪み量にヤング率を乗算することで、X軸方向への剪断力を算出する。
また、応力算出部372は、移動量算出部371により算出された弾性膜16のZ軸方向への歪み量にヤング率を乗算することで、正圧力を算出する。
同様にして、応力算出部372は、移動量算出部371により算出された弾性膜16のY軸方向への歪み量にヤング率を乗算することで、Y軸方向への剪断力を算出する。なお、XY平面での超音波反射体の移動量を算出した場合では、その移動量のヤング率を乗算することで、X軸方向の剪断力およびY軸方向の剪断力の合力を算出することもできる。
そして、応力算出部372は、算出された正圧力および剪断力を記憶部36に記憶する。
上述したように、上記第一実施形態の触覚センサー1では、センサー本体10と、センサー本体10を制御する制御部30とを備えている。また、センサー本体10は、基板11と、基板11上に設けられ、基板11に直交する方向に平面波として伝搬する超音波を発信する5つの超音波アレイ12(12A〜12E)と、これらの超音波アレイ12を覆う弾性膜16と、弾性膜16内に埋設される超音波反射体17とを備えるセンサー本体10を有し、超音波アレイ12A〜12D上には、発信した超音波を超音波反射体に向かって屈折させる音響レンズ15が設けられている。
このような構成の触覚センサーでは、各超音波アレイ12から得られるTOFデータの変動量に基づいて、超音波反射体の移動量および移動方向を検出することができ、これらの移動量と弾性膜16のヤング率を乗算することで、弾性膜16に作用する応力を算出することができる。
また、基板11上に超音波アレイ12、音響レンズ15、および弾性膜16を積層するだけの構成であるため、例えば立体的な剪断力検出構造体を設ける場合などに比べて、構成を簡単にでき、生産性を向上させることができ、生産コストをも低減させることができる。また、超音波アレイ12から発信される超音波を、音響レンズ15により超音波反射体17に向かう方向に屈折させ、進行方向を変更させているので、例えば超音波アレイ12を構成する各超音波素子20の超音波発信タイミングをずらして超音波の指向性を変更する等の処理が不要であり、信号遅延回路等の構成も不要となり、構成を簡単にできる。
このため、この超音波が受信されたタイミングでのTOFデータを取得することで、例えばXZ平面において、第一超音波アレイ12Aから発信される超音波の反射点である第一反射点171Aの法線方向への移動量である第一法線ベクトル(A)や、第二超音波アレイ12Bから発信される超音波の反射点である第二反射点171Bでの法線方向への移動量である第二法線ベクトル(B)を算出することができる。したがって、これらの第一法線ベクトル(A)および第二法線ベクトル(B)、超音波の入射角度θ1、射出角度θ2に基づいて、第一演算ベクトル(A´)、第二演算ベクトル(B´)を算出し、これらの第一演算ベクトル(A´)および第二演算ベクトル(B´)の合成ベクトルを算出するだけで、容易に超音波反射体17のXZ移動ベクトル(C)を算出することができる。
同様にして、YZ平面において、第三超音波アレイ12Cから発信される超音波の反射点である第三反射点の法線方向への移動量である第三法線ベクトルや、第四超音波アレイ12Dから発信される超音波の反射点である第四反射点の法線方向への移動量である第四法線ベクトルを算出することができ、容易に超音波反射体17のYZ移動ベクトルを算出することができる。
また、移動量算出部371は、これらのXZ移動ベクトル、YZ移動ベクトルを、正圧方向ベクトル(z)、X剪断力方向ベクトル(x)、Y剪断力方向ベクトルに分解することで、弾性膜16のZ軸方向の歪み量、X軸方向の歪み量、Y軸方向への歪み量を容易に算出することができる。
ここで、第五超音波アレイ12Eは、基板11に最も近接する位置に配置され、直上に音響レンズ15を介さずに超音波反射体17が配置されているので、他の超音波アレイ12A〜12Dに比べて、超音波反射体17までの距離は小さい。また、音響レンズ15を介さないことで、超音波の反射等による減衰がない。したがって、この第五超音波アレイ12Eでは、精度の高いTOFデータを取得することができる。このような高精度のTOFデータを用いて、超音波反射体17のZ軸方向の移動量を測定することで、高精度に移動量を測定することができる。
また、このような高精度に測定されたZ軸方向の移動量に基づいて、超音波反射体17のXY剪断方向の移動量を補正することもでき、より精度の高い測定を実施することができる。
このような触覚センサー1では、上述したように、時間計測部35により取得されたTOFデータに基づいて、超音波反射体17の各反射点の法線方向の移動量である法線ベクトルを算出でき、これらの法線ベクトル、超音波の入射角度θ1、射出角度θ2を用いて算出された演算ベクトルに基づいて超音波反射体17のZ軸方向への移動量、X軸方向への移動量、Y軸方向への移動量、すなわち弾性膜16のXYZ各軸方向の歪み量をそれぞれ容易に算出することができる。
次に、本発明の第二実施形態の触覚センサー1について、図面に基づいて説明する。
上記第一実施形態では、球体形状の超音波反射体17を用いる例を示したが、第二実施形態では、超音波反射体として、多面体形状のものを用いる構成を例示する。図9は、第二実施形態における触覚センサー1Aの断面図である。なお、第二実施形態以降の説明にあたり、第一実施形態と同一の構成については、同符号を付し、その説明を省略または簡略する。
このような多面体形状の超音波反射体17Aでは、各反射面172のうち、超音波アレイ12から発信され、音響レンズ15により屈折させられた超音波の入射方向に直交する反射面172が、当該超音波を発信元の超音波アレイ12に反射させる。したがって、第一実施形態の超音波反射体17に比べて、超音波アレイ12に反射超音波を返す面積が大きくなり、超音波アレイ12で受信される超音波の音圧も大きく、受信信号も増大する。
これに対して、超音波反射体17Aを構成する反射面が多いほど、球体形状に近づき、超音波を反射する面積が小さくなるが、弾性膜16の歪みにより超音波反射体17Aが回転した場合でも、他の反射面172が超音波の入射方向に対して直交する反射面となる可能性が高く、検出精度が低下を抑えることができる。
したがって、超音波反射体17Aの反射面の数としては、弾性膜16のヤング率等により決定されることが好ましく、例えば弾性膜16が柔らかく、超音波反射体17Aが回転しやすい場合では、反射面の数を多くした超音波反射体17Aを設ける構成とすればよい。
上記第二実施形態の触覚センサー1Aでは、超音波反射体17Aとして、複数の反射面172により構成される多面体形状に形成されている。このような構成では、超音波の反射面積を増大させることができ、超音波発信元の超音波アレイ12に反射される超音波の音圧が大きくなり、受信信号の検出精度を向上させることができる。
次に、本発明の第三実施形態の触覚センサーについて、図面に基づいて説明する。
図10は、第三実施形態の触覚センサー1Bの一部を示す断面図である。
上記第一実施形態の触覚センサー1では、音響レンズ15は、基板11に対して角度θ1で傾斜する傾斜平面151〜154を備える構成を例示したが、第三実施形態の音響レンズ15Aは、傾斜平面151〜154の代わりに凹曲面155が形成されている。
したがって、この音響レンズ15Aでは、図10に示すように、超音波の入射位置によって、それぞれ接線方向が異なり、全体として、一点に収束するように超音波が伝搬する。そして、触覚センサー1Bでは、この超音波の収束点に超音波反射体17が設けられている。また、凹曲面155の曲率としては、例えば、超音波が超音波反射体17の中心点で収束するように設定してもよく、超音波が反射点171で収束するように設定してもよい。
このような第三実施形態の触覚センサー1Bでは、音響レンズ15Aは、凹曲面155を有し、この凹曲面155により超音波アレイ12から発信された超音波の進行方向が、一点に収束するように屈折させられる。したがって、超音波の収束点に超音波反射体17が設けられていれば、超音波反射体17により反射される超音波の強度も増大し、受信強度を向上させることができる。
次に、本発明の第四実施形態について、図面に基づいて説明する。
図11は、第四実施形態の触覚センサー1Cの一部を示す断面図である。
上記第三実施形態の触覚センサー1Bでは、音響レンズ15Aは、超音波アレイ12に対向する凹曲面155が形成される例を示したが、第四実施形態の触覚センサー1Cでは、音響レンズ15Bには、超音波アレイ12に対向する凸曲面156が形成されている。
したがって、この音響レンズ15Aでは、図11に示すように、超音波アレイ12から発信された超音波は、広い範囲に拡散して伝搬する。
このような第四実施形態の触覚センサー1Cでは、音響レンズ15Bは、凸曲面156を有し、この凸曲面156により超音波アレイ12から発信された超音波の進行方向が、拡散するように屈折させられる。したがって、弾性膜16の歪み量が大きく、超音波反射体17の移動量が大きい場合でも、拡散された超音波により超音波反射体17の位置、移動量、および移動方向を算出することができる。
次に、本発明の第五実施形態の触覚センサーについて、図面に基づいて説明する。
図12は、第五実施形態の触覚センサーにおけるセンサーアレイの構成を示す図である。図13は、図12におけるセンサーアレイ10A(超音波センサー)のうち、互いに隣接する2つのセンサー本体10の断面構造を示した断面図である。なお、上述した実施形態と同様の構成については、同符号を付し、その説明を省略する。
第五実施形態の触覚センサー1Dは、第一実施形態のセンサー本体10を、X軸方向およびY軸方向に沿って均等に配置したアレイ構造を有するセンサーアレイ10Aを備えている。
そして、センサーアレイ10Aの互いに隣り合うセンサー本体10の間には、近接検出用超音波素子40が設けられている。
このような触覚センサー1Bでは、センサーアレイ10Aの直上に接触物Lが近接すると、近接検出用超音波素子40から発信された超音波は、接触物Lで反射され、近接検出用超音波素子40で受信される。
制御部30Aは、図14に示すように、第一実施形態の各構成に加え、演算処理部37は、距離算出部373を備えている。
この距離算出部373は、近接検出用超音波素子40から出力される受信信号に基づいて、時間計測部35でTOFデータが取得されると、このTOFデータに基づいて、センサーアレイ10Aと接触物Lとの距離を算出する。具体的には、制御部30の記憶部36には、空気中の音速が予め記憶されており、時間計測部35は、取得したTOFデータと記憶部36から読み出した空気中の音速とに基づいて、センサーアレイ10Aと接触物Lとの距離を算出する。
そして、送受信切替制御部33は、応力算出部372により算出される応力(正圧力および剪断力)が「0」になったと判断すると、再び待機モードに移行させ、超音波アレイ12を停止させて、近接検出用超音波素子40を駆動させる。
上記第五実施形態の触覚センサー1Dでは、上記第一実施形態の作用効果に加え、次の効果を奏することができる。すなわち、触覚センサー1Bは、複数のセンサー本体10をアレイ状に配設したセンサーアレイ10Aを備える。このため、複数のセンサー本体10により広範囲に亘って正圧力および剪断力の検出を実施することができる。
さらに、制御部30Aには距離算出部373が設けられているので、近接検出用超音波素子40から出力される受信データに基づいて計測されるTOFデータを用いて、センサーアレイ10Aから接触物Lまでの距離を算出することができる。
次に、上述した触覚センサー1,1A,1B,1C,1Dを用いた装置の応用例として、触覚センサー1Dを備えた把持装置について、図面に基づいて説明する。
図15において、把持装置50は、少なくとも一対の把持アーム51を備え、この把持アーム51により、把持対象物Zを把持する装置である。この把持装置50としては、例えば製品を製造する製造工場などにおいて、ベルトコンベアーなどにより搬送された対象物を把持して持ち上げる装置である。そして、この把持装置50は、前記把持アーム51と、把持アーム51を駆動するアーム駆動部52と、アーム駆動部52の駆動を制御する制御装置54と、を備えて構成されている。
保持部材55は、例えば把持アーム51の移動方向に沿う案内溝を備え、この案内溝内で把持アーム51を保持することで、把持アーム51を移動可能に保持する。また、保持部材55は、鉛直方向に移動可能に設けられている。
駆動源56は、例えば駆動モーターであり、制御装置54から入力される駆動制御信号に応じて駆動力を発生させる。
駆動伝達部58は、例えば複数のギアにより構成され、駆動源56で発生した駆動力を把持アーム51および保持部材55に伝達させ、把持アーム51および保持部材55を移動させる。
なお、本実施形態では、一例として上記構成を示したが、これに限定されるものではない。すなわち、把持アーム51を保持部材55の案内溝に沿って移動させる構成に限らず、把持アームを回動可能に保持する構成などとしてもよい。駆動源56としても駆動モーターに限られず、例えば油圧ポンプなどにより駆動される構成としてもよく、駆動伝達部58としても、例えば駆動力を歯車により伝達する構成に限らず、ベルトやチェーンにより伝達する構成、油圧などにより駆動されるピストンを備えた構成などとしてもよい。
具体的には、制御装置54は、図15に示すように、アーム駆動部52および触覚センサー1Bに接続され、把持装置50の全体動作を制御する。この制御装置54は、触覚センサー1Bから入力される剪断力検出信号、および正圧力検出信号を読み取る信号検出手段541、対象物Zの滑り状態を検出する把持検出手段542、およびアーム駆動部52に把持アーム51の駆動を制御するための駆動制御信号を出力する駆動制御手段543を備えている。また、この制御装置54としては、例えばパーソナルコンピューターなどの汎用コンピューターを用いることもでき、例えばキーボードなどの入力装置や、対象物Zの把持状態を表示させる表示部などを備える構成としてもよい。
また、信号検出手段541、把持検出手段542、および駆動制御手段543は、プログラムとして例えばメモリーなどの記憶部に記憶され、CPUなどの演算回路により適宜読み出されて実行されるものであってもよく、例えばICなどの集積回路により構成され、入力された電気信号に対して所定の処理を実施するものであってもよい。
ここで、図16に、把持装置50の把持動作における触覚センサーに作用する正圧力および剪断力の関係を示す図を示す。
図16において、正圧力が所定値に達するまでは、正圧力の増加に応じて剪断力が増加する。この状態は、対象物Zと把持面53との間に動摩擦力が作用している状態であり、把持検出手段542は、対象物Zが把持面53から滑り落ちている滑り状態で、把持が未完了であると判断する。一方、正圧力が所定値以上となると、正圧力を増大させても剪断力が増加しない状態となる。この状態は、対象物Zと把持面53との間に静摩擦力が作用している状態であり、把持検出手段542は、対象物Zが把持面53により把持された把持状態であると判断する。
具体的には、剪断力検出信号の値が、静摩擦力に対応した所定の閾値を越える場合に、把持が完了したと判断する。
図17は、制御装置54の制御による把持装置50の把持動作を示すフローチャートである。図18は、把持装置50の把持動作時において、アーム駆動部52への駆動制御信号、触覚センサー1Bから出力される検出信号の発信タイミング示すタイミング図である。
駆動制御手段543は、把持検出手段542において、正圧力検出信号を検出すると、把持アーム51の近接移動(対象物Zへの押圧)を停止させる(図17:ステップS13、図18:タイミングT2)。また、駆動制御手段543は、アーム駆動部52に駆動制御信号を出力し、把持アーム51を上方に持ち上げる動作(持上げ動作)を実施させる(図17:ステップS14、図18:タイミングT2〜T3)。
把持検出手段542は、信号検出手段541に入力される剪断力検出信号に基づいて、滑りがあるか否かを判断する(ステップS15)。
すなわち、制御装置54は、図18におけるタイミングT3において、駆動制御手段543にて把持動作を実施させ、対象物Zへの正圧力を増大させ、信号検出手段541にて、再び触覚センサー1Bから出力される剪断力検出信号を検出する。以上のような滑り検知動作(タイミングT2〜T6)を繰り返し、剪断力検出信号が、所定の閾値A1以上となった場合(タイミングT6)に、ステップS5において、滑りがない、すなわち把持が完了したと判断し、滑り検知動作を停止させる。
上述したような第六実施形態の把持装置50では、上記第五実施形態の触覚センサー1Dを備えている。このような触覚センサー1Dは、上述したように、任意位置における剪断力および正圧力を容易に精度よく検出することができるものであるため、把持装置50においても精度の高い剪断力検出信号および正圧力検出信号に基づいて、正確な把持動作を実施することができる。
また、このような触覚センサー1Dでは、X方向およびY方向の双方に対して剪断力を検出することができる。したがって、第六実施形態では、対象物Zを持ち上げる際の剪断力を測定したが、例えばベルトコンベアー上で搬送される対象物に対して把持を実施する際に、搬送方向への剪断力をも測定することができる。
上記第四実施形態では、触覚センサー1Dが設けられた把持装置を例示したが、これに限定されない。
第七実施形態では、触覚センサー1,1A,1B,1C,1Dを用いた装置の他の応用例として、触覚センサー1Dを備えたアイロンについて、図面に基づいて説明する。
図19は、第七実施形態のアイロンの概略構成を示すブロック図である。
ベース部62は、対象布地に接触して、対象布地の皺を伸ばす部分であり、ヒーター61により加熱される。そして、このベース部62の一部には、図19に示すように、触覚センサー1Aが設けられ、触覚センサー1Aの弾性膜15が、対象布地に接触可能に露出されている。
また、ベース部62には、温度センサー63が設けられており、この温度センサー63は、ベース部62の温度を検出してヒーター駆動回路64に出力する。
このヒーター駆動回路64としては、例えばCPU等の演算回路や、記憶回路を備えたコンピューターとして構成され、布地判別部643や温度制御部644が、演算回路による演算処理により実行されるソフトウェアとして機能される構成としてもよく、例えばICなどの集積回路により構成され、入力された電気信号に対して所定の処理を実施するものであってもよい。
また、メモリー641には、粗さ値に対応したベース部62の最適温度が記録された粗さ−温度データが記憶されていてもよい。
例えば、本実施形態では、応力−粗さ値データとして、正圧力毎に、剪断力に対応する粗さが記憶されている。この場合では、布地判別部643は、正圧力に対応した応力−粗さ値データをメモリー641から読み出し、この応力−粗さ値データから剪断力に対応した粗さ値を取得する。
そして、布地判別部643は、取得した粗さ値を温度制御部644に出力する。
具体的には、温度制御部644は、メモリー641から粗さ−温度データを読み出し、布地判別部643から入力された粗さ値に応じたベース部62の最適温度を取得する。そして、温度制御部644は、温度センサー63から入力された検出温度と最適温度との差分値から、ベース部62を最適温度に設定するために必要なヒーター61への印加電圧値を算出して、ヒーター61に印加する。
次に、上記のようなアイロン60の動作について説明する。
図20は、第七実施形態のアイロンの動作を示すフローチャートである。
利用者によりアイロン60に電力が供給されると、触覚センサー1Aの近接検出用超音波素子40が駆動される。これにより、上記第三実施形態において説明したように、触覚センサー1Aは、対象布地と触覚センサー1A(ベース部62)との距離を算出する。そして、対象布地とベース部62との距離が予め設定された距離以内になると、触覚センサー1Aは、駆動モードに移行する(ステップS21)。
つまり、正圧力の大きさは、利用者がアイロン60を対象布地に押し付ける強さにより変化するため、正圧力のみでは対象布地の種別を判別することはできない。したがって、剪断力の大きさが0である場合は、継続してステップS23の処理を実行する。
一方、ステップS23により、剪断力検出信号により検出された剪断力の大きさが0より大きい場合、布地判別部643は、メモリー641から、正圧力に対応した応力−粗さ値データを読み出し、剪断力に対応した粗さ値を取得する(ステップS24)。
さらに、温度制御部644は、温度センサー63により検出された検出温度と、ステップS25により設定された最適温度との差分値から、ベース部62を最適温度に設定するために必要なヒーター61への印可電圧値を算出し、ヒーター61にその電圧値を印可する(ステップS26)。
これにより、アイロン60は、対象布地の種別に応じて、ベース部62の温度を、自動で設定することが可能となる。
上述したような第七実施形態のアイロン60では、上記第三実施形態の触覚センサー1Aを備えている。このような触覚センサー1Aは、上述したように、任意位置における剪断力および正圧力を容易に精度よく検出することができるものであるため、アイロン60においても、ベース部62に対象布地が接触した際の正圧力および剪断力を高精度で検出することができる。
また、相関データとして、正圧力および剪断力に対応したベース部62の最適温度が記憶された応力−温度データが記憶されていてもよく、この場合では、粗さ−温度データを記憶する必要がなくなり、より少ないデータ量で、ベース部62の温度を自動で設定可能なアイロン60を提供することができる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
ただし、上述したように、弾性膜16の歪みにより超音波反射体に回転が生じた場合、反射超音波が正しく発信元の超音波アレイ12に反射されない場合があり、受信信号が小さくなる。この場合、制御部30における回路構成が複雑化するが、例えば各超音波アレイ12を構成する超音波素子20に駆動電圧を印可するタイミングを遅延させる遅延回路を設けるなどして、各超音波アレイ12から発信される超音波の発信方向を変更するなどしてもよい。
さらに、検出対象となる剪断力の方向が予め決まっており、その方向が3方向以上である場合、これらの各方向に対してそれぞれ一対の超音波アレイ12を設ける構成としてもよい。
例えば、センサー平面視において、例えば平面視において、超音波アレイ12から発信される超音波のビーム径に相当する面積および形状を有した1つの超音波素子により、超音波トランスデューサーが形成される構成としてもよい。この場合、超音波素子として、メンブレン141上に、膜状の圧電体が設けられた構成としてもよく、メンブレン141上にバルク状の圧電体が設けられた構成などとしてもよい。
また、接触物判別部として、メモリー641に記憶された応力−粗さデータに基づいて、布地の種別(粗さ値)を判別する布地判別部643を例示したが、これに限らない。例えば、触覚センサー1,1Aを、パン製造装置に設け、パン生地の柔らかさ(捏ね状態)を判断する接触物判別部を設ける構成としてもよい。この場合、接触部判別部は、パン生地に対して加えた応力と、その応力に対して最適弾性力との関係データをメモリーに記憶する。そして、接触物判別部は、触覚センサー1,1Aで検出された正圧力や剪断力が、最適弾性力を中心とした所定閾値以内であれば、捏ね状態が最適であると判断する。このような構成のパン製造装置では、パン生地の捏ね状態を一定に維持することができ、安定した品質のパン生地を製造することができる。
Claims (11)
- 基板と、
前記基板上に設けられ、前記基板の表面に対して直交する方向に平面波として伝搬する超音波を発信する超音波トランスデューサーと、
前記超音波トランスデューサー上に配置され、前記超音波トランスデューサーから発信された超音波を屈折させる音響屈折部と、
前記音響屈折部上に設けられる弾性変形可能な弾性膜と、
前記弾性膜の内部に設けられ、超音波を反射可能な超音波反射体と、
を備え、
前記音響屈折部は、前記超音波トランスデューサーから発信された超音波を前記超音波反射体に向かって屈折させるものであり、
前記基板上には、
前記弾性膜、前記超音波反射体、前記超音波トランスデューサー、および前記音響屈折部により構成されたセンサー本体が複数アレイ状に配置され、
前記基板上の隣り合う前記センサー本体の間には、空気中に超音波を発信するとともに、接触物にて反射された超音波を受信する近接検出用超音波素子が設けられた
ことを特徴とする超音波センサー。 - 請求項1に記載の超音波センサーにおいて、
前記超音波反射体は、球体である
ことを特徴とする超音波センサー。 - 請求項1に記載の超音波センサーにおいて、
前記超音波反射体は、複数の反射面を有する多面体である
ことを特徴とする超音波センサー。 - 請求項1から請求項3のいずれかに記載の超音波センサーにおいて、
前記音響屈折部は、前記超音波トランスデューサーから発信される超音波の進行上に、前記基板の表面に対して傾斜する傾斜平面を備え、
前記傾斜平面は、
前記傾斜平面の法線方向と、前記超音波トランスデューサーから発信される超音波の発信方向との成す角度をθ1、前記傾斜平面の法線方向と、当該傾斜平面から超音波反射体に向かう方向との成す角度をθ2、前記音響屈折部内の音速をC1、前記弾性膜内の音速をC2とした場合、(sinθ1)/C1=(sinθ2)/C2の関係を満たす傾斜角度に形成された
ことを特徴とする超音波センサー。 - 請求項1から請求項3のいずれかに記載の超音波センサーにおいて、
前記音響屈折部は、前記超音波トランスデューサーから発信される超音波の進行上に、凹曲面を備え、
前記凹曲面は、前記超音波を前記超音波反射体に向かって収束させる曲率に形成された
ことを特徴とする超音波センサー。 - 請求項1から請求項3のいずれかに記載の超音波センサーにおいて、
前記音響屈折部は、前記超音波トランスデューサーから発信される超音波の進行上に、凸曲面を備えた
ことを特徴とする超音波センサー。 - 請求項1から請求項6のいずれかに記載の超音波センサーと、
前記超音波センサーの前記超音波トランスデューサーの超音波の発信および受信を制御する制御部と、
を備えたことを特徴とする触覚センサー。 - 請求項7に記載の触覚センサーにおいて、
前記制御部は、
前記超音波トランスデューサーから超音波を発信させる超音波発信制御部と、
前記超音波トランスデューサーの超音波の発信タイミングから、前記超音波反射体により反射された超音波が前記超音波トランスデューサーにより受信される受信タイミングまでの時間を計測する時間計測部と、
前記時間計測部により計測された時間に基づいて、前記超音波反射体の移動量および移動方向を算出する移動量算出部と、
を備えたことを特徴とする触覚センサー。 - 請求項8に記載の触覚センサーにおいて、
前記制御部は、
前記移動量算出部により算出された前記超音波反射体の移動量および移動方向と、前記弾性膜のヤング率とに基づいて、前記弾性膜に作用する応力を算出する応力算出部を備える
ことを特徴とする触覚センサー。 - 請求項9に記載の触覚センサーにおいて、
前記弾性膜に作用する応力に対する、前記弾性膜に接触した前記接触物の状態が記録された相関データを記憶する記憶部と、
前記応力算出部により算出された前記応力と、前記相関データに基づいて、前記接触物の状態を判別する接触物判別部と、
を備えたことを特徴とする触覚センサー。 - 請求項7から請求項10のいずれかに記載の触覚センサーを備え、対象物を把持する把持装置であって、
前記対象物を把持するとともに、前記対象物に接触する接触面に前記触覚センサーが設けられる少なくとも一対の把持アームと、
前記触覚センサーから出力される信号に基づいて、前記対象物のすべり状態を検出する把持検出手段と、
前記すべり状態に基づいて、前記把持アームの駆動を制御する駆動制御手段と、
を備えることを特徴とする把持装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011000977A JP5678670B2 (ja) | 2011-01-06 | 2011-01-06 | 超音波センサー、触覚センサー、および把持装置 |
US13/332,794 US9127999B2 (en) | 2011-01-06 | 2011-12-21 | Ultrasonic sensor, tactile sensor, grasping apparatus, and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011000977A JP5678670B2 (ja) | 2011-01-06 | 2011-01-06 | 超音波センサー、触覚センサー、および把持装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012141256A JP2012141256A (ja) | 2012-07-26 |
JP2012141256A5 JP2012141256A5 (ja) | 2014-02-13 |
JP5678670B2 true JP5678670B2 (ja) | 2015-03-04 |
Family
ID=46454194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011000977A Expired - Fee Related JP5678670B2 (ja) | 2011-01-06 | 2011-01-06 | 超音波センサー、触覚センサー、および把持装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9127999B2 (ja) |
JP (1) | JP5678670B2 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5990929B2 (ja) | 2012-02-24 | 2016-09-14 | セイコーエプソン株式会社 | 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波診断装置 |
WO2014018116A1 (en) * | 2012-07-26 | 2014-01-30 | Changello Enterprise Llc | Ultrasound-based force sensing and touch sensing |
WO2014018115A1 (en) | 2012-07-26 | 2014-01-30 | Changello Enterprise Llc | Ultrasound-based force sensing of inputs |
WO2014018121A1 (en) | 2012-07-26 | 2014-01-30 | Changello Enterprise Llc | Fingerprint-assisted force estimation |
WO2014035479A2 (en) | 2012-08-30 | 2014-03-06 | Changello Enterprise Llc | Auto-baseline determination for force sensing |
CN208212011U (zh) * | 2016-08-31 | 2018-12-11 | 北京先通康桥医药科技有限公司 | 一种电容式mems传感器阵列 |
JP6991791B2 (ja) | 2017-08-25 | 2022-01-13 | キヤノン株式会社 | 複合センサ |
WO2019187546A1 (ja) * | 2018-03-27 | 2019-10-03 | ソニー株式会社 | 制御装置、制御方法、および、プログラム |
JP7259247B2 (ja) * | 2018-09-28 | 2023-04-18 | セイコーエプソン株式会社 | 制御装置、ロボットシステム、及びロボット |
US11333634B2 (en) | 2019-10-23 | 2022-05-17 | Industrial Technology Research Institute | Signal sensing module and ultrasonic probe using the same |
US11772262B2 (en) | 2019-10-25 | 2023-10-03 | Dexterity, Inc. | Detecting slippage from robotic grasp |
US11607816B2 (en) | 2019-10-25 | 2023-03-21 | Dexterity, Inc. | Detecting robot grasp of very thin object or feature |
JP7297696B2 (ja) * | 2020-01-27 | 2023-06-26 | 株式会社東芝 | 検出装置及び収束部材 |
JP7546272B2 (ja) | 2020-05-07 | 2024-09-06 | 株式会社ブイ・テクノロジー | テンション計測装置とテンション計測方法 |
CN114101201B (zh) * | 2021-11-04 | 2022-07-08 | 江苏理工学院 | 一种自动识别并分类汽车零部件的清洗装置及方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6034295A (ja) * | 1983-08-03 | 1985-02-21 | 株式会社日立製作所 | 皮膚感覚センサ |
US4555953A (en) * | 1984-04-16 | 1985-12-03 | Paolo Dario | Composite, multifunctional tactile sensor |
JPS61207938A (ja) * | 1985-03-13 | 1986-09-16 | Tokyo Univ | 音弾性被膜を用いた応力測定方法 |
US5553500A (en) * | 1994-10-26 | 1996-09-10 | Bonneville Scientific Incorporated | Triaxial normal and shear force sensor |
JP3871293B2 (ja) | 1999-03-10 | 2007-01-24 | 学校法人慶應義塾 | ハンド又はマニピュレータによる物体把持制御方法 |
DE60239013D1 (de) * | 2001-11-14 | 2011-03-03 | Toshiba Kk | Ultrasonograph mit berechnung der brechung von ultraschallwellen |
FR2858406B1 (fr) * | 2003-08-01 | 2005-10-21 | Centre Nat Rech Scient | Capteur, dispositif et procede visant a mesurer la pression d'interface entre deux corps |
JP4035515B2 (ja) * | 2004-05-18 | 2008-01-23 | ミネベア株式会社 | 光学式変位センサおよび外力検出装置 |
JP4876240B2 (ja) * | 2005-01-28 | 2012-02-15 | 国立大学法人 東京大学 | 触覚センサ及びその製造方法 |
JP4708979B2 (ja) | 2005-11-28 | 2011-06-22 | ニッタ株式会社 | 光学式触覚センサ |
JP2009053040A (ja) * | 2007-08-27 | 2009-03-12 | Jtekt Corp | 超音波センサおよびセンサ付き転がり軸受装置 |
US7804742B2 (en) * | 2008-01-29 | 2010-09-28 | Hyde Park Electronics Llc | Ultrasonic transducer for a proximity sensor |
JP5293557B2 (ja) | 2008-12-17 | 2013-09-18 | セイコーエプソン株式会社 | 超音波トランスデューサー、超音波トランスデューサーアレイ及び超音波デバイス |
JP5206432B2 (ja) | 2009-01-13 | 2013-06-12 | セイコーエプソン株式会社 | 検出装置及び電子機器 |
JP5499479B2 (ja) | 2009-01-13 | 2014-05-21 | セイコーエプソン株式会社 | 電子機器 |
JP5434109B2 (ja) | 2009-02-06 | 2014-03-05 | セイコーエプソン株式会社 | 超音波センサーユニット |
JP5310119B2 (ja) | 2009-03-06 | 2013-10-09 | セイコーエプソン株式会社 | 超音波センサーユニット |
JP5177033B2 (ja) | 2009-03-18 | 2013-04-03 | セイコーエプソン株式会社 | 入力装置、及び電子機器 |
JP2010244119A (ja) | 2009-04-01 | 2010-10-28 | Seiko Epson Corp | 入力補助装置、及び入力装置 |
JP2011104472A (ja) | 2009-11-13 | 2011-06-02 | Seiko Epson Corp | 超音波洗浄装置、及び超音波洗浄装置の洗浄方法 |
JP5445065B2 (ja) * | 2009-11-25 | 2014-03-19 | セイコーエプソン株式会社 | 剪断力検出素子、触覚センサー、および把持装置 |
JP6089499B2 (ja) * | 2012-08-28 | 2017-03-08 | セイコーエプソン株式会社 | 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波診断装置 |
-
2011
- 2011-01-06 JP JP2011000977A patent/JP5678670B2/ja not_active Expired - Fee Related
- 2011-12-21 US US13/332,794 patent/US9127999B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20120174672A1 (en) | 2012-07-12 |
US9127999B2 (en) | 2015-09-08 |
JP2012141256A (ja) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5678670B2 (ja) | 超音波センサー、触覚センサー、および把持装置 | |
JP5678669B2 (ja) | 超音波センサー、触覚センサー、および把持装置 | |
US11107858B2 (en) | Ultrasonic sensing device | |
EP3453056B1 (en) | A piezoelectric micromachined ultrasonic transducer (pmut) | |
US10632500B2 (en) | Ultrasonic transducer with a non-uniform membrane | |
US11835400B2 (en) | Force-measuring device testing system, force-measuring device calibration system, and a method of calibrating a force-measuring device | |
JP5776334B2 (ja) | 応力検出素子、センサーモジュール、電子機器、及び把持装置 | |
JP5499938B2 (ja) | 超音波センサー、測定装置、プローブ、および測定システム | |
US8359931B2 (en) | Shear force detection device, tactile sensor and grasping apparatus | |
JP6991791B2 (ja) | 複合センサ | |
US20110319768A1 (en) | Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device | |
JP2012141256A5 (ja) | ||
WO2020263579A1 (en) | Ultrasonic sensor array | |
US20200134280A1 (en) | Fingerprint Sensor | |
US10239212B2 (en) | Ultrasonic tactile sensor for detecting clamping force | |
WO2010074045A1 (ja) | 把持部を有するロボットハンドシステム | |
JP2012141255A5 (ja) | ||
JP5655925B2 (ja) | 応力検出素子、触覚センサー、および把持装置 | |
KR20170136674A (ko) | 유연 혈류속도 측정장치 | |
Chuang et al. | Ultrasonic tactile sensor integrated with TFT array for contact force measurements | |
JP2013036760A (ja) | 触覚センサー素子、触覚センサー装置、把持装置および電子機器 | |
JP2014100590A (ja) | 超音波プローブ、超音波センサー、測定装置、および測定システム | |
US20230408367A1 (en) | Method of evaluating natural frequency of piezoelectric vibrator, method of driving transducer, signal transmitting/receiving device, and drive system | |
JP2022181869A (ja) | 感圧センサ、ロボット | |
US20230375436A1 (en) | Method of evaluating natural frequency of piezoelectric vibrator, method of driving transducer, signal transmitting/receiving device, and drive system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131217 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5678670 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |