JP4715496B2 - Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy - Google Patents
Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy Download PDFInfo
- Publication number
- JP4715496B2 JP4715496B2 JP2005361137A JP2005361137A JP4715496B2 JP 4715496 B2 JP4715496 B2 JP 4715496B2 JP 2005361137 A JP2005361137 A JP 2005361137A JP 2005361137 A JP2005361137 A JP 2005361137A JP 4715496 B2 JP4715496 B2 JP 4715496B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- cold
- hot
- rolled
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000032683 aging Effects 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000010960 cold rolled steel Substances 0.000 title claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 43
- 239000010959 steel Substances 0.000 claims description 43
- 238000005096 rolling process Methods 0.000 claims description 28
- 238000000137 annealing Methods 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010409 ironing Methods 0.000 description 4
- 210000005069 ears Anatomy 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003483 aging Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Description
本発明は、特に乾電池缶用として好適な、耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板の製造方法に関する。 The present invention relates to a method for producing a cold-rolled steel sheet having excellent strain aging resistance and small in-plane anisotropy, particularly suitable for dry battery cans.
冷延鋼板を乾電池缶に加工する方法としては、深絞り加工およびしごき加工を適宜組み合わせた方法が用いられる。例えば、絞りカップに加工後、しごき加工を施すDI加工、絞りカップに加工後、引張りと曲げ曲げ戻し加工し、さらに必要に応じしごき加工を施すストレッチドロー加工、何段階かの絞り加工を施した後、しごき加工を施す多段絞り加工などの方法を挙げられる。 As a method for processing a cold-rolled steel sheet into a dry battery can, a method in which deep drawing and ironing are appropriately combined is used. For example, DI processing for ironing after drawing cups, stretch drawing and bending back after processing for drawing cups, stretch drawing for ironing as needed, and several stages of drawing Later, methods such as multi-stage drawing with ironing can be mentioned.
乾電池缶の加工においては、加工後の缶円周方向の缶高さが不揃いにならないようにする、すなわち耳の発生を抑制することが要求される。耳の高さは乾電池缶用鋼板のr値(ランクフォード値)の面内異方性Δrと良い相関があり、Δrが0に近づくと、耳の高さは低くなることが一般的に知られている。したがって、耳の発生を抑制するためには、乾電池缶用鋼板のΔrを0にすることが望ましいが、一般的には、-0.10≦Δr≦0.10であれば耳の発生は認められない。 In the processing of dry battery cans, it is required that the can heights in the can circumferential direction after processing do not become uneven, that is, the generation of ears is suppressed. It is generally known that the height of the ear has a good correlation with the in-plane anisotropy Δr of the r value (Rankford value) of the steel plate for dry cell cans, and when Δr approaches 0, the height of the ear decreases. It has been. Therefore, in order to suppress the occurrence of ears, it is desirable to set Δr of the steel plate for dry battery cans to 0, but in general, the occurrence of ears is not observed when −0.10 ≦ Δr ≦ 0.10.
また、乾電池缶用鋼板には、深絞り加工の際にストレッチャー・ストレインと呼ばれるしわの発生に起因する缶形状の劣化を防止するために、耐ひずみ時効性に優れている、すなわちひずみ時効指数AIが4.9MPa以下であることが求められている。さらに、乾電池缶用鋼板には、加工時の肌荒れを抑制するために、結晶粒径が微細であることも求められる。また、その製法に際しては、冷間圧延時の圧下率は、高過ぎると設備にかかる負荷が大きく、製造効率が低下するため90%未満とすることが望まれている。一方、圧下率が低過ぎると生産性が低下するため、60%を超える圧下率が望まれている。 In addition, steel plates for dry cell cans have excellent strain aging resistance, that is, strain aging index, in order to prevent deterioration of can shape caused by wrinkles called stretcher strain during deep drawing. AI is required to be 4.9MPa or less. Further, the steel plate for dry battery cans is required to have a fine crystal grain size in order to suppress rough skin during processing. Further, in the production method, if the rolling reduction during cold rolling is too high, the load on the equipment is large and the production efficiency is lowered, so that it is desired to be less than 90%. On the other hand, if the rolling reduction is too low, the productivity decreases, so a rolling reduction exceeding 60% is desired.
こうした乾電池缶用鋼板としては、従来から深絞り加工に適したIF鋼(Interstitial free steel)が実用化されている。例えば、特許文献1には、質量%で、C:0.001〜0.003%、Si:0.03%以下、Mn:0.1〜0.6%、P:0.02%以下、S:0.04%以下、Cr:0.03〜0.10%、Al:0.012〜0.12%、N:0.0035%以下、B:5ppm≦B-(11/14)N≦40ppm、Nb:0.6≦Nb/C(原子当量比)≦1.2、残部Feおよび不可避的不純物からなり、表面平均粗さRaが0.02〜0.2μmの異方性に優れたNb添加型のIF鋼の乾電池缶用Niめっき鋼板が開示されている。
しかしながら、特許文献1に記載の乾電池缶用鋼板は、面内異方性改善のためにB添加を必須とするものであり、合金コスト増を招くばかりか、鋼板の再結晶温度を上昇させるので高い焼鈍温度が必要となってエネルギーコスト増を招く。また、特許文献1に記載の乾電池缶用鋼板では、Nb添加量がCの原子当量と比較して少ないため、固溶Cが残存しやすく、焼鈍板の耐ひずみ時効性が劣る、すなわちAI≦4.9MPaが安定して得られず、缶形状の劣化が現れる場合がある。 However, the steel sheet for dry battery cans described in Patent Document 1 requires B addition to improve the in-plane anisotropy, which not only increases the alloy cost but also increases the recrystallization temperature of the steel sheet. A high annealing temperature is required, resulting in an increase in energy costs. In addition, in the steel sheet for dry battery cans described in Patent Document 1, since the Nb addition amount is small compared to the atomic equivalent of C, solid solution C tends to remain, and the strain plate has poor strain aging resistance, that is, AI ≦ 4.9MPa cannot be stably obtained, and deterioration of the can shape may appear.
本発明は、Nb添加型のIF鋼を用い、Bなど添加元素を必要とせずに、r値の面内異方性を改善し、耐ひずみ時効性に優れる乾電池缶用鋼板として好適な冷延鋼板の製造方法を提供することを目的とする。 The present invention uses Nb-added IF steel, does not require an additive element such as B, improves the in-plane anisotropy of the r value, and is cold-rolled suitable as a steel plate for a dry battery can with excellent strain aging resistance. It aims at providing the manufacturing method of a steel plate.
本発明者らが、Nb添加型のIF鋼を用い、Bなど添加元素を必要とせずに、耐ひずみ時効性に優れ、Δrが小さい鋼板について種々検討した結果、原子当量比Nb/Cが適当な範囲になるようにNbを添加し、熱間圧延後の熱延板に固溶Cや固溶Nを残存させ、具体的には熱間圧延後の冷却条件をコントロールして熱延板のひずみ時効指数AIを9.8MPa以上とし、この熱延板を所定の圧下率で冷間圧延後、所定の温度で連続焼鈍することにより、AIが4.9MPa以下で耐ひずみ時効性に優れ、-0.10≦Δr≦0.10と面内異方性が小さい鋼板を製造できることを見出した。 As a result of various investigations on steel sheets having excellent strain aging resistance and small Δr using the Nb-added IF steel, the present inventors do not need additive elements such as B. As a result, the atomic equivalent ratio Nb / C is appropriate. Nb is added so as to be within the range, and solid solution C and solid solution N remain in the hot-rolled sheet after hot rolling. Specifically, the cooling conditions after hot-rolling are controlled to control the hot-rolled sheet Strain aging index AI is set to 9.8 MPa or more, and after hot rolling this hot-rolled sheet at a specified reduction rate, continuous annealing at a specified temperature results in AI of 4.9 MPa or less and excellent strain aging resistance. It has been found that a steel sheet having a small in-plane anisotropy of ≦ Δr ≦ 0.10 can be produced.
本発明は、このような知見に基づきなされたもので、質量%で、C:0.0030%以下、Si:0.02%以下、Mn:0.15〜0.25%、P:0.02%以下、S:0.015%以下、N:0.004%以下、Al:0.020〜0.070%、Nb:1.0≦Nb/C(原子当量比)≦5.0を満たす量(%)を含み、残部がFeおよび不可避的不純物からなる組成を有する鋼片を、熱間圧延してひずみ時効指数AIが9.8MPa以上の熱延板とし、次いで該熱延板を圧下率65〜88%で冷間圧延を施して冷延板とした後、該冷延板を700〜820℃の焼鈍温度で連続焼鈍することを特徴とする耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板の製造方法を提供する。 The present invention has been made based on such knowledge, in mass%, C: 0.0030% or less, Si: 0.02% or less, Mn: 0.15-0.25%, P: 0.02% or less, S: 0.015% or less, N: 0.004% or less, Al: 0.020 to 0.070%, Nb: 1.0% Nb / C (atomic equivalent ratio) ≦ 5.0 steel slab having a composition composed of Fe and inevitable impurities with the balance (%) , Hot rolled into a hot rolled sheet having a strain aging index AI of 9.8 MPa or more, then cold rolled at a rolling reduction of 65 to 88% to obtain a cold rolled sheet, and then the cold rolled sheet Provided is a method for producing a cold-rolled steel sheet having excellent strain aging resistance and low in-plane anisotropy, characterized by continuously annealing a sheet at an annealing temperature of 700 to 820 ° C.
例えば、質量%で、C:0.0030%以下、Si:0.02%以下、Mn:0.15〜0.25%、P:0.02%以下、S:0.015%以下、N:0.004%以下、Al:0.020〜0.070%、Nb:1.0≦Nb/C(原子当量比)≦5.0を満たす量(%)を含み、残部がFeおよび不可避的不純物からなる組成を有する鋼片を、Ar3変態点以上の圧延終了温度(仕上圧延出側温度)で熱間圧延し、該熱間圧延後2秒以内に冷却を開始し、かつ100℃/秒以上の平均冷却速度で250℃以上の温度幅にわたって冷却してひずみ時効指数AIが9.8MPa以上の熱延板とし、次いで該熱延板を圧下率65〜88%で冷間圧延を施して冷延板とした後、該冷延板を700〜820℃の焼鈍温度で連続焼鈍する製造方法である。 For example, in mass%, C: 0.0030% or less, Si: 0.02% or less, Mn: 0.15 to 0.25%, P: 0.02% or less, S: 0.015% or less, N: 0.004% or less, Al: 0.020 to 0.070%, Nb: 1.0 ≤ Nb / C (atomic equivalent ratio) ≤ 5.0 in the amount of steel (%) that satisfies the composition consisting of Fe and unavoidable impurities balance, the rolling finish temperature (finishing) of Ar 3 transformation point or higher Strain aging index AI by hot rolling at the temperature at the rolling side), starting cooling within 2 seconds after the hot rolling, and cooling over a temperature range of 250 ° C or higher at an average cooling rate of 100 ° C / second or higher. Is a hot-rolled sheet of 9.8 MPa or more, then cold-rolled the cold-rolled sheet at a rolling reduction of 65 to 88%, and then the cold-rolled sheet is continuously used at an annealing temperature of 700 to 820 ° C. It is the manufacturing method which anneals.
本発明により、Nb添加型のIF鋼を用い、Bなど添加元素を必要とせずに、AIが4.9MPa以下で耐ひずみ時効性に優れ、-0.10≦Δr≦0.10で面内異方性の小さい乾電池缶用鋼板を製造できるようになった。 According to the present invention, Nb-added IF steel is used, no additional elements such as B are required, AI is 4.9 MPa or less, excellent strain aging resistance, and -0.10 ≦ Δr ≦ 0.10 and small in-plane anisotropy Steel plates for dry battery cans can be manufactured.
以下に、本発明である耐ひずみ時効性に優れ、面内異方性の小さい乾電池缶用鋼板の製造方法の詳細を説明する。 Below, the detail of the manufacturing method of the steel plate for dry battery cans which is excellent in the strain aging resistance which is this invention, and has small in-plane anisotropy is demonstrated.
1)成分(以下の「%」は、「質量%」を表す。)
C:C量は、少なくするほど軟質で伸び性がよく、プレス加工性に有利である。かつ固溶Cは炭化物として析出させると、歪時効硬化を起こさず、深絞り性を改善する。C量が0.0030%を超えるとNb添加により炭化物として全量を析出させることが困難になり、固溶Cによる硬質化や伸びの劣化が現れる。したがって、C量は0.0030%以下とする。
1) Component (“%” below represents “% by mass”)
The smaller the C: C amount, the softer and the better the elongation, and the better the press workability. When solid solution C is precipitated as carbide, it does not cause strain age hardening and improves deep drawability. If the amount of C exceeds 0.0030%, it becomes difficult to precipitate the entire amount as carbide by adding Nb, and hardening due to solute C and deterioration of elongation appear. Therefore, the C content is 0.0030% or less.
Si:Si量が0.02%を超えると硬質化やめっき性の劣化を招く。したがって、Si量は0.02%以下とする。 Si: If the amount of Si exceeds 0.02%, it will lead to hardening and deterioration of plating properties. Therefore, the Si content is 0.02% or less.
Mn:MnはSによる熱間圧延中の赤熱脆性を防止するのに有効な元素であるため、Mn量は0.15%以上とする必要がある。一方、Mn量が0.25%を超えると硬質化して加工性を劣化させるため、Mn量の上限は0.25%とする。 Since Mn: Mn is an element effective for preventing red hot brittleness during hot rolling by S, the amount of Mn needs to be 0.15% or more. On the other hand, if the Mn content exceeds 0.25%, it hardens and deteriorates workability, so the upper limit of the Mn content is 0.25%.
P:P量が0.02%を超えると加工性を低下させるため、P量の上限は0.02%とする。 P: If the P content exceeds 0.02%, the workability is lowered, so the upper limit of the P content is 0.02%.
S:S量が0.015%を超えると熱間圧延中に赤熱脆性を引き起こすため、S量の上限は0.015%とするが、少ないほど好ましい。 When the S content exceeds 0.015%, red hot brittleness is caused during hot rolling. Therefore, the upper limit of the S content is 0.015%, but the smaller the better.
N:N量が0.004%を超えると鋼片の連続鋳造中にAlNが析出して熱間脆性に起因する鋼片割れを誘発すため、N量の上限は0.004%とする。 If the N: N content exceeds 0.004%, AlN precipitates during continuous casting of steel slabs and induces steel slab cracking due to hot brittleness, so the upper limit of N content is 0.004%.
Al:Alは鋼の脱酸に必要な元素であるため、Al量を0.020%以上とする必要がある。一方、Al量が0.070%を超えると介在物が増加して表面欠陥が発生しやすくなるため、Al量の上限は0.070%とする。 Al: Al is an element necessary for deoxidation of steel, so the Al content needs to be 0.020% or more. On the other hand, if the Al content exceeds 0.070%, inclusions increase and surface defects are likely to occur, so the upper limit of Al content is 0.070%.
Nb:Nbは鋼中の固溶CをNbCとして析出させて、固溶Cによる深絞り性の劣化を抑制する。このような観点から、Nbは、原子当量比Nb/Cが1.0以上となるような量添加する必要がある。また、未析出の固溶Cが残留すると、焼鈍板のAI≦4.9MPaが安定して得られにくいので、NbCの析出を安定化させるために、Nb/Cが1.2以上となるようにNbを添加することが望ましく、Nb/Cが1.4以上となるようにNbを添加することがより望ましい。しかし、Nbを過度に添加すると再結晶温度の上昇が現れるため、Nbは、原子当量比Nb/Cが5.0以下となるような量添加する必要がある。 Nb: Nb precipitates solute C in the steel as NbC and suppresses deep drawability deterioration due to solute C. From such a viewpoint, it is necessary to add Nb in such an amount that the atomic equivalent ratio Nb / C is 1.0 or more. In addition, if unprecipitated solid solution C remains, it is difficult to stably obtain AI ≦ 4.9 MPa of the annealed plate.Therefore, in order to stabilize the precipitation of NbC, Nb is set so that Nb / C is 1.2 or more. It is desirable to add, and it is more desirable to add Nb so that Nb / C is 1.4 or more. However, when Nb is added excessively, an increase in the recrystallization temperature appears. Therefore, it is necessary to add Nb in such an amount that the atomic equivalent ratio Nb / C is 5.0 or less.
残部は、Feおよび不可避的不純物である。 The balance is Fe and inevitable impurities.
2)製造条件
上述したように、本発明の特徴の一つは、上記のように成分が調整された鋼片を熱間圧延し、熱延板に固溶Cや固溶Nを残存させてひずみ時効指数AIを9.8MPa以上、好ましくは29.4MPa以上とすることにより、冷間圧延、焼鈍後の面内異方性Δrを-0.10≦Δr≦0.10と小さくすることにある。熱延板のAIを9.8MPa以上とすることにより焼鈍後のΔrが小さくなる理由は不明であるが、Nb析出物を形成しなかった固溶CおよびNが熱延板の集合組織に影響を及ぼすためと推定される。
2) Manufacturing conditions As described above, one of the features of the present invention is to hot-roll the steel slab with the components adjusted as described above, and to leave the solid solution C or solid solution N in the hot-rolled sheet. By setting the strain aging index AI to 9.8 MPa or more, preferably 29.4 MPa or more, the in-plane anisotropy Δr after cold rolling and annealing is to be reduced to −0.10 ≦ Δr ≦ 0.10. The reason why Δr after annealing is reduced by setting AI of hot-rolled sheet to 9.8 MPa or more is unknown, but solid solution C and N that did not form Nb precipitates affect the texture of hot-rolled sheet. It is presumed to affect.
AIが9.8MPa以上の熱延板を作製するには、上記の成分組成を有する鋼を溶製して、連続鋳造により鋳片とし、圧延後の結晶粒径を均一にするためAr3変態点以上の圧延終了温度で熱間圧延し、熱間圧延終了後、NbCの析出を極力防止して固溶Cを残留させるために2秒以内に冷却を開始し、かつ100℃/秒以上の平均冷却速度で250℃以上の温度幅にわたって冷却することが好ましい。 In order to produce a hot-rolled sheet with AI of 9.8 MPa or more, the steel having the above composition is melted and cast into a slab by continuous casting, and the Ar 3 transformation point is used to make the crystal grain size uniform after rolling. Hot rolling at the above rolling end temperature, after completion of hot rolling, cooling is started within 2 seconds in order to prevent precipitation of NbC as much as possible and leave solid solution C, and an average of 100 ° C / second or more It is preferable to cool over a temperature range of 250 ° C. or higher at a cooling rate.
連続鋳造後の鋳片は、直接あるいは若干加熱してから圧延してもよいし、いったん冷却後再加熱して圧延することもできる。再加熱する場合の加熱温度は1050〜1300℃の範囲が望ましい。これは、1050℃未満の加熱温度では、熱間圧延の圧延終了温度をAr3変態点以上とすることが困難になりやすく、1300℃を超える加熱温度では、鋳片表面に生成する酸化物量が多くなり、表面欠陥が発生しやすくなるためである。また、熱間圧延の圧延終了温度の基準となるAr3変態点は、従来公知の方法で求めればよく、例えばフォーマスタ試験装置により試験片を加熱後、冷却中の熱膨張率の変化を観察することにより求めることができる。なお、熱間圧延終了後の冷却開始までの時間は、1.5秒以内が好ましく、より好ましくは1.0秒以内である。平均冷却速度は、100℃/秒以上であれば、特に上限を規定する必要はなく、例えば水冷などにより急速冷却を施してもよい。急冷する温度幅は、400℃以上が好ましく、より好ましくは500℃以上である。また、急冷後は、特に規定する必要はなく、コイルに巻き取るなどすればよい。 The slab after continuous casting may be directly or slightly heated and then rolled, or may be cooled and reheated and then rolled. The heating temperature for reheating is preferably in the range of 1050 to 1300 ° C. This is because when the heating temperature is lower than 1050 ° C., it is difficult to make the rolling end temperature of the hot rolling higher than the Ar 3 transformation point, and when the heating temperature exceeds 1300 ° C., the amount of oxide generated on the slab surface is small. This is because the surface defects are likely to occur. In addition, the Ar 3 transformation point that serves as a reference for the rolling end temperature of hot rolling may be obtained by a conventionally known method. For example, after a test piece is heated by a four master test apparatus, a change in thermal expansion coefficient during cooling is observed. Can be obtained. The time from the end of hot rolling to the start of cooling is preferably 1.5 seconds or less, and more preferably 1.0 seconds or less. If the average cooling rate is 100 ° C./second or more, it is not necessary to define an upper limit, and rapid cooling may be performed by, for example, water cooling. The temperature range for rapid cooling is preferably 400 ° C. or higher, more preferably 500 ° C. or higher. Further, after the rapid cooling, there is no particular need to define, and it may be wound around a coil.
こうして作製されたAIが9.8MPa以上の熱延板は、表面に形成されたスケールを除去するために酸洗後、65〜88%の圧下率で冷間圧延され、冷延板とされる。このとき、酸洗は常法で行えばよい。また、圧下率は、前述のように、製造上の観点から60%超え90%未満であることが望ましいとされているが、本発明のように、AIが9.8MPa以上の熱延板を使用することにより圧下率が65〜88%で、面内異方性が小さい鋼板が得られる。圧下率が65%未満や88%を超えるとΔrが増大し、-0.10≦Δr≦0.10の小さい面内異方性が得られない。 The hot-rolled sheet having an AI of 9.8 MPa or more produced in this way is cold-rolled at a rolling reduction of 65 to 88% after pickling to remove scale formed on the surface, thereby forming a cold-rolled sheet. At this time, pickling may be performed by a conventional method. In addition, as described above, it is desirable that the rolling reduction is more than 60% and less than 90% from the viewpoint of manufacturing, but as in the present invention, a hot rolled sheet having an AI of 9.8 MPa or more is used. By doing so, a steel sheet having a rolling reduction of 65 to 88% and small in-plane anisotropy can be obtained. When the rolling reduction is less than 65% or exceeds 88%, Δr increases, and a small in-plane anisotropy of −0.10 ≦ Δr ≦ 0.10 cannot be obtained.
冷延板は、引き続き700〜820℃の焼鈍温度で連続焼鈍される。焼鈍温度の下限を700℃としたのは、これより低い温度では完全に再結晶させることができないためである。また、上限を820℃としたのは、これより高い温度では結晶粒が粗大になり、加工時に肌荒れが発生しやすくなるためである。また、焼鈍を連続焼鈍で行うのは、高効率の製造が可能であるためである。なお、焼鈍の均熱時間は、特に規定する必要はないが、材料特性の安定性を確保する上で30秒程度以上とし、長時間焼鈍してもコストアップとなるだけなので180秒以下とすることが好ましい。それ以外の連続焼鈍条件としては、上記のように焼鈍温度を規定する以外は、特に規定する必要はなく、通常の連続焼鈍ラインにて焼鈍すればよい。また、焼鈍後は、鋼板形状や表面粗さを整えることを目的として調質圧延を行うことが好ましく、調質圧延の伸長率は通常の範囲である0.3〜2.0%の範囲とすることが望ましい。 The cold-rolled sheet is continuously annealed at an annealing temperature of 700 to 820 ° C. The lower limit of the annealing temperature is set to 700 ° C. because it cannot be completely recrystallized at a lower temperature. The reason why the upper limit is set to 820 ° C. is that crystal grains become coarse at a temperature higher than this, and rough skin is likely to occur during processing. The reason why annealing is performed by continuous annealing is that high-efficiency production is possible. The soaking time for annealing does not need to be specified in particular, but is about 30 seconds or more to ensure the stability of the material properties, and it is 180 seconds or less because it only increases the cost even if annealing is performed for a long time. It is preferable. As other continuous annealing conditions, it is not particularly necessary to define the annealing temperature as described above, and the annealing may be performed in a normal continuous annealing line. Further, after annealing, it is preferable to perform temper rolling for the purpose of adjusting the shape and surface roughness of the steel sheet, and the elongation rate of temper rolling is preferably in the range of 0.3 to 2.0%, which is the normal range. .
焼鈍後の鋼板には、必要に応じて、Niめっき、Snめっき、Crめっきあるいはそれらの合金めっきを施してもよい。 The annealed steel sheet may be subjected to Ni plating, Sn plating, Cr plating or alloy plating thereof as necessary.
表1に示す成分組成の鋼を溶製し、連続鋳造法で鋼片とした。この鋼片を1250℃に加熱後、この鋼のAr3変態点以上である900℃の圧延終了温度で熱間圧延し、表2に示す冷却条件No.1およびNo.2で冷却して熱延板を作製した。ここで、冷却条件No.1は本発明範囲内であり、熱延板のAIも33.3MPaで本発明範囲内にある。一方、冷却条件No.2は本発明範囲外であり、熱延板のAIも4.9MPaで本発明範囲外にある。こうして作製した熱延板を、酸洗後、表3に示す圧下率で冷間圧延し、連続焼鈍ラインで焼鈍温度750℃、均熱時間45秒で再結晶焼鈍を行った後、0.5%の伸長率で調質圧延を施して鋼板No.1〜6の試料を作製した。そして、得られた試料について、次の方法でΔr、AI、結晶粒径の調査を行った。 Steel having the component composition shown in Table 1 was melted and made into a steel slab by a continuous casting method. After heating the steel slab to 1250 ° C, it was hot-rolled at a rolling finish temperature of 900 ° C, which is higher than the Ar 3 transformation point of this steel, and cooled by cooling conditions No. 1 and No. 2 shown in Table 2. A rolled sheet was produced. Here, the cooling condition No. 1 is within the scope of the present invention, and the AI of the hot rolled sheet is also 33.3 MPa within the scope of the present invention. On the other hand, the cooling condition No. 2 is outside the scope of the present invention, and the AI of the hot-rolled sheet is also 4.9 MPa, which is outside the scope of the present invention. The hot-rolled sheet thus prepared was pickled, cold-rolled at the rolling reduction shown in Table 3, and after recrystallization annealing at an annealing temperature of 750 ° C. and a soaking time of 45 seconds in a continuous annealing line, 0.5% The samples of steel plates No. 1 to 6 were made by temper rolling at an elongation rate. And about the obtained sample, (DELTA) r, AI, and the crystal grain size were investigated by the following method.
Δr:得られた鋼板の試料から圧延方向に対して0°、45°、90°方向にJIS13号B引張試験片を採取し、JIS Z 2241にしたがって0°、45°、90°方向のr値であるr0、r45、r90を測定し、Δr=(r0+r90-2r45)/2を求め、Δrが±0.10以下であれば、面内異方性が小さく、本発明の目的を達成しているとした。 Δr: JIS13B tensile test specimens were taken from the obtained steel sheet samples in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, and r in the 0 °, 45 °, and 90 ° directions according to JIS Z 2241. Measure r 0 , r 45, and r 90 , and obtain Δr = (r 0 + r 90 -2r 45 ) / 2. If Δr is ± 0.10 or less, the in-plane anisotropy is small, The object of the invention is achieved.
AI:得られた鋼板の試料から圧延方向に対して0°方向にJIS13号B引張試験片を採取し、8.0%の引張歪を入れて可動転位を導入した後、100℃×1時間の恒温処理を施し、以下の式でAIを算出し、AIが4.9MPa以下であれば、耐ひずみ時効性に優れ、本発明の目的を達成しているとした。
AI=(恒温処理後の降伏荷重−恒温処理前の降伏荷重)/(歪導入前の試験片平行部の断面積)
結晶粒径:得られた鋼板の試料のフェライト組織の平均結晶粒径をJIS G 0552に記載の切断法に準じて測定した。乾電池缶に加工しても肌荒れが生じないために、結晶粒径は12.0μm以下であることが好ましい。
AI: JIS No. 13 B tensile test specimen was taken from the obtained steel sheet sample at 0 ° to the rolling direction, and 8.0% tensile strain was added to introduce movable dislocation, then 100 ° C x 1 hour constant temperature After processing, the AI was calculated by the following formula. If AI was 4.9 MPa or less, the strain aging resistance was excellent and the object of the present invention was achieved.
AI = (yield load after isothermal treatment−yield load before isothermal treatment) / (cross-sectional area of the parallel part of the specimen before strain introduction)
Crystal grain size: The average crystal grain size of the ferrite structure of the obtained steel sheet sample was measured according to the cutting method described in JIS G 0552. The crystal grain size is preferably 12.0 μm or less so that rough skin does not occur even when processed into a dry battery can.
結果を表3に示す。また、冷間圧延時の圧下率とΔrの関係を図1に示す。本発明である鋼板No.1、2は、いずれも±0.10以下のΔr、4.9MPa以下のAIを示し、耐ひずみ時効性に優れ、面内異方性の小さい鋼板であることがわかる。また、結晶粒径も12.0μm以下であり、乾電池缶に加工しても肌荒れが問題になることもない。なお、図1に示したように、本発明範囲内の熱延板を用いることにより、冷間圧延時の圧下率65〜88%でΔrを±0.10以下にできることがわかる。 The results are shown in Table 3. Further, FIG. 1 shows the relationship between the rolling reduction during cold rolling and Δr. Steel plates Nos. 1 and 2 according to the present invention both exhibit Δr of ± 0.10 or less and AI of 4.9 MPa or less, and are excellent in strain aging resistance and small in-plane anisotropy. Further, the crystal grain size is 12.0 μm or less, and rough skin does not become a problem even if it is processed into a dry battery can. As shown in FIG. 1, it can be seen that by using a hot-rolled sheet within the range of the present invention, Δr can be made ± 0.10 or less at a rolling reduction of 65 to 88% during cold rolling.
Claims (2)
In mass%, C: 0.0030% or less, Si: 0.02% or less, Mn: 0.15 to 0.25%, P: 0.02% or less, S: 0.015% or less, N: 0.004% or less, Al: 0.020 to 0.070%, 1.0 ≦ A steel slab having a composition comprising Nb amount (%) satisfying Nb / C (atomic equivalence ratio) ≦ 5.0 and the balance consisting of Fe and inevitable impurities is hot-rolled at a rolling finish temperature not lower than the Ar 3 transformation point. The cooling starts within 2 seconds after the hot rolling, and is cooled over a temperature range of 250 ° C. or more at an average cooling rate of 100 ° C./second or more to obtain a hot rolled sheet having a strain aging index AI of 9.8 MPa or more, Next, the hot-rolled sheet is cold-rolled at a rolling reduction of 65 to 88% to obtain a cold-rolled sheet, and then the cold-rolled sheet is continuously annealed at 700 to 820 ° C. The manufacturing method of the cold-rolled steel plate with small in-plane anisotropy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005361137A JP4715496B2 (en) | 2005-12-15 | 2005-12-15 | Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005361137A JP4715496B2 (en) | 2005-12-15 | 2005-12-15 | Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007162082A JP2007162082A (en) | 2007-06-28 |
JP4715496B2 true JP4715496B2 (en) | 2011-07-06 |
Family
ID=38245333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005361137A Active JP4715496B2 (en) | 2005-12-15 | 2005-12-15 | Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4715496B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057911A1 (en) * | 2007-10-29 | 2009-05-07 | Hyundai Steel Company | A cold rolledsteel sheet and method for manufacturing the same |
KR101042434B1 (en) * | 2007-10-29 | 2011-06-16 | 현대제철 주식회사 | A cold rolledsteel sheet and method for manufacturing the same |
JP5239331B2 (en) * | 2007-12-27 | 2013-07-17 | Jfeスチール株式会社 | Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same |
JP5365181B2 (en) * | 2008-12-24 | 2013-12-11 | Jfeスチール株式会社 | Steel sheet and manufacturing method thereof |
JP5051247B2 (en) * | 2010-01-15 | 2012-10-17 | Jfeスチール株式会社 | Cold-rolled steel sheet excellent in formability and shape freezing property and its manufacturing method |
CN109022736B (en) * | 2018-08-06 | 2020-07-24 | 首钢集团有限公司 | Cold rolling process regulation and control method for interstitial free steel continuous annealing sheet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1081919A (en) * | 1996-09-05 | 1998-03-31 | Kawasaki Steel Corp | Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance |
JPH11209845A (en) * | 1998-01-28 | 1999-08-03 | Kawasaki Steel Corp | Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture |
JP2000239786A (en) * | 1999-02-18 | 2000-09-05 | Kawasaki Steel Corp | Base plate for cold rolling, cold rolled steel sheet for deep drawing with minimal plane anisotropy, and manufacture thereof |
JP2001316727A (en) * | 2000-02-29 | 2001-11-16 | Nkk Corp | Method for manufacturing cold rolled steel sheet excellent in processability and having reduced anisotropy |
WO2004001084A1 (en) * | 2002-06-25 | 2003-12-31 | Jfe Steel Corporation | High-strength cold rolled steel sheet and process for producing the same |
-
2005
- 2005-12-15 JP JP2005361137A patent/JP4715496B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1081919A (en) * | 1996-09-05 | 1998-03-31 | Kawasaki Steel Corp | Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance |
JPH11209845A (en) * | 1998-01-28 | 1999-08-03 | Kawasaki Steel Corp | Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture |
JP2000239786A (en) * | 1999-02-18 | 2000-09-05 | Kawasaki Steel Corp | Base plate for cold rolling, cold rolled steel sheet for deep drawing with minimal plane anisotropy, and manufacture thereof |
JP2001316727A (en) * | 2000-02-29 | 2001-11-16 | Nkk Corp | Method for manufacturing cold rolled steel sheet excellent in processability and having reduced anisotropy |
WO2004001084A1 (en) * | 2002-06-25 | 2003-12-31 | Jfe Steel Corporation | High-strength cold rolled steel sheet and process for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2007162082A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5217197B2 (en) | Cold-rolled steel sheet with excellent earring properties and method for producing the same | |
JP6037084B2 (en) | Steel plate for squeezed can and method for manufacturing the same | |
JPH0713262B2 (en) | Method for producing silicon iron plate having excellent soft magnetic characteristics | |
JP5407591B2 (en) | Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis | |
JP4715496B2 (en) | Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy | |
JP4214671B2 (en) | Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same | |
JP6950723B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6146582B2 (en) | Method for producing non-oriented electrical steel sheet | |
KR100879084B1 (en) | High-strength isotropic steel, method for making steel plates and resulting plates | |
JP4552775B2 (en) | Steel plate with small anisotropy and method for producing the same | |
JP4760455B2 (en) | Cold rolled steel sheet having high average r value and small in-plane anisotropy and method for producing the same | |
JP2007211337A (en) | Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof | |
JP4604883B2 (en) | Steel plate with small anisotropy and method for producing the same | |
JP4701669B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2007239035A (en) | Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method | |
JPH02232316A (en) | Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property | |
JP3303929B2 (en) | Manufacturing method of bake hardenable steel sheet for deep drawing with excellent late aging property | |
JP5239331B2 (en) | Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same | |
JP3593728B2 (en) | Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability | |
JPS60190521A (en) | Manufacture of nonoriented electrical steel sheet | |
JP3331535B2 (en) | Method for manufacturing thick non-oriented electrical steel sheet with excellent magnetic properties | |
JP4135434B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP2002003951A (en) | Method for manufacturing cold rolled steel sheet having small anisotropy | |
JP2843598B2 (en) | Manufacturing method of cold rolled steel sheet with excellent workability | |
JP3300639B2 (en) | Cold rolled steel sheet excellent in workability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110314 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |