[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4741055B2 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP4741055B2
JP4741055B2 JP2000154461A JP2000154461A JP4741055B2 JP 4741055 B2 JP4741055 B2 JP 4741055B2 JP 2000154461 A JP2000154461 A JP 2000154461A JP 2000154461 A JP2000154461 A JP 2000154461A JP 4741055 B2 JP4741055 B2 JP 4741055B2
Authority
JP
Japan
Prior art keywords
nitride
compound semiconductor
layer
mask layer
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000154461A
Other languages
English (en)
Other versions
JP2001332815A (ja
Inventor
哲弘 田辺
雅之 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2000154461A priority Critical patent/JP4741055B2/ja
Priority to US09/864,275 priority patent/US6469320B2/en
Publication of JP2001332815A publication Critical patent/JP2001332815A/ja
Priority to US10/235,705 priority patent/US6670204B2/en
Application granted granted Critical
Publication of JP4741055B2 publication Critical patent/JP4741055B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はチッ化物系化合物半導体(III 族元素とチッ素などとの化合物半導体)を用い、高い記憶密度を有する光ディスクメモリや、レーザビームプリンタの高精細化に必要な青色領域で発光可能な半導体レーザや発光ダイオードなどの半導体発光素子に関する。さらに詳しくは、発光層での転位密度をできるだけ少なくし、発振出力の大きい半導体レーザなどの半導体発光素子に関する。
【0002】
【従来の技術】
従来の青色領域でCW発振する半導体レーザは、たとえば図6に示されるように、サファイア基板21上にIII 族チッ化物化合物半導体(チッ化物系化合物半導体)が有機金属気相成長法(Metal Organic Chemical Vapour Deposition 以下、MOCVDという)により順次積層されるもので、GaN緩衝層22、n形GaNからなるコンタクト層23、Al0.12Ga0.88Nからなるn形クラッド層24、GaNからなるn形光ガイド層25、InGaN系化合物半導体の多重量子井戸構造からなる活性層26、p形GaNからなるp形光ガイド層27、p形Al0.12Ga0.88Nからなるp形クラッド層28、p形GaNからなるp形コンタクト層29が順次積層され、積層された半導体層の一部が図6に示されるようにドライエッチングなどによりエッチングされてn形コンタクト層23を露出させ、その表面にn側電極31、前述のp形コンタクト層29上にp側電極30がそれぞれ形成されることにより構成されている。
【0003】
一方、チッ化物系化合物が成長されるサファイア基板は、チッ化物系化合物半導体との格子定数が大幅に異なり、両者間の格子整合が採れず、成長するチッ化物系化合物半導体の転位密度が1×108cm-2以上となり、赤色系のGaAs基板上に成長する化合物半導体層の1×102cm-2程度と比べて大幅に転位密度が大きくなっている。LED(発光ダイオード)では、この程度の転位密度があっても実用化されているが、半導体レーザダイオード(LD)の場合には、低しきい値化、長寿命化のためには、少なくと1×107cm-3程度以下の転位密度にすることが要望されている。しかし、サファイアの他に工業的に適した基板も見つかっていない。
【0004】
このチッ化物系化合物半導体層の転位密度を少なくする方法として、たとえばアキラ ウスイらによる「低転位密度の厚いGaNエピタキシャル成長(Thick GaN Epitaxial Growth with Low Dislocation Density)」(ジャパニーズ ジャーナル オブ アプライド フィジックス(Jpn.J.Apply.Phys. )36巻(1997年)、899〜902頁)に示され、図7に部分的な断面説明図が示されるように、サファイア基板41上の第1のGaN層42上に、SiO2マスク43が開口部44を有するように設けられ、その開口部44を介して横方向への選択成長により、第2のGaN層45を成長する方法が開示されている。チッ化物系化合物では、縦方向よりも横方向への成長が行われやすいため、直径が2インチのサファイアウェハに成長して、転位密度が6×107cm-2より小さくなり、クラックもなく、ミラーフェースのGaN層が得られることが紹介されている。
【0005】
【発明が解決しようとする課題】
前述のように、チッ化物系化合物半導体のエピタキシャル成長層は、転位密度が非常に大きく、発光効率の低下にもつながり、信頼性も低下する。一方、前述のSiO2マスクを用いることによる選択成長では転位密度が小さくなる。しかし、図7に示されるように、一定間隔で設けられる両側の開口部44から順次横方向に成長し、マスク43の中央部で合致するように成長するが、マスク43上に成長する第2のGaN層45は、中央部側にいくにしたがって、マスク43より浮き上がり、結晶軸が曲がりながら成長し、底面および表面側が平坦な第2のGaN層45とはならない。そのため、図7に示されるように、マスクの中央部側では、第2のGaN層45が浮き上がった状態で両方から合流することによる空孔46が形成され、デバイス化するのに好ましくない。この傾向は、マスク幅Mが大きくなると一層顕著になる。
【0006】
この平坦性を損なわないようにするには、たとえば前述の文献に紹介されている例でも、SiO2マスクの幅Mは1〜4μm幅で、その周期(M+W)が7μm程度と記載されているように、マスク幅Mが3μm以上になると空孔46が発生しやすくなる。しかも幅Mが大きくなるにしたがって、空孔の高さも大きくなり、それにより表面の平坦性が低下してデバイス特性も低下する。また、空孔46ができないで、平坦性が得られるぎりぎりの状態のところでも、その中央部の合致する部分では、転位密度が大きくなる。さらに、開口部44に成長する第2のGaN層45も第1のGaN層42の転位密度が大きいため、そのまま転位密度の大きい領域となる。そのため、転位密度の小さい連続した部分は、マスク幅の半分の範囲で、しかもその半分の両端部を除外したところしかなく、幅で1μm程度しか得られない。
【0007】
ところが、ストライプ状の半導体レーザにする場合で、ストライプ状の発光領域だけを転位密度の小さい半導体層で構成しようとしても、ストライプ幅の4〜5μmとアライメントマージンとを考慮し、マスク幅の半分以下しか使用できないことを考えると、マスク幅Mは10〜15μm以上必要となる。そのため、このような幅広のマスクを使用して、平坦性のよいチッ化物系化合物半導体層を成長しなければ、実際のデバイスに応用することができないという問題がある。
【0008】
本発明はこのよな状況に鑑みなされたもので、SiO2などのマスク上に選択成長をさせることにより、転位密度を小さくしながら、広い範囲に亘って平坦性が得られるチッ化物系化合物半導体層を積層し、発光効率の優れたチッ化物系化合物半導体発光素子を提供することにある。
【0009】
本発明の他の目的は、半導体レーザのように発光領域をストライプ状部分などに限定できる場合に、少なくともそのストライプ状の発光領域部分における活性層の転位密度を小さくし、しきい電流値を下げ、高出力を得ることができる半導体レーザを提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、マスク層上にチッ化物系化合物半導体層を横方向に選択成長する場合に、マスクの中央部に行くにしたがって、成長する半導体層の結晶軸が上方に曲って成長し、中央部近傍で空孔が形成され、マスク幅が広くなればなるほどその空孔部分が大きくなり、平坦な半導体層を成長することができないという問題を解決するため、鋭意検討を重ねた結果、マスクの中央部側に成長するにしたがって、成長する半導体層の結晶軸が上方に曲がる原因が、半導体層とマスク層との接触部に働く接触応力に起因することを見出した。そして、この接触部を離して、接触応力が働かないようにすることにより、結晶軸の曲がりが発生しないで、転位密度が小さく、かつ、平坦な半導体層が成長されることを見出した。
【0011】
本発明による半導体発光素子は、基板と、該基板上または該基板上に設けられる第1のチッ化物系化合物半導体層上に設けられ、開口部を有するマスク層と、該マスク層上に前記開口部から横方向に選択成長される第2のチッ化物系化合物半導体層と、該第2のチッ化物系化合物半導体層上に発光層を形成するようにチッ化物系化合物半導体が積層される半導体積層部とからなり、前記マスク層の上面側で、前記開口部側より該開口部から離れた部分における前記マスク層の厚さが相対的に薄くされることにより、前記マスク層に凹部が形成されていたり、前記第2のチッ化物系化合物半導体層の底面と前記マスク層との間にほぼ平行な空隙が形成されるように前記第2のチッ化物系化合物半導体層が成長されていたりしている。
【0012】
ここにチッ化物系化合物半導体とは、Ga、Al、InなどのIII 族元素とNまたはNと他のV族元素との化合物からなる半導体を意味する。したがって、GaNの他、AlとGaとの組成比が変えられるAlGaN系化合物や、InとGaの組成比が変えられるInGaN系化合物など、III族元素の混晶比やV族元素の混晶比が適宜変化されるNを含む化合物半導体を意味する。また、マスク層とは、たとえばSiO2のように、チッ化物系化合物半導体層をエピタキシャル成長しようとしても、直接にはその表面にエピタキシャル成長をすることができない材料からなる層を意味する。
【0013】
この構造にすることにより、横方向に選択成長する第2のチッ化物系化合物半導体層の下層となるマスク層に凹部が設けられ、または第2のチッ化物系化合物半導体層とマスク層との間に空隙が形成されるように成長されているため、成長する第2のチッ化ガリウム系化合物半導体層はマスク層から応力を受けることがなくなる。その結果、第2のチッ化ガリウム系化合物半導体層は、横方向に成長するにしたがってその結晶軸が上方に押し曲げられることがなくなり、広い幅に亘って、まっすぐ横方向に成長して、平坦性が優れ、かつ、転位密度の小さい第2のチッ化物系化合物半導体層が得られる。そして、その上に積層されるチッ化物系化合物の半導体積層部も、転位密度の小さい半導体層上に成長するため、転位密度が小さく、平坦性の優れた半導体積層部が形成される。
【0014】
本発明による半導体レーザは、請求項1〜14のいずれか1項記載のチッ化物系化合物半導体発光素子において、前記半導体積層部が半導体レーザを構成するように積層されると共に、前記開口部により挟まれるマスク層がストライプ状に設けられ、該マスク層のストライプ方向に沿って前記凹部またはほぼ平行な空隙が一定幅で形成され、該一定幅の半分の幅内上における前記半導体積層部にストライプ状の電流注入領域が形成されるように前記半導体積層部が形成されている。このような構成にすることにより、広い範囲に亘って、転位密度の小さい半導体層が形成されなくても、ストライプ状の発光領域に必要な領域の半導体積層部は転位密度の小さい層のみで、しかも平坦性よく形成され、しきい電流値が小さく、高出力で信頼性の優れた半導体レーザが得られる。
【0015】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の半導体発光素子について説明をする。本発明による半導体発光素子は、図1にその一実施形態である半導体レーザの断面説明図が示されるように、基板1上に第1のチッ化物系化合物半導体層2が設けられ、その上に開口部3aを有するマスク層3が設けられ、そのマスク層3上に前記開口部3aから横方向に選択成長される第2のチッ化物系化合物半導体層4、さらに、発光層を形成するように積層されるチッ化物系化合物からなる半導体積層部15が設けられている。そして、マスク層3の上面側に凹部3bが形成されている。他の構成としては、たとえばマスク層3上面側の凹部3bにより、第2のチッ化物系化合物半導体層4の底面側が平坦面に形成され、かつ、第2のチッ化物系化合物半導体層4の底面とマスク層3との間にほぼ平行な空隙3cが形成されるように第2のチッ化物系化合物半導体層4が成長されてもよい。
【0016】
基板1は、たとえば高温にも耐え得るサファイア(Al23単結晶)基板が用いられるが、サファイアに限定されず、Si、Geなどの他の半導体基板などを用いることができる。どの材料が用いられても、GaNとは格子定数が合わず、格子整合を採ることができないが、マスク層を介して横方向の選択成長をすることにより、マスク層上に転位密度の小さい半導体層を成長することができる。
【0017】
第1のチッ化物系化合物半導体層2は、たとえば4μm程度の厚さで、ノンドープのGaNを、MOCVD法などの通常のエピタキシャル成長法により形成されたもので、後述する第2のチッ化物系化合物半導体層4を選択成長する際のシードとするものである。
【0018】
マスク層3は、たとえばSiO2、Si34、Wなどの、その上には直接半導体層をエピタキシャル成長することができない材料が、スパッタリングなどにより、200nm程度の厚さに形成されている。この厚さは、第1のGaN層2上に直接第2の半導体層が成長しないようにマスクとするもので、マスクの機能を有する程度に形成されれば、薄いほど段差が生じにくく好ましい。このマスク層3は、ウェハの状態の一部断面説明図が図2に示されるように、ウェハ状態では第1のチッ化物系化合物半導体層2上に全面に設けられた後に、パターニングされて開口部3a(この例では、図面に垂直方向にストライプ状に延びている)が形成され、さらに残ったマスク層3の表面側に凹部3bが、その開口部3aに沿って形成されている。図1に示される半導体レーザを製造する場合、この開口部3aの幅Wは、10〜20μm程度で、マスク層3の幅Mは20μm程度に形成されている。本発明によれば、このマスク幅の20μm程度を、さらに大きくしても平坦な第2の半導体層4を成長することができる。図1では、ストライプ部およびその下のマスク層3部分が誇張して示されているため、マスク層3が1個しか示されていないが、実際には前述のMとWの繰り返しで、1チップに多数個のマスク層3が設けられている。
【0019】
マスク層3の表面に形成される凹部3bは、その形成時の断面説明図が図3に示されるように、開口部3aが形成された後に、再度レジスト膜18が全面に設けられ、パターニングによりレジスト膜18に16μm程度の幅Nの開口部18aを形成した後に、HF系水溶液によりエッチングすることにより、マスク層3の厚さtの半分程度、すなわち100nm程度の深さdに形成されている。したがって、マスク層3の両端部から2μm程度の幅Pをそれぞれ残して、それより内部側の表面には凹部3bが形成されている。
【0020】
この両端に残す幅Pは、マスクアライメントの精度を考慮して2μm程度設けられているが、開口部3aから連続して凹部3b内に成長しないようにするためのもので、横方向への成長位置がマスク層3の大部分の表面より高い位置で始まり、大部分の表面と横方向に成長する第2の半導体層4との間に空隙が形成されればよい。そのため、凹部3bの形成でなくても、開口部3a側に突起が形成される構造でも、第2の半導体層4との間にほぼ平行な空隙が形成される構造になっておればよい。また、凹部3bの深さ(両端部に突起が設けられる場合はその高さ)は、横方向に成長する第2の半導体層4との間に接触応力が働かない程度に段差が形成されておればよい。そのため、第2の半導体層4が僅かに底面側にも成長し、殆どマスク層3の大部分の表面と接するぎりぎりの位置関係で、空隙が形成されない程度の深さの凹部3bに形成されてもよいが、製造条件のバラツキを考慮すれば、前述の100nm程度が好ましい。
【0021】
第2のチッ化物系化合物半導体層4は、たとえばノンドープのGaN層で20μm程度の厚さに形成される。この半導体層4は、前述のマスク層3の開口部3aから露出する第1のGaN層2をシードとして成長し始め、マスク層3の表面に達すると、横方向に選択成長する。すなわち、GaN層は、縦方向の成長よりも横方向への成長の方が早くしかも結晶性よく成長するため、マスク層3に凹部3bが設けられていても、下側には殆ど成長せず、マスク層3との間に空隙3cを形成しながら横方向に成長しながら上方にも僅かに成長し、最終的にはマスク層3の中央部あたりで両方の開口部から横方向に成長してきた半導体層が合致する。そしてマスク層3の表面が完全に埋まった後は上方に成長し、マスク層3上にも完全に第2のGaN層(半導体層)4が成長する。この第2のGaN層4は、マスク層3上の両端部(開口部3aに接する部分)および中央部の合致する部分を除いた部分の結晶性がよく、転位密度も1桁ほど小さくなる。
【0022】
第2のGaN層4上の半導体積層部15は、通常の半導体レーザを構成する半導体積層部になっている。すなわち、たとえばSiが5×1018cm-3程度にドープされたn形GaNからなるn形コンタクト層5が0.5μm程度、たとえばSiが5×1018cm-3程度にドープされたn形Al0.08Ga0.92Nからなるn形クラッド層6が0.4μm程度、たとえばSiが1×1018cm-3程度にドープされたn形GaNからなる第1のn形ガイド層7が0.2μm程度、たとえばSiがドープされたIn0.01Ga0.99Nからなる第2のn形ガイド層8を50nm程度、In0.1Ga0.9Nからなるウェル層を5nm程度、In0.02Ga0.98Nからなるバリア層を5nm程度づつ交互にウェル層を5層積層した多重量子井戸(MQW)構造からなる活性層9を50nm、たとえばMgがドープされたAl0.2Ga0.8Nからなるp形キャップ層10を20nm程度、たとえばMgが1×1018cm-3程度にドープされたGaNからなるp形ガイド層11を0.1μm程度、たとえばMgが2×1017cm-3程度にドープされたAl0.08Ga0.92Nからなるp形クラッド層12を0.4μm程度、たとえばMgが3×1018cm-3程度にドープされたGaNからなるp形コンタクト層13を0.1μm程度、それぞれ順次積層することにより形成されている。
【0023】
半導体積層部15の構造や各層の材料は、この例に限定されるものではなく、活性層9も量子井戸構造でないバルク構造のものでもよく、所望の発光波長により定まる材料の活性層9が、それよりバンドギャップの大きい材料からなるクラッド層6、12により挟持される構成に形成される。また、図1に示される例のように半導体レーザを構成する場合、活性層9の屈折率がクラッド層6、12より大きい材料により形成される。そうすることにより、活性層9に光を閉じ込めることができるが、活性層9が薄く充分に光を閉じ込めることができないときは、図1に示される例のように、クラッド層6、12と活性層9との間の屈折率を有する光ガイド層7、8、11が設けられる。しかし、活性層9で充分に光を閉じ込められれば光ガイド層7、8、11を設ける必要はない。
【0024】
半導体積層部15の最上層のp形コンタクト層13は、メサエッチングが施されると共に、半導体積層部15の一部がエッチングされてn形コンタクト層5を露出させ、その表面の全面にSiO2が成膜されて保護膜14が形成されている。そして、保護膜14のコンタクト孔を介してp形コンタクト層13のメサ部上にNi-Auからなるp側電極16、およびn形コンタクト層と接続してTi-Alからなるn側電極17がそれぞれ形成されている。そして、共振器長(紙面に垂直方向の長さ)が500μm程度になるように劈開され、図1に示されるレーザ(LD)チップが形成されている。
【0025】
この積層構造で、p形コンタクト層13のストライプ状のメサ型にされた部分が電流注入領域となり(コンタクト層13がメサ型にされなくてもp側電極がストライプ状に形成されておればストライプ状の電流注入領域が形成される)、その下層に、マスク層3に設けられるストライプ状凹部3bの幅の半分以下が位置するように、マスク層3およびp側電極16が位置合せして形成されている。
【0026】
本発明によれば、マスク層の上に横方向の選択成長によりチッ化物化合物半導体層を成長する場合に、マスク層の表面に凹部が形成されているため、半導体層を選択成長することにより、マスク層上に半導体層が成長しても、成長は横方向に進み、マスク層との間に空隙が形成されており、成長の際にマスク層と半導体層との間の接触応力は働かない。そのため、成長する半導体層の結晶軸が応力により曲げられることはなく、長い幅に亘って平坦な半導体層が成長する。(空隙が形成されていなくても、凹部が形成されることにより、選択成長する半導体層とマスク層との間に殆ど接触応力が働かない状態になっている。)また、横方向の成長であるため、転位密度は小さく5×106cm-2程度と1桁以上小さく、結晶性および平坦性の非常に優れた半導体層が広い範囲に亘って形成される。
【0027】
図1に示される例のように、マスク層に設けられる凹部がストライプ状に設けられると共に、その半分の幅内にストライプ状の電流注入領域が形成されるようにその上の半導体積層部が形成されることにより、非常に結晶性がよく平坦性の優れた部分のみの半導体積層部で発光させることができ、広い範囲の全面に亘って結晶性よく、平坦性の優れた半導体層を成長することができなくても、しきい電流値が小さく、発振出力の大きな半導体レーザを得ることができる。すなわち、図1に示される構造の転位密度としきい電流値との関係が、図5に示されるように、本発明によれば、転位密度が2×108cm-2から5×106cm-2に下がり、しきい電流値も10kAcm-2から5kAcm-2に低下した。
【0028】
すなわち、マスクを用いた横方向への選択成長でも、マスクの開口部ではシードとなる第1の半導体層の結晶性が悪く、転位密度が大きいため、その上に成長する半導体層も転位密度が大きく、結晶性はよくない。また、マスク層の幅が広いと、マスク層の中央部にいくにしたがって、平坦性を維持することが難しく、また、両方の開口部から成長して合流する部分では、結晶性も低下するため、広い面積の全面で結晶性もよく、平坦性の優れた半導体層を得ることはできない。しかし、前述の構成にすることにより、半導体レーザの発光させるストライプ状の共振器部分については、結晶性および平坦性の優れた半導体層上に成長することができるため、その共振器部分の半導体積層部も結晶性よく成長し、しきい電流値の小さい半導体レーザが得られる。
【0029】
つぎに、この半導体レーザの製法について説明をする。たとえばMOCVDなどのエピタキシャル成長装置を用いて、基板温度を1100℃程度にしてH2雰囲気でサーマルクリーニングをする。その後、Gaの原料ガスとしてのトリエチルガリウム(TEG)、Nの原料ガスとしてのアンモニア(NH3)を導入し、ノンドープの第1のGaN層2を、4μm程度成長する。ついで、成長装置から基板を採りだし、たとえばスパッタリング装置を用いて、SiO2膜を200nm程度成膜する。その後、SiO2膜上にレジスト膜を設け、パターニングし、HF水溶液を用いてSiO2膜をエッチングすることにより、ストライプ状に開口部を形成し、ストライプ状のマスク層3を形成する。さらに、図3に示されるように、表面全面にレジスト膜18を設けてパターニングすることにより、凹部3bを形成する部分を開口する。そして、再度HF水溶液によりエッチングすることにより、図3に示される凹部3bをストライプ状に(紙面に垂直方向)形成する。
【0030】
その後、再度MOCVD装置などの成長装置に入れて、原料ガスとして、前述のガスのほかにAlのトリメチルアルミニウム(TMA)、Inのトリメチルインジウム(TMIn)、n形ドーパントとして、SiH4、p形ドーパントとしてシクロペンタジエニルマグネシウム(Cp2Mg)またはジメチル亜鉛(DMZn)の必要なガスをキャリアガスの水素と共に導入して、第2のGaN層4および半導体積層部15の各半導体層をそれぞれ前述の厚さで成長する。この場合、第1のn形ガイド層7までは、基板温度を1050℃程度で成長し、第2のn形ガイド層8および活性層9は基板温度を770℃程度にして成長し、その後の各層は再度基板温度を1050℃程度にして成長する。
【0031】
各半導体層の成長が終了したら、基板を成長装置から取出して、表面にレジストマスクを設け、リアクティブ イオン ビーム エッチング(RIBE)装置で、図4(a)に示されるように、400μm周期の一部の200μm幅で、半導体積層部15の一部をエッチングし、n形コンタクト層5の一部を露出させる。さらにレジストマスクを除去して再度レジストマスクを設け、同装置によりp形コンタクト層13を4μm程度の幅に残るようにメサエッチングをする。その後、たとえばプラズマCVDのような成膜装置を用いて、SiO2のような保護膜14を200nm程度の厚さで全面に成膜し、電極の形成部をHF系エッチャントによりエッチングしてコンタクト孔を形成する。
【0032】
ついで、p側電極16として、Niを100nm、Auを200nmそれぞれ真空蒸着装置により成膜し、さらにn側電極17として、Tiを100nm、Alを200nmそれぞれ成膜して電極16、17を形成し、基板1の裏面を研削して60μm程度に薄くした後、共振器長が500μm程度になるように劈開することにより、LDチップが形成される。
【0033】
前述の例では、p形コンタクト層13をメサ型のストライプ形状にしただけのストライプ構造の半導体レーザであったが、半導体層をエッチングしないで電極だけをストライプ状に形成してもよく、また、活性層の近くまでメサ型にしてもよく、さらには、プロトンなどを打ち込んだプロトン打込み型にすることもできる。さらに、電流制限層を埋め込む屈折率導波型構造にすることもできる。また、前述の例は、半導体レーザの例であったが、発光ダイオード(LED)の場合でも、本願発明によれば、広い範囲に亘って結晶性の優れた半導体層が得られ、一部に転位密度の大きい部分が合っても、その部分の全発光部に対する割合が小さいため、発光効率が向上する。
【0034】
【発明の効果】
本発明によれば、マスク層の幅が広くなっても、その上に横方向に選択成長する半導体層の結晶軸が曲がることがなく、横方向への選択成長による低い転位密度を維持しながら、半導体層の平坦性を保持することができるため、広範囲に亘って結晶性および平坦性の優れたチッ化物系化合物半導体層が得られ、青色系の半導体発光素子などのチッ化物系化合物発光デバイスに実用化することができる。とくに、チッ化物系化合物半導体を用いた青色系の半導体レーザに応用することにより、しきい電流値の小さい半導体レーザが得られる。
【図面の簡単な説明】
【図1】本発明による半導体レーザの一実施形態の断面説明図である。
【図2】図1のマスク層部分のウェハ状態における断面説明図である。
【図3】図1のマスク層に凹部を形成する際の説明図である。
【図4】半導体を積層した後、積層部をエッチングするパターン例の説明図である。
【図5】本発明による半導体レーザによるしきい値電流の変化の状態を転位密度に対して示した図である。
【図6】従来の青色系半導体レーザの一例を示す断面説明図である。
【図7】従来のマスク層を用いて横方向に選択成長する場合のマスク層と開口部との関係を示す説明図である。
【符号の説明】
2 第1のGaN層
3 マスク層
3a 開口部
3b 凹部
3c 空隙
4 第2のGaN層
9 活性層
15 半導体積層部

Claims (15)

  1. 基板と、該基板上または該基板上に設けられる第1のチッ化物系化合物半導体層上に設けられ、開口部を有するマスク層と、該マスク層上に前記開口部から横方向に選択成長される第2のチッ化物系化合物半導体層と、該第2のチッ化物系化合物半導体層上に発光層を形成するようにチッ化物系化合物半導体が積層される半導体積層部とからなり、前記マスク層の上面側で、前記開口部側より該開口部から離れた部分における前記マスク層の厚さが相対的に薄くされることにより、前記マスク層に凹部が形成されてなるチッ化物系化合物半導体発光素子。
  2. 基板と、該基板上または該基板上に設けられる第1のチッ化物系化合物半導体層上に設けられ、開口部を有するマスク層と、該マスク層上に前記開口部から横方向に選択成長される第2のチッ化物系化合物半導体層と、該第2のチッ化物系化合物半導体層上に発光層を形成するようにチッ化物系化合物半導体が積層される半導体積層部とからなり、前記第2のチッ化物系化合物半導体層の底面側が平坦面に形成され、かつ、前記マスク層の上面側で、前記開口部側より該開口部から離れた部分における前記マスク層の厚さが相対的に薄くされることにより、前記第2のチッ化物系化合物半導体層の底面と前記マスク層との間にほぼ平行な空隙が形成されるように前記第2のチッ化物系化合物半導体層が成長されてなるチッ化物系化合物半導体発光素子。
  3. 前記マスク層が、SiO 2 、Si 3 4 およびWの少なくとも1種である請求項1または2記載のチッ化物系化合物半導体発光素子。
  4. 前記第1のチッ化物系化合物半導体層が、ノンドープのGaNである請求項1〜3のいずれか1項記載のチッ化物系化合物半導体発光素子。
  5. 前記マスク層の前記開口部側に所定の幅を有する突起が形成されてなる請求項1〜4のいずれか1項記載のチッ化物系化合物半導体発光素子。
  6. 前記マスク層の前記開口部側に突起が形成されることにより、凹部が形成されてなる請求項1〜4のいずれか1項記載のチッ化物系化合物半導体発光素子。
  7. 前記開口部の2つにより挟まれる前記マスク層の前記開口部側にマスク層の高い部分が幅を有するように形成されてなる請求項1〜6のいずれか1項記載のチッ化物系化合物半導体発光素子。
  8. 前記マスク層の、幅を有する高い部分の幅が2μmである請求項7記載のチッ化物系化合物半導体発光素子。
  9. 前記マスク層の、幅を有する高い部分が突起である請求項7または8記載のチッ化物系化合物半導体発光素子。
  10. 前記マスク層の、幅を有する高い部分が、前記2つの開口部で挟まれたマスク層の両端部に形成されてなる請求項7〜9のいずれか1項記載のチッ化物系化合物半導体発光素子。
  11. 前記開口部の周辺に前記突起が形成されてなる請求項7〜10のいずれか1項記載のチッ化物系化合物半導体発光素子。
  12. 前記凹部の深さが、横方向に成長する前記第2のチッ化物系化合物半導体層と前記マスク層との間に接触応力が働かない深さに形成されてなる請求項1〜11のいずれか1項記載のチッ化物系化合物半導体発光素子。
  13. 前記第2のチッ化物系化合物半導体層がノンドープである請求項1〜12のいずれか1項記載のチッ化物系化合物半導体発光素子。
  14. 前記基板または前記第1のチッ化物系化合物半導体層が、GaN層である請求項1〜13のいずれか1項記載のチッ化物系化合物半導体発光素子。
  15. 請求項1〜14のいずれか1項記載のチッ化物系化合物半導体発光素子において、前記半導体積層部が半導体レーザを構成するように積層されると共に、前記開口部により挟まれるマスク層がストライプ状に設けられ、該マスク層のストライプ方向に沿って前記凹部または空隙が一定幅で形成され、該一定幅の半分の幅内上における前記半導体積層部にストライプ状の電流注入領域が形成されるように前記半導体積層部が形成されてなる半導体レーザ。
JP2000154461A 2000-05-25 2000-05-25 半導体発光素子 Expired - Fee Related JP4741055B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000154461A JP4741055B2 (ja) 2000-05-25 2000-05-25 半導体発光素子
US09/864,275 US6469320B2 (en) 2000-05-25 2001-05-25 Semiconductor light emitting device
US10/235,705 US6670204B2 (en) 2000-05-25 2002-09-06 Semiconductor light emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154461A JP4741055B2 (ja) 2000-05-25 2000-05-25 半導体発光素子

Publications (2)

Publication Number Publication Date
JP2001332815A JP2001332815A (ja) 2001-11-30
JP4741055B2 true JP4741055B2 (ja) 2011-08-03

Family

ID=18659552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154461A Expired - Fee Related JP4741055B2 (ja) 2000-05-25 2000-05-25 半導体発光素子

Country Status (1)

Country Link
JP (1) JP4741055B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353624C (zh) * 2002-03-08 2007-12-05 松下电器产业株式会社 半导体激光器和其制造方法
JP5990405B2 (ja) * 2012-06-04 2016-09-14 スタンレー電気株式会社 発光素子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496512B2 (ja) * 1997-06-30 2004-02-16 日亜化学工業株式会社 窒化物半導体素子
US6265289B1 (en) * 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
JP3987660B2 (ja) * 1998-07-31 2007-10-10 シャープ株式会社 窒化物半導体構造とその製法および発光素子
JP3571641B2 (ja) * 1999-11-15 2004-09-29 松下電器産業株式会社 窒化物半導体素子
JP2001217503A (ja) * 2000-02-03 2001-08-10 Matsushita Electric Ind Co Ltd GaN系半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
JP2001332815A (ja) 2001-11-30

Similar Documents

Publication Publication Date Title
JP3898537B2 (ja) 窒化物半導体の薄膜形成方法および窒化物半導体発光素子
JP5036617B2 (ja) 窒化物系半導体発光素子
JP4169821B2 (ja) 発光ダイオード
JP3346735B2 (ja) 窒化物半導体発光素子及びその製造方法
JP4304750B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP2008141187A (ja) 窒化物半導体レーザ装置
JPH11214788A (ja) 窒化ガリウム系半導体レーザ素子
JP2009158893A (ja) 半導体発光素子及びその製造方法
US6670204B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP2007116100A (ja) 窒化物系半導体レーザダイオードの製造方法
US12057678B2 (en) Surface-emitting laser device and method for manufacturing surface-emitting laser device
JP4162560B2 (ja) 窒化物系半導体発光素子
JP2021097115A (ja) 面発光レーザ素子及び面発光レーザ素子の製造方法
JP3716622B2 (ja) 半導体レーザ
JP4097343B2 (ja) 窒化物半導体レーザ素子の製造方法
JP3933637B2 (ja) 窒化ガリウム系半導体レーザ素子
JP4211358B2 (ja) 窒化物半導体、窒化物半導体素子及びそれらの製造方法
JP4741055B2 (ja) 半導体発光素子
JP4623799B2 (ja) 半導体発光素子の製法および半導体レーザ
JPH11340573A (ja) 窒化ガリウム系半導体レーザ素子
JP4890509B2 (ja) 半導体発光素子の製造方法
JP2002076518A (ja) 半導体レーザおよび半導体素子並びにそれらの製造方法
JP4826019B2 (ja) 半導体レーザ素子の製造方法
JP4357022B2 (ja) 半導体発光素子の製造方法
JP3969989B2 (ja) 窒化物系半導体素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees