[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4640436B2 - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP4640436B2
JP4640436B2 JP2008104606A JP2008104606A JP4640436B2 JP 4640436 B2 JP4640436 B2 JP 4640436B2 JP 2008104606 A JP2008104606 A JP 2008104606A JP 2008104606 A JP2008104606 A JP 2008104606A JP 4640436 B2 JP4640436 B2 JP 4640436B2
Authority
JP
Japan
Prior art keywords
layer
type
conductivity type
silicon carbide
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008104606A
Other languages
English (en)
Other versions
JP2009259896A (ja
Inventor
敦也 秋葉
英一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008104606A priority Critical patent/JP4640436B2/ja
Priority to DE102009016681.5A priority patent/DE102009016681B4/de
Priority to US12/385,519 priority patent/US7947555B2/en
Publication of JP2009259896A publication Critical patent/JP2009259896A/ja
Application granted granted Critical
Publication of JP4640436B2 publication Critical patent/JP4640436B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、トレンチゲートを有する炭化珪素(以下、SiCという)半導体装置の製造方法に関する。
近年、高い電界破壊強度が得られるパワーデバイスの素材としてSiCが注目されている。SiC半導体装置では電界破壊強度が強いため、大電流の制御を行うことができる。そのため、ハイブリットカー用のモーターの制御への活用が期待されている。
SiC半導体装置において、より大電流を流すには、チャネル密度を高くすることが有効である。このため、シリコントランジスタにおいて、トレンチゲート構造のMOSFETが採用され実用化されている。このトレンチゲート構造は当然SiC半導体装置にも適用できる構造であるが、SiCに応用する場合、大きな問題がある。すなわち、SiCは破壊電界強度がシリコンの10倍あるため、SiC半導体装置にはシリコンデバイスの10倍近い電圧をかけた状態で使用される。そのため、SiCの中に入り込んだトレンチ内に形成されたゲート絶縁膜にもシリコンデバイスの10倍強度の電界がかかり、トレンチのコーナー部においてゲート絶縁膜が容易に破壊してしまうという問題がある。これについてシミュレーションで計算したところ、ドレインに650V印加した場合、トレンチ内のゲート絶縁膜には4.9MV/cmの電界が集中していた。実際の使用に耐えるには3MV/cm以下にする必要があり、長期の信頼性まで考えると2MV/cm以下にすることが望まれる。
このような問題を解決するものとして、特許文献1に示されるSiC半導体装置がある。このSiC半導体装置では、トレンチゲートの底部を側面より厚くなるように設計することにより、トレンチの底部での電界集中を緩和している。具体的には、4H−SiCの(000−1)c面基板を用いてa(1120)面のトレンチゲート構造を作製する。このようにc面基板を用いてトレンチ側面がa面で底面がc面となるトレンチ内にゲート絶縁膜を熱酸化で作製した場合、c面の酸化レートはa面の5倍であるため、トレンチ底部の酸化膜は側面と比べて、膜厚を5倍にできる。これにより、トレンチ底部での電界集中を緩和することが可能となる。
特開平9−199724号公報
しかしながら、上記のようにトレンチ底部においてゲート絶縁膜を厚くした構造において、例えば、トレンチ側面の膜厚を40nmとし、トレンチ底部の膜厚を200nmに設計してシミュレーションで計算したところ、ドレインに650V印加した場合、トレンチ内のゲート絶縁膜の電界集中を3.9MV/cmに低減できることが確認できたが、まだ十分ではなく、更なる電界緩和が必要であることが判った。
そこで、本発明者らは更なる電界緩和が行える構造として、先に、トレンチゲートの長手方向に沿って延設され、n+型ソース領域やp型ベース領域を挟んでトレンチゲートとは反対側、つまりp型ベース領域とソース電極との電気的な接続を図るp+型コンタクト領域の下方位置において、トレンチゲートの底面よりも深くなるp型ディープ層を形成するという構造を出願している(特願2007−288545参照)。
しかしながら、この構造のSiC半導体装置では、トレンチゲートとp型ディープ層との形成工程が別工程であるため、これらの位置合わせが難しく、トレンチゲートの側面からp型ディープ層までの距離にバラツキが発生する。このため、製品特性にバラツキが生じ、歩留まりが悪いという問題がある。
このため、本発明者らは、さらに、トレンチの側面のうちチャネル領域が構成される部分に対する法線方向にp型ディープ層を延設する構造を出願している(特願2008−31704参照)。このような構造によれば、p型ディープ層とn-型ドリフト層とのPN接合部での空乏層がn-型ドリフト層側に大きく伸びることになり、ドレイン電圧の影響による高電圧がゲート酸化膜に入り込み難くなる。このため、ゲート酸化膜内での電界集中、特にゲート酸化膜のうちのトレンチの底部での電界集中を緩和することが可能となり、ゲート酸化膜が破壊されることを防止できる。また、トレンチの長手方向とp型ディープ層の長手方向とが垂直とされているため、これらを形成するためのマスクずれがデバイス特性に影響を与えることはない。
また、このような構造において、さらなるオン抵抗の低減を図るべく、n-型ドリフト層とp型ベース層の間にn型電流分散層を配置した構造を提案している。このようなn型電流分散層を備えることにより、チャネル領域を通過して電流がより広範囲に分散されてn-型ドリフト層内を流れるようにできるため、よりオン抵抗を低減することが可能となる。そして、このようにn型電流分散層を備えた構造において、n型電流分散層によってンp型ベース層とp型ディープ層とが分断されると、p型ディープ層をソース電位に固定できなくなり、電界緩和効果が弱まることから、n型電流分散層を形成した後でn型電流分散層の表面からp型不純物をイオン注入し、p型ディープ層を形成することを提案している。
ところが、n型電流分散層を形成した後でn型電流分散層の表面からp型不純物をイオン注入してp型ディープ層を形成する場合、p型ディープ層の深さが浅くなってしまう。このため、p型ディープ層の底部の位置とトレンチの底部の位置との深さの差が小さくなり、電界緩和効果が小さくなるという問題が発生すると共に、トレンチが深く形成され過ぎるとp型ディープ層よりも深くなりかねないため、トレンチの深さ制御が難しくなるという問題が発生する。なお、p型ディープ層の深さはイオン注入時のエネルギーによって決まるため、そのエネルギーを高くすれば良いが、SiCのように硬い材質だとp型ディープ層を所望の深さにするためには莫大なエネルギーが必要になり、それを実現できるイオン注入装置が必要になり、設備投資の面から他の手法が求められる。
本発明は上記点に鑑みて、トレンチ内に形成するゲート酸化膜での電界集中をより緩和できるようにしたSiC半導体装置の製造方法において、ディープ層とベース層とを接続する構造にしつつ、ディープ層が確実にトレンチよりも深くできるようにすることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、ゲート電極(9)への印加電圧を制御することでチャネル層(7)に形成される蓄積型のチャネルを制御し、ソース領域(4)およびドリフト層(2)を介して、ソース電極(11)およびドレイン電極(13)の間に電流を流す蓄積型のMOSFETを備えた炭化珪素半導体装置の製造方法において、基板(1)を用意し、該基板(1)上に、該基板(1)よりも低不純物濃度とされた第1導電型の炭化珪素からなるドリフト層(2)を形成する工程と、ドリフト層(2)の表面にマスク(20)を配置した後、該マスク(20)を用いたイオン注入を行うことにより、一方向に延設されるように第2導電型のディープ層(10)の下層部分(10a)を形成する工程と、ドリフト層(2)の表面に、ドリフト層(2)よりも高濃度となる第1導電型の電流分散層(30)を形成する工程と、電流分散層(30)の表面にマスク(21)を配置した後、該マスク(21)を用いたイオン注入を行うことにより、下層部分(10a)と対応する位置に、下層部分(10a)と接続されるようにディープ層(10)の上層部分(10b)を形成する工程と、電流分散層(30)およびディープ層(10)の表面に第2導電型の炭化珪素からなるベース領域(3)を形成する工程と、を含んでいることを特徴としている。
このように、ディープ層(10)を下層部分(10a)と上層部分(10b)とに分けて形成しているため、一度にディープ層(10)を形成する場合と比べて深く形成することが可能となる。また、ディープ層(10)を下層部分(10a)と上層部分(10b)とに分けて形成することにより、イオン注入時のエネルギーを高くしなくても済むため、莫大なエネルギーでのイオン注入が行えるイオン注入装置を備える必要も無くなる。
また、このようにディープ層(10)を深く形成できることから、トレンチ(6)の底部の位置よりもディープ層(10)の底部の位置の方が確実に深い位置に形成されるようにできるため、難しいトレンチの深さ制御を行う必要もない。
なお、ここでは蓄積型のMOSFETを有するSiC半導体装置について説明したが、請求項2に記載したように、ゲート電極(9)への印加電圧を制御することでトレンチ(6)の側面に位置するベース領域(3)の表面部にチャネル領域を形成し、ソース領域(4)およびドリフト層(2)を介して、ソース電極(11)およびドレイン電極(13)の間に電流を流す反転型のMOSFETを備えたSiC半導体装置に対しても、上記と同様の製造方法を採用することができる。
上述したディープ層(10)は、下層部分(10b)と上層部分(10b)それぞれの幅が同じであっても良いが、請求項3に示すように、上層部分(10b)の間隔(L2)が下層部分(10a)の間隔(L1)よりも広くなるようにすることもできる。また、請求項4に示すように、上層部分(10b)のうちの底部の幅(W2)が下層部分(10a)の幅(W1)よりも狭く、上層部分(10b)のうちの表面部の幅(W3)が下層部分(10a)の幅(W1)よりも広くなるようにすることもできる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
本発明の第1実施形態について説明する。ここではSiC半導体装置に備えられる素子として蓄積型のトレンチゲート構造のMOSFETについて説明する。
図1は、本実施形態にかかるトレンチゲート構造のMOSFETの斜視断面図である。この図は、MOSFETの1セル分を抽出したものに相当する。本図ではMOSFETの1セル分しか記載していないが、図1に示すMOSFETと同様の構造のMOSFETが複数列隣り合うように配置されている。また、図2−a〜図2−dは、図1のMOSFETの断面図であり、図2−aは、図1中のA−A線においてxz平面と平行に切断したときの断面、図2−bは、図1中のB−B線においてxz平面と平行に切断したときの断面、図2−cは、図1中のC−C線においてyz平面と平行に切断したときの断面、図2−dは、図1中のD−D線においてyz平面と平行に切断したときの断面である。
図1および図2−a〜図2−dに示すMOSFETは、リン等のn型不純物濃度が例えば1.0×1019/cm3で厚さ300μm程度のSiCからなるn+型基板1が半導体基板として用いられており、このn+型基板1の表面にリン等のn型不純物濃度が例えば3.0〜7.0×1015/cm3で厚さ10〜15μm程度のSiCからなるn-型ドリフト層2が形成されている。このn-型ドリフト層2の不純物濃度は深さ方向において一定であっても良いが、濃度分布に傾斜を付け、n-型ドリフト層2のうちn+型基板1側の方がn+型基板1から離れる側よりも高濃度となるようにすると好ましい。例えば、n-型ドリフト層2のうちn+型基板1の表面から3〜5μm程度の部分の不純物濃度が2.0×1015/cm3程度他の部分よりも高くなるようにすると良い。このようにすると、n-型ドリフト層2の内部抵抗を低減できるため、オン抵抗を低減することが可能となる。
このn-型ドリフト層2の表層部には後述するn型電流分散層30を介してp型ベース領域3が形成されていると共に、このp型ベース領域3の上層部分にn+型ソース領域4およびp+型ボディ層5が形成されている。
p型ベース領域3は、ボロンもしくはアルミニウム等のp型不純物濃度が例えば5.0×1016〜2.0×1019/cm3、厚さ2.0μm程度で構成されている。n+型ソース領域4は、表層部におけるリン等のn型不純物濃度(表面濃度)が例えば1.0×1021/cm3、厚さ0.3μm程度で構成されている。p+型ボディ層5は、例えば表層部におけるボロンもしくはアルミニウム等のp型不純物濃度(表面濃度)が例えば1.0×1021/cm3、厚さ0.3μm程度で構成されている。n+型ソース領域4は、後述するトレンチゲート構造の両側に配置されており、p+型ボディ層5は、n+型ソース領域4を挟んでトレンチゲート構造と反対側に備えられている。
また、p型ベース領域3とn+型ソース領域4および後述するn型電流分散層30を貫通してn-型ドリフト層2に達するように、例えば幅が1.4〜2.0μm、深さが2.0μm以上(例えば2.4μm)のトレンチ6が形成されている。このトレンチ6の側面と接するように上述したp型ベース領域3およびn+型ソース領域4が配置されている。また、トレンチ6の内壁面には、リン等のn型不純物濃度が例えば1.0×1016/cm3とされたn型チャネル層7が形成されている。n型チャネル層7はチャネル領域を構成するためのものであり、ノーマリオフ型となる厚さに設定され、例えばトレンチ6の底面上で0.3〜1.0μm、トレンチ6の側面上で0.1〜0.3μmとされている。
さらに、n型チャネル層7の表面はゲート酸化膜8にて覆われており、ゲート酸化膜8の表面に形成されたドープトPoly−Siにて構成されたゲート電極9により、トレンチ6内が埋め尽くされている。ゲート酸化膜8は、n型チャネル層7の表面を熱酸化することで形成されており、ゲート酸化膜8の厚みはトレンチ6の側面側と底部側共に100nm程度となっている。
このようにして、トレンチゲート構造が構成されている。このトレンチゲート構造は、図1中のy方向を長手方向として延設されている。そして、複数のトレンチゲート構造が図1中のx方向に平行に並べられた構造とされている。また、上述したn+型ソース領域4およびp+型ボディ層5もトレンチゲート構造の長手方向に沿って延設された構造とされている。
また、n-型ドリフト層2とp型ベース領域3の間に、n型チャネル層7と接するようにn型電流分散層30が備えられている。n型電流分散層30は、リン等のn型不純物濃度がn-型ドリフト層2よりも高濃度、好ましくはn型チャネル層7よりも高濃度とされ、例えば2.0×1015/cm3〜1.0×1017/cm3とされている。n型電流分散層30の厚さに関しては任意であるが、本実施形態ではトレンチ6がn型電流分散層30を貫通する程度の厚みとされており、例えば0.3μm程度とすることができる。
さらに、n-型ドリフト層2のうちp型ベース領域3よりも下方位置において、n型電流分散層30を貫通してn-型ドリフト層2の所定深さの位置まで、トレンチゲート構造におけるトレンチ6の側面のうちチャネル領域が構成される部分に対する法線方向(図1中のx方向)、つまりトレンチ6の長手方向に対する垂直方向に延設されたp型ディープ層10が備えられている。
p型ディープ層10は、n-型ドリフト層2内に形成された下層部分10aとn型電流分散層30内に形成された上層部分10bと有して構成され、トレンチ6の底部、つまりn型チャネル層7の底部よりも深くされており、n-型ドリフト層2の表面からの深さが例えば2.6〜3.0μm程度(p型ベース領域3の底部からの深さが例えば0.9〜1.3μm)とされている。また、p型ディープ層10の幅(図1中のy方向寸法)は、0.6〜1.0μmとされている。このp型ディープ層10におけるボロンもしくはアルミニウム等のp型不純物濃度は、例えば1.0×1017/cm3〜1.0×1019/cm3とされている。このp型ディープ層10は、トレンチゲート構造の長手方向に沿って複数本平行に並べられており、隣り合うp型ディープ層10同士の間隔は、例えば2〜3μmとされている。
また、n+型ソース領域4およびp+型ボディ層5の表面やゲート電極9の表面には、ソース電極11やゲート配線(図示せず)が形成されている。ソース電極11およびゲート配線は、複数の金属(例えばNi/Al等)にて構成されており、少なくともn型SiC(具体的にはn+型ソース領域4やnドープの場合のゲート電極9)と接触する部分はn型SiCとオーミック接触可能な金属で構成され、少なくともp型SiC(具体的にはp+型ボディ層5やpドープの場合のゲート電極9)と接触する部分はp型SiCとオーミック接触可能な金属で構成されている。なお、これらソース電極11およびゲート配線は、層間絶縁膜12上に形成されることで電気的に絶縁されており、層間絶縁膜12に形成されたコンタクトホールを通じてソース電極11はn+型ソース領域4およびp+型ボディ層5と電気的に接触させられ、ゲート配線はゲート電極9と電気的に接触させられている。
そして、n+型基板1の裏面側にはn+型基板1と電気的に接続されたドレイン電極13が形成されている。このような構造により、nチャネルタイプの蓄積型のトレンチゲート構造のMOSFETが構成されている。
このような蓄積型のトレンチゲート構造のMOSFETは、以下のように動作する。
まず、ゲート電極9にゲート電圧を印加する前の状態では、SiCは不純物濃度が1.0×1019/cm3のように高い場合、約3Vの内在電位を有しているため、ソース電極11が0Vであってもp型ベース領域3は−3Vのように振舞う。このため、p型ベース領域3から空乏層が広がり、p型ベース領域3の近傍は絶縁体のように振舞う。したがって、ドレイン電極13に正の電圧を加えたとしても、n型チャネル層7は絶縁体のように振舞うため、電子はn型チャネル層7に到達することはできず、ソース電極11とドレイン電極13との間に電流が流れない。
次に、オフ時(ゲート電圧=0V、ドレイン電圧=650V、ソース電圧=0V)には、ドレイン電極13に電圧を加えるても逆バイアスになるため、p型ベース領域3とn-型ドリフト層2(n型チャネル層7を含む)の間より、空乏層が広がる。このとき、p型ベース領域3の濃度がn-型ドリフト層2より、遥かに高いので、空乏層はほとんどn-型ドリフト層2側に広がる。例えば、本実施形態のように、p型ベース領域3の不純物濃度をn-型ドリフト層2の不純物濃度の10倍とした場合、p型ベース領域3側に約0.7μm伸び、n-型ドリフト層2側に約7.0μm伸びるが、p型ベース領域3の厚みを2.0μmと空乏層の伸び量よりも大きくしてあるため、パンチスルーしないようにできる。そして、ドレイン0Vの場合より空乏層が広がっているため、絶縁体として振舞う領域は更に広がっているので、ソース電極11とドレイン電極13との間に電流が流れない。
また、ゲート電圧が0Vになっているため、ドレイン−ゲート間にも電界がかかる。このため、ゲート酸化膜8の底部にも電界集中が発生し得る。しかしながら、トレンチ6よりも深いp型ディープ層10を備えた構造としているため、p型ディープ層10とn-型ドリフト層2とのPN接合部での空乏層がn-型ドリフト層2側に大きく伸びることになり、ドレイン電圧の影響による高電圧がゲート酸化膜8に入り込み難くなる。特に、p型ディープ層10の不純物濃度をp型ベース領域3よりも高濃度とすれば、よりn-型ドリフト層2側への空乏層の伸び量が大きくなる。これにより、ゲート酸化膜8内での電界集中、特にゲート酸化膜8のうちのトレンチ6の底部での電界集中を緩和することが可能となり、ゲート酸化膜8が破壊されることを防止することが可能となる。
シミュレーションにより確認したところ、ドレイン電極13に650Vを印加した場合において、ゲート酸化膜8のうちのトレンチ6の底部での電界強度が2.0MV/cmであった。この電界強度はゲート酸化膜8が電界集中で破壊されないレベルである。このため、ドレイン電極13に650Vを印加してもゲート酸化膜8は破壊されず、耐圧650Vを達成できる。
そして、本実施形態では、このような電界緩和効果を得るために備えられるp型ディープ層10がn型電流分散層30にも形成されるようにし、p型ディープ層10がp型ベース領域3に接続されるようにすることでソース電位に固定されるようにしている。このため、電界緩和効果が弱まることを防止できる。また、p型ディープ層10とp型ベース領域3とがn型電流分散層30にて分断された場合、サージ電流が流れた際にp型ディープ層10から直接p型ベース層3に引抜くことができなくなため、これらによって構成されるPNP接合部を含んだ部分に電流が流れ、この部分がトランジスタとして作用することで大電流が流れ、素子破壊が起こる可能性がある。しかしながら、p型ディープ層10がp型ベース領域3に接続されるようにしているため、このような素子破壊が起こることを防止することも可能となる。
一方、オン時(ゲート電圧=20V、ドレイン電圧=1V、ソース電圧=0V)には、ゲート電極9にゲート電圧として20Vが印加されるため、n型チャネル層7が蓄積型チャネルとして機能する。このため、ソース電極11から注入された電子はn+型ソース領域4からn型チャネル層7を通った後、n-型ドリフト層2に到達する。これにより、ソース電極11とドレイン電極13との間に電流を流すことができる。
なお、この場合のオン抵抗を計算したところ、4.9mΩ・cm2になっており、本実施形態のような構造のp型ディープ層10を形成しない場合のオン抵抗4.3mΩ・cm2に対してオン抵抗が15%増大していた。これは、p型ディープ層10が形成された位置において、トレンチゲート構造の側面にチャネルが形成されないためである。しかしながら、オン抵抗の増加は大きくなく、かつ、p型ディープ層10の幅や間隔に応じて調整可能なものであるため、問題になるものではない。
次に、図1に示すトレンチゲート型のMOSFETの製造方法について説明する。図3〜図5は、図1に示すトレンチゲート型のMOSFETの製造工程を示した断面図である。図3〜図5中、左側に図1中のA−A線においてxz平面と平行に切断した断面図(図2−aと対応する場所)を示してあり、右側に図1中のD−D線においてyz平面と平行に切断した断面図(図2−dと対応する場所)を示してある。以下、これらの図を参照して説明する。
〔図3(a)に示す工程〕
まず、リン等のn型不純物濃度が例えば1.0×1019/cm3で厚さ300μm程度のn+型基板1を用意する。このn+型基板1の裏面側にドレイン電極13を形成したのち、n+型基板1の表面にリン等のn型不純物濃度が例えば3.0〜7.0×1015/cm3で厚さ15μm程度のSiCからなるn-型ドリフト層2をエピタキシャル成長させる。
〔図3(b)に示す工程〕
-型ドリフト層2の表面にLTOなどで構成されるマスク20を形成したのち、フォトリソグラフィ工程を経て、p型ディープ層10の形成予定領域においてマスク20を開口させる。そして、マスク20上からp型不純物(例えばボロンやアルミニウム)のイオン注入および活性化を行うことで、例えばボロンもしくはアルミニウム濃度が1.0×1017/cm3〜1.0×1019/cm3、厚さが0.6〜1.0μm程度、幅が0.6〜1.0μm程度となるp型ディープ層10の下層部分10aを形成する。その後、マスク20を除去する。
〔図3(c)に示す工程〕
-型ドリフト層2およびp型ディープ層10の表面に例えば0.3μmn程度の厚みの型電流分散層30をエピタキシャル成長させる。このとき、n型電流分散層30に含まれるリン等のn型不純物濃度を例えば2.0×1015/cm3〜1.0×1017/cm3とすることで、n-型ドリフト層2よりも高濃度、好ましくはn型チャネル層7よりも高濃度とする。
〔図4(a)に示す工程〕
n型電流分散層30の表面にマスク21を形成したのち、フォトリソグラフィ工程を経て、p型ディープ層10の形成予定領域においてマスク21を開口させる。そして、マスク20上からp型不純物(例えばボロンやアルミニウム)のイオン注入および活性化を行うことで、p型ディープ層10の上層部分10bを形成する。このとき、上層部分10bのp型不純物濃度および幅が下層部分10aと同等になるようにする。これにより、下層部分10aおよび上層部分10bが繋がったp型ディープ層10が形成される。その後、マスク21を除去する。
〔図4(b)に示す工程〕
-型ドリフト層2の表面に、ボロンもしくはアルミニウム等のp型不純物濃度が例えば5.0×1016〜2.0×1019/cm3、厚さ2.0μm程度となるp型不純物層をエピタキシャル成長させることにより、p型ベース領域3を形成する。
〔図4(c)に示す工程〕
p型ベース領域3の上に、例えばLTO等で構成されるマスク(図示せず)を成膜し、フォトリソグラフィ工程を経て、n+型ソース領域4の形成予定領域上においてマスクを開口させる。その後、n型不純物(例えば窒素)をイオン注入する。続いて、先程使用したマスクを除去した後、再びマスク(図示せず)を成膜し、フォトリソグラフィ工程を経て、p+型ボディ層5の形成予定領域上においてマスクを開口させる。その後、p型不純物(例えば窒素)をイオン注入する。そして、注入されたイオンを活性化することで、リン等のn型不純物濃度(表面濃度)が例えば1.0×1021/cm3、厚さ0.3μm程度のn+型ソース領域4を形成すると共に、ボロンもしくはアルミニウム等のp型不純物濃度(表面濃度)が例えば1.0×1021/cm3、厚さ0.3μm程度のp+型ボディ層5を形成する。その後、マスクを除去する。
〔図5(a)に示す工程〕
p型ベース領域3、n+型ソース領域4およびp+型ボディ層5の上に、図示しないエッチングマスクを成膜したのち、トレンチ6の形成予定領域の形成予定領域においてエッチングマスクを開口させる。そして、エッチングマスクを用いた異方性エッチングを行ったのち、必要に応じて等方性エッチングや犠牲酸化工程を行うことで、トレンチ6を形成する。この後、エッチングマスクを除去する。
〔図5(b)に示す工程〕
トレンチ6内を含む基板表面全面に、リン等のn型不純物濃度が例えば1.0×1016/cm3のn型チャネル層7をエピタキシャル成長させる。このとき、エピタキシャル成長の面方位依存性などにより、n型チャネル層7はトレンチ6の底面の方が側面よりも厚く形成される。続いてn型チャネル層7のうちの不要部分、つまりp型ベース領域3、n+型ソース領域4およびp+型ボディ層5の上に形成された部分を除去した後、ゲート酸化膜形成工程を行うことでゲート酸化膜8を形成する。具体的には、ウェット雰囲気を用いたパイロジェニック法によるゲート酸化(熱酸化)によりゲート酸化膜8を形成する。
続いて、ゲート酸化膜8の表面にn型不純物をドーピングしたポリシリコン層を例えば600℃の温度下で440nm程度成膜したのち、エッチバック工程等を行うことにより、トレンチ6内にゲート酸化膜8およびゲート電極9を残す。
この後の工程に関しては、従来と同様であるため図示しないが、層間絶縁膜12を成膜したのち、層間絶縁膜をパターニングしてn+型ソース領域4やp+型ボディ層5に繋がるコンタクトホールを形成すると共に、ゲート電極9に繋がるコンタクトホールを別断面に形成する。続いて、コンタクトホール内を埋め込むように電極材料を成膜したのち、これをパターニングすることでソース電極11やゲート配線を形成する。これにより、図1に示したMOSFETが完成する。
以上説明した製造方法によれば、p型ディープ層10を下層部分10aと上層部分10bとに分けて形成しているため、一度にp型ディープ層10を形成する場合と比べて深く形成することが可能となる。また、p型ディープ層10を下層部分10aと上層部分10bとに分けて形成することにより、イオン注入時のエネルギーを高くしなくても済むため、莫大なエネルギーでのイオン注入が行えるイオン注入装置を備える必要も無くなる。
また、このようにp型ディープ層10を深く形成できることから、トレンチ6の底部の位置よりもp型ディープ層10の底部の位置の方が確実に深い位置に形成されるようにできるため、難しいトレンチの深さ制御を行う必要もない。
さらに、n型電流分散層30のの表面からイオン注入することで深いp型ディープ層10を形成するような場合、高いエネルギーによるイオン注入にてp型ディープ層10になるため、イオン注入による欠陥発生が懸念されるが、本実施形態によれば、高いエネルギーによるイオン注入の必要がないため、イオン注入よる欠陥発生を防止することも可能となる。
なお、トレンチ6の長手方向とp型ディープ層10の長手方向とを平行にした場合、これらの間隔が一定にならないとデバイス特性に影響を与えることになるため、トレンチ6の形成の際に用いられるマスクとp型ディープ層10の形成の際に用いられるマスクの位置合わせが重要になる。しかしながら、一定量のマスクずれは必然的に発生するため、完全にマスクずれによるデバイス特性の影響を排除することはできない。これに対し、本実施形態のSiC半導体装置によれば、トレンチ6の長手方向とp型ディープ層10の長手方向とが垂直とされているため、これらを形成するためのマスクずれがデバイス特性に影響を与えることはない。これにより、製品特性のバラツキを防止でき、歩留まり向上を図ることができる。したがって、本実施形態のような構造とすることにより、製品特性のバラツキを防止でき、歩留まり向上を図ることができる構造のSiC半導体装置とすることが可能となる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態のSiC半導体装置は、第1実施形態に対してp型ディープ層10のうちの下層部分10aと上層部分10bとの関係を第1実施形態に対して変更したものであり、基本構造に関しては第1実施形態と同様であるため、第1実施形態と異なっている部分に関してのみ説明する。
図6は、本実施形態にかかるSiC半導体装置に備えられるトレンチゲート構造のMOSFETの断面図である。ただし、第1実施形態に示した図1、図2−a〜図2−cと対応する部分の構造に関しては本実施形態もほぼ同様であり、図2−dに対してのみ異なっているため、図6において図2−dと対応する断面図のみを示してある。
この図に示すように、p型ディープ層10のうち各下層部分10aの間隔L1と比べて各上層部分10bの間隔L2の方が長くなるようにしている。このようにすることで、電流分散層30の電流経路を広く確保してオン電流を稼ぐことができる。なお、このような構造のSiC半導体装置を製造するには、マスク21に形成される開口部の寸法および間隔を第1実施形態に対して変更するだけで良い。
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態のSiC半導体装置も、第1実施形態に対してp型ディープ層10のうちの下層部分10aと上層部分10bとの関係を第1実施形態に対して変更したものであり、基本構造に関しては第1実施形態と同様であるため、第1実施形態と異なっている部分に関してのみ説明する。
図7は、本実施形態にかかるSiC半導体装置に備えられるトレンチゲート構造のMOSFETの断面図である。ただし、第1実施形態に示した図1、図2−a〜図2−cと対応する部分の構造に関しては本実施形態もほぼ同様であり、図2−dに対してのみ異なっているため、図7において図2−dと対応する断面図のみを示してある。
この図に示すように、p型ディープ層10のうち下層部分10aの幅W1と比べて上層部分10bにおける底部側の幅W2が短く、表面部側の幅W3が長くなるようにしている。このようにすることで、電流分散層30の電流経路を広く確保しつつ、サージ電流の抵抗値を小さくすることができる。なお、このような構造のSiC半導体装置を製造するには、第1実施形態で説明したマスク21に形成される開口部をテーパ形状にするだけで良い。例えば、開口部形成時のフォトリソグラフィをウェットエッチングなどの等方性エッチングにて行うことで、マスク21の開口部をテーパ形状にすることができる。
(第4実施形態)
本発明の第2実施形態について説明する。本実施形態のSiC半導体装置は、第1〜第3実施形態と同様の構造のMOSFETを反転型としたものであり、基本構造に関しては第1〜第3実施形態と同様であるため、第1〜第3実施形態と異なっている部分に関してのみ説明する。
図8は、本実施形態にかかるSiC半導体装置に備えられるトレンチゲート構造のMOSFETの斜視断面図である。なお、図8は、第1実施形態の構造に対してMOSFETを反転型とする構造について示してあるが、第2、第3実施形態の構造に対してもMOSFETを反転型にできる。
図8に示されるように、本実施形態では、トレンチ6の表面にゲート酸化膜8が形成されており、第1実施形態で示したn型チャネル層7は形成されていない構造とされている。このため、トレンチ6の側壁において、ゲート酸化膜8とp型ベース領域3およびn+型ソース領域4が接触した構造となっている。
このように構成されたMOSFETは、ゲート電極9に対してゲート電圧を印加すると、p型ベース領域3のうちトレンチ6の側面に配置されたゲート酸化膜8と接する部分が反転型チャネルとなり、ソース電極11とドレイン電極13との間に電流を流すという動作を行う。
このような反転型のMOSFETについても、上述したようにp型ディープ層10を形成しているため、第1実施形態と同様に、ドレイン電圧として高電圧が印加される時には、p型ディープ層10とn-型ドリフト層2とのPN接合部での空乏層がn-型ドリフト層2側に大きく伸びることになり、ドレイン電圧の影響による高電圧がゲート酸化膜8に入り込み難くなる。このため、ゲート酸化膜8内での電界集中、特にゲート酸化膜8のうちのトレンチ6の底部での電界集中を緩和することが可能となる。これにより、ゲート酸化膜8が破壊されることを防止することが可能となる。
そして、このようなp型ディープ層10を下層部分10aと上層部分10bとに分けて形成しているため、上記第1実施形態と同様の効果を得ることが可能となる。
なお、このような反転型のMOSFETの製造方法に関しては、基本的に第1実施形態と同様であり、第1実施形態に示した製造方法に対してn型チャネル層7の形成工程をなくし、トレンチ6の表面に直接ゲート酸化膜8を形成すればよい。
(他の実施形態)
(1)上記各実施形態では、第1導電型をn型、第2導電型をp型としたnチャネルタイプのMOSFETを例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプのMOSFETに対しても本発明を適用することができる。また、上記説明では、トレンチゲート構造のMOSFETを例に挙げて説明したが、同様のトレンチゲート構造のIGBTに対しても本発明を適用することができる。IGBTは、第1、第2実施形態に対して基板1の導電型をn型からp型に変更するだけであり、その他の構造や製造方法に関しては第1実施形態と同様である。
(2)また、上記各実施形態では、トレンチ6を形成する前にp型ベース領域3やn+型ソース領域4等を形成したが、トレンチ6を形成した後にp型ベース領域3やn+型ソース領域4等をイオン注入にて形成しても良い。また、上記実施形態においてn+型ソース領域4をイオン注入にて形成するのであれば、n+型ソース領域4がゲート酸化膜8と接する状態であっても構わない。さらに、p型ベース領域3をイオン注入で形成するのであれば、トレンチ6の側面からp型ベース領域3を離間させることができるため、トレンチ6の側面からp型ベース領域3の間に残るn-型ドリフト層2をn型チャネル層7として機能させることも可能である。勿論、この場合にも、p型ベース領域3やn+型ソース領域4等をトレンチ6の形成前後のいずれで形成しても構わない。
(3)上記各実施形態では、n+型ソース領域4およびp+型ボディ層5をイオン注入にて形成する場合について説明したが、これらのうちのいずれか一方をエピタキシャル成長させることにより形成することもできる。
(4)上記各実施形態に示した構造は単なる一例を示したものであり、適宜設定変更などが可能である。例えば、p+型ボディ層5を介してp型ベース領域3がソース電極11に電気的に接続される構造としたが、p+型ボディ層5を単なるコンタクト部としてp型ベース領域3がソース電極11に電気的に接続される構造であっても構わない。また、ゲート絶縁膜として熱酸化によるゲート酸化膜8を例に挙げて説明したが熱酸化によらない酸化膜もしくは窒化膜などを含むものであっても構わない。また、ドレイン電極13の形成工程に関しても、ソース電極11の形成後などとしても構わない。
(5)なお、結晶の方位を示す場合、本来ならば所望の数字の上にバー(−)を付すべきであるが、パソコン出願に基づく表現上の制限が存在するため、本明細書においては、所望の数字の前にバーを付すものとする。
本発明の第1実施形態にかかる蓄積型のトレンチゲート構造のMOSFETの断面図である。 図1のA−A断面図である。 図1のB−B断面図である。 図1のC−C断面図である。 図1のD−D断面図である。 図1に示すトレンチゲート型のMOSFETの製造工程を示した断面図である。 図3に続くトレンチゲート型のMOSFETの製造工程を示した断面図である。 図4に続くトレンチゲート型のMOSFETの製造工程を示した断面図である。 本発明の第2実施形態にかかる蓄積型のトレンチゲート構造のMOSFETの断面図である。 本発明の第2実施形態にかかる蓄積型のトレンチゲート構造のMOSFETの断面図である。 本発明の第4実施形態にかかる反転型のトレンチゲート構造のMOSFETの断面図である。
符号の説明
1 n+型基板
2 n-型ドリフト層
3 p型ベース領域
4 n+型ソース領域
5 p+型ボディ層
6 トレンチ
7 n型チャネル層
8 ゲート酸化膜
9 ゲート電極
10 p型ディープ層
11 ソース電極
12 層間絶縁膜
13 ドレイン電極
20、21 マスク
30 n型電流分散層

Claims (4)

  1. 炭化珪素からなる第1または第2導電型の基板(1)と、
    前記基板(1)の上に形成され、前記基板(1)よりも低不純物濃度とされた第1導電型の炭化珪素からなるドリフト層(2)と、
    前記ドリフト層(2)の上に、該ドリフト層(2)よりも高不純物濃度で構成された第1導電型の炭化珪素からなる電流分散層(30)と、
    前記電流分散層(30)の上に形成された第2導電型の炭化珪素からなるベース領域(3)と、
    前記ベース領域(3)の上に形成され、前記ドリフト層(2)よりも高濃度の第1導電型の炭化珪素からなるソース領域(4)と、
    前記ソース領域(4)と前記ベース領域(3)よりも深く、かつ、前記電流分散層(30)もしくは前記ドリフト層(3)まで達し、前記ソース領域(4)および前記ベース領域(3)が両側に配置されるように形成されるトレンチ(6)と、
    前記トレンチ(6)の側壁に位置する第1導電型の炭化珪素からなるチャネル層(7)と、
    前記チャネル層(7)の表面において、前記ベース領域(3)から所定距離離間するように形成されたゲート絶縁膜(8)と、
    前記トレンチ(6)内において、前記ゲート絶縁膜(8)の上に形成されたゲート電極(9)と、
    前記ソース領域(4)および前記ベース領域(3)に電気的に接続されたソース電極(11)と、
    前記基板(1)の裏面側に形成されたドレイン電極(13)と、
    前記ベース領域(3)の下方において、前記電流分散層(30)を貫通して前記ドリフト層(2)に達し、前記トレンチ(6)よりも深い位置まで形成され、前記トレンチ(6)の側面に対する法線方向に延設された複数の第2導電型のディープ層(10)と、を備え、
    前記ゲート電極(9)への印加電圧を制御することで前記チャネル層(7)に形成される蓄積型のチャネルを制御し、前記ソース領域(4)および前記ドリフト層(2)を介して、前記ソース電極(11)および前記ドレイン電極(13)の間に電流を流す蓄積型のMOSFETを備えた炭化珪素半導体装置の製造方法であって、
    前記基板(1)を用意し、該基板(1)上に、該基板(1)よりも低不純物濃度とされた第1導電型の炭化珪素からなるドリフト層(2)を形成する工程と、
    前記ドリフト層(2)の表面にマスク(20)を配置した後、該マスク(20)を用いたイオン注入を行うことにより、一方向に延設されるように第2導電型のディープ層(10)の下層部分(10a)を形成する工程と、
    前記ドリフト層(2)の表面に、前記ドリフト層(2)よりも高濃度となる第1導電型の電流分散層(30)を形成する工程と、
    前記電流分散層(30)の表面にマスク(21)を配置した後、該マスク(21)を用いたイオン注入を行うことにより、前記下層部分(10a)と対応する位置に、前記下層部分(10a)と接続されるように前記ディープ層(10)の上層部分(10b)を形成する工程と、
    前記電流分散層(30)および前記ディープ層(10)の表面に第2導電型の炭化珪素からなるベース領域(3)を形成する工程と、を含んでいることを特徴とする炭化珪素半導体装置の製造方法。
  2. 炭化珪素からなる第1または第2導電型の基板(1)と、
    前記基板(1)の上に形成され、前記基板(1)よりも低不純物濃度とされた第1導電型の炭化珪素からなるドリフト層(2)と、
    前記ドリフト層(2)の上に、該ドリフト層(2)よりも高不純物濃度で構成された第1導電型の炭化珪素からなる電流分散層(30)と、
    前記電流分散層(30)の上に形成された第2導電型の炭化珪素からなるベース領域(3)と、
    前記ベース領域(3)の上に形成され、前記ドリフト層(2)よりも高濃度の第1導電型の炭化珪素からなるソース領域(4)と、
    前記ソース領域(4)と前記ベース領域(3)よりも深く、かつ、前記電流分散層(30)もしくは前記ドリフト層(3)まで達し、前記ソース領域(4)および前記ベース領域(3)が両側に配置されるように形成されるトレンチ(6)と、
    前記トレンチ(6)の表面に形成されたゲート絶縁膜(8)と、
    前記トレンチ(6)内において、前記ゲート絶縁膜(8)の上に形成されたゲート電極(9)と、
    前記ソース領域(4)および前記ベース領域(3)に電気的に接続されたソース電極(11)と、
    前記基板(1)の裏面側に形成されたドレイン電極(13)と、
    前記ベース領域(3)の下方において、前記電流分散層(30)を貫通して前記ドリフト層(2)に達し、前記トレンチ(6)よりも深い位置まで形成され、前記トレンチ(6)の側面に対する法線方向に延設された複数の第2導電型のディープ層(10)と、を備え、
    前記ゲート電極(9)への印加電圧を制御することで前記トレンチ(6)の側面に位置する前記ベース領域(3)の表面部に反転型のチャネル領域を形成し、前記ソース領域(4)および前記ドリフト層(2)を介して、前記ソース電極(11)および前記ドレイン電極(13)の間に電流を流す反転型のMOSFETを備えた炭化珪素半導体装置の製造方法であって、
    前記基板(1)を用意し、該基板(1)上に、該基板(1)よりも低不純物濃度とされた第1導電型の炭化珪素からなるドリフト層(2)を形成する工程と、
    前記ドリフト層(2)の表面にマスク(20)を配置した後、該マスク(20)を用いたイオン注入を行うことにより、一方向に延設されるように第2導電型のディープ層(10)の下層部分(10a)を形成する工程と、
    前記ドリフト層(2)の表面に、前記ドリフト層(2)よりも高濃度となる第1導電型の電流分散層(30)を形成する工程と、
    前記電流分散層(30)の表面にマスク(21)を配置した後、該マスク(21)を用いたイオン注入を行うことにより、前記下層部分(10a)と対応する位置に、前記下層部分(10a)と接続されるように前記ディープ層(10)の上層部分(10b)を形成する工程と、
    前記電流分散層(30)および前記ディープ層(10)の表面に第2導電型の炭化珪素からなるベース領域(3)を形成する工程と、を含んでいることを特徴とする炭化珪素半導体装置の製造方法。
  3. 前記ディープ層(10)の上層部分(10b)を形成する工程では、複数の前記ディープ層(10)における前記上層部分(10b)の間隔(L2)が前記下層部分(10a)の間隔(L1)よりも広くなるようにすることを特徴とする請求項1または2に記載の炭化珪素半導体装置の製造方法。
  4. 前記ディープ層(10)の上層部分(10b)を形成する工程では、前記上層部分(10b)のうちの底部の幅(W2)が前記下層部分(10a)の幅(W1)よりも狭く、前記上層部分(10b)のうちの表面部の幅(W3)が前記下層部分(10a)の幅(W1)よりも広くなるようにすることを特徴とする請求項1または2に記載の炭化珪素半導体装置の製造方法。
JP2008104606A 2008-04-14 2008-04-14 炭化珪素半導体装置の製造方法 Active JP4640436B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008104606A JP4640436B2 (ja) 2008-04-14 2008-04-14 炭化珪素半導体装置の製造方法
DE102009016681.5A DE102009016681B4 (de) 2008-04-14 2009-04-07 Verfahren zur Herstellung einer Siliciumcarbid-Halbleitervorrichtung
US12/385,519 US7947555B2 (en) 2008-04-14 2009-04-09 Method of making silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104606A JP4640436B2 (ja) 2008-04-14 2008-04-14 炭化珪素半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009259896A JP2009259896A (ja) 2009-11-05
JP4640436B2 true JP4640436B2 (ja) 2011-03-02

Family

ID=41131147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104606A Active JP4640436B2 (ja) 2008-04-14 2008-04-14 炭化珪素半導体装置の製造方法

Country Status (3)

Country Link
US (1) US7947555B2 (ja)
JP (1) JP4640436B2 (ja)
DE (1) DE102009016681B4 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586887B2 (ja) * 2009-07-21 2014-09-10 株式会社日立製作所 半導体装置及びその製造方法
JP5531787B2 (ja) * 2010-05-31 2014-06-25 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2012169384A (ja) * 2011-02-11 2012-09-06 Denso Corp 炭化珪素半導体装置およびその製造方法
JP5817204B2 (ja) * 2011-04-28 2015-11-18 トヨタ自動車株式会社 炭化珪素半導体装置
JP5673393B2 (ja) 2011-06-29 2015-02-18 株式会社デンソー 炭化珪素半導体装置
CN103426924A (zh) * 2012-05-14 2013-12-04 无锡华润上华半导体有限公司 沟槽型功率mosfet及其制备方法
JP6077380B2 (ja) * 2013-04-24 2017-02-08 トヨタ自動車株式会社 半導体装置
US20150118810A1 (en) * 2013-10-24 2015-04-30 Madhur Bobde Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
JP6237408B2 (ja) * 2014-03-28 2017-11-29 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
CN103928346B (zh) * 2014-04-21 2016-08-24 西安电子科技大学 外延生长形成n型重掺杂漂移层台面的umosfet器件制备方法
CN108028282B (zh) 2015-10-16 2021-06-15 富士电机株式会社 半导体装置和半导体装置的制造方法
DE102016226237B4 (de) 2016-02-01 2024-07-18 Fuji Electric Co., Ltd. Siliziumcarbid-halbleitervorrichtung
JP6472776B2 (ja) 2016-02-01 2019-02-20 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US10243039B2 (en) * 2016-03-22 2019-03-26 General Electric Company Super-junction semiconductor power devices with fast switching capability
JP6763727B2 (ja) 2016-09-15 2020-09-30 トヨタ自動車株式会社 スイッチング装置とその製造方法
JP6640691B2 (ja) * 2016-09-21 2020-02-05 株式会社東芝 半導体装置及びその製造方法
JP6753951B2 (ja) 2017-06-06 2020-09-09 三菱電機株式会社 半導体装置および電力変換装置
JP7243094B2 (ja) * 2018-09-11 2023-03-22 富士電機株式会社 半導体装置
US11233157B2 (en) * 2018-09-28 2022-01-25 General Electric Company Systems and methods for unipolar charge balanced semiconductor power devices
DE102019210681A1 (de) * 2019-05-31 2020-12-03 Robert Bosch Gmbh Leistungstransistorzelle und Leistungstransistor
JP7425943B2 (ja) * 2019-12-12 2024-02-01 株式会社デンソー 炭化珪素半導体装置
WO2022190456A1 (ja) * 2021-03-11 2022-09-15 株式会社デンソー 電界効果トランジスタとその製造方法
CN114242769B (zh) * 2021-11-24 2022-08-26 深圳真茂佳半导体有限公司 超结梯形槽碳化硅mosfet器件及制作方法
JP2023142243A (ja) * 2022-03-24 2023-10-05 株式会社東芝 半導体装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308512A (ja) * 1997-03-05 1998-11-17 Denso Corp 炭化珪素半導体装置
JP2000269518A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 電力用半導体素子及び半導体層の形成方法
JP2001267570A (ja) * 2000-03-15 2001-09-28 Mitsubishi Electric Corp 半導体装置及び半導体装置製造方法
JP2002076339A (ja) * 2000-09-05 2002-03-15 Fuji Electric Co Ltd 超接合半導体素子
JP2004119611A (ja) * 2002-09-25 2004-04-15 Toshiba Corp 電力用半導体素子
JP2006505932A (ja) * 2002-11-06 2006-02-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 半導体デバイスおよびその製造方法
JP2007523487A (ja) * 2004-02-21 2007-08-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチゲート半導体装置とその製造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581100A (en) * 1994-08-30 1996-12-03 International Rectifier Corporation Trench depletion MOSFET
US6133587A (en) 1996-01-23 2000-10-17 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
JP3471509B2 (ja) 1996-01-23 2003-12-02 株式会社デンソー 炭化珪素半導体装置
AU6272798A (en) * 1997-02-07 1998-08-26 James Albert Cooper Jr. Structure for increasing the maximum voltage of silicon carbide power transistors
CN1532943B (zh) * 2003-03-18 2011-11-23 松下电器产业株式会社 碳化硅半导体器件及其制造方法
JP2007288545A (ja) 2006-04-18 2007-11-01 Japan Radio Co Ltd 前置歪補償回路
JP2008031704A (ja) 2006-07-27 2008-02-14 Toppan Cosmo Inc 構造体
EP2091083A3 (en) * 2008-02-13 2009-10-14 Denso Corporation Silicon carbide semiconductor device including a deep layer
JP2009302436A (ja) * 2008-06-17 2009-12-24 Denso Corp 炭化珪素半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308512A (ja) * 1997-03-05 1998-11-17 Denso Corp 炭化珪素半導体装置
JP2000269518A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 電力用半導体素子及び半導体層の形成方法
JP2001267570A (ja) * 2000-03-15 2001-09-28 Mitsubishi Electric Corp 半導体装置及び半導体装置製造方法
JP2002076339A (ja) * 2000-09-05 2002-03-15 Fuji Electric Co Ltd 超接合半導体素子
JP2004119611A (ja) * 2002-09-25 2004-04-15 Toshiba Corp 電力用半導体素子
JP2006505932A (ja) * 2002-11-06 2006-02-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 半導体デバイスおよびその製造方法
JP2007523487A (ja) * 2004-02-21 2007-08-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチゲート半導体装置とその製造

Also Published As

Publication number Publication date
DE102009016681A1 (de) 2009-11-05
US7947555B2 (en) 2011-05-24
US20090280609A1 (en) 2009-11-12
JP2009259896A (ja) 2009-11-05
DE102009016681B4 (de) 2020-12-31

Similar Documents

Publication Publication Date Title
JP4640436B2 (ja) 炭化珪素半導体装置の製造方法
JP4793390B2 (ja) 炭化珪素半導体装置およびその製造方法
JP4640439B2 (ja) 炭化珪素半導体装置
JP4798119B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5728992B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5531787B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5776610B2 (ja) 炭化珪素半導体装置およびその製造方法
KR101613930B1 (ko) 탄화규소 반도체 장치 및 그 제조 방법
US8193564B2 (en) Silicon carbide semiconductor device including deep layer
WO2015049838A1 (ja) 炭化珪素半導体装置
JP4577355B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2012169384A (ja) 炭化珪素半導体装置およびその製造方法
JP2009302436A (ja) 炭化珪素半導体装置の製造方法
US10446649B2 (en) Silicon carbide semiconductor device
JP5790573B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2013046537A1 (ja) 縦型半導体素子を備えた半導体装置
JP2009283540A (ja) 炭化珪素半導体装置およびその製造方法
JP2012169385A (ja) 炭化珪素半導体装置
JP4793437B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6696450B2 (ja) 炭化珪素半導体装置
JP5533677B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2010147222A (ja) 炭化珪素半導体装置およびその製造方法
JP5817204B2 (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4640436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250