[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017199705A - Semiconductor element built-in substrate - Google Patents

Semiconductor element built-in substrate Download PDF

Info

Publication number
JP2017199705A
JP2017199705A JP2016086673A JP2016086673A JP2017199705A JP 2017199705 A JP2017199705 A JP 2017199705A JP 2016086673 A JP2016086673 A JP 2016086673A JP 2016086673 A JP2016086673 A JP 2016086673A JP 2017199705 A JP2017199705 A JP 2017199705A
Authority
JP
Japan
Prior art keywords
semiconductor element
main surface
sealing body
insulating layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016086673A
Other languages
Japanese (ja)
Inventor
義徳 中臣
Yoshinori Nakaomi
義徳 中臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016086673A priority Critical patent/JP2017199705A/en
Publication of JP2017199705A publication Critical patent/JP2017199705A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor element built-in substrate which efficiently radiates heat generated from a semiconductor element, and allows the semiconductor element to operate with stability.SOLUTION: A semiconductor element built-in substrate A includes: a resin sealing body 11 having a first main surface 11a and a second main surface 11b that face each other and are flat; a semiconductor element 10 which has an electrode terminal formation surface 10b having a plurality of electrode terminals 10a formed thereon and is built in the resin sealing body 11 so that the electrode terminal formation surface 10b is exposed to the first main surface 11a; an insulating layer 12 laminated so as to cover the electrode terminal formation surface 10b and the first main surface 11a; a plurality of via holes 15 which are formed on the insulating layer 12 and use the electrode terminal 10a as the bottom face; and a wiring conductor 13 formed on the surface and the inside of the insulating layer 12 and in the via hole 15, where the semiconductor element built-in substrate includes a metal layer 14 for heat radiation on the surface of the second main surface 11b of the resin sealing body 11.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子を内蔵する半導体素子内蔵基板に関するものである。   The present invention relates to a semiconductor element built-in substrate that incorporates a semiconductor element.

図3に、従来の半導体素子内蔵基板Cの概略断面図を示す。
従来の半導体素子内蔵基板Cは、例えば半導体素子20と、樹脂封止体21と、樹脂保護層22と、絶縁層23と、配線導体24と、を有している。
FIG. 3 shows a schematic cross-sectional view of a conventional substrate C with a built-in semiconductor element.
A conventional semiconductor element-embedded substrate C includes, for example, a semiconductor element 20, a resin sealing body 21, a resin protective layer 22, an insulating layer 23, and a wiring conductor 24.

半導体素子20の側面は、樹脂封止体21に埋設されている。また、半導体素子20の上面は、厚みが10〜20μm程度の樹脂保護層22に被覆されている。樹脂保護層22は、半導体素子20を外部環境から保護するとともに、半導体素子内蔵基板Cに生じる反りを抑制している。
絶縁層23は、半導体素子20の下面および樹脂封止体21の下面を覆うように形成されている。絶縁層23は、上層の絶縁層23aおよび下層の絶縁層23bで構成されており、各絶縁層23a、23bには複数のビアホール25が形成されている。各絶縁層23a、23bの表面およびビアホール25の内部には、配線導体24が形成されている。ビアホール25の内部に形成された配線導体24は、ビア導体26として機能し各絶縁層23a、23bに形成された配線導体24間の導通をとっている。上層の絶縁層23aに形成されたビア導体26は、半導体素子20の電極端子20aと接続されている。
また、下層の絶縁層23bに形成された配線導体24の一部は、回路基板接続パッド27を形成している。回路基板接続パッド27には、この半導体素子内蔵基板Cが搭載される回路基板の電極が半田を介して接続される。
そして、半導体素子20と回路基板との間で配線導体24を介して電気信号の伝送をすることで半導体素子20が作動する。
The side surface of the semiconductor element 20 is embedded in the resin sealing body 21. The upper surface of the semiconductor element 20 is covered with a resin protective layer 22 having a thickness of about 10 to 20 μm. The resin protective layer 22 protects the semiconductor element 20 from the external environment and suppresses the warp generated in the semiconductor element built-in substrate C.
The insulating layer 23 is formed so as to cover the lower surface of the semiconductor element 20 and the lower surface of the resin sealing body 21. The insulating layer 23 includes an upper insulating layer 23a and a lower insulating layer 23b, and a plurality of via holes 25 are formed in each of the insulating layers 23a and 23b. A wiring conductor 24 is formed on the surface of each insulating layer 23a, 23b and inside the via hole 25. The wiring conductor 24 formed inside the via hole 25 functions as the via conductor 26 and establishes conduction between the wiring conductors 24 formed in the insulating layers 23a and 23b. A via conductor 26 formed in the upper insulating layer 23 a is connected to the electrode terminal 20 a of the semiconductor element 20.
A part of the wiring conductor 24 formed in the lower insulating layer 23 b forms a circuit board connection pad 27. The circuit board connection pads 27 are connected to the electrodes of the circuit board on which the semiconductor element built-in substrate C is mounted via solder.
Then, the semiconductor element 20 operates by transmitting an electrical signal between the semiconductor element 20 and the circuit board via the wiring conductor 24.

しかしながら、従来の半導体素子内蔵基板Cにおいては、半導体素子20の側面および上面が樹脂封止体21および樹脂保護層22によって被覆されており、熱伝導性に優れた部材が存在しないため、半導体素子20の作動によって生じる熱を効率よく放熱することができない。そのため、半導体素子20が高温になり安定的に作動することができないという問題がある。   However, in the conventional semiconductor element-embedded substrate C, the side surface and the upper surface of the semiconductor element 20 are covered with the resin sealing body 21 and the resin protective layer 22, and there is no member having excellent thermal conductivity. The heat generated by the operation of 20 cannot be radiated efficiently. Therefore, there exists a problem that the semiconductor element 20 becomes high temperature and cannot operate | move stably.

特許第5563814号公報Japanese Patent No. 5563814

本発明は、半導体素子から生じる熱を効率的に放熱することによって、半導体素子が高温になることを防いで安定的に作動することができる半導体素子内蔵基板を提供することを課題とする。   An object of the present invention is to provide a substrate with a built-in semiconductor element that can stably operate while preventing the semiconductor element from becoming high temperature by efficiently radiating heat generated from the semiconductor element.

本発明における半導体素子内蔵基板は、互いに対向する平坦な第1の主面および第2の主面を有する樹脂封止体と、電極端子が複数形成された電極端子形成面を有しており、第1の主面に電極端子形成面が露出するように樹脂封止体に埋設された半導体素子と、電極端子形成面および第1の主面を被覆するように積層された絶縁層と、絶縁層に複数形成されており電極端子を底面とするビアホールと、絶縁層表面およびビアホール内に形成された配線導体とを備える半導体素子内蔵基板であって、樹脂封止体の第2の主面表面に、放熱用の金属層を具備していることを特徴とするものである。   The substrate with a built-in semiconductor element in the present invention has a resin sealing body having a flat first main surface and a second main surface facing each other, and an electrode terminal forming surface on which a plurality of electrode terminals are formed, A semiconductor element embedded in a resin encapsulant so that the electrode terminal forming surface is exposed on the first main surface, an insulating layer laminated so as to cover the electrode terminal forming surface and the first main surface, and insulation A semiconductor element-embedded substrate comprising a plurality of via holes formed in a layer and having an electrode terminal as a bottom surface, an insulating layer surface and a wiring conductor formed in the via hole, and a second main surface surface of the resin-encapsulated body And a metal layer for heat dissipation.

本発明に係る半導体素子内蔵基板によれば、半導体素子を埋設する樹脂封止体の第2の主面表面に放熱用の金属層が形成されている。
このため、半導体素子から生じる熱を放熱用の金属層を介して外部に効率よく放熱することができる。これにより、半導体素子が高温になることを防いで安定的に作動することが可能な半導体素子内蔵基板を提供することができる。
According to the substrate with a built-in semiconductor element according to the present invention, the metal layer for heat dissipation is formed on the surface of the second main surface of the resin sealing body in which the semiconductor element is embedded.
For this reason, the heat generated from the semiconductor element can be efficiently radiated to the outside through the metal layer for heat dissipation. As a result, it is possible to provide a semiconductor element-embedded substrate capable of stably operating while preventing the semiconductor element from becoming high temperature.

図1は、本発明に係る半導体素子内蔵基板の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor element built-in substrate according to the present invention. 図2は、本発明に係る半導体素子内蔵基板の異なる一例を説明するための概略断面図である。FIG. 2 is a schematic cross-sectional view for explaining a different example of the semiconductor element-embedded substrate according to the present invention. 図3は、従来の半導体素子内蔵基板の一例を示す概略断面図である。FIG. 3 is a schematic sectional view showing an example of a conventional substrate with a built-in semiconductor element.

まず、本発明に係る半導体素子内蔵基板の一例を、図1を基にして説明する。   First, an example of a semiconductor element built-in substrate according to the present invention will be described with reference to FIG.

図1に示すように、本発明に係る半導体素子内蔵基板Aは、例えば半導体素子10と、樹脂封止体11と、絶縁層12と、配線導体13と、放熱用の金属層14とを有している。   As shown in FIG. 1, a semiconductor element-embedded substrate A according to the present invention includes, for example, a semiconductor element 10, a resin sealing body 11, an insulating layer 12, a wiring conductor 13, and a heat-dissipating metal layer 14. doing.

半導体素子10は、例えばマイクロプロセッサや半導体メモリ等があげられ、シリコンやゲルマニウムから成る。半導体素子10は、複数の電極端子10aが形成された電極端子形成面10bを有している。   Examples of the semiconductor element 10 include a microprocessor and a semiconductor memory, and are made of silicon or germanium. The semiconductor element 10 has an electrode terminal forming surface 10b on which a plurality of electrode terminals 10a are formed.

樹脂封止体11は、例えばエポキシ樹脂やポリウレタン樹脂等の熱硬化性樹脂から成る。樹脂封止体11は、互いに対向する平坦な第1の主面11aおよび第2の主面11bとを有している。半導体素子10は、主面11aに電極端子形成面10bが露出する状態で樹脂封止体11内に埋設されている。樹脂封止体11は、半導体素子10を外部環境から保護している。
なお、半導体素子10の上方に被覆される樹脂封止体11の厚みは、2〜5μm程度であることが好ましい。樹脂封止体11の厚みが5μmよりも厚いと、半導体素子10から生じる熱を放熱用の金属層14に効率良く伝えることができなくなり放熱性が悪くなる。また、樹脂封止体11の厚みが2μmよりも薄いと、放熱用の金属層14と樹脂封止体11との接着代が少なくなるため両者の接着強度が悪くなる。
The resin sealing body 11 is made of a thermosetting resin such as an epoxy resin or a polyurethane resin. The resin sealing body 11 has a flat first main surface 11a and a second main surface 11b facing each other. The semiconductor element 10 is embedded in the resin sealing body 11 with the electrode terminal forming surface 10b exposed at the main surface 11a. The resin sealing body 11 protects the semiconductor element 10 from the external environment.
In addition, it is preferable that the thickness of the resin sealing body 11 coat | covered above the semiconductor element 10 is about 2-5 micrometers. When the thickness of the resin sealing body 11 is thicker than 5 μm, heat generated from the semiconductor element 10 cannot be efficiently transmitted to the heat radiating metal layer 14 and heat dissipation becomes worse. On the other hand, if the thickness of the resin sealing body 11 is less than 2 μm, the bonding allowance between the heat dissipating metal layer 14 and the resin sealing body 11 is reduced, so that the adhesive strength between the two becomes worse.

絶縁層12は、例えばエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る。絶縁層12は、電極端子形成面10bの表面および第1の主面11aを被覆するように形成されている。絶縁層12は、上下に積層された第1の絶縁層12aおよび第2の絶縁層12bで構成されている。
第1および第2の絶縁層12a,12bには、複数のビアホール15が形成されている。第1および第2の絶縁層12a,12bの表面およびビアホール15内には、配線導体13が形成されている。
絶縁層12の形成は、例えばエポキシ樹脂やビスマレイミドトリアジン樹脂組成物の未硬化物に無機絶縁性フィラーを分散して形成されたフィルムを、被形成面上に真空状態で被覆した状態で熱圧着することで行われる。
ビアホール15は、例えばレーザー加工やブラスト加工により形成される。
The insulating layer 12 is made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. The insulating layer 12 is formed so as to cover the surface of the electrode terminal forming surface 10b and the first main surface 11a. The insulating layer 12 includes a first insulating layer 12a and a second insulating layer 12b that are stacked one above the other.
A plurality of via holes 15 are formed in the first and second insulating layers 12a and 12b. A wiring conductor 13 is formed in the surface of the first and second insulating layers 12 a and 12 b and in the via hole 15.
The insulating layer 12 is formed by, for example, thermocompression bonding with a film formed by dispersing an inorganic insulating filler in an uncured product of an epoxy resin or a bismaleimide triazine resin composition on a surface to be formed in a vacuum state. It is done by doing.
The via hole 15 is formed by, for example, laser processing or blast processing.

配線導体13は、例えば周知のセミアディティブ法を用いて無電解銅めっきおよび電解銅めっき等の良導電性金属により絶縁層12の表面および内部、ならびにビアホール15内に形成されている。ビアホール15内に形成された配線導体13は、ビア導体16として機能し電極端子10aと配線導体13との間、あるいは異層の配線導体13同士の間の導通をとっている。
絶縁層12の最表層には、配線導体13の一部から成る回路基板接続パッド17が形成されている。回路基板接続パッド17には、この半導体素子内蔵基板Aが搭載される回路基板(不図示)の電極が半田を介して接続される。
そして、半導体素子10と回路基板との間で配線導体13を介して電気信号の伝送をすることで半導体素子10が作動する。
The wiring conductor 13 is formed in the surface and the inside of the insulating layer 12 and in the via hole 15 with a highly conductive metal such as electroless copper plating and electrolytic copper plating using a known semi-additive method. The wiring conductor 13 formed in the via hole 15 functions as the via conductor 16 and establishes conduction between the electrode terminal 10a and the wiring conductor 13 or between the wiring conductors 13 in different layers.
On the outermost layer of the insulating layer 12, a circuit board connection pad 17 made of a part of the wiring conductor 13 is formed. An electrode of a circuit board (not shown) on which the semiconductor element built-in substrate A is mounted is connected to the circuit board connection pad 17 via solder.
The semiconductor element 10 operates by transmitting an electrical signal between the semiconductor element 10 and the circuit board via the wiring conductor 13.

放熱用の金属層14は、例えば銅箔やアルミ箔等の良熱伝導性金属により樹脂封止体11の第2の主面11b表面全体に形成されている。
放熱用の金属層14を樹脂封止体11の表面に形成するには、例えば成形用の下金型内に銅箔および樹脂封止体11用の熱硬化性樹脂の順に装填するとともに、上金型内に半導体素子10を装填して半導体素子10を熱硬化性樹脂内に埋設するように押圧しながら加熱することで形成される。また、例えば樹脂封止体11を成形した後に、その表面に熱伝導性に優れた接着剤を介して銅箔を接着しても構わない。
なお、放熱用の金属層14の表側を、例えばフィン状にパターン形成して表面積を増やしておくと放熱性を向上させることができる。
さらに、放熱用の金属層14の表面を、例えばエッチング処理や研磨処理を施すことで粗面化を行い表面積を増やすことでも放熱性を向上させることが可能になる。
なお、半導体素子10上の樹脂封止体11の厚みは、2〜5μm程度であることが好ましい。樹脂封止体11の厚みが5μmよりも厚いと、半導体素子10から生じる熱を放熱用の金属層14に効率良く伝えることができなくなり放熱性が悪くなる。また、樹脂封止体11の厚みが2μmよりも薄いと、放熱用の金属層14と樹脂封止体11との接着代が少なくなるため両者の接着強度が悪くなる。
The metal layer 14 for heat dissipation is formed on the entire surface of the second main surface 11b of the resin sealing body 11 with a good heat conductive metal such as copper foil or aluminum foil.
In order to form the heat radiation metal layer 14 on the surface of the resin sealing body 11, for example, a copper foil and a thermosetting resin for the resin sealing body 11 are sequentially loaded in a lower mold for molding, It is formed by loading the semiconductor element 10 in a mold and heating the semiconductor element 10 while pressing so as to be embedded in the thermosetting resin. Further, for example, after molding the resin sealing body 11, a copper foil may be bonded to the surface via an adhesive having excellent thermal conductivity.
In addition, if the surface side of the metal layer 14 for heat radiation is patterned in, for example, a fin shape to increase the surface area, the heat dissipation can be improved.
Furthermore, it is possible to improve the heat dissipation by roughening the surface of the metal layer 14 for heat dissipation by, for example, performing an etching process or a polishing process to increase the surface area.
In addition, it is preferable that the thickness of the resin sealing body 11 on the semiconductor element 10 is about 2-5 micrometers. When the thickness of the resin sealing body 11 is thicker than 5 μm, heat generated from the semiconductor element 10 cannot be efficiently transmitted to the heat radiating metal layer 14 and heat dissipation becomes worse. On the other hand, if the thickness of the resin sealing body 11 is less than 2 μm, the bonding allowance between the heat dissipating metal layer 14 and the resin sealing body 11 is reduced, so that the adhesive strength between the two becomes worse.

このように、本発明に係る半導体素子内蔵基板Aによれば、半導体素子10を埋設する樹脂封止体11の第2の主面11b表面全面に放熱用の金属層14が形成されている。
このため、半導体素子10から生じる熱を放熱用の金属層14を介して外部に効率よく放熱することができる。これにより、半導体素子10が高温になることを防いで安定的に作動することが可能な半導体素子内蔵基板Aを提供することができる。
Thus, according to the semiconductor element-embedded substrate A according to the present invention, the heat radiation metal layer 14 is formed on the entire surface of the second main surface 11b of the resin sealing body 11 in which the semiconductor element 10 is embedded.
For this reason, the heat generated from the semiconductor element 10 can be efficiently radiated to the outside through the metal layer 14 for radiating heat. Thereby, it is possible to provide the semiconductor element-embedded substrate A that can prevent the semiconductor element 10 from becoming high temperature and can operate stably.

なお、本発明は上述の実施形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば上述の実施の形態の一例では、放熱用の金属層14が最外層に形成されている例を示したが、図2に示すように、放熱用の金属層14の表面に、反り抑制用の樹脂層18を形成しても構わない。最上層に反り抑制用の樹脂層18を形成して、最下層に形成されている絶縁層12との熱伸縮差を小さくすることで反りを抑制する。
また、例えば上述の実施の形態の一例では、絶縁層12の最表層面にソルダーレジスト層が被着されていない場合を示したが、ソルダーレジスト層が被着されていても構わない。
さらに、例えば上述の実施の形態の一例では、金属層14が第2の主面11b表面全面に形成されている場合を示したが、発熱体である半導体素子10の上方付近にのみ形成しても構わない。
In addition, this invention is not limited to an example of above-mentioned embodiment, A various change is possible if it is a range which does not deviate from the summary of this invention. For example, in the example of the above-described embodiment, the example in which the heat dissipation metal layer 14 is formed in the outermost layer is shown. However, as shown in FIG. The resin layer 18 may be formed. The warp suppressing resin layer 18 is formed in the uppermost layer, and the warp is suppressed by reducing the thermal expansion / contraction difference with the insulating layer 12 formed in the lowermost layer.
Further, for example, in the example of the above-described embodiment, the case where the solder resist layer is not deposited on the outermost surface of the insulating layer 12 is shown, but the solder resist layer may be deposited.
Further, for example, in the above-described embodiment, the metal layer 14 is formed on the entire surface of the second main surface 11b. However, the metal layer 14 is formed only near the upper portion of the semiconductor element 10 that is a heating element. It doesn't matter.

10 半導体素子
10a 電極端子
10b 電極端子形成面
11 樹脂封止体
11a 第1の主面
11b 第2の主面
12 絶縁層
13 配線導体
14 放熱用の金属層
15 ビアホール
A 半導体素子内蔵基板
DESCRIPTION OF SYMBOLS 10 Semiconductor element 10a Electrode terminal 10b Electrode terminal formation surface 11 Resin sealing body 11a 1st main surface 11b 2nd main surface 12 Insulating layer 13 Wiring conductor 14 Metal layer 15 for heat dissipation Via hole A Semiconductor element built-in substrate

Claims (1)

互いに対向する平坦な第1の主面および第2の主面を有する樹脂封止体と、
電極端子が複数形成された電極端子形成面を有しており、前記第1の主面に前記電極端子形成面が露出するように前記樹脂封止体に埋設された半導体素子と、
前記電極端子形成面および前記第1の主面を被覆するように積層された絶縁層と、
前記絶縁層に複数形成されており前記電極端子を底面とするビアホールと、
前記絶縁層表面および前記ビアホール内に形成された配線導体と、
を備える半導体素子内蔵基板であって、
前記樹脂封止体の第2の主面表面に、放熱用の金属層を具備していることを特徴とする半導体素子内蔵基板。
A resin sealing body having a flat first main surface and a second main surface facing each other;
A semiconductor element having an electrode terminal forming surface in which a plurality of electrode terminals are formed, embedded in the resin sealing body so that the electrode terminal forming surface is exposed on the first main surface;
An insulating layer laminated to cover the electrode terminal forming surface and the first main surface;
A plurality of via holes formed in the insulating layer and having the electrode terminal as a bottom surface;
A wiring conductor formed in the insulating layer surface and the via hole;
A semiconductor element built-in substrate comprising:
A semiconductor element-embedded substrate comprising a metal layer for heat dissipation on a surface of a second main surface of the resin-encapsulated body.
JP2016086673A 2016-04-25 2016-04-25 Semiconductor element built-in substrate Pending JP2017199705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086673A JP2017199705A (en) 2016-04-25 2016-04-25 Semiconductor element built-in substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086673A JP2017199705A (en) 2016-04-25 2016-04-25 Semiconductor element built-in substrate

Publications (1)

Publication Number Publication Date
JP2017199705A true JP2017199705A (en) 2017-11-02

Family

ID=60238114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086673A Pending JP2017199705A (en) 2016-04-25 2016-04-25 Semiconductor element built-in substrate

Country Status (1)

Country Link
JP (1) JP2017199705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7574632B2 (en) 2020-12-10 2024-10-29 Toppanホールディングス株式会社 Substrate unit, method of manufacturing substrate unit, and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7574632B2 (en) 2020-12-10 2024-10-29 Toppanホールディングス株式会社 Substrate unit, method of manufacturing substrate unit, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP5296894B2 (en) Package carrier and manufacturing method thereof
US7839649B2 (en) Circuit board structure having embedded semiconductor element and fabrication method thereof
JPWO2016080333A1 (en) module
KR20140021910A (en) Core substrate and printed circuit board using the same
JP2010080572A (en) Electronic equipment
US11183447B2 (en) Flip-chip package substrate and method for fabricating the same
JP2013243263A (en) Combination of power supply and heat dissipation (cooling) in three-dimensional laminate package
WO2019116828A1 (en) Electronic control device
CN106847781A (en) Power module package and its manufacture method
KR102216506B1 (en) Heat radiation member and printed circuit board having the same
US20200388564A1 (en) Semiconductor package substrate, method for fabricating the same, and electronic package having the same
TW201712816A (en) Package carrier and manufacturing method thereof
TWI523587B (en) Package substrate and electronic assembly
JP6031642B2 (en) Power module and manufacturing method thereof
JP2015228480A (en) Package substrate, package, lamination package, and method of manufacturing package substrate
US20120181066A1 (en) Package carrier
JP2017199705A (en) Semiconductor element built-in substrate
US9258879B2 (en) Heat radiating substrate and method of manufacturing the same
JP5609037B2 (en) Semiconductor package built-in wiring board and manufacturing method of semiconductor package built-in wiring board
US10264681B2 (en) Electronic component built-in substrate and electronic component device
JP5197562B2 (en) Light emitting device package and manufacturing method thereof
JP5411174B2 (en) Circuit board and manufacturing method thereof
TW201927084A (en) Flexible circuit board structure
TWI791648B (en) Package structure
KR102373809B1 (en) Package structure and manufacturing method thereof