[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3693363B2 - Supporting method for forming a photocatalyst layer - Google Patents

Supporting method for forming a photocatalyst layer Download PDF

Info

Publication number
JP3693363B2
JP3693363B2 JP06087894A JP6087894A JP3693363B2 JP 3693363 B2 JP3693363 B2 JP 3693363B2 JP 06087894 A JP06087894 A JP 06087894A JP 6087894 A JP6087894 A JP 6087894A JP 3693363 B2 JP3693363 B2 JP 3693363B2
Authority
JP
Japan
Prior art keywords
photocatalyst
particles
photocatalytic activity
binder
photocatalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06087894A
Other languages
Japanese (ja)
Other versions
JPH07265714A (en
Inventor
健司 加藤
正信 藤本
敏男 歌川
Original Assignee
松下エコシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下エコシステムズ株式会社 filed Critical 松下エコシステムズ株式会社
Priority to JP06087894A priority Critical patent/JP3693363B2/en
Publication of JPH07265714A publication Critical patent/JPH07265714A/en
Application granted granted Critical
Publication of JP3693363B2 publication Critical patent/JP3693363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、汚れ付着物質、有害物質等を分解、浄化、無害化、あるいは殺菌する光触媒層を形成する担持方法に関する。
【0002】
【従来の技術】
近年、光触媒体の使用、応用範囲が拡大するにつれ、光触媒体があらゆる基材表面に、光触媒活性を損なうことなく、耐久性をもたせ、かつ作業性よく光触媒層を形成する担持方法が求められている。
【0003】
従来、この種の光触媒層を形成する担持方法は、光触媒活性を持つ二酸化チタン粒子を光触媒体として用い、水ガラス等の無機系バインダを基材表面に塗布し、更にその上に、光触媒活性を持つ二酸化チタン粒子を吹き付け等で表面コーティング後、乾燥、あるいは焼結等により担持する方法が一般的であった。
【0004】
上記構成において、光触媒活性を持つ二酸化チタン粒子は無機系バインダを介して基材表面に接着、コーティングされる。汚れ成分である有機物が二酸化チタン表面に付着した際、近紫外光を照射すると、光触媒活性を持つ二酸化チタンが励起され、汚れ成分である
有機物を分解、浄化することになる。
【0005】
【発明が解決しようとする課題】
このような従来の光触媒層を形成する担持方法では、無機系バインダとして水ガラスを用いた場合、水をはじき易いような塗装面、材料に対しては、相手材料とのなじみ性などにより事実上使用できないという問題があった。また、吹き付け工程が、無機系バインダの吹き付け後に二酸化チタン粒子を吹き付ける2段工程の作業になるとともに、十分な注意を払っても、二酸化チタン粒子の吹き付け作業時に、無機系バインダの中に、光触媒活性を持つ二酸化チタン粒子が埋没し、その部分の光触媒活性が損なわれるという問題があった。更に無機系バインダのかわりに、有機系のバインダを用いた場合も、二酸化チタン粒子の吹き付け作業時に、有機系バインダの中に、光触媒活性を持つ二酸化チタン粒子が埋没し、光触媒活性が損なわれると共に、近紫外光を照射した光触媒活性時に、有機系のバインダが分解し、バインダとしての役目をなさなくなるという問題があった。
【0006】
本発明は上記課題を解決するもので、バインダに埋没し光触媒活性が損なわれることなく、近紫外光を照射した光触媒活性時に、バインダが分解しなく、担持した時に、強度の大きい光触媒層を形成することができる担持方法を提供することを第1の目的とする。
【0007】
の目的は、バインダに埋没し光触媒活性が損なわれることがなく、バインダが分解 せず耐久性の良い光触媒層を形成することができる担持方法を提供することにある。
【0008】
の目的は、バインダに埋没し光触媒活性が損なわれることがなく、基材との密着性が良い、プライマーの不要な強度の大きい光触媒層を形成することができる担持方法を提供することにある。
【0009】
の目的は、バインダに埋没し光触媒活性が損なわれることがなく、低い加熱温度で強度の大きい光触媒層を形成することができる担持方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の光触媒層を形成する担持方法は上記した第1の目的を達成するために、第1の手段は、ウィスカーの表面にフッ素樹脂微粒子を融着させてなる補強材を、光触媒粒子の表面にフッ素樹脂微粒子を融着させてなる光触媒体と共に、基材に塗布し、加熱し、光触媒層を形成し担持する構成とする。
【0011】
また、第の目的を達成するための第2の手段は、光触媒粒子の表面にガラス微粒子を融着させる構成とする。
【0012】
また、第の目的を達成するための第の手段は、光触媒粒子の表面に金属微粒子を融着させる構成とする。
【0013】
また、第の目的を達成するための第の手段は、光触媒粒子の表面に四塩化チタンを化学修飾させる構成とする。
【0014】
【作用】
本発明は上記した第1の手段の構成により、ウィスカーに融着したフッ素樹脂微粒子と基材とが融着し、さらに光触媒粒子に融着したフッ素樹脂微粒子がウィスカーと融着するために、バインダに埋没せず光触媒活性が損なわれることがなくバインダが分解せず強度の大きい光触媒層を形成することができる。
【0015】
また、第の手段の構成により、バインダとなるガラス微粒子自体が透明で、近紫外光
を透過させ易く、また、近紫外光の照射によるバインダの分解がなく、耐薬品性も良いため、バインダに埋没せず光触媒活性が損なわれない、耐久性の良い光触媒層を形成することができる。
【0016】
また、第の手段の構成により、バインダに埋没せず光触媒活性が損なわれず、バインダとなる金属微粒子と、担持する基材の金属との親和性が良いため、基材との密着性が良く、プライマー塗装をしなくてもよい光触媒層を形成することができる。
【0017】
また、第の手段の構成により、バインダとなる四塩化チタンが、光触媒層の形成時に、低い加熱温度で光触媒活性を有する二酸化チタンに変成するため、光触媒活性が損なわれてしまうことがなく、バインダに埋没せず光触媒活性が損なわれず、低い加熱温度で強度の大きい光触媒層を形成することができる。
【0018】
【実施例】
以下、本発明の第1参考例について、図1および図2を参照しながら説明する。
【0019】
図に示すように、光触媒体1は、二酸化チタン粒子2の表面に、フッ素樹脂微粒子4を融着した構成としている。二酸化チタン粒子2は、略Φ10〜30nmの1次粒子3が凝集した構成をしており、二酸化チタン粒子2はアナターゼ化するため500〜800℃で焼成している。そして、二酸化チタン粒子2の外縁に位置する1次粒子3に、PVD法によって略Φ10〜20nmのフッ素樹脂微粒子4を気相被覆し融着している。また、基材6にフッ素樹脂微粒子4と親和性の良いプライマー層7を塗装し、プライマー層7の表面に光触媒体1を分散し、フッ素樹脂微粒子4をバインダとし、加熱により担持して光触媒層5を形成している。
【0020】
上記構成により、二酸化チタン粒子2は、表面の大部分がフッ素樹脂微粒子4で覆われないため、近紫外光を照射した時に、光触媒活性の低下が少ない。また、二酸化チタン粒子2は、500〜800℃で焼成しているため、充分な強度を持っている。そして、フッ素樹脂微粒子4は、可塑性が有り、近紫外光を照射した光触媒活性時に分解しないため、光触媒層5は、密着性が良く、充分な強度を持つことができる。
【0021】
このように本発明の第1参考例の光触媒層を形成する担持方法によれば、近紫外光を照射した時に、光触媒活性の低下が少なく、バインダが分解しない、可塑性のある、充分な強度を持った光触媒層を形成することができる。
【0022】
なお、加熱時に圧力を加えてもよく(例えばホットプレス法など)、その作用効果に差異は生じない。
【0023】
なお、光触媒粒子として、アナターゼ化した二酸化チタン粒子2で説明したが、含水酸化チタンやルチル化した二酸化チタン粒子2でもよく、また表面に、白金、ルテニウム、パラジウム、ロジウム、タンタル、銀、ニッケル、銅、ジルコニウム、クロム、バナジウム、酸化鉄、酸化錫、酸化マンガン、酸化ニッケル、酸化ルテニウム等の触媒金属を担時した二酸化チタン粒子2でもよく、また、ニオブ、タンタル、タングステン、アンチモン、ジルコニウム、クロム、バナジウム、モリブデン等のドナー原子を二酸化チタン粒子2にドープしてもよく、また、二酸化チタン粒子2の一部、または全部を硫化処理してもよく、さらに、二酸化チタン粒子2の代わりに、チタン酸ストロンチウム、酸化ビスマス、チタン酸ビスマス、硫化カドミウム、硫化モリブデン、酸化ジルコニウム、硫化ジルコニウム、アルカリ土類金属とジルコニウムの複合酸化物、酸化ハフニウム、硫化ハフニウム、アルカリ土類金属とハフニウムの複合酸化物、酸化タンタル、硫化タンタル、アルカリ土類金属とタンタルの複合酸化物、酸化ニオビウム、硫化ニオビウム、アルカリ土類金属
とニオビウムの複合酸化物、酸化鉄、酸化銅、酸化亜鉛、アモルファスシリコン、ガリウム砒素、酸化タングステン、リン化インジウム、インジウム鉛の各粒子でもよく、その作用効果に差異は生じない。
【0024】
つぎに本発明の第実施例について図3および図4を参照しながら説明する。なお第1実施例と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0025】
図に示すように、補強材8は、チタン酸カリウムウィスカー9の表面に、PVD法によって略Φ10〜20nmのフッ素樹脂微粒子4を気相被覆し融着している。また、プライマー層7の表面に光触媒体1と補強材8を分散し、フッ素樹脂微粒子4をバインダとし、加熱により担持して光触媒層5を形成している。
【0026】
上記構成により、補強材8を添加することにより、光触媒層5に均一に補強材8が分散され、チタン酸カリウムウィスカー9に融着したフッ素樹脂微粒子4と基材6とが融着し、さらに二酸化チタン粒子2に融着したフッ素樹脂微粒子4がチタン酸カリウムウィスカー9と融着するために、光触媒層5の強度を増強することができる。
【0027】
このように本発明の第実施例の光触媒層を形成する担持方法によれば、バインダに埋没せず光触媒活性が損なわれることがなくバインダが分解せず、触媒層の強度を増強することができる。
【0028】
なお、ウィスカーとして、チタン酸カリウムウィスカーで説明したが、針状酸化チタン、酸化亜鉛ウィスカー、炭化珪素ウィスカー、窒化珪素ウィスカーでもよく、その作用効果に差異は生じない。
【0029】
つぎに本発明の第実施例について図5を参照しながら説明する。なお第1参考例と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0030】
図に示すように、光触媒体1は、光触媒活性を持つ二酸化チタン粒子2の表面に、ガラス微粒子10を融着した構成としている。そして、二酸化チタン粒子2の外縁に位置する1次粒子3に、PVD法によって略Φ10〜20nmのガラス微粒子10を気相被覆し融着している。また、基材6にガラス微粒子10と親和性の良い無機プライマー層11を塗装し、無機プライマー層11の表面に光触媒体1を分散し、ガラス微粒子10をバインダとし、加熱により担持して光触媒層5を形成している。
【0031】
上記構成により、ガラス微粒子10は、近紫外光を透過させるため、光触媒活性の低下がほとんどない。また、ガラス微粒子10は、近紫外光を照射した光触媒活性時に分解せず、ガラス自体の耐薬品性も良いため、光触媒層5は、光触媒活性の低下がなく、耐久性を良くすることができる。
【0032】
このように本発明の第実施例の光触媒層を形成する担持方法によれば、近紫外光を照射した時に、光触媒活性の低下がなく、バインダに埋没せず光触媒活性が損なわれることがなくバインダが分解せず、耐久性の良い光触媒層を形成することができる。
【0033】
つぎに本発明の第実施例について図6を参照しながら説明する。なお第1参考例と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0034】
図に示すように、光触媒体1は、光触媒活性を持つ二酸化チタン粒子2の表面に、金属微粒子12を融着した構成としている。そして、二酸化チタン粒子2の外縁に位置する1次粒子3に、PVD法によって略Φ10〜20nmの金属微粒子12を気相被覆し融着し
ている。また、金属微粒子12は、基材6を構成している金属と親和性の良い、500℃以下の融点を持つ金属である。そして、基材6表面に光触媒体1を分散し、金属微粒子12をバインダとし、加熱により担持して光触媒層5を形成している。
【0035】
上記構成により、金属微粒子12は、基材6と親和性が良いため、プライマーを塗装しなくても、基材6との密着性が大きく、バインダに埋没せず光触媒活性が損なわれることがなく充分な強度を持つ光触媒層5を形成することができる。
【0036】
このように本発明の第実施例の光触媒層を形成する担持方法によれば、プライマーを塗装しなくても、基材との密着性が大きく、バインダに埋没せず光触媒活性が損なわれることがなく、充分な強度を持つ光触媒層を形成することができる。
【0037】
つぎに本発明の第実施例について、図7および図8を参照しながら説明する。なお第1参考例と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0038】
図に示すように、光触媒体1は、光触媒活性を持つ二酸化チタン粒子2の表面に、四塩化チタン14を化学修飾させた構成としている。二酸化チタン粒子2は、略Φ10〜30nmの1次粒子3が凝集した構成をしており、サンドミルを用いて、有機溶媒A中で略Φ100nm以下に分散する。二酸化チタン粒子2を分散後、四塩化チタン溶液を添加し、オートクレーブ内で170〜200℃に加温し、二酸化チタン粒子2の表面のOH基の一部、または全部と反応させ、四塩化チタン14で化学修飾する。そして、有機溶媒Aを、フィルタープレスを用いて、有機溶媒Aより沸点の低い有機溶媒Bに置換する。また、基材6に、二酸化チタンと親和性の良いプライマー層13を塗装し、プライマー層13の表面に、二酸化チタン粒子2を分散した有機溶媒Bを塗装し、これを加熱乾燥させ、水蒸気雰囲気で170〜200℃に加熱し、二酸化チタン粒子2の表面に化学修飾された四塩化チタン14と、さらに隣接する二酸化チタン粒子2の表面に化学修飾された四塩化チタン14とを加水分解反応させて担持し、光触媒層5を形成している。
【0039】
上記構成により、光触媒層5は、プライマー層13より表面が全て二酸化チタン成分で構成されているため、バインダに埋没せず光触媒活性が損なわれることがなく、近紫外光を照射した時に、光触媒活性の低下がない。また、有機溶媒が乾燥する200℃以下の低い加熱温度で光触媒層5を形成し担持することができる。
【0040】
なお、フィルタープレスのかわりに、デカンター、カラムを用いてもよく、その作用効果に差異は生じない。
【0041】
このように本発明の第実施例の光触媒層を形成する担持方法によれば、近紫外光を照射した時に、光触媒活性の低下がなく、バインダに埋没せず光触媒活性が損なわれることがなく、200℃以下の低い加熱温度で光触媒層を形成することができる。
【0042】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、ウィスカーに融着したフッ素樹脂微粒子と基材とが融着し、さらに光触媒粒子に融着したフッ素樹脂微粒子がウィスカーと融着するために、バインダに埋没せず光触媒活性が損なわれることがなくバインダが分解せず、強度を増強させた光触媒層を形成することができる担持方法が提供できる。
【0043】
また、ガラス微粒子は、近紫外光を透過させるため、光触媒活性の低下がほとんどなく、バインダに埋没せず光触媒活性が損なわれることがなく、光触媒活性時に分解しない耐久性の良い光触媒層を形成することができる担持方法が提供できる。
【0044】
また、金属微粒子は、金属製の基材と親和性が良いため、プライマーを塗装しなくても、基材との密着性が大きく、バインダに埋没せず光触媒活性が損なわれることがなく、充分な強度を持つ光触媒層を形成することができる担持方法が提供できる。
【0045】
また、光触媒層は、プライマー層の表面より、全て光触媒活性を持つ二酸化チタン成分で構成されているため、近紫外光を照射した時に、光触媒活性の低下がなく、バインダに埋没せず光触媒活性が損なわれることがなく、また、有機溶媒が乾燥する200℃以下でも光触媒層を形成することができる担持方法が提供できる。
【図面の簡単な説明】
【図1】 本発明の第1参考例の光触媒層の断面図
【図2】 本発明の第1参考例の光触媒体の断面図
【図3】 本発明の第実施例の光触媒層の断面図
【図4】 本発明の第実施例の補強材の断面図
【図5】 本発明の第実施例の光触媒層の断面図
【図6】 本発明の第実施例の光触媒層の断面図
【図7】 本発明の第実施例の光触媒層の断面図
【図8】 本発明の第実施例の光触媒体の断面図
【符号の説明】
1 光触媒体
2 二酸化チタン粒子
4 フッ素樹脂微粒子
5 光触媒層
6 基材
8 補強材
9 チタン酸カリウムウィスカー
10 ガラス微粒子
12 金属微粒子
14 四塩化チタン
[0001]
[Industrial application fields]
The present invention relates to a supporting method for forming a photocatalyst layer for decomposing, purifying, detoxifying, or sterilizing contaminants and harmful substances.
[0002]
[Prior art]
In recent years, as the use and application range of photocatalysts has expanded, there has been a demand for a supporting method for forming a photocatalyst layer with good durability and workability without impairing photocatalytic activity on the surface of any substrate. Yes.
[0003]
Conventionally, a supporting method for forming this type of photocatalytic layer uses titanium dioxide particles having photocatalytic activity as a photocatalyst, and an inorganic binder such as water glass is applied to the surface of the substrate, and further, photocatalytic activity is further provided thereon. In general, the titanium dioxide particles having a surface are coated by spraying or the like, and then supported by drying or sintering.
[0004]
In the above configuration, the titanium dioxide particles having photocatalytic activity are adhered and coated on the surface of the substrate through an inorganic binder. When the organic substance that is a dirt component adheres to the surface of titanium dioxide, when irradiated with near ultraviolet light, titanium dioxide having photocatalytic activity is excited, and the organic substance that is the dirt component is decomposed and purified.
[0005]
[Problems to be solved by the invention]
In such a conventional supporting method for forming a photocatalyst layer, when water glass is used as the inorganic binder, the coated surface and the material that are easy to repel water are effectively used due to the compatibility with the other material. There was a problem that it could not be used. In addition, the spraying process is a two-stage process in which the titanium dioxide particles are sprayed after the inorganic binder is sprayed. Even if sufficient care is taken, the photocatalyst is incorporated into the inorganic binder during the titanium dioxide particle spraying process. There was a problem that the titanium dioxide particles having activity were buried and the photocatalytic activity of the part was impaired. Furthermore, when an organic binder is used instead of an inorganic binder, titanium dioxide particles having photocatalytic activity are buried in the organic binder during the operation of spraying titanium dioxide particles, and the photocatalytic activity is impaired. When the photocatalytic activity is irradiated with near-ultraviolet light, there is a problem that the organic binder is decomposed and does not serve as a binder.
[0006]
The present invention is intended to solve the above problems, without impairing the buried photocatalytic activity in the binder, when the photocatalytic activity is irradiated with near-ultraviolet light, the binder is rather degraded, when carrying large photocatalytic layer of strength It is a first object to provide a supporting method that can be formed.
[0007]
The second object is to provide a supporting method capable of forming a photocatalyst layer having good durability without being decomposed by being buried in a binder and without deteriorating the photocatalytic activity.
[0008]
The third object is to provide a supporting method capable of forming a photocatalyst layer which is not buried in a binder and does not impair the photocatalytic activity , has good adhesion to the base material, and has an unnecessary high primer strength. is there.
[0009]
A fourth object is to provide a supporting method capable of forming a photocatalyst layer having a high strength at a low heating temperature without being buried in a binder and impairing the photocatalytic activity.
[0010]
[Means for Solving the Problems]
In order to achieve the first object described above, the supporting method for forming the photocatalyst layer of the present invention includes a reinforcing material obtained by fusing fluororesin fine particles on the surface of the whisker, and the surface of the photocatalyst particle. A photocatalyst formed by fusing fluororesin fine particles is applied to a substrate and heated to form and carry a photocatalyst layer.
[0011]
Moreover, the 2nd means for achieving the 2nd objective sets it as the structure which fuse | melts glass particulates on the surface of a photocatalyst particle.
[0012]
The third means for achieving the third object has a structure fusing the metal fine particles on the surface of photocatalyst particles.
[0013]
The fourth means for achieving the fourth object has a structure of chemically modified titanium tetrachloride on the surface of photocatalyst particles.
[0014]
[Action]
According to the first aspect of the present invention, the fluororesin fine particles fused to the whisker and the base material are fused, and further, the fluororesin fine particles fused to the photocatalyst particles are fused to the whisker. Therefore, the photocatalytic activity is not impaired, the binder is not decomposed, and a photocatalyst layer having high strength can be formed.
[0015]
Further, the configuration of the second means, the glass particles themselves are transparent to the binder, easier to transmit near-ultraviolet light, also, there is no degradation of the binder by irradiation of near-ultraviolet light, for chemical resistance good binder It is possible to form a photocatalyst layer with good durability that is not buried in the photocatalyst and does not impair photocatalytic activity.
[0016]
In addition, because of the configuration of the third means, the photocatalytic activity is not lost because it is not buried in the binder, and the affinity between the metal fine particles to be the binder and the metal of the substrate to be supported is good, so the adhesion to the substrate is good. A photocatalyst layer that does not require primer coating can be formed.
[0017]
Moreover, since the titanium tetrachloride serving as the binder is transformed into titanium dioxide having photocatalytic activity at a low heating temperature when the photocatalytic layer is formed by the configuration of the fourth means, the photocatalytic activity is not impaired, A photocatalytic layer having a high strength can be formed at a low heating temperature without being buried in the binder and without impairing the photocatalytic activity .
[0018]
【Example】
Hereinafter, a first reference example of the present invention will be described with reference to FIGS. 1 and 2.
[0019]
As shown in the figure, the photocatalyst 1 has a configuration in which fluororesin fine particles 4 are fused to the surface of titanium dioxide particles 2. The titanium dioxide particles 2 have a structure in which primary particles 3 of approximately Φ10 to 30 nm are aggregated, and the titanium dioxide particles 2 are baked at 500 to 800 ° C. in order to anatase. The primary particles 3 located at the outer edge of the titanium dioxide particles 2 are vapor-coated with a fluorine resin fine particle 4 having a diameter of approximately 10 to 20 nm by a PVD method. Further, a primer layer 7 having a good affinity for the fluororesin fine particles 4 is coated on the substrate 6, the photocatalyst 1 is dispersed on the surface of the primer layer 7, the fluororesin fine particles 4 are used as a binder, and the photocatalyst layer is carried by heating 5 is formed.
[0020]
With the above configuration, since most of the surface of the titanium dioxide particles 2 is not covered with the fluororesin fine particles 4, the decrease in photocatalytic activity is small when irradiated with near-ultraviolet light. Moreover, since the titanium dioxide particles 2 are baked at 500 to 800 ° C., they have sufficient strength. Since the fluororesin fine particles 4 are plastic and do not decompose during photocatalytic activity when irradiated with near-ultraviolet light, the photocatalyst layer 5 has good adhesion and can have sufficient strength.
[0021]
Thus, according to the supporting method for forming the photocatalyst layer of the first reference example of the present invention, when irradiated with near-ultraviolet light, the photocatalytic activity decreases little, the binder does not decompose, and the plasticity and sufficient strength are obtained. A photocatalyst layer can be formed.
[0022]
In addition, you may apply a pressure at the time of a heating (for example, hot press method etc.), and a difference does not arise in the effect.
[0023]
The anataseized titanium dioxide particles 2 have been described as photocatalyst particles, but hydrous titanium oxide or rutile titanium dioxide particles 2 may be used, and platinum, ruthenium, palladium, rhodium, tantalum, silver, nickel, Titanium dioxide particles 2 bearing a catalyst metal such as copper, zirconium, chromium, vanadium, iron oxide, tin oxide, manganese oxide, nickel oxide, ruthenium oxide may be used, and niobium, tantalum, tungsten, antimony, zirconium, chromium The titanium dioxide particles 2 may be doped with donor atoms such as vanadium, molybdenum, etc., or a part or all of the titanium dioxide particles 2 may be sulfurized. Further, instead of the titanium dioxide particles 2, Strontium titanate, bismuth oxide, bismuth titanate, cadmium sulfide Molybdenum, molybdenum sulfide, zirconium oxide, zirconium sulfide, composite oxide of alkaline earth metal and zirconium, hafnium oxide, hafnium sulfide, composite oxide of alkaline earth metal and hafnium, tantalum oxide, tantalum sulfide, alkaline earth metal Tantalum composite oxide, niobium oxide, niobium sulfide, alkaline earth metal and niobium composite oxide, iron oxide, copper oxide, zinc oxide, amorphous silicon, gallium arsenide, tungsten oxide, indium phosphide, indium lead particles However, there is no difference in the effect.
[0024]
Next, a first embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0025]
As shown in the figure, the reinforcing material 8 is obtained by coating the surface of a potassium titanate whisker 9 with a fluorine resin fine particle 4 having a diameter of approximately 10 to 20 nm by a PVD method. Further, the photocatalyst body 1 and the reinforcing material 8 are dispersed on the surface of the primer layer 7, the fluororesin fine particles 4 are used as a binder, and supported by heating to form the photocatalyst layer 5.
[0026]
With the above configuration, by adding the reinforcing material 8, the reinforcing material 8 is uniformly dispersed in the photocatalyst layer 5, the fluororesin fine particles 4 fused to the potassium titanate whisker 9 and the base material 6 are fused, Since the fluororesin fine particles 4 fused to the titanium dioxide particles 2 are fused to the potassium titanate whiskers 9, the strength of the photocatalyst layer 5 can be enhanced.
[0027]
Thus, according to the supporting method for forming the photocatalyst layer of the first embodiment of the present invention, the photocatalytic activity is not impaired without being buried in the binder , the binder is not decomposed, and the strength of the catalyst layer can be enhanced. it can.
[0028]
In addition, although the potassium titanate whisker has been described as the whisker, acicular titanium oxide, zinc oxide whisker, silicon carbide whisker, and silicon nitride whisker may be used, and there is no difference in operational effects.
[0029]
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same number is attached | subjected to the same location as a 1st reference example, and the detailed description is abbreviate | omitted.
[0030]
As shown in the figure, the photocatalyst 1 has a configuration in which glass fine particles 10 are fused to the surface of titanium dioxide particles 2 having photocatalytic activity. The primary particles 3 located at the outer edge of the titanium dioxide particles 2 are coated with a glass particle 10 having a diameter of approximately 10 to 20 nm in a vapor phase and fused by the PVD method. In addition, an inorganic primer layer 11 having a good affinity for the glass fine particles 10 is coated on the substrate 6, the photocatalyst 1 is dispersed on the surface of the inorganic primer layer 11, the glass fine particles 10 are used as a binder, and the photocatalyst layer is supported by heating. 5 is formed.
[0031]
With the above configuration, the glass microparticles 10 transmit near-ultraviolet light, so that there is almost no decrease in photocatalytic activity. Further, the glass fine particles 10 are not decomposed during photocatalytic activity when irradiated with near-ultraviolet light, and the chemical resistance of the glass itself is good. Therefore, the photocatalytic layer 5 does not decrease in photocatalytic activity and can improve durability. .
[0032]
Thus, according to the supporting method for forming the photocatalyst layer of the second embodiment of the present invention, when irradiated with near-ultraviolet light, the photocatalytic activity does not decrease and the photocatalytic activity is not impaired without being buried in the binder. The binder does not decompose and a photocatalyst layer with good durability can be formed.
[0033]
Next, a third embodiment of the present invention will be described with reference to FIG. In addition, the same number is attached | subjected to the same location as a 1st reference example, and the detailed description is abbreviate | omitted.
[0034]
As shown in the figure, the photocatalyst 1 has a structure in which metal fine particles 12 are fused to the surface of titanium dioxide particles 2 having photocatalytic activity. The primary particles 3 positioned on the outer edge of the titanium dioxide particles 2 are coated with a metal particle 12 having a diameter of approximately 10 to 20 nm by a PVD method and fused. Further, the metal fine particles 12 are a metal having a melting point of 500 ° C. or less, which has good affinity with the metal constituting the substrate 6. And the photocatalyst body 1 is disperse | distributed to the base-material 6 surface, the metal microparticle 12 is made into a binder, and it carries by heating, and forms the photocatalyst layer 5. FIG.
[0035]
With the above configuration, the metal fine particles 12 have good affinity with the base material 6, so that the adhesion with the base material 6 is large without coating a primer, and the photocatalytic activity is not impaired without being buried in the binder. The photocatalyst layer 5 having sufficient strength can be formed.
[0036]
As described above, according to the supporting method for forming the photocatalyst layer of the third embodiment of the present invention, the adhesion with the base material is large without coating the primer, and the photocatalytic activity is impaired without being buried in the binder. And a photocatalyst layer having sufficient strength can be formed.
[0037]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. In addition, the same number is attached | subjected to the same location as a 1st reference example, and the detailed description is abbreviate | omitted.
[0038]
As shown in the figure, the photocatalyst 1 has a structure in which titanium tetrachloride 14 is chemically modified on the surface of titanium dioxide particles 2 having photocatalytic activity. Titanium dioxide particles 2 have a structure in which primary particles 3 of approximately Φ10 to 30 nm are aggregated, and are dispersed to approximately Φ100 nm or less in organic solvent A using a sand mill. After the titanium dioxide particles 2 are dispersed, a titanium tetrachloride solution is added, heated to 170 to 200 ° C. in an autoclave, and reacted with a part or all of the OH groups on the surface of the titanium dioxide particles 2, thereby producing titanium tetrachloride. 14 chemically modified. Then, the organic solvent A is replaced with an organic solvent B having a boiling point lower than that of the organic solvent A using a filter press. Also, a primer layer 13 having a good affinity for titanium dioxide is applied to the base material 6, and an organic solvent B in which the titanium dioxide particles 2 are dispersed is applied to the surface of the primer layer 13, and this is heated and dried to form a water vapor atmosphere The titanium tetrachloride 14 chemically modified on the surface of the titanium dioxide particles 2 and the titanium tetrachloride 14 chemically modified on the surface of the adjacent titanium dioxide particles 2 are subjected to a hydrolysis reaction. The photocatalyst layer 5 is formed.
[0039]
With the above configuration, since the surface of the photocatalyst layer 5 is composed entirely of a titanium dioxide component from the primer layer 13, the photocatalytic activity is not impaired without being buried in the binder, and when irradiated with near ultraviolet light, the photocatalytic activity There is no decline. In addition, the photocatalyst layer 5 can be formed and supported at a low heating temperature of 200 ° C. or less at which the organic solvent is dried.
[0040]
In addition, a decanter or a column may be used instead of the filter press, and there is no difference in the effect.
[0041]
As described above, according to the supporting method for forming the photocatalyst layer of the fourth embodiment of the present invention, the photocatalytic activity does not decrease when irradiated with near-ultraviolet light, and the photocatalytic activity is not impaired without being buried in the binder. The photocatalyst layer can be formed at a low heating temperature of 200 ° C. or lower.
[0042]
【The invention's effect】
As is clear from the above examples, according to the present invention, the fluororesin fine particles fused to the whisker and the base material are fused, and further, the fluororesin fine particles fused to the photocatalyst particles are fused to the whisker. In addition, it is possible to provide a supporting method capable of forming a photocatalyst layer with enhanced strength without being buried in the binder, without impairing the photocatalytic activity, without decomposing the binder .
[0043]
Further, since the glass fine particles transmit near-ultraviolet light, the photocatalytic activity hardly deteriorates , the photocatalytic activity is not impaired without being buried in the binder, and a durable photocatalytic layer that does not decompose during photocatalytic activity is formed. Can be provided.
[0044]
In addition, since the metal fine particles have good affinity with the metal base material, the adhesion with the base material is great even without applying a primer, and the photocatalytic activity is not impaired without being buried in the binder. A supporting method capable of forming a photocatalyst layer having high strength can be provided.
[0045]
In addition, since the photocatalyst layer is composed entirely of a titanium dioxide component having photocatalytic activity from the surface of the primer layer, there is no decrease in photocatalytic activity when irradiated with near ultraviolet light, and photocatalytic activity is not buried in the binder. It is possible to provide a supporting method that can form a photocatalyst layer without being damaged and that can form a photocatalyst layer even when the organic solvent is dried at 200 ° C. or lower.
[Brief description of the drawings]
[1] first reference example cross-section of the photocatalytic layer of the first embodiment of a cross-sectional view [FIG 3] invention of the first reference example of the photocatalyst sectional view the present invention; FIG photocatalyst layer of the present invention Figure sectional view of a reinforcing member in the first embodiment of the invention, FIG 5 shows a third embodiment of the photocatalyst layer of the present cross-sectional view of a photocatalyst layer of the second embodiment of the invention the present invention; FIG sectional view of the photocatalyst of the fourth embodiment of a cross-sectional view sectional view of the photocatalytic layer of the fourth embodiment of the present invention; FIG 8 the invention [description of symbols]
DESCRIPTION OF SYMBOLS 1 Photocatalyst body 2 Titanium dioxide particle 4 Fluororesin fine particle 5 Photocatalyst layer 6 Base material 8 Reinforcement material 9 Potassium titanate whisker 10 Glass fine particle 12 Metal fine particle 14 Titanium tetrachloride

Claims (4)

ウィスカーの表面にフッ素樹脂微粒子を融着させてなる補強材を、光触媒粒子の表面にフッ素樹脂微粒子を融着させてなる光触媒体と共に、基材に塗布し、加熱し、光触媒層を形成する担持方法。  A reinforcing material formed by fusing fluororesin fine particles on the surface of whiskers is applied to a substrate together with a photocatalyst formed by fusing fluororesin fine particles on the surface of photocatalyst particles, and heated to form a photocatalyst layer. Method. 光触媒粒子の表面にガラス微粒子を融着させてなる光触媒体を、基材に塗布し、加熱し、光触媒層を形成する担持方法。A supporting method in which a photocatalyst formed by fusing glass particles on the surface of photocatalyst particles is applied to a substrate and heated to form a photocatalyst layer. 光触媒粒子の表面に金属微粒子を融着させてなる光触媒体を、基材に塗布し、加熱し、光触媒層を形成する担持方法。A supporting method in which a photocatalyst formed by fusing metal fine particles to the surface of photocatalyst particles is applied to a substrate and heated to form a photocatalyst layer. 光触媒粒子の表面に四塩化チタンを化学修飾させてなる光触媒体を、基材に塗布し、加熱し、光触媒層を形成する担持方法。A supporting method in which a photocatalyst formed by chemically modifying titanium tetrachloride on the surface of photocatalyst particles is applied to a substrate and heated to form a photocatalyst layer.
JP06087894A 1994-03-30 1994-03-30 Supporting method for forming a photocatalyst layer Expired - Fee Related JP3693363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06087894A JP3693363B2 (en) 1994-03-30 1994-03-30 Supporting method for forming a photocatalyst layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06087894A JP3693363B2 (en) 1994-03-30 1994-03-30 Supporting method for forming a photocatalyst layer

Publications (2)

Publication Number Publication Date
JPH07265714A JPH07265714A (en) 1995-10-17
JP3693363B2 true JP3693363B2 (en) 2005-09-07

Family

ID=13155081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06087894A Expired - Fee Related JP3693363B2 (en) 1994-03-30 1994-03-30 Supporting method for forming a photocatalyst layer

Country Status (1)

Country Link
JP (1) JP3693363B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224123B2 (en) * 1995-09-05 2001-10-29 日本曹達株式会社 Instrument cover glass
JP3588206B2 (en) * 1995-12-22 2004-11-10 東陶機器株式会社 Self-cleaning road decorative panel, and method of cleaning road decorative panel
JP3588205B2 (en) * 1995-12-22 2004-11-10 東陶機器株式会社 Self-cleaning guard fence and method of cleaning guard fence
JP3882625B2 (en) * 1995-12-22 2007-02-21 東陶機器株式会社 Sound insulation wall and cleaning method for sound insulation wall
JPH09249871A (en) * 1996-03-14 1997-09-22 Toli Corp Ltd Stainproofing and deodorizing structure and interior material utilizing the same structure
JP3850916B2 (en) * 1996-04-22 2006-11-29 飯村 惠次 Toilet seat sterilizer
TWI280893B (en) * 2005-12-23 2007-05-11 Ind Tech Res Inst Nano photocatalytic solution and application thereof
JP5157561B2 (en) * 2007-03-20 2013-03-06 新日鐵住金株式会社 Visible light responsive photocatalyst and method for producing the same
WO2009116181A1 (en) * 2008-03-21 2009-09-24 住友金属工業株式会社 Visible light-responsive photocatalyst and method for producing the same
WO2014055473A2 (en) * 2012-10-04 2014-04-10 Arkema Inc. Porous separation article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374143B2 (en) * 1991-03-14 2003-02-04 日本電池株式会社 Photocatalyst
JPH06385A (en) * 1992-06-24 1994-01-11 Hitachi Ltd Water repellent photocatalyst and device for treating exhaust gas
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same

Also Published As

Publication number Publication date
JPH07265714A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
JP2918787B2 (en) Photocatalyst and method for producing the same
JP3693363B2 (en) Supporting method for forming a photocatalyst layer
Liu et al. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly
Tatsuma et al. TiO2− WO3 photoelectrochemical anticorrosion system with an energy storage ability
Zhang et al. Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces
JP5157561B2 (en) Visible light responsive photocatalyst and method for producing the same
KR100993457B1 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
WO1995015816A1 (en) Multi-functional material having photo-catalytic function and production method therefor
JP3894144B2 (en) Titanium oxide photocatalyst and its production method and application
JPH07155598A (en) Photocatalyst coating film and its formation
JPWO2004078347A1 (en) Photocatalyst
JP2005068001A (en) Fibrous titanium oxide particle, production method therefor, and application of the particle
US11772086B2 (en) Multifunctional self-cleaning surface layer and methods of forming the same
JP3027739B2 (en) Photocatalyst and method for producing the same
JP3729880B2 (en) Method for supporting titanium dioxide particles
JP2971169B2 (en) Photocatalytic composite material
JPH10314598A (en) Antifouling method using photocatalyst, antifouling film and antifouling product
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
JP5604197B2 (en) Cerium oxide catalyst support for VOC decomposition
JP2019051496A (en) Coating material, photocatalyst carrying magnetic material using the same, and manufacturing method thereof
JPH09314714A (en) Functional film and article having it
JP4347925B2 (en) Photocatalyst and method for producing the same
JP3389187B2 (en) Film type photocatalyst
JP4629700B2 (en) Set of photocatalyst and coating composition for forming the same
JPH1060665A (en) Hydrophilic coating film and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees