[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3911075B2 - Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability - Google Patents

Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability Download PDF

Info

Publication number
JP3911075B2
JP3911075B2 JP24173097A JP24173097A JP3911075B2 JP 3911075 B2 JP3911075 B2 JP 3911075B2 JP 24173097 A JP24173097 A JP 24173097A JP 24173097 A JP24173097 A JP 24173097A JP 3911075 B2 JP3911075 B2 JP 3911075B2
Authority
JP
Japan
Prior art keywords
steel
annealing
cold rolling
deep drawability
bake hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24173097A
Other languages
Japanese (ja)
Other versions
JPH1161274A (en
Inventor
正春 亀田
和久 楠見
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24173097A priority Critical patent/JP3911075B2/en
Publication of JPH1161274A publication Critical patent/JPH1161274A/en
Application granted granted Critical
Publication of JP3911075B2 publication Critical patent/JP3911075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は自動車の外板パネルに主として用いられる焼付硬化性に優れた超深絞り用鋼板の製造方法に関するものである。
【0002】
【従来の技術】
自動車のルーフおよびドアアウター等に使用される外板パネルには、成形時には形状性に優れる低降伏強度が、成形後には耐デント性(指等の押込みで凹みができにくい特性)に優れる高降伏点となるような相反する特性が要求される。さらに最近、高生産性の観点から外板パネルの一体成形化を可能とする優れた深絞り性も要求されている。これらの要求に対し、特開昭53−114717号公報には、プレス後の自動車の塗装焼付工程を利用した時効硬化により加工後の強度を高めた焼付硬化型鋼板が開示されている。この焼付硬化性(以後BH性と称す)は鋼中の固溶Cあるいは固溶Nによって、成形時の低降伏点と成形後の高降伏点を両立することができる有効な特性である。さらに、特開昭57−70258号公報と特開昭59−31827号公報には、BH性と同時に深絞り性を付与したものとして、Nb添加鋼またはTi、Nb複合添加鋼を連続焼鈍により製造する方法が開示されている。これは、連続焼鈍前には深絞り性に良好な集合組織の形成を阻害する鋼中のC、Nを固定し、連続焼鈍後は炭窒化物を分解させ、固溶CおよびNを残してBH性を付与する方法である。
【0003】
【発明が解決しようとする課題】
上に述べたようにBH性と深絞り性を同時に付与して外板パネルの要求特性を満たしたNb添加またはTi、Nb複合添加技術では、焼鈍中の炭窒化物の分解により生成した固溶Cを室温まで残留させてBH性を付与するため、炭窒化物の分解に850℃以上の高い焼鈍温度が、また室温までの冷却時に再析出を防ぐための急冷が必要になる。そのため、この技術では原理上、焼鈍温度依存性ならびに冷却速度依存性が大きく安定したBH性を得ることが難しいこと、さらに、高い焼鈍温度が要求されるため、通板性の悪化に伴う生産性の低下やロール起因の疵による表面品質の低下などの問題点がある。また、BH性は、固溶C、N量に対しppmレベルの微量な制御が必要であるが、製鋼工程におけるC、N量のばらつきの影響を受けやすく、上記の方法ではこの影響も大きい。これに対し、連続焼鈍前に固溶Cを残す方法は、炭窒化物の溶解を利用することなくBH性を付与できるため高温焼鈍する必要もなく、また製鋼段階でのC、N量ばらつきによるBH性ばらつきの影響も小さいため安定して生産できるが、この方法では、良好な深絞り性が得られない問題があった。従って、本発明の目的は、上記の問題を解決すべく、安定したBH性と一体成形化を可能とする超深絞り性とを有した自動車の外板パネル用鋼板を製造することにある。
【0004】
【課題を解決するための手段】
本発明の要旨は、以下のとおりである。
(1) 重量%にて
C:0.001〜0.01%、
Al:0.01〜0.1%、
N:0.005%以下、
Mn:0.05〜2.0%、
Si:≦1.5%、
P:≦0.15%、
S:≦0.015%、
さらにTi、Nb、Vのうち1種以上を0.05%以下でかつ
(Ti/48+Nb/93+V/51)/(C/12+N/14)<1
の範囲とし、残部Feと不可避的不純物である鋼片を、通常の熱間圧延後、熱延鋼帯とし酸洗した後、圧下率50%以上の冷間圧延を行い、再結晶温度以上で連続焼鈍し、再び圧下率50%以上で冷間圧延を行った後、再結晶温度以上840℃以下(但し、中間焼鈍よりも50℃以上の温度域を除く)で連続焼鈍を行い、調圧率0.5〜3.0%の調質圧延を施すことを特徴とする、30〜50MPaの焼付硬化性を有し、かつ、r値2.2以上の深絞り性を有する焼付硬化性と深絞り性に優れた自動車の外板パネル用鋼板の製造方法。
(2) さらに鋼片が重量%で
B:≦0.005%
を含むことを特徴とする上記(1)記載の30〜50MPaの焼付硬化性を有し、かつ、r値2.2以上の深絞り性を有する焼付硬化性と深絞り性に優れた自動車の外板パネル用鋼板の製造方法。
【0005】
【発明の実施の形態】
発明者らは、深絞り性および焼付硬化性に優れた特性を満足する鋼板を開発すべく、極低炭素化した鋼にTi、NbならびにVなどの炭窒化物形成元素を添加し、さらに、強化元素としてP、Mnを添加した高張力鋼板も含めてその製造方法を詳細に検討した。その結果、Cを原子モル量で炭窒化物形成元素必要量より多く含む鋼を通常の熱間圧延により熱延鋼帯とし、酸洗後、圧下率50%以上で冷延し、十分な再結晶温度で焼鈍を施した後、再び圧下率50%以上で冷延し、再結晶温度以上840℃以下(但し、中間焼鈍よりも50℃以上の温度域を除く)で再結晶焼鈍を施すことにより、30MPa以上のBH性と2.2以上のランクフォード値を兼ね備えた鋼板が得られることを見出した。
【0006】
この知見を得た実験について以下に記す。
【0007】
C;0.0040wt%、(以下単に%と示す)、Nb;0.025%、Mn;0.5%、Si;0.02%、P;0.06%、S;0.006%、Al;0.03%、N;0.0018%を含有する鋼を、6.0mm厚まで熱間圧延後、種々の冷間圧延率で圧延し、これを775℃で連続焼鈍、あるいは680℃で12時間の箱焼鈍を施し、均一な再結晶粒を生成させたのち、再び冷間圧延を行った。これを800℃で1分均熱する連続焼鈍サイクルで焼鈍し、ついで圧下率0.8%の調質圧延を施した後、JIS5号試験片として引張試験を行い、その材質を調査した。なお、BH性の評価は2%予歪みを与えた後170℃で20分の焼付工程相当の時効処理による降伏点の上昇量を測定することで評価した。
【0008】
図1に、冷延焼鈍後の再冷延率(以後、2次冷延率と称す)70%における1回目の冷延率(以後、1次冷延率と称す)とr値およびBH性の関係を示す。1次冷延率が0%の従来法と比較し、本法では1次冷延率50%以上の範囲でr値の著しい向上が見られる。このとき、BH性は冷延率によらず安定している。また、図2に1次冷延率70%における2次冷延率とr値およびBH性の関係を示す。2次冷延率が0%すなわち従来法と比較し、本法ではやはり冷延率50%以上の範囲でr値の向上が著しい。このr値の向上する理由について、必ずしも明らかではないが以下のように推測される。1次冷延焼鈍は、鋼板に微細かつ均一な再結晶組織を生じさせ、しかも深絞り性に有効な集合組織の形成を阻害する微細な炭窒化物を成長、消失させる。そのため2次冷延焼鈍時の深絞り性に有効な集合組織を発達させる密度が増加したためと考えられる。一方、1次冷延率が小さい40%以下においてr値が向上しないのは、1回目の焼鈍後の組織を観察したところ均一な再結晶組織が形成されてなく、2次冷延焼鈍しても、深絞り性に有利な再結晶集合組織が得られなかったためと考えられる。また、2次冷延率が40%以下の場合にも同様であると考えられる。また、BH性は1次および2次冷延率に依存せず安定して得られていることがわかる。この原因について、1次冷延焼鈍によって粗大な析出物が生成したため、冷却時の再析出サイト密度が低く、焼鈍後に安定した固溶Cが残りやすくなったためと考えられる。
【0009】
以下にこの発明における成分組成範囲の限定理由について説明する。
【0010】
C:0.001〜0.01%
Cは低い程延性および深絞り性を向上させるが、低すぎるとBH性を得られないため、その下限は0.0010%となる。多量の固溶Cの存在は、プレス時においてストレッチャーストレインの発生など外観を損ねる原因となるため、後に述べるような炭窒化物形成元素を添加して固溶C量を適正化するが、C量が多いほど析出物も多く、多量の析出物の存在は著しく延性を損ねる。そのため、C量の上限は0.01%とする。
【0011】
Al:0.01〜0.1%
Alは、脱酸材として用いられ十分な脱酸を行うには0.01%以上が必要である。また、固溶しているNをAlNとして無害化する。しかし、多量の添加は鋼中の介在物を増加させ、連続鋳造での生産性を低下させる原因となり、また鋼の清浄度を落とし延性が劣化するなどの問題が生じる。そのため鋼中Al量は0.1%以下とする。
【0012】
N:0.005%以下
鋼中の侵入型元素であるNは、Cと同様BH性を発現する。しかし、室温での時効特性はCに劣る。そのため、本発明ではAlおよびTiなどの窒化物形成元素を添加してNを無害化する。なお、Nを過剰に含む場合、固定するための合金添加量も多くコスト的に不利であり、また多量の析出物の存在は延性を劣化する。そのため、N量の上限を0.005%とする。
【0013】
Ti、Nb、V
Ti、Nb、Vは炭窒化物の形成により鋼中のC、Nを固定するために添加する。本発明では適量のCを鋼中に残すことで主たるBH性を発現させるため、原子モル量で(C+N)量以上の添加はさける。すなわち、Ti、Nb、Vのうち1種以上を0.05%以下でかつ(Ti/48+Nb/93+V/51)/(C/12+N/14)<1の範囲をその含有量とする。
【0014】
上記の成分範囲を満たすことで、本製造法により優れた深絞り性と焼付硬化性を確保できるが、さらに下記の元素を含有しても優れた特性が得られる。それらを以下に述べる。
【0015】
Mn:0.05〜2.0%
Mnは成形性を損なわずに鋼板を高強度化する有効な元素である。しかし、2.0%以上の添加は延性を極端に下げるため、十分な成形性が得られず、また、0.05%以上含まない場合には、Sに起因する熱間割れを抑止する効果が薄れる。したがって、その含有範囲は0.05〜2.0%が適正である。
【0016】
Si:≦1.5%
SiはMnと同様、延性を損なうことなく鋼板強度を上昇させる有効な元素である。しかし、1.5%以上の添加は延性を極端に下げるため、十分な成形性を確保できない。そのため1.5%を上限とする。
【0017】
P≦0.15%
PはSi、Mnと同様、鋼板強度を上昇させるのに有効な元素であり、しかも添加量あたりの強度上昇量が大きいため、低コストで高強度化できる元素である。しかし、0.15%を超える添加はプレス成形性を劣化させ、また、粒界偏析により二次加工性を悪化させる。そのため上限は0.15%とする。
【0018】
S:≦0.015%
Sは熱間工程での割れを発生しやすいため、添加量は少ないほど良いが、S含有量の低減は精錬コストを増大させ、また生産性も阻害するなどの問題点がある。しかし本法ではMnあるいはTiなどの硫化物形成元素が添加されているため、Sは無害化されている。そのためS量は0.015%まで許容される。
【0019】
B:≦0.005%
鋼中のBはNと強い親和力をもつため、鋼中の固溶Nを固定する効果を有する。また、Bは粒界に偏析して粒界強度を高め、Pが多量に含まれる鋼板などの2次加工性を向上させる効果をもつ。但し、2次加工性への効果は15ppm程度で飽和し、これ以上は成形性に悪影響を及ぼす。そこで、Nを固定するB含有量も考慮し、上限を0.005%とする。
【0020】
次に本発明鋼の製造条件について説明する。
【0021】
熱延条件は、通常の熱延で構わず、後述する冷延焼鈍を2回するための条件と最終の製品厚から定まる所定の厚みまで減ずればよい。
【0022】
酸洗後の1次冷延率が50%以下では、焼鈍後に微細均一な再結晶組織が得られず、2回冷延焼鈍時に良好な深絞り性が期待できない。したがって、その下限を50%とする。
【0023】
1回目の焼鈍温度(以後、中間焼鈍温度と称す)は、均一な再結晶粒が生成すれば良いので、再結晶温度以上であればよい。
【0024】
2次冷延率が高いほど深絞り性が向上するが、低圧下率では1回目の冷延と同様均一な再結晶組織が得らず、深絞り性は向上しない。そこで2次冷延率は50%以上とする。
【0025】
2回目の焼鈍温度(以後、最終焼鈍温度と称す)は、本発明では過剰な固溶Cを利用してBH性を得るため、高温焼鈍により炭化物を溶解させる必要がなく、再結晶温度以上840℃以下(但し、中間焼鈍よりも50℃以上の温度域を除く)で十分である。
【0026】
調圧率は通常の範囲で構わず、0.5〜3.0%でよい。
【0027】
【実施例】
表1に示す組成の鋼を転炉−脱ガス法で溶製し、連続鋳造法にてスラブとし、ついで通常の熱間圧延を施し6.0mmの板とし酸洗した後、表2に示す条件で、2回冷延焼鈍を行い、板厚0.7mmとした鋼板に圧下率0.7%〜1.5%で調質圧延を施した。得られた鋼板をJIS5号試験片に加工し、該試験片の機械的性質について調べた結果を表2に示す。なおBH性は前述の通り2%予歪み後、170℃で20分焼付相当処理後の降伏点の上昇量で評価した。
【0028】
【表1】

Figure 0003911075
【0029】
【表2】
Figure 0003911075
表2より、発明鋼(A〜F)では強度TSが300〜450MPaの範囲において形状凍結性に優れるYS≦250MPaを満足し、かつr値>2.2の深絞り性を得ているにも関わらず、30〜50MPaのBH性を熱延および焼鈍条件に関わらず安定して得られていることがわかる。なお、鋼Dおよび鋼Fについては、箱焼鈍形式で焼鈍した参考例である。しかし、C量が適合範囲外の比較鋼G、H、及びTi量が適合範囲外の比較鋼I、及びC、N量と炭化物形成元素の原子モル比が適合範囲外の比較鋼Jでは、適正範囲内のBH性が得られていない。また、製造条件の影響を見ると1次冷延率の低い比較鋼K、及び2次冷延率の低い比較鋼Lにおいては、適度なBH性は得られているものの、深絞り性に劣る。
【0030】
【発明の効果】
この発明によれば、製鋼、熱延、焼鈍の制約条件の影響を受けにくく、安定した焼付硬化性を有し、かつ一体成形化を可能とする超深絞り性を有する自動車の外板パネル用鋼板が製造できる。
【図面の簡単な説明】
【図1】r値およびBH性に及ぼす1次冷延率の影響を示す図である。
【図2】r値およびBH性に及ぼす2次冷延率の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel sheet for ultra deep drawing, which is mainly used for an outer panel of an automobile and has excellent bake hardenability.
[0002]
[Prior art]
Outer panels used for automobile roofs, door outers, etc. have low yield strength with excellent shape when molded, and high yield with excellent dent resistance (characteristic that dents cannot be easily depressed after molding). The contradictory characteristics which become a point are required. Furthermore, recently, from the viewpoint of high productivity, there has been a demand for excellent deep drawability that enables the outer panel to be integrally formed. In response to these demands, Japanese Patent Application Laid-Open No. 53-114717 discloses a bake-hardening type steel sheet having increased strength after working by age hardening using a paint baking process for automobiles after pressing. This bake hardenability (hereinafter referred to as BH property) is an effective characteristic that can achieve both a low yield point during forming and a high yield point after forming by solid solution C or solid solution N in steel. Furthermore, in Japanese Patent Application Laid-Open Nos. 57-70258 and 59-31827, Nb-added steel or Ti / Nb composite-added steel is manufactured by continuous annealing, assuming that BH properties and deep drawability are imparted. A method is disclosed. This is to fix C and N in the steel, which inhibits the formation of a texture with good deep drawability before continuous annealing, and to decompose carbonitride after continuous annealing, leaving solute C and N. This is a method of imparting BH properties.
[0003]
[Problems to be solved by the invention]
As described above, in the Nb addition or Ti / Nb composite addition technology that satisfies the required characteristics of the outer panel by simultaneously imparting BH property and deep drawability, the solid solution generated by decomposition of carbonitride during annealing In order to impart BH properties by leaving C to room temperature, a high annealing temperature of 850 ° C. or higher is required for decomposition of carbonitride, and rapid cooling is required to prevent reprecipitation during cooling to room temperature. For this reason, in principle, it is difficult to obtain a stable BH property that is largely dependent on the annealing temperature and the cooling rate, and that a high annealing temperature is required. There are problems such as deterioration in surface quality and surface quality due to wrinkles caused by rolls. Further, the BH property needs to be controlled in a very small amount of ppm level with respect to the solute C and N amounts, but is easily influenced by variations in the C and N amounts in the steel making process, and this influence is also large in the above method. On the other hand, the method of leaving the solid solution C before the continuous annealing does not require high-temperature annealing because the BH property can be imparted without using the dissolution of carbonitride, and also due to variations in the amount of C and N in the steelmaking stage. Although the influence of variation in BH property is small, stable production is possible, but this method has a problem that good deep drawability cannot be obtained. Accordingly, an object of the present invention is to manufacture a steel sheet for an outer panel of an automobile having stable BH properties and ultra-deep drawing properties that enable integral molding in order to solve the above problems.
[0004]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) C: 0.001 to 0.01% by weight%,
Al: 0.01 to 0.1%,
N: 0.005% or less,
Mn: 0.05 to 2.0%,
Si: ≦ 1.5%
P: ≦ 0.15%,
S: ≦ 0.015%,
Further, at least one of Ti, Nb, and V is 0.05% or less and (Ti / 48 + Nb / 93 + V / 51) / (C / 12 + N / 14) <1
After the normal hot rolling, the steel pieces that are inevitable impurities are pickled as a hot-rolled steel strip, and then cold-rolled at a reduction rate of 50% or more, and above the recrystallization temperature. After continuous annealing and cold rolling again at a reduction rate of 50% or more, continuous annealing is performed at a recrystallization temperature of 840 ° C. or less (excluding a temperature range of 50 ° C. or more than intermediate annealing) , and pressure regulation Bake hardenability having a bake hardenability of 30 to 50 MPa and deep drawability with an r value of 2.2 or more, characterized by performing temper rolling at a rate of 0.5 to 3.0% A method for producing a steel sheet for an outer panel of an automobile having excellent deep drawability.
(2) Further, the steel slab is weight% and B: ≦ 0.005%
The bake hardenability of 30-50 MPa as described in the above (1), and a deep drawability with an r value of 2.2 or more is excellent in bake hardenability and deep drawability. Manufacturing method of steel plate for outer panel.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The inventors added carbonitride-forming elements such as Ti, Nb and V to ultra-low carbon steel in order to develop a steel sheet that satisfies the properties excellent in deep drawability and bake hardenability, The manufacturing method was examined in detail, including high-tensile steel sheets with P and Mn added as strengthening elements. As a result, a steel containing C in an atomic molar amount in excess of the carbon nitride forming element required amount is made into a hot-rolled steel strip by ordinary hot rolling, cold-rolled at a reduction rate of 50% or more after pickling, After annealing at the crystal temperature, cold-roll again at a reduction rate of 50% or more, and recrystallize at a recrystallization temperature of 840 ° C or less (excluding a temperature range of 50 ° C or more than the intermediate annealing). Thus, it was found that a steel sheet having a BH property of 30 MPa or more and a Rankford value of 2.2 or more can be obtained.
[0006]
The experiment which obtained this knowledge is described below.
[0007]
C; 0.0040 wt% (hereinafter simply referred to as%), Nb; 0.025%, Mn; 0.5%, Si; 0.02%, P; 0.06%, S; 0.006%, A steel containing Al; 0.03%, N; 0.0018% is hot-rolled to a thickness of 6.0 mm and then rolled at various cold rolling rates, and this is continuously annealed at 775 ° C. or 680 ° C. After performing box annealing for 12 hours to produce uniform recrystallized grains, cold rolling was performed again. This was annealed in a continuous annealing cycle soaking at 800 ° C. for 1 minute, then subjected to temper rolling with a reduction rate of 0.8%, and then a tensile test was conducted as a JIS No. 5 test piece, and the material was investigated. The BH property was evaluated by measuring the amount of increase in yield point by aging treatment corresponding to a baking process at 170 ° C. for 20 minutes after giving 2% pre-strain.
[0008]
FIG. 1 shows the first cold rolling rate (hereinafter referred to as the primary cold rolling rate), r value and BH property at 70% of the re-cold rolling rate after cold rolling annealing (hereinafter referred to as the secondary cold rolling rate). The relationship is shown. Compared with the conventional method in which the primary cold rolling rate is 0%, in this method, the r value is remarkably improved in the range of the primary cold rolling rate of 50% or more. At this time, the BH property is stable regardless of the cold rolling rate. FIG. 2 shows the relationship between the secondary cold rolling rate at the primary cold rolling rate of 70%, the r value, and the BH property. The secondary cold rolling rate is 0%, that is, compared with the conventional method, the r value is remarkably improved in this method in the range of the cold rolling rate of 50% or more. The reason why the r value is improved is not necessarily clear, but is estimated as follows. The primary cold rolling annealing causes a fine and uniform recrystallized structure to be produced on the steel sheet, and further grows and disappears fine carbonitrides that inhibit formation of a texture effective for deep drawability. Therefore, it is considered that the density for developing a texture effective for deep drawability during secondary cold rolling annealing has increased. On the other hand, when the primary cold rolling rate is 40% or less, the r value does not improve because when the structure after the first annealing is observed, a uniform recrystallized structure is not formed and the secondary cold rolling annealing occurs. This is probably because a recrystallization texture advantageous to deep drawability could not be obtained. The same applies to the case where the secondary cold rolling rate is 40% or less. Further, it can be seen that the BH property is stably obtained without depending on the primary and secondary cold rolling rates. About this cause, since the coarse precipitate produced | generated by the primary cold rolling annealing, it is thought that the reprecipitation site density at the time of cooling was low, and the stable solid solution C remained easily after annealing.
[0009]
The reason for limiting the component composition range in the present invention will be described below.
[0010]
C: 0.001 to 0.01%
The lower the C, the better the ductility and deep drawability, but if it is too low, the BH property cannot be obtained, so the lower limit is 0.0010%. The presence of a large amount of solute C causes damage to the appearance such as the occurrence of stretcher strain at the time of pressing. Therefore, a carbonitride-forming element as described later is added to optimize the amount of solute C. The larger the amount, the more precipitates, and the presence of a large amount of precipitates significantly impairs ductility. Therefore, the upper limit of the C amount is 0.01%.
[0011]
Al: 0.01 to 0.1%
Al is used as a deoxidizing material, and 0.01% or more is necessary for sufficient deoxidation. Further, the dissolved N is made harmless as AlN. However, the addition of a large amount causes inclusions in the steel to increase, leading to a decrease in productivity in continuous casting, and causes problems such as reducing the cleanliness of the steel and degrading the ductility. Therefore, the amount of Al in steel is 0.1% or less.
[0012]
N: 0.005% or less N, which is an interstitial element in steel, expresses BH properties like C. However, the aging characteristics at room temperature are inferior to C. Therefore, in the present invention, nitride forming elements such as Al and Ti are added to render N harmless. In addition, when N is contained excessively, the amount of alloy addition for fixing is large, which is disadvantageous in terms of cost, and the presence of a large amount of precipitates deteriorates ductility. Therefore, the upper limit of the N amount is set to 0.005%.
[0013]
Ti, Nb, V
Ti, Nb, and V are added to fix C and N in the steel by forming carbonitride. In the present invention, since the main BH property is expressed by leaving an appropriate amount of C in the steel, addition of (C + N) or more in atomic molar amount is avoided. That is, at least one of Ti, Nb, and V is 0.05% or less, and the range of (Ti / 48 + Nb / 93 + V / 51) / (C / 12 + N / 14) <1 is the content.
[0014]
By satisfying the above component ranges, excellent deep drawability and bake hardenability can be ensured by this production method, but even if the following elements are contained, excellent characteristics can be obtained. They are described below.
[0015]
Mn: 0.05 to 2.0%
Mn is an effective element for increasing the strength of a steel sheet without impairing formability. However, if 2.0% or more is added, the ductility is extremely lowered, so that sufficient formability cannot be obtained. If 0.05% or more is not included, the effect of suppressing hot cracking due to S is suppressed. Fades. Therefore, 0.05 to 2.0% is appropriate for the content range.
[0016]
Si: ≦ 1.5%
Si, like Mn, is an effective element that increases the strength of the steel sheet without impairing ductility. However, if 1.5% or more is added, the ductility is drastically lowered, so that sufficient moldability cannot be ensured. Therefore, the upper limit is 1.5%.
[0017]
P ≦ 0.15%
P, like Si and Mn, is an element effective for increasing the strength of the steel sheet, and is an element that can increase the strength at a low cost because the amount of increase in strength per added amount is large. However, addition exceeding 0.15% deteriorates press formability, and also deteriorates secondary workability due to grain boundary segregation. Therefore, the upper limit is made 0.15%.
[0018]
S: ≦ 0.015%
Since S is easy to generate cracks in the hot process, the smaller the addition amount, the better. However, the reduction of the S content has problems such as increasing the refining cost and inhibiting the productivity. However, in this method, S is detoxified because a sulfide-forming element such as Mn or Ti is added. Therefore, the amount of S is allowed up to 0.015%.
[0019]
B: ≦ 0.005%
Since B in steel has a strong affinity with N, it has an effect of fixing solute N in steel. Further, B segregates at the grain boundaries to increase the grain boundary strength, and has the effect of improving the secondary workability of a steel sheet or the like containing a large amount of P. However, the effect on secondary workability is saturated at about 15 ppm, and beyond this, the moldability is adversely affected. Therefore, considering the B content for fixing N, the upper limit is made 0.005%.
[0020]
Next, production conditions for the steel of the present invention will be described.
[0021]
The hot-rolling conditions may be normal hot-rolling and may be reduced to a predetermined thickness determined from conditions for performing cold-rolling annealing described later twice and a final product thickness.
[0022]
If the primary cold rolling rate after pickling is 50% or less, a fine and uniform recrystallized structure cannot be obtained after annealing, and good deep drawability cannot be expected at the time of cold rolling annealing twice. Therefore, the lower limit is made 50%.
[0023]
The first annealing temperature (hereinafter referred to as the intermediate annealing temperature) may be equal to or higher than the recrystallization temperature because uniform recrystallized grains may be generated .
[0024]
As the secondary cold rolling rate is higher, the deep drawability is improved, but at a low pressure reduction rate, a uniform recrystallized structure is not obtained as in the first cold rolling, and the deep drawability is not improved. Therefore, the secondary cold rolling rate is set to 50% or more.
[0025]
In the present invention, the second annealing temperature (hereinafter referred to as final annealing temperature) is obtained by using excessive solid solution C to obtain BH properties, so it is not necessary to dissolve carbide by high-temperature annealing, and the recrystallization temperature is 840 or more. It is sufficient that the temperature is not higher than ° C (however, excluding the temperature range of 50 ° C or higher than the intermediate annealing) .
[0026]
The pressure regulation rate may be in a normal range, and may be 0.5 to 3.0%.
[0027]
【Example】
Steels having the composition shown in Table 1 are melted by a converter-degassing method, made into a slab by a continuous casting method, then subjected to normal hot rolling, pickled as a 6.0 mm plate, and then shown in Table 2. Under the conditions, cold rolling annealing was performed twice, and temper rolling was performed on a steel sheet having a sheet thickness of 0.7 mm at a rolling reduction of 0.7% to 1.5%. The obtained steel sheet was processed into a JIS No. 5 test piece, and the results of examining the mechanical properties of the test piece are shown in Table 2. The BH property was evaluated by the amount of increase in the yield point after 2% pre-strain as described above and after baking for 20 minutes at 170 ° C.
[0028]
[Table 1]
Figure 0003911075
[0029]
[Table 2]
Figure 0003911075
From Table 2, the invention steels (A to F) satisfy YS ≦ 250 MPa, which is excellent in shape freezing property in the range of strength TS of 300 to 450 MPa, and have deep drawability of r value> 2.2. Regardless, it can be seen that a BH property of 30 to 50 MPa is stably obtained regardless of hot rolling and annealing conditions. In addition, about the steel D and the steel F, it is the reference example which annealed with the box annealing type. However, in comparative steels G, H, and Ti in which the C amount is outside the conforming range, and in comparative steel J in which the atomic molar ratio of the C, N amount and the carbide forming element is outside the conforming range, BH property within the proper range is not obtained. Moreover, when the influence of manufacturing conditions is seen, in comparative steel K with a low primary cold rolling rate and comparative steel L with a low secondary cold rolling rate, although moderate BH property is obtained, it is inferior to deep drawability. .
[0030]
【The invention's effect】
According to the present invention, it is difficult to be affected by the constraints of steelmaking, hot rolling, and annealing, has stable bake hardenability, and has an ultra-deep drawability that enables integral molding. Steel sheets can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of a primary cold rolling rate on r value and BH property.
FIG. 2 is a diagram showing the influence of secondary cold rolling rate on r value and BH property.

Claims (2)

重量%にて
C:0.001〜0.01%、
Al:0.01〜0.1%、
N:0.005%以下、
Mn:0.05〜2.0%、
Si:≦1.5%、
P:≦0.15%、
S:≦0.015%、
さらにTi、Nb、Vのうち1種以上を0.05%以下でかつ
(Ti/48+Nb/93+V/51)/(C/12+N/14)<1
の範囲とし、残部Feと不可避的不純物である鋼片を、通常の熱間圧延後、熱延鋼帯とし酸洗した後、圧下率50%以上の冷間圧延を行い、再結晶温度以上で連続焼鈍し、再び圧下率50%以上で冷間圧延を行った後、再結晶温度以上840℃以下(但し、中間焼鈍よりも50℃以上の温度域を除く)で連続焼鈍を行い、調圧率0.5〜3.0%の調質圧延を施すことを特徴とする、30〜50MPaの焼付硬化性を有し、かつ、r値2.2以上の深絞り性を有する焼付硬化性と深絞り性に優れた自動車の外板パネル用鋼板の製造方法。
C: 0.001 to 0.01% by weight%,
Al: 0.01 to 0.1%,
N: 0.005% or less,
Mn: 0.05 to 2.0%,
Si: ≦ 1.5%
P: ≦ 0.15%,
S: ≦ 0.015%,
Further, at least one of Ti, Nb, and V is 0.05% or less and (Ti / 48 + Nb / 93 + V / 51) / (C / 12 + N / 14) <1
After the normal hot rolling, the steel pieces that are inevitable impurities are pickled as a hot-rolled steel strip, and then cold-rolled at a reduction rate of 50% or more, and above the recrystallization temperature. After continuous annealing and cold rolling again at a reduction rate of 50% or more, continuous annealing is performed at a recrystallization temperature of 840 ° C. or less (excluding a temperature range of 50 ° C. or more than intermediate annealing) , and pressure regulation Bake hardenability having a bake hardenability of 30 to 50 MPa and deep drawability with an r value of 2.2 or more, characterized by performing temper rolling at a rate of 0.5 to 3.0% A method for producing a steel sheet for an outer panel of an automobile having excellent deep drawability.
さらに鋼片が重量%で
B:≦0.005%
を含むことを特徴とする請求項1記載の30〜50MPaの焼付硬化性を有し、かつ、r値2.2以上の深絞り性を有する焼付硬化性と深絞り性に優れた自動車の外板パネル用鋼板の製造方法。
In addition, the steel slab is in weight% B: ≦ 0.005%
The bake hardenability of 30 to 50 MPa according to claim 1 and a deep drawability having an r value of 2.2 or more. A method for producing a steel plate for a panel.
JP24173097A 1997-08-25 1997-08-25 Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability Expired - Fee Related JP3911075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24173097A JP3911075B2 (en) 1997-08-25 1997-08-25 Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24173097A JP3911075B2 (en) 1997-08-25 1997-08-25 Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability

Publications (2)

Publication Number Publication Date
JPH1161274A JPH1161274A (en) 1999-03-05
JP3911075B2 true JP3911075B2 (en) 2007-05-09

Family

ID=17078692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24173097A Expired - Fee Related JP3911075B2 (en) 1997-08-25 1997-08-25 Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability

Country Status (1)

Country Link
JP (1) JP3911075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605250A (en) * 2012-03-27 2012-07-25 首钢总公司 Vehicle steel plate and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172813B (en) * 2011-01-08 2012-12-19 中国科学院等离子体物理研究所 Method for manufacturing steel strip for central cooling tube and method for winding cooling tube
CN102304665A (en) * 2011-09-21 2012-01-04 首钢总公司 Steel plate for automobile and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605250A (en) * 2012-03-27 2012-07-25 首钢总公司 Vehicle steel plate and production method thereof

Also Published As

Publication number Publication date
JPH1161274A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JPH0757892B2 (en) Method for manufacturing cold-rolled steel sheet for deep drawing with excellent secondary workability and surface treatment
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JPS6338556A (en) Cold rolled steel sheet for deep drawing having superior resistance to cracking by secondary working and its manufacture
JP4281535B2 (en) Ferritic stainless steel plate with excellent surface strain resistance
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH11310827A (en) Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPH11314103A (en) Production of cold-rolled steel sheet excellent in aging resistance at normal temperature and workability
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH08225854A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3363930B2 (en) Thin steel sheet with excellent strength-ductility balance
JP3150188B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP3366661B2 (en) Manufacturing method of high tensile cold rolled steel sheet with excellent deep drawability
JP3888187B2 (en) Steel sheet for nitriding and method for producing nitrided steel product
JP3142975B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JP2001073074A (en) Soft cold rolled steel sheet excellent in flattening degree and its production
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JPH0784618B2 (en) Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JP2640065B2 (en) High-strength hot-rolled steel sheet having good workability and a strength of 730 N / mm2 or more and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees