JP3915146B2 - Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance - Google Patents
Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance Download PDFInfo
- Publication number
- JP3915146B2 JP3915146B2 JP23487996A JP23487996A JP3915146B2 JP 3915146 B2 JP3915146 B2 JP 3915146B2 JP 23487996 A JP23487996 A JP 23487996A JP 23487996 A JP23487996 A JP 23487996A JP 3915146 B2 JP3915146 B2 JP 3915146B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- cold rolling
- rolled
- rough skin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、食品、飲料缶等の缶容器用材料に関し、特に深絞り性に加えて、ノンイヤリング性(耳発生が少ない)、プレス加工後の耐肌荒れ性に優れる2ピース缶用鋼板の製造方法に関するものである。
【0002】
【従来の技術】
深絞り加工等のプレス成形を施して製造される深絞り缶、DRD(Drawn and Redrawn )缶、DI(Drawn and Ironined)缶などの2ピース缶に用いられる冷延鋼板には、主に次のような特性が要求される。
1)加工時に割れ等の欠陥が発生することなく成形可能なこと。
2)プレス加工後の鋼板表面の肌荒れが小さく、仕上がり外観の良好なこと。
3)素材の異方性が小さく深絞り加工後の耳発生(イヤリング)が小さいこと。
なかでも、イヤリングが発生した部分は缶の深絞り成形後に切り捨てる必要がある。このため、イヤリングが大きいと材料歩留まりが悪くなるばかりか、場合によっては必要な成形高さが得られず、成形品全体を廃棄しなくてはならなくなるという事態も生ずる。したがって、深絞り成形時に発生するイヤリングはできるかぎり小さいことが望ましい。
ところで、イヤリングの高さは冷延錮板のr値(ランクフォード値)の面内異方性△rと良い相関があり、△r=0であればイヤリング高さは0になることが知られている。
ここに、△r=(r0 +r90−r45)/2(ただし、r0 、r90、r45はそれぞれ圧延方向に0度、90度、45度の方向のr値)である。
【0003】
ところで、イヤリングの小さい深絞り用冷延鋼板の製造技術については、これまでにもいくつかの提案がなされてきた。
例えば、特開昭58-151426 号公報には、低炭素Alキルド鋼をAr3変態点以上の高温で仕上圧延し、高温巻取する熱延と圧下率80〜95%の冷延を行なうことによって、平均r値の向上と△rの改善を図る技術が開示されている。この技術によれば、それなりの効果がみられ、面内異方性はある程度減少する。
【0004】
【発明が解決しようとする課題】
しかしながら、未だイヤリングの抑制が十分であるとは言い難く、特に、2次冷延圧下率が高い場合には、耐イヤリング性が不十分であった。このような現象は、製缶コスト低減を目的とする素材の薄肉化に対処するために、2次冷延圧下率を高めようとする場合に、製缶工程の障害となっていた。特に、極低炭素鋼の場合には、焼鈍後の鋼板強度が低いため、缶の薄肉化を達成するためには、焼鈍後に数%〜40%程度の高い圧下率で2次冷間圧延を施す必要があるので、2次冷間圧延後の△rは負の方向に大きくなり、イヤリングを発生しやすくする要因となっていた。
【0005】
そこで、本発明の主たる目的は、高圧下率で2次冷間圧延して製造する場合でも、2ピース缶の成形に十分な深絞り性をそなえるとともに、イヤリング発生が小さく、プレス成形後の耐肌荒れ性に優れる2ピース缶用の鋼板を製造することにある。
本発明の他の目的は、20%以上の高圧下率で2次冷間圧延して製造する場合でも、r値が 1.5以上で、Δrが±0.2 以内にある上記2ピース缶用の鋼板を製造することにある。
【0006】
【課題を解決するための手段】
発明者らは、上記の目的を達成するための基礎実験として、先ず、冷延鋼板の結晶粒度、結晶粒の形態とプレス加工性、イヤリング性、肌荒れ性との関係を調査した。その結果を図1および図2に示す。図1は、結晶粒の軸比(=長軸方向長さ/短軸方向長さ)とΔrとの関係を調べたものであり、これから、等軸粒組織のΔrは延伸粒組織のそれに比して小さくノンイヤリング性に優れていることがわかった。また、また図2は、耐肌荒れ性と結晶粒度との関係を示すものであり、結晶粒度が大きい程良好であった。発明者らは、これらの調査結果をもとに、さらに仕上げ圧延後の冷却等の熱間圧延条件について詳細な研究を重ねた結果、これらの条件を適切に制御すれば、熱延後の結晶粒が等軸、微細粒な均一組織となり、その効果は冷延、焼鈍の後でも継承され、焼鈍後の結晶粒も均一で微細な等軸粒となり、ノンイヤリング性に優れ、また、プレス加工後の耐肌荒れ性にも優れる鋼板を製造することができることを知見し、本願発明を完成するに至った。
【0007】
すなわち、本願発明の要旨構成は下記のとおりである。
(1)C:0.0005〜0.0090wt%、Si:0.10wt%以下、Mn:0.1〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.015〜0.15wt%、N:0.02wt%以下を含み、かつNb:0.020wt%以下、Ti:0.020wt%以下B:0.0001〜0.0030wt%から選ばれるいずれか1種または2種を含有し、残部がFe及び不可避的不純物からなる鋼スラブに、熱間圧延、圧下率が80〜95%の冷間圧延および750℃以下の焼鈍を施して、ASTM結晶粒度番号10以上、かつ結晶粒軸比1.2以下の再結晶粒となし、次いで、圧下率20〜40%の2次冷間圧延を行うことを特徴とするノンイヤリング性および耐肌荒れ性に優れる2ピース缶用鋼板の製造方法。
【0008】
(2)C:0.0005〜0.0090wt%、Si:0.10wt%以下、Mn:0.1〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.015〜0.15wt%、N:0.02wt%以下を含み、かつNb:0.020wt%以下、Ti:0.020wt%以下、B:0.0001〜0.0030wt%から選ばれるいずれか1種または2種を含有し、残部がFe及び不可避的不純物からなる鋼スラブを、平均温度Ac3点以上に加熱し、終了温度(Ar3点+150℃)〜(Ar3点+50℃)で粗圧延し、引き続き、終了温度Ar3点以上で仕上げ圧延し、仕上げ圧延終了後0.5秒以内に急冷を開始し、750〜550℃で巻き取り、次いで、酸洗、圧下率が80〜95%の冷間圧延および750℃以下の焼鈍を施して、ASTM結晶粒度番号10以上、かつ結晶粒軸比1.2以下の再結晶粒となし、さらに、圧下率20〜40%の2次冷間圧延を行うことを特徴とするノンイヤリング性および耐肌荒れ性に優れる2ピース缶用鋼板の製造方法。
【0009】
【発明の実施の形態】
以下、本発明の好ましい実施形態について説明する。
(1)鋼成分について;
C:0.0005〜0.0090wt%
Cは、伸び、プレス加工性には少ない方が有利であるが、反面少なすぎると鋼板が過度に軟質化して缶体としての強度を確保できなくなるため0.0005wt%以上含有する必要がある。一方、0.0090wt%を超えて含有すると鋼板の硬質化のために、伸びが低下し、プレス加工性が劣化するので、0.0005〜0.0090wt%の範囲とする。
【0010】
Si:0.10wt%以下
Siは、缶用としての耐食性に有害な元素であり、材料を極端に硬質化する元素でもあるので、その上限を0.10wt%とする。
【0011】
Mn:0.1 〜0.6 wt%
Mnは、Sによる熱延中の赤熱脆性を防止するうえで有用な元素であり、0.1 wt%以上の添加が必要であるが、0.6 wt%を超えて添加すると熱間圧延中に割れを生じたり、鋼板を過度に硬質化する。したがって、Mnの添加量は0.1 〜0.6 wt%の範囲とする。
【0012】
P:0.02wt%以下
Pは、耐食性を低下させる有害な元素であり、とくに0.02wt%を超えるとその影響が顕著になる。したがって、上限を0.02wt%とする。
【0013】
S:0.02wt%以下
Sは、熱延中における赤熱脆性を引き起こす有害な元素であり、極力少ないことが望ましいが、0.02wt%までは許容できる。
【0014】
Al:0.015 〜0.15wt%
Alは、製鋼に際し、脱酸材として必要な元素である。添加量が少ないと安定した脱酸効果が得られないので、0.015 wt%以上添加する必要がある。一方、0.15wt%を超えて添加してもさらなる効果はなく、経済的に好ましくないので上限を0.15wt%とする。
【0015】
N:0.02wt%以下
Nは、0.02wt%を超えると鋼板の硬質化および伸びの低下をもたらし、プレス
加工性を劣化させるために、上限を0.02wt%とする。
【0016】
Nb:0.020 wt%以下
Nbは、炭窒化物を形成し、固溶C、Nの低減による伸び、r値の向上に有用な元素である。しかし、その添加量が0.020 wt%を超えると再結晶終了温度を上昇させ、連続焼鈍で再結晶不足を生じて加工性の劣化を招くので、0.020 wt%を上限とする。
【0017】
Ti:0.020 wt%以下
Tiも、Nbと同様に炭窒化物を形成する元素であり、固溶C、Nの低減による伸び、r値の向上に有用な元素である。しかし、その添加量が0.020 wt%を超えると再結晶終了温度を上昇させ、連続焼鈍で再結晶不足を生じて加工性の劣化を招くほか、鋼板の表面性状を劣化させるので、0.020 wt%を上限とする。
【0018】
B:0.0001〜0.0030wt%
Bは、熱間圧延における巻取温度が低くてもNを固定するため、巻き取り後に温度低下が大きい熱延鋼帯の先、後端部での材質不良を防ぐことができる。この効果を得るためには少なくとも0.0001wt%は必要であるが、0.0030wt%を超えて添加すると機械的性質の面内異方性が大きくなる。このため、B添加量は0.0001〜0.0030wt%の範囲とする。
【0019】
(2) 製造条件について;
・スラブ
圧延素材となるスラブは成分のマクロな偏析を最小限にするために連続鋳造法で製造されることが望ましい。
・熱間圧延工程
熱延前の鋼スラブの加熱はAc3点以上に加熱されればよい。具体的には1050〜1350℃の範囲が適する。
粗圧延は(Ar3点+150℃)〜(Ar3点+50℃)の温度範囲で終了する。(Ar3点+50℃)未満の低い温度で粗圧延した場合には、必然的に仕上げ圧延がα域での圧延となり、焼鈍板は粗大な結晶粒と比較的微細な粒の混粒組織となるために、2次冷間圧延後に十分な加工性、加工後の耐肌荒れ性が得られなくなる。一方、(Ar3点+150℃)を超える高温で粗圧延をすると、圧延ロール寿命の短命化を招くことになる。従って、粗圧延は(Ar3点+150℃)〜(Ar3点+50℃)の温度範囲で終了する。
【0020】
仕上げ圧延では、Ar3変態点以上の温度で圧延を終了し、圧延終了後 0.5秒以内に熱延鋼帯の水冷を開始し少なくとも750℃まで冷却した後、750〜550℃で巻き取る必要がある。
というのは、仕上げ圧延工程で、Ar3変態点未満で圧延された場合には、圧延方向に伸びた粗大な加工組織となり、この組織は冷延、焼鈍後も継承されるために、結晶粒の軸比が 1.2以下の等軸粒とはならずイヤリング発生が大きくなるためである。
また、仕上げ圧延終了後は 0.5秒以内に冷却を開始すると均一な等軸、微細粒になる。 0.5秒を超えてから水冷した場合には、オーステナイト粒の粒成長が進み、微細粒とならず、しかも、鋼帯の板幅方向の温度差が大きくなるので、温度の高い幅中央部は粒成長速度が速いので粗大粒となり、温度の低い幅端部近傍は逆に比較的微細な結晶粒となって一層不均一な組織となる。
図2は、仕上げ圧延終了から水冷開始までの時間とr値、Δrとの関係を示したものである。図2から、仕上げ圧延終了後 0.5秒以内に水冷を開始することによって、これら両特性が顕著に改善されることが分かる。
なお、上記急冷において、冷却速度70℃/秒以上で、1秒以内にAr3変態点以下までに冷却するのがよい。このような冷却から外れると、結晶粒は高温に滞留する時間が長くなるために、再結晶・粒成長あるいは回復・粒成長が進行し、粗大な熱延組織となり、さらに冷延工程で粗大な粒はより展伸しやすいために、焼鈍後は軸比の大きい粒となり、イヤリング発生が大きくなるからである。
【0021】
また、巻き取り温度は、550℃以下の低温になると、AlNやNbCの析出が十分に起こらず、これが焼鈍時の再結晶、粒成長を阻害し、r値、△rを悪化させる。また、750℃を超えると、巻き取り後のスケールの成長が著しくなって酸洗性が低下するほか、結晶粒が異常に粗大化して材質が低下したり、耐肌あれ性が劣化するなどの不具合が生じる。したがって、巻取温度は750〜550℃の温度範囲とする。
【0022】
・冷間圧延工程
このようにして得られた熱延板に酸洗(脱スケール)を施し、冷間圧延を行う。酸洗の条件は常法に従い、塩酸、硫酸等の酸で表面スケールを除去すればよい。冷間圧延の圧下率は、低コスト化を目指した薄肉化のためには、高圧下ほど望ましい。圧下率が80%未満ではこのような目的に応えられないほか、焼鈍工程で結晶粒が異常に粗大化したり、混粒化し、材質が劣化するほか、深絞り性に有効な集合組織を発達させることができない。しかし、圧下率が95%を超える高圧下率になると、r値が低下し、△rが増大してイヤリングが大きくなる。したがって、この圧下率は80〜95%の範囲とする。
【0023】
・焼鈍工程
焼鈍は、生産性、コストの面から連続焼鈍によるのがよい。焼鈍温度は再結晶終了温度以上が必要であるが、高すぎると結晶粒が異常に粗大化し、加工後の肌荒れが大きくなるほか、薄物材特有の炉内破断やバックリング発生の危険が大きくなる。したがって、焼鈍温度は750℃を上限とする。
【0024】
以上の方法により製造された焼鈍鋼板は、ASTM粒度No.10以上の微細粒で軸比1.2以下の等軸の結晶粒からなる組織とすることができる。結晶粒の軸比は△rを小さくし、ノンイヤリング性をよくするために1.2以下である必要があり、加工後の耐肌荒れ性を良くするためには粒度No.10以上である必要がある。なお、ノンイヤリング性の鋼板であるには△rが±0.2以内である必要がある。
【0025】
・2次冷間圧延
焼鈍後、加工強化により素材の強度増加をはかり、また表面粗度を調整するために2次冷間圧延を行う。2次冷間圧延の圧下率は鋼板の調質度により随時決定されるが、20%以上の圧下率で圧延する必要がある。一方、40%を超える圧下率で圧延すると鋼板が過度に硬質化して、加工性が低下するほか、r値の低下、Δrの増大を引き起こす。したがって、2次冷間圧延の圧下率は20〜40%の範囲とする。
【0026】
【実施例】
表1に示す成分の鋼を連続鋳造して得たスラブを用いて、表2に示す条件で、熱延、冷延、焼鈍および2次冷間圧延を施して缶用鋼板を製造した。さらに、この鋼板に25番目付で錫めっきを施し、各種の特性を調査した。これらの調査方法は次のとおりである。
(A)金属組織
焼鈍後の鋼板断面を研磨、エツチング後、光学顕微鏡観察して調査した。調査の項目は結晶粒の軸比およびASTM結晶粒度No. であり、いずれも最表面から板厚1/2位置までの板厚方向の平均をもとめた。
(B)機械的特性
JIS5号試験片を用いて引張試験を実施した。また、r値およびr値の面内異方性△rを、それぞ次式により求めた。
r=(r0 +r90+2r45)/4
△r=(r0 +r90−r45)/2
ただし、r0 、r90、r45は、それぞれ圧延方向に0度、90度、45度の方向のr値を表す。
(C)肌荒れ性
JIS5号の試験片に20%引張歪みを付与した後、鋼板の表面粗度を粗度計にて測定した。なお、引張前の製品表面粗度Raは全て同一で0.21μmであった。なお、発明者らの実験により、20%引張テスト後の表面粗度Raが0.60μm以下であればプレス加工後の肌荒れによる問題は発生しないことが確認されている。
(D)円筒加工テスト
深絞り加工時の加工性、肌荒れ性、イヤリング性を総合的に調査するために円筒加工テストを行なった。直径100mmの円形プランクを絞り比2.2 でカップ状に成形し、加工時の割れ発生状態、肌荒れ状態およびイヤリング発生状態を,○;発生なしまたは微小、△;軽度〜中度、×;実用不可の3段階で評価した。
これらの測定結果を表3にまとめて示す。また、2次冷間圧延における圧下率を広範囲に変えて,r値、△rを調査した結果を従来法と対比して図4に示す。
【0027】
【表1】
【0028】
【表2】
【0029】
【表3】
【0030】
表3から、本発明により製造した缶用鋼板は、良好な成形性のほか、特にΔrが0.2以下、引張後の表面粗度が0.6以下であり良好な特性を示していることがわかる。また、円筒加工テストにおいても、加工時の割れ、肌荒れ、イヤリングのいずれにおいても何ら問題のないことが明らかである。
また、図4より、本発明法で製造すれば、2次冷間圧下率が高い領域においてもr値は高く、また、従来法によって製造した鋼板に比べて、圧下率の増加に対する△rの低下が小さいために、20%を超える高圧下率域においても△rは±0.2以内と小さく、プレス加工性、ノンイヤリング性ともに良好であることがわかった。また、このため、2次冷間圧延における圧下率のとりうる範囲が広くなり、調質度の対応範囲も広くなった。
【0031】
【発明の効果】
以上、説明したように、本発明によれば、プレス加工性のほかに、耐肌荒れ性、ノンイヤリング性にもに優れた缶用鋼板が提供可能になる。したがって、本発明によれば、深絞り加工を施す食缶や飲料缶等における表面性状の改善、歩留りの向上に大きく寄与する。また、本発明による鋼板の適用範囲は、各種金属缶のみならず、乾電池内装缶、各種家電・電器部品、自動車部品等の幅広い範囲への活用も期待できる。
【図面の簡単な説明】
【図1】結晶粒の軸比と△rの絶対値との関係を示すグラフである。
【図2】結晶粒度番号と肌荒れとの関係を示すグラフである。
【図3】仕上げ圧延終了から水冷開始までの時間とrおよび△rとの関係を示すグラフである。
【図4】2次冷間圧下率とrおよび△rとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to materials for can containers such as food and beverage cans, and in particular, manufacture of steel plates for two-piece cans that are excellent in non-earring property (low occurrence of ears) and skin resistance after press working in addition to deep drawability. It is about the method.
[0002]
[Prior art]
Cold-rolled steel sheets used for two-piece cans such as deep-drawn cans, DRD (Drawn and Redrawn) cans and DI (Drawn and Ironined) cans manufactured by press forming such as deep drawing are mainly Such characteristics are required.
1) It should be possible to mold without defects such as cracks during processing.
2) The surface roughness of the steel sheet after press working is small, and the finished appearance is good.
3) The anisotropy of the material is small and the generation of ears (earrings) after deep drawing is small.
In particular, it is necessary to cut off the portion where the earring is generated after the deep drawing of the can. For this reason, when the earrings are large, not only the yield of the material is deteriorated, but also the necessary molding height cannot be obtained in some cases, and the entire molded product must be discarded. Therefore, it is desirable that earrings generated during deep drawing are as small as possible.
By the way, the height of the earring has a good correlation with the in-plane anisotropy Δr of the r value (Rankford value) of the cold rolled sheet metal, and it is known that the earring height becomes 0 when Δr = 0. It has been.
Here, Δr = (r 0 + r 90 −r 45 ) / 2 (where r 0 , r 90 , and r 45 are r values in directions of 0 °, 90 °, and 45 ° in the rolling direction, respectively).
[0003]
By the way, several proposals have been made so far regarding manufacturing technology of cold-rolled steel sheets for deep drawing with small earrings.
For example, JP-A-58-151426 discloses that a low carbon Al killed steel is finish-rolled at a high temperature above the Ar 3 transformation point, hot-rolled at a high temperature and cold-rolled at a reduction rate of 80 to 95%. Discloses a technique for improving the average r value and improving Δr. According to this technique, an appropriate effect is observed, and the in-plane anisotropy is reduced to some extent.
[0004]
[Problems to be solved by the invention]
However, it is still difficult to say that the suppression of earrings is sufficient, and particularly when the secondary cold rolling reduction ratio is high, the earring resistance is insufficient. Such a phenomenon has been an obstacle to the can manufacturing process when trying to increase the secondary cold rolling reduction ratio in order to cope with the thinning of the raw material for the purpose of reducing the can manufacturing cost. In particular, in the case of ultra-low carbon steel, the steel sheet strength after annealing is low, so in order to achieve thinning of the can, secondary cold rolling is performed at a high rolling reduction of about several to 40% after annealing. Therefore, Δr after secondary cold rolling increases in the negative direction, which is a factor that makes it easy to generate earrings.
[0005]
Therefore, the main object of the present invention is to provide a deep drawability sufficient for forming a two-piece can even when manufacturing by secondary cold rolling at a high pressure reduction rate, and the occurrence of earrings is small, and the resistance to resistance after press forming is reduced. The object is to produce a steel plate for a two-piece can with excellent skin roughness.
Another object of the present invention is to provide a steel plate for the above two-piece can having an r value of 1.5 or more and Δr within ± 0.2 even when it is produced by secondary cold rolling at a high pressure reduction rate of 20% or more. There is to manufacture.
[0006]
[Means for Solving the Problems]
As a basic experiment for achieving the above object, the inventors first investigated the relationship between the crystal grain size of the cold-rolled steel sheet, the form of the crystal grains, press workability, earring property, and skin roughness. The results are shown in FIG. 1 and FIG. FIG. 1 shows the relationship between the axial ratio of crystal grains (= length in the major axis direction / length in the minor axis direction) and Δr. From this, Δr of the equiaxed grain structure is compared with that of the stretched grain structure. It was found to be small and excellent in non-earring properties. Moreover, FIG. 2 shows the relationship between the rough skin resistance and the crystal grain size. The larger the crystal grain size, the better. Based on the results of these investigations, the inventors conducted further detailed research on hot rolling conditions such as cooling after finish rolling, and as a result of appropriately controlling these conditions, the crystals after hot rolling Grain becomes equiaxed and fine grained uniform structure, the effect is inherited even after cold rolling and annealing, the crystal grain after annealing becomes uniform and fine equiaxed grain, excellent in non-earring property, and press working The inventor found that a steel sheet having excellent surface roughness resistance later can be produced, and has completed the present invention.
[0007]
That is, the gist configuration of the present invention is as follows.
(1) C: 0.0005 to 0.0090 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al : 0.015 to 0.15 wt%, N: 0.02 wt% or less, Nb: 0.020 wt% or less, Ti: 0.020 wt% or less B: Any selected from 0.0001 to 0.0030 wt% A steel slab containing one or two kinds, the balance being Fe and inevitable impurities, hot-rolled, cold-rolled with a reduction rate of 80 to 95%, and annealed at 750 ° C. or lower to obtain an ASTM crystal Re-crystallized grains having a grain size number of 10 or more and a crystal grain axis ratio of 1.2 or less, and then subjected to secondary cold rolling with a rolling reduction of 20 to 40%. Manufacture of excellent steel plates for 2-piece cans Law.
[0008]
(2) C: 0.0005 to 0.0090 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al : 0.015 to 0.15 wt%, N: 0.02 wt% or less, Nb: 0.020 wt% or less, Ti: 0.020 wt% or less, B: 0.0001 to 0.0030 wt% A steel slab containing any one or two of them, the balance being Fe and inevitable impurities, is heated to an average temperature Ac of 3 points or higher, and the end temperature (Ar 3 points + 150 ° C.) to (Ar 3 points + 50 ° C.) ), Followed by finish rolling at an end temperature Ar of 3 points or higher, starting quenching within 0.5 seconds after finishing rolling, winding at 750 to 550 ° C., then pickling and rolling reduction 80-95% cold rolling and 75 An annealing at 0 ° C. or lower is performed to form a recrystallized grain having an ASTM grain size number of 10 or more and a grain axis ratio of 1.2 or less, and further, secondary cold rolling at a rolling reduction of 20 to 40% is performed. A method for producing a steel plate for a two-piece can having excellent non-earring characteristics and rough skin resistance.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
(1) About steel components;
C: 0.0005 to 0.0090 wt%
C is less advantageous for elongation and press workability. On the other hand, if it is too small, the steel sheet becomes excessively soft and it becomes impossible to ensure the strength as a can body, so it is necessary to contain 0.0005 wt% or more. On the other hand, if the content exceeds 0.0090 wt%, the steel sheet becomes hard and the elongation decreases and the press workability deteriorates, so the range is 0.0005 to 0.0090 wt% .
[0010]
Si: 0.10wt% or less
Since Si is an element harmful to corrosion resistance for cans and an element that extremely hardens the material, its upper limit is set to 0.10 wt%.
[0011]
Mn: 0.1 to 0.6 wt%
Mn is an element useful for preventing red hot brittleness during hot rolling due to S, and addition of 0.1 wt% or more is necessary, but if added over 0.6 wt%, cracks occur during hot rolling. Or harden the steel sheet excessively. Therefore, the amount of Mn added is in the range of 0.1 to 0.6 wt%.
[0012]
P: 0.02 wt% or less P is a harmful element that lowers corrosion resistance. In particular, when P exceeds 0.02 wt%, the effect becomes significant. Therefore, the upper limit is 0.02 wt%.
[0013]
S: 0.02 wt% or less S is a harmful element that causes red hot brittleness during hot rolling, and is desirably as small as possible, but is acceptable up to 0.02 wt%.
[0014]
Al: 0.015-0.15wt%
Al is an element necessary as a deoxidizing material in steelmaking. If the addition amount is small, a stable deoxidation effect cannot be obtained, so it is necessary to add 0.015 wt% or more. On the other hand, even if it exceeds 0.15 wt%, there is no further effect and it is economically undesirable, so the upper limit is made 0.15 wt%.
[0015]
N: 0.02 wt% or less When N exceeds 0.02 wt%, the upper limit is set to 0.02 wt% in order to cause hardening of the steel sheet and a decrease in elongation and to deteriorate press workability.
[0016]
Nb: 0.020 wt% or less
Nb is an element that forms carbonitrides and is useful for improving the elongation and r-value by reducing the solid solution C and N. However, if the addition amount exceeds 0.020 wt%, the recrystallization end temperature is raised, and recrystallization is insufficient due to continuous annealing, resulting in deterioration of workability. Therefore, 0.020 wt% is the upper limit.
[0017]
Ti: 0.020 wt% or less
Ti is an element that forms carbonitrides similarly to Nb, and is an element useful for improving the elongation and the r-value by reducing the solid solution C and N. However, if the amount of addition exceeds 0.020 wt%, the recrystallization end temperature is raised, resulting in insufficient recrystallization due to continuous annealing, resulting in deterioration of workability and deterioration of the surface properties of the steel sheet. The upper limit.
[0018]
B: 0.0001-0.0030wt%
Since B fixes N even if the coiling temperature in hot rolling is low, it is possible to prevent material defects at the front and rear end portions of the hot-rolled steel strip that have a large temperature drop after coiling. In order to obtain this effect, at least 0.0001 wt% is necessary. However, if it exceeds 0.0030 wt%, the in-plane anisotropy of mechanical properties increases. For this reason, B addition amount shall be the range of 0.0001-0.0030 wt%.
[0019]
(2) Manufacturing conditions;
-The slab used as the slab rolling material is preferably manufactured by a continuous casting method in order to minimize macro segregation of components.
- hot heating rolling hot-rolled before the steel slab may be made heated above 3 points Ac. Specifically, the range of 1050 to 1350 ° C is suitable.
Rough rolling ends in a temperature range of (Ar 3 point + 150 ° C.) to (Ar 3 point + 50 ° C.). In the case of rough rolling at a low temperature of less than (Ar 3 point + 50 ° C.), the finish rolling is necessarily rolling in the α region, and the annealed plate has a mixed grain structure of coarse crystal grains and relatively fine grains. Therefore, sufficient workability after secondary cold rolling and rough skin resistance after processing cannot be obtained. On the other hand, if rough rolling is performed at a high temperature exceeding (Ar 3 points + 150 ° C.), the life of the rolling roll is shortened. Accordingly, the rough rolling is finished in a temperature range of (Ar 3 point + 150 ° C.) to (Ar 3 point + 50 ° C.).
[0020]
In finish rolling, it is necessary to finish rolling at a temperature equal to or higher than the Ar 3 transformation point, start water cooling of the hot-rolled steel strip within 0.5 seconds after the end of rolling, cool to at least 750 ° C, and then wind up at 750 to 550 ° C. is there.
This is because, in the finish rolling process, when rolled below the Ar 3 transformation point, it becomes a coarse processed structure extending in the rolling direction, and this structure is inherited after cold rolling and annealing. This is because the generation of earrings is increased rather than equiaxed grains having an axial ratio of 1.2 or less.
In addition, when cooling is started within 0.5 seconds after finishing rolling, uniform equiaxed and fine grains are obtained. When water cooling is performed after exceeding 0.5 seconds, the austenite grains grow and do not become fine grains, and the temperature difference in the plate width direction of the steel strip becomes large. Since the growth rate is high, the grains become coarse, and the vicinity of the width end portion where the temperature is low, on the contrary, becomes relatively fine crystal grains, resulting in a more uneven structure.
FIG. 2 shows the relationship between the time from the end of finish rolling to the start of water cooling, the r value, and Δr. It can be seen from FIG. 2 that both of these characteristics are remarkably improved by starting water cooling within 0.5 seconds after finishing rolling.
In the above rapid cooling, it is preferable that the cooling rate is 70 ° C./sec or more and the Ar 3 transformation point or less is cooled within 1 second. When this cooling is removed, the crystal stays at a high temperature for a long time, so that recrystallization, grain growth or recovery, grain growth proceeds, resulting in a coarse hot-rolled structure. This is because the grains are easier to expand, so that after annealing, the grains have a large axial ratio and the occurrence of earrings increases.
[0021]
Further, when the coiling temperature is as low as 550 ° C. or less, precipitation of AlN and NbC does not occur sufficiently, which inhibits recrystallization and grain growth during annealing, and deteriorates the r value and Δr. In addition, when the temperature exceeds 750 ° C., the scale growth after winding is remarkably reduced, and the pickling property is deteriorated, the crystal grains are abnormally coarsened, the material is deteriorated, and the skin resistance is deteriorated. A malfunction occurs. Therefore, the coiling temperature is set to a temperature range of 750 to 550 ° C.
[0022]
-Cold rolling process The hot-rolled sheet obtained in this way is pickled (descaled) and cold-rolled. The pickling conditions may be carried out according to a conventional method by removing the surface scale with an acid such as hydrochloric acid or sulfuric acid. The rolling reduction in cold rolling is more desirable at higher pressures in order to reduce the thickness in order to reduce costs. If the rolling reduction is less than 80%, such a purpose cannot be met, the crystal grains are abnormally coarsened or mixed in the annealing process, the material deteriorates, and a texture effective for deep drawability is developed. I can't. However, when the rolling reduction rate exceeds 95%, the r value decreases, Δr increases, and the earring becomes larger. Therefore, the rolling reduction shall be the range of 80% to 95%.
[0023]
-Annealing process The annealing should be performed by continuous annealing in terms of productivity and cost. The annealing temperature needs to be higher than the recrystallization end temperature, but if it is too high, the crystal grains will become abnormally coarse, resulting in increased surface roughness after processing, as well as the risk of in-furnace breakage and buckling that are characteristic of thin materials. . Therefore, the annealing temperature shall be the upper limit of 750 ° C..
[0024]
The annealed steel sheet produced by the above method is ASTM grain size no. The structure can be made of fine grains of 10 or more and equiaxed grains having an axial ratio of 1.2 or less. The crystal grain axial ratio needs to be 1.2 or less in order to reduce Δr and improve non-earring properties, and in order to improve the rough skin resistance after processing, the grain size no. It must be 10 or more. Note that Δr needs to be within ± 0.2 in order to be a non-earring steel plate.
[0025]
-Secondary cold rolling After annealing, secondary cold rolling is performed in order to increase the strength of the material by strengthening the work and to adjust the surface roughness. The rolling reduction of secondary cold rolling is determined at any time according to the tempering degree of the steel sheet, but it is necessary to perform rolling at a rolling reduction of 20 % or more. On the other hand, when rolling at a rolling reduction exceeding 40%, the steel sheet is excessively hardened, the workability is lowered, and the r value is decreased and Δr is increased. Therefore, the rolling reduction of the secondary cold rolling is in the range of 20 to 40%.
[0026]
【Example】
Using a slab obtained by continuously casting steels having the components shown in Table 1, hot rolling, cold rolling, annealing and secondary cold rolling were performed under the conditions shown in Table 2 to produce steel plates for cans. Further, this steel sheet was tin-plated with the 25th mark, and various properties were investigated. These survey methods are as follows.
(A) The cross section of the steel sheet after the metal structure annealing was polished and etched, and then examined by observation with an optical microscope. The investigation items were crystal grain axial ratio and ASTM grain size No., both of which were obtained from the average in the plate thickness direction from the outermost surface to the
(B) Mechanical properties A tensile test was carried out using JIS No. 5 test pieces. Further, the r value and the in-plane anisotropy Δr of the r value were determined by the following equations, respectively.
r = (r 0 + r 90 + 2r 45 ) / 4
Δr = (r 0 + r 90 −r 45 ) / 2
However, r 0 , r 90 , and r 45 represent r values in directions of 0 degrees, 90 degrees, and 45 degrees in the rolling direction, respectively.
(C) Skin roughness After imparting 20% tensile strain to a test piece of JIS No. 5, the surface roughness of the steel sheet was measured with a roughness meter. In addition, the product surface roughness Ra before pulling was all the same and was 0.21 μm. In addition, it has been confirmed by the inventors' experiments that a problem due to rough skin after press working does not occur if the surface roughness Ra after the 20% tensile test is 0.60 μm or less.
(D) Cylindrical processing test A cylindrical processing test was conducted in order to comprehensively investigate the workability, rough skin property, and earring property during deep drawing. A circular plank having a diameter of 100 mm is molded into a cup shape with a drawing ratio of 2.2, and cracking, rough skin and earrings are not generated during processing, ○: no generation or minute, Δ: light to moderate, ×: impractical Evaluation was made in three stages.
These measurement results are summarized in Table 3. FIG. 4 shows the results of investigating the r value and Δr by changing the rolling reduction in the secondary cold rolling over a wide range, in comparison with the conventional method.
[0027]
[Table 1]
[0028]
[Table 2]
[0029]
[Table 3]
[0030]
From Table 3, the steel sheet for cans produced according to the present invention has good formability, and in particular, Δr is 0.2 or less, and the surface roughness after tension is 0.6 or less, showing good characteristics. I understand. Also, in the cylindrical machining test, it is clear that there are no problems in any of cracks during processing, rough skin, and earrings.
Further, from FIG. 4, when manufactured by the method of the present invention, the r value is high even in a region where the secondary cold rolling reduction is high, and the Δr with respect to the increase in rolling reduction compared to the steel plate manufactured by the conventional method. Since the decrease was small, Δr was small within ± 0.2 even in a high pressure under-rate region exceeding 20%, indicating that both press workability and non-earring properties were good. For this reason, the range that the rolling reduction in the secondary cold rolling can take is widened, and the corresponding range of the tempering degree is also widened.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a steel plate for a can that is excellent in not only press workability but also in rough skin resistance and non-earring properties. Therefore, according to the present invention, it greatly contributes to improvement of surface properties and yield of food cans and beverage cans subjected to deep drawing. In addition, the application range of the steel sheet according to the present invention can be expected to be utilized not only for various metal cans but also for a wide range of dry battery interior cans, various home appliances / electrical parts, automobile parts, and the like.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the axial ratio of crystal grains and the absolute value of Δr.
FIG. 2 is a graph showing the relationship between crystal grain size number and rough skin.
FIG. 3 is a graph showing the relationship between the time from the end of finish rolling to the start of water cooling and r and Δr.
FIG. 4 is a graph showing the relationship between secondary cold rolling reduction and r and Δr.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23487996A JP3915146B2 (en) | 1996-09-05 | 1996-09-05 | Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23487996A JP3915146B2 (en) | 1996-09-05 | 1996-09-05 | Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1081919A JPH1081919A (en) | 1998-03-31 |
JP3915146B2 true JP3915146B2 (en) | 2007-05-16 |
Family
ID=16977763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23487996A Expired - Fee Related JP3915146B2 (en) | 1996-09-05 | 1996-09-05 | Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3915146B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4715496B2 (en) * | 2005-12-15 | 2011-07-06 | Jfeスチール株式会社 | Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy |
KR101030207B1 (en) * | 2006-03-16 | 2011-04-22 | 제이에프이 스틸 가부시키가이샤 | Cold rolled steel sheet, process for producing the same, and cell and process for producing the same |
JP5239331B2 (en) * | 2007-12-27 | 2013-07-17 | Jfeスチール株式会社 | Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same |
JP5958038B2 (en) | 2011-04-21 | 2016-07-27 | Jfeスチール株式会社 | Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same |
JP5874771B2 (en) * | 2013-03-28 | 2016-03-02 | Jfeスチール株式会社 | Steel plate for cans excellent in workability and rough skin resistance and method for producing the same |
JP6606730B2 (en) * | 2013-11-26 | 2019-11-20 | 国立大学法人大阪大学 | Weld reinforcement method |
CN113070341B (en) * | 2021-03-18 | 2023-04-14 | 鞍钢股份有限公司 | Rolling method for reducing earing rate of hot continuous rolling low-carbon steel sheet |
-
1996
- 1996-09-05 JP JP23487996A patent/JP3915146B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1081919A (en) | 1998-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5958038B2 (en) | Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same | |
CN113366127B (en) | Hot rolled steel plate | |
JP2007291514A (en) | Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor | |
JP2010077512A (en) | Method for producing cold-rolled steel sheet | |
JP5093029B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP3915146B2 (en) | Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance | |
JP4214671B2 (en) | Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same | |
JPH0125378B2 (en) | ||
JPH09310150A (en) | Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production | |
JP5142158B2 (en) | Cold rolled steel sheet manufacturing method | |
JP3829621B2 (en) | High-tensile cold-rolled steel sheet and its manufacturing method | |
JP3804220B2 (en) | Manufacturing method of steel plate for cans with excellent homogeneity | |
JPH02163318A (en) | Production of high-tension cold rolled steel sheet having excellent press formability | |
JP2006152341A (en) | High strength hot rolled sheet steel and its production method | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP5716760B2 (en) | Cold rolled steel sheet manufacturing method | |
JPH0753889B2 (en) | Method for manufacturing cold rolled steel sheet for thick ultra deep drawing | |
JP5447564B2 (en) | Cold rolled steel sheet manufacturing method | |
JPH03170618A (en) | Highly efficient production of cold-rolled steel sheet extremely excellent in workability | |
JPH09279302A (en) | Steel sheet excellent in bulge formability and its production | |
JP3852138B2 (en) | Method for producing a steel plate material for cans having excellent ridging resistance and deep drawability after cold rolling and annealing | |
JPH0759734B2 (en) | Low carbon aluminum killed cold-rolled steel sheet excellent in workability, surface roughening property and earring property, and method for producing the same | |
JP2007211337A (en) | Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof | |
JP3911075B2 (en) | Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability | |
JP3735142B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent formability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060828 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060926 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061127 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |