JP3588205B2 - Self-cleaning guard fence and method of cleaning guard fence - Google Patents
Self-cleaning guard fence and method of cleaning guard fence Download PDFInfo
- Publication number
- JP3588205B2 JP3588205B2 JP28895496A JP28895496A JP3588205B2 JP 3588205 B2 JP3588205 B2 JP 3588205B2 JP 28895496 A JP28895496 A JP 28895496A JP 28895496 A JP28895496 A JP 28895496A JP 3588205 B2 JP3588205 B2 JP 3588205B2
- Authority
- JP
- Japan
- Prior art keywords
- guard fence
- self
- surface layer
- cleaning
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 38
- 238000004140 cleaning Methods 0.000 title claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- 239000002344 surface layer Substances 0.000 claims description 47
- 239000011941 photocatalyst Substances 0.000 claims description 23
- 239000010410 layer Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 230000001699 photocatalysis Effects 0.000 claims description 14
- 229920001296 polysiloxane Polymers 0.000 claims description 12
- 230000001443 photoexcitation Effects 0.000 claims description 10
- 239000011973 solid acid Substances 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 239000000356 contaminant Substances 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 50
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 37
- 238000000576 coating method Methods 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- 238000012643 polycondensation polymerization Methods 0.000 description 10
- 230000007062 hydrolysis Effects 0.000 description 9
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229920003051 synthetic elastomer Polymers 0.000 description 8
- 239000005061 synthetic rubber Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 238000003618 dip coating Methods 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- -1 titanium alkoxide Chemical class 0.000 description 5
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- XGZNHFPFJRZBBT-UHFFFAOYSA-N ethanol;titanium Chemical compound [Ti].CCO.CCO.CCO.CCO XGZNHFPFJRZBBT-UHFFFAOYSA-N 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- INNSZZHSFSFSGS-UHFFFAOYSA-N acetic acid;titanium Chemical compound [Ti].CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O INNSZZHSFSFSGS-UHFFFAOYSA-N 0.000 description 3
- 239000013522 chelant Substances 0.000 description 3
- 239000002772 conduction electron Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229920000114 Corrugated plastic Polymers 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- ZEIWWVGGEOHESL-UHFFFAOYSA-N methanol;titanium Chemical compound [Ti].OC.OC.OC.OC ZEIWWVGGEOHESL-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- VLBIHEXPWXMGMA-UHFFFAOYSA-N CC(CC)O[Si](OCCC)(C)C=CC Chemical compound CC(CC)O[Si](OCCC)(C)C=CC VLBIHEXPWXMGMA-UHFFFAOYSA-N 0.000 description 1
- 230000010802 Oxidation-Reduction Activity Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- YSALUHGLIBYTET-UHFFFAOYSA-N benzyl(dibutoxy)silane Chemical compound CCCCO[SiH](OCCCC)CC1=CC=CC=C1 YSALUHGLIBYTET-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- MGQFVQQCNPBJKC-UHFFFAOYSA-N dibutoxy(diethyl)silane Chemical compound CCCCO[Si](CC)(CC)OCCCC MGQFVQQCNPBJKC-UHFFFAOYSA-N 0.000 description 1
- GQNWJCQWBFHQAO-UHFFFAOYSA-N dibutoxy(dimethyl)silane Chemical compound CCCCO[Si](C)(C)OCCCC GQNWJCQWBFHQAO-UHFFFAOYSA-N 0.000 description 1
- ZMAPKOCENOWQRE-UHFFFAOYSA-N diethoxy(diethyl)silane Chemical compound CCO[Si](CC)(CC)OCC ZMAPKOCENOWQRE-UHFFFAOYSA-N 0.000 description 1
- MNFGEHQPOWJJBH-UHFFFAOYSA-N diethoxy-methyl-phenylsilane Chemical compound CCO[Si](C)(OCC)C1=CC=CC=C1 MNFGEHQPOWJJBH-UHFFFAOYSA-N 0.000 description 1
- VSYLGGHSEIWGJV-UHFFFAOYSA-N diethyl(dimethoxy)silane Chemical compound CC[Si](CC)(OC)OC VSYLGGHSEIWGJV-UHFFFAOYSA-N 0.000 description 1
- BZCJJERBERAQKQ-UHFFFAOYSA-N diethyl(dipropoxy)silane Chemical compound CCCO[Si](CC)(CC)OCCC BZCJJERBERAQKQ-UHFFFAOYSA-N 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- CVQVSVBUMVSJES-UHFFFAOYSA-N dimethoxy-methyl-phenylsilane Chemical compound CO[Si](C)(OC)C1=CC=CC=C1 CVQVSVBUMVSJES-UHFFFAOYSA-N 0.000 description 1
- ZIDTUTFKRRXWTK-UHFFFAOYSA-N dimethyl(dipropoxy)silane Chemical compound CCCO[Si](C)(C)OCCC ZIDTUTFKRRXWTK-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- KUCGHDUQOVVQED-UHFFFAOYSA-N ethyl(tripropoxy)silane Chemical compound CCCO[Si](CC)(OCCC)OCCC KUCGHDUQOVVQED-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- RJMRIDVWCWSWFR-UHFFFAOYSA-N methyl(tripropoxy)silane Chemical compound CCCO[Si](C)(OCCC)OCCC RJMRIDVWCWSWFR-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- FABOKLHQXVRECE-UHFFFAOYSA-N phenyl(tripropoxy)silane Chemical compound CCCO[Si](OCCC)(OCCC)C1=CC=CC=C1 FABOKLHQXVRECE-UHFFFAOYSA-N 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- GIHPVQDFBJMUAO-UHFFFAOYSA-N tributoxy(ethyl)silane Chemical compound CCCCO[Si](CC)(OCCCC)OCCCC GIHPVQDFBJMUAO-UHFFFAOYSA-N 0.000 description 1
- GYZQBXUDWTVJDF-UHFFFAOYSA-N tributoxy(methyl)silane Chemical compound CCCCO[Si](C)(OCCCC)OCCCC GYZQBXUDWTVJDF-UHFFFAOYSA-N 0.000 description 1
- INUOIYMEJLOQFN-UHFFFAOYSA-N tributoxy(phenyl)silane Chemical compound CCCCO[Si](OCCCC)(OCCCC)C1=CC=CC=C1 INUOIYMEJLOQFN-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/20—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
- F24F8/22—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2245/00—Coatings; Surface treatments
- F28F2245/02—Coatings; Surface treatments hydrophilic
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、降雨により自己浄化(セルフクリーニング)可能なガードフェンス、及びそのセルフクリーニング方法に関する。
【0002】
【従来の技術】
走行車の道路、走行車線、橋梁からの離脱防止や、歩道を歩く歩行者の隣接する車線を走る走行車からの保護等を目的としてガードフェンスが使用されている。ガードフェンスには、ガードレール、ガードケーブル、ガードパイプの3種がある。このうち、ガードレールが最も汎用性が高いが、歩道用途では市街地を中心にガードパイプが使用されるようになっている。
ガードフェンスには、アルミニウム板、鋼板、ステンレス板、チタン板等が使用されている。
【0003】
【発明の解決すべき課題】
ガードフェンスは、排気ガス中の煤煙やタイヤの摩耗粉や路面や大地から舞い上がった煤塵によって汚れる。ガードフェンスが薄黒く汚れると不快な印象を与え、景観が損なわれる。
本発明の目的は、降雨により自己清浄化可能なガードフェンス及びその降雨によるセルフクリーニング方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、光触媒を含有する表面層を形成した部材において、光触媒を光励起すると、部材の表面が高度に親水化されるという発見に基づく。
この現象は以下に示す機構により進行すると考えられる。すなわち、光触媒の価電子帯上端と伝導帯下端とのエネルギーギャップ以上のエネルギーを有する光が光触媒に照射されると、光触媒の価電子帯中の電子が励起されて伝導電子と正孔が生成し、そのいずれかまたは双方の作用により、おそらく表面に極性が付与され、水や水酸基等の極性成分が集められる。そして伝導電子と正孔のいずれかまたは双方と、上記極性成分との協調的な作用により、表面と前記表面に化学的に吸着した汚染物質との化学結合を切断すると共に、表面に化学吸着水が吸着し、さらに物理吸着水層がその上に形成されるのである。
また、一旦部材表面が高度に親水化されたならば、部材を暗所に保持しても、表面の親水性はある程度の期間持続する。
【0005】
本発明では、ガードフェンス基材の表面に、実質的に透明な光触媒性酸化物粒子を含有する表面層を備えたセルフクリーニング性ガードフェンスを提供する。光触媒性酸化物粒子を含有する表面層を備えることにより、光触媒の光励起に応じて、表面層の表面は親水性を呈し、ガードフェンス表面が、降雨にさらされた時に、付着堆積物及び/又は汚染物が雨滴により洗い流されるようになる。
【0006】
本発明の好ましい態様においては、表面層には、さらにシリカが含有されているようにする。
シリカが含有されることにより、表面が水濡れ角0゜に近い高度の親水性を呈しやすくなると共に、暗所に保持したときの親水維持性が向上する。その理由はシリカは構造中に水を蓄えることができることと関係していると思われる。
【0007】
本発明の好ましい態様においては、表面層には、さらに固体酸が含有されているようにする。
固体酸が含有されることにより、表面が水濡れ角0゜に近い高度の親水性を呈しやすくなると共に、暗所に保持したときの親水維持性が向上する。その理由は表面層に固体酸が含有されると、表面の極性が、光の有無にかかわらず極端に大きな状態にあるために、疎水性分子よりも極性分子である水分子を選択的に吸着させやすい。そのため安定な物理吸着水層が形成されやすく、暗所に保持しても、表面の親水性をかなり長期にわたり高度に維持できる。
【0008】
本発明の好ましい態様においては、表面層には、さらにシリコーンが含有されているようにする。
シリコーンが含有されることにより、光触媒の光励起によって、シリコーン中のシリコン原子に結合する有機基の少なくとも一部が水酸基に置換され、さらにその上に物理吸着水層が形成されることにより、表面が水濡れ角0゜に近い高度の親水性を呈するようになると共に、暗所に保持したときの親水維持性が向上する。
【0009】
【発明の実施の形態】
次に、本発明の具体的な構成について説明する。
本発明におけるガードフェンス表面には、図1又は図2に示すように、基材の表面に光触媒(結晶)性酸化物等を含む層が形成されている。
このような表面構造をとることで、ガードフェンスの表面は、光触媒の光励起に応じて高度に親水化されるのである。
それにより、降雨により前記表面層の表面に付着する堆積物及び/又は汚染物が雨滴により洗い流されるようになる。
【0010】
図1においては、表面層が光触媒性酸化物粒子のみからなる。この場合、光触媒が酸化物からなることにより、酸化物は環境中の汚染物質が吸着していない状態では親水性を示すので、光励起作用によりその汚染物質を排斥させ、吸着水層を形成させることで、親水性を呈しやすく、一様な水膜が形成できる。
図2において、Mは金属元素を示す。従って、図2の場合、最表面は一般の無機酸化物からなる。この場合も、酸化物は環境中の汚染物質が吸着していない状態では親水性を示すので、上記無機酸化物以外に表面層に混入する光触媒性酸化物の光励起作用によりその汚染物質を排斥させ、吸着水層を形成させることで、一様な水膜が形成できる。
【0011】
本発明が利用できるガードフェンス基材には、アルミニウム板、鋼板、ステンレス板、チタン板等が使用できる。
ここでガードフェンス基材が鋼板、ステンレス板等のFe、Ni、Coのいずれかの原子を含有する基材である場合に、基材上に上記表面層を形成するには基材と表面層の間に中間層を設けたほうがよい。Fe、Ni、Coのいずれかの原子が表面層に混入すると、親水化速度が低下するからである。
【0012】
光触媒とは、その結晶の伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)の光(励起光)を照射したときに、価電子帯中の電子の励起(光励起)が生じて、伝導電子と正孔を生成しうる物質をいい、光触媒性酸化チタンとは、例えば、アナターゼ型酸化チタン、ルチル型酸化チタン等の結晶性酸化チタンをいう。
ここで光触媒の光励起に用いる光源は、日中は太陽の照射に晒されるので、太陽光が利用できる。また、夜間は道路照明や走行車の照明灯を光源として利用できる。
光触媒の光励起により、基材表面が高度に親水化されるためには、励起光の照度は、0.001mW/cm2以上あればよいが、0.01mW/cm2以上だと好ましく、0. 1mW/cm2以上だとより好ましい。
【0013】
光触媒性酸化チタンを含有する表面層の膜厚は、0.4μm以下にするのが好ましい。そうすれば、光の乱反射による白濁を防止することができ、表面層は実質的に透明となる。
さらに、光触媒性酸化チタンを含有する表面層の膜厚を0.2μm以下にすると一層好ましい。そうすれば、光の干渉による表面層の発色を防止することができる。
また、表面層が薄ければ薄いほどその透明度は向上する。更に、膜厚を薄くすれば、表面層の耐摩耗性が向上する。
上記表面層の表面に、更に、親水化可能な耐摩耗性又は耐食性の保護層や他の機能膜を設けても良い。
【0014】
上記表面層には、Ag、Cu、Znのような金属を添加することができる。前記金属を添加した表面層は、表面に付着した細菌や黴を暗所でも死滅させることができる。
【0015】
上記表面層には、pt、Pd、Ru、Rh、Ir、Osのような白金族金属を添加することができる。前記金属を添加した表面層は、光触媒の酸化還元活性を増強でき、脱臭浄化作用等が向上する。
また、光触媒以外に固体酸を添加した場合には、白金族金属の添加により固体酸の酸度が向上するので、親水維持性も向上し、付着水の水膜化がより促進されると共に、ある程度長期間光触媒に励起光が照射されない場合の親水維持性も向上する。
上記表面層には、Moが添加されていてもよい。この場合にも添加により固体酸の酸度が向上するので、親水維持性も向上し、付着水の水膜化がより促進されると共に、ある程度長期間光触媒に励起光が照射されない場合の親水維持性も向上する。
【0016】
親水性とは、表面に水を滴下したときになじみやすい性質をいい、一般に水濡れ角が90゜未満の状態をいう。本発明における高度の親水性とは、表面に水を滴下したときに非常になじみやすい性質をいい、より具体的には水濡れ角が10゜以下程度になる状態をいう。
特に、防曇性にはPCT/JP96/00734に開示したように、水濡れ角が10゜以下であると好ましく、5゜以下ではより好ましい。
【0017】
本発明における固体酸には、硫酸担持Al2O3、硫酸担持TiO2、硫酸担持ZrO2、硫酸担持SnO2、硫酸担持Fe2O3、硫酸担持SiO2、硫酸担持HfO2、TiO2/WO3、WO3/SnO2、WO3/ZrO2、WO3/Fe2O3、SiO2・Al2O3、TiO2/SiO2、TiO2/Al2O3、TiO2/ZrO2等が好適に利用できる。
【0018】
次に、表面層の形成方法について説明する。
まず表面層が光触媒性酸化物のみからなる場合の製法について、光触媒がアナターゼ型酸化チタンの場合を例にとり説明する。この場合の方法は、大別して3つの方法がある。1つの方法はゾル塗布焼成法であり、他の方法は有機チタネート法であり、他の方法は電子ビーム蒸着法である。
(1)ゾル塗布焼成法
アナターゼ型酸化チタンゾルを、基材表面に、スプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、焼成する。
(2)有機チタネート法
チタンアルコキシド(テトラエトキシチタン、テトラメトキシチタン、テトラプロポキシチタン、テトラブトキシチタン等)、チタンアセテート、チタンキレート等の有機チタネートに加水分解抑制剤(塩酸、エチルアミン等)を添加し、アルコール(エタノール、プロパノール、ブタノール等)などの非水溶媒で希釈した後、部分的に加水分解を進行させながら又は完全に加水分解を進行させた後、混合物をスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、乾燥させる。乾燥により、有機チタネートの加水分解が完遂して水酸化チタンが生成し、水酸化チタンの脱水縮重合により無定型酸化チタンの層が基材表面に形成される。その後、アナターゼの結晶化温度以上の温度で焼成して、無定型酸化チタンをアナターゼ型酸化チタンに相転移させる。
(3)電子ビーム蒸着法
酸化チタンのターゲットに電子ビームを照射することにより、基材表面に無定型酸化チタンの層を形成する。その後、アナターゼの結晶化温度以上の温度で焼成して、無定型酸化チタンをアナターゼ型酸化チタンに相転移させる。
【0019】
次に、表面層が光触媒性酸化物とシリカからなる場合について、光触媒がアナターゼ型酸化チタンの場合を例にとり説明する。この場合の方法は、例えば、以下の3つの方法がある。1つの方法はゾル塗布焼成法であり、他の方法は有機チタネート法であり、他の方法は4官能性シラン法である。
(1)ゾル塗布焼成法
アナターゼ型酸化チタンゾルとシリカゾルとの混合液を、基材表面にスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、焼成する。
(2)有機チタネート法
チタンアルコキシド(テトラエトキシチタン、テトラメトキシチタン、テトラプロポキシチタン、テトラブトキシチタン等)、チタンアセテート、チタンキレート等の有機チタネートに加水分解抑制剤(塩酸、エチルアミン等)とシリカゾルを添加し、アルコール(エタノール、プロパノール、ブタノール等)などの非水溶媒で希釈した後、部分的に加水分解を進行させながら又は完全に加水分解を進行させた後、混合物をスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、乾燥させる。乾燥により、有機チタネートの加水分解が完遂して水酸化チタンが生成し、水酸化チタンの脱水縮重合により無定型酸化チタンの層が基材表面に形成される。その後、アナターゼの結晶化温度以上の温度で焼成して、無定型酸化チタンをアナターゼ型酸化チタンに相転移させる。
(3)4官能性シラン法
テトラアルコキシシラン(テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラメトキシシラン等)とアナターゼ型酸化チタンゾルとの混合物を基材の表面にスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、必要に応じて加水分解させてシラノールを形成した後、加熱等の方法でシラノールを脱水縮重合に付す。
【0020】
次に、表面層が光触媒性酸化物と固体酸からなる場合について、光触媒がアナターゼ型酸化チタン、固体酸がTiO2/WO3の場合を例にとり説明する。この場合の方法は、タングステン酸のアンモニア溶解液とアナターゼ型酸化チタンゾルとを混合し、必要に応じて希釈液(水、エタノール等)で希釈した混合物を基材の表面にスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、焼成する。
他の方法は、電子ビーム蒸着や、チタンアルコキシド、チタンアセテート、チタンキレート等の有機チタネートの加水分解及び脱水縮重合により、無定型酸化チタン被膜を形成後、タングステン酸を塗布し、その後、無定型酸化チタンが結晶化し、かつTiO2/WO3複合酸化物が生成する温度で熱処理する。
【0021】
次に、表面層が光触媒性酸化物とシリコーンからなる場合について、光触媒がアナターゼ型酸化チタンの場合を例にとり説明する。この場合の方法は、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗料とアナターゼ型酸化チタンゾルとを混合し、シリコーンの前駆体を必要に応じて加水分解させた後、混合物を基材の表面にスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法等の方法で塗布し、加熱等の方法でシリコーンの前駆体の加水分解物を脱水縮重合に付して、アナターゼ型酸化チタン粒子とシリコーンからなる表面層を形成する。形成された表面層は、紫外線を含む光の照射によりアナターゼ型酸化チタンが光励起されることにより、シリコーン分子中のケイ素原子に結合した有機基の少なくとも一部を水酸基に置換され、さらにその上に物理吸着水層が形成されて、高度の親水性を呈する。
ここでシリコーンの前駆体には、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリブトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリブトキシシラン、エチルトリプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリブトキシシラン、フェニルトリプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジブトキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジブトキシシラン、ジエチルジプロポキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルメチルジブトキシシラン、フェニルメチルジプロポキシシラン、γ−グリシドキシプロピルトリメトキシシラン、及びそれらの加水分解物、それらの混合物が好適に利用できる。
【0022】
【実施例】
実施例1.
10cm角のアルミニウム板の表面にシリカゾル(日本合成ゴム、グラスカA液、固形分20重量%、pH=4)3重量部を混合後、メチルトリメトキシシラン(日本合成ゴム、グラスカB液)1重量部とエタノールを添加し、さらに2時間撹拌し、メチルトリメトキシシランを部分的に加水分解反応と脱水縮重合反応に付することにより、コーティング液を調製した。
このコーティング液をフローコーティング法により塗布した後、150℃で30分間加熱し、アルミニウム板の表面にベースコート層を形成した。
次に、アナターゼ型酸化チタンゾル(日産化学、TA−15、固形分15重量%、硝酸解膠型、pH=1)56重量部と、シリカゾル(日本合成ゴム、グラスカA液、固形分20重量%、pH=4)33重量部を混合後、メチルトリメトキシシラン(日本合成ゴム、グラスカB液)11重量部とエタノールを添加し、さらに2時間撹拌し、メチルトリメトキシシランを部分的に加水分解反応と脱水縮重合反応に付することにより、コーティング液を調製した。
このコーティング液をフローコーティング法により、ベースコート層の表面に塗布した後、150℃で30分間加熱して、表面層を形成した。
次に、コーティング液を塗布した面に、紫外線光源((三共電気、ブラックライトブルー(BLB)蛍光灯)を用いて0.5mW/cm2の紫外線照度で約3日紫外線を照射し、#1試料を得た。
比較のため、アルミニウム板#2試料も準備した。
#1試料と#2試料に水滴を滴下し、水との接触角の測定を行った。ここで水との接触角は接触角測定器(協和界面科学、CA−X150)を用い、滴下後30秒後の水との接触角で評価した。その結果、#2試料では水との接触角が50゜と高い値を示したのに対し、#1試料では水との接触角が0゜と高度の親水性を示した。
【0023】
次に、#1試料、#2試料を屋外に設置して、降雨によるセルフクリーニング性について調べた。
降雨によるセルフクリーニング性は以下のようにして試験した。すなわち、茅ケ崎市所在の建物の屋上に3図及び4図に示す屋外汚れ加速試験装置を設置した。3図及び4図を参照するに、この装置は、フレーム20に支持された傾斜した試料支持面22を備え、試料24を取り付けるようになっている。フレームの頂部には前方に傾斜した屋根26が固定してある。この屋根は波形プラスチック板からなり、集まった雨が試料支持面22に取り付けた試料24の表面に筋を成して流下するようになっている。
この装置の試料支持面22に#1試料を取り付け、1995年6月12日から1か月間天候条件に暴露した。この間梅雨時のため、頻繁に雨が降った。
1か月後に観察したところ、汚れは観察されなかった。その様子を加速試験装置取り付け前後に最も顕著に汚れた部分の色差変化で調べた。ここで色差は色差計(東京電色)を用い、日本工業規格(JIS)H0201に従い、ΔE*表示を用いて調べた。その結果、色差変化は0.8と非常に小さかった。
【0024】
実施例2.
10cm角のステンレス板の表面にシリカゾル(日本合成ゴム、グラスカA液、固形分20重量%、pH=4)3重量部を混合後、メチルトリメトキシシラン(日本合成ゴム、グラスカB液)1重量部とエタノールを添加し、さらに2時間撹拌し、メチルトリメトキシシランを部分的に加水分解反応と脱水縮重合反応に付することにより、コーティング液を調製した。
このコーティング液をフローコーティング法により塗布した後、150℃で30分間加熱し、ステンレス板の表面にベースコート層を形成した。
次に、アナターゼ型酸化チタンゾル(日産化学、TA−15、固形分15重量%、硝酸解膠型、pH=1)56重量部と、シリカゾル(日本合成ゴム、グラスカA液、固形分20重量%、pH=4)33重量部を混合後、メチルトリメトキシシラン(日本合成ゴム、グラスカB液)11重量部とエタノールを添加し、さらに2時間撹拌し、メチルトリメトキシシランを部分的に加水分解反応と脱水縮重合反応に付することにより、コーティング液を調製した。
このコーティング液をフローコーティング法により、ベースコート層の表面に塗布した後、150℃で30分間加熱して、表面層を形成した。
次に、コーティング液を塗布した面に、紫外線光源((三共電気、ブラックライトブルー(BLB)蛍光灯)を用いて0.5mW/cm2の紫外線照度で約3日紫外線を照射し、#3試料を得た。
比較のため、ステンレス板#4試料も準備した。
#3試料と#4試料に水滴を滴下し、水との接触角の測定を行った。その結果、#4試料では水との接触角が60゜と高い値を示したのに対し、#3試料では水との接触角が0゜と高度の親水性を示した。
【0025】
次に、#3試料を屋外に設置して、降雨によるセルフクリーニング性について調べた。
降雨によるセルフクリーニング性は以下のようにして試験した。すなわち、茅ケ崎市所在の建物の屋上に3図及び4図に示す屋外汚れ加速試験装置を設置した。3図及び4図を参照するに、この装置は、フレーム20に支持された傾斜した試料支持面22を備え、試料24を取り付けるようになっている。フレームの頂部には前方に傾斜した屋根26が固定してある。この屋根は波形プラスチック板からなり、集まった雨が試料支持面22に取り付けた試料24の表面に筋を成して流下するようになっている。
この装置の試料支持面22に#3試料を取り付け、1995年6月12日から1か月間天候条件に暴露した。この間梅雨時のため、頻繁に雨が降った。
1か月後に観察したところ、汚れは観察されなかった。その様子を加速試験装置取り付け前後に最も顕著に汚れた部分の色差変化で調べた。ここで色差は色差計(東京電色)を用い、日本工業規格(JIS)H0201に従い、ΔE*表示を用いて調べた。その結果、色差変化は0.9と非常に小さかった。
【0026】
実施例3.
10cm角のステンレス板を濃度3.5重量%のテトラエトキシシラン溶液
(希釈剤:エタノール、加水分解触媒:塩酸)に浸漬後、毎分24cmの速度で引き上げて、溶液をディップコーティング法により、ステンレス板の表面に塗布し、乾燥させた。ここまでの工程により、テトラエトキシシランは加水分解を受けてシラノール基が生成し、続いてシラノール基が脱水縮重合して、無定型シリカを主要成分とする薄膜が表面に形成された。
次に、濃度3.5重量%のテトラエトキシチタン溶液(希釈剤:エタノール、加水分解触媒:塩酸)に浸漬後、毎分24cmの速度で引き上げて、溶液をディップコーティング法により、ステンレス板の表面に塗布し、乾燥させて、#5試料を得た。ここまでの工程により、テトラエトキシチタンは加水分解を受けて水酸基が生成し、続いて水酸基が脱水縮重合して、無定型酸化チタンを主要成分とする薄膜が表面に形成された。
次に、#5試料表面を、コロナ放電処理(春日電機)により、電極にワイヤー電極を用い、電極先端と試料表面とのギャップ2mm、電圧26kV、周波数39kHz、試料送り速度4.2m/分の条件で、高周波コロナ放電処理することにより脱アルキル処理した。
次に、#5試料表面を、1重量%のタングステン酸溶液(溶媒:アンモニア水)に浸漬後、毎分24cmの速度で引き上げて、溶液をディップコーティング法により、表面に塗布し、500℃で焼成して#6試料を得た。焼成により、無定型酸化チタンが結晶化してアナターゼ型酸化チタンが生成した。
次に、この#6試料を数日間暗所に放置した後、BLB蛍光灯を用いて試料の表面に0.5mW/cm2の紫外線照度で約1時間紫外線を照射し、#7試料を得た。比較のため、10cm角のステンレス板を数日間暗所に放置した#8試料も準備した。
まず、#7試料と#8試料に水滴を滴下し、滴下後の様子の観察及び水との接触角の測定を行った。
その結果#7試料はマイクロシリンジから試料表面に水滴を滴下されると、水滴が一様に水膜状に試料表面を拡がる様子が観察された。また30秒後の水との接触角は約0゜まで高度に親水化されていた。
それに対し、#8試料ではマイクロシリンジから試料表面に水滴を滴下されると、水滴は表面になじんでいくものの、一様に水膜状になるまでには至らなかった。また30秒後の水との接触角は60゜であった。
さらに、#8試料を、その後2日間暗所に放置し、#9試料を得た。そして#9試料について、同様に水との接触角を接触角測定器により測定した。
その結果、#9試料にマイクロシリンジから試料表面に水滴を滴下されると、#7試料と同様に、水滴が一様に水膜状に試料表面を拡がる様子が観察された。また水との接触角は約1゜に維持された。
【0027】
次に#7試料の表面にオレイン酸を塗布し、試料表面を水平姿勢に保持しながら夫々の試料を水槽に満たした水の中に浸漬した。その結果、オレイン酸は丸くなり、軽くこすると表面から離脱した。
【0028】
次に、疎水性カーボンブラック1重量部、親水性カーボンブラック1重量部からなる粉体混合物を1.05g/リッターの濃度で水に懸濁させたスラリーを調製した。
45度に傾斜させた#7試料に上記スラリー150mlを流下させて15分間乾燥させ、次いで蒸留水150mlを流下させて15分間乾燥させ、このサイクルを25回反復した。試験前後の色差変化を、色差計(東京電色)を用いて計測した。色差は日本工業規格(JIS)H0201に従い、ΔE*表示を用いて評価した。その結果、#7試料の試験前後の色差変化は0.4とほとんど変化しなかった。
【0029】
【発明の効果】
本発明では、ガードフェンス基材の表面に、光触媒性酸化物粒子を含有する表面層を備えることにより、光触媒の光励起に応じて、表面層の表面は親水性を呈する。それにより、降雨により前記表面層の表面はセルフクリーニングされるようになる。
【図面の簡単な説明】
【図1】本発明に係るガードフェンスの表面構造を示す図。
【図2】本発明に係るガードフェンスの他の表面構造を示す図。
【図3】本発明の実施例に係る屋外汚れ加速試験装置の正面図。
【図4】本発明の実施例に係る屋外汚れ加速試験装置の側面図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a guard fence capable of self-cleaning (self-cleaning) by rainfall and a self-cleaning method thereof.
[0002]
[Prior art]
A guard fence is used for the purpose of preventing a traveling vehicle from leaving a road, a traveling lane, or a bridge, protecting a traveling vehicle running in a lane adjacent to a pedestrian walking on a sidewalk, and the like. There are three types of guard fences: guardrails, guard cables, and guard pipes. Among them, guardrails have the highest versatility, but guardrails are used mainly for urban areas in sidewalk applications.
An aluminum plate, a steel plate, a stainless steel plate, a titanium plate or the like is used for the guard fence.
[0003]
[Problems to be solved by the invention]
The guard fence is contaminated by soot in exhaust gas, tire abrasion powder, and dust soaring from the road surface and the ground. If the guard fence becomes dark and dirty, it gives an unpleasant impression and the scenery is damaged.
An object of the present invention is to provide a guard fence capable of self-cleaning by rainfall and a self-cleaning method by the rainfall.
[0004]
[Means for Solving the Problems]
The present invention is based on the discovery that, in a member having a surface layer containing a photocatalyst, when the photocatalyst is photoexcited, the surface of the member is highly hydrophilized.
This phenomenon is considered to proceed by the following mechanism. That is, when light having energy equal to or greater than the energy gap between the upper end of the valence band and the lower end of the conduction band of the photocatalyst is irradiated on the photocatalyst, the electrons in the valence band of the photocatalyst are excited to generate conduction electrons and holes. By either or both actions, polarities are probably imparted to the surface and polar components such as water and hydroxyl groups are collected. Then, by the coordinated action of one or both of the conduction electron and the hole and the polar component, the chemical bond between the surface and the contaminant chemically adsorbed on the surface is cut, and the surface is chemically adsorbed water. Is adsorbed, and a physically adsorbed water layer is formed thereon.
Further, once the surface of the member is highly hydrophilized, the hydrophilicity of the surface is maintained for a certain period even if the member is kept in a dark place.
[0005]
The present invention provides a self-cleaning guard fence having a surface layer containing substantially transparent photocatalytic oxide particles on the surface of a guard fence substrate. By providing the surface layer containing the photocatalytic oxide particles, the surface of the surface layer exhibits hydrophilicity in response to the photoexcitation of the photocatalyst, and when the guard fence surface is exposed to rainfall, the deposited sediment and / or Contaminants will be washed away by raindrops.
[0006]
In a preferred embodiment of the present invention, the surface layer further contains silica.
By containing silica, the surface is likely to exhibit a high degree of hydrophilicity close to a water wetting angle of 0 °, and the hydrophilicity retention when held in a dark place is improved. The reason seems to be related to the fact that silica can store water in its structure.
[0007]
In a preferred embodiment of the present invention, the surface layer further contains a solid acid.
When the solid acid is contained, the surface tends to exhibit a high degree of hydrophilicity near a water wetting angle of 0 °, and the hydrophilicity retention when kept in a dark place is improved. The reason is that when a solid acid is contained in the surface layer, the polarity of the surface is extremely large regardless of the presence or absence of light, so water molecules that are polar molecules are selectively adsorbed rather than hydrophobic molecules. Easy to let. Therefore, a stable physically adsorbed water layer is easily formed, and even if the layer is kept in a dark place, the hydrophilicity of the surface can be maintained at a high level for a considerably long period.
[0008]
In a preferred embodiment of the present invention, the surface layer further contains silicone.
By containing the silicone, at least a part of the organic group bonded to the silicon atom in the silicone is replaced by a hydroxyl group by photoexcitation of the photocatalyst, and further, a physisorbed water layer is formed thereon, whereby the surface is formed. It exhibits a high degree of hydrophilicity close to a water wetting angle of 0 °, and improves the hydrophilicity retention when kept in a dark place.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a specific configuration of the present invention will be described.
As shown in FIG. 1 or FIG. 2, a layer containing a photocatalytic (crystalline) oxide or the like is formed on the surface of the base material on the surface of the guard fence in the present invention.
By adopting such a surface structure, the surface of the guard fence is highly hydrophilized in response to photoexcitation of the photocatalyst.
Thereby, deposits and / or contaminants attached to the surface of the surface layer due to rainfall are washed away by the raindrops.
[0010]
In FIG. 1, the surface layer is composed of only the photocatalytic oxide particles. In this case, since the photocatalyst is made of an oxide, the oxide shows hydrophilicity in a state where the pollutants in the environment are not adsorbed. Therefore, the pollutants are rejected by a photoexcitation action to form an adsorbed water layer. Thus, it is easy to exhibit hydrophilicity and a uniform water film can be formed.
In FIG. 2, M represents a metal element. Therefore, in the case of FIG. 2, the outermost surface is made of a general inorganic oxide. Also in this case, the oxide shows hydrophilicity in a state where the pollutants in the environment are not adsorbed, so that the pollutants are eliminated by the photoexciting action of the photocatalytic oxide mixed into the surface layer other than the inorganic oxide. By forming the adsorbed water layer, a uniform water film can be formed.
[0011]
As the guard fence base material to which the present invention can be used, an aluminum plate, a steel plate, a stainless steel plate, a titanium plate or the like can be used.
When the guard fence base material is a base material containing any atom of Fe, Ni, or Co, such as a steel plate or a stainless steel plate, to form the surface layer on the base material, the base material and the surface layer It is better to provide an intermediate layer between them. This is because if any of the atoms of Fe, Ni, and Co is mixed into the surface layer, the rate of hydrophilization decreases.
[0012]
A photocatalyst emits light (excitation light) having an energy (that is, a shorter wavelength) larger than the energy gap between the conduction band and the valence band of the crystal, and excites electrons in the valence band (photoexcitation). ) Occurs to generate conduction electrons and holes, and the photocatalytic titanium oxide refers to, for example, crystalline titanium oxide such as anatase-type titanium oxide and rutile-type titanium oxide.
Here, the light source used for photoexcitation of the photocatalyst is exposed to sunlight during the day, so that sunlight can be used. Also, at night, road lighting or running vehicle lighting can be used as a light source.
By photoexcitation of the photocatalyst, because the substrate surface is highly hydrophilized, illuminance of the excitation light, may if 0.001 mW / cm 2 or more, preferably that it 0.01 mW / cm 2 or more, 0. More preferably, it is 1 mW / cm 2 or more.
[0013]
The thickness of the surface layer containing the photocatalytic titanium oxide is preferably 0.4 μm or less. Then, cloudiness due to irregular reflection of light can be prevented, and the surface layer becomes substantially transparent.
Further, it is more preferable that the thickness of the surface layer containing the photocatalytic titanium oxide be 0.2 μm or less. Then, it is possible to prevent the surface layer from being colored by light interference.
Also, the thinner the surface layer, the better its transparency. Further, when the film thickness is reduced, the wear resistance of the surface layer is improved.
The surface of the surface layer may be further provided with a wear-resistant or corrosion-resistant protective layer capable of being made hydrophilic and other functional films.
[0014]
Metals such as Ag, Cu, and Zn can be added to the surface layer. The surface layer to which the metal is added can kill bacteria and molds attached to the surface even in a dark place.
[0015]
A platinum group metal such as pt, Pd, Ru, Rh, Ir, and Os can be added to the surface layer. The surface layer to which the metal is added can enhance the oxidation-reduction activity of the photocatalyst and improve the deodorizing and purifying action and the like.
In addition, when a solid acid is added in addition to the photocatalyst, the acidity of the solid acid is improved by the addition of a platinum group metal, so that the hydrophilicity is also improved, and the formation of a water film on attached water is further promoted. Hydrophilicity retention when the photocatalyst is not irradiated with the excitation light for a long time is also improved.
Mo may be added to the surface layer. Also in this case, since the acidity of the solid acid is improved by the addition, the hydrophilicity maintenance property is also improved, and the formation of a water film of the attached water is further promoted, and the hydrophilicity maintenance property when the photocatalyst is not irradiated with the excitation light for a certain period of time is added. Also improve.
[0016]
The term “hydrophilic” refers to the property of being easily conformed when water is dropped on the surface, and generally refers to a state where the water wetting angle is less than 90 °. The term “high hydrophilicity” in the present invention refers to a property that is highly compatible when water is dropped on the surface, and more specifically, a state where the water wetting angle is about 10 ° or less.
In particular, as disclosed in PCT / JP96 / 00734, the water wetting angle is preferably 10 ° or less, more preferably 5 ° or less, as disclosed in PCT / JP96 / 00734.
[0017]
The solid acid in the present invention includes Al 2 O 3 supported on sulfuric acid, TiO 2 supported on sulfuric acid, ZrO 2 supported on sulfuric acid, SnO 2 supported on sulfuric acid, Fe 2 O 3 supported on sulfuric acid, SiO 2 supported on sulfuric acid, HfO 2 supported on sulfuric acid, and TiO 2 / WO 3, WO 3 / SnO 2 , WO 3 /
[0018]
Next, a method for forming the surface layer will be described.
First, a production method in the case where the surface layer is made of only a photocatalytic oxide will be described with reference to an example in which the photocatalyst is an anatase type titanium oxide. In this case, there are roughly three methods. One method is a sol coating and firing method, the other method is an organic titanate method, and the other method is an electron beam evaporation method.
(1) Sol-coating and firing method Anatase-type titanium oxide sol is applied to the surface of a substrate by a method such as a spray coating method, a dip coating method, a flow coating method, a spin coating method, and a roll coating method, and fired.
(2) Organic titanate method A hydrolysis inhibitor (hydrochloric acid, ethylamine, etc.) is added to an organic titanate such as titanium alkoxide (tetraethoxytitanium, tetramethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, etc.), titanium acetate, titanium chelate, etc. , After diluting with a non-aqueous solvent such as alcohol (ethanol, propanol, butanol, etc.) and then partially or completely allowing hydrolysis to proceed, the mixture is spray-coated, dip-coated, It is applied by a method such as a flow coating method, a spin coating method, and a roll coating method, and dried. By drying, the hydrolysis of the organic titanate is completed to produce titanium hydroxide, and a layer of amorphous titanium oxide is formed on the surface of the base material by dehydration-condensation polymerization of titanium hydroxide. Thereafter, the amorphous titanium oxide is calcined at a temperature equal to or higher than the crystallization temperature of anatase to cause a phase transition from the amorphous titanium oxide to the anatase titanium oxide.
(3) Electron beam evaporation method An amorphous titanium oxide layer is formed on the surface of a base material by irradiating a target of titanium oxide with an electron beam. Thereafter, the amorphous titanium oxide is calcined at a temperature equal to or higher than the crystallization temperature of anatase to cause a phase transition from the amorphous titanium oxide to the anatase titanium oxide.
[0019]
Next, the case where the surface layer is made of a photocatalytic oxide and silica will be described, taking the case where the photocatalyst is anatase type titanium oxide as an example. In this case, for example, there are the following three methods. One method is a sol coating and firing method, the other is an organic titanate method, and the other is a tetrafunctional silane method.
(1) Sol coating and firing method A mixture of anatase-type titanium oxide sol and silica sol is applied to the surface of a substrate by a method such as spray coating, dip coating, flow coating, spin coating, roll coating, and the like, followed by firing. I do.
(2) Organic titanate method An organic titanate such as titanium alkoxide (tetraethoxytitanium, tetramethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, etc.), titanium acetate, titanium chelate, etc. is combined with a hydrolysis inhibitor (hydrochloric acid, ethylamine, etc.) and silica sol. After adding and diluting with a non-aqueous solvent such as alcohol (ethanol, propanol, butanol, etc.), partially or completely allowing hydrolysis to proceed, the mixture is spray-coated, dip-coated It is applied by a method such as a flow coating method, a spin coating method, and a roll coating method, and dried. By drying, the hydrolysis of the organic titanate is completed to produce titanium hydroxide, and a layer of amorphous titanium oxide is formed on the surface of the base material by dehydration-condensation polymerization of titanium hydroxide. Thereafter, the amorphous titanium oxide is calcined at a temperature equal to or higher than the crystallization temperature of anatase to cause a phase transition from the amorphous titanium oxide to the anatase titanium oxide.
(3) Tetrafunctional silane method Spray coating method and dip coating method using a mixture of tetraalkoxysilane (tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetramethoxysilane, etc.) and anatase-type titanium oxide sol on the surface of a substrate. After applying by a method such as a flow coating method, a spin coating method, or a roll coating method, and hydrolyzing as necessary to form a silanol, the silanol is subjected to dehydration condensation polymerization by a method such as heating.
[0020]
Next, a case where the surface layer is composed of a photocatalytic oxide and a solid acid will be described by taking as an example a case where the photocatalyst is anatase-type titanium oxide and the solid acid is TiO 2 / WO 3 . In this case, a method of mixing an ammonia solution of tungstic acid with an anatase-type titanium oxide sol and, if necessary, diluting the mixture with a diluting solution (water, ethanol, etc.) on the surface of the base material by spray coating or dip coating It is applied by a method such as a flow coating method, a spin coating method, and a roll coating method, and is baked.
Another method is to form an amorphous titanium oxide film by electron beam evaporation or hydrolysis and dehydration polycondensation of an organic titanate such as titanium alkoxide, titanium acetate, and titanium chelate, then apply tungstic acid, and then apply the amorphous Heat treatment is performed at a temperature at which titanium oxide crystallizes and a TiO 2 / WO 3 composite oxide is formed.
[0021]
Next, the case where the surface layer is made of a photocatalytic oxide and silicone will be described with reference to the case where the photocatalyst is anatase type titanium oxide. The method in this case is to mix a coating of uncured or partially cured silicone or a silicone precursor with an anatase-type titanium oxide sol, hydrolyze the silicone precursor if necessary, and then mix the mixture. Is applied to the surface of the substrate by spray coating, dip coating, flow coating, spin coating, roll coating, etc., and the hydrolyzate of the silicone precursor is subjected to dehydration condensation polymerization by heating, etc. Then, a surface layer composed of anatase type titanium oxide particles and silicone is formed. In the formed surface layer, at least a part of the organic group bonded to the silicon atom in the silicone molecule is replaced with a hydroxyl group by photoexcitation of the anatase type titanium oxide by irradiation with light including ultraviolet rays, and further thereon. A physisorbed water layer is formed and exhibits a high degree of hydrophilicity.
Here, silicone precursors include methyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltributoxysilane, ethyltripropoxysilane, phenyl Trimethoxysilane, phenyltriethoxysilane, phenyltributoxysilane, phenyltripropoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldibutoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldibutoxy Silane, diethyldipropoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenylmethyldibutoxysilane, Methylpropenylmethyl dipropoxy silane, .gamma.-glycidoxypropyltrimethoxysilane, and hydrolysates thereof, mixtures thereof can be suitably used.
[0022]
【Example】
Embodiment 1 FIG.
After mixing 3 parts by weight of silica sol (Nippon Synthetic Rubber, Glasca A solution,
This coating solution was applied by a flow coating method, and then heated at 150 ° C. for 30 minutes to form a base coat layer on the surface of the aluminum plate.
Next, 56 parts by weight of anatase type titanium oxide sol (Nissan Chemical, TA-15, solid content 15% by weight, nitric acid peptizer, pH = 1) and silica sol (Nippon Synthetic Rubber, Glasca A liquid,
This coating solution was applied to the surface of the base coat layer by a flow coating method, and then heated at 150 ° C. for 30 minutes to form a surface layer.
Next, the surface to which the coating liquid was applied was irradiated with ultraviolet light for about 3 days at an ultraviolet illuminance of 0.5 mW / cm 2 using an ultraviolet light source ((Sankyo Electric Co., Ltd., black light blue (BLB) fluorescent lamp)). A sample was obtained.
For comparison, an
Water drops were dropped on the # 1 sample and the # 2 sample, and the contact angle with water was measured. Here, the contact angle with water was evaluated using a contact angle measuring device (Kyowa Interface Science, CA-X150) by the contact angle with water 30 seconds after dropping. As a result, the contact angle with water was as high as 50 ° in the # 2 sample, whereas the contact angle with water was 0 ° in the # 1 sample, indicating a high degree of hydrophilicity.
[0023]
Next, the # 1 sample and the # 2 sample were installed outdoors, and the self-cleaning property by rainfall was examined.
The self-cleaning property by rainfall was tested as follows. That is, the outdoor dirt acceleration test device shown in FIGS. 3 and 4 was installed on the roof of a building located in Chigasaki City. Referring to FIGS. 3 and 4, the apparatus includes an inclined
The # 1 sample was mounted on the
When observed one month later, no stain was observed. The state was examined by the color difference change of the most conspicuous part before and after the installation of the acceleration test apparatus. Here, the color difference was examined using a color difference meter (Tokyo Denshoku) according to the Japanese Industrial Standards (JIS) H0201 and using the notation ΔE *. As a result, the change in color difference was very small at 0.8.
[0024]
After mixing 3 parts by weight of silica sol (Nippon Synthetic Rubber, Glasca A solution,
This coating solution was applied by a flow coating method, and then heated at 150 ° C. for 30 minutes to form a base coat layer on the surface of the stainless steel plate.
Next, 56 parts by weight of anatase type titanium oxide sol (Nissan Chemical, TA-15, solid content 15% by weight, nitric acid peptizer, pH = 1) and silica sol (Nippon Synthetic Rubber, Glasca A liquid,
This coating solution was applied to the surface of the base coat layer by a flow coating method, and then heated at 150 ° C. for 30 minutes to form a surface layer.
Next, the surface to which the coating liquid was applied was irradiated with ultraviolet light for about 3 days at an ultraviolet illuminance of 0.5 mW / cm 2 using an ultraviolet light source ((Sankyo Electric Co., Ltd., black light blue (BLB) fluorescent lamp)). A sample was obtained.
For comparison, a
Water droplets were dropped on the # 3 sample and the # 4 sample, and the contact angle with water was measured. As a result, the contact angle with water was as high as 60 ° in the # 4 sample, whereas the contact angle with water was 0 ° in the # 3 sample, indicating a high degree of hydrophilicity.
[0025]
Next, the # 3 sample was placed outdoors, and the self-cleaning property by rainfall was examined.
The self-cleaning property by rainfall was tested as follows. That is, the outdoor dirt acceleration test device shown in FIGS. 3 and 4 was installed on the roof of a building located in Chigasaki City. Referring to FIGS. 3 and 4, the apparatus includes an inclined
A # 3 sample was mounted on the
When observed one month later, no stain was observed. The state was examined by the color difference change of the most conspicuous part before and after the installation of the acceleration test apparatus. Here, the color difference was examined using a color difference meter (Tokyo Denshoku) according to the Japanese Industrial Standards (JIS) H0201 and using the notation ΔE *. As a result, the change in color difference was extremely small at 0.9.
[0026]
Embodiment 3 FIG.
A 10 cm square stainless steel plate is immersed in a 3.5% by weight tetraethoxysilane solution (diluent: ethanol, hydrolysis catalyst: hydrochloric acid) and then pulled up at a speed of 24 cm / min. It was applied to the surface of the plate and dried. Through the steps so far, tetraethoxysilane was hydrolyzed to generate silanol groups, followed by dehydration-condensation polymerization of the silanol groups, and a thin film containing amorphous silica as a main component was formed on the surface.
Next, after being immersed in a 3.5% by weight tetraethoxytitanium solution (diluent: ethanol, hydrolysis catalyst: hydrochloric acid), the solution was pulled up at a speed of 24 cm per minute, and the solution was subjected to dip coating to obtain a surface of the stainless steel plate. And dried to obtain a # 5 sample. Through the steps so far, tetraethoxytitanium was hydrolyzed to generate a hydroxyl group, and then the hydroxyl group was subjected to dehydration-condensation polymerization to form a thin film mainly composed of amorphous titanium oxide on the surface.
Next, the surface of the # 5 sample was subjected to corona discharge treatment (Kasuga Electric) using a wire electrode as the electrode, a gap of 2 mm between the electrode tip and the sample surface, a voltage of 26 kV, a frequency of 39 kHz, and a sample feed speed of 4.2 m / min. Under the conditions, dealkylation treatment was performed by high-frequency corona discharge treatment.
Next, the surface of the # 5 sample was dipped in a 1% by weight tungstic acid solution (solvent: aqueous ammonia), pulled up at a rate of 24 cm / min, and the solution was applied to the surface by dip coating, It was fired to obtain a # 6 sample. By the firing, the amorphous titanium oxide was crystallized to produce anatase-type titanium oxide.
Next, after leaving the # 6 sample in a dark place for several days, the surface of the sample was irradiated with ultraviolet light for about 1 hour at an ultraviolet illuminance of 0.5 mW / cm 2 using a BLB fluorescent lamp to obtain a # 7 sample. Was. For comparison, a # 8 sample in which a 10 cm square stainless steel plate was left in a dark place for several days was also prepared.
First, a water drop was dropped on the # 7 sample and the # 8 sample, and the state after the drop was observed and the contact angle with water was measured.
As a result, when a water drop was dropped on the sample surface from the microsyringe of the # 7 sample, it was observed that the water droplet spread uniformly on the sample surface in the form of a water film. Further, the contact angle with water after 30 seconds was highly hydrophilized to about 0 °.
On the other hand, in the case of the # 8 sample, when a water droplet was dropped on the sample surface from the micro syringe, the water droplet was adapted to the surface, but did not reach a uniform water film state. The contact angle with water after 30 seconds was 60 °.
Further, the # 8 sample was left in a dark place for two days thereafter to obtain a # 9 sample. Then, for the # 9 sample, the contact angle with water was similarly measured by a contact angle measuring device.
As a result, when a water drop was dropped on the sample surface from the microsyringe on the # 9 sample, it was observed that the water droplet spread uniformly on the sample surface in the form of a water film similarly to the # 7 sample. The contact angle with water was maintained at about 1 °.
[0027]
Next, oleic acid was applied to the surface of the # 7 sample, and each sample was immersed in water filled in a water tank while keeping the sample surface in a horizontal posture. As a result, the oleic acid became round and detached from the surface when lightly rubbed.
[0028]
Next, a slurry was prepared by suspending a powder mixture comprising 1 part by weight of hydrophobic carbon black and 1 part by weight of hydrophilic carbon black in water at a concentration of 1.05 g / liter.
150 ml of the above slurry was allowed to flow down to the # 7 sample inclined at 45 degrees and dried for 15 minutes, and then 150 ml of distilled water was allowed to flow down and dried for 15 minutes. This cycle was repeated 25 times. The change in color difference before and after the test was measured using a color difference meter (Tokyo Denshoku). The color difference was evaluated according to the Japanese Industrial Standard (JIS) H0201 using ΔE * display. As a result, the color difference change of the # 7 sample before and after the test was almost unchanged at 0.4.
[0029]
【The invention's effect】
In the present invention, by providing a surface layer containing photocatalytic oxide particles on the surface of the guard fence base material, the surface of the surface layer exhibits hydrophilicity in response to photoexcitation of the photocatalyst. Thereby, the surface of the surface layer is self-cleaned by rainfall.
[Brief description of the drawings]
FIG. 1 is a diagram showing a surface structure of a guard fence according to the present invention.
FIG. 2 is a diagram showing another surface structure of the guard fence according to the present invention.
FIG. 3 is a front view of the outdoor dirt acceleration test apparatus according to the embodiment of the present invention.
FIG. 4 is a side view of the outdoor dirt acceleration test apparatus according to the embodiment of the present invention.
Claims (9)
前記光触媒の太陽光による光励起に応じて、前記層の表面が水との接触角が10゜以下の親水性を呈し、表面が降雨にさらされた時に、付着堆積物及び/又は汚染物が雨滴により洗い流される、セルフクリーニング性ガードフェンス。Guard fence base material, provided on the surface of the base material, comprising a surface layer containing photocatalytic oxide particles,
In response to photoexcitation of the photocatalyst by sunlight, the surface of the layer exhibits hydrophilicity with a contact angle of 10 ° or less with water, and when the surface is exposed to rainfall, attached deposits and / or contaminants are removed by raindrops. Self-cleaning guard fence washed away by.
前記ガードフェンスを屋外に配置し、
前記表面層に含有される光触媒を光励起することにより、前記表面層の表面を水との接触角が10゜以下の親水性になし、
前記基材を降雨にさらして、前記表面層の表面に付着する堆積物及び/又は汚染物を雨滴により洗い流させる工程
からなる、ガードフェンスのセルフクリーニング方法。Preparing the guard fence according to any one of claims 1 to 8 ,
Place the guard fence outdoors,
By photo-exciting the photocatalyst contained in the surface layer, the surface of the surface layer becomes hydrophilic with a contact angle of 10 ° or less with water,
A self-cleaning method for a guard fence, comprising a step of exposing the substrate to rainfall to wash away deposits and / or contaminants adhering to the surface of the surface layer with raindrops.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28895496A JP3588205B2 (en) | 1995-12-22 | 1996-09-25 | Self-cleaning guard fence and method of cleaning guard fence |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-354649 | 1995-12-22 | ||
JP35464995 | 1995-12-22 | ||
JP28895496A JP3588205B2 (en) | 1995-12-22 | 1996-09-25 | Self-cleaning guard fence and method of cleaning guard fence |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09228331A JPH09228331A (en) | 1997-09-02 |
JP3588205B2 true JP3588205B2 (en) | 2004-11-10 |
Family
ID=93155460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28895496A Expired - Fee Related JP3588205B2 (en) | 1995-12-22 | 1996-09-25 | Self-cleaning guard fence and method of cleaning guard fence |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3588205B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105444486A (en) * | 2015-12-31 | 2016-03-30 | 广西路桥工程集团有限公司 | Multi-way valve circulation system for cooling system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09230105A (en) * | 1995-12-22 | 1997-09-05 | Toto Ltd | Antifogging method and facility applied with the method |
JP2007277935A (en) * | 2006-04-07 | 2007-10-25 | Sekisui Jushi Co Ltd | Indicating body for road |
KR100809030B1 (en) * | 2007-05-08 | 2008-03-03 | 주식회사 에임하이글로벌 | Board for road facilities and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211321B2 (en) * | 1972-04-11 | 1977-03-30 | ||
JPS63100042A (en) * | 1986-10-14 | 1988-05-02 | Nippon Sheet Glass Co Ltd | Glass article difficult-to be dirtied |
JPH04225301A (en) * | 1990-12-27 | 1992-08-14 | Seiko Epson Corp | Optical product having clouding preventive performance |
JPH05209072A (en) * | 1992-01-29 | 1993-08-20 | Japan Synthetic Rubber Co Ltd | Method for treating substrate surface |
JPH06278241A (en) * | 1992-09-22 | 1994-10-04 | Takenaka Komuten Co Ltd | Building material |
DE4235996A1 (en) * | 1992-10-24 | 1994-04-28 | Degussa | Titanium dioxide mixed oxide produced by flame hydrolysis, process for its preparation and use |
JP3496229B2 (en) * | 1993-02-19 | 2004-02-09 | 日本電池株式会社 | Method for producing photocatalyst body |
JP3279755B2 (en) * | 1993-08-24 | 2002-04-30 | 松下精工株式会社 | Photocatalyst and method for supporting photocatalyst |
JP3693363B2 (en) * | 1994-03-30 | 2005-09-07 | 松下エコシステムズ株式会社 | Supporting method for forming a photocatalyst layer |
JPH07331120A (en) * | 1994-06-10 | 1995-12-19 | Hitachi Ltd | Coating for removing nitrogen oxide and its use |
-
1996
- 1996-09-25 JP JP28895496A patent/JP3588205B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105444486A (en) * | 2015-12-31 | 2016-03-30 | 广西路桥工程集团有限公司 | Multi-way valve circulation system for cooling system |
Also Published As
Publication number | Publication date |
---|---|
JPH09228331A (en) | 1997-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3588205B2 (en) | Self-cleaning guard fence and method of cleaning guard fence | |
JP3588206B2 (en) | Self-cleaning road decorative panel, and method of cleaning road decorative panel | |
JP3277983B2 (en) | Outdoor display panel and its cleaning method | |
JPH10198299A (en) | Reflection plate for traffic sign | |
JP3774955B2 (en) | Self-cleaning handrail and handrail cleaning method | |
JPH10102444A (en) | Antifouling road sign and execution method thereof | |
JP3588202B2 (en) | Anti-fog road mirror and its anti-fog method | |
JPH10221504A (en) | Plastic lens | |
JPH10292565A (en) | Roofing material for preventing icing and snow accretion | |
JPH09231499A (en) | Light source cover for traffic signal, traffic signal with it, and cleaning method for light source cover for traffic signal | |
JPH09228057A (en) | Wheel and its cleaning method | |
JP3414365B2 (en) | Building materials for exterior walls | |
JP3414367B2 (en) | Building materials for exterior walls | |
JP2001081948A (en) | Building material for exterior wall | |
JPH10219620A (en) | Road surface sign and execution method thereof | |
JPH10287238A (en) | Stepping stone accident preventing rolling stock | |
JPH10196068A (en) | Snow accretion preventive roof material | |
JPH10102437A (en) | Antifouling traffic sign reflecting board | |
JPH10204718A (en) | Helmet shield | |
JPH10193901A (en) | Wheel | |
JPH10199311A (en) | Lighting system for tunnel | |
JPH10193524A (en) | Facing plate for road | |
JPH10195829A (en) | Sound insulation wall | |
JPH10221503A (en) | Glass lens | |
JPH10195834A (en) | Guard fence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030801 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20031204 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040430 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040812 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R314533 Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070820 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110820 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
S211 | Written request for registration of transfer of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314211 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140820 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |