[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4186637B2 - 粒子製造方法及びそのための微小流路構造体 - Google Patents

粒子製造方法及びそのための微小流路構造体 Download PDF

Info

Publication number
JP4186637B2
JP4186637B2 JP2003021794A JP2003021794A JP4186637B2 JP 4186637 B2 JP4186637 B2 JP 4186637B2 JP 2003021794 A JP2003021794 A JP 2003021794A JP 2003021794 A JP2003021794 A JP 2003021794A JP 4186637 B2 JP4186637 B2 JP 4186637B2
Authority
JP
Japan
Prior art keywords
channel
flow path
dispersed phase
continuous phase
introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003021794A
Other languages
English (en)
Other versions
JP2004202476A (ja
Inventor
晃治 片山
博達 草部
明 川井
克幸 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003021794A priority Critical patent/JP4186637B2/ja
Publication of JP2004202476A publication Critical patent/JP2004202476A/ja
Application granted granted Critical
Publication of JP4186637B2 publication Critical patent/JP4186637B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disintegrating Or Milling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分取、分離用カラム充填剤等に用いられる微小な液滴やゲル粒子などの製造用として好適に用いられる粒子製造方法であり、また、微小な液滴等の粒子を製造するための微小流路構造体に関する。
【0002】
【従来の技術】
近年、数cm角のガラス基板あるいは樹脂製基板上に長さが数cm程度で、幅及び深さがサブμmから数百μmの微小流路を有する微小流路構造体を用いて、液体の送液による微小粒子の生成を行う研究が注目されている。(例えば、非特許文献1、2参照)
微小流路内における粒子生成技術に関しては、図1に示すように、微小流路基板1の上に、連続相導入口2、連続相導入流路3、分散相導入口4、分散相導入流路5、排出流路7及び排出口8を有したT字型の構造体であり、導入された連続相と分散相とが合流する部分に合流部6が存在する。各流路の深さは100μmであり、分散相を導入する導入流路幅が100μm、連続相を導入する導入流路幅は300〜500μmのT字型微小流路を用いて、分散相と連続相の流れの速さを制御(コントロール)して送液を行うと、分散相と連続相が流路を通じて合流する地点(合流部)において極めて均一な微小粒子の生成が可能となる。また、分散相及び連続相の流量をコントロールすることで生成粒子径をコントロールすることも可能となる。しかしながらこの方法においては、分散相の送液速度を上昇するにつれ、安定した粒子生成が得られず、最終的に層流となり粒子生成が出来なくなってしまうという課題があった。また、流路形成材質が青板、石英、パイレックス(登録商標)等のガラスあるいはSi製であるため、分散相が疎水性を示す液体、連続相が親水性を示す液体である場合、層流形成が粒子生成よりも安定であるため、実質的に粒子を生成することが困難であった。
【0003】
この課題を解決し微小な粒子を生成させるためには、表面処理による解決を図ることが試みられているが長期間に渡り、粒子生成を行うことが出来ず、更なる改善が求められていた。
【非特許文献1】
西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」,第4回 化学とマイクロシステム研究会 講演予稿集,2001年発行,59頁
【非特許文献2】
TAKASI NISISAKO ら著、「DROPLET FORMATION IN A MICROCHANNEL ON PMMA PLATE」,Micro Total Analysis System 2001年発行,137〜138頁
【0004】
【発明が解決しようとする課題】
以上のように従来の微小流路内における液滴等の粒子生成技術は、T字型微小流路において連続相と分散相の合流部で極めて均一な粒子の生成が可能となるが、分散相の流速を上昇させるにつれ粒子化現象が不安定となり、ついには層流となってしまっていた。また、各種液体の粒子を作る際に問題となる分散相液体と微小流路壁面の親和性の課題があり、工業的に量産する場合にはさらなる改善が求められていた。
【0005】
本発明は、上記課題に鑑みてなされたもので、微小流路内での粒子生成を可能とすると共に、様々な分散相と連続相の組合わせにおいての粒子生成も可能であり、工業的な量産にも対応できる粒子製造方法及びそのための微小流路構造体を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するものとして、分散相と2以上の連続相を微小流路を有した構造体に連続的に導入しつつ、分散相と連続相とが合流する部分(以下「合流部」という)にて、分散相を連続相が挟み込むように接触させて分散相をせん断することで、分散相が微小液滴の生成すなわち微小粒子化することを見出し、さらに、このような粒子を生成させるために、分散相を導入するための導入口及びそれに連通する導入流路と、連続相を導入するための2以上の導入口及びそれに連通する導入流路と、分散相と2以上連続相により生成された粒子を排出させるための微小流路からなる排出流路及びそれに連通する排出口とを備え、かつ排出流路断面のアスペクト比(流路の深さ/幅の比)を0.30以上とすることも見出し、上記の従来技術による課題を解決することができ、遂に本発明を完成するに至った。
【0007】
すなわち本発明は、分散相と2以上の連続相を微小流路を有した構造体に連続的に導入しつつ、前記分散相と前記連続相とを接触させ分散相をせん断して微小粒子化する粒子生成方法であり、さらに、これを達成するための構造体であって、分散相を導入するための導入口及びそれに連通する導入流路と、連続相を導入するための導入口及びそれに連通する導入流路と、分散相と2以上の連続相により生成された粒子を排出させるための微小流路からなる排出流路及びそれに連通する排出口とを備えた微小流路構造体であって、前記排出流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上である微小流路構造体である。
【0008】
尚、本明細書において「粒子」とは、液状の小滴すなわち液滴を意味するだけではなく、固体状に硬化させたものも意味することがある。
【0009】
以下、本発明を詳細に説明する。
<粒子製造方法>
上記したように、本発明の粒子製造方法は、分散相と2以上の連続相を微小流路を有した構造体に連続的に導入しつつ、分散相と連続相とを接触させ分散相をせん断して微小粒子化する方法である。
【0010】
本発明において用いられる分散相とは、微小流路構造体により粒子を製造させるための液状物であり、例えば、スチレンなどの重合用のモノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。ここで分散相としては、本発明が微小な粒子を効率的に生成させることを目的としており、この目的を達成させるためであれば微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに粒子を形成させることができればその成分も特に制限されない。また、分散相中に一部固体状物が混在したスラリー状のものであっても差し支えない。
【0011】
本発明において用いられる連続相とは、微小流路構造体により分散相より粒子を生成させるために用いられる液状物であり、例えば、ポリビニルアルコールといったゲル製造用の分散剤を適当な溶媒に溶解した媒体を指す。ここで連続相としては分散相と同様に、微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに粒子を形成させることができればその成分は特に制限されないが、連続相の内の2またはそれ以上が同一組成であれば、分散相により生成される粒子周囲の媒体の組成を均一あるいは制御することができ、生成した粒子を取り出したり、光照射あるいは加熱といった処理を行うことが容易となり、好ましい。また、連続相中に一部固体状物が混在したスラリー状のものであっても差し支えない。
【0012】
さらに、分散相と連続相とは粒子を生成させるために、実質的に交じり合わないあるいは相溶性がないことが必要であり、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相が用いられることとなる。また、連続相として水相を用いた場合にはその逆となる。
【0013】
本発明においてはこれらの分散相と連続相とを下記に説明する微小流路構造体に連続的に導入しつつ、両者が合流する合流部で分散相と連続相とを接触させ分散相をせん断して微小粒子化させるものであるが、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることで、生成する粒子の粒子径を制御することが可能である。これは、従来の構造体を使った粒子製造においては、分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適している。さらに、上記微小流路構造体へ導入する分散相と連続相の導入速度とを実質的に同じとすることで、生成する粒子の粒径制御や製造設備の簡素化といった面で、工業的量産に十分に対応できるものである。
<微小流路構造体>
、本発明の微小流路構造体は、上記した粒子製造を行うための構造体であって、分散相を導入するための導入口及びそれに連通する導入流路と、連続相を導入するための導入口及びそれに連通する導入流路と、分散相と2以上連続相により生成された粒子を排出させるための微小流路からなる排出流路及びそれに連通する排出口とを備え、さらに、排出流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上である構造を有したものである。
【0014】
ここで、分散相を導入するための導入口は分散相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて分散相を連続的に導入する機構としてもよい。同様に、連続相を導入するための導入口についても、連続相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて連続相を連続的に導入する機構としてもよい。
【0015】
分散相を導入するための導入流路は導入口と連通しており、分散相が導入され、この導入流路に沿って送液される。導入流路の形状は粒子の形状、粒子径を制御するにおいて影響を与えるが、その幅は数100μm以下で形成され、同様に、連続相を導入するための導入流路についても、導入口と連通しており、連続相が導入され、この導入流路に沿って送液される。導入流路の形状は粒子の形状、粒子径を制御するにおいて影響を与えるが、その幅は数100μm以下であれば良い。また、各連続相及び分散相の流路は、分散相を挟んで連続相を導入可能で、分散相の流路の1点に向け交差するような形状となっておればよい。
【0016】
排出流路は上記の3つの導入流路及び排出口と連通しており、分散相と連続相が合流後、この排出流路に沿って送液され、排出口より排出される。排出流路の形状は特に制限されないが、その幅は数100μm以下で、導入流路も含めY字型の形状となっておればよい。排出口は、生成された粒子を排出させるための開口部を意味し、さらに、この排出口に適当なアタッチメントを備えて生成された粒子を含む相を連続的に排出する機構としてもよい。
【0017】
尚、これら流路は本明細書においては微小流路ということがある。
【0018】
さらに、本発明の微小流路構造体においては、分散相を導入するための導入流路と連続相を導入するための2以上の導入流路とが任意の角度で交わると共に、これら3以上の導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような3以上の導入流路の交差する角度を任意の角度とすることで、合流部で生成する粒子を所望の粒子径へと制御し、合流部付近で粒子が生成するよう粒子生成箇所を制御することが可能となる。交差角度の設定については、目的とする粒子の粒子径、生成時の流速に応じて適宜決めればよい。
【0019】
導入流路、排出流路の断面形状としては、流路断面のアスペクト比が0.30以上であることが好ましく、さらに0.30以上3.0未満であることがこのましい。アスペクト比がこの範囲にあれば、合流部において均一な粒子を生成させることができる。この範囲を逸脱して、アスペクト比が0.30未満となると均一な粒子を生成させることが困難となることがある。但し、生成粒子径が流路深さ以下であればその限りでは無い。
【0020】
さらに、分散相を導入するための導入流路と連続相を導入するための導入流路の幅及び深さが等しい場合には上記の効果に加え、微小流路構造体の設計が容易となり、また、送液時の制御もより容易となって、工業的量産に好適となる。
【0021】
また、導入流路の幅と排出流路の幅との関係において、導入流路の幅≧排出流路の幅であれば、導入流路の幅=排出流路の幅よりも、送液流速を増加しても合流部において均一な粒子の生成が可能となり、粒子生成速度を増加させることができるという効果を奏することができ、好ましい態様となる。
【0022】
排出流路の幅としては、分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっていることが好ましい。すなわち、粒子排出口に至るまでの間の内、導入流路と排出流路の合流部において部分的に狭くするあるいは分散相流路に沿った流路構成壁を凸上に形成することで送液流速を増加しても合流部において均一な粒子生成が可能でありかつ、送液圧力の上昇を緩和することが可能とすることができ、好ましい態様となる。
【0023】
本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、分散相と連続相を導入するための3以上の導入部及び導入流路と、3以上の導入流路が交わる合流部と、液体を排出させるための排出流路及び排出口を備えた微小流路構造体が、少なくとも一方の面に微小流路が形成された基板と、微小流路が形成された基板面を覆うように、微小流路の所定の位置に、微小流路と微小流路構造体外部とを連通するための少なくとも4以上の小穴が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から微小流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して微小流路内を通過させることが可能となる。流体の送液は、マイクロポンプなどの機械的手段によって可能となる。
【0024】
微小流路が形成された基板及びカバー体の材質としては、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、微小流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数mm以下である事が望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。
【0025】
また本発明の微小流路構造体は、微小流路が形成された基板とカバー体は、熱処理接合あるいは光硬化樹脂や熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。
【0026】
【発明の実施の形態】
以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
また、実施例においては1枚の基板上に1本の微小流路を形成したが、工業的に量産する場合は、1枚の基板上に多数の微小流路を形成する、あるいは多数形成した1枚の基板を積層することで可能となる。
(実施例1)
本発明の第1の実施例における粒子製造用微小流路を図2に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43である微細流路形状とし、連続相導入流路3と分散相導入流路5とが22度の角度にて交わる合流部を持った形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する液滴粒子径に依存するが、微小流路のアスペクト比が0.3以上3未満の範囲を逸脱しなければよい。
【0027】
このY字形状の粒子製造用微小流路構造体は図3に示す製作手順に従って以下のように作製した。厚さ1mmで70mm×20mmのガラス基板9の一方の面に、金などの金属膜10を後述する露光光が透過しない程度の厚さに成膜し(図3(a)金属の成膜工程)、その金属膜上にフォトレジスト11をコートした(図3(b)フォトレジストの塗布工程)。更にフォトレジスト上に前記微小流路の形状を描いたパターンを有するフォトマスク12を置き、そのフォトマスク上から露光し現像を行なった(図3(c)露光〜現像工程)。次に、酸などで金属膜10をエッチングした(図3(d)金属膜のエッチング工程)後、レジストとガラスをフッ酸などでエッチングし(図3(e)レジスト、ガラスのエッチング工程)、さらに残った金属膜10を酸などで溶かして(図3(f)金属膜の除去工程)、微小流路が形成された基板13を得た。実施例においては、微小流路の製作をガラス基板のエッチングにより微小流路を形成したが、製作方法はこれに限定するものではない。
【0028】
この微小流路が形成された基板13の微小流路を有する面に、微小流路の流体導入口(連続相導入口2、分散相導入口4)と流体排出口8にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラスカバー体14を熱接合し、図4に示すように微小流路を備えた粒子製造用微小流路構造体を製作した。実施例においては、微小流路を形成する基板及びカバー体にガラス基板を用いたが、これに限定するものではない。
【0029】
次に本発明の粒子製造方法について説明する。図5に示すように液滴生成用微小流路構造体15に液体が送液可能なようにホルダー16などで保持すると共に、テフロン(登録商標)チューブ18及びフィレットジョイント19をホルダー16に固定する。テフロン(登録商標)チューブ18のもう一方はマイクロシリンジ21、22、23に接続する。これで粒子製造用微小流路構造体15に液体の送液が可能となる。次に粒子を製造するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液をマイクロシリンジ23に注入、連続相にポリビニルアルコール3%水溶液をマイクロシリンジ21、22に注入し、マイクロシリンジポンプ20で送液を行った。送液流速は分散相及び連続相は共に6μl/minである。送液流速が共に安定した状態で、粒子製造用微小流路構造体15の分散相及び連続相が交わる合流部にて粒子生成が観察される。生成された粒子23を観察すると図6に示すように平均粒子径77μmの極めて均一な粒子であった。
(実施例2)
本発明の第2の実施例における粒子製造用微小流路を図4に示す。微小流路は70mm×20mm×1t(厚さ)のポリエーテルイミド基板上に、微小流路に相当する連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43である微細流路形状とし、連続相導入流路3と分散相導入流路5とが22度の角度にて交わる合流部を持った形状の流路を1本形成した。作製手法として、実施例1に示すものと同じフォトマスク及び手法を用い、直径200mmパイレックス(登録商標)ガラス基板上に流路を形成した後、Ni薄膜を形成し、電気メッキにより厚さ300μmのスタンパを作製し、成形機の金型に設置してポリエーテルイミド樹脂を射出成形法により作製した。作製した流路基板を70mm×20mm×1tで切り出した。この微小流路の幅及び深さについては、生成する粒子径に依存するが、微小流路のアスペクト比が0.3以上3未満の範囲を逸脱しなければよい。
【0030】
図5に示すように粒子製造用微小流路構造体15に液体が送液可能なようにホルダー16などで保持すると共に、テフロン(登録商標)チューブ18及びフィレットジョイント19をホルダー16に固定する。テフロン(登録商標)チューブ18のもう一方はマイクロシリンジ21、22、23に接続する。これで粒子製造用微小流路構造体15に液体の送液が可能となる。次に粒子を製造するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液をマイクロシリンジ23に注入、連続相にポリビニルアルコール3%水溶液をマイクロシリンジ21、22に注入し、マイクロシリンジポンプ20で送液を行った。送液流速は分散相及び連続相は共に6μl/minである。送液流速が共に安定した状態で、粒子製造用微小流路構造体15の分散相及び連続相が交わる合流部にて粒子生成が観察される。生成された粒子23を観察すると図7に示すように平均粒子径77μmの極めて均一な粒子であった。
(実施例3)
次に実施例3における粒子製造用微小流路を図11に示す。実施例1と同様に微小流路は70mm×20mm×1t(厚さ)のガラス上に連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43であるY字形状とし、連続相導入流路3と分散相導入流路5とが44度の角度にて交わる合流部を持ったY字形状の流路を1本形成し、図11に示すように分散相と連続相の交差角が90度未満の場合、すなわち分散相と連続相の流路の上流が同じ側にある場合には2つの連続相の各流路が
分散相流路と合流する両流路交差部の連続相流路出口または排出流路入口に突起部24を設け、流路幅を局所的に狭くし、連続相の流れを一時的にせきとめ、流れの向きが変わることにより、合流部付近で分散相がせん断されて粒子化する構造にした。この粒子製造用微小流路構造体の製作手順は実施例1と同じ手順にて作製した。次に実施例1と同様に粒子製造用微小流路構造体をホルダーで保持し、テフロン(登録商標)チューブ、フィレットジョイント、マイクロシリンジポンプに固定、接続する。粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液流速は分散相及び連続相は共に6μl/minである。
【0031】
流速が共に安定した状態で、粒子生成用微小流路構造体の分散相及び連続相が交わる合流部を観察すると、図12に示すように合流部付近で生成された粒子25は粒子径70μm程度のものが安定して生成され、実施例1の場合に比較し分散性が5%にまで向上した。連続相の出口または排出流路入口部分を狭める構造にする方法として実施例3では突起状の構造を設けたが、連続相をせきとめながら分散相をせん断し、粒子生成場所が合流部付近になるような同様の効果を持つ構造であればこの方法に限定されず、流路内に突起物を設けたり流路にくびれをつけるような方法を用いてもよい。
【0032】
また、図13に示すように分散相を導入するための導入流路と連続相を導入するための導入流路が交わる角度が90度以上、すなわち分散相と連続相の流路の上流が反対側にある場合には、連続相が分散相を押し上げる流れになるため、交差角度と流速の組合せを調整して流路内の粒子生成場所を両流路合流部に近づけることができる。
(比較例1)
次に比較例1における粒子製造用微小流路を図9に示す。実施例1と同様に微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43であるY字形状とし、連続相導入流路3と分散相導入流路5とが44度の角度にて交わる合流部を持った形状の流路を1本形成した。この粒子製造用微小流路構造体の製作手順は実施例1と同じ手順にて作製した。
【0033】
次に図10に示すように粒子製造用微小流路構造体をホルダーで保持し、テフロン(登録商標)チューブ、フィレットジョイント、マイクロシリンジポンプに固定、接続する。粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液流速は分散相及び連続相は共に6μl/minである。流速が共に安定した状態で、粒子生成用微小流路構造体の分散相及び連続相が交わる合流部を観察すると、粒子生成が確認出来るが、排出流路内で分離・合一が発生し、生成された粒子(生成粒子23など)を観察すると、図8に示すように、生成された粒子は粒子径70μm程度のもののみならず、小さな粒径の粒子も含まれており、分散性の悪いものであった。このアスペクト比の液滴生成用微小流路構造体で分散性の良好な液滴生成を行う場合には、送液流速を連続相>分散相、具体的には5:1以上の流速比を与えて、連続相を過剰に送液する必要がある。
(比較例2)
比較例2における粒子製造用微小流路を図9に示す。実施例2と同様に微小流路は70mm×20mm×1t(厚さ)のポリエーテルイミド上に、連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43であるY字形状とし、連続相導入流路3と分散相導入流路5とが44度の角度にて交わる合流部を持ったY字形状の流路を1本形成した。作製手法として、実施例1に示すものと同じフォトマスク及び手法を用い、直径200mmパイレックス(登録商標)ガラス基板上に流路を形成した後、Ni薄膜を形成し、電気メッキにより厚さ300μmのスタンパを作製し、成形機の金型に設置してポリエーテルイミド樹脂を射出成形法により作製した。作製した流路基板を70mm×20mm×1tで切り出した。
【0034】
次に図10に示すように粒子製造用微小流路構造体をホルダーで保持し、テフロン(登録商標)チューブ、フィレットジョイント、マイクロシリンジポンプに固定、接続する。粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液流速は分散相及び連続相は共に6μl/minである。流速が共に安定した状態で、粒子製造用微小流路構造体の分散相及び連続相が交わる合流部を観察すると、粒子化現象が確認できずに層流となった。更に連続相の流速を増加し、粒子化が容易な設定としたが粒子化現象は確認できず、層流を形成した。
【0035】
【発明の効果】
本発明は以下の効果を奏する。
(1)本発明の粒子製造方法は、極めて均一な粒子製造が可能であり、また粒子径制御も可能であるため、工業的な量産にも対応可能な方法である。
(2)本発明の微小流路構造体は、流路作製材料に依存することなく粒子製造が可能であるため、樹脂製微小流路とすることで装置コストの低減が可能である。
(3)本発明の微小流路構造体は、粒子化安定性に優れ、且つ分散相の流速を増加させることが可能であるため、短時間に大量の粒子製造が可能となり工業的に使用可能である。
(4)本発明の微小流路構造体は、粒子製造法微小流路の導入流路の幅及び深さ、導入する分散相及び連続相の送液流速の条件を変えることなく、導入流路の合流部の角度のみを変えることで生成粒子径をコントロールすることが可能となる。
(5)本発明の微小流路構造体は分散相を導入するための導入流路と連続相を導入するための導入流路が交わる角度が90度未満の場合には分散相流路と合流する両流路交差部の連続相流路出口または排出流路入口の流路幅を局所的に狭くすることにより、また交わる角度が90度以上の場合には交差角度と流速の組合せを調整することにより、粒子生成場所を合流部付近に安定化させ、粒子を安定に製造する事が可能となる。
【図面の簡単な説明】
【図1】一般的な粒子製造用微小流路を示す概略図である。
【図2】実施例1に用いた微粒子製造用微小流路構造体を示す概略図である。
【図3】実施例1における微粒子製造用微小流路の形成方法を示すフロー図である。
【図4】実施例1及び実施例2に用いた微粒子製造用微小流路構造体を示す概略図である。
【図5】実施例1及び実施例2に用いた微粒子製造用微小流路構造体及びポンプ接続を示す概略図である。
【図6】実施例1における生成粒子を示す写真である。
【図7】実施例2における生成粒子を示す写真である。
【図8】比較例1における生成粒子を示す写真である。
【図9】比較例1及び2における微粒子製造用微小流路構造体を示す概略図である。
【図10】比較例1及び2における微粒子製造用微小流路構造体及びポンプ接続を示す概略図である。
【図11】実施例3に用いた両流路交差部の連続相流路出口または排出流路入口での流路幅が狭くなっている微粒子生成用微小流路構造体を示す概略図である。
【図12】実施例3における生成粒子を示す写真である
【図13】連続相が分散相に対し90度以上の角度で交差する場合の微粒子生成用微小流路構造体を示す概略図である。
【符号の説明】
1:微小流路基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:合流部
7:排出流路
8:排出口
9:ガラス基板
10:金属膜
11:フォトレジスト
12:フォトマスク
13:微小流路が形成された基板
14:カバー体
15:微小流路構造体
16:ホルダー
17:ビーカー
18:テフロン(登録商標)チューブ
19:フィレットジョイント
20:マイクロシリンジポンプ
21:マイクロシリンジ(連続相)
22:マイクロシリンジ(分散相)
23:生成粒子
24:連続相流路出口または排出流路入口に設けた突起状構造
25:生成粒子

Claims (9)

  1. 分散相が導入され送液される分散相導入流路と、連続相が導入され送液される微小流路であって前記分散相導入流路を両側から挟んで当該分散相導入流路の端部の1点において交差する一方の連続相導入流路およびもう一方の連続相導入流路と、前記分散相導入流路と前記2つの連続相導入流路とが交差した交差部より排出口に至るまでの排出流路とからなり、前記排出流路の交差部において流路の幅が狭くなっている微小流路を有した構造体を用い、分散相と連続相とを前記微小流路を有した構造体に連続的に導入しつつ、前記分散相と連続相とを前記交差部において接触させ、分散相をせん断して微小粒子化することを特徴とする粒子製造方法。
  2. 2つの連続相導入流路から送液される連続相が同一組成であることを特徴とする請求項1に記載の粒子製造方法。
  3. 分散相がゲル製造用原料を含む媒体であることを特徴とする請求項1又は請求項2に記載の粒子製造方法。
  4. 連続相がゲル製造用分散剤を含む媒体であることを特徴とする請求項1〜3のいずれかに記載の粒子製造方法。
  5. ゲル製造用分散剤がポリビニルアルコールであることを特徴とする請求項4に記載の粒子製造方法。
  6. 粒子が液滴であることを特徴とする請求項1〜5のいずれかに記載の粒子製造方法。
  7. 基板上に微小流路を有した構造体であって、前記微小流路を有した構造体は、分散相が導入され送液される分散相導入流路と、連続相が導入され送液される微小流路であって前記分散相導入流路を両側から挟んで当該分散相導入流路の端部の1点において交差する一方の連続相導入流路およびもう一方の連続相導入流路と、前記分散相導入流路と前記2つの連続相導入流路とが交差した交差部より排出口に至るまでの排出流路とからなり、前記排出流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上であり、前記交差部において排出流路の幅が狭くなっていることを特徴とする微小流路構造体。
  8. 排出流路の幅が狭くなっている部位が、排出流路の交差部の分散相の導入流路側にあることを特徴とする請求項7記載の微小流路構造体。
  9. 分散相を導入するための導入流路が、連続相を導入するための2の導入流路が交わる角度を二等分する角度でかつその間で交わると共に、前記導入流路が排出流路へと繋がる構造であることを特徴とする請求項7または請求項8に記載の微小流路構造体。
JP2003021794A 2002-11-06 2003-01-30 粒子製造方法及びそのための微小流路構造体 Expired - Fee Related JP4186637B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021794A JP4186637B2 (ja) 2002-11-06 2003-01-30 粒子製造方法及びそのための微小流路構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002322127 2002-11-06
JP2003021794A JP4186637B2 (ja) 2002-11-06 2003-01-30 粒子製造方法及びそのための微小流路構造体

Publications (2)

Publication Number Publication Date
JP2004202476A JP2004202476A (ja) 2004-07-22
JP4186637B2 true JP4186637B2 (ja) 2008-11-26

Family

ID=32828335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021794A Expired - Fee Related JP4186637B2 (ja) 2002-11-06 2003-01-30 粒子製造方法及びそのための微小流路構造体

Country Status (1)

Country Link
JP (1) JP4186637B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114140A (ko) 2016-02-25 2018-10-17 가부시키가이샤 고베 세이코쇼 유로 장치 및 액적 형성 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194425A (ja) * 2004-01-08 2005-07-21 Sekisui Chem Co Ltd 微粒子の製造方法及び微粒子
EP2248578B1 (en) 2005-03-04 2012-06-06 President and Fellows of Harvard College Method for forming multiple emulsions
JP4417361B2 (ja) * 2006-09-27 2010-02-17 独立行政法人科学技術振興機構 ダブルエマルション・マイクロカプセル生成装置
JP2009014377A (ja) * 2007-07-02 2009-01-22 Tosoh Corp セルロース粒子及びその製造方法
WO2011028760A2 (en) * 2009-09-02 2011-03-10 President And Fellows Of Harvard College Multiple emulsions created using junctions
BR112012004719A2 (pt) 2009-09-02 2016-04-05 Harvard College emulsões múltiplas criadas por uso de jateamento e outras técnicas
JP5843089B2 (ja) * 2011-02-19 2016-01-13 国立大学法人 千葉大学 球形あるいは非球形ポリマー粒子の合成方法
US9238206B2 (en) 2011-05-23 2016-01-19 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
JP2014522718A (ja) 2011-07-06 2014-09-08 プレジデント アンド フェローズ オブ ハーバード カレッジ 多相エマルションおよび多相エマルション形成法
JP2013202555A (ja) * 2012-03-29 2013-10-07 Nitto Denko Corp 液滴生成モジュール

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196335B2 (ja) * 1992-06-19 2001-08-06 日本ゼオン株式会社 重合体微粒子の製造方法及び重合体微粒子
JP2981547B1 (ja) * 1998-07-02 1999-11-22 農林水産省食品総合研究所長 クロスフロー型マイクロチャネル装置及び同装置を用いたエマルションの生成または分離方法
JP3012608B1 (ja) * 1998-09-17 2000-02-28 農林水産省食品総合研究所長 マイクロチャネル装置及び同装置を用いたエマルションの製造方法
DE60214604T2 (de) * 2001-02-23 2006-12-28 Japan Science And Technology Agency, Kawaguchi Vorrichtung und Verfahren zum Herstellen von Mikrokapseln
JP4182195B2 (ja) * 2001-09-03 2008-11-19 独立行政法人農業・食品産業技術総合研究機構 単分散複合型エマルションの製造装置
GB0126281D0 (en) * 2001-11-01 2002-01-02 Astrazeneca Ab A chemical reactor
JP4193561B2 (ja) * 2002-04-25 2008-12-10 東ソー株式会社 微小流路構造体、これを用いた微小粒子製造方法及び微小流路構造体による溶媒抽出方法
JP2004059802A (ja) * 2002-07-30 2004-02-26 Japan Science & Technology Corp 固体微粒子の製造方法およびその装置
JP4032128B2 (ja) * 2002-08-01 2008-01-16 東ソー株式会社 微小流路構造体、構成されるデスクサイズ型化学プラント及びそれらを用いた微粒子製造装置
JP3635575B2 (ja) * 2002-08-09 2005-04-06 俊郎 樋口 単分散樹脂粒子の製造方法および製造装置
JP2004154745A (ja) * 2002-09-10 2004-06-03 Tosoh Corp 液滴生成用微小流路構造体、これを用いた液滴生成方法及びその生成物
JP4144302B2 (ja) * 2002-09-10 2008-09-03 東ソー株式会社 液滴生成方法
JP4122959B2 (ja) * 2002-12-13 2008-07-23 旭硝子株式会社 無機質球状体の製造方法
JP4356312B2 (ja) * 2002-12-17 2009-11-04 東ソー株式会社 微小流路構造体
JP4306243B2 (ja) * 2002-12-17 2009-07-29 東ソー株式会社 粒子製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114140A (ko) 2016-02-25 2018-10-17 가부시키가이샤 고베 세이코쇼 유로 장치 및 액적 형성 방법

Also Published As

Publication number Publication date
JP2004202476A (ja) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4193561B2 (ja) 微小流路構造体、これを用いた微小粒子製造方法及び微小流路構造体による溶媒抽出方法
JP4042683B2 (ja) 微小流路構造体及びこれを用いた微小粒子製造方法
Vladisavljević et al. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
Vladisavljević et al. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices
KR20080020954A (ko) 미소유로 구조 및 그것을 사용한 미소입자 제조 방법
JP4186637B2 (ja) 粒子製造方法及びそのための微小流路構造体
JP2006507921A (ja) 流体分散のための方法および装置
WO2003059499A1 (en) Microfluidic streak mixers
WO2017060876A1 (en) Microfluidic droplet generator with controlled break-up mechanism
JP5076742B2 (ja) 微小流路構造体およびそれを用いた微小粒子製造方法
JP4305145B2 (ja) 微小流路による粒子製造方法
JP4356312B2 (ja) 微小流路構造体
JP2004154745A (ja) 液滴生成用微小流路構造体、これを用いた液滴生成方法及びその生成物
JP4306243B2 (ja) 粒子製造方法
JP5146562B2 (ja) 微小流路構造体及び微小流路構造体による溶媒抽出方法
JP4639624B2 (ja) 微小流路構造体
US10807054B2 (en) Mixing of fluids
JP2005054023A (ja) ポリマー粒子の製造方法
JP4059073B2 (ja) 合流装置における液体の圧送方法および合流装置
JP4743165B2 (ja) 微小流路構造体
JP5072057B2 (ja) 微小流路構造体を用いたマイクロカプセルの製造方法
JP4470640B2 (ja) 微粒子製造方法及びそのための微小流路構造体
JP2005238118A (ja) 微小流路構造体を用いた固化粒子の製造方法及び装置
JP4547967B2 (ja) 微小流路構造体及びそれを用いた液滴生成方法
JP4752173B2 (ja) 微小流路構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees