[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4724275B2 - Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof - Google Patents

Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof Download PDF

Info

Publication number
JP4724275B2
JP4724275B2 JP2000216255A JP2000216255A JP4724275B2 JP 4724275 B2 JP4724275 B2 JP 4724275B2 JP 2000216255 A JP2000216255 A JP 2000216255A JP 2000216255 A JP2000216255 A JP 2000216255A JP 4724275 B2 JP4724275 B2 JP 4724275B2
Authority
JP
Japan
Prior art keywords
piston ring
less
resistance
stainless steel
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000216255A
Other languages
Japanese (ja)
Other versions
JP2002030394A (en
Inventor
純也 高橋
亨 小貫
茂夫 井上
充隆 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSEN CO.,LTD
Riken Corp
Original Assignee
TOKUSEN CO.,LTD
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000216255A priority Critical patent/JP4724275B2/en
Application filed by TOKUSEN CO.,LTD, Riken Corp filed Critical TOKUSEN CO.,LTD
Priority to EP01949987A priority patent/EP1304393B1/en
Priority to TW090117357A priority patent/TW521093B/en
Priority to ARP010103377A priority patent/AR029730A1/en
Priority to US10/333,326 priority patent/US20040040631A1/en
Priority to DE60122164T priority patent/DE60122164T2/en
Priority to KR10-2003-7000751A priority patent/KR100507424B1/en
Priority to CNB018157637A priority patent/CN1210427C/en
Priority to PCT/JP2001/006127 priority patent/WO2002006546A1/en
Priority to BRPI0112573-7A priority patent/BR0112573B1/en
Publication of JP2002030394A publication Critical patent/JP2002030394A/en
Priority to US11/657,015 priority patent/US20070187002A1/en
Application granted granted Critical
Publication of JP4724275B2 publication Critical patent/JP4724275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関に使用されるピストンリングに関し、特に、耐スカッフィング性(耐焼付性)、耐クラッキング性(耐欠損性)及び耐疲労性に優れた高クロムマルテンサイト系ステンレス鋼製窒化ピストンリング及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、内燃機関の低燃費化、軽量化、高性能化が求められ、よってピストンリングにおいても、軽量化及び高回転化に伴うピストンリングの薄肉化のため、耐摩耗性、耐スカッフィング性、耐疲労性等の特性向上が要求され、特に耐疲労性や耐熱性の観点から、従来の鋳鉄製ピストンリングが鋼製ピストンリングに置換されてきた。鋼製ピストンリングは、鋳鉄製ピストンリングに比べ耐スカッフィング性に劣るため、通常、摺動面に何らかの表面処理が施されている。ピストンリング用鋼材は、組み合わされる表面処理の種類によって、炭素鋼、シリコンクロム鋼及びマルテンサイト系ステンレス鋼に大別され、主として、炭素鋼とシリコンクロム鋼ではクロムめっきが、マルテンサイト系ステンレス鋼ではガス窒化が行われている。従来の鋼製ピストンリングでは、クロムめっきを施すものがほとんどであったが、高負荷でのめっき層のスカッフィングの問題や廃液処理の環境問題等から、近年では窒化ピストンリングが主流となりつつある。
【0003】
高クロムマルテンサイト系ステンレス鋼では、C: 0.80-0.95%, Cr: 17.0-18.0%, Si: 0.25-0.50%, Mn: 0.25-0.40%, Mo: 0.70-1.25%, V: 0.07-0.15%, Fe: 残部 なる組成をもつJIS SUS440B相当材が窒化ピストンリングに用いられる主要鋼種である。この組成の鋼に窒化処理を行うと、窒素原子が表面から鋼中に侵入、拡散して窒化層を形成する。窒化層中の窒化物は、主にCr, V, Moとの化合物又はFeを固溶したそれらの化合物である。特に鋼中に多く含まれているCrは、マトリックス中に固溶する他、Cr炭化物として存在するが、炭素よりも窒素との親和力が大きいため、窒化処理により表面から拡散してくる窒素とCr炭化物が反応してCr窒化物が生成する。SUS440B相当材はCrが17.0-18.0%と多いので、上述の理由により硬いCrの窒化物が適当な面積率で分散した比較的高い硬さの窒化層が得られ、優れた耐摩耗性、耐スカッフィング性を示す。
【0004】
最近では、ピストンリング用マルテンサイト系ステンレス窒化鋼として、特開平11-80907号に、Crが5.0以上12.0%未満と若干低くとも、Si: 0.25%以下, Mn: 0.30%以下, Mo, W, V, Nbの一種又は二種以上: 0.3-2.5%、あるいはCu: 4.0%以下, Ni: 2.0%以下, Al: 1.5%以下を含有することによって優れた耐スカッフィング性が得られることが、特開平11-106874号には、組織中に存在するM7C3型炭化物の含有量を面積%で4.0%以下とすることによって耐スカッフィング性に加えて優れた加工性を備え持ったピストンリング材料の得られることが開示されている。
【0005】
しかし、このように優れた耐摩耗性、耐スカッフィング性を示す窒化ピストンリングも、高回転、高出力の負荷の高い内燃機関に用いられるとスカッフィングを起こすという問題が発生してくる。特に、近年のディーゼルエンジンにおいては、軽量化とコスト低減の観点から従来のライナをシリンダブロックに圧入する方式からボア間隔の狭い鋳鉄モノブロック方式に変更する方向に、又排ガス浄化や高出力化の観点から燃焼圧力を増加する方向にある。鋳鉄モノブロックではピストンリングとの摺動面の顕微鏡組織は、冷却速度の不均一性から黒鉛の分散状態のばらつきが大きく、かつスカッフィングの原因となる軟らかいフェライト相が偏在したものとなる。このような顕微鏡組織をもったシリンダー面とマルテンサイト系ステンレス鋼製窒化ピストンリングとを組み合わせた場合、運転初期にスカッフィングを起こしやすくなる。その原因は次のとおりである。即ち、シリンダー面をホーニング加工すると、偏在するフェライトによって砥石の目詰まりが起きやすくホーニング後のシリンダー面粗さが粗くなりがちなこと、黒鉛が塑性流動したフェライトに覆われ、結果的に黒鉛の面積率を下げ黒鉛による潤滑作用及び油溜め機能が低下すること、さらに燃焼圧力の高い場合にはピストンリングにかかる背圧も増加することである。このスカッフィングは、ピストンリング外周面の摺動方向に垂直なクラックの発生によるものが多く、そのクラックはピストンリング摺動面の窒化層の結晶粒界に形成される表面にほぼ平行で比較的粗大な層状粒界化合物(当業者ではカモメ相とも呼ぶ。)に沿って観察されている。
【0006】
これらの問題に対しては、さらに耐摩耗性、耐スカッフィング性に優れたイオンプレーティングによるTiN, CrN等の表面処理で対応されているが、窒化処理に比べ製造コストが高いため、コストパフォーマンスの観点ではユーザーに満足されていないのが実状である。
【0007】
【発明が解決しようとする課題】
従って、本発明の目的は、高回転、高燃焼圧化で負荷の高い内燃機関、特に今後増加すると見込まれる軽量な鋳鉄モノブロックを採用したディーゼルエンジンに用いられても摩耗、スカッフィング、クラッキング、疲労折損の問題を起こさず、又コストパフォーマンスにも優れた高クロムマルテンサイト系ステンレス鋼製窒化ピストンリング及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
「自動車用ピストンリング」自動車用ピストンリング編集委員会、山海堂、188頁、1997年、によれば、ピストンリングのスカッフィングは、摺動面のミクロ的な凹凸の突起部(特に軟質相の突起部)に集中負荷が加わり、摩擦熱により温度が上昇し、異常な軟化溶融が起こるためと説明されている。
【0009】
高クロムマルテンサイト系ステンレス窒化鋼における窒化層の組織は、一般に焼戻しマルテンサイトのマトリックス中に主として硬質の窒化物が分散した形態となる。スカッフィングは、そのメカニズムから、摺動面のミクロ的な凹凸、つまり相対的に軟らかいマトリックス中に分散する硬質粒子の大きさと分散状態に強く関係する。このような組織を持つ表面層は、その断面を観察すると、凸状の硬質粒子が相手の摺動面と接触し比較的軟らかいマトリックスが相対的に凹状となっている。よって、窒化鋼が相手材と直接接触する確率は減少し、且つ凹部に潤滑油膜が形成され、摺動時にはその油膜に圧力が発生することで接触圧力を軽減するとともに凸状接触部分への潤滑を行い、スカッフィングの発生を防ぐことができる。このようなメカニズムで凸状硬質粒子としての作用効果を果たすにはサブミクロンから数ミクロンサイズの粒径が必要であり、かつその分散量が面積率で5%以上であることが望ましい。硬質粒子が極度に小さい場合や分散量が少ない場合には、前記の凸状硬質粒子の作用効果によるメカニズムは期待できない。
【0010】
しかし、このようなスカッフィング防止メカニズムは相手材の摺動面の状況によっても左右される。前述したような不均質組織を持つ鋳鉄モノブロックでは、砥石加工によりシリンダー面の面粗さが粗くなりやすいことや、フェライト相の塑性流動により黒鉛が塞がれている場合が多い。このような鋳鉄も、適当な摺動(当業者間では「なじみ」ともいう。)により、次の現象が起こる。即ち、シリンダー内周面の粗い表面が平滑化してゆき、フェライト相で塞がれていた黒鉛が開口する。なじみが完了するまでの期間は、摺動面の油膜が切れやすく、そのため大きな摩擦力がピストンリングの外周面に繰り返し負荷される。このため、ピストンリングの外周面の窒化層には摩擦力による繰り返し応力によって、摺動方向に直角な方向にクラックが発生し拡大する。シリンダー内周面のなじみの進行とともに負荷される応力は軽減されていくが、クラックは時間の経過と共に進展し局部的な表面剥離や欠け、さらにはシリンダー内周面を傷つけ、これらが原因となってスカッフィングを引き起こしやすい。窒化層中に存在する粒界化合物は非常に脆性であるためクラックの発生や進展を助長する。従って、このような初期スカッフィングを防止するためには、窒化層の主としてCrの窒化物からなる硬質粒子を適正な大きさで均一、かつ数多く分散させることでマトリックスとシリンダの接触確率を低減するとともに、特に窒化処理で生成する粒界化合物を微細にすることで、粒界化合物に関係するクラックの発生を抑制し、またクラックが発生してもその伝播を細かく分断して拡大を防ぐことが必要不可欠であることを本発明者らは発見した。
【0011】
また、高クロムマルテンサイト系ステンレス鋼においては、溶鋼が凝固するとき、共晶Cr炭化物(η相:(Cr, Fe)7C3)が初晶オーステナイト(γ相)粒界に晶出する。熱間圧延や球状化熱処理、最終の焼入れ焼戻し熱処理後においても最大径が20μmを超えるCr炭化物が観察される。この粗大一次共晶炭化物の微細化に関しては、鉄と鋼, Vol. 82, No. 4, p.309-314 (1996) に窒素(N)を0.25%以上添加することによって微細なCr炭化物組織の得られることが報告されている。その報告によると、初晶γ粒界の共晶Cr炭化物が消失し、代わりにラメラー状のM23C6及びM2N(M: Cr, Fe)が初晶γ粒界の周囲に析出し、これらのラメラー状に析出したM23C6及びM2Nは、熱間圧延で微細に分断され、その後の球状化焼鈍において微細なM23C6がM2Nと異なるサイトに新たに析出するため、全体として微細なCr炭化物組織になると説明されている。熱処理, 36巻, 4号, p.234-238 (1996)にも、0.25%Nを添加した16.5%Cr-0.65%Cマルテンサイト系ステンレス鋼の機械的性質について、Nの添加量の増加に伴い最高焼入れ硬さを示す温度が低温側にシフトすること、延性が増加することが報告されており、その理由として、焼入れ温度が高いほどオーステナイト相中に固溶するN量が増加し、オーステナイト相が安定化するためと説明されている。
特開平9-289053号や特開平9-287058号には、これらのN添加によるCr炭化物の微細化技術を利用した転がり軸受けについて開示されている。
【0012】
本発明者達は、上述したスカッフィングのメカニズムについて考察し、且つクラックが観察されているピストンリング摺動面の窒化層の結晶粒界に形成される表面にほぼ平行で比較的粗大な層状粒界化合物について、N添加によるCr炭化物の微細化技術を背景に鋭意研究した結果、窒化層中の窒化物が微細で数多く存在し、特に窒化層中の層状粒界化合物が微細となるような顕微鏡組織とすることによって、高回転、高出力で高燃焼圧の負荷の高い内燃機関、特に最近の軽量鋳鉄モノブロックディーゼルエンジン等に用いられても、耐摩耗性、耐スカッフィング性、耐クラッキング性、耐疲労性に優れた高クロムマルテンサイト系ステンレス鋼製窒化ピストンリングを得ることができることを発見した。
【0013】
即ち、本発明の高クロムマルテンサイト系ステンレス鋼製窒化ピストンリングは、高クロムマルテンサイト系ステンレス鋼が、重量%でC: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少なくとも1種以上の合計を0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05%以下, S: 0.05%以下, 残部がFe及び不可避的不純物よりなり、その摺動窒化層表面の主として窒化物からなる窒化物、炭化物、炭窒化物の硬質粒子が平均直径で0.5-2μmの範囲、最大直径で7μm以下、面積率で5-30%の範囲であることを特徴とする。また、ピストンリングの長手方向の窒化層断面で観察される粒界化合物の大きさ(長さ)が最大20μm以下であることを特徴とする。さらに上記の組織的特徴を持つ摺動面窒化層の硬度は、ビッカース硬度が900-1400の範囲とする特性をもち、その窒化層深さは窒化処理を施した表面から十分な厚さをもつことを特徴とする。
【0014】
本発明の高クロムマルテンサイト系ステンレス鋼製窒化ピストンリングの製造方法は、まず、所定の組成の鋼を溶解し、窒素添加を行い、インゴットに鋳造後、熱間圧延、焼鈍、冷間線引き、冷間圧延して所定のピストンリング断面形状に近づけ、焼入れ、焼戻しを行って線材とする。その線材をリング形状に曲げ加工し、歪取り熱処理、側面粗研削、窒化、表面化合物層の除去、合口隙間の研削、側面仕上研削、外周ラッピング等の工程を経てピストンリングが製造されるが、その中のピストンリングへの曲げ加工前の焼入れ工程において、850-1000℃という高クロムマルテンサイト系ステンレス鋼としては比較的低い温度から焼入れることによって、微細で、できるだけ多くの炭化物の分散した材料組織を得る。又、窒化はガス窒化、イオン窒化、ラジカル窒化が利用でき、いずれも450-600℃の範囲で1-20時間の処理を行う。
【0015】
以下、本発明を詳しく説明する。本発明の高クロムマルテンサイト系ステンレス鋼の成分について説明すると、まず、CはFeに侵入型に固溶してマトリックスの硬度を上げると同時に、Cr, Mo, V, W, Nbと容易に化合して炭化物を生成しやすい。窒化処理によって窒化層中の炭化物は主として窒化物に変わり、ピストンリングの摺動面において耐摩耗性や耐スカッフィング性を向上させる。Cが0.3%未満では硬度の上昇や炭化物の生成が少なく、1.0%を超えると溶鋼の凝固時に粗大で多量の共晶Cr炭化物(η相:M7C3)が晶出し、後の線材製造において加工性が極度に低下するので、Cは0.3-1.0%の範囲とする。好ましくは0.4-0.9%の範囲とする。
【0016】
CrはFeに置換型に固溶するため、耐食性の向上の他に、固溶強化によって耐熱へたり性を向上させる。ここで、熱へたりとは、ピストンリングの高温での使用中に、クリープ現象に基づく張力低下によってシール特性が劣化する現象をいう。又、鋼中のCと反応してCr炭化物を形成する。このCr炭化物は窒化処理により表面から侵入するNと容易に反応して、窒化層内ではCrNとなり硬質粒子として分散する。窒化層中のこの硬質粒子はピストンリング摺動面の耐摩耗性や耐スカッフィング性を著しく向上させる。Cr量が14%未満ではCr化合物の形成が少なく、21%を超えるとδフェライトの生成による靭性の低下やマトリックス中のCr濃度が高くなりすぎてMs(マルテンサイト変態開始温度)を下げ十分な焼入れ硬さが得られなくなることがあるので、Crの量は14-21%の範囲とする。好ましくは16-19%の範囲とする。
【0017】
NはCと同様にFeに侵入型に固溶する。Nの添加によって、例えば、Fe-Cr-C系状態図の17%Cr等濃度断面における共晶線の左端のC濃度が、凝固過程で初晶粒界に存在する濃化溶鋼のC濃度よりも高濃度側へシフトするため、共晶反応が抑制され、よってη相の晶出が抑制される。その後の冷却過程で過飽和のC, Nがラメラー状のM23C6及びM2N析出物として初晶γ粒界の周囲に析出する。Nが0.05%未満ではη相が晶出し、又0.50%を超えると棒状のM2Nの析出量が増加し、靭性が低下するので、Nは0.05-0.50%の範囲とする。好ましくは0.10-0.30%の範囲とする。また、マトリックス中へのNの固溶は、マトリックス中のCの拡散を阻害し、粒界化合物(最終的にはFe3Nに変化するFe3Cの形成において)の微細化にも貢献する。Nの添加は0.2%以下であれば常圧で添加することができ、0.2%を超えると加圧N2雰囲気中での溶製を必要とする。よって、N添加の観点では0.05-0.20%の範囲が好ましい。
【0018】
Mo, V, W, Nbはいずれも炭化物生成元素として耐摩耗性や耐スカッフィング性を向上させる。又、Moは焼戻しや窒化処理における軟化を防止する作用があり、ピストンリングの寸法安定性に重要な役割を果たす。Vは窒化促進元素として、窒化層の硬さを上げる効果がある。よって、いずれの元素もピストンリングに要求される諸性能を向上させるので有用であるが、Mo, V, W, Nbの少なくとも1種以上の合計が0.03%未満であるとその効果がほとんどなく、3%を超えると加工性を著しく害し、又靭性を低下させてしまうので、Mo, V, W, Nbの少なくとも1種以上の合計は0.03-3.0%の範囲とする。
【0019】
Siは脱酸剤として添加され、又Fe中に固溶して焼戻し軟化抵抗性を高め所謂耐熱へたり性を改善する。0.1%未満ではその効果が少なく1.0%を超えると靭性を低下させるので、Siは0.1-1.0%の範囲とする。
【0020】
MnもSiと同様に脱酸剤として添加される。0.1%未満ではその効果が少なく1.0%を超えると加工性が低下するので、Mnは0.1-1.0%の範囲とする。
【0021】
PはMn等と介在物を形成して疲労強度を低下させ、さらには耐食性を低下させるので、鋼中不純物としてはなるべく少ないほうが良い。したがって、実用的な観点から0.05%以下とする。好ましくは0.03%以下とする。
【0022】
SはPと同様に疲労強度を低下させ、さらには耐食性を低下させるので、鋼中不純物としてはなるべく少ないほうが良い。したがって、実用的な観点から0.05%以下とする。好ましくは0.03%以下とする。
【0023】
上記範囲の組成からなる鋼を、耐スカッフィング性に優れた組織とするためには、窒化層中の窒化物が微細で数多く存在することが必要である。すなわち、摺動する窒化層表面の主としてCrの窒化物からなる窒化物、炭化物、炭窒化物の硬質粒子が平均直径で0.2-2μmの範囲、最大直径で7μm以下、面積率で5-30%の範囲とする。平均粒径が0.2μm以下ではスカッフィング防止の凸状硬質粒子としての作用効果が期待できず、2μmを超えると負荷の高い場合にスカッフィングの問題が残る。又最大直径が7μmを超えると、組織の均一性に劣り、やはり負荷の高い場合にはスカッフィングの問題を残す。面積率が5%未満では耐スカッフィングに問題を残し、30%を超えると溶製後の線材加工や線材をリング形状に曲げ加工することが困難となる。好ましくは10-25%とする。又、本発明において耐クラッキング性に優れた組織とするためには、マトリックスと硬質粒子から実質的になるピストンリング長手方向の窒化層断面で観察される粒界化合物の大きさ(長さ)が最大20μm以下とする。最大長さが20μmを超えると、負荷の高い場合にクラックッキングに関連する問題が生じる。
【0024】
上記のような本発明の窒化層組織はステンレス鋼の微細組織に起因する。この組織においては、第1に、熱間圧延、球状化熱処理、冷間線引き等の加工を経て、焼入れ焼戻しした後、粗大な共晶Cr炭化物のη相((Cr, Fe)7C3)が存在しない。これは窒素の添加によって実現できる。
又、第2に、窒化処理前の焼入れ温度に保持した時に析出する二次炭化物(ε相:(Fe, Cr)23C6)が微細で数多く存在する。この点をFe-Cr-C系状態図に基づいて考察すると、その(γ+ε)領域では、温度の低いほど平衡論的に多くの炭化物が析出するので、(γ+ε)領域のできるだけ低温度域を焼入れ温度とすることによって、微細で、できるだけ多くのε炭化物を析出させることができる。又、低温度域からの焼入れはγ結晶粒の成長を抑えるためγ結晶粒を微細にし、よって後の窒化処理において形成される粒界化合物相も微細にすることが可能となる。この様な面から、好ましい焼入れ温度は850-1000℃の範囲である。850℃未満では、焼きの入らないことやα相の析出により所定の硬度が得られない。1000℃を超えた焼入れ温度では、焼入れ温度に保持した段階で炭化物の凝集やγ結晶粒の粗大化が起こり、その結果、後の窒化処理において形成される窒化物や粒界化合物相も粗大化する。窒化層において比較的短時間で十分な深さまで900-1400という高硬度が得られるのも、低い焼入れ温度によって比較的微細なγ結晶粒が得られ、窒化処理におけるNの主要拡散経路としての役割を果たす結晶粒界が増加したことに起因している。本発明において、450-600℃の範囲で窒化処理を行うのは、α-Fe格子中へのNの溶解度が約590℃で最大となるためと考えられてきたが、結晶粒界がNの主要拡散経路ということであれば、この温度に限定される必要はない。ピストンリングの形状安定性という観点では、できるだけ低い温度での処理が好ましいが、実用的な観点から450-600℃の範囲で1-20時間とした。
【0025】
【実施例】
以下の具体的実施例により、本発明をさらに詳細に説明する。
実施例1-11(J1-J11)、比較例1-8(H1-H8)
表1に示す化学組成を有する高クロムマルテンサイト系ステンレス鋼を10kg真空誘導溶解炉を用いて溶製した。但し、0.2%N未満の鋼は常圧で窒素添加し、0.2%N以上の鋼は加圧N2雰囲気中で溶製した。次に熱間加工を経て直径12mmの線状素材にし、酸洗後、750℃で10時間の球状化焼鈍を施し、所定の工程を経て、3.5mm× 5.0mmの矩形断面を持つ線材に加工した。ここで、焼入れ、焼戻しは、焼入れ炉(Ar雰囲気)を930℃で約10分間、空冷焼入れ後、焼戻し炉(Ar雰囲気)を620℃で約25分間、通過する連続式で行い、又、窒化は、線材を50mm長さに切断した試験片とし、570℃で4時間のガス窒化を行った。但し、比較例1(H1)の焼入れ温度については、従来から通常行われていた1100℃で行った。その他の条件は他の実施例、比較例と同様である。
【0026】
【表1】

Figure 0004724275
【0027】
上記各線材試験片からさらに顕微鏡組織観察用に10mm長さに切断、樹脂に埋め込み鏡面まで研磨して組織観察と組織の定量化を画像解析装置を用いて行った。図1及図2に、実施例1(J1)及び比較例1(H1)の摺動窒化層表面の走査電子顕微鏡の反射電子像写真(図1(a), (b))と窒化層断面の光学顕微鏡写真(図2(a), (b))とを示す。硬質粒子は、反射電子像写真では黒色、光学顕微鏡写真では白色の相である。本発明においては、硬質粒子サイズが小さく、又窒化層断面の粒界化合物のサイズも極めて小さくなっていることが分かる。実施例1-11(J1-J11)及び比較例1-8(H1-H8)の組織の定量結果として、表2に摺動面窒化層表面の硬質粒子の平均粒径、最大粒径、面積率、及び窒化層断面の粒界化合物の最大長さ、さらに摺動面窒化層表面の硬度について示す。
【0028】
【表2】
Figure 0004724275
* 比較例2, 4, 8(H2, H4, H8)は難加工性のため線材化できなかった。
** 比較例7(H7)は窒化後の寸法が不安定で歩留が低下した。
【0029】
スカッフィング試験は、線材試験片から作製した図3に示す全長45mmのコの字形状の2ピン一体型試験片で、FC250材φ60×12mmの円板を相手材として、摩擦摩耗試験機(リケン製:商品名「トライボリックI」)を用いて行った。ピン(図4、参照符号1)の先端の摺動面
は、半径20mmの凸形状で、ガス窒化で表面に生成した厚さ5-20μmの化合物層(白層)を研削除去し、研磨により鏡面に仕上げてある。一方、FC250の円板(図4、参照符号2)は摺動面の表面粗さ(Rz)を1-2μmに調整したものを使用した。摩擦摩耗試験機の動作機構を図4に、フカッフィング試験条件を以下に示す。
摺動速度(円板):8 m/sec
押付加重:初期1.0MPaから0.2MPa毎増加、スカッフィング発生まで昇圧
潤滑油:モーターオイル(商品名、日石モーターオイルP#20)
潤滑油温度:80℃(出口付近)
オイルバス:100℃
潤滑油供給量:40cc/min
スカッフィング面圧はスカッフィングが発生したときの押付加重と摺動面の摩耗面積から計算した。表3に実施例1-11(J1-J11)及び比較例1-8(H1-H8)のスカッフィング面圧を示す。
【0030】
【表3】
Figure 0004724275
本発明による実施例1-11(J1-J11)は、比較例1, 3, 5-7(H1, H3, H5-H7)に比べ耐スカッフィング性の向上したことが分かる。
【0031】
実施例12-14(J12-14)及び比較例9-11(H9-H11)
実施例1の化学組成の材料において、線材加工後の焼入れ工程で表7に示す焼入れ温度から空冷焼入れをし、実施例1と同様な所定の工程を経てガス窒化を行った窒化層組織について定量化した。その結果を表4示す。
【0032】
【表4】
Figure 0004724275
* 比較例9(H9)では、窒化層の硬度が860と低い値であった。
【0033】
実施例12-14(J12-14)及び比較例9-11(H9-H11)
実施例1の化学組成の材料において、線材加工後の焼入れ工程で表7に示す焼入れ温度から空冷焼入れをし、実施例1と同様な所定の工程を経てガス窒化を行った窒化層組織について定量化した。その結果を表5示す。
【0034】
【表5】
Figure 0004724275
* 比較例9(H9)では、窒化層の硬度が860と低い値であった。
【0035】
実施例15及び比較例12
実施例1及び比較例1の鋼材から所定の工程を経て、呼び径(d1)95.0mm、厚さ(a1)3.35mm、幅(h1)2.3mmの矩形断面の圧力リング(実施例15, 比較例12)に加工した。ここで、焼入れ、焼戻しは、焼入れ炉を930℃で約10分間、空冷焼入れ後、焼戻し炉を620℃で約25分間、通過する連続式で行い、又、窒化は、570℃で4時間のガス窒化を行った。但し、比較例12の焼入れ温度については、従来から通常行われていた1100℃で行った。その他の条件は実施例15と同様である。
作製した圧力リングを用いて、図5に示す動作機構を持つピストンリング疲労試験機で疲労試験を行った。すなわち、合口両端を切断して自由合口寸法を広げた製品3を、リング呼び径迄閉じた状態で試験機にセットし、この状態からさらに閉じる方向に偏芯カム4によって負荷応力分のストロークを40サイクル/秒の周期で繰り返し与えることによってリングを折損させ、折損時の応力負荷回数を求めた。この試験を、同一仕様のサンプルに対して負荷応力を変化させながら繰り返し、いわゆるS-N線図を作成し、最終的に疲労限度線図を求めた。
図6に疲労限度線図を示すが、比較例12に比べ、本発明の実施例15においては大きく改善されていることがわかる。
【0036】
実施例16-19及び比較例13-14
実施例1(実施例16, 17), 実施例7(実施例18, 19)及び比較例1(比較例13, 14)の鋼材から所定の工程を経て、呼び径(d1)99.2mm、厚さ(a1)3.8mm、幅(h1)2.5mmの矩形断面の圧力リング(実施例16, 18, 比較例13)、及び呼び径(d1)99.2mm、厚さ(a1)2.5mm、幅(h1)3.0mmの鞍形断面の2ピースオイルリングの本体(実施例17, 19, 比較例14)に加工した。焼入れ焼戻しの熱処理、ガス窒化についても実施例16-19は実施例15と、比較例13-14は比較例12と同様な方法で行った。
作製した圧力リング及びオイルリングを4気筒3200ccの鋳鉄モノブロックディーゼルエンジンを用いて、以下の条件で100時間の耐久試験を行った。
回転数:3600rpm
出力:75kW
負荷:全負荷
水温:110℃
油温:130℃
比較例13は試験開始後2時間10分で、比較例14は試験開始後7時間55分でスカッフィングを起こしたのに対し、実施例16-19では何ら問題なく試験を終了した。比較例13の摺動面に生じたクラックの写真を図7に示す。
【0037】
【発明の効果】
以上説明したとおり、本発明による高クロムマルテンサイト系ステンレス鋼製窒化ピストンリングは、窒素添加によるCr炭化物の微細化技術と比較的低い温度からの焼入れによって、窒化層中の窒化物が微細で数多く存在し、特に窒化層中の層状粒界化合物が微細な顕微鏡組織となり、耐摩耗性、耐スカッフィング性、耐クラッキング性、耐疲労性に優れるため、高回転、高出力の負荷の高い内燃機関、特に最近の軽量鋳鉄モノブロックディーゼルエンジン等に用いることが可能となる。また、小型トラックにおける排気ブレーキ使用時のピストンリングの疲労に対しても効果的に使用できる。適用ピストンリングとしては、圧力リングの他、2ピースオイルリングの本体や3ピースオイルリングのレールにおいて都合良く利用できる。
【図面の簡単な説明】
【図1】摺動窒化層表面の走査電子顕微鏡の反射電子像写真である((a)実施例1, (b)比較例1)。
【図2】窒化層断面の光学顕微鏡写真である((a)実施例1, (b)比較例1)。
【図3】スカッフィング試験の試験片を示す図である。
【図4】摩擦摩耗試験機の動作機構を示す図である。
【図5】ピストンリング疲労試験機の動作機構を示す図である。
【図6】疲労限度線図のグラフである。
【図7】比較例13の摺動面に生じたクラックの写真である。
【符号の説明】
1 リング材
2 シリンダ材
3 リング
4 偏芯カム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piston ring used in an internal combustion engine, and in particular, a high chromium martensitic stainless steel nitrided piston excellent in scuffing resistance (seizure resistance), cracking resistance (breakage resistance) and fatigue resistance. The present invention relates to a ring and a manufacturing method thereof.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, low fuel consumption, light weight, and high performance of internal combustion engines have been demanded. Therefore, in piston rings as well, the piston ring is made thinner due to light weight and high rotation, so wear resistance, scuffing resistance, Improvements in characteristics such as fatigue properties are required, and in particular from the viewpoint of fatigue resistance and heat resistance, conventional cast iron piston rings have been replaced with steel piston rings. Steel piston rings are inferior in scuffing resistance compared to cast iron piston rings, and therefore some surface treatment is usually applied to the sliding surfaces. Piston ring steel is roughly classified into carbon steel, silicon chrome steel, and martensitic stainless steel depending on the type of surface treatment to be combined. Mainly, chrome plating is used for carbon steel and silicon chrome steel, and martensitic stainless steel is used. Gas nitriding is performed. Most conventional steel piston rings are chrome-plated, but in recent years, nitrided piston rings are becoming mainstream due to problems such as scuffing of the plating layer under high load and environmental problems of waste liquid treatment.
[0003]
For high chromium martensitic stainless steel, C: 0.80-0.95%, Cr: 17.0-18.0%, Si: 0.25-0.50%, Mn: 0.25-0.40%, Mo: 0.70-1.25%, V: 0.07-0.15% , Fe: balance JIS SUS440B equivalent material with the following composition is the main steel type used for nitriding piston rings. When nitriding is performed on steel having this composition, nitrogen atoms enter and diffuse into the steel from the surface to form a nitrided layer. The nitride in the nitride layer is mainly a compound with Cr, V, Mo or a compound in which Fe is dissolved. In particular, Cr, which is abundantly contained in steel, dissolves in the matrix and exists as Cr carbide, but has a higher affinity with nitrogen than carbon, so nitrogen and Cr diffused from the surface by nitriding treatment. Carbide reacts to produce Cr nitride. Since SUS440B equivalent material has a high Cr content of 17.0-18.0%, for the reasons described above, a relatively high hardness nitride layer in which hard Cr nitride is dispersed at an appropriate area ratio can be obtained. Shows scuffing.
[0004]
Recently, as martensitic stainless nitrided steel for piston rings, Japanese Patent Laid-Open No. 11-80907 states that even if Cr is slightly lower than 5.0 to less than 12.0%, Si: 0.25% or less, Mn: 0.30% or less, Mo, W, One or more of V and Nb: 0.3-2.5%, or Cu: 4.0% or less, Ni: 2.0% or less, Al: 1.5% or less, excellent scuffing resistance is obtained. In Kaihei 11-106874, M present in the organization 7 C Three It is disclosed that a piston ring material having excellent workability in addition to scuffing resistance can be obtained by making the type carbide content 4.0% or less in area%.
[0005]
However, such a nitrided piston ring exhibiting excellent wear resistance and scuffing resistance also causes a problem of scuffing when used in an internal combustion engine with a high rotation and high output load. In particular, in recent diesel engines, from the viewpoint of weight reduction and cost reduction, the conventional liner is pressed into a cylinder block to change to a cast iron monoblock system with a narrow bore interval, and exhaust gas purification and higher output can be achieved. From the viewpoint, the combustion pressure is increasing. In the cast iron monoblock, the microstructure of the sliding surface with the piston ring has a large variation in the dispersion state of graphite due to the nonuniformity of the cooling rate, and the soft ferrite phase that causes scuffing is unevenly distributed. When a cylinder surface having such a microstructure and a martensitic stainless steel nitrided piston ring are combined, scuffing is likely to occur in the initial stage of operation. The cause is as follows. In other words, when honing the cylinder surface, clogging of the grindstone is likely to occur due to unevenly distributed ferrite, and the cylinder surface roughness after honing tends to be rough, and graphite is covered with plastic flowed ferrite, resulting in the area of the graphite. The rate of lubrication and the oil sump function are reduced by reducing the rate, and the back pressure applied to the piston ring is increased when the combustion pressure is high. This scuffing is often caused by the generation of cracks perpendicular to the sliding direction of the outer peripheral surface of the piston ring, and the cracks are almost parallel to the surface formed at the crystal grain boundary of the nitride layer of the sliding surface of the piston ring and relatively coarse. Are observed along a lamellar grain boundary compound (also called a seagull phase in the art).
[0006]
These problems are dealt with by surface treatment of TiN, CrN, etc. by ion plating, which is further excellent in wear resistance and scuffing resistance. The reality is that users are not satisfied with the point of view.
[0007]
[Problems to be solved by the invention]
Accordingly, it is an object of the present invention to provide wear, scuffing, cracking, fatigue even when used in internal combustion engines with high loads and high combustion pressures, especially heavy duty diesel engines that are expected to increase in the future. An object of the present invention is to provide a high chromium martensitic stainless steel nitrided piston ring that does not cause breakage and has excellent cost performance, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
According to the “Piston Ring for Automobiles” Editorial Committee for Piston Rings for Automobile, Sankaido, p. 188, 1997, the scuffing of the piston ring is a micro-protrusion protrusion (especially a soft phase protrusion) on the sliding surface. It is explained that a concentrated load is applied to the part, the temperature rises due to frictional heat, and abnormal softening and melting occur.
[0009]
The structure of the nitrided layer in the high chromium martensitic stainless nitrided steel generally has a form in which hard nitrides are mainly dispersed in a matrix of tempered martensite. Scuffing is strongly related to the microscopic unevenness of the sliding surface, that is, the size and dispersion state of hard particles dispersed in a relatively soft matrix. When observing the cross section of the surface layer having such a structure, the convex hard particles come into contact with the other sliding surface, and the relatively soft matrix is relatively concave. Therefore, the probability that the nitrided steel comes into direct contact with the counterpart material is reduced, and a lubricating oil film is formed in the recess, and pressure is generated in the oil film during sliding to reduce the contact pressure and lubricate the convex contact portion. To prevent scuffing. In order to achieve the function and effect as convex hard particles by such a mechanism, a particle size of submicron to several microns is required, and the amount of dispersion is preferably 5% or more in terms of area ratio. When the hard particles are extremely small or the amount of dispersion is small, a mechanism based on the effect of the convex hard particles cannot be expected.
[0010]
However, such a scuffing prevention mechanism also depends on the state of the sliding surface of the counterpart material. In the cast iron monoblock having the heterogeneous structure as described above, the surface roughness of the cylinder surface is likely to become rough due to grinding stone processing, and the graphite is often blocked by the plastic flow of the ferrite phase. Such cast iron also causes the following phenomenon by appropriate sliding (also referred to as “familiar” among those skilled in the art). That is, the rough surface of the inner peripheral surface of the cylinder is smoothed, and the graphite that has been blocked by the ferrite phase opens. During the period until the familiarization is completed, the oil film on the sliding surface is easily cut, so that a large frictional force is repeatedly applied to the outer peripheral surface of the piston ring. For this reason, the nitride layer on the outer peripheral surface of the piston ring is cracked and expanded in a direction perpendicular to the sliding direction due to repeated stress due to frictional force. The stress applied as the familiarity of the cylinder inner surface progresses is reduced, but the crack develops over time, causing local surface peeling and chipping, and further damages the inner surface of the cylinder. It is easy to cause scuffing. Since the grain boundary compound present in the nitride layer is very brittle, it promotes the generation and development of cracks. Therefore, in order to prevent such initial scuffing, the hard particles mainly composed of nitride of Cr in the nitride layer are uniformly distributed in a proper size and a large number are dispersed to reduce the contact probability between the matrix and the cylinder. In particular, it is necessary to suppress the generation of cracks related to the grain boundary compound by making the grain boundary compound produced by nitriding treatment fine, and to prevent the spread by finely dividing the propagation of cracks. The inventors have found that they are essential.
[0011]
In high chromium martensitic stainless steel, when the molten steel solidifies, eutectic Cr carbide (η phase: (Cr, Fe) 7 C Three ) Crystallizes at the primary austenite (γ phase) grain boundary. Even after hot rolling, spheroidizing heat treatment, and final quenching and tempering heat treatment, Cr carbide exceeding 20 μm in maximum diameter is observed. Regarding the refinement of this coarse primary eutectic carbide, a fine Cr carbide structure is obtained by adding 0.25% or more of nitrogen (N) to Iron and Steel, Vol. 82, No. 4, p.309-314 (1996). It has been reported that According to the report, eutectic Cr carbide in the primary γ grain boundary disappeared, and instead of lamellar M twenty three C 6 And M 2 N (M: Cr, Fe) precipitates around the primary crystal γ grain boundary, and these lamellar M twenty three C 6 And M 2 N is finely divided by hot rolling and fine M in the subsequent spheroidizing annealing. twenty three C 6 Is M 2 It is explained that since it newly precipitates at a site different from N, it becomes a fine Cr carbide structure as a whole. Heat treatment, Vol.36, No.4, p.234-238 (1996) also describes the increase in the amount of N added to the mechanical properties of 16.5% Cr-0.65% C martensitic stainless steel with 0.25% N added. Along with this, it has been reported that the temperature showing the highest quenching hardness shifts to a lower temperature side, and the ductility increases. The reason is that the higher the quenching temperature, the more the amount of N dissolved in the austenite phase increases. It is explained that the phase is stabilized.
Japanese Patent Application Laid-Open Nos. 9-289053 and 9-287058 disclose rolling bearings using the refinement technique of Cr carbide by adding N.
[0012]
The present inventors have considered the above-mentioned scuffing mechanism, and the layered grain boundary that is substantially parallel and relatively coarse to the surface formed at the crystal grain boundary of the nitride layer of the sliding surface of the piston ring where cracks are observed. As a result of diligent research on the compound with the refinement of Cr carbide by adding N, the microstructure in which the nitride in the nitride layer is fine and there are many, especially the layered grain boundary compound in the nitride layer becomes fine Therefore, even if it is used for internal combustion engines with high rotation, high output and high combustion pressure load, especially in recent lightweight cast iron monoblock diesel engines, wear resistance, scuffing resistance, cracking resistance, It was discovered that a high chromium martensitic stainless steel nitrided piston ring with excellent fatigue properties can be obtained.
[0013]
That is, the high chromium martensitic stainless steel nitrided piston ring according to the present invention is made of high chromium martensitic stainless steel in weight% C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50% , Mo, V, W, Nb total 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05% or less, balance is Fe Nitride, carbide, and carbonitride hard particles mainly composed of nitride on the surface of the sliding nitrided layer are in the range of 0.5-2 μm in average diameter, 7 μm or less in maximum diameter, and 5 in area ratio. It is characterized by being in the range of -30%. Further, the size (length) of the grain boundary compound observed in the nitride layer cross section in the longitudinal direction of the piston ring is a maximum of 20 μm or less. Furthermore, the hardness of the sliding surface nitrided layer having the above-mentioned structural characteristics has a characteristic that the Vickers hardness is in the range of 900-1400, and the nitrided layer has a sufficient depth from the nitrided surface. It is characterized by that.
[0014]
The manufacturing method of the high chromium martensitic stainless steel nitrided piston ring of the present invention first melts steel of a predetermined composition, performs nitrogen addition, cast into an ingot, hot rolling, annealing, cold drawing, It is cold rolled to bring it close to a predetermined piston ring cross-sectional shape, and is quenched and tempered to obtain a wire rod. The wire is bent into a ring shape, and the piston ring is manufactured through steps such as strain relief heat treatment, side rough grinding, nitriding, removal of the surface compound layer, grinding of the gap, side finishing grinding, outer periphery lapping, etc. In the quenching process before bending into the piston ring, the high chromium martensitic stainless steel of 850-1000 ° C is quenched from a relatively low temperature, so that it is fine and contains as much carbide as possible. Get the organization. Nitriding can be performed by gas nitriding, ion nitriding, or radical nitriding, all of which are performed at 450-600 ° C. for 1-20 hours.
[0015]
The present invention will be described in detail below. The components of the high chromium martensitic stainless steel according to the present invention will be described. First, C dissolves in an interstitial form in Fe to increase the hardness of the matrix, and at the same time, easily combines with Cr, Mo, V, W, and Nb. It is easy to produce carbide. By the nitriding treatment, the carbide in the nitride layer is mainly changed to nitride, and the wear resistance and scuffing resistance are improved on the sliding surface of the piston ring. When C is less than 0.3%, there is little increase in hardness and carbide formation. When it exceeds 1.0%, coarse and large amount of eutectic Cr carbide (η phase: M 7 C Three ) Is crystallized, and the workability is extremely lowered in the subsequent production of the wire, so C is set in the range of 0.3-1.0%. Preferably it is made into the range of 0.4-0.9%.
[0016]
Since Cr dissolves in substitutional form in Fe, in addition to improving corrosion resistance, it improves heat sag resistance through solid solution strengthening. Here, heat sag refers to a phenomenon in which the seal characteristics deteriorate due to a decrease in tension based on the creep phenomenon during use of the piston ring at a high temperature. Moreover, it reacts with C in steel to form Cr carbide. This Cr carbide easily reacts with N entering from the surface by nitriding, and becomes CrN in the nitrided layer and is dispersed as hard particles. The hard particles in the nitride layer significantly improve the wear resistance and scuffing resistance of the sliding surface of the piston ring. When the Cr content is less than 14%, the formation of Cr compounds is small. When the Cr content exceeds 21%, the toughness decreases due to the formation of δ ferrite and the Cr concentration in the matrix becomes too high, and the Ms (martensitic transformation start temperature) is sufficiently lowered. Since quenching hardness may not be obtained, the Cr content should be in the range of 14-21%. The range is preferably 16-19%.
[0017]
N, like C, dissolves in an interstitial form in Fe. By adding N, for example, the C concentration at the left end of the eutectic line in the 17% Cr equiconcentration cross section of the Fe-Cr-C system phase diagram is greater than the C concentration of the concentrated molten steel existing at the primary grain boundary during the solidification process. Is also shifted to a higher concentration side, so that the eutectic reaction is suppressed, and hence the crystallization of the η phase is suppressed. In the subsequent cooling process, supersaturated C and N become lamellar M twenty three C 6 And M 2 N precipitates around the primary γ grain boundary. When N is less than 0.05%, the η phase is crystallized, and when it exceeds 0.50%, rod-like M 2 Since the precipitation amount of N increases and the toughness decreases, N is set in the range of 0.05-0.50%. Preferably it is set as the range of 0.10-0.30%. Further, the solid solution of N in the matrix inhibits the diffusion of C in the matrix, and the grain boundary compound (finally Fe Three Fe changing to N Three Contributes to miniaturization of C). If N is added at 0.2% or less, it can be added at normal pressure, and if it exceeds 0.2%, melting in a pressurized N2 atmosphere is required. Therefore, the range of 0.05-0.20% is preferable from the viewpoint of N addition.
[0018]
Mo, V, W, and Nb are all carbide-forming elements and improve wear resistance and scuffing resistance. Mo has an effect of preventing softening in tempering and nitriding, and plays an important role in dimensional stability of the piston ring. V is an element that promotes nitriding, and has the effect of increasing the hardness of the nitrided layer. Therefore, any element is useful because it improves various performances required for the piston ring, but if the total of at least one of Mo, V, W, and Nb is less than 0.03%, there is almost no effect. If it exceeds 3%, the workability will be seriously impaired and the toughness will be lowered. Therefore, the total of at least one of Mo, V, W, and Nb should be in the range of 0.03-3.0%.
[0019]
Si is added as a deoxidizing agent and is dissolved in Fe to increase the resistance to temper softening and improve the so-called heat sag resistance. If it is less than 0.1%, the effect is small, and if it exceeds 1.0%, the toughness is lowered. Therefore, Si is set in the range of 0.1-1.0%.
[0020]
Mn is also added as a deoxidizer in the same manner as Si. If it is less than 0.1%, the effect is small, and if it exceeds 1.0%, the workability deteriorates, so Mn is set in the range of 0.1-1.0%.
[0021]
P forms inclusions with Mn and the like to lower the fatigue strength and further reduce the corrosion resistance. Therefore, it is preferable that P be as few as possible as impurities in the steel. Therefore, it is 0.05% or less from a practical viewpoint. Preferably it is 0.03% or less.
[0022]
S, like P, lowers fatigue strength and further reduces corrosion resistance. Therefore, it is better that the amount of impurities in steel is as small as possible. Therefore, it is 0.05% or less from a practical viewpoint. Preferably it is 0.03% or less.
[0023]
In order to make a steel having a composition in the above range into a structure excellent in scuffing resistance, it is necessary that the nitride in the nitride layer is fine and present in large numbers. That is, nitride, carbide, and carbonitride hard particles mainly composed of Cr nitride on the sliding nitride layer surface have an average diameter in the range of 0.2-2 μm, a maximum diameter of 7 μm or less, and an area ratio of 5-30%. The range. If the average particle size is 0.2 μm or less, the effect as convex hard particles for preventing scuffing cannot be expected, and if it exceeds 2 μm, the problem of scuffing remains when the load is high. If the maximum diameter exceeds 7 μm, the uniformity of the tissue is inferior, and if the load is high, the problem of scuffing remains. If the area ratio is less than 5%, there remains a problem in scuffing resistance, and if it exceeds 30%, it becomes difficult to process the wire after melting or bend the wire into a ring shape. Preferably it is 10-25%. In order to obtain a structure excellent in cracking resistance in the present invention, the size (length) of the grain boundary compound observed in the nitride layer cross section in the longitudinal direction of the piston ring substantially composed of the matrix and the hard particles is Maximum 20 μm or less. When the maximum length exceeds 20 μm, problems associated with cracking occur when the load is high.
[0024]
The nitride layer structure of the present invention as described above results from the fine structure of stainless steel. In this structure, first, after processing such as hot rolling, spheroidizing heat treatment, cold drawing, quenching and tempering, η phase ((Cr, Fe) of coarse eutectic Cr carbide 7 C Three ) Does not exist. This can be achieved by the addition of nitrogen.
Second, secondary carbides that precipitate when kept at the quenching temperature before nitriding (ε phase: (Fe, Cr) twenty three C 6 ) Are fine and present in large numbers. Considering this point based on the phase diagram of the Fe-Cr-C system, in the (γ + ε) region, as the temperature decreases, more carbide precipitates in equilibrium, so the lowest possible temperature range of the (γ + ε) region is as low as possible. By setting the quenching temperature, as much ε carbide as possible can be precipitated. In addition, quenching from a low temperature region makes it possible to make the γ crystal grains fine so as to suppress the growth of the γ crystal grains, and hence to make the grain boundary compound phase formed in the subsequent nitriding treatment fine. From this aspect, the preferable quenching temperature is in the range of 850-1000 ° C. If the temperature is lower than 850 ° C., the predetermined hardness cannot be obtained due to the absence of baking and the precipitation of the α phase. When the quenching temperature exceeds 1000 ° C., carbide aggregation and γ crystal grain coarsening occur at the stage where the quenching temperature is maintained, and as a result, the nitride and grain boundary compound phases formed in the subsequent nitriding process also coarsen. To do. High hardness of 900-1400 can be obtained in a short time in a relatively short time in the nitrided layer, and a relatively fine γ crystal grain can be obtained at a low quenching temperature, which serves as the main diffusion path of N in the nitriding process This is due to an increase in the grain boundary that fulfills the above. In the present invention, nitriding in the range of 450-600 ° C has been considered to be because the solubility of N in the α-Fe lattice is maximized at about 590 ° C. If it is the main diffusion path, it is not necessary to be limited to this temperature. From the viewpoint of shape stability of the piston ring, treatment at a temperature as low as possible is preferable, but from a practical point of view, the temperature is set to 450 to 600 ° C. for 1 to 20 hours.
[0025]
【Example】
The following specific examples further illustrate the present invention.
Example 1-11 (J1-J11), Comparative Example 1-8 (H1-H8)
High chromium martensitic stainless steel having the chemical composition shown in Table 1 was melted using a 10 kg vacuum induction melting furnace. However, steel with less than 0.2% N is added with nitrogen at normal pressure, and steel with 0.2% N or more is pressurized N 2 Melted in the atmosphere. Next, it is processed into a linear material with a diameter of 12 mm through hot working, pickled, then subjected to spheroidizing annealing at 750 ° C. for 10 hours, and processed into a wire with a rectangular cross section of 3.5 mm x 5.0 mm through a predetermined process did. Here, quenching and tempering are carried out continuously in a quenching furnace (Ar atmosphere) at 930 ° C for about 10 minutes, air-cooled and quenched, and then passed through a tempering furnace (Ar atmosphere) at 620 ° C for about 25 minutes. Was a test piece obtained by cutting a wire into a length of 50 mm, and gas nitriding was performed at 570 ° C. for 4 hours. However, the quenching temperature of Comparative Example 1 (H1) was 1100 ° C. which was conventionally performed conventionally. Other conditions are the same as in the other examples and comparative examples.
[0026]
[Table 1]
Figure 0004724275
[0027]
Each wire rod test piece was further cut to a length of 10 mm for microscopic structure observation, embedded in resin and polished to a mirror surface, and tissue observation and tissue quantification were performed using an image analyzer. Figures 1 and 2 show scanning electron microscope reflection electron image photographs (Figs. 1 (a) and 1 (b)) on the surface of the sliding nitride layer of Example 1 (J1) and Comparative Example 1 (H1), and the nitride layer cross section. Fig. 2 shows optical micrographs (Fig. 2 (a), (b)). The hard particles have a black phase in the reflection electron image photograph and a white phase in the optical microscope photograph. In the present invention, it can be seen that the hard particle size is small and the size of the grain boundary compound in the nitride layer cross section is extremely small. Table 2 shows the average particle size, maximum particle size, and area of the hard particles on the sliding surface nitrided layer as the quantitative results of the structures of Example 1-11 (J1-J11) and Comparative Example 1-8 (H1-H8). The ratio, the maximum length of the grain boundary compound in the nitride layer cross section, and the hardness of the sliding surface nitride layer surface are shown.
[0028]
[Table 2]
Figure 0004724275
* Comparative Examples 2, 4, and 8 (H2, H4, and H8) could not be formed into wires due to difficulty in processing.
** In Comparative Example 7 (H7), the dimensions after nitriding were unstable and the yield decreased.
[0029]
The scuffing test is a U-shaped two-pin integrated test piece with a total length of 45 mm shown in Fig. 3 made from a wire specimen, and a friction and wear tester (manufactured by Riken) : Trade name “Tribolic I”). Sliding surface at the tip of the pin (FIG. 4, reference numeral 1)
Is a convex shape having a radius of 20 mm, and a compound layer (white layer) having a thickness of 5 to 20 μm formed on the surface by gas nitriding is ground and finished to a mirror surface by polishing. On the other hand, a FC250 disc (FIG. 4, reference numeral 2) having a sliding surface with a surface roughness (Rz) adjusted to 1-2 μm was used. The operating mechanism of the friction and wear tester is shown in Fig. 4, and the fuffing test conditions are shown below.
Sliding speed (disc): 8 m / sec
Press-fit weight: Increase from initial 1.0 MPa every 0.2 MPa, pressurize until scuffing occurs
Lubricating oil: Motor oil (Product name, Nisseki Motor Oil P # 20)
Lubricating oil temperature: 80 ° C (near the outlet)
Oil bath: 100 ℃
Lubricating oil supply: 40cc / min
The scuffing surface pressure was calculated from the weight of pressing and the wear area of the sliding surface when scuffing occurred. Table 3 shows the scuffing surface pressures of Example 1-11 (J1-J11) and Comparative Example 1-8 (H1-H8).
[0030]
[Table 3]
Figure 0004724275
It can be seen that Examples 1-11 (J1-J11) according to the present invention have improved scuffing resistance compared to Comparative Examples 1, 3, 5-7 (H1, H3, H5-H7).
[0031]
Example 12-14 (J12-14) and Comparative Example 9-11 (H9-H11)
In the material having the chemical composition of Example 1, air-cooling quenching was performed from the quenching temperature shown in Table 7 in the quenching process after wire processing, and the nitrided layer structure subjected to gas nitriding through a predetermined process similar to Example 1 was quantified. Turned into. The results are shown in Table 4.
[0032]
[Table 4]
Figure 0004724275
* In Comparative Example 9 (H9), the hardness of the nitrided layer was as low as 860.
[0033]
Example 12-14 (J12-14) and Comparative Example 9-11 (H9-H11)
In the material having the chemical composition of Example 1, air-cooling quenching was performed from the quenching temperature shown in Table 7 in the quenching process after wire processing, and the nitrided layer structure subjected to gas nitriding through a predetermined process similar to Example 1 was quantified. Turned into. The results are shown in Table 5.
[0034]
[Table 5]
Figure 0004724275
* In Comparative Example 9 (H9), the hardness of the nitrided layer was as low as 860.
[0035]
Example 15 and Comparative Example 12
Through a predetermined process from the steel materials of Example 1 and Comparative Example 1, the nominal diameter (d 1 ) 95.0mm, thickness (a 1 ) 3.35mm, width (h 1 ) Processed into a 2.3 mm rectangular cross-section pressure ring (Example 15, Comparative Example 12). Here, quenching and tempering are performed continuously in a quenching furnace at 930 ° C. for about 10 minutes, air-cooled and quenching, and then passed through a tempering furnace at 620 ° C. for about 25 minutes, and nitriding is performed at 570 ° C. for 4 hours. Gas nitriding was performed. However, the quenching temperature of Comparative Example 12 was 1100 ° C., which was conventionally performed conventionally. Other conditions are the same as in Example 15.
Using the produced pressure ring, a fatigue test was performed with a piston ring fatigue tester having an operation mechanism shown in FIG. That is, the product 3 having the free joint size widened by cutting both ends of the joint is set in the test machine in a state of being closed to the ring nominal diameter, and a stroke corresponding to the load stress is applied by the eccentric cam 4 in the closing direction from this state. The ring was broken by giving it repeatedly at a cycle of 40 cycles / second, and the number of stress loads at the time of breakage was determined. This test was repeated for samples of the same specification while changing the load stress, a so-called SN diagram was created, and a fatigue limit diagram was finally obtained.
FIG. 6 shows a fatigue limit diagram, and it can be seen that compared with Comparative Example 12, Example 15 of the present invention is greatly improved.
[0036]
Examples 16-19 and Comparative Example 13-14
Through a predetermined process from the steel materials of Example 1 (Examples 16 and 17), Example 7 (Examples 18 and 19) and Comparative Example 1 (Comparative Examples 13 and 14), the nominal diameter (d 1 ) 99.2mm, thickness (a 1 ) 3.8mm, width (h 1 ) 2.5 mm rectangular cross-section pressure ring (Examples 16, 18, Comparative Example 13) and nominal diameter (d 1 ) 99.2mm, thickness (a 1 ) 2.5mm, width (h 1 ) A 2-mm oil ring main body (Examples 17, 19, and Comparative Example 14) having a saddle-shaped cross section of 3.0 mm was processed. Regarding the heat treatment for quenching and tempering and gas nitriding, Example 16-19 was carried out in the same manner as in Example 15, and Comparative Example 13-14 was carried out in the same manner as in Comparative Example 12.
The manufactured pressure ring and oil ring were subjected to a durability test for 100 hours under the following conditions using a 4-cylinder 3200cc cast iron monoblock diesel engine.
Rotation speed: 3600rpm
Output: 75kW
Load: Full load
Water temperature: 110 ° C
Oil temperature: 130 ° C
In Comparative Example 13, scuffing occurred 2 hours and 10 minutes after the start of the test, and in Comparative Example 14 7 hours and 55 minutes after the start of the test, whereas in Example 16-19, the test was completed without any problems. A photograph of cracks generated on the sliding surface of Comparative Example 13 is shown in FIG.
[0037]
【The invention's effect】
As described above, the nitrided piston ring made of high chromium martensite stainless steel according to the present invention has a large number of nitrides in the nitrided layer by the refinement technology of Cr carbide by nitrogen addition and quenching from a relatively low temperature. In particular, the layered grain boundary compound in the nitrided layer has a fine microstructure and is excellent in wear resistance, scuffing resistance, cracking resistance, and fatigue resistance. In particular, it can be used for recent lightweight cast iron monoblock diesel engines. It can also be used effectively against piston ring fatigue when using an exhaust brake in a small truck. As an applicable piston ring, it can be conveniently used in the body of a two-piece oil ring or a rail of a three-piece oil ring in addition to a pressure ring.
[Brief description of the drawings]
FIG. 1 is a reflection electron image photograph of a surface of a sliding nitride layer by a scanning electron microscope ((a) Example 1, (b) Comparative Example 1).
FIG. 2 is an optical micrograph of a nitride layer cross section ((a) Example 1, (b) Comparative Example 1).
FIG. 3 is a view showing a test piece of a scuffing test.
FIG. 4 is a diagram showing an operating mechanism of a friction and wear tester.
FIG. 5 is a diagram showing an operation mechanism of a piston ring fatigue tester.
FIG. 6 is a graph of a fatigue limit diagram.
7 is a photograph of cracks generated on the sliding surface of Comparative Example 13. FIG.
[Explanation of symbols]
1 Ring material
2 Cylinder material
3 rings
4 Eccentric cam

Claims (3)

表面窒化層を形成した高クロムマルテンサイト系ステンレス鋼よりなるピストンリングにおいて、前記高クロムマルテンサイト系ステンレス鋼が、重量%で、C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少なくとも1種以上の合計: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05%以下, S: 0.05%以下, 残部がFe及び不可避的不純物よりなり、その摺動窒化層表面のCrの窒化物、炭化物、炭窒化物からなる子が平均直径で0.2-2μmの範囲、最大直径で7μm以下、面積率で5-30%の範囲であり、且つ摺動窒化層のビッカース硬度が1100-1400の範囲にあることを特徴とするストンリング。In the piston ring made of high chromium martensitic stainless steel with a surface nitrided layer, the high chromium martensitic stainless steel is C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05 -0.50%, total of at least one of Mo, V, W, Nb: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05% or less, the balance being Fe and unavoidable impurities, a nitride of Cr in the sliding nitriding layer surface, a carbide, a range of 0.2-2μm particle element consisting of carbonitrides in average diameter, 7 [mu] m or less in maximum diameter, an area ratio 5-30% range der is, and piston rings Vickers hardness of the sliding nitriding layer is characterized to be in the range of 1100-1400. 表面窒化層を形成した高クロムマルテンサイト系ステンレス鋼よりなるピストンリングにおいて、前記高クロムマルテンサイト系ステンレス鋼が、重量%で、C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少なくともNbを含む1種以上の合計: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05%以下, S: 0.05%以下, 残部がFe及び不可避的不純物よりなり、摺動窒化層表面のCrの窒化物、炭化物、炭窒化物からなる粒子が平均直径で0.2-2μmの範囲、最大直径で7μm以下、面積率で5-30%の範囲であることを特徴とするピストンリング。In the piston ring made of high chromium martensitic stainless steel with a surface nitrided layer, the high chromium martensitic stainless steel is C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05 -0.50%, total of one or more of Mo, V, W, Nb including at least Nb: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05 % Or less, the balance is Fe and inevitable impurities, particles of Cr nitride, carbide and carbonitride on the surface of the sliding nitrided layer are in the range of 0.2-2μm in average diameter, 7μm or less in maximum diameter, area ratio Piston ring characterized by being in the range of 5-30%. 表面窒化層を形成した高クロムマルテンサイト系ステンレス鋼よりなるピストンリングであって、前記高クロムマルテンサイト系ステンレス鋼が、重量%で、C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少なくとも1種以上の合計: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05%以下, S: 0.05%以下, 残部がFe及び不可避的不純物よりなる高クロムマルテンサイト系ステンレス鋼を、ピストンリング形状へ曲げ加工する前の焼入れ工程で、870-930℃の温度から焼入れし、その後窒化処理を行い、摺動窒化層表面のCrの窒化物、炭化物、炭窒化物からなる粒子が平均直径で0.2-2μmの範囲、最大直径で7μm以下、面積率で5-30%の範囲であるピストンリングを製造することを特徴とするピストンリングの製造方法。Piston ring made of high chromium martensitic stainless steel with a surface nitrided layer, wherein the high chromium martensitic stainless steel is C: 0.3-1.0%, Cr: 14.0-21.0%, N : 0.05-0.50%, total of at least one of Mo, V, W, Nb: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05% In the following, high chromium martensitic stainless steel with the balance of Fe and inevitable impurities is quenched from a temperature of 870-930 ° C in the quenching process before bending into a piston ring shape, and then subjected to nitriding treatment and sliding. Manufacture piston rings with Cr nitride, carbide and carbonitride particles on the surface of kinematic nitride layer with an average diameter of 0.2-2μm, maximum diameter of 7μm or less, and area ratio of 5-30%. A method for manufacturing a piston ring.
JP2000216255A 2000-07-17 2000-07-17 Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof Expired - Lifetime JP4724275B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000216255A JP4724275B2 (en) 2000-07-17 2000-07-17 Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof
PCT/JP2001/006127 WO2002006546A1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
ARP010103377A AR029730A1 (en) 2000-07-17 2001-07-16 PISTON RING WITH IMPROVED RESISTANCE TO FATIGUE FRACTURE AND FRICTION AND PRODUCTION METHOD OF THE SAME, AND COMBINATION OF PISTON RING AND CYLINDER BLOCK
US10/333,326 US20040040631A1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
DE60122164T DE60122164T2 (en) 2000-07-17 2001-07-16 PISTON RING WITH EXCELLENT RESISTANCE TO FRICTION, CRACKING AND TEMPERING AND MANUFACTURING METHOD AND COMBINATION OF PISTON RING AND CYLINDER BLOCK
KR10-2003-7000751A KR100507424B1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
EP01949987A EP1304393B1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
TW090117357A TW521093B (en) 2000-07-17 2001-07-16 Piston ring having improved scuffing, cracking and fatigue resistances, and its production method, as well as combination of piston ring and cylinder block
BRPI0112573-7A BR0112573B1 (en) 2000-07-17 2001-07-16 piston ring.
CNB018157637A CN1210427C (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing same, and combination of piston ring and cylinder block
US11/657,015 US20070187002A1 (en) 2000-07-17 2007-01-24 Piston ring having improved scuffing, cracking and fatigue resistances, and its production method, as well as combination of piston ring and cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216255A JP4724275B2 (en) 2000-07-17 2000-07-17 Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002030394A JP2002030394A (en) 2002-01-31
JP4724275B2 true JP4724275B2 (en) 2011-07-13

Family

ID=18711547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216255A Expired - Lifetime JP4724275B2 (en) 2000-07-17 2000-07-17 Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof

Country Status (10)

Country Link
US (2) US20040040631A1 (en)
EP (1) EP1304393B1 (en)
JP (1) JP4724275B2 (en)
KR (1) KR100507424B1 (en)
CN (1) CN1210427C (en)
AR (1) AR029730A1 (en)
BR (1) BR0112573B1 (en)
DE (1) DE60122164T2 (en)
TW (1) TW521093B (en)
WO (1) WO2002006546A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI258547B (en) * 2002-08-27 2006-07-21 Riken Co Ltd Side rails for combined oil control ring and their nitriding method
KR101087562B1 (en) * 2003-03-31 2011-11-28 히노 지도샤 가부시키가이샤 Piston for internal combustion engine and producing method thereof
SE526805C8 (en) * 2004-03-26 2006-09-12 Sandvik Intellectual Property steel Alloy
CN100363524C (en) * 2005-03-17 2008-01-23 上海材料研究所 Anticorrosion and antiwear martensitic stainless steel and its production method and use
JP4648094B2 (en) * 2005-05-31 2011-03-09 株式会社神戸製鋼所 High Cr cast iron with excellent fatigue crack resistance and method for producing the same
BRPI0707772A2 (en) 2006-04-20 2011-05-10 Hitachi Metals Ltd piston ring material for internal combustion engine
DE102006038669A1 (en) * 2006-08-17 2008-02-28 Federal-Mogul Burscheid Gmbh Steel material, in particular for the production of piston rings
JP4954644B2 (en) * 2006-08-31 2012-06-20 日本ピストンリング株式会社 Combination of cylinder liner and piston ring
DE102008032884B4 (en) * 2008-07-14 2018-09-20 Mahle International Gmbh Valve device, heat exchanger and charging system for charging an internal combustion engine with a charging fluid
JP5368887B2 (en) * 2008-09-01 2013-12-18 ミネベア株式会社 Martensitic stainless steel and rolling bearings
BRPI0905228B1 (en) * 2009-12-29 2017-01-24 Mahle Metal Leve Sa crack propagation resistant nitrided piston ring
JP5676146B2 (en) * 2010-05-25 2015-02-25 株式会社リケン Pressure ring and manufacturing method thereof
KR101239589B1 (en) 2010-12-27 2013-03-05 주식회사 포스코 High corrosion resistance martensite stainless steel and method of manufacturing the same
EP2739761B1 (en) 2011-06-02 2017-05-24 Aktiebolaget SKF Carbo-nitriding process for martensitic stainless steel and stainless steel article having improved corrosion resistance
KR101268736B1 (en) 2011-06-24 2013-05-29 주식회사 포스코 martensitic stainless steel and method of manufacturing it
KR20140097390A (en) 2011-11-30 2014-08-06 페더럴-모걸 코오포레이숀 High modulus wear resistant gray cast iron for piston ring applications
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
CN103866202B (en) * 2012-12-14 2016-08-17 钟庆辉 Modified stainless steel material is used to make engine piston ring compressed ring method
KR102005580B1 (en) * 2012-12-17 2019-07-30 두산인프라코어 주식회사 Flange type sliding bearing, sliding bearing assembly and articulation assembly for construction machinery having the same
DE102013010807A1 (en) * 2013-06-27 2014-12-31 Liebherr-Aerospace Lindenberg Gmbh Component of an aircraft
JP6010508B2 (en) * 2013-07-03 2016-10-19 ボーグワーナー インコーポレーテッド Manufacturing method of sliding member, manufacturing method of chain link, and manufacturing method of chain provided with the link
US20160208372A1 (en) * 2013-08-27 2016-07-21 University Of Virginia Patent Foundation Lattice materials and structures and related methods thereof
BR102013031497A2 (en) * 2013-12-06 2015-11-10 Mahle Int Gmbh process of coating a cylinder of an internal combustion engine and cylinder / engine liner
WO2015114822A1 (en) * 2014-01-31 2015-08-06 Tpr株式会社 Compression ring and base material for compression ring
WO2015124169A1 (en) * 2014-02-18 2015-08-27 Schmiedewerke Gröditz Gmbh Chromium steel for machine parts subject to strong wear, in particular pelletization matrices
JP5859048B2 (en) * 2014-03-20 2016-02-10 サンコール株式会社 Piston ring and metal rectangular wire for piston ring
CN104018083B (en) * 2014-06-20 2016-01-06 重庆材料研究院有限公司 Nitrogenous stainless bearing steel and preparation method
BR102014026128B8 (en) 2014-10-20 2021-08-17 Mahle Int Gmbh piston ring and internal combustion engine
US10196718B2 (en) * 2015-06-11 2019-02-05 Hitachi Metals, Ltd. Steel strip for cutlery
JP6139605B2 (en) * 2015-07-17 2017-05-31 株式会社リケン Piston ring and manufacturing method thereof
WO2017021330A1 (en) * 2015-08-03 2017-02-09 Mahle International Gmbh Piston rings of nitridable cast steels and process of production
BR102015027438B8 (en) 2015-10-29 2021-12-21 Inst De Pesquisas Tecnologicas Do Estado De Sao Paulo S/A Piston rings in cast tool steels and their manufacturing process
CN106053053B (en) * 2016-08-10 2018-08-03 三峡大学 A kind of piston ring fatigue tester and fatigue test method
CN106119729A (en) * 2016-08-18 2016-11-16 娄土岭 A kind of hot investment casting bearing steel
CN106619032A (en) * 2016-11-25 2017-05-10 天津文康科技有限公司 Mechanical and electrical integration medical care device
CN106555129A (en) * 2016-12-02 2017-04-05 机械科学研究总院青岛分院 A kind of nitrogenous stainless bearing steel and preparation method
CN107326272A (en) * 2017-05-27 2017-11-07 苏州铭晟通物资有限公司 A kind of steel
JP7404792B2 (en) * 2018-12-04 2023-12-26 株式会社プロテリアル Martensitic stainless steel parts and their manufacturing method
KR20210104418A (en) * 2020-02-17 2021-08-25 현대자동차주식회사 A outer ring for variable oil pump and manufacturing method thereof
DE102020202259A1 (en) * 2020-02-21 2021-08-26 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and method for producing the same
CN114962460A (en) 2021-02-25 2022-08-30 斯凯孚公司 Heat treated roller bearing ring
CN113528941A (en) * 2021-06-16 2021-10-22 中国兵器科学研究院宁波分院 Nitrogen-containing martensitic stainless bearing steel and preparation method thereof
CN114196875B (en) * 2021-09-25 2022-10-28 浙江吉森金属科技有限公司 Stainless steel for valve plate and heat treatment method thereof
CN115109891B (en) * 2022-07-14 2022-12-20 中北大学 High-carbon high-chromium nitrogen-containing martensitic stainless steel and carbide refining method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271144A (en) * 2000-01-20 2001-10-02 Nippon Koshuha Steel Co Ltd Martensitic stainless steel for piston ring and deformed wire for piston ring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162346A (en) * 1983-02-25 1984-09-13 Hitachi Metals Ltd Pressure ring
JPS61144470A (en) * 1984-12-19 1986-07-02 Riken Corp Piston ring
JPH01205063A (en) * 1988-02-10 1989-08-17 Daido Steel Co Ltd Wear-resistant stainless steel parts
US5154433A (en) * 1991-06-14 1992-10-13 Teikoku Piston Ring Co., Ltd. Piston ring
JP3200745B2 (en) * 1991-11-27 2001-08-20 金井 宏之 Wire rod for piston ring
FR2708939B1 (en) * 1993-08-11 1995-11-03 Sima Sa Low carbon nitrogen martensitic steel and its manufacturing process.
JPH07278758A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp Stainless steel for engine gasket and its production
JP3456028B2 (en) * 1994-10-13 2003-10-14 日立金属株式会社 Piston ring material with excellent workability
JPH08134596A (en) * 1994-11-02 1996-05-28 Nippon Steel Corp High strength stainless steel sheet excellent in stress corrosion cracking resistance
AT402224B (en) * 1994-11-04 1997-03-25 Boehler Edelstahl USE OF AN IRON BASED ALLOY AND PLUNGER PISTON AND PISTON RING
JP3484076B2 (en) * 1998-02-10 2004-01-06 株式会社リケン Piston ring for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271144A (en) * 2000-01-20 2001-10-02 Nippon Koshuha Steel Co Ltd Martensitic stainless steel for piston ring and deformed wire for piston ring

Also Published As

Publication number Publication date
US20070187002A1 (en) 2007-08-16
BR0112573A (en) 2003-07-01
US20040040631A1 (en) 2004-03-04
EP1304393A4 (en) 2005-08-03
DE60122164T2 (en) 2007-10-11
JP2002030394A (en) 2002-01-31
KR20030025275A (en) 2003-03-28
EP1304393B1 (en) 2006-08-09
BR0112573B1 (en) 2009-01-13
DE60122164D1 (en) 2006-09-21
EP1304393A1 (en) 2003-04-23
WO2002006546A1 (en) 2002-01-24
TW521093B (en) 2003-02-21
AR029730A1 (en) 2003-07-10
KR100507424B1 (en) 2005-08-10
CN1210427C (en) 2005-07-13
CN1458983A (en) 2003-11-26

Similar Documents

Publication Publication Date Title
JP4724275B2 (en) Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
KR20050113624A (en) Piston for internal combustion engine
WO2009119388A1 (en) Piston ring material for internal combustion engine
KR100701812B1 (en) Material for sliding parts having self-lubricity and wire material for piston ring
US6527879B2 (en) Self-lubricating piston ring material for internal combustion engine and piston ring
JP2002317225A (en) Piston ring
EP1063454B1 (en) Self-lubricating piston ring material for internal combustion engine and piston ring
JP4589885B2 (en) Crankshaft
JP4616209B2 (en) Piston ring steel with excellent seizure resistance, deformed wire for piston ring, and piston ring
JP4066307B2 (en) Piston ring material and piston ring for internal combustion engines having self-lubricating properties
JP3491612B2 (en) Crankshaft steel with excellent machinability and wear resistance
JP2007031765A (en) High-strength steel pipe and heat treatment method therefor
JP2909456B2 (en) Piston ring with excellent scuffing resistance
JPH0718379A (en) Steel for machine structure excellent in seizing resistance and fatigue strength
JP6680406B1 (en) Machine parts and method of manufacturing machine parts
JPH03122252A (en) Steel for metal mold and metal mold
JP3484076B2 (en) Piston ring for internal combustion engine
WO2022219854A1 (en) Oil ring wire
JP3143835B2 (en) Combination of piston rings
WO2021230384A1 (en) Steel component
JP3952328B2 (en) Piston ring material with excellent scuffing resistance and workability
JP2000097339A (en) Combination of piston ring
JPH03122257A (en) Piston ring material
JP2002348639A (en) Steel for piston ring suitable for ion plating treatment superior in fatigue strength and heat settling resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4724275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term