[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5141982B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP5141982B2
JP5141982B2 JP2009089005A JP2009089005A JP5141982B2 JP 5141982 B2 JP5141982 B2 JP 5141982B2 JP 2009089005 A JP2009089005 A JP 2009089005A JP 2009089005 A JP2009089005 A JP 2009089005A JP 5141982 B2 JP5141982 B2 JP 5141982B2
Authority
JP
Japan
Prior art keywords
voltage
duty ratio
period
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009089005A
Other languages
English (en)
Other versions
JP2010246183A (ja
Inventor
祐一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009089005A priority Critical patent/JP5141982B2/ja
Publication of JP2010246183A publication Critical patent/JP2010246183A/ja
Application granted granted Critical
Publication of JP5141982B2 publication Critical patent/JP5141982B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、スイッチング素子をスイッチングさせることによって電圧を変換する、複数の電圧変換回路を備えた電源装置に関する。
従来、スイッチング素子をスイッチングさせることによって電圧を変換する、複数の電圧変換回路を備えた電源装置として、例えば特許文献1に開示されているコンバータ電源回路がある。
このコンバータ電源回路は、複数のチョッパ回路と、駆動回路とを備えている。チョッパ回路は、スイッチングトランジスタを有し、このスイッチングトランジスタをスイッチングさせることで、入力された直流電圧を昇圧して出力する回路である。チョッパ回路は、並列接続されている。具体的には、入力端子及び出力端子が、それぞれの共通接続されている。駆動回路は、チョッパ回路のスイッチングトランジスタをスイッチングさせるための所定周波数の駆動信号を出力する回路である。駆動回路は、複数のチョッパ回路のそれぞれのスイッチングトランジスタに接続されている。駆動回路は、チョッパ回路の出力電圧が所定電圧となるように、一定周波数で、かつ、互いの位相差が所定位相差となる駆動信号を、それぞれのスイッチングトランジスタに対して出力する。これにより、スイッチングに伴うノイズの周波数スペクトラムにおいて、ピークとなる周波数を、駆動信号の周波数と、駆動信号の所定位相差によって決まる周波数に分散させることができる。そのため、全体としてピーク値を低下させることができる。従って、スイッチングに伴うノイズを抑えることができる。
特開2006−187140号公報
ところで、スイッチングに伴うノイズは、出力電流の変動によって発生する。しかし、前述したコンバータ電源装置では、駆動信号のオンデューティ比が変化すると、出力電流の変動量も変化する。つまり、駆動信号のオンデューティ比によってスイッチングに伴うノイズが変化してしまう。これでは、スイッチングに伴うノイズを充分に抑えることができないという問題があった。
本発明はこのような事情に鑑みてなされたものであり、駆動信号のオンデューティ比に係わらず、スイッチングに伴うノイズを充分に抑えることができる電源装置提供することを目的とする。
そこで、本発明者は、この課題を解決すべく鋭意研究し試行錯誤を重ねた結果、スイッチング素子のオンデューティ比に対する出力電圧特性がオンデューティ比0.5に対して対称な電圧変換回路を用い、オンデューティ比を適切に調整することで出力電流の変動が打消され、駆動信号のオンデューティ比に係わらず、スイッチングに伴うノイズを充分に抑えられることを思いつき、本発明を完成するに至った。
すなわち、請求項1に記載の電源装置は、スイッチング素子を有し、スイッチング素子をスイッチングさせることによって、入力された電圧を異なる電圧に変換して出力する、出力が共通接続された複数の電圧変換回路と、複数の電圧変換回路のそれぞれのスイッチング素子に接続され、スイッチング素子をスイッチングするための所定周波数の駆動信号を、それぞれのスイッチング素子に対して出力する駆動回路と、を備えた電源装置において、電圧変換回路は、2つを1組として1組以上設けられ、駆動信号のオンデューティ比に対する出力電圧特性がオンデューティ比0.5に対して対称な、互いに同一の特性を有し、駆動回路は、各組毎に、各組の一方の電圧変換回路に対して、オンデューティ比D(0<D<1)の駆動信号を出力し、各組の他方の電圧変換回路に対して、オンデューティ比(1−D)の駆動信号を、そのオン期間及びオフ期間がオンデューティ比Dの駆動信号のオフ期間及びオン期間とそれぞれ一致するように位相を調整して出力することを特徴とする。ここで、オンデューティ比は、駆動信号において、オン期間とオフ期間とからなる全期間を1周期として、この1周期に対するオン期間の比率である。
この構成によれば、全ての電圧変換回路は、駆動信号のオンデューティ比に対する出力電圧特性が、オンデューティ比0.5に対して対称な、互いに同一の特性を有している。そのため、所定の電圧を出力する場合、各組の一方の電圧変換回路に対する駆動信号のオンデューティ比をD(0<D<1)に、各組の他方の電圧変換回路に対する駆動信号のオンデューティ比を(1−D)にすることができる。このとき、オンデューティ比Dの駆動信号のオン期間と、オンデューティ比(1−D)の駆動信号のオフ期間が等しくなる。また、オンデューティ比Dの駆動信号のオフ期間と、オンデューティ比(1−D)の駆動信号のオン期間が等しくなる。従って、位相を調整することによって、オンデューティ比(1−D)の駆動信号のオン期間及びオフ期間を、オンデューティ比Dの駆動信号のオフ期間及びオン期間とそれぞれ一致させることができる。駆動信号のオン期間における電圧変換回路の出力電流と、駆動信号のオフ期間における電圧変換回路の出力電流は、増減方向が逆である。そのため、位相を調整して、オンデューティ比(1−D)の駆動信号のオン期間及びオフ期間を、オンデューティ比Dの駆動信号のオフ期間及びオン期間とそれぞれ一致させることで、各組毎に電圧変換回路の出力電流の変動を打消すことができる。従って、駆動信号のオンデューティ比に係わらず、スイッチングに伴うノイズを充分に抑えることができる。
請求項2に記載の電源装置は、電圧変換回路は、駆動信号のオンデューティ比に対する出力電圧特性がオンデューティ比0.5に対して対称な2次関数状であることを特徴とする。この構成によれば、駆動信号のオンデューティ比に対する出力電圧特性をオンデューティ比0.5に対して確実に対称な特性とすることができる。
請求項3に記載の電源装置は、電圧変換回路は、入力された直流電圧を異なる直流電圧に変換、又は、入力された交流電圧を異なる直流電圧に変換することを特徴とする。この構成によれば、入力された直流電圧又は交流電圧を確実に異なる直流電圧に変換することができる。
請求項4に記載の電源装置は、車両に搭載され、入力された電圧を異なる電圧に変換することを特徴とする。この構成によれば、車両に搭載され、入力された電圧を異なる電圧に変換する電源装置において、駆動信号のオンデューティ比に係わらず、スイッチングに伴うノイズを充分に抑えることができる。
本実施形態における電源装置の回路図である。 MOSFETへのPWM信号のオンデューティ比に対するDC−DCコンバータ回路の出力電圧特性を示すグラフである。 PWM信号、DC−DCコンバータ回路の出力電流、及び、電源装置の出力電流の関係を示すグラフである。
次に、実施形態を挙げ本発明をより詳しく説明する。本実施形態では、本発明に係る電源装置を、車両に搭載され、バッテリの直流電圧を降圧して電子装置に供給する電源装置に適用した例を示す。
まず、図1〜図3を参照して電源装置の構成について説明する。ここで、図1は、本実施形態における電源装置の回路図である。図2は、MOSFETへのPWM信号のオンデューティ比に対するDC−DCコンバータ回路の出力電圧特性を示すグラフである。図3は、PWM信号、DC−DCコンバータ回路の出力電流、及び、電源装置の出力電流の関係を示すグラフである。
図1に示す電源装置1は、バッテリB1の直流電圧を絶縁した状態で所定の目標電圧に降圧して、電子装置E1に供給する装置である。電源装置1は、平滑コンデンサ10と、DC−DCコンバータ回路11、12(電圧変換回路)と、平滑コンデンサ13と、駆動回路14とを備えている。
平滑コンデンサ10は、バッテリB1の直流電圧を平滑するための素子である。平滑コンデンサ10の一端はバッテリB1の正極端子に、他端はバッテリB1の負極端子にそれぞれ接続されている。
DC−DCコンバータ回路11は、バッテリB1の直流電圧を絶縁した状態で降圧するための回路である。DC−DCコンバータ回路11は、MOSFET110、111と、コンデンサ112と、トランス113と、ダイオード114、115と、コイル116とを備えている。
MOSFET110、111は、直列接続されている。具体的には、MOSFET110のソースが、MOSFET111のドレインに接続されている。MOSFET110のドレインは、正極入力端子を介して平滑コンデンサ10の一端に接続されている。また、MOSFET111のソースは、負極入力端子を介して平滑コンデンサ10の他端に接続されている。
コンデンサ112の一端はMOSFET110とMOSFET111の接続点に、他端はトランス113にそれぞれ接続されている。
トランス113は、1次コイル113aと、2次コイル113bとを備えている。1次コイル113aと、2次コイル113bの巻線比は、1次側の電圧を降圧できるようn:1(n>1)に設定されている。1次コイル113aの一端はコンデンサ112の他端に、他端はMOSFET111のソースにそれぞれ接続されている。2次コイル113bの一端はダイオード114に、他端はダイオード115にそれぞれ接続されている。
ダイオード114のアノードは、2次コイル114の一端に接続されている。また、カソードは、コイル116に接続されている。ダイオード115のアノードは、2次コイル114の他端に接続されるとともに、負極出力端子を介して平滑コンデンサ13及び電子装置E1に接続されている。また、カソードは、コイル116に接続されている。
コイル116の一端は、ダイオード114、115のカソードに接続されている。また、他端は、正極出力端子を介して平滑コンデンサ13及び電子装置E1に接続されている。
DC−DCコンバータ回路12は、バッテリB1の直流電圧を絶縁した状態で降圧するための回路である。DC−DCコンバータ回路12は、DC−DCコンバータ回路11と同様に、MOSFET120、121と、コンデンサ122と、トランス123と、ダイオード124、125と、コイル126とを備えている。DC−DCコンバータ回路12は、DC−DCコンバータ回路11と同一構成である。DC−DCコンバータ回路12は、DC−DCコンバータ回路11に並列接続されている。具体的には、DC−DCコンバータ回路12の正極入力端子及び負極入力端子が、DC−DCコンバータ回路11の正極入力端子及び負極入力端子にそれぞれ接続されている。また、DC−DCコンバータ回路12の正極出力端子及び負極出力端子が、DC−DCコンバータ回路11の正極出力端子及び負極出力端子にそれぞれ接続されている。
ここで、DC−DCコンバータ11、12は、図2に示すように、MOSFET110、120へのPWM信号のオンデューティ比に対する出力電圧特性が、オンデューティ比0.5に対して対称である。また、MOSFET110、120へのPWM信号のオンデューティ比に対する出力電圧特性が、互いに同一の特性である。具体的には、オンデューティ比0.5に対して対称な2次関数状の特性を有している。
平滑コンデンサ13は、DC−DCコンバータ回路11、12の出力する直流電圧を平滑するための素子である。平滑コンデンサ13の一端はDC−DCコンバータ回路11、12の正極出力端子に、他端はDC−DCコンバータ回路11、12の負極出力端子にそれぞれ接続されている。また、平滑コンデンサ13の一端は電子装置E1の正極端子に、他端は電子装置E1の負極端子にそれぞれ接続されている。
駆動回路14は、MOSFET110、111、120、121をスイッチングさせるための駆動信号としてPWM信号(パルス幅変調信号)を出力する回路である。図3に示すように、駆動回路14は、DC−DCコンバータ回路11の出力電圧が所定の目標電圧になるように、オンデューティ比D(0<D<1)のPWM信号をMOSFET110に出力する。また、DC−DCコンバータ回路12の出力電圧が所定の目標電圧になるように、同一周波数で、オンデューティ比が(1−D)のPWM信号を、そのオン期間及びオフ期間がMOSFET110へのPWM信号のオフ期間及びオン期間とそれぞれ一致するように位相を調整してMOSFET120に出力する。さらに、MOSFET111、121が、MOSFET110、120と相補的にスイッチングするように、MOSFET111、121へのPWM信号を出力する。図1に示すように、駆動回路14は、DC−DCコンバータ回路11、12の正極出力端子、及び、MOSFET110、111、120、121のゲートにそれぞれ接続されている。
次に、図1を参照して電源装置の動作の概略について説明する。図1に示すDC−DCコンバータ回路11において、MOSFET110、111が、駆動回路14のPWM信号に基づいてスイッチングし、コンデンサ112が充放電されることで、バッテリB1の直流電圧を交流電圧に変換される。変換された交流電圧は、トランス113によって絶縁した状態で降圧される。降圧された交流電圧は、極性に応じ、ダイオード114を介してコイル116に印加され、コイル116にエネルギーが蓄積される。また、極性に応じ、ダイオード115を介して、コイル116に蓄積されたエネルギーが放出される。これにより、降圧された交流電圧が直流電圧に変換され、平滑コンデンサ13によって平滑される。このようにして、DC−DCコンバータ回路11は、バッテリB1の直流電圧を絶縁した状態で所定の目標電圧に降圧して電子装置E1に供給する。
一方、DC−DCコンバータ回路12において、MOSFET120、121は、駆動回路14のPWM信号に基づいてスイッチングし、コンデンサ122が充放電されることで、バッテリB1の直流電圧を交流電圧に変換する。変換された交流電圧は、トランス124、125によって絶縁した状態で降圧される。降圧された交流電圧は、極性に応じ、ダイオード124を介してコイル126に印加され、コイル126にエネルギーが蓄積される。また、極性に応じ、ダイオード125を介して、コイル126に蓄積されたエネルギーが放出される。これにより、降圧された交流電圧が直流電圧に変換され、平滑コンデンサ13によって平滑される。このようにして、DC−DCコンバータ回路12も、バッテリB1の直流電圧を絶縁した状態で所定の目標電圧に降圧して電子装置E1に供給する。
次に、図1及び図3を参照してノイズの発生に関連する電源装置の出力電流について説明する。ここでは、DC−DCコンバータ回路11のMOSFET110と、DC−DCコンバータ回路12のMOSFET120のスイッチングに伴う出力電流について説明する。なお、DC−DCコンバータ回路11のMOSFET111と、DC−DCコンバータ回路12のMOSFET121のスイッチングに伴う出力電流も、タイミングが異なるのみで同様である。
図3に示すように、MOSFET110へのPWM信号がオン期間のとき、図1に示すMOSFET110がオンする。MOSFET110がオンすると、図3に示すように、DC−DCコンバータ回路11の出力電流が徐々に増加する。その後、MOSFET110へのPWM信号がオフ期間になると、MOSFET110はオフする。MOSFET110がオフすると、DC−DCコンバータ回路11の出力電流は徐々に減少する。
一方、図3に示すように、MOSFET120へのPWM信号がオン期間のとき、図1に示すMOSFET120がオンする。MOSFET120がオンすると、図3に示すように、DC−DCコンバータ回路12の出力電流が徐々に増加する。その後、MOSFET120へのPWM信号がオフ期間になると、MOSFET120はオフする。MOSFET120がオフすると、DC−DCコンバータ回路12の出力電流は徐々に減少する。
ここで、図3に示すように、MOSFET110へのPWM信号は、オンデューティ比がDである。また、MOSFET120へのPWM信号は、オンデューティ比が(1−D)であり、そのオン期間及びオフ期間がMOSFET110へのPWM信号のオフ期間及びオン期間とそれぞれ一致するように位相が調整されている。MOSFET110のスイッチングに伴うDC−DCコンバータ回路11の出力電流と、MOSFET120のスイッチングに伴うDC−DCコンバータ回路12の出力電流は、増減方向が逆である。そのため、DC−DCコンバータ回路11、12の出力電流の変動を打消すことができ、出力電流を一定にすることができる。従って、PWM信号のオンデューティ比に係わらず、スイッチングに伴うノイズを充分に抑えることができる。
最後に、効果について説明する。本実施形態によれば、DC−DCコンバータ回路11、12は、PWM信号のオンデューティ比に対する出力電圧特性が、オンデューティ比0.5に対して対称な、互いに同一の特性を有している。そのため、所定の電圧を出力する場合、DC−DCコンバータ回路11に対するPWM信号のオンデューティ比をD(0<D<1)に、DC−DCコンバータ回路12に対するPWM信号のオンデューティ比を(1−D)にすることができる。このとき、オンデューティ比DのPWM信号のオン期間と、オンデューティ比(1−D)のPWM信号のオフ期間が等しくなる。また、オンデューティ比DのPWM信号のオフ期間と、オンデューティ比(1−D)のPWM信号のオン期間が等しくなる。従って、位相を調整することによって、オンデューティ比(1−D)のPWM信号のオン期間及びオフ期間を、オンデューティ比DのPWM信号のオフ期間及びオン期間とそれぞれ一致させることができる。PWM信号のオン期間におけるDC−DCコンバータ回路11の出力電流と、PWM信号のオフ期間におけるDC−DCコンバータ回路12の出力電流は、増減方向が逆である。そのため、位相を調整して、オンデューティ比(1−D)のPWM信号のオン期間及びオフ期間を、オンデューティ比DのPWM信号のオフ期間及びオン期間とそれぞれ一致させることで、DC−DCコンバータ回路11、12の出力電流の変動を打消すことができる。従って、車両に搭載され、入力された直流電圧を絶縁した状態で降圧して電子装置E1に供給する電源装置1において、PWM信号のオンデューティ比に係わらず、スイッチングに伴うノイズを充分に抑えることができる。
また、本実施形態によれば、PWM信号のオンデューティ比に対する出力電圧特性をオンデューティ比0.5に対して確実に対称な特性とすることができる。
さらに、本実施形態によれば、並列接続されたDC−DCコンバータ回路11、12によってバッテリB1の直流電圧を絶縁した状態で確実に降圧し、電子装置E1に供給することができる。
なお、本実施形態では、電源装置1が、2つのDC−DCコンバータ回路11、12を並列接続して構成されている例を挙げているが、これに限られるものではない。2つのDC−DCコンバータ回路を1組として2組以上のDC−DCコンバータ回路を並列接続して構成されていてもよい。各組の一方のDC−DCコンバータ回路に対して、オンデューティ比D(0<D<1)のPWM信号を出力し、各組の他方のDC−DCコンバータ回路に対して、オンデューティ比(1−D)のPWM信号を、そのオン期間及びオフ期間がオンデューティ比DのPWM信号のオフ期間及びオン期間とそれぞれ一致するように位相を調整して出力すれば、同様の効果を得ることができる。その際、各組毎のPWM信号に位相差があってもよい。各組毎に上記条件を満たしていればよい。
また、本実施形態では、DC−DCコンバータ回路11、12が、オンデューティ比0.5に対して対称な、2次関数状の出力電圧特性を有している例を挙げているが、これに限られるものではない。DC−DCコンバータ回路は、オンデューティ比0.5に対して対称な出力電圧特性を有していればよい。
さらに、本実施形態では、電源装置1が、MOSFET111、121を備え、直流電圧を絶縁した状態で降圧するDC−DCコンバータ回路11、12によって構成されている例を挙げているが、これに限られるものではない。スイッチング素子を備え、直流電圧を昇圧、又は、交流電圧を直流電圧に変換する電圧変換回路によって構成されていてもよい。
加えて、本実施形態では、DC−DCコンバータ回路11、12の入力端子が、ともにバッテリB1に接続されている例を挙げているが、これに限られるものではない。入力端子が、それぞれ別のバッテリに接続されていてもよい。出力端子が共通接続されていればよい。
1・・・電源装置、10・・・平滑コンデンサ、11、12・・・DC−DCコンバータ回路(電圧変換回路)、110、111、120、121・・・MOSFET、112、122、・・・コンデンサ、113、123・・・トランス、113a、123a・・・1次コイル、113b、123b・・・2次コイル、114、115、124、125・・・ダイオード、116、126・・・コイル、13・・・平滑コンデンサ、14・・・駆動回路、B1・・・バッテリ、E1・・・電子装置

Claims (4)

  1. スイッチング素子を有し、前記スイッチング素子をスイッチングさせることによって、入力された電圧を異なる電圧に変換して出力する、出力が共通接続された複数の電圧変換回路と、
    複数の前記電圧変換回路のそれぞれの前記スイッチング素子に接続され、前記スイッチング素子をスイッチングするための所定周波数の駆動信号を、それぞれの前記スイッチング素子に対して出力する駆動回路と、
    を備えた電源装置において、
    前記電圧変換回路は、2つを1組として1組以上設けられ、前記駆動信号のオンデューティ比に対する出力電圧特性がオンデューティ比0.5に対して対称な、互いに同一の特性を有し、
    前記駆動回路は、各組毎に、各組の一方の前記電圧変換回路に対して、オンデューティ比D(0<D<1)の前記駆動信号を出力し、各組の他方の前記電圧変換回路に対して、オンデューティ比(1−D)の前記駆動信号を、そのオン期間及びオフ期間がオンデューティ比Dの前記駆動信号のオフ期間及びオン期間とそれぞれ一致するように位相を調整して出力することを特徴とする電源装置。
  2. 前記電圧変換回路は、前記駆動信号のオンデューティ比に対する出力電圧特性がオンデューティ比0.5に対して対称な2次関数状であることを特徴とする請求項1に記載の電源装置。
  3. 前記電圧変換回路は、入力された直流電圧を異なる直流電圧に変換、又は、入力された交流電圧を異なる直流電圧に変換することを特徴とする請求項1又は2のいずれか1項に記載の電源装置。
  4. 車両に搭載され、入力された電圧を異なる電圧に変換することを特徴とする請求項1〜3のいずれか1項に記載の電源装置。
JP2009089005A 2009-04-01 2009-04-01 電源装置 Expired - Fee Related JP5141982B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089005A JP5141982B2 (ja) 2009-04-01 2009-04-01 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089005A JP5141982B2 (ja) 2009-04-01 2009-04-01 電源装置

Publications (2)

Publication Number Publication Date
JP2010246183A JP2010246183A (ja) 2010-10-28
JP5141982B2 true JP5141982B2 (ja) 2013-02-13

Family

ID=43098611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089005A Expired - Fee Related JP5141982B2 (ja) 2009-04-01 2009-04-01 電源装置

Country Status (1)

Country Link
JP (1) JP5141982B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165678B2 (ja) * 2014-06-18 2017-07-19 株式会社Soken 電力変換装置
KR102370444B1 (ko) 2015-07-02 2022-03-03 엘지전자 주식회사 전력변환장치 및 이를 구비하는 공기조화기
JP7219688B2 (ja) 2019-09-26 2023-02-08 株式会社日立製作所 電力変換装置とその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317950B2 (ja) * 2000-01-24 2002-08-26 甲府日本電気株式会社 アクティブクランプフォアワードコンバータ
JP2005086846A (ja) * 2003-09-04 2005-03-31 Tdk Corp スイッチング電源装置
JP4383946B2 (ja) * 2003-09-17 2009-12-16 太陽誘電株式会社 電源装置
JP2005304165A (ja) * 2004-04-09 2005-10-27 Taiyo Yuden Co Ltd 電源装置
JP4672363B2 (ja) * 2004-12-28 2011-04-20 株式会社東芝 コンバータ電源回路
JP5063285B2 (ja) * 2006-10-04 2012-10-31 株式会社デンソー 2トランス型dc−dcコンバータ

Also Published As

Publication number Publication date
JP2010246183A (ja) 2010-10-28

Similar Documents

Publication Publication Date Title
US7746670B2 (en) Dual-transformer type of DC-to-DC converter
US8891254B2 (en) Power converter and battery charger using the same
US10211719B2 (en) Power converter
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP7439671B2 (ja) スイッチング電源装置および電力供給システム
JP5424307B2 (ja) 絶縁型dc−dcコンバータ
JP2017055536A (ja) 電力変換装置
US20130016534A1 (en) Resonant converter
JP5141982B2 (ja) 電源装置
US9906142B2 (en) Resonant converting apparatus and control method thereof
JP2005295793A (ja) 力率補正回路
JP5554591B2 (ja) 電源装置
TW201429138A (zh) 具有電荷泵的切換式電源供應器
JP2010226772A (ja) 電源装置
JP4434010B2 (ja) 直流変換装置
JP5318966B2 (ja) Dc/dcコンバータ
US11863078B2 (en) Apparatus and method for DC-to-DC conversion
KR101372825B1 (ko) 고승압 컨버터
JP5052333B2 (ja) スイッチングレギュレータおよびその制御方法
JP2013005642A (ja) 電力変換装置
JP2006158137A (ja) スイッチング電源装置
JP2013005644A (ja) 電力変換装置
JP6784249B2 (ja) Acインバータ
JP2008086146A (ja) Dc−dcコンバータ
KR101980021B1 (ko) 비대칭 파워링 구간을 갖는 고효율 다중 출력 컨버터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5141982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees