[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3650970B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3650970B2
JP3650970B2 JP2001349264A JP2001349264A JP3650970B2 JP 3650970 B2 JP3650970 B2 JP 3650970B2 JP 2001349264 A JP2001349264 A JP 2001349264A JP 2001349264 A JP2001349264 A JP 2001349264A JP 3650970 B2 JP3650970 B2 JP 3650970B2
Authority
JP
Japan
Prior art keywords
conductive plate
plate member
manufacturing
slit
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349264A
Other languages
Japanese (ja)
Other versions
JP2003142509A (en
Inventor
忠士 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2001349264A priority Critical patent/JP3650970B2/en
Priority to US10/291,537 priority patent/US7001798B2/en
Publication of JP2003142509A publication Critical patent/JP2003142509A/en
Application granted granted Critical
Publication of JP3650970B2 publication Critical patent/JP3650970B2/en
Priority to US11/222,911 priority patent/US7443012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49433Connecting portions the connecting portions being staggered outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばBGA(ボール・グリッド・アレイ)あるいはCSP(チップ・サイズ・パッケージ)のような、格子状にエリア配列された接続端子を備えるエリアアレイパッケージと称される半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
集積回路が組み込まれかつ該集積回路のための複数の接続部が設けられた半導体チップを封止することにより形成される半導体装置の一つに、エリアアレイパッケージと称される半導体装置がある。このエリアアレイパッケージでは、その接続端子は、格子状にエリア配列されている。
エリアアレイパッケージの製造方法として、例えば特開2000−252388公報、特開2000−252389公報及び特開2000−252390公報に記載された方法がある。これら従来技術によれば、半導体チップを樹脂部材により封止するための鋳型に、金属箔を配置した後、樹脂材料が前記鋳型に加圧して注入される。この樹脂材料の成型時、樹脂材料の圧力を利用して、前記金属箔には前記鋳型に沿った凹所または凸部が形成される。所定の凹所または凸部には、前記半導体チップに設けられた複数の接続部がボンディングワイヤを介して接続される。前記樹脂材料の硬化により形成された樹脂部材の底面から露出する前記金属箔は、高圧ジェット水あるいはレーザ光を用いて多数の分離エリアに分断され、これにより、各凹所または凸部で、それぞれの半田ボールのような端子部材が接続される格子状に配列された多数の電極部材が構成される。前記金属箔により形成された各分離エリアすなわち電極部材には、それぞれの端子部材が固定される。
【0003】
【発明が解決しようとする課題】
ところで、前記した従来技術によれば、樹脂部材の底面から露出する前記金属箔が、前記したジェット水あるいはレーザ光を用いた切断加工により、多数の片に分断され、この各片で、各端子部材のための格子状に配列された電極部材が構成されることから、前記切断加工の際に、前記金属箔の切断に連続して前記樹脂部材を切断する恐れがあることから、該樹脂部材内の前記半導体チップあるいは該チップの接続部から伸びる前記ワイヤに損傷を与える恐れがある。
【0004】
従って、本発明の目的は、樹脂封止された半導体チップあるいはボンディングワイヤ等の各部材に損傷を与えることなくエリアアレイパッケージ(area array package)を形成する製造方法を提供することにある。
さらに、本発明の他の目的は、本発明に係る前記製造方法を利用して半導体チップの放熱性が従来に比較して高められたエリアアレイパッケージを提供することにある。
本発明のさらに他の目的は、樹脂封止された半導体チップあるいはボンディングワイヤ等の各部材に損傷を与える恐れを低減し得る、エリアアレイパッケージの製造方法を提供することにある。
本発明のさらに他の目的は、本発明に係る前記製造方法を利用して新規なエリアアレイパッケージを提供することにある。
【0017】
本発明は、複数の電極部とすべき領域の設定されている導電性板部材の一方の面の所定の位置に、集積回路が組み込まれている半導体チップを配置し、該半導体チップの複数の接続部をそれぞれ対応する前記各領域に電気的に接続した後に、前記導電性板部材の一方の面を、半導体チップを封じ込めるべく樹脂部材で樹脂封止し、その後前記複数の電極部の露呈面に端子部分を設ける、半導体装置の製造方法において、前記導電性板部材に、板厚方向に貫通して相互に平行に伸長する複数の領域設定用スリットを予め設け、前記樹脂封止した後に、前記導電性板部材を、前記複数の領域設定用スリットを横断する方向に分断して前記複数の電極部を形成する、ことを特徴とする。
【0018】
本発明に係る製造方法では、半導体チップおよびボンディングワイヤを導電性板部材の一方の面上に配置するに先立ち、各電極部材のための前記導電性板部材上に所定の間隔をおいて相互に平行に伸長し、かつ前記導電性板部材の前記一方の面から他方の面へ貫通する複数のスリットが形成され、前記導電性板部材上に前記半導体チップおよび前記ボンディングワイヤが前記樹脂部材で封止された後、前記導電性板部材が複数の領域設定用スリットの横断方向に分断される。これにより、それぞれに分離された前記導電性板部材の各領域で各電極部が形成される。
【0019】
前記各電極部のため前記各領域は、前記したとおり、前記導電性板部材上での前記した樹脂封止に先立って前記導電性板部材に形成される複数の前記スリットと、該各スリット間を分断する前記した樹脂封止後の分断工程とにより、区画され、これにより前記各電極部が形成される。
従って、例えば前記導電性板部材の縦方向に前記スリットを形成しておくことにより、前記した樹脂封止工程後に、例えば横方向への従来と同様な切断加工を施すことにより、前記各電極部を形成することができる。これにより、前記導電性板部材の前記した縦方向に沿った切断に従来のような切断加工を施す必要がないことから、前記各電極部材を形成するための加工工程で、その切断加工によって樹脂封止された前記半導体チップおよび前記ボンディングワイヤ等が損傷を受ける確率が半値に低減される。
【0020】
従って、本発明に係る製造方法によれば、樹脂封止された前記半導体チップおよび前記ボンディングワイヤに損傷を与える恐れが従来と比較して低減される。
【0021】
前記スリットは、エッチングにより形成することができる。前記スリットは、打抜きプレス加工により形成することができる。
前記各電極部を形成するための前記した分断は、切削加工により行うことができる。
前記各電極部を形成するための前記した分断は、穿孔により行うことができる。前記した穿孔は、ドリルまたはレーザーを用いて行うことができる。
【0022】
前記各スリットの幅寸法は、前記導電性板部材の板厚方向に沿って前記一方の面から前記他方の面に向けて漸増させることができる。
各領域設定用スリットに、所定の間隔で前記横断する方向に伸びる切断補助用スリット部を一体形成してもよい。
隣接する各一対の領域設定用スリットを、前記電極部とすべき複数の前記領域を規定する領域規定スリット部と、該各領域を連結するための連結スリット部とから形成してもよい。
【0023】
前記導電性板部材の前記他方の面に、該導電性板部材への前記半導体チップの配置に先立ち、前記したスリット間に、該スリットと平行に伸長する凹溝を形成し、前記した分断による前記電極部材の形成後、前記端子部分を形成するための端子部材を前記各凹溝の部分に結合することができる。
前記凹溝は、プレス加工により前記導電性板部材に形成される変形部であって前記スリットに沿って伸長する変形部により形成することができ、この場合、前記凹溝は前記導電性板部材の前記他方の面に規定される凹面で構成される。
前記凹溝の幅寸法は、該溝の底面からの距離の増大に伴い増大させることができる。
前記変形部により、前記導電性板部材の前記一方の面に、前記凹溝に対応した凸面を形成することができる。
【0024】
前記導電性板部材には、該導電性板部材への前記半導体チップの配置に先立ち、プレス加工により、前記したスリット間に該スリットと平行に伸長する変形部を形成することができる。この変形部は、前記他方の面に凸面を規定する。前記凸面は、その頂部へ向けてその幅寸法を漸減させる台形の断面形状とすることができる。
【0025】
【発明の実施の形態】
以下、本発明を図示の実施の形態について説明する。
〈具体例1〉
図1(a)〜図1(c)は、本発明に係る半導体装置10の製造工程を示す。図1(a)〜図1(c)は、例えばBGAのような格子状にエリア配列される接続端子を備える前記半導体装置10の製造工程が示されている。
【0026】
図1(a)に示されているように、例えば300μmの厚さ寸法を有する銅を主成分とする合金、または鉄とニッケルとで形成される42合金のような導電性板部材11の一方の面上に配置された半導体チップ12と、該半導体チップ12の接続部13から伸びるボンディングワイヤ14とが、従来よく知られたトランスファ成型などの方法により形成される樹脂部材15により封止されている。半導体チップ12は、従来よく知られているように、集積回路が組み込まれた半導体結晶基板からなり、前記結晶基板には、前記集積回路のための入出力端子となる接続部13が設けられ、前記ボンディングワイヤ14の各一端は、対応する接続端部に接続されている。
【0027】
前記導電性板部材11の前記一方の面には、図2に示されているように、例えばソーカットのような切削手段を用いて複数の溝16が、格子状に伸びるように、所定の深さ寸法で形成されている。前記溝16により、格子状にエリア配列される電極部材のための各エリア17aが区画されている。前記溝16は、所定の方向に互いに平行に形成する第1の溝と、前記第1の溝に直交する第2の溝とにより形成されている。
前記溝16の深さ寸法は、前記導電性板部材11の厚さ寸法の1/2以上とすることが望ましく、図示の例では、前記各溝16は、ほぼ均等な深さ寸法を有し例えば200μmの深さ寸法で形成されている。
前記溝16は、前記したソーカットを用いた切削加工に代えて、例えばエッチングのような手段を用いて適宜形成することができる。
【0028】
図3に示されているように、前記溝16により、格子状に配列されたエリア17aの中央部には、前記半導体チップ12が配置されかつ固定されている。各エリア17aのうち、前記中央部に位置するエリア17aの周辺に配置されるエリアであって、前記半導体チップ12の接続部13に対応するエリア17aには、前記接続部13から伸びる前記ボンディングワイヤ14の先端が接続されている。
【0029】
図1(a)に示したように前記導電性板部材11上で前記半導体チップ12およびボンディングワイヤ14を前記樹脂部材15で封止した後、図1(b)に示されているように、前記導電性板部材11の前記樹脂部材15から露出した他方の面が例えば研磨される。この研磨により、前記樹脂部材15の成型時の熱で前記導電性板部材11の前記他方の面に成長した酸化膜が除去される。
前記導電性板部材11は、前記樹脂部材15の底面から露出する前記導電性板部材11の他方の面から、格子状に配列される複数の溝が露出するまで、例えば機械研磨または化学機械研磨などにより、図示の例では、100μmの厚さ寸法分が研磨される。これにより、前記導電性板部材11に形成された前記電極部材のためのエリア17aは電気的に分離されて、各電極部材17が形成される。
【0030】
前記研磨は、前記導電性板部材11の格子状に配列した複数の溝が露出したことを確認した後、停止する。すなわち、前記した研磨は、前記樹脂部材15に達するまで200μmの深さ寸法の余裕を残して停止する。この研磨の停止により、前記樹脂部材15に研磨が至ることを確実に防止することができることから、前記樹脂部材15に覆われる前記半導体チップ12および前記ボンディングワイヤ14は、損傷を受けることはない。
【0031】
前記導電性板部材11の他方の面から前記溝に達する深さまで研磨することに代えて、例えばソーカットのような切削装置を用いて前記各電極部材17を形成することが考えられる。すなわち、前記導電性板部材11の一方の面に形成した前記溝16に対応する部位から、前記溝16に達するまで新たな溝を形成することにより、各電極部材17を形成することができる。しかしながら、切削位置が前記一方の面に形成した溝の位置からずれると、切削により半導体チップ12およびボンディングワイヤ14に損傷を与える恐れがある。
【0032】
これに対し、本発明に係る前記研磨手段によれば、前記導電性板部材11の他方の面がほぼ均等に研磨されて、前記溝16の露出が確認されて研磨が終了されることにより、ほぼ溝の深さ寸法の余裕を残して前記各電極部材のためのエリア17aが電気的に分離されて各電極部材17が形成される。従って、本発明では、前記樹脂部材15に覆われる前記半導体チップ12および前記ボンディングワイヤ14は、損傷を与えることなく、各電極部材17が形成される。
【0033】
前記各電極部材17の形成後、図1(c)に示されているように、従来よく知られている半田スクリーン印刷などの方法により、前記各電極部材17の形成時に研磨を受けた接合面17bに、端子部材として例えば半田ペーストからなる結合層18が形成される。必要に応じて、前記半導体チップ12と電気的に接合されない前記電極部材17に、前記端子部材18がダミーとして形成される。
【0034】
前記端子部材が形成される前記電極部材の接合面17bは、前記したように、前記各電極部材17が形成される際の研磨により、前記樹脂部材15の形成時の熱で成長した酸化膜が事前に除去されることから、酸化膜を除去する工程を必要とすることなく、前記端子部材18は、前記電極部材の接合面17bに結合することができる。
また、必要に応じて、図4に示されているように、前記結合層18に代えて、例えば導電性を示す樹脂または半田などからなる球状のボール19が、従来よく知られたフラックスを用いて前記電極部材17の接合面17bに結合される。
【0035】
本発明に係る前記した製造方法によれば、前記導電性板部材11の一方の面に複数の溝16で前記各電極部材のためのエリア17aが形成された後、前記一方の面上に前記半導体チップ12および前記ボンディングワイヤ14が配置されて、前記樹脂部材15により封止された後、前記樹脂部材15の底面に露出する前記導電性板部材11の他方の面が、該面から溝が露出するまで研磨される。前記した研磨により、前記樹脂部材15に達することなく、前記導電性板部材11に形成された前記各電極部材のためのエリア17aは電気的に分離されて、前記各電極部材17が形成されることから、前記樹脂部材15に覆われた前記半導体チップ12および前記ボンディングワイヤ14に損傷を与えることなく前記各電極部材17が形成されて、該電極部材17の接合面17bに前記端子部材18または19が結合される前記半導体装置10を形成することができる。
【0036】
更に、本発明に係る前記した製造方法によれば、前記電極部材17の接合面17bは、前記各電極部材17が形成される際の研磨により、前記樹脂部材15の形成時の熱で成長した酸化膜が予め除去されることから、酸化膜を除去するための格別な工程を必要とすることなく前記接合面17bに前記端子部材が結合される前記半導体装置10を形成することができる。
【0037】
〈具体例2〉
図1(a)〜図1(c)に示した具体例1では、樹脂部材15に覆われる半導体チップ12の底面に各電極部材17が形成される半導体装置10の製造方法の例を示した。次に、図5(a)〜図5(c)に示すように、前記樹脂部材15により覆われる前記半導体チップ12の底面が雰囲気に露出される半導体装置10の他の製造方法を示す。
【0038】
前記半導体チップ12が配置される前記導電性板部材11の一方の面の所定の位置に凹所が形成されること、前記導電性板部材11の他方の面から前記凹所内の前記半導体チップ12が露出するまで研磨されること以外は、具体例1とほぼ同じである。
図5(a)に示されているように、前記したと同様に前記導電性板部材11の一方の面上に配置された半導体チップ12と、該半導体チップ12の端子部材13から伸びるボンディングワイヤ14とが、樹脂部材15により封止されている。
【0039】
前記導電性板部材11の前記一方の面には、図6に示されているように、格子状に形成される複数の溝16により、各電極部材のためのエリア17aが形成されるが、前記導電性板部材11のほぼ中央に位置する部位には、前記半導体チップ12を受け入れる凹所200が、従来よく知られているエッチングなどの方法により、前記複数の溝16とほぼ同じ深さ寸法になるように形成される。
【0040】
前記複数の溝16および凹所200が形成された前記導電性板部材の一方の面には、図7に示されているように、前記凹所200内に前記半導体チップ12が、配置されかつ固定され、前記した具体例1と同様に前記接続部13は、対応する前記各電極部材のためのエリア17aにボンディングワイヤ14を介して接続される。
【0041】
図5(a)に示したように前記導電性板部材11上で前記半導体チップ12および前記ボンディングワイヤ14が前記樹脂部材15で封止された後、図5(b)に示されているように、前記した具体例1と同様に、前記樹脂部材15から露出した前記導電性板部材11の他方の面は、該面から前記複数の溝16が露出するまで研磨される。
これにより、溝とほぼ同じ深さレベルに底面を一致させて配置された前記半導体チップ12は、雰囲気に露出されて、更に、前記導電性板部材11に形成された前記電極部材のためのエリア17aは電気的に分離されて各電極部材17が形成される。
【0042】
前記各電極部材17を形成するための前記した研磨は、前記した具体例1と同様に、溝が露出したことを確認した後、停止される。従って、具体例1におけると同様に、前記した研磨が前記樹脂部材15に至ることを確実に防止されることから、前記樹脂部材15に覆われる前記半導体チップ12および前記ボンディングワイヤ14に損傷を与えることなく前記各電極部材17を形成することができる。更に、前記したと同様に、この研磨により、前記樹脂部材15の成型時の熱による前記導電性板部材11の他方の面に成長した酸化膜が除去されることから、具体例1におけると同様に、端子部材18または19の半田結合に適した接合面17bを形成することができる。
【0043】
前記各電極部材17が形成された後、図5(c)に示されているように、前記電極部材17の研磨を受けた接合面17bに端子部材として結合層18が形成される。
前記各電極部材17が形成される際の研磨により、酸化膜が除去されて、半田の溶融に適する接合面17bが形成されることから、酸化膜を除去するための格別な工程を必要とすることなく、前記接合面17bに前記端子部材を結合することができる。
また、必要に応じて、図8に示されているように、前記結合層18などの端子部材に代えて、例えば導電性を示す樹脂または半田などの球状のボール19が、従来よく知られた方法により、前記各電極部材17の接合面17bに結合される。
【0044】
前記した具体例2では、前記導電性板部材の一方の面に形成する前記溝16の深さ寸法と、前記半導体チップ12を配置する凹所200の深さ寸法とをほぼ同じ深さ寸法に形成して、前記各電極部材17を形成する方法を述べた。
これに代えて、前記凹所の深さ寸法を前記複数の溝16の深さ寸法よりも小さくすることができる。その際の研磨作業では、前記した溝16が露出した後、引き続く研磨作業により、前記凹所200が露出する。この凹所200の露出により、該凹所内で半導体チップ12の底面が露出していることを確認した後、研磨が停止される。この研磨の停止では、前記凹所200の深さ寸法よりも深い溝16の存在により、既に各電極部材17が電気的に分離されていることから、前記したと同様に前記樹脂部材15内の各部材12および14に損傷を与えることなく前記各電極部材17を形成することができる。
【0045】
従って、本発明に係る具体例2の製造方法によれば、具体例1におけると同様な研磨により、前記電極部材17が形成されることから、前記樹脂部材15に覆われた前記半導体チップ12および前記ボンディングワイヤ14に損傷を与えることなく格子状にエリア配列される前記各電極部材17に端子部材18または19が結合された接続端子を備える前記半導体装置10を形成することができる。
【0046】
また、前記各電極部材17が形成される際の研磨により、前記電極部材17の接合面17bは、前記樹脂部材15の形成時の熱で成長した酸化膜が予め除去されることから、酸化膜を除去するための格別な工程を必要とすることなく前記接合面17bに前記端子部材が結合される前記半導体装置10を形成することができる。
更に、前記した製造方法により形成される前記半導体装置10は、樹脂部材に覆われる前記半導体チップ12の底面が雰囲気に露出されることから、前記半導体チップが発生する熱を直接的に雰囲気に放出することができる。
【0047】
〈具体例3〉
図9〜図13は、本発明に係る具体例3の製造工程を示す。具体例3の方法では、導電性板部材に例えば縦および横の二方向に溝を形成した前記した具体例1および具体例2とは異なり、導電性板部材11に互いに平行に一方向に伸長する複数のスリット20が形成される。
【0048】
図9に示されているように、例えば100μmの厚さ寸法を有する前記導電性板部材11に、例えば該板部材11の縦方向に沿って、所定の間隔をおいて相互に平行に伸長するスリット20が形成される。各スリット20は、前記導電性板部材の一方の面から他方の面に貫通する。スリット20は、例えばソーカットのような切削加工、打抜きプレス加工およびエッチングなどにより形成することができる。具体例3に示す例では、各スリット20の縁部は、後述する図13に示されているように、直立縁部である。
【0049】
図10に示されているように、前記スリット20が形成された前記導電性板部材11の一方の面上の所定位置である中央部に、前記したと同様な各接続部13が設けられた半導体チップ12が配置され、かつ従来よく知られた方法により固定される。前記各接続部13は、該接続部13に対応する前記導電性板部材11の前記スリット間の各部位にボンディングワイヤ14を介して電気的に接続される。
【0050】
図11に示されているように、前記したと同様に前記導電性板部材11の一方の面上に配置された前記半導体チップ12と、該チップ12の前記各端子部材13から伸びるボンディングワイヤ14とが樹脂部材15により封止される。
【0051】
前記樹脂部材15による封止後、前記導電性板部材11の他方の面には、図12に示されているように、前記導電性板部材11の横方向すなわちスリット20を横切る方向に沿って、例えばソーカットなどの切削手段により複数の分断溝21が相互に平行に形成される。各分断溝21は、前記導電性板部材の前記一方の面に達することにより、前記導電性板部材11の前記スリット20間の前記した各部位を前記スリット20の伸長方向に分断する。
前記導電性板部材11の縦方向に沿って形成された複数の前記スリット20と、前記導電性板部材の横方向に沿って形成された複数の前記分断溝21との共同により、前記スリット20および前記分断溝21により囲まれた前記導電性板部材11の各領域で各電極部材17が形成される。
【0052】
各電極部材17には、図13に示されているように、例えば導電性を示す樹脂または半田などからなる結合層18が従来よく知られた方法により、前記電極部材17の接合面17bに結合される。
【0053】
前記した具体例3の製造方法では、前記した樹脂封止に先立ち、前記スリット20が前記導電性板部材11に該部材の縦方向に沿って形成されることにより、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無い。すなわち、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11が前記各電極部材17に分断される。
【0054】
前記分断のための溝21は、前記したソーカットを用いた切削加工に代えて、例えばエッチング、後述するドリル穿孔のような他の手段を用いて適宜形成することができる。
【0055】
前記各電極部材17の形成後、前記樹脂部材15の底面から露出する前記各電極部材17の接合面17bに結合層18を設けることに代えて、図14に示されているように、端子部分として球状のボール19を形成することができる。
【0056】
本発明に係る具体例3の製造方法によれば、前記した樹脂封止に先立って前記導電性板部材11に該部材の縦方向に沿って前記した複数のスリット20が形成される。前記した樹脂封止後に、前記導電性板部材11に該部材の横方向に沿って前記した複数の分断のための溝21が形成されることにより、前記スリット20および前記分断のための溝21で囲まれた前記導電性板部材11の各領域で各電極部材17が形成される。そのため、前記樹脂部材15で前記半導体チップ12および前記ボンディングワイヤ14などの各部材を封止後に、前記導電性板部材11の縦方向および横方向に分断加工を施す従来技術に比較して、封止された前記各部材が、分断加工により損傷を受ける確率を半値に低減することができることから、それらが分断加工により損傷を受ける恐れが低減される。
【0057】
〈具体例4〉
図15〜図18は、本発明に係る具体例4の製造工程を示す。具体例4は、前記スリット20の形成工程以外の工程は具体例3と同じである。
【0058】
図15に示されているように、例えば100μmの厚さ寸法を有する導電性板部材11に、例えば該板部材11の縦方向に沿って、所定の間隔をおいて相互に平行に伸長するスリット22が形成される。前記各スリット22は、具体例3におけると同様に、半導体チップ12が配置される前記導電性板部材11の一方の面から他方の面に貫通する。
しかしながら、具体例4では、図16に示されているように、前記導電性板部材11に形成される前記スリット22の幅寸法は、前記導電性板部材11の板厚方向に沿って前記導電性板部材11の前記一方の面から前記他方の面に漸増するように形成される。前記スリット22は、例えばエッチングおよび前記スリット22の縁部を前記した形状に形成するためのブレードを用いる切削加工により形成することができる。
【0059】
図示しないが、図10に示されたと同様に、前記スリット22の小幅開口が開放する前記導電性板部材11の前記一方の面上の所定位置である中央部に、前記したと同様な各接続部13が設けられた半導体チップ12が配置され、かつ従来よく知られた方法により固定される。前記各接続部13は、該接続部13に対応する前記導電性板部材11の前記スリット間の各部位にボンディングワイヤ14を介して電気的に接続される。
【0060】
さらに、図示しないが、図11に示されたと同様に、前記導電性板部材11の一方の面上に配置された前記半導体チップ12と、該チップ12の前記各端子部材13から伸びるボンディングワイヤ14とが樹脂部材15により封止される。後述する図17に示されているように、前記スリット22の縁部の形状に合わせて前記スリット22に前記樹脂部材15が封止される。
【0061】
前記樹脂部材15による封止後、前記導電性板部材11の他方の面には、図12に示されたと同様に、前記導電性板部材11の横方向すなわちスリット22を横切る方向に沿って、例えばソーカットなどの切削手段により前記したと同様な複数の分断溝21が相互に平行に形成される。各分断溝21は、前記導電部材の前記一方の面に達することにより、前記導電性板部材11の前記スリット22間の前記した各部位を前記スリット22の伸長方向に分断する。
前記導電性板部材11の縦方向に沿って形成された複数の前記スリット22と、前記導電性板部材の横方向に沿って形成された複数の前記分断溝21との共同により、前記スリット22および前記分断溝21により囲まれた前記導電性板部材11の各領域で、図17に示すように、各電極部材17が形成される。
【0062】
各電極部材17の形成後、前記樹脂部材15の底面から露出する前記各電極部材17の接合面17bには、具体例3で説明したと同様な結合層18が形成される。
【0063】
具体例4では、図17に示されているように、前記各溝22は、前記電極部材17の一方の面から他方の面へ前記電極部材17の板厚方向に沿って漸減することから、各溝22の縁部で構成される前記各電極部材17の両縁部は、ボンディングワイヤ14と接続される前記電極部材17の一方の面から他方の面へ相離れる方向への傾斜を与えられる。従って、各電極部材17は、図17に示される横断面で見て、逆台形の断面形状を与えられる。その結果、前記スリット22の間を封止する樹脂部材15は、前記電極部材17の前記一方の面から前記他方の面へ前記電極部材17の板厚方向に沿って漸増するように形成される。
その結果、前記樹脂部材15は、前記各電極部材17の前記縁部を埋め込むべくこれに合致するように、その断面が、図17で見て、前記電極部材17の前記一方の面から前記他方の面へ向けて前記電極部材17の板厚方向に沿って漸増する台形状を有するように、形成される。
【0064】
前記した具体例4の製造方法では、具体例3に示した例におけると同様に、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無く、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11を前記各電極部材17に分断することができる。
【0065】
さらに、前記スリット22の間に封止された樹脂部材15は、前記したスリット22の形状に合致するように前記導電性板部材11の前記他方の面から前記一方の面へ前記導電性板部材11の板厚方向に沿って漸減する台形状に形成され、前記樹脂部材15が各電極部材17の縁部を覆い込むように形成されている。このことから、前記樹脂部材15は、前記各電極部材17の前記樹脂部材15からの剥離を防止する作用をなす。従って、前記各電極部材17を前記樹脂部材15に確実に結合させることができる。
【0066】
前記各電極部材17の形成後、前記樹脂部材15の底面から露出する前記各電極部材17の接合面17bに結合層18を設けることに代えて、図18に示されているように、端子部分として前記したと同様なボール19を前記電極部材17の接合面17bに結合することができる。
【0067】
〈具体例5〉
図19〜図21は、本発明に係る具体例5の製造工程を示す。具体例5は、前記スリット20の形成工程以外の工程は具体例3と同じである。
【0068】
図19に示されているように、例えば100μmの厚さ寸法を有する導電性板部材11に、例えば該板部材11の縦方向に沿って、所定の間隔をおいて相互に平行に伸長するスリット23が形成される。前記各スリット23は、具体例3におけると同様に、前記板部材11の厚さ方向に沿った垂直な縁部を有し、半導体チップ12が配置される前記導電性板部材11の一方の面から他方の面に貫通する。
【0069】
具体例5では、前記複数のスリット23は、該スリット23の伸長方向へ所定の間隔をおいてそれぞれが隣り合う前記スリット23に向けて互いに相近づく方向へ伸長する伸長部23aを有しており、前記伸長部23aの伸長端は、相互に所定の間隔をおくように形成される。
前記した各スリット23は、例えばフォトリソおよびエッチング技術を用いて一括的に形成される。前記スリット23の形成のための前記したフォトリソおよびエッチング技術を用いることにより、前記した具体例と同様な電極部材17を規定するためのスリット23を、前記導電性板部材11上の縦方向および横方向に、所定の高精度でもって、形成することができる。
【0070】
前記スリット23の形成は、前記したエッチングに代えて、前記エッチングと同様に高精度での加工を可能とする打抜きプレスにより形成することができる。
【0071】
図20に示されているように、各スリット23間には、該スリット23とそれらの伸長部23aとにより、全体に矩形の領域24が規定される。前記導電性板部材11の中央部には、前記したと同様な半導体チップ12が配置され、その各接続部13と、所定の前記各矩形領域24とがボンディングワイヤ14を介して電気的に接続される。
【0072】
その後、図示しないが、前記導電性板部材11上に配置された前記半導体チップ12と、該チップ12の前記各接続部13から伸びるボンディングワイヤ14とが、図11に示されたと同様な樹脂部材15により封止される。
【0073】
樹脂部材15による前記した封止後、前記導電性板部材11の裏面である前記他方の面には、図12に示されたと同様に、前記導電性板部材11のスリット23の前記した伸長部23aに沿って、例えばソーカットなどの切削手段により前記したと同様な複数の分断溝21が相互に平行に形成される。各分断溝21は、前記導電部材の前記一方の面に達することにより、前記導電性板部材11の前記スリット23間の前記した各領域24を前記スリット23の伸長方向に分断する。これにより、分断された前記導電性板部材11の各領域24で各電極部材17が形成される。
前記分断溝21に代えて、図21に示されているように、前記した複数のスリット23の互いに向かい合う伸長部23aの伸長端間を取り除くための分断孔25を形成することができる。前記分断孔25は、例えばドリルまたはレーザーを用いた穿孔手段により形成される。
【0074】
各電極部材17の形成後、前記樹脂部材15の底面から露出する前記各電極部材17の接合面17bには、具体例3で説明したと同様な結合層18またはボール19が形成される。
【0075】
前記した具体例5の製造方法では、具体例3に示した例におけると同様に、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無く、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11から前記各電極部材17を形成することができる。
【0076】
さらに、前記各電極部材17のための各領域24の縦方向寸法および横方向寸法が各スリット23およびそれぞれの伸長部23aによって規定され、基本的に、前記した切断手段あるいは穿孔手段の加工精度に依存しないことから、前記スリット23の形成精度で決まる高精度でもって各電極部材17を形成することができる。
【0077】
前記スリット23の前記伸長部23aを含む縁部を、前記した垂直縁部に代えて、具体例4に示したと同様な傾斜縁部とすることができる。
【0078】
〈具体例6〉
図22および図23は、本発明に係る具体例6の製造工程を示す。具体例6は、前記スリット23の形成工程以外の工程は具体例5と同じである。
【0079】
図22に示されているように、例えば100μmの厚さ寸法を有する導電性板部材11に、例えば該板部材11の縦方向に沿って、所定の間隔をおいて相互に平行に伸長するスリット26が形成される。前記各スリット26は、具体例5におけると同様に、半導体チップ12が配置される前記導電性板部材11の一方の面から他方の面に貫通する。
【0080】
具体例5の前記伸長部を有したスリット23とは異なり、具体例6では、前記複数のスリット26の互いに隣り合う1対のスリットの向かい合う縁部は、互いに対応する位置に前記縁部に沿って所定の間隔をおいて形成される複数の直線部分26aと、該各直線部分間で該直線部分26aに連続する凹状曲線部分26bとを有するように形成される。前記したスリット26の互いに向かい合う凹状曲線部分26bにより、ほぼ円形の各領域27が前記導電性板部材11の全体に整列して規定される。
【0081】
前記した各スリット26は、具体例5におけると同様に、例えばフォトリソおよびエッチング技術を用いて一括的に形成される。前記スリット26の形成のための前記したフォトリソおよびエッチング技術を用いることにより、前記円形の領域27を規定するためのスリット26を、所定の高精度でもって、形成することができる。
【0082】
前記スリット26の形成は、前記したエッチングに代えて、前記エッチングと同様に高精度での加工を可能とする打抜きプレスにより形成することができる。
【0083】
図23に示されているように、全体に円形の領域27が規定される前記導電性板部材11の中央部には、前記したと同様な半導体チップ12が配置され、その各接続部13と、所定の前記各円形領域とがボンディングワイヤ14を介して電気的に接続される。
【0084】
その後、図示しないが、前記導電性板部材11上に配置された前記半導体チップ12と、該チップ12の前記各接続部13から伸びるボンディングワイヤ14とが、前記したと同様な樹脂部材15により封止される。
更に、樹脂部材15による前記した封止後、例えばソーカットなどの切削手段により、前記したと同様な複数の分断溝21が、相互に平行に前記導電性板部材11に形成された前記直線部分26aで形成される。この分断溝21により、前記したと同様に、分断された前記導電性板部材11の各領域27で円形の各電極部材17が形成される。
前記分断溝21に代えて、具体例5におけると同様に分断孔25を形成することができる。
【0085】
各電極部材17の形成後、前記樹脂部材15の底面から露出する円形の前記各電極部材17の接合面には、端子部分として図示しないが前記したと同様な結合層18またはボール19が形成される。
前記電極部材17の接合面は円形であることから、その円形の形状を利用して、丸みを帯びた結合層18を前記接合面に容易に形成することができる。前記結合層18に代えて、前記接合面に球状のボール19を結合する際にも、前記接合面の円形の形状を利用することでボール19の溶融を容易に制御することができることから、前記ボール19を前記接合面に容易に結合することができる。
【0086】
前記した具体例6の製造方法では、前記した具体例におけると同様に、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無く、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11から前記各電極部材17を形成することができる。
【0087】
さらに、前記各電極部材17のための各領域27が各スリット26によって規定され、基本的に、前記した切断手段あるいは穿孔手段の加工精度に依存しないことから、前記スリット26の形成精度で決まる高精度でもって各電極部材17を形成することができる。
【0088】
さらに、丸みを帯びた結合層および球状のボールなどの端子部分は、前記電極部材17の円形の接合面に、円形の形状を利用して容易に形成することができることから、前記端子部分の寸法の精度を高めることができる。
【0089】
〈具体例7〉
図24から図26は、本発明に係る具体例7の製造工程を示す。具体例7では、導電性板部材11に、スリット20に加えて、該スリット間にこれに沿う凹溝28が形成される。
【0090】
図24に示されているように、互いに対向する一対の垂直な直線縁部により規定される直線状のスリット20が、例えば100μmの厚さ寸法を有する導電性板部材11に、前記したと同様な方法で、例えば該板部材11の縦方向に沿って、所定の間隔をおいて相互に平行に伸長するように形成される。前記各スリット20は、前記した各スリットにおけると同様に、半導体チップ12が配置される前記導電性板部材11の一方の面から他方の面に貫通する。さらに、前記導電性板部材11の前記他方の面には、前記したスリット20間に、該スリット20と平行に伸長する凹溝28が形成される。
【0091】
前記各凹溝28は、図25に示されているように、所定の幅寸法および所定の深さ寸法で規定される矩形横断面形状を有する。前記凹溝28は、例えば切削加工およびエッチングなどにより形成することができ、また、スリット20の形成と同時に形成することが望ましい。
【0092】
その後、前記導電性板部材11の中央部には、図26に示されているように、前記したと同様な半導体チップ12が配置され、その各接続部13と、所定の前記各領域とがボンディングワイヤ14を介して電気的に接続された後、前記したと同様な樹脂部材15により封止される。
更に、樹脂部材15による前記した封止後、前記したと同様な例えばソーカットなどの切削手段により、前記したと同様な複数の分断溝21が、相互に平行に、前記導電性板部材11の前記凹溝28が形成された面に形成される。この分断溝21により、前記したと同様に、分断された前記導電性板部材11の各領域で各電極部材17が形成される。この各電極部材17における前記樹脂部材15の底面から露出する接合面には、前記した凹溝28が露出する。
【0093】
各電極部材17の形成後、図26に示されているように、前記凹溝28を有する前記接合面には、端子部分として前記したと同様なボール19が結合される。
電極部材17の前記接合面には前記凹溝28が形成され、前記したボール19を結合する際に、前記ボール19が凹溝28により保持されることから、前記接合面に接続される前記ボール19の位置決めを容易とすることができる。また、前記ボール19の一部が凹溝28内に収容されることからボール19および前記電極部材17の接合面積を増やすことができ、これにより両者を強固に結合することができる。
【0094】
前記凹溝28は、前記した形状に代えて、前記他方の面に開放するV字溝のような所望の断面形状を有する溝を適用することができる。
【0095】
前記した具体例6の製造方法では、前記した具体例におけると同様に、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無く、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11から前記各電極部材17を形成することができる。
【0096】
また、具体例7では、前記電極部材17の前記ボール19が結合される接合面に、前記した凹溝が形成される。これにより、前記ボール19を前記電極部材17に結合する際に、前記接合面の前記凹溝28を利用してボール19の正確な位置決めが容易となることから、端子部分19の配置精度を高めることができる。さらに、前記ボール19と前記電極部材17の凹溝28との接する面積が増えることから、前記電極部材17に前記ボール19を確実に結合することができる。
【0097】
〈具体例8〉
図27〜図29は、本発明に係る具体例8の製造工程を示す。
前記導電性板部材11に形成されるスリット20間の前記凹溝28をプレス加工により形成することができる。プレス加工は、前記導電性板部材11のスリット20間のそれぞれに、該スリットに沿って連続して伸長する変形部29を形成する。前記変形部は、前記導電性板部材11の前記一方の面に凸面30を規定し、前記他方の面に、前記凸面30に対応する凹面28を規定する。この凹面28が前記した凹溝として利用される。従って、前記凹溝28をプレス加工で形成することにより、図27に示されているように、前記導電性板部材11の前記他方の面に、具体例7で説明したと同様な凹溝28を形成すると共に、前記導電性板部材11の前記一方の面に、前記凹溝28に対応して相互に平行に伸長する凸面30が同時的に形成される。
【0098】
図28に示されているように、前記変形部29により前記導電性板部材11の前記一方の面に規定される凸面30は、断面で見てその頂部へ向けて幅寸法を漸減する台形形状を有し、前記他方の面に規定される凹部すなわち凹溝28は、前記凸面30に対応した傾斜側面を有する。前記各変形部29は、プレス加工により一括的に形成することができ、また、前記スリット20の形成と同時に形成することが望ましい。
【0099】
その後、前記導電性板部材11の前記凸面30が形成された面の中央部には、図29に示されているように、前記したと同様な半導体チップ12が配置され、その各接続部13と、所定の前記各領域とがボンディングワイヤ14を介して電気的に接続された後、前記したと同様な樹脂部材15により封止される。
前記導電性板部材11の前記一方の面には、前記した凸面30が形成されていることから、前記樹脂部材15は、前記凸面30の形状に沿って形成される。従って、前記した凸面30の形状により、前記導電性板部材11の前記一方の面に突出した寸法に応じて、前記樹脂部材15と前記凸面30とが接する面積を増やすことができる。
【0100】
更に、樹脂部材15による前記した封止後、前記したと同様な例えばソーカットなどの切削手段により、前記したと同様な複数の分断溝21が、相互に平行に、前記導電性板部材11の前記他方の面に形成される。この分断溝21により、前記したと同様に、分断された前記導電性板部材11の各領域で各電極部材17が形成される。この各電極部材17における前記樹脂部材15の底面から露出する接合面には、プレス加工により形成される前記凹溝28が露出する。
【0101】
各電極部材17の形成後、図29に示されているように、前記凹溝28を有する前記接合面には、端子部分として前記したと同様なボール19が結合される。
電極部材17の前記接合面には前記凹溝28が形成され、前記したボール19を結合する際に、前記ボール19が凹溝28により保持されることから、前記接合面に接続される前記ボール19の位置決めを容易とすることができる。また、前記ボール19の一部が凹溝28内に収容されることからボール19および前記電極部材17の接合面積を増やすことができ、これにより両者を強固に結合することができる。
【0102】
前記した具体例8の製造方法では、前記した具体例におけると同様に、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無く、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11から前記各電極部材17を形成することができる。
【0103】
更に、前記電極部材17の前記ボール19が結合される接合面に、前記した凹溝28がプレス加工により形成される。これにより、前記ボール19を前記電極部材17に結合する際に、前記接合面の前記凹溝28を利用して前記ボール19の正確な位置決めが容易となることから、端子部分19の配置精度を高めることができる。さらに、前記ボール19と前記電極部材17の凹溝28との接する面積が増えることから、前記電極部材17に前記ボール19を確実に結合することができる。
【0104】
更に、具体例8では、前記凹溝28が前記導電性板部材11の前記他方の面に形成される際に、前記凹溝28に対応した前記凸面30が前記導電性板部材11の前記一方の面に形成される。この凸面30が形成された前記導電性板部材11と、前記樹脂部材15とが接する面積は、前記一方の面に突出した前記凸面30の突出量に応じて増えることから、前記樹脂部材15と前記導電性板部材11とを確実に結合することができる。
【0105】
〈具体例9〉
図30〜図32は、本発明に係る具体例9の製造工程を示す。具体例9は、前記変形部29の形成工程以外の工程は、具体例8と同じである。
【0106】
図30に示されているように、前記導電性板部材11の前記スリット20間のそれぞれに、該スリットに沿って連続して伸長する変形部31がプレス加工により形成される。具体例8の前記変形部29は、前記導電性板部材11の前記一方の面に前記凸面30を規定したが、これに代えて具体例9の前記変形部31は、前記導電性板部材11の前記他方の面に凸面32を規定し、前記凸面32に対応する凹面33を前記一方の面に規定する。
【0107】
図31に示されているように、前記導電性板部材11の前記他方の面に、前記した凸面30と同様な台形形状の凸面32が前記スリット20間に相互に平行に形成され、同時的に前記凸面32に対応した形状の凹面33が前記一方の面に形成される。
【0108】
その後、前記導電性板部材11の前記凹面33が形成された面の中央部には、図32に示されているように、前記したと同様な半導体チップ12が配置され、その各接続部13と、所定の前記各領域とがボンディングワイヤ14を介して電気的に接続された後、前記したと同様な樹脂部材15により封止される。
【0109】
前記導電性板部材11の一方の面には、前記した凹面33が形成されていることから、前記樹脂部材15は、前記凹面33の形状に沿って形成される。従って、前記した凹面33の形状により、前記導電性板部材11の前記一方の面に突出した寸法に応じて、前記樹脂部材15と前記凹面33とが接する面積を増やすことができる。
【0110】
更に、樹脂部材15による前記した封止後、前記したと同様な例えばソーカットなどの切削手段により、前記したと同様な複数の分断溝21が、相互に平行に、前記導電性板部材11の前記他方の面に形成される。この分断溝21により、前記したと同様に、分断された前記導電性板部材11の各領域で各電極部材17が形成される。前記樹脂部材15の底面から露出する前記各電極部材17の接合面には、プレス加工により形成される前記凸面32が端子部分として露出することから、前記各接合面に端子部分としての前記結合層18または前記半田ボール19を形成する必要がない。
【0111】
前記した具体例8の製造方法では、前記した具体例におけると同様に、前記樹脂封止後に、前記導電性板部材11から各電極部材17を形成するために、従来のような前記導電性板部材の縦方向および横方向に沿って分断加工を行う必要が無く、前記した樹脂封止後、前記導電性板部材11に該部材の横方向に沿って分断加工を行うことにより、前記導電性板部材11から前記各電極部材17を形成することができる。
【0112】
更に、前記凸面32が前記導電性板部材11の前記他方の面に形成される際に、前記凸面32に対応した前記凹面33が前記導電性板部材11の前記一方の面に形成される。この前記凹面33が形成された前記導電性板部材11と、前記樹脂部材15とが接する面積は、前記一方の面に凹む前記凹面33の寸法に応じて増えることから、前記樹脂部材15と前記導電性板部材11とを確実に結合することができる。
【0113】
更に、具体例9では、前記したプレス加工および前記切断加工により、前記凸面32を端子部分として形成する。従って、前記電極部材17の前記接合面に端子部分として前記結合層18または前記半田ボール19を形成する必要がないことから、前記接続面に前記端子部分を接続する際に起こり得る接続不良の恐れを無くすことができる。
【0114】
【発明の効果】
本発明に係る製造方法では、前記したように、半導体チップおよびボンディングワイヤが配置される導電性板部材の一方の面に、各電極部材のための格子状に配列された複数の溝が形成され、前記導電性板部材および該導電性板部材上の前記各部材が樹脂部材で封止された後、前記樹脂部材の底面に露出する前記導電性板部材の他方の面が該面から溝が露出するまで研磨されることにより、前記樹脂部材内の前記半導体チップおよびボンディングワイヤに損傷を与えることなく、各電極部材が形成される。
従って、本発明によれば、前記各電極部材が形成される際、前記樹脂部材内の各部材の損傷による不良品の発生を防ぐことができ、生産性の向上を図ることができる。
【0115】
更に、本発明に係る前記製造方法によれば、研磨作業で各電極部材を形成することにより、端子部材の半田付けに先立つ電極部材の酸化膜の除去作業を省くことができることから、半導体装置の生産性の向上を得ることができる。
更に、本発明に係る前記製造方法によれば、前記した半導体装置を比較的容易に製造することができる。
【0116】
また、本発明に係る前記製造方法によれば、前記したように、前記導電性板部材に、該部材に形成される前記溝の深さ寸法以下の深さ寸法を有する凹所を形成し、該凹所内に前記半導体チップを配置することにより、該半導体チップの底面を前記樹脂部材から雰囲気に露出させた半導体装置を形成することができる。
従って、本発明に係る前記半導体装置によれば、前記半導体チップから発生する熱を雰囲気に直接的に放出することができ、これにより熱エネルギーによる電気的な特性の変化を抑制することができる。
【0117】
本発明に係る他の製造方法によれば、前記したように、半導体チップおよびボンディングワイヤの各部材を導電性板部材の一方の面上に配置するに先立ち、複数のスリットが形成され、該スリットが形成された前記導電性板部材上に前記半導体チップおよび前記ボンディングワイヤが樹脂部材で封止された後、前記導電性板部材のスリット間の領域が前記スリットの伸長方向に分断されることにより、分断された前記導電性板部材の各領域で各電極部材が形成されることから、従来のような前記導電性板部材に該部材の例えば縦方向および横方向への二度の切断加工を施す必要が無く、前記スリットを横切る方向に沿っての一度の切断工程のみでよい。これにより、前記各電極部材を形成するための加工工程で、その切断加工によって樹脂封止された前記半導体チップおよび前記ボンディングワイヤ等が損傷を受ける確率が半値に低減される。
従って、本発明によれば、前記各電極部材が形成される際、前記樹脂部材内の各部材の損傷による不良品の発生を低減することができ、生産性の向上を図ることができる。
【図面の簡単な説明】
【図1】図1(a)〜図1(c)は、本発明に係る具体例1の半導体装置の製造方法を示す断面図である。
【図2】図1(a)に示された本発明に係る導電性板部材を示す平面図である。
【図3】図1(a)に示された本発明に係る導電性板部材、半導体チップおよびボンディングワイヤとの関係を示す平面図である。
【図4】図1(c)の結合層に代わり、球状のボールが形成された半導体装置を示す断面図である。
【図5】図5(a)〜図5(c)は、本発明に係る具体例2の半導体装置の製造方法を示す断面図である。
【図6】図5(a)に示された導電性板部材を示す図2と同様な平面図である。
【図7】図5(a)に示された導電性板部材、半導体チップおよびボンディングワイヤとの関係を示す図3と同様な平面図である。
【図8】図5(c)の結合層に代わり、球状のボールが形成された半導体装置を示す断面図である。
【図9】本発明に係る具体例3の導電性板部材を示す平面図である。
【図10】本発明に係る具体例3の導電性板部材、半導体チップおよびボンディングワイヤとの関係を前記導電性板部材の一方の面から見た平面図である。
【図11】本発明に係る具体例3の導電性板部材をその一方の面から見た平面図である。
【図12】本発明に係る具体例3の導電性板部材をその他方の面から見た平面図である。
【図13】本発明に係る具体例3の半導体装置の製造方法を示す断面図である。
【図14】図13の結合層に代わり、球状のボールが形成された本発明に係る具体例3の半導体装置の他の例を示す断面図である。
【図15】本発明に係る具体例4の導電性板部材をその一方の面から見た平面図である。
【図16】本発明に係る具体例4の導電性板部材の横断面図である。
【図17】本発明に係る具体例4の半導体装置の製造方法を示す断面図である。
【図18】図17の結合層に代わり、球状のボールが形成された本発明に係る具体例4の半導体装置の他の例を示す断面図である。
【図19】本発明に係る具体例5の導電性板部材を示す平面図である。
【図20】本発明に係る具体例5の導電性板部材、半導体チップおよびボンディングワイヤとの関係を前記導電性板部材の一方の面から見た平面図である。
【図21】本発明に係る具体例5の導電性板部材をその他方の面から見た平面図である。
【図22】本発明に係る具体例6の導電性板部材を示す平面図である。
【図23】本発明に係る具体例6の導電性板部材、半導体チップおよびボンディングワイヤとの関係を示す平面図である。
【図24】本発明に係る具体例7の導電性板部材をその導電性板部材の他方の面から見た平面図である。
【図25】本発明に係る具体例7の導電性板部材の横断面図である。
【図26】本発明に係る具体例7の半導体装置の製造方法を示す断面図である。
【図27】本発明に係る具体例8の導電性板部材をその一方の面から見た平面図である。
【図28】本発明に係る具体例8の導電性板部材の横断面図である。
【図29】本発明に係る具体例8の半導体装置の製造方法を示す断面図である。
【図30】本発明に係る具体例9の導電性板部材を該導電性板部材の一方の面から見た平面図である。
【図31】本発明に係る具体例9の導電性板部材の横断面図である。
【図32】本発明に係る具体例9の半導体装置の製造方法を示す断面図である。
【符号の説明】
10 半導体装置
11 導電性板部材
12 半導体チップ
13 接続部
14 ボンディングワイヤ
15 樹脂部材
16 溝
17 電極部材
17a 電極部材のためのエリア
17b 電極部材の接合面
18 結合層
19 ボール
200 凹所
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device called an area array package having connection terminals arranged in a grid pattern, such as a BGA (ball grid array) or a CSP (chip size package), and a method of manufacturing the same. About.
[0002]
[Prior art]
One of semiconductor devices formed by sealing a semiconductor chip in which an integrated circuit is incorporated and a plurality of connection portions for the integrated circuit is provided is a semiconductor device called an area array package. In this area array package, the connection terminals are arranged in a grid pattern.
As a method for manufacturing the area array package, for example, there are methods described in Japanese Patent Application Laid-Open Nos. 2000-252388, 2000-252389, and 2000-252390. According to these conventional techniques, after placing a metal foil on a mold for sealing a semiconductor chip with a resin member, a resin material is pressurized and injected into the mold. At the time of molding the resin material, the metal foil is formed with a recess or a projection along the mold by using the pressure of the resin material. A plurality of connection portions provided on the semiconductor chip are connected to the predetermined recesses or protrusions via bonding wires. The metal foil exposed from the bottom surface of the resin member formed by curing the resin material is divided into a large number of separation areas using high-pressure jet water or laser light, and thereby, in each recess or projection, A large number of electrode members arranged in a lattice shape to which terminal members such as solder balls are connected are configured. Each terminal member is fixed to each separation area, that is, the electrode member formed by the metal foil.
[0003]
[Problems to be solved by the invention]
By the way, according to the above-described prior art, the metal foil exposed from the bottom surface of the resin member is divided into a large number of pieces by the above-described cutting process using jet water or laser light. Since the electrode members arranged in a lattice shape for the members are configured, the resin member may be cut continuously after the cutting of the metal foil during the cutting process. There is a risk of damaging the internal semiconductor chip or the wire extending from the connecting portion of the chip.
[0004]
Accordingly, an object of the present invention is to provide a manufacturing method for forming an area array package without damaging each member such as a resin-encapsulated semiconductor chip or a bonding wire.
Furthermore, another object of the present invention is to provide an area array package in which the heat dissipation of a semiconductor chip is enhanced as compared with the prior art by using the manufacturing method according to the present invention.
It is still another object of the present invention to provide an area array package manufacturing method that can reduce the risk of damaging each member such as a resin-encapsulated semiconductor chip or a bonding wire.
Still another object of the present invention is to provide a novel area array package using the manufacturing method according to the present invention.
[0017]
  The present inventionThe semiconductor chip in which the integrated circuit is incorporated is arranged at a predetermined position on one surface of the conductive plate member where the regions to be the plurality of electrode portions are set, and the plurality of connection portions of the semiconductor chip Are electrically connected to the corresponding regions, and then one surface of the conductive plate member is resin-sealed with a resin member so as to enclose the semiconductor chip, and then the terminals are exposed on the exposed surfaces of the plurality of electrode portions. In the method of manufacturing a semiconductor device in which a portion is provided, the conductive plate member is provided with a plurality of region setting slits extending in parallel with each other in the thickness direction, and after the resin sealing, The insulating plate member is divided in a direction crossing the plurality of region setting slits to form the plurality of electrode portions.
[0018]
  In the manufacturing method according to the present invention, prior to disposing the semiconductor chip and the bonding wire on one surface of the conductive plate member, the conductive plate member for each electrode member is mutually spaced apart at a predetermined interval. A plurality of slits extending in parallel and penetrating from the one surface to the other surface of the conductive plate member are formed, and the semiconductor chip and the bonding wire are sealed with the resin member on the conductive plate member. After being stopped, the conductive plate memberCross direction of multiple area setting slitsDivided into Thereby, each electrode in each region of the conductive plate member separated into eachPartIt is formed.
[0019]
  Each electrodePartTherefore, as described above, each of the regions is divided into a plurality of slits formed in the conductive plate member prior to the resin sealing described above on the conductive plate member, and the slits are divided. Each of the electrodes is partitioned by a dividing step after resin sealing.PartIt is formed.
  Therefore, for example, by forming the slits in the longitudinal direction of the conductive plate member, by performing the same cutting process in the lateral direction after the resin sealing step, for example, each electrodePartCan be formed. As a result, since it is not necessary to perform a conventional cutting process for cutting the conductive plate member along the longitudinal direction, a resin is obtained by the cutting process in the processing step for forming each electrode member. The probability that the sealed semiconductor chip, the bonding wire, and the like are damaged is reduced to half.
[0020]
  Therefore, the present invention relates toMadeAccording to the manufacturing method, the risk of damaging the resin-sealed semiconductor chip and the bonding wire is reduced as compared with the conventional method.
[0021]
  The slit can be formed by etching. The slit can be formed by punching press processing.
  Each electrodePartThe above-mentioned division for forming can be performed by cutting.
  Each electrodePartThe aforementioned division for forming can be performed by perforation. The above drilling can be performed using a drill or a laser.
[0022]
  The width dimension of each slit can be gradually increased from the one surface to the other surface along the thickness direction of the conductive plate member.
  Each region setting slit may be integrally formed with a cutting assist slit portion extending in the transverse direction at a predetermined interval.
  Each pair of adjacent region setting slits may be formed of a region defining slit portion that defines a plurality of the regions to be the electrode portions, and a connecting slit portion for connecting the regions.
[0023]
Prior to the placement of the semiconductor chip on the conductive plate member, a concave groove extending in parallel with the slit is formed on the other surface of the conductive plate member. After the electrode member is formed, a terminal member for forming the terminal portion can be coupled to the concave groove portions.
The concave groove may be formed by a deformed portion formed on the conductive plate member by press working and extending along the slit, and in this case, the concave groove is formed by the conductive plate member. It is comprised by the concave surface prescribed | regulated to the said other surface.
The width dimension of the concave groove can be increased as the distance from the bottom surface of the groove increases.
By the deforming portion, a convex surface corresponding to the concave groove can be formed on the one surface of the conductive plate member.
[0024]
Prior to the placement of the semiconductor chip on the conductive plate member, a deformed portion that extends in parallel with the slit can be formed in the conductive plate member by pressing. The deformable portion defines a convex surface on the other surface. The convex surface may have a trapezoidal cross-sectional shape that gradually decreases its width dimension toward the top.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the illustrated embodiments.
<Specific example 1>
FIG. 1A to FIG. 1C show a manufacturing process of a semiconductor device 10 according to the present invention. FIG. 1A to FIG. 1C show a manufacturing process of the semiconductor device 10 having connection terminals arranged in a grid pattern such as a BGA.
[0026]
As shown in FIG. 1A, one of the conductive plate members 11 such as an alloy mainly composed of copper having a thickness dimension of 300 μm or a 42 alloy formed of iron and nickel, for example. The semiconductor chip 12 disposed on the surface of the semiconductor chip 12 and the bonding wire 14 extending from the connection portion 13 of the semiconductor chip 12 are sealed by a resin member 15 formed by a conventionally well-known method such as transfer molding. Yes. As is well known in the art, the semiconductor chip 12 is composed of a semiconductor crystal substrate in which an integrated circuit is incorporated. Each end of the bonding wire 14 is connected to a corresponding connection end.
[0027]
As shown in FIG. 2, a plurality of grooves 16 are formed on the one surface of the conductive plate member 11 with a predetermined depth so that a plurality of grooves 16 extend in a lattice pattern using a cutting means such as saw cut. It is formed with a size. The grooves 16 divide the areas 17a for electrode members arranged in a grid pattern. The groove 16 is formed by a first groove formed in parallel to each other in a predetermined direction and a second groove orthogonal to the first groove.
It is desirable that the depth dimension of the groove 16 is not less than ½ of the thickness dimension of the conductive plate member 11. In the illustrated example, each groove 16 has a substantially uniform depth dimension. For example, it is formed with a depth of 200 μm.
The groove 16 can be appropriately formed by using means such as etching, for example, instead of the cutting process using the saw cut.
[0028]
As shown in FIG. 3, the semiconductor chip 12 is disposed and fixed at the center of the area 17 a arranged in a lattice pattern by the grooves 16. Among the areas 17 a, the bonding wires extending from the connection portion 13 are arranged in the area 17 a around the area 17 a located in the central portion and corresponding to the connection portion 13 of the semiconductor chip 12. 14 tips are connected.
[0029]
After sealing the semiconductor chip 12 and the bonding wire 14 with the resin member 15 on the conductive plate member 11 as shown in FIG. 1A, as shown in FIG. The other surface of the conductive plate member 11 exposed from the resin member 15 is polished, for example. By this polishing, the oxide film grown on the other surface of the conductive plate member 11 due to heat at the time of molding the resin member 15 is removed.
For example, mechanical polishing or chemical mechanical polishing is performed until the plurality of grooves arranged in a lattice pattern are exposed from the other surface of the conductive plate member 11 exposed from the bottom surface of the resin member 15. In the example shown in the figure, a thickness dimension of 100 μm is polished. Thereby, the area 17a for the electrode member formed on the conductive plate member 11 is electrically separated, and each electrode member 17 is formed.
[0030]
The polishing is stopped after confirming that the plurality of grooves arranged in a lattice pattern on the conductive plate member 11 are exposed. That is, the above polishing is stopped with a margin of a depth of 200 μm until the resin member 15 is reached. By stopping the polishing, it is possible to reliably prevent the resin member 15 from being polished, so that the semiconductor chip 12 and the bonding wire 14 covered by the resin member 15 are not damaged.
[0031]
Instead of polishing to the depth reaching the groove from the other surface of the conductive plate member 11, it is conceivable to form each electrode member 17 using a cutting device such as a saw cut. That is, each electrode member 17 can be formed by forming a new groove from the portion corresponding to the groove 16 formed on one surface of the conductive plate member 11 until reaching the groove 16. However, if the cutting position deviates from the position of the groove formed on the one surface, the semiconductor chip 12 and the bonding wire 14 may be damaged by the cutting.
[0032]
On the other hand, according to the polishing means according to the present invention, the other surface of the conductive plate member 11 is polished almost evenly, the exposure of the groove 16 is confirmed, and polishing is terminated. The respective electrode members 17 are formed by electrically separating the areas 17a for the respective electrode members while leaving a margin of the groove depth. Therefore, in the present invention, each electrode member 17 is formed without damaging the semiconductor chip 12 and the bonding wire 14 covered with the resin member 15.
[0033]
After the formation of each electrode member 17, as shown in FIG. 1C, the bonding surface that has been polished during the formation of each electrode member 17 by a well-known method such as solder screen printing. A bonding layer 18 made of, for example, solder paste is formed as a terminal member on 17b. If necessary, the terminal member 18 is formed as a dummy on the electrode member 17 that is not electrically joined to the semiconductor chip 12.
[0034]
As described above, the bonding surface 17b of the electrode member on which the terminal member is formed has an oxide film grown by heat when the resin member 15 is formed by polishing when the electrode member 17 is formed. Since it is removed in advance, the terminal member 18 can be coupled to the bonding surface 17b of the electrode member without requiring a step of removing the oxide film.
If necessary, as shown in FIG. 4, instead of the bonding layer 18, a spherical ball 19 made of, for example, conductive resin or solder is used with a well-known flux. And coupled to the joint surface 17b of the electrode member 17.
[0035]
According to the above-described manufacturing method according to the present invention, after the areas 17a for the respective electrode members are formed by the plurality of grooves 16 on one surface of the conductive plate member 11, the one surface is formed on the one surface. After the semiconductor chip 12 and the bonding wire 14 are arranged and sealed by the resin member 15, the other surface of the conductive plate member 11 exposed on the bottom surface of the resin member 15 has a groove from the surface. Polished until exposed. By the above polishing, the areas 17a for the respective electrode members formed in the conductive plate member 11 are electrically separated without reaching the resin member 15, and the respective electrode members 17 are formed. Therefore, the electrode members 17 are formed without damaging the semiconductor chip 12 and the bonding wires 14 covered with the resin member 15, and the terminal members 18 or 18 are formed on the bonding surfaces 17 b of the electrode members 17. The semiconductor device 10 to which 19 is coupled can be formed.
[0036]
Furthermore, according to the above-described manufacturing method according to the present invention, the joint surface 17b of the electrode member 17 is grown by heat at the time of forming the resin member 15 by polishing when the electrode members 17 are formed. Since the oxide film is removed in advance, the semiconductor device 10 in which the terminal member is coupled to the bonding surface 17b can be formed without requiring a special process for removing the oxide film.
[0037]
<Specific example 2>
In Specific Example 1 shown in FIGS. 1A to 1C, an example of a method for manufacturing the semiconductor device 10 in which each electrode member 17 is formed on the bottom surface of the semiconductor chip 12 covered with the resin member 15 is shown. . Next, as shown in FIGS. 5A to 5C, another manufacturing method of the semiconductor device 10 in which the bottom surface of the semiconductor chip 12 covered with the resin member 15 is exposed to the atmosphere will be described.
[0038]
A recess is formed at a predetermined position on one surface of the conductive plate member 11 where the semiconductor chip 12 is disposed, and the semiconductor chip 12 in the recess is formed from the other surface of the conductive plate member 11. Is substantially the same as Example 1 except that polishing is performed until the surface is exposed.
As shown in FIG. 5A, the semiconductor chip 12 disposed on one surface of the conductive plate member 11 and the bonding wire extending from the terminal member 13 of the semiconductor chip 12 as described above. 14 is sealed with a resin member 15.
[0039]
On the one surface of the conductive plate member 11, as shown in FIG. 6, an area 17 a for each electrode member is formed by a plurality of grooves 16 formed in a lattice shape. A recess 200 for receiving the semiconductor chip 12 is formed in a portion located substantially at the center of the conductive plate member 11 by a well-known method such as etching, and has the same depth as the plurality of grooves 16. It is formed to become.
[0040]
On one surface of the conductive plate member in which the plurality of grooves 16 and the recesses 200 are formed, the semiconductor chip 12 is disposed in the recesses 200 as shown in FIG. As in the first specific example, the connection portion 13 is fixed and connected to the corresponding area 17a for each electrode member via the bonding wire 14.
[0041]
As shown in FIG. 5A, after the semiconductor chip 12 and the bonding wire 14 are sealed with the resin member 15 on the conductive plate member 11, as shown in FIG. 5B. Similarly to Example 1 described above, the other surface of the conductive plate member 11 exposed from the resin member 15 is polished until the plurality of grooves 16 are exposed from the surface.
As a result, the semiconductor chip 12 arranged with the bottom surface substantially coincided with the depth level substantially the same as the groove is exposed to the atmosphere, and further, the area for the electrode member formed in the conductive plate member 11 17a is electrically separated to form each electrode member 17.
[0042]
The above-described polishing for forming each electrode member 17 is stopped after confirming that the groove is exposed, as in the first specific example. Accordingly, as in the first specific example, since the above-described polishing is reliably prevented from reaching the resin member 15, the semiconductor chip 12 and the bonding wire 14 covered with the resin member 15 are damaged. The electrode members 17 can be formed without any problem. Further, as described above, this polishing removes an oxide film grown on the other surface of the conductive plate member 11 due to heat at the time of molding of the resin member 15, so that it is the same as in the specific example 1. In addition, it is possible to form the joint surface 17b suitable for the solder joint of the terminal member 18 or 19.
[0043]
After each electrode member 17 is formed, as shown in FIG. 5C, a bonding layer 18 is formed as a terminal member on the bonding surface 17b subjected to the polishing of the electrode member 17.
By polishing when the electrode members 17 are formed, the oxide film is removed, and the joining surface 17b suitable for melting the solder is formed. Therefore, a special process for removing the oxide film is required. The terminal member can be coupled to the joint surface 17b without any problem.
If necessary, as shown in FIG. 8, instead of the terminal member such as the coupling layer 18, a spherical ball 19 such as a conductive resin or solder has been well known. By the method, it is joined to the joint surface 17b of each electrode member 17.
[0044]
In the specific example 2 described above, the depth dimension of the groove 16 formed on one surface of the conductive plate member and the depth dimension of the recess 200 in which the semiconductor chip 12 is disposed are set to substantially the same depth dimension. The method of forming and forming each electrode member 17 has been described.
Instead, the depth dimension of the recess can be made smaller than the depth dimension of the plurality of grooves 16. In the polishing operation at that time, after the groove 16 is exposed, the recess 200 is exposed by the subsequent polishing operation. After confirming that the bottom surface of the semiconductor chip 12 is exposed in the recess by the exposure of the recess 200, the polishing is stopped. When the polishing is stopped, each electrode member 17 is already electrically separated due to the presence of the groove 16 deeper than the depth dimension of the recess 200, so that the inside of the resin member 15 is the same as described above. The electrode members 17 can be formed without damaging the members 12 and 14.
[0045]
Therefore, according to the manufacturing method of the second specific example of the present invention, the electrode member 17 is formed by the same polishing as in the first specific example. Therefore, the semiconductor chip 12 covered with the resin member 15 and The semiconductor device 10 including connection terminals in which terminal members 18 or 19 are coupled to the electrode members 17 arranged in a grid pattern without damaging the bonding wires 14 can be formed.
[0046]
In addition, due to the polishing when each electrode member 17 is formed, the oxide film grown on the bonding surface 17b of the electrode member 17 by the heat at the time of forming the resin member 15 is removed in advance. The semiconductor device 10 in which the terminal member is coupled to the joint surface 17b can be formed without requiring a special process for removing the substrate.
Furthermore, since the bottom surface of the semiconductor chip 12 covered with the resin member is exposed to the atmosphere, the semiconductor device 10 formed by the above manufacturing method directly releases the heat generated by the semiconductor chip to the atmosphere. can do.
[0047]
<Specific example 3>
9 to 13 show manufacturing steps of Example 3 according to the present invention. In the method of the specific example 3, unlike the above-described specific example 1 and specific example 2 in which the conductive plate member is formed with grooves in two vertical and horizontal directions, the conductive plate member 11 extends in one direction parallel to each other. A plurality of slits 20 are formed.
[0048]
As shown in FIG. 9, the conductive plate member 11 having a thickness of, for example, 100 μm extends in parallel to each other at a predetermined interval, for example, along the longitudinal direction of the plate member 11. A slit 20 is formed. Each slit 20 penetrates from one surface of the conductive plate member to the other surface. The slit 20 can be formed by, for example, cutting such as saw cutting, punching pressing, etching, or the like. In the example shown in the specific example 3, the edge of each slit 20 is an upright edge, as shown in FIG.
[0049]
As shown in FIG. 10, each connection portion 13 similar to the above is provided in the central portion which is a predetermined position on one surface of the conductive plate member 11 in which the slit 20 is formed. The semiconductor chip 12 is disposed and fixed by a well-known method. Each connection portion 13 is electrically connected to each portion between the slits of the conductive plate member 11 corresponding to the connection portion 13 via a bonding wire 14.
[0050]
As shown in FIG. 11, the semiconductor chip 12 disposed on one surface of the conductive plate member 11 and the bonding wires 14 extending from the terminal members 13 of the chip 12 as described above. Are sealed by the resin member 15.
[0051]
After sealing with the resin member 15, the other surface of the conductive plate member 11 has a lateral direction of the conductive plate member 11, that is, a direction crossing the slit 20 as shown in FIG. 12. The plurality of dividing grooves 21 are formed in parallel with each other by a cutting means such as saw cut. Each dividing groove 21 reaches the one surface of the conductive plate member to divide each portion described above between the slits 20 of the conductive plate member 11 in the extending direction of the slit 20.
The slit 20 is jointly formed by a plurality of the slits 20 formed along the longitudinal direction of the conductive plate member 11 and a plurality of the dividing grooves 21 formed along the lateral direction of the conductive plate member. Each electrode member 17 is formed in each region of the conductive plate member 11 surrounded by the dividing groove 21.
[0052]
As shown in FIG. 13, a bonding layer 18 made of, for example, conductive resin or solder is bonded to each electrode member 17 to the bonding surface 17b of the electrode member 17 by a well-known method. Is done.
[0053]
In the manufacturing method of the specific example 3 described above, the slit 20 is formed in the conductive plate member 11 along the longitudinal direction of the conductive plate member 11 prior to the resin sealing. In order to form each electrode member 17 from the conductive plate member 11, it is not necessary to perform a cutting process along the vertical direction and the horizontal direction of the conductive plate member as in the prior art. That is, after the above-described resin sealing, the conductive plate member 11 is divided into the electrode members 17 by dividing the conductive plate member 11 along the lateral direction of the member.
[0054]
The groove 21 for cutting can be appropriately formed by using other means such as etching or drill drilling to be described later, instead of the cutting process using the saw cut.
[0055]
After the formation of each electrode member 17, instead of providing a bonding layer 18 on the bonding surface 17b of each electrode member 17 exposed from the bottom surface of the resin member 15, as shown in FIG. As a result, a spherical ball 19 can be formed.
[0056]
According to the manufacturing method of the third specific example of the present invention, the plurality of slits 20 described above are formed in the conductive plate member 11 along the vertical direction of the member prior to the resin sealing. After the resin sealing described above, the plurality of dividing grooves 21 are formed in the conductive plate member 11 along the lateral direction of the member, so that the slits 20 and the dividing grooves 21 are formed. Each electrode member 17 is formed in each region of the conductive plate member 11 surrounded by. Therefore, in comparison with the prior art in which the resin member 15 seals each member such as the semiconductor chip 12 and the bonding wire 14 and then cuts the conductive plate member 11 in the vertical and horizontal directions, the sealing is performed. Since each of the stopped members can be reduced to half the probability of being damaged by the dividing process, the possibility that they are damaged by the dividing process is reduced.
[0057]
<Specific Example 4>
FIGS. 15-18 shows the manufacturing process of the specific example 4 which concerns on this invention. Example 4 is the same as Example 3 except for the process of forming the slit 20.
[0058]
As shown in FIG. 15, slits extending in parallel to each other at a predetermined interval, for example, along the longitudinal direction of the plate member 11, for example, in the conductive plate member 11 having a thickness of 100 μm. 22 is formed. Each slit 22 penetrates from one surface of the conductive plate member 11 on which the semiconductor chip 12 is disposed to the other surface, as in the third specific example.
However, in the specific example 4, as shown in FIG. 16, the width dimension of the slit 22 formed in the conductive plate member 11 is set along the plate thickness direction of the conductive plate member 11. The plate member 11 is formed so as to gradually increase from the one surface to the other surface. The slit 22 can be formed by, for example, etching and cutting using a blade for forming the edge of the slit 22 in the shape described above.
[0059]
Although not shown in the figure, each connection similar to that described above is provided at the central portion, which is a predetermined position on the one surface of the conductive plate member 11 where the narrow opening of the slit 22 is opened, as shown in FIG. The semiconductor chip 12 provided with the portion 13 is arranged and fixed by a well-known method. Each connection portion 13 is electrically connected to each portion between the slits of the conductive plate member 11 corresponding to the connection portion 13 via a bonding wire 14.
[0060]
Further, although not shown, the semiconductor chip 12 disposed on one surface of the conductive plate member 11 and the bonding wires 14 extending from the terminal members 13 of the chip 12, as shown in FIG. 11. Are sealed by the resin member 15. As shown in FIG. 17 described later, the resin member 15 is sealed in the slit 22 in accordance with the shape of the edge of the slit 22.
[0061]
After sealing with the resin member 15, on the other surface of the conductive plate member 11, as shown in FIG. 12, along the horizontal direction of the conductive plate member 11, that is, the direction crossing the slit 22, For example, a plurality of dividing grooves 21 similar to those described above are formed in parallel to each other by a cutting means such as a saw cut. Each dividing groove 21 divides each portion described above between the slits 22 of the conductive plate member 11 in the extending direction of the slit 22 by reaching the one surface of the conductive member.
The slits 22 are jointly formed by the plurality of slits 22 formed along the longitudinal direction of the conductive plate member 11 and the plurality of dividing grooves 21 formed along the lateral direction of the conductive plate member. As shown in FIG. 17, each electrode member 17 is formed in each region of the conductive plate member 11 surrounded by the dividing groove 21.
[0062]
After the formation of each electrode member 17, a bonding layer 18 similar to that described in the specific example 3 is formed on the bonding surface 17 b of each electrode member 17 exposed from the bottom surface of the resin member 15.
[0063]
In Specific Example 4, as shown in FIG. 17, each groove 22 gradually decreases from one surface of the electrode member 17 to the other surface along the plate thickness direction of the electrode member 17. Both edges of each electrode member 17 constituted by the edges of each groove 22 are inclined in a direction away from one surface of the electrode member 17 connected to the bonding wire 14 to the other surface. . Accordingly, each electrode member 17 is given an inverted trapezoidal cross-sectional shape as seen in the cross section shown in FIG. As a result, the resin member 15 that seals between the slits 22 is formed so as to gradually increase along the plate thickness direction of the electrode member 17 from the one surface of the electrode member 17 to the other surface. .
As a result, the resin member 15 has a cross-section as seen in FIG. The electrode member 17 is formed to have a trapezoidal shape that gradually increases along the plate thickness direction toward the surface.
[0064]
In the manufacturing method of the specific example 4, as in the example shown in the specific example 3, in order to form each electrode member 17 from the conductive plate member 11 after the resin sealing, There is no need to perform cutting along the vertical direction and the horizontal direction of the conductive plate member, and after the above-described resin sealing, by cutting the conductive plate member 11 along the horizontal direction of the member, The conductive plate member 11 can be divided into the electrode members 17.
[0065]
Further, the resin member 15 sealed between the slits 22 extends from the other surface of the conductive plate member 11 to the one surface so as to match the shape of the slit 22. 11 is formed in a trapezoidal shape that gradually decreases along the plate thickness direction, and the resin member 15 is formed so as to cover the edge of each electrode member 17. Therefore, the resin member 15 has an action of preventing the electrode members 17 from being peeled off from the resin member 15. Therefore, each electrode member 17 can be reliably coupled to the resin member 15.
[0066]
After forming each electrode member 17, instead of providing a bonding layer 18 on the bonding surface 17 b of each electrode member 17 exposed from the bottom surface of the resin member 15, as shown in FIG. As described above, the same ball 19 as described above can be coupled to the joint surface 17 b of the electrode member 17.
[0067]
<Specific example 5>
FIGS. 19-21 shows the manufacturing process of the specific example 5 which concerns on this invention. Example 5 is the same as Example 3 except for the process of forming the slit 20.
[0068]
As shown in FIG. 19, slits extending in parallel to each other at a predetermined interval along the longitudinal direction of the plate member 11, for example, in the conductive plate member 11 having a thickness of 100 μm, for example. 23 is formed. Each slit 23 has a vertical edge along the thickness direction of the plate member 11 as in the specific example 3, and one surface of the conductive plate member 11 on which the semiconductor chip 12 is disposed. To the other surface.
[0069]
In the fifth specific example, the plurality of slits 23 have extending portions 23a that extend in the direction in which they approach each other toward the adjacent slits 23 with a predetermined interval in the extending direction of the slits 23. The extending ends of the extending part 23a are formed at a predetermined interval from each other.
Each of the slits 23 described above is collectively formed using, for example, photolithography and etching techniques. By using the above-described photolithography and etching technique for forming the slit 23, the slit 23 for defining the electrode member 17 similar to the above-described specific example is formed in the vertical direction and the horizontal direction on the conductive plate member 11. The direction can be formed with a predetermined high accuracy.
[0070]
The slits 23 can be formed by a punching press that enables high-precision processing instead of the above-described etching.
[0071]
As shown in FIG. 20, a rectangular area 24 is defined between the slits 23 by the slits 23 and their extending portions 23a. A semiconductor chip 12 similar to that described above is disposed in the central portion of the conductive plate member 11, and each connection portion 13 thereof is electrically connected to each predetermined rectangular region 24 via a bonding wire 14. Is done.
[0072]
Thereafter, although not shown, the semiconductor chip 12 disposed on the conductive plate member 11 and the bonding wires 14 extending from the connection portions 13 of the chip 12 are the same resin members as shown in FIG. 15 is sealed.
[0073]
After the above-described sealing by the resin member 15, the above-described extension portion of the slit 23 of the conductive plate member 11 is formed on the other surface, which is the back surface of the conductive plate member 11, as shown in FIG. 12. A plurality of dividing grooves 21 similar to those described above are formed in parallel with each other along a cutting means such as a saw cut along 23a. Each dividing groove 21 divides each area 24 between the slits 23 of the conductive plate member 11 in the extending direction of the slits 23 by reaching the one surface of the conductive member. As a result, each electrode member 17 is formed in each region 24 of the divided conductive plate member 11.
In place of the dividing groove 21, as shown in FIG. 21, a dividing hole 25 for removing a space between the extending ends of the extending portions 23a of the plurality of slits 23 facing each other can be formed. The dividing hole 25 is formed by a drilling means using, for example, a drill or a laser.
[0074]
After the formation of each electrode member 17, the bonding layer 18 or the ball 19 similar to that described in the specific example 3 is formed on the bonding surface 17 b of each electrode member 17 exposed from the bottom surface of the resin member 15.
[0075]
In the manufacturing method of the specific example 5 described above, as in the example shown in the specific example 3, in order to form each electrode member 17 from the conductive plate member 11 after the resin sealing, There is no need to perform cutting along the vertical direction and the horizontal direction of the conductive plate member, and after the above-described resin sealing, by cutting the conductive plate member 11 along the horizontal direction of the member, Each electrode member 17 can be formed from the conductive plate member 11.
[0076]
Further, the vertical dimension and the horizontal dimension of each region 24 for each electrode member 17 are defined by each slit 23 and each extending portion 23a, and basically the processing accuracy of the above-described cutting means or punching means is increased. Since it does not depend, each electrode member 17 can be formed with high accuracy determined by the formation accuracy of the slit 23.
[0077]
Instead of the vertical edge portion described above, the edge portion including the elongated portion 23a of the slit 23 can be an inclined edge portion similar to that shown in the specific example 4.
[0078]
<Specific Example 6>
22 and 23 show a manufacturing process of the specific example 6 according to the present invention. Example 6 is the same as Example 5 except for the process of forming the slit 23.
[0079]
As shown in FIG. 22, slits extending in parallel with each other at a predetermined interval along the longitudinal direction of the plate member 11, for example, in the conductive plate member 11 having a thickness of 100 μm, for example. 26 is formed. Each slit 26 penetrates from one surface of the conductive plate member 11 on which the semiconductor chip 12 is disposed to the other surface, as in the fifth specific example.
[0080]
Unlike the slit 23 having the elongated portion in the fifth specific example, in the sixth specific example, the opposing edges of the pair of adjacent slits of the plurality of slits 26 extend along the edge at positions corresponding to each other. And a plurality of straight line portions 26a formed at a predetermined interval, and a concave curve portion 26b continuous with the straight line portion 26a between the straight line portions. The substantially circular regions 27 are defined in alignment with the entire conductive plate member 11 by the concave curved portions 26b of the slit 26 facing each other.
[0081]
Each slit 26 described above is formed in a lump using, for example, photolithography and etching techniques, as in the fifth specific example. By using the photolithography and etching techniques described above for forming the slit 26, the slit 26 for defining the circular region 27 can be formed with a predetermined high accuracy.
[0082]
The slit 26 can be formed by a punching press that enables high-precision processing in place of the above-described etching.
[0083]
As shown in FIG. 23, a semiconductor chip 12 similar to that described above is disposed at the center of the conductive plate member 11 in which a circular region 27 is defined as a whole. The predetermined circular regions are electrically connected via bonding wires 14.
[0084]
Thereafter, although not shown, the semiconductor chip 12 disposed on the conductive plate member 11 and the bonding wires 14 extending from the connection portions 13 of the chip 12 are sealed by the resin member 15 similar to the above. Stopped.
Further, after the sealing by the resin member 15, the straight portions 26 a are formed in the conductive plate member 11 so that a plurality of dividing grooves 21 similar to those described above are formed in parallel with each other by cutting means such as saw cut. Formed with. In the same manner as described above, each divided groove 21 forms a circular electrode member 17 in each region 27 of the divided conductive plate member 11.
Instead of the dividing groove 21, a dividing hole 25 can be formed in the same manner as in the specific example 5.
[0085]
After the formation of each electrode member 17, a bonding layer 18 or a ball 19 similar to the above is formed on the joint surface of each circular electrode member 17 exposed from the bottom surface of the resin member 15 as a terminal portion (not shown). The
Since the joining surface of the electrode member 17 is circular, the rounded bonding layer 18 can be easily formed on the joining surface using the circular shape. When the spherical ball 19 is bonded to the bonding surface instead of the bonding layer 18, the melting of the ball 19 can be easily controlled by utilizing the circular shape of the bonding surface. The ball 19 can be easily coupled to the joint surface.
[0086]
In the manufacturing method of the specific example 6 described above, in the same manner as in the specific example described above, in order to form each electrode member 17 from the conductive plate member 11 after the resin sealing, the conventional conductive plate There is no need to perform cutting along the vertical and horizontal directions of the member, and after conducting the resin sealing, the conductive plate member 11 is cut along the horizontal direction of the member so that the conductive property is reduced. Each electrode member 17 can be formed from the plate member 11.
[0087]
Further, each region 27 for each electrode member 17 is defined by each slit 26 and basically does not depend on the processing accuracy of the above-described cutting means or punching means. Each electrode member 17 can be formed with accuracy.
[0088]
Further, since the terminal portions such as the rounded coupling layer and the spherical ball can be easily formed on the circular joint surface of the electrode member 17 by using the circular shape, the dimension of the terminal portion is determined. Can improve the accuracy.
[0089]
<Specific example 7>
24 to 26 show a manufacturing process of the seventh specific example according to the present invention. In Specific Example 7, in addition to the slit 20, a concave groove 28 is formed between the slits in the conductive plate member 11.
[0090]
As shown in FIG. 24, the linear slit 20 defined by a pair of vertical straight edges facing each other is formed in the conductive plate member 11 having a thickness of, for example, 100 μm, as described above. In this way, for example, the plate members 11 are formed to extend in parallel with each other at a predetermined interval along the longitudinal direction of the plate member 11. Each slit 20 penetrates from the one surface of the conductive plate member 11 on which the semiconductor chip 12 is disposed to the other surface in the same manner as in each of the slits described above. Further, a concave groove 28 extending in parallel with the slit 20 is formed between the slits 20 on the other surface of the conductive plate member 11.
[0091]
As shown in FIG. 25, each concave groove 28 has a rectangular cross-sectional shape defined by a predetermined width dimension and a predetermined depth dimension. The concave groove 28 can be formed by, for example, cutting and etching, and is preferably formed simultaneously with the formation of the slit 20.
[0092]
Thereafter, as shown in FIG. 26, a semiconductor chip 12 similar to that described above is disposed in the central portion of the conductive plate member 11, and each of the connection portions 13 and each of the predetermined regions are provided. After being electrically connected via the bonding wire 14, it is sealed with the resin member 15 similar to that described above.
Further, after the sealing by the resin member 15, the same plurality of dividing grooves 21 as described above are formed in parallel with each other by the cutting means such as saw cut similar to the above, and the conductive plate member 11 has the above-described It is formed on the surface where the concave groove 28 is formed. Each electrode member 17 is formed in each region of the divided conductive plate member 11 by the dividing groove 21 in the same manner as described above. The concave groove 28 is exposed on the joint surface exposed from the bottom surface of the resin member 15 in each electrode member 17.
[0093]
After the formation of each electrode member 17, as shown in FIG. 26, the same ball 19 as described above is coupled to the joint surface having the concave groove 28 as a terminal portion.
The concave groove 28 is formed on the joint surface of the electrode member 17, and the ball 19 is held by the concave groove 28 when the above-described ball 19 is coupled. Therefore, the ball connected to the joint surface 19 can be easily positioned. In addition, since a part of the ball 19 is accommodated in the concave groove 28, the bonding area between the ball 19 and the electrode member 17 can be increased, whereby both can be firmly bonded.
[0094]
As the concave groove 28, a groove having a desired cross-sectional shape such as a V-shaped groove opened on the other surface can be applied instead of the above-described shape.
[0095]
In the manufacturing method of the specific example 6 described above, in the same manner as in the specific example described above, in order to form each electrode member 17 from the conductive plate member 11 after the resin sealing, the conventional conductive plate There is no need to perform cutting along the vertical and horizontal directions of the member, and after conducting the resin sealing, the conductive plate member 11 is cut along the horizontal direction of the member so that the conductive property is reduced. Each electrode member 17 can be formed from the plate member 11.
[0096]
Moreover, in the specific example 7, the above-described concave groove is formed on the joint surface to which the ball 19 of the electrode member 17 is coupled. Accordingly, when the ball 19 is coupled to the electrode member 17, it is easy to accurately position the ball 19 using the concave groove 28 of the joint surface, and thus the placement accuracy of the terminal portion 19 is increased. be able to. Furthermore, since the area where the ball 19 and the concave groove 28 of the electrode member 17 are in contact with each other increases, the ball 19 can be reliably coupled to the electrode member 17.
[0097]
<Specific example 8>
27-29 show the manufacturing process of Example 8 according to the present invention.
The concave groove 28 between the slits 20 formed in the conductive plate member 11 can be formed by pressing. In the press working, a deformed portion 29 that continuously extends along the slits 20 is formed between the slits 20 of the conductive plate member 11. The deformable portion defines a convex surface 30 on the one surface of the conductive plate member 11 and a concave surface 28 corresponding to the convex surface 30 on the other surface. This concave surface 28 is used as the aforementioned concave groove. Therefore, by forming the concave groove 28 by pressing, the concave groove 28 similar to that described in the specific example 7 is formed on the other surface of the conductive plate member 11 as shown in FIG. Are formed on the one surface of the conductive plate member 11 at the same time so as to correspond to the grooves 28 and extend parallel to each other.
[0098]
As shown in FIG. 28, the convex surface 30 defined on the one surface of the conductive plate member 11 by the deformable portion 29 has a trapezoidal shape in which the width dimension gradually decreases toward the top when viewed in cross section. The concave portion defined by the other surface, that is, the concave groove 28 has an inclined side surface corresponding to the convex surface 30. Each of the deformable portions 29 can be formed at a time by pressing, and is preferably formed simultaneously with the formation of the slit 20.
[0099]
After that, as shown in FIG. 29, a semiconductor chip 12 similar to that described above is disposed at the center of the surface of the conductive plate member 11 on which the convex surface 30 is formed, and each connection portion 13 thereof. Are electrically connected to each other through the bonding wire 14 and then sealed with the resin member 15 similar to that described above.
Since the convex surface 30 is formed on the one surface of the conductive plate member 11, the resin member 15 is formed along the shape of the convex surface 30. Therefore, according to the shape of the convex surface 30 described above, the area where the resin member 15 and the convex surface 30 are in contact can be increased in accordance with the dimension protruding from the one surface of the conductive plate member 11.
[0100]
Further, after the sealing by the resin member 15, the same plurality of dividing grooves 21 as described above are formed in parallel with each other by the cutting means such as saw cut similar to the above, and the conductive plate member 11 has the above-described It is formed on the other surface. Each electrode member 17 is formed in each region of the divided conductive plate member 11 by the dividing groove 21 in the same manner as described above. The concave groove 28 formed by press working is exposed on the joint surface exposed from the bottom surface of the resin member 15 in each electrode member 17.
[0101]
After the formation of each electrode member 17, as shown in FIG. 29, the ball 19 similar to that described above is coupled to the joint surface having the concave groove 28 as a terminal portion.
The concave groove 28 is formed on the joint surface of the electrode member 17, and the ball 19 is held by the concave groove 28 when the above-described ball 19 is coupled. Therefore, the ball connected to the joint surface 19 can be easily positioned. In addition, since a part of the ball 19 is accommodated in the concave groove 28, the bonding area between the ball 19 and the electrode member 17 can be increased, whereby both can be firmly bonded.
[0102]
In the manufacturing method of the specific example 8 described above, the conductive plate as in the prior art is used to form each electrode member 17 from the conductive plate member 11 after the resin sealing, as in the specific example described above. There is no need to perform cutting along the vertical and horizontal directions of the member, and after conducting the resin sealing, the conductive plate member 11 is cut along the horizontal direction of the member so that the conductive property is reduced. Each electrode member 17 can be formed from the plate member 11.
[0103]
Further, the concave groove 28 described above is formed by press working on the joint surface of the electrode member 17 to which the ball 19 is coupled. Accordingly, when the ball 19 is coupled to the electrode member 17, accurate positioning of the ball 19 is facilitated by using the concave groove 28 of the joint surface. Can be increased. Furthermore, since the area where the ball 19 and the concave groove 28 of the electrode member 17 are in contact with each other increases, the ball 19 can be reliably coupled to the electrode member 17.
[0104]
Furthermore, in Example 8, when the concave groove 28 is formed on the other surface of the conductive plate member 11, the convex surface 30 corresponding to the concave groove 28 is the one side of the conductive plate member 11. Formed on the surface. The area where the conductive plate member 11 formed with the convex surface 30 is in contact with the resin member 15 increases according to the protruding amount of the convex surface 30 protruding on the one surface. The conductive plate member 11 can be securely coupled.
[0105]
<Specific example 9>
30-32 shows the manufacturing process of the specific example 9 which concerns on this invention. Example 9 is the same as Example 8 except for the process of forming the deformed portion 29.
[0106]
As shown in FIG. 30, a deformed portion 31 that continuously extends along the slit 20 is formed by press working between the slits 20 of the conductive plate member 11. Although the deformed portion 29 of the specific example 8 defines the convex surface 30 on the one surface of the conductive plate member 11, the deformed portion 31 of the specific example 9 is replaced with the conductive plate member 11. A convex surface 32 is defined on the other surface, and a concave surface 33 corresponding to the convex surface 32 is defined on the one surface.
[0107]
As shown in FIG. 31, on the other surface of the conductive plate member 11, trapezoidal convex surfaces 32 similar to the convex surface 30 are formed between the slits 20 in parallel with each other. A concave surface 33 having a shape corresponding to the convex surface 32 is formed on the one surface.
[0108]
After that, as shown in FIG. 32, the semiconductor chip 12 similar to that described above is disposed at the center of the surface of the conductive plate member 11 where the concave surface 33 is formed, and each connection portion 13 thereof. Are electrically connected to each other through the bonding wire 14 and then sealed with the resin member 15 similar to that described above.
[0109]
Since the concave surface 33 is formed on one surface of the conductive plate member 11, the resin member 15 is formed along the shape of the concave surface 33. Therefore, according to the shape of the concave surface 33 described above, the area where the resin member 15 and the concave surface 33 are in contact can be increased in accordance with the dimension protruding from the one surface of the conductive plate member 11.
[0110]
Further, after the sealing by the resin member 15, the same plurality of dividing grooves 21 as described above are formed in parallel with each other by the cutting means such as saw cut similar to the above, and the conductive plate member 11 has the above-described It is formed on the other surface. Each electrode member 17 is formed in each region of the divided conductive plate member 11 by the dividing groove 21 in the same manner as described above. Since the convex surface 32 formed by press working is exposed as a terminal portion on the joint surface of each electrode member 17 exposed from the bottom surface of the resin member 15, the bonding layer as a terminal portion is exposed on each joint surface. 18 or the solder balls 19 need not be formed.
[0111]
In the manufacturing method of the specific example 8 described above, the conductive plate as in the prior art is used to form each electrode member 17 from the conductive plate member 11 after the resin sealing, as in the specific example described above. There is no need to perform cutting along the vertical and horizontal directions of the member, and after conducting the resin sealing, the conductive plate member 11 is cut along the horizontal direction of the member so that the conductive property is reduced. Each electrode member 17 can be formed from the plate member 11.
[0112]
Further, when the convex surface 32 is formed on the other surface of the conductive plate member 11, the concave surface 33 corresponding to the convex surface 32 is formed on the one surface of the conductive plate member 11. The area where the conductive plate member 11 formed with the concave surface 33 is in contact with the resin member 15 increases in accordance with the size of the concave surface 33 recessed in the one surface. The conductive plate member 11 can be securely coupled.
[0113]
Furthermore, in Example 9, the convex surface 32 is formed as a terminal portion by the above-described pressing and cutting. Accordingly, since it is not necessary to form the coupling layer 18 or the solder ball 19 as a terminal portion on the joint surface of the electrode member 17, there is a risk of connection failure that may occur when the terminal portion is connected to the connection surface. Can be eliminated.
[0114]
【The invention's effect】
In the manufacturing method according to the present invention, as described above, a plurality of grooves arranged in a grid for each electrode member are formed on one surface of the conductive plate member on which the semiconductor chip and the bonding wire are arranged. After the conductive plate member and each member on the conductive plate member are sealed with the resin member, the other surface of the conductive plate member exposed on the bottom surface of the resin member has a groove from the surface. By polishing until exposed, each electrode member is formed without damaging the semiconductor chip and the bonding wire in the resin member.
Therefore, according to this invention, when each said electrode member is formed, generation | occurrence | production of the inferior goods by damage to each member in the said resin member can be prevented, and improvement of productivity can be aimed at.
[0115]
Furthermore, according to the manufacturing method of the present invention, since each electrode member is formed by a polishing operation, the removal work of the oxide film of the electrode member prior to the soldering of the terminal member can be omitted. Productivity can be improved.
Furthermore, according to the manufacturing method of the present invention, the semiconductor device described above can be manufactured relatively easily.
[0116]
Moreover, according to the manufacturing method according to the present invention, as described above, the conductive plate member is formed with a recess having a depth dimension equal to or less than the depth dimension of the groove formed in the member, By disposing the semiconductor chip in the recess, a semiconductor device in which the bottom surface of the semiconductor chip is exposed to the atmosphere from the resin member can be formed.
Therefore, according to the semiconductor device of the present invention, the heat generated from the semiconductor chip can be directly released to the atmosphere, and thereby the change in electrical characteristics due to thermal energy can be suppressed.
[0117]
According to another manufacturing method of the present invention, as described above, a plurality of slits are formed prior to disposing each member of the semiconductor chip and the bonding wire on one surface of the conductive plate member. After the semiconductor chip and the bonding wire are sealed with the resin member on the conductive plate member formed with the substrate, the region between the slits of the conductive plate member is divided in the extending direction of the slit. Since each electrode member is formed in each region of the divided conductive plate member, the conventional conductive plate member is cut twice in the longitudinal direction and the horizontal direction, for example, in the conventional conductive plate member. There is no need to apply, and only a single cutting step along the direction across the slit is required. Thereby, in the processing step for forming each of the electrode members, the probability that the semiconductor chip, the bonding wire, and the like that are resin-sealed by the cutting process are damaged is reduced to half.
Therefore, according to this invention, when each said electrode member is formed, generation | occurrence | production of the inferior goods by damage to each member in the said resin member can be reduced, and improvement of productivity can be aimed at.
[Brief description of the drawings]
FIG. 1A to FIG. 1C are cross-sectional views showing a method for manufacturing a semiconductor device of Example 1 according to the present invention.
FIG. 2 is a plan view showing a conductive plate member according to the present invention shown in FIG.
FIG. 3 is a plan view showing the relationship between the conductive plate member, the semiconductor chip and the bonding wires according to the present invention shown in FIG.
FIG. 4 is a cross-sectional view showing a semiconductor device in which spherical balls are formed instead of the bonding layer of FIG.
5 (a) to 5 (c) are cross-sectional views showing a method for manufacturing a semiconductor device of Example 2 according to the present invention.
6 is a plan view similar to FIG. 2, showing the conductive plate member shown in FIG. 5 (a). FIG.
7 is a plan view similar to FIG. 3, showing the relationship between the conductive plate member, the semiconductor chip, and the bonding wires shown in FIG. 5 (a).
FIG. 8 is a cross-sectional view showing a semiconductor device in which spherical balls are formed instead of the bonding layer of FIG.
FIG. 9 is a plan view showing a conductive plate member of Example 3 according to the present invention.
FIG. 10 is a plan view of a relationship between a conductive plate member, a semiconductor chip, and a bonding wire of Example 3 according to the present invention as viewed from one surface of the conductive plate member.
FIG. 11 is a plan view of a conductive plate member of Example 3 according to the present invention as viewed from one surface thereof.
FIG. 12 is a plan view of the conductive plate member of Example 3 according to the present invention as seen from the other side.
13 is a cross-sectional view showing a method for manufacturing a semiconductor device according to Example 3 of the present invention. FIG.
14 is a cross-sectional view showing another example of the semiconductor device of the third specific example according to the present invention in which a spherical ball is formed instead of the bonding layer of FIG.
FIG. 15 is a plan view of a conductive plate member of Example 4 according to the present invention as viewed from one surface thereof.
FIG. 16 is a cross-sectional view of a conductive plate member of Example 4 according to the present invention.
FIG. 17 is a cross-sectional view showing a method for manufacturing a semiconductor device according to Example 4 of the present invention.
18 is a cross-sectional view showing another example of the semiconductor device of the specific example 4 according to the present invention in which a spherical ball is formed instead of the bonding layer of FIG. 17;
FIG. 19 is a plan view showing a conductive plate member of Example 5 according to the present invention.
20 is a plan view of the relationship between the conductive plate member, the semiconductor chip, and the bonding wire of Example 5 according to the present invention as viewed from one surface of the conductive plate member. FIG.
FIG. 21 is a plan view of the conductive plate member of Example 5 according to the present invention as seen from the other side.
FIG. 22 is a plan view showing a conductive plate member of Example 6 according to the present invention.
FIG. 23 is a plan view showing the relationship between a conductive plate member, a semiconductor chip, and a bonding wire of Example 6 according to the present invention.
FIG. 24 is a plan view of the conductive plate member of Example 7 according to the present invention as viewed from the other surface of the conductive plate member.
FIG. 25 is a cross-sectional view of a conductive plate member of Example 7 according to the present invention.
FIG. 26 is a cross-sectional view showing the method for manufacturing the semiconductor device according to Example 7 according to the present invention.
FIG. 27 is a plan view of the conductive plate member of Example 8 according to the present invention as seen from one surface thereof.
FIG. 28 is a cross-sectional view of a conductive plate member of Example 8 according to the present invention.
FIG. 29 is a cross-sectional view showing the method for manufacturing the semiconductor device according to Example 8 according to the present invention.
30 is a plan view of a conductive plate member of Example 9 according to the present invention as viewed from one surface of the conductive plate member. FIG.
FIG. 31 is a cross-sectional view of a conductive plate member of Example 9 according to the present invention.
FIG. 32 is a cross-sectional view showing a method for manufacturing a semiconductor device according to Example 9 according to the present invention.
[Explanation of symbols]
10 Semiconductor devices
11 Conductive plate member
12 Semiconductor chip
13 connections
14 Bonding wire
15 Resin member
16 groove
17 Electrode member
17a Area for electrode members
17b Joint surface of electrode member
18 Bonding layer
19 balls
200 recess

Claims (15)

複数の電極部とすべき領域の設定されている導電性板部材の一方の面の所定の位置に、集積回路が組み込まれている半導体チップを配置し、該半導体チップの複数の接続部をそれぞれ対応する前記各領域に電気的に接続した後に、前記導電性板部材の一方の面を、半導体チップを封じ込めるべく樹脂部材で樹脂封止し、その後前記複数の電極部の露呈面に端子部分を設ける、半導体装置の製造方法において、
前記導電性板部材に、板厚方向に貫通して相互に平行に伸長する複数の領域設定用スリットを予め設け、
前記樹脂封止した後に、前記導電性板部材を、前記複数の領域設定用スリットを横断する方向に分断して前記複数の電極部を形成する、
ことを特徴とする半導体装置の製造方法。
A semiconductor chip in which an integrated circuit is incorporated is arranged at a predetermined position on one surface of a conductive plate member in which regions to be a plurality of electrode portions are set, and a plurality of connection portions of the semiconductor chip are respectively connected After electrically connecting to the corresponding regions, one surface of the conductive plate member is resin-sealed with a resin member so as to enclose the semiconductor chip, and then a terminal portion is provided on the exposed surface of the plurality of electrode portions. In a method for manufacturing a semiconductor device,
In the conductive plate member, a plurality of region setting slits that penetrate in the plate thickness direction and extend in parallel with each other are provided in advance.
After the resin sealing, the conductive plate member is divided in a direction crossing the plurality of region setting slits to form the plurality of electrode portions,
A method for manufacturing a semiconductor device.
前記複数の領域設定用スリットは、エッチングにより形成される請求項1記載の製造方法。The plurality of regions set slit method of Motomeko 1, wherein that will be formed by etching. 前記複数の領域設定用スリットは、打抜きプレス加工により形成される請求項1記載の製造方法。It said plurality of regions set for slit method of Motomeko 1, wherein that will be formed by punching press process. 前記各電極部を形成するための前記分断は、切削加工により行われる請求項1記載の製造方法。The front SL minute cross to form each electrode portion, the manufacturing method of performed Ru請 Motomeko 1, wherein by machining. 前記した分断は、ドリルまたはレーザーを用いて行われる請求項記載の製造方法。Wherein the dividing method of manufacturing a Motomeko 1 wherein Ru performed using a drill or laser. 前記各スリットの幅寸法は、前記導電性板部材の板厚方向に沿って前記一方の面から他方の面に向けて漸増する請求項1記載の製造方法。The width of each slit method according to claim 1, wherein the gradually increasing toward the surface of the plate thickness surface or found other side of the one in the direction of the conductive plate member. 前記各領域設定用スリットに、所定の間隔で前記横断する方向に伸びる切断補助用スリット部を一体形成することを特徴とする請求項1記載の製造方法。  The manufacturing method according to claim 1, wherein a cutting assisting slit portion extending in the transverse direction at a predetermined interval is formed integrally with each of the region setting slits. 隣接する各一対の領域設定用スリットは、前記電極部とすべき複数の前記領域を規定する領域規定スリット部と、該各領域を連結するための連結スリット部とを有することを特徴とする請求項1記載の製造方法。  Each pair of adjacent region setting slits includes a region defining slit portion that defines a plurality of the regions to be the electrode portions, and a connecting slit portion for connecting the regions. Item 2. The production method according to Item 1. 前記導電性板部材の他方の面には、該導電性部材への前記半導体チップの配置に先立ち、前記したスリット間に、該スリットと平行に伸長する凹溝が形成され、前記した分断による前記電極部の形成後、前記端子部分を形成するための端子部材が前記各凹溝の部分に結合される請求項1記載の製造方法。Prior to the placement of the semiconductor chip on the conductive plate member, a concave groove extending in parallel with the slit is formed on the other surface of the conductive plate member. The manufacturing method according to claim 1, wherein after forming the electrode portion, a terminal member for forming the terminal portion is coupled to each concave groove portion. 前記凹溝は、エッチングにより形成される請求項記載の製造方法。The manufacturing method according to claim 9 , wherein the concave groove is formed by etching. 前記凹溝は、プレス加工により前記導電性板部材に形成される変形部であって前記スリットに沿って伸長する変形部によって前記導電性板部材の前記他方の面に規定される凹面である請求項記載の製造方法。The concave groove is a concave portion defined in the other surface of the conductive plate member by a deformed portion formed on the conductive plate member by press working and extending along the slit. Item 10. The manufacturing method according to Item 9 . 前記凹溝の幅寸法は、該溝の底面からの距離の増大に伴い増大する請求項記載の製造方法。The manufacturing method according to claim 9 , wherein the width dimension of the concave groove increases as the distance from the bottom surface of the groove increases. 前記変形部により、前記導電性板部材の前記一方の面には、前記凹溝に対応した凸面が形成される請求項11記載の製造方法。The manufacturing method according to claim 11 , wherein a convex surface corresponding to the concave groove is formed on the one surface of the conductive plate member by the deforming portion. 前記導電性板部材には、該導電性板部材への前記半導体チップの配置に先立ち、プレス加工により、前記したスリット間に該スリットと平行に伸長する変形部が形成され、該変形部により他方の面へ突出する凸面が規定される請求項1記載の製造方法。Prior to the placement of the semiconductor chip on the conductive plate member, the conductive plate member is formed with a deformed portion that extends in parallel with the slit between the slits by pressing. Ri process according to claim 1, wherein the convex surface protruding to the other side of the plane is defined. 前記凸面は、その頂部へ向けてその幅寸法を漸減させる台形の断面形状を有する請求項14記載の製造方法。The manufacturing method according to claim 14 , wherein the convex surface has a trapezoidal cross-sectional shape that gradually decreases its width dimension toward the top.
JP2001349264A 2001-08-21 2001-11-14 Manufacturing method of semiconductor device Expired - Fee Related JP3650970B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001349264A JP3650970B2 (en) 2001-08-21 2001-11-14 Manufacturing method of semiconductor device
US10/291,537 US7001798B2 (en) 2001-11-14 2002-11-12 Method of manufacturing semiconductor device
US11/222,911 US7443012B2 (en) 2001-11-14 2005-09-12 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-249906 2001-08-21
JP2001249906 2001-08-21
JP2001349264A JP3650970B2 (en) 2001-08-21 2001-11-14 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003142509A JP2003142509A (en) 2003-05-16
JP3650970B2 true JP3650970B2 (en) 2005-05-25

Family

ID=26620704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349264A Expired - Fee Related JP3650970B2 (en) 2001-08-21 2001-11-14 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3650970B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330258B2 (en) * 2003-12-24 2012-12-11 Stmicroelectronics, Inc. System and method for improving solder joint reliability in an integrated circuit package
US20070216033A1 (en) * 2006-03-20 2007-09-20 Corisis David J Carrierless chip package for integrated circuit devices, and methods of making same
JP2008118030A (en) * 2006-11-07 2008-05-22 Yamaha Corp Surface mount semiconductor package, and terminal board
JP5497030B2 (en) * 2009-06-24 2014-05-21 アオイ電子株式会社 Semiconductor device and manufacturing method of semiconductor device
CN102376672B (en) * 2011-11-30 2014-10-29 江苏长电科技股份有限公司 Foundation island-free ball grid array packaging structure and manufacturing method thereof
JP6626639B2 (en) * 2015-05-29 2019-12-25 マクセルホールディングス株式会社 Method of manufacturing substrate for semiconductor device
JP6924411B2 (en) * 2017-08-28 2021-08-25 大日本印刷株式会社 Manufacturing method of lead frame and semiconductor device
CN111834438B (en) * 2019-04-18 2024-05-31 西部数据技术公司 Hole structure on back side of semiconductor component for reducing delamination in stacked package
CN113394118B (en) * 2020-03-13 2022-03-18 长鑫存储技术有限公司 Package structure and method for forming the same
CN118053822B (en) * 2024-04-16 2024-08-06 四川职业技术学院 Packaging structure and packaging method of power management chip

Also Published As

Publication number Publication date
JP2003142509A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
KR100366735B1 (en) Manufacturing Method of Semiconductor Device
US7183630B1 (en) Lead frame with plated end leads
US7001798B2 (en) Method of manufacturing semiconductor device
JP4878030B2 (en) Re-dispersed solder pads using etched lead frames
US9613883B2 (en) Semiconductor device
US9583455B2 (en) Semiconductor device
JP4495916B2 (en) Manufacturing method of semiconductor chip
JP3650970B2 (en) Manufacturing method of semiconductor device
JP4522049B2 (en) Semiconductor device
JP2002208664A (en) Method for manufacturing lead frame and semiconductor device
JP4672201B2 (en) Manufacturing method of semiconductor device
JP4889169B2 (en) Semiconductor device and manufacturing method thereof
JP2005285909A (en) Method for manufacturing hybrid integrated circuit device
JP2002026069A (en) Mounting method for semiconductor element
JP5410465B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR100480455B1 (en) Bonding tool capable of bonding inner leads of TAB tapes to electrode pads in high quality and high productivity and bonding method
US6281043B1 (en) Fabrication of hybrid semiconductor devices
JPH10144723A (en) Manufacture of semiconductor device
JPH08250545A (en) Semiconductor device and manufacture thereof
JP5254374B2 (en) Electronic component and manufacturing method thereof
US8535986B2 (en) Method of packaging an integrated circuit using a laser to remove material from a portion of a lead frame
CN114783961A (en) Plastic package structure and processing method thereof
KR930005495B1 (en) Lead frame and manufacturing thereof
TW201025463A (en) Manufacturing process of a leadless semiconductor package process and its structure
JP2006253374A (en) Resin sealed semiconductor device

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees