JP2016039721A - Dc power distribution system - Google Patents
Dc power distribution system Download PDFInfo
- Publication number
- JP2016039721A JP2016039721A JP2014162346A JP2014162346A JP2016039721A JP 2016039721 A JP2016039721 A JP 2016039721A JP 2014162346 A JP2014162346 A JP 2014162346A JP 2014162346 A JP2014162346 A JP 2014162346A JP 2016039721 A JP2016039721 A JP 2016039721A
- Authority
- JP
- Japan
- Prior art keywords
- power
- amount
- discharge
- power amount
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Fuel Cell (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Direct Current Feeding And Distribution (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、直流配電システムに関する。 The present invention relates to a DC power distribution system.
近年、省エネルギー、省CO2化への関心から、建造物に太陽光発電パネルや、風力発電機などの再生可能エネルギーによる発電システムが設置されることが多くなっている。再生可能エネルギーによる発電システムは、天候によって発電電力が変動する。このように時間変動を伴うシステムでは、発電電力を負荷に供給し、その余剰電力を蓄電池に蓄電するといった制御が行われている。また、負荷の電力が不足した場合やデマンドレスポンス対応として、ピークカット用の電力として蓄電池の電力を利用することによって、発電した電力は効率的に利用されている。 Recently, energy saving, the interest in saving CO 2 reduction, solar panels and the building, and it is increasingly the power generation system according to renewable energy such as wind power generator is installed. In a power generation system using renewable energy, generated power varies depending on the weather. As described above, in the system with time fluctuation, control is performed such that the generated power is supplied to the load and the surplus power is stored in the storage battery. In addition, when the load power is insufficient or in response to demand response, the generated power is efficiently used by using the power of the storage battery as the power for peak cut.
しかしながら、余剰電力を蓄電するためには、大きな蓄電容量が必要となるため、設置コストの増加が課題となっている。
また、最近では、燃料電池の高効率化が進んでおり、前述の再生可能エネルギーによる発電システムに加えて燃料電池が設置される建造物もある。燃料電池として発電効率が高い固体酸化物型燃料電池(SOFC)を用いた場合、発電量を一定出力とすることが一般的であるため、燃料電池はベース電力として利用される。この場合でも上記と同様に、設置コストの増加が課題となっている。
However, in order to store surplus power, a large storage capacity is required, and thus an increase in installation cost is a problem.
In recent years, fuel cells have become more efficient, and there are buildings where fuel cells are installed in addition to the above-described power generation system using renewable energy. When a solid oxide fuel cell (SOFC) with high power generation efficiency is used as a fuel cell, the power generation amount is generally set to a constant output, and therefore the fuel cell is used as base power. Even in this case, as described above, an increase in installation cost is a problem.
ところで、太陽光発電システム、燃料電池、蓄電池の出力を建造設備機器の負荷に供給する場合、まずは発電量の制御が困難で系統側への逆潮流が制限される燃料電池の発電電力が負荷に供給される。ここで、燃料電池の余剰電力は蓄電池に蓄電されるか、系統からの解列もしくは逆潮流を行う。
また、燃料電池は停止や発電量制御が困難であるため、蓄電池の容量を大きくするか、負荷の待機電力を検討し、最低限必要な負荷電力量よりも小さな容量の機器が選定されるのが一般的である。
By the way, when supplying the output of a photovoltaic power generation system, fuel cell, or storage battery to a load of a building equipment, first of all, the generated power of the fuel cell is difficult to control the amount of power generation and the reverse power flow to the system side is restricted. Supplied. Here, the surplus power of the fuel cell is stored in the storage battery, or is disconnected or reversely flowed from the system.
In addition, since it is difficult to stop or control the amount of power generated for fuel cells, increase the capacity of the storage battery or consider standby power for the load, and select a device with a capacity smaller than the minimum required load power. Is common.
燃料電池の発電電力では負荷電力を賄えない場合は、太陽光発電による電力が負荷に供給される。太陽光発電も発電する電力量を制御することができないため、太陽光発電による発電電力が余剰した場合には蓄電池に蓄電するか、解列若しくは逆潮流される。
燃料電池と太陽光発電とによる合計発電量が負荷電力以下の場合には、負荷には蓄電池からの放電および系統からの電力が給電される。ここで、系統電力のピークを抑制するような蓄電池からの放電制御が可能になれば、契約電力を下げることができるため、ランニングコストを低減することが可能になる。
When the generated power of the fuel cell cannot cover the load power, the power generated by solar power is supplied to the load. Since the amount of electric power generated by solar power generation cannot be controlled, when surplus power is generated by solar power generation, it is stored in a storage battery, or disconnected or reversely flowed.
When the total amount of power generated by the fuel cell and solar power generation is equal to or less than the load power, the load is supplied with the discharge from the storage battery and the power from the system. Here, if the discharge control from the storage battery capable of suppressing the peak of the system power becomes possible, the contract power can be lowered, so that the running cost can be reduced.
しかしながら、太陽光発電による発電電力の変動を抑制し、ピークカットを抑制する蓄電池制御を可能にするには、大容量のインバータ装置(AC/DC変換器 kW)を付加する必要がある。インバータ装置は、定格よりも大幅に低い電力量のエネルギー変換では、効率が低下する傾向があるため、蓄電池からの電力供給はせっかく発電した電力を損失するというデメリットを伴う。また、蓄電池容量(kWh)も大きくなり、蓄電池の設置場所の確保も課題となる。 However, it is necessary to add a large-capacity inverter device (AC / DC converter kW) in order to control storage battery control that suppresses fluctuations in power generated by solar power generation and suppresses peak cuts. Inverter devices tend to be less efficient in energy conversion with an amount of power that is significantly lower than the rating, so the power supply from the storage battery has the demerit of losing the generated power. In addition, the storage battery capacity (kWh) is increased, and securing the installation location of the storage battery is also an issue.
ところで、燃料電池、太陽光発電、蓄電池は、いずれも直流(DC)の電力を発電若しくは蓄電するシステムである。一方、建物の設備機器としての、LED照明器具、コンピュータ、サーバ等は直流動作を行う。しかし、燃料電池、太陽光発電、蓄電池などにより直流動作を行う場合、一般的には、発電・蓄電電力は直流(DC)から交流(AC)に変換し、交流電力として建物内を配電し、交流電力として設備機器に給電する。そして、設備機器で、交流電力を直流電力に変換して動作する。 By the way, a fuel cell, photovoltaic power generation, and a storage battery are all systems that generate or store direct current (DC) power. On the other hand, LED lighting fixtures, computers, servers, and the like as building equipment devices perform direct current operation. However, when direct current operation is performed by a fuel cell, solar power generation, storage battery, etc., in general, the generated / stored power is converted from direct current (DC) to alternating current (AC) and distributed inside the building as alternating current power, Power is supplied to equipment as AC power. And it operates by converting AC power into DC power in equipment.
そのため、直流から交流(DC/AC変換)あるいは交流から直流(AC/DC変換)に変換する際にエネルギー変換ロスが発生する。
その対応として、DC/AC変換器あるいはAC/DC変換器の変換効率の低下を抑制するようにした直流配電システムが提案されている。
例えばAC/DC変換器として、定格出力電力よりも低い所定値において、変換効率が最大となる特性を有するAC/DC変換器を用い、重負荷の場合には他の分散電源と分担して給電することによって、軽負荷および重負荷に関係なく、AC/DC変換器の変換効率の低下を抑制するようにした直流配電システムが提案されている(例えば、特許文献1参照)。
Therefore, an energy conversion loss occurs when converting from direct current to alternating current (DC / AC conversion) or from alternating current to direct current (AC / DC conversion).
As a countermeasure, a DC power distribution system that suppresses a decrease in conversion efficiency of a DC / AC converter or an AC / DC converter has been proposed.
For example, as an AC / DC converter, an AC / DC converter having a characteristic that maximizes the conversion efficiency at a predetermined value lower than the rated output power is used. In the case of a heavy load, power is shared with other distributed power sources. Thus, there has been proposed a DC power distribution system that suppresses a decrease in conversion efficiency of an AC / DC converter regardless of light load and heavy load (see, for example, Patent Document 1).
しかしながら、上述の直流配電システムにおいては、軽負荷時などに蓄電池(二次電池)からの放電電力が要求される場合には、蓄電池の定格出力電力よりも低い電力を放電する可能性がある。このように蓄電池の定格出力電力よりも低い電力を放電する場合、蓄電池の蓄電電力を昇圧、あるいは降圧して負荷への電力供給を行うDC/DC(直流/直流)変換器の変換効率が低下する可能性がある。
そこで、この発明は、上記従来の未解決の課題に着目してなされたものであり、エネルギーの変換ロスを低減し、かつ構成機器の小容量化を図ることの可能な直流配電システムを提供することを目的としている。
However, in the above-described DC power distribution system, when discharge power from the storage battery (secondary battery) is required at a light load or the like, there is a possibility that power lower than the rated output power of the storage battery is discharged. When discharging power lower than the rated output power of the storage battery in this way, the conversion efficiency of the DC / DC (direct current / direct current) converter that increases or decreases the stored power of the storage battery to supply power to the load is reduced. there's a possibility that.
Therefore, the present invention has been made paying attention to the above-mentioned conventional unsolved problems, and provides a DC distribution system capable of reducing energy conversion loss and reducing the capacity of components. The purpose is that.
本発明の一態様によれば、直流給電負荷の需要電力量と、直流発電装置が供給可能な直流電力量との差分から、所定時間当たりの、交流電源系統から受電する必要のある受電電力量が予測され、予測された必要受電電力量が、目標受電電力量設定部で設定された目標受電電力量と一致し、かつ蓄電装置に対応して駆動される直流/直流変換器の負荷率が予め設定した閾値以上となり得る放電電力量であり、且つ直流給電負荷の需要電力量と直流発電装置により供給される直流電力量との差分を補うための放電電力量である目標放電電力量を設定する放電電力量設定部を備える、直流配電システムが提供される。
なお、ここでいう、直流発電装置とは、水素と酸素とを反応させて継続的に電力を取り出すことのできる燃料電池と、太陽光発電、或いは風力発電、水力発電など自然エネルギーを利用して電力を取り出す自然エネルギー発電システム等とを含む。
According to one aspect of the present invention, the amount of received power that needs to be received from the AC power supply system per predetermined time is determined from the difference between the amount of demand power of the DC power supply load and the amount of DC power that can be supplied by the DC power generation device. The required received power amount that is predicted and predicted matches the target received power amount set by the target received power amount setting unit, and the load factor of the DC / DC converter that is driven corresponding to the power storage device is determined in advance. Discharge that sets a target discharge power amount that is a discharge power amount that can be equal to or greater than a set threshold and that compensates for the difference between the demand power amount of the DC power supply load and the DC power amount supplied by the DC power generator. A DC power distribution system including an electric energy setting unit is provided.
Note that the DC power generation device here refers to a fuel cell that can continuously extract electric power by reacting hydrogen and oxygen, and using natural energy such as solar power generation, wind power generation, or hydroelectric power generation. Including a natural energy power generation system for extracting electric power.
本発明の一態様によれば、DC/DC変換器やAC/DC変換器におけるエネルギーの変換ロスを低減することができるとともに、構成機器の小容量化を図ることができる。 According to one embodiment of the present invention, energy conversion loss in a DC / DC converter and an AC / DC converter can be reduced, and the capacity of constituent devices can be reduced.
以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の直流配電システム1の一例を示す、概略構成図である。
図1に示す直流配電システム1は、直流電力を給電する直流発電装置としての燃料電池2および太陽光発電システム3と、照明器具(LED等)やOA機器等の、直流電力が給電される直流負荷4と、複数の蓄電池システム5と、を備える。燃料電池2および太陽光発電システム3と、直流負荷4と、蓄電池システム5とは、これら各部毎に設けられたDC/DC(直流/直流)変換器6を介して直流配電網10に接続されている。なお、ここでは直流発電装置として、燃料電池や太陽光発電システムを適用した場合について説明するが、これに限るものではなく、例えば風力発電や水力発電などの自然エネルギーを利用した発電システムであっても適用することができる。特に、燃料電池のように天候など自然に左右されることなく継続的に電力を得ることのできる発電装置と、自然エネルギーを利用した発電システムとの両方を直流発電装置として備えたシステムに好適である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a DC power distribution system 1 of the present invention.
A DC power distribution system 1 shown in FIG. 1 includes a
商用電源が供給される交流電源系統12には交流電力が給電される一般負荷8が接続される。また、交流電源系統12から分岐した分岐路12aと直流配電網10との間には、AC/DC変換器7cが複数接続される。
交流電源系統12には、燃料電池発電用PCS(Power Conditioning System)に含まれるAC/DC(交流/直流)変換器7aおよび太陽光発電用PCSに含まれるAC/DC変換器7bが接続され、燃料電池2は、DC/DC変換器6(6a)およびAC/DC変換器7aを介して交流電源系統12との間で電力授受を行い、太陽光発電システム3は、DC/DC変換器6(6b)およびAC/DC変換器7bを介して交流電源系統12との間で電力授受を行う。
A general load 8 to which AC power is supplied is connected to an AC
The AC
蓄電池システム5は、蓄電装置5aと、蓄電装置5aの充放電制御を行う制御部5bとを備える。蓄電装置5aは、建物に設置する場合に比較的大規模(大容量、大出力)となる定置型蓄電池システムではなく、比較的低容量、低出力の蓄電装置が適用され、このように比較的低容量の1または複数の蓄電池システム5が分散して配置される。蓄電池システム5は、蓄電池システム5と蓄電池システム5毎に対応付けられたDC/DC変換器6cおよびAC/DC変換器7cとを1セットとして、1又は複数のセットが、並列に接続されるようになっている。
The storage battery system 5 includes a
蓄電池システム5および蓄電池システム5毎に対応づけられたDC/DC変換器6cは、充放電制御装置13により制御される。
燃料電池2には、燃料電池による発電電力を検出する電力センサm1が設けられ、同様に、太陽光発電システム3には太陽光発電による発電電力を検出する電力センサm2が設けられている。また、蓄電池システム5のそれぞれには、蓄電装置5aの充放電可能容量を検出するための充放電可能容量検出センサm3が設けられている。さらに、直流負荷4、また、一般負荷8のそれぞれには、需要電力を検出する電力センサm4が設けられている。
The storage battery system 5 and the DC /
The
充放電制御装置13は、蓄電池システム5に設けられた充放電可能容量検出センサm3の検出信号を定期的に読み込み配電制御装置14に送信するとともに、配電制御装置14から放電電力量の指令値を入力する。また、蓄電池システム5毎に対応付けられたDC/DC変換器6cそれぞれに対して負荷率の閾値を設定し、設定した負荷率の閾値と、放電電力量の指令値と、現時点における各蓄電池システム5の充放電可能容量などをもとに、負荷率が閾値以上となるように、放電させる蓄電池システム5および放電電力量を決定し、決定した放電電力量を配電制御装置14に送信する。また、配電制御装置14からの蓄電電力量の指令値や、DC/DC変換器6cの負荷率の閾値をもとに、充電する蓄電池システム5を決定し、決定した蓄電池システム5に対応するDC/DC変換器6cを制御して、指定された蓄電電力量の指令値相当の充電を行う。また、放電電力量あるいは充電電力量の指令値相当の充放電を行うに当たり、負荷率の閾値を満足する負荷率で充放電を行うことができない場合には配電制御装置14に対して充放電不可である旨を通知する。
The charge /
ここで、負荷率とは、DC/DC変換器6或いはAC/DC変換器7などの電力変換器の容量と送電する電力量との比(送電する電力量/電力変換器の容量)で表される値である。DC/DC変換器6cの負荷率は、「送電する電力量/(DC/DC変換器6cの容量)」で表される。
DC/DC変換器6およびAC/DC変換器7はそれぞれ図示しない制御部を有しており、燃料電池2、太陽光発電システム3、これら燃料電池2、太陽光発電システム3および直流負荷4に対応するDC/DC変換器6や、AC/DC変換器7、また充放電制御装置13を、配電制御装置14により制御することによって、直流負荷4への給電および蓄電装置5aへの充放電などが行われる。すなわち配電制御装置14は、各種センサの検出信号をもとに、燃料電池2、太陽光発電システム3、充放電制御装置13、DC/DC変換器6およびAC/DC変換器7を制御し、燃料電池2や太陽光発電システム3による発電電力を直流負荷4に給電し、不足分を蓄電装置5aから給電するとともに、交流電源系統12から給電される交流電力を直流電力に変換して直流負荷4に給電し、余剰分は蓄電装置5aに蓄電する。また、配電制御装置14は、直流負荷4および一般負荷(交流)8の需要電力量、燃料電池2および太陽光発電システム3による発電電力量、蓄電装置5aの充放電可能容量などに基づき、現時点から所定時間T(例えば30分後)経過後までの間に必要な、所定時間T当たりに、交流電源系統12から受電する電力量(以後、受電電力量という。)を予測するとともに、現時点から所定時間T経過後までの間の所定時間T当たりの、交流電源系統12からの受電電力量の目標値(以後、目標受電電力量ともいう。)を設定し、単位時間当たりの実際の受電電力量が目標受電電力量と一致し、且つ、DC/DC変換器6やAC/DC変換器7といった電力変換器の変換効率が予め設定した閾値以上となるように、蓄電装置5aの充放電量や交流電源系統12から受電する受電電力量の制御等を行う。
Here, the load factor is represented by a ratio between the capacity of a power converter such as the DC /
Each of the DC /
次に、直流配電システム1における処理手順の一例を、図2に示すフローチャートを用いて説明する。
直流配電システム1では、図2に示す演算処理を予め設定した所定周期で実行する。
配電制御装置14は、起動されると各種センサの検出信号を読み込む(ステップS1)。蓄電池システム5に設けられた充放電可能容量検出センサm3については、その検出信号を充放電制御装置13が読み込み、配電制御装置14は、充放電可能容量検出センサm3の検出信号を充放電制御装置13から受信する。
Next, an example of a processing procedure in the DC power distribution system 1 will be described using the flowchart shown in FIG.
In the DC power distribution system 1, the arithmetic processing shown in FIG. 2 is executed at a predetermined cycle set in advance.
When activated, the power
次いで、配電制御装置14は、燃料電池2の発電出力を、直流で直流負荷4に給電する(ステップS2)。すなわち、燃料電池2に対応付けられたDC/DC変換器6a、直流負荷4に対応付けられたDC/DC変換器6を制御し、燃料電池2による発電電力のうち直流負荷4の需要電力相当を、直流配電網10を介して直流負荷4に給電する。
直流負荷4の消費電力、すなわち需要電力が、燃料電池2による発電電力よりも小さい場合(ステップS3)、つまり、燃料電池2による発電電力に余剰分が生じる場合にはステップS4に移行し、蓄電装置5aにより蓄電可能であるかを判断する。すなわち、充放電制御装置13に対して余剰電力量を通知し、充放電制御装置13では、蓄電装置5aの充電可能容量や、DC/DC変換器6cの負荷率の閾値等に基づいて、燃料電池2による発電電力の余剰分を蓄電可能な蓄電装置5aがあるかどうかを判断する。そして、判断結果を配電制御装置14に通知する。
Next, the power
When the power consumption of the
配電制御装置14は、燃料電池2による発電電力の余剰分を蓄電装置5aに蓄電可能であるならば、充放電制御装置13に対して蓄電電力量の指令値を送信する。
充放電制御装置13は、指定された蓄電電力量の指令値相当の電力を、蓄電可能として判断した蓄電池システム5に充電する。すなわち、蓄電可能として判断した蓄電池システム5、およびこの蓄電池システム5に対応付けられたDC/DC変換器6cを制御し、燃料電池2の発電電力のうち余剰分を、直流配電網10およびDC/DC変換器6cを介して蓄電池システム5に充電する(ステップS5)。
If the surplus power generated by the
The charge /
一方、いずれの蓄電装置5aも満充電状態である場合、或いは、負荷率を満足する蓄電装置5aが存在しない等の理由で、燃料電池2の発電電力の余剰分を蓄電装置5aに蓄電することができない場合には、ステップS6に移行し、配電制御装置14は、燃料電池2に対応付けられたDC/DC変換器6aおよびAC/DC変換器7aを制御し、交流電源系統12への逆潮流を行う。或いは、燃料電池2を解列するようにしてもよい。
On the other hand, when any
一方、ステップS3で、直流負荷4の消費電力が燃料電池2の発電電力よりも大きい場合、つまり、直流負荷4への給電量が不足している場合にはステップS7に移行し、太陽光発電システム3による発電電力のうちの、直流負荷4の需要電力のうち燃料電池2の発電電力で賄いきれなかった電力相当を、直流で直流負荷4に給電する。すなわち、配電制御装置14は、直流負荷4に対応付けられたDC/DC変換器6を制御して、太陽光発電システム3による発電電力を、直流配電網10を介して直流負荷4に給電する。
On the other hand, when the power consumption of the
そして、直流負荷4の需要電力と燃料電池2による発電電力との差、すなわち直流負荷4の需要電力のうち燃料電池2により賄いきれなかった不足分が、太陽光発電システム3による発電電力よりも大きい場合、つまり太陽光発電システム3による発電電力に余剰分が生じる場合には(ステップS8)、ステップS9に移行し、配電制御装置14は、余剰分を、蓄電装置5aで蓄電可能であるかを判断する。すなわち前述のステップS4の処理と同様に、充放電制御装置13に対して、太陽光発電システム3による発電電力の余剰電力量を通知して、この余剰電力量相当を蓄電可能な蓄電装置5aが存在するか否かの判断結果を取得する。余剰分を蓄電装置5aに蓄電可能であるならば、配電制御装置14は、充放電制御装置13に対して蓄電電力量の指令値を送信する。
The difference between the demand power of the
充放電制御装置13は、指定された蓄電電力量の指令値相当の電力を、蓄電可能として判断した蓄電池システム5に充電する。すなわち、蓄電可能と判断した蓄電池システム5およびこれに対応するDC/DC変換器6cを制御し、太陽光発電システム3による発電電力うち余剰分を、直流配電網10およびDC/DC変換器6cを介して蓄電池システム5に充電する(ステップS10)。
The charge /
一方、太陽光発電システム3による発電電力の余剰分を蓄電装置5aに蓄電可能でない場合には、ステップS11に移行し、配電制御装置14は、太陽光発電システム3に対応するAC/DC変換器7bを介して、交流電源系統12に逆潮流させる。或いは、太陽光発電システム3を解列するようにしてもよい。
また、ステップS8の処理で、直流負荷4の需要電力と燃料電池2による発電電力との差、つまり需要電力のうちの、燃料電池2の発電電力による不足分(P1)が、太陽光発電システム3による発電電力以下である場合、すなわち、直流負荷4の需要電力を、燃料電池2および太陽光発電システム3による発電電力で賄いきれない場合にはステップS12に移行する。
On the other hand, when the surplus power generated by the solar
Also, in the process of step S8, the difference between the demand power of the
このステップS12では、配電制御装置14は、放電電力量演算処理を実行して、直流負荷4および一般負荷(交流)8の需要電力、燃料電池2および太陽光発電システム3による発電電力、蓄電装置5aの充放電可能容量などに基づき、現時点から所定時間T(例えば30分)後までの、所定時間T当たりに必要な、交流電源系統12からの受電電力量を予測するとともに、現時点から所定時間T後までの所定時間T当たりの、交流電源系統12からの受電電力量の目標値である目標受電電力量を設定する。そして、これらに基づき放電電力量の指令値を演算し、演算した放電電力量の指令値を充放電制御装置13に通知する。また、配電制御装置14は、放電電力量の指令値を、単位時間毎(例えば1分毎)に演算して充放電制御装置13に通知する。
In this step S12, the power
図3は、ステップS12で実行される放電電力量演算処理の処理手順の一例を示すフローチャートである。
配電制御装置14は、まず、現時点から所定時間T経過後までの間の所定時間T当たりの、交流電源系統12から受電する必要のある受電電力量を予測する(ステップS21)。この予測は具体的には、次の手順で行う。まず、交流電源系統12を介して給電すべき交流負荷である一般負荷8および直流負荷4の消費電力と、燃料電池2による発電電力と、太陽光発電システム3による発電電力とを単位時間(例えば1分)毎に計測し、集計および分析等を行う。この分析等を行う処理は、図2に示す演算処理と並行して行われる。集計および分析としては、具体的には、図1に示す直流負荷4を初め、図1に記載されていない照明、コンセント、空調、換気、給排水ポンプ、制御用電力、動力機械などの、交流電源系統12から給電を受ける各種負荷毎に設置した電力センサの測定値を単位時間(例えば1分)単位で読込み、時間軸上の電力量データとして集計する。この際の電力量データの傾きを求め、所定時間(例えば30分)後に必要となる電力量を予測する。ただし、測定値は変動する要因を持つため(たとえば、エレベータ動力などはエレベータが動作した時間における測定値は大きくなり、停止している時間は測定値が小さい。このような動作状態によって測定値は大きく変動する)、単位時間(1分)単位で測定値を集計し、所定時間T(30分)後の予測値を補正する。太陽光発電システム3の発電量は日射によって変化するため、測定値は変動する要因を持つ。そのため、単位時間(1分)単位で測定値を集計し、所定時間(30分)後の予測値を補正する。一方、燃料電池2は一定の発電量を供給するが、同様の集計と予測を行う。
FIG. 3 is a flowchart showing an example of the processing procedure of the discharge power amount calculation process executed in step S12.
First, the power
そして、一般負荷8および直流負荷4の需要電力の総和と、燃料電池2および太陽光発電システム3による発電電力の総和との差分を単位時間ごとに演算し、この差分値を所定時間Tの間積分することにより積分電力量を求め、この積分電力量と分析処理での分析結果と、等に基づき、蓄電池及び交流電源系統12から受電する必要のある受電電力量を予測する。
Then, the difference between the sum of the demand power of the general load 8 and the
なお、この所定時間T当たりの受電電力量の予測は、単位時間毎に行い、計測した負荷の需要電力の総和や燃料電池2や太陽光発電システム3による発電電力の変動に応じて、単位時間毎に受電電力量の予測値を補正するようになっている。
続いて、ステップS22に移行し、現時点から所定時間T経過後までの、所定時間T当たりに、交流電源系統12から受電(買電)する電力量の目標値、すなわち目標受電電力量を設定する。
The amount of received power per predetermined time T is predicted every unit time, and the unit time depends on the total demand power of the measured load and the fluctuations in the power generated by the
Subsequently, the process proceeds to step S22, and the target value of the amount of power received (purchased) from the AC
次いで、ステップS23に移行し、蓄電装置5aの放電電力量を設定する。すなわち、ステップS21で求めた所定時間T当たりの受電電力量の予測値からステップS22で求めた目標受電電力量を減算して差分を求め、この差分に基づき、蓄電装置5aの放電電力量を設定する。具体的には、受電電力量の予測値と目標受電電力量との差分と、各蓄電装置5aにおける放電可能容量と、蓄電池システム5に対応付けられたDC/DC変換器6cやAC/DC変換器7cの負荷率の閾値と、等をもとに、所定時間T当たりの実際の受電電力量が目標受電電力量と一致し、且つ、DC/DC変換器6cやAC/DC変換器7cの負荷率が、その閾値以上となるように、蓄電装置5aの放電電力量と、交流電源系統12からの受電電力量との配分を考慮して、蓄電装置5aの放電電力量を設定する。
Next, the process proceeds to step S23, and the discharge power amount of the
図4は、放電電力量の設定方法の一例を示す説明図である。
図4において、横軸は経過時間、縦軸は電力量kWhである。また、図4において、特性線Kは、実績(直流負荷4の消費電力−直流発電装置による発電電力)を表す。ΔWは、所定時間T(例えば30分)が経過するまでの間の、所定時間T当たりの受電電力量の予測値と目標受電電力量との差を表す。
特性線Kが第1の傾きで変化する区間t1では、特性線k1で表される所定時間T当たりの受電電力量の予測値は、特性線k2で表される所定時間T当たりの目標受電電力量を上回る。
FIG. 4 is an explanatory diagram illustrating an example of a method for setting the discharge power amount.
In FIG. 4, the horizontal axis represents the elapsed time, and the vertical axis represents the electric energy kWh. Moreover, in FIG. 4, the characteristic line K represents the results (power consumption of the
In the section t1 in which the characteristic line K changes with the first slope, the predicted value of the received power amount per predetermined time T represented by the characteristic line k1 is the target received power per predetermined time T represented by the characteristic line k2. Beyond competence.
そのため、区間t1では、このままでは所定時間T当たりの実際の受電電力量を、所定時間T当たりの目標受電電力量以下とすることができないと予測され、また、区間t1では特性線Kの傾きが比較的大きく、直流負荷4の消費電力のうち燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が比較的大きいと予測されることから、交流電源系統12からの受電だけでなく蓄電装置5aからの放電も行うことにより、交流電源系統12からの受電を抑える。また、その際、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つ、DC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように、交流電源系統12からの受電電力量と蓄電装置5aからの放電電力量とを設定することにより、エネルギー変換ロスの低減を図り、エネルギー変換ロスの少ない配分で、交流電源系統12からの受電と蓄電装置5aからの放電とを行う。
Therefore, in the section t1, it is predicted that the actual received power amount per predetermined time T cannot be made equal to or less than the target received power amount per predetermined time T in this state, and in the section t1, the slope of the characteristic line K is It is predicted that the power consumption of the
この状態から区間t2に示すように、特性線Kが第1の傾きよりも小さい第2の傾きで変化する状態となり、特性線k3で表される所定時間T当たりの受電電力量の予測値が所定時間T当たりの目標受電電力量(k2)以下となると、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つDC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように、交流電源系統12からの受電電力量と蓄電装置5aからの放電電力量とを設定することにより、交流電源系統12からの受電が停止され、蓄電装置5aの放電が行われる。つまり、特性線Kの傾きが比較的小さく、直流負荷4の消費電力のうち燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が比較的少ないときには、交流電源系統12から受電するよりも蓄電装置5aから放電させる方が効率がよい。したがって、このような場合には、交流電源系統12からの受電は停止し、蓄電装置5aの放電により、直流負荷4の消費電力の不足分を賄う。
From this state, as shown in a section t2, the characteristic line K changes with a second inclination smaller than the first inclination, and the predicted value of the received power amount per predetermined time T represented by the characteristic line k3 is When the target received power amount per predetermined time T (k2) or less, the predicted value of the received power amount per predetermined time matches the target received power amount, and the DC /
この状態から区間t3に示すように、特性線Kが第2の傾きよりも大きい第3の傾きで変化する状態となるが、所定時間T当たりの受電電力量の予測値が、所定時間T当たりの目標受電電力量以下である状態となると、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つDC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように、交流電源系統12からの受電電力量と蓄電装置5aからの放電電力量とを設定することにより、蓄電装置5aの放電が停止され、交流電源系統12からの受電が行われる。つまり、特性線Kの傾きが比較的大きく、直流負荷4の消費電力のうち燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が比較的大きいときには、蓄電装置5aからの放電だけでは不足し、蓄電装置5aの放電と交流電源系統12からの受電とを両方行うよりも交流電源系統12のみからの受電する方が、DC/DC変換器6やAC/DC変換器7の負荷率を考慮すると効率がよい。したがって、このような場合には、蓄電装置5aの放電は停止し交流電源系統12からの受電により、直流負荷4の消費電力の不足分を賄う。
From this state, as shown in the section t3, the characteristic line K changes with a third slope larger than the second slope, but the predicted value of the received power per predetermined time T is When the state is equal to or less than the target received power amount, the predicted value of the received power amount per predetermined time matches the target received power amount, and the load factor of the DC /
そして、この状態から区間t4に示すように、特性線Kの傾きが区間t1と同等程度の傾きになったときには、前述のように、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つDC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように蓄電装置5aによる放電と交流電源系統12からの受電との配分を決定し、蓄電装置5aによる放電と交流電源系統12からの受電とにより、DC/DC変換器6やAC/DC変換器7のエネルギー変換ロスを低減しつつ、直流負荷4の消費電力の不足分を賄う。
From this state, as shown in a section t4, when the slope of the characteristic line K becomes the same as that of the section t1, as described above, the predicted value of the received power amount per predetermined time is the target received power amount. And the distribution of the discharge by the
図5は、DC/DC変換器6の負荷率とエネルギー変換効率との関係の一例を示したものである。図6は、AC/DC変換器7の負荷率とエネルギー変換効率との関係の一例を示したものである。図5および図6において横軸は負荷率、縦軸はエネルギー変換効率である。
蓄電池システム5から直流負荷4へ直流配電を行う場合、DC/DC変換器6cを介して給電されるため、エネルギー変換による損失が生じる。この損失は、DC/DC変換器6cの容量と送電する電力量との比(送電する電力量/(DC/DC変換器6cの容量))で表される負荷率によって変動する。
FIG. 5 shows an example of the relationship between the load factor of the DC /
When direct-current distribution is performed from the storage battery system 5 to the direct-
図5に示すように、DC/DC変換器6におけるエネルギー変換効率は、負荷率が10%程度のときに、95%以上となっている。したがって、負荷率が10%以上となる範囲でDC/DC変換器6を動作させることによって、エネルギー損失を低減させることができることがわかる。つまり、DC/DC変換器6の負荷率の閾値を10%に設定すれば、95%以上の変換効率でDC/DC変換器6を動作させることができる。
As shown in FIG. 5, the energy conversion efficiency in the DC /
同様に、図6に示すように、AC/DC変換器7におけるエネルギー変換効率は、負荷率が60%程度のときに、90%以上となっている。したがって、負荷率が90%以上となる範囲でAC/DC変換器7を動作させることによって、エネルギー損失を低減させることができることがわかる。つまり、AC/DC変換器7の負荷率の閾値を60%に設定すれば、90%以上の変換効率でAC/DC変換器7を動作させることができる。 Similarly, as shown in FIG. 6, the energy conversion efficiency in the AC / DC converter 7 is 90% or more when the load factor is about 60%. Therefore, it can be seen that energy loss can be reduced by operating the AC / DC converter 7 within a range where the load factor is 90% or more. That is, if the load factor threshold of the AC / DC converter 7 is set to 60%, the AC / DC converter 7 can be operated with a conversion efficiency of 90% or more.
例えば、交流電源系統にDC/DC定格10kWの発電機3台接続されたシステムにおいて、直流負荷に21kWの電力供給を行う場合には、DC/DC変換器の負荷率の閾値を10%に設定すると、発電機からは20kWが供給され、残りの1kWは交流電源系統から給電される。なお、発電電力の余剰分は、蓄電装置への充電等に利用される。
交流電源系統からの給電は、AC/DC変換器を用いて行われる。このAC/DC変換器として、定置型蓄電池のAC/DC変換器を用い、その定格容量を50kWとした場合、前述の不足分1kWを供給する場合の負荷率は2%程度となり、非効率である。
For example, in a system in which three generators with a DC / DC rating of 10 kW are connected to an AC power supply system, when supplying 21 kW of power to a DC load, the threshold of the load factor of the DC / DC converter is set to 10%. Then, 20 kW is supplied from the generator, and the remaining 1 kW is supplied from the AC power supply system. The surplus generated power is used for charging the power storage device.
Power supply from the AC power supply system is performed using an AC / DC converter. If this AC / DC converter is an AC / DC converter of a stationary storage battery and its rated capacity is 50 kW, the load factor in the case of supplying the aforementioned 1 kW is about 2%, which is inefficient. is there.
図1に示す直流配電システム1では、燃料電池2や太陽光発電システム3用のPCSに含まれるAC/DC変換器7a、7bやDC/DC変換器6a、6bよりも、蓄電池システム5用のAC/DC変換器7cやDC/DC変換器6cを低容量とし、低容量のAC/DC変換器7c、AC/DC変換器7cと同程度の容量のDC/DC変換器6cを用い、さらに、蓄電装置5aおよび制御部5bを備えた蓄電池システム5と、DC/DC変換器6と、AC/DC変換器7とを、1セットとして並列に接続している。
In the DC power distribution system 1 shown in FIG. 1, the storage battery system 5 is used more than the AC /
AC/DC変換器7cの定格容量が2kWとすると、図6に示すように、1kWでは負荷率が50%であり、変換効率は85%程度となる。
そこで、直流配電システム1では、2kWを交流電源系統12から受電し、そのうち、1kWを直流配電網10に接続された直流負荷4に給電し、余剰する1kWは蓄電装置5aに充電する。蓄電装置5aに対応するDC/DC変換器6cは比較的低容量であるため、高い変換効率で充電することができ、すなわち変換ロスは比較的小さくてすむ。
Assuming that the rated capacity of the AC /
Therefore, in the DC
図2に戻って、ステップS12で、配電制御装置14が放電電力量を設定し、放電電力量の指令値を充放電制御装置13に通知すると、充放電制御装置13は、通知された放電電力量の指令値、各蓄電池システム5の放電可能容量、また、DC/DC変換器6cの負荷率の閾値などに基づいて放電可能な蓄電池システム5を決定するとともに、この蓄電池システム5により放電可能な電力量(以後、放電可能電力量ともいう。)を配電制御装置14に送信する。また、充放電制御装置13は、蓄電可能として決定した蓄電池システム5、およびこれに対応するDC/DC変換器6cを制御して放電可能電力量相当の放電を行い、配電制御装置14は、直流負荷4およびこれに対応するDC/DC変換器6を制御する。これにより、蓄電池システム5の放電電力は直流配電網10を介して直流負荷4に送電される(ステップS13)。
Returning to FIG. 2, when the
そして、配電制御装置14は、直流負荷4の需要電力を、燃料電池2および太陽光発電システム3による発電電力と、蓄電装置5aによる放電電力とにより賄えるかを判断し(ステップS14)、賄えるときには処理を終了する。
一方、燃料電池2および太陽光発電システム3による発電電力と、蓄電装置5aによる放電電力とを用いても直流負荷4の需要電力を賄いきれないときにはステップS15に移行し、ステップS12の処理で予測した、所定時間T当たりの交流電源系統12からの受電電力量と、所定時間T当たりの目標受電電力量と、AC/DC変換器7の負荷率の閾値と、蓄電池システム5における放電可能容量と、等に基づき、交流電源系統12からの給電電力を単位時間(例えば1分)ごとに決定する。そして、配電制御装置14は、決定した給電電力相当の、交流電源系統12による供給電力をAC/DC変換器7により直流電力に変換させ、直流負荷4の需要電力の不足分を、直流配電網10を介して直流負荷4に給電する。
Then, the power
On the other hand, when the generated power from the
そして、交流電源系統12からの供給電力を変換した直流電力のうち、直流負荷4に給電されない余剰分が生じるときには(ステップS16)、配電制御装置14は、充放電制御装置13に対して蓄電電力量の指令値を送信し、充放電制御装置13は、指定された蓄電電力量の指令値相当の電力を、蓄電池システム5に充電する(ステップS17)。一方、余剰分が生じないときには処理を終了する。
When the surplus power that is not supplied to the
以上の処理を繰り返し行うことにより、直流負荷4の需要電力のうち、燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が、蓄電装置5aによる放電や交流電源系統12からの受電により補われて、直流負荷4に対して需要電力相当の電力供給が行われる。
ここで、蓄電装置5aから直流負荷4に対して直流配電を行う場合、DC/DC変換器6cを介して給電されるため、DC/DC変換器6cにおいてエネルギー変換による損失が生じ、この損失は負荷率によって変動する。配電制御装置14では、放電電力量を設定する際に、DC/DC変換器6cの負荷率がその閾値以上となるように設定しており、DC/DC変換器6cでのエネルギー変換による損失が多くならないように設定している。そのため、DC/DC変換器6cが動作することによるエネルギー損失を低減することができる。
By repeating the above process, the shortage of the demand power of the
Here, when direct-current power distribution is performed from the
また、本実施形態では、低容量の蓄電池システム5を複数分散して配置しているため、従来のように大規模な定置型蓄電システムを設置する必要はなく、AC/DC変換器の容量、蓄電装置の容量ともに、低容量の蓄電池システムで実現することができる。そして、低容量の蓄電池システムを用いる場合、直流負荷4の需要電力の大きさによって、複数の蓄電池システムを必要とすることになり、大規模な定置型蓄電システムを用いる場合に比較して、エネルギー変換に伴い駆動するDC/DC変換器6cの数が増加することになる。DC/DC変換器6cの数の増加に比例してDC/DC変換器6cでのエネルギー損失の全体量が増加することになるが、前述のように、個々のDC/DC変換器6cでのエネルギー損失を低減しているため、低容量の蓄電池システムを複数用いることで、動作させるDC/DC変換器6cの数が増えたとしても、DC/DC変換器6cでのエネルギー変換によるエネルギー損失の全体量を低減することができる。
In the present embodiment, since a plurality of low-capacity storage battery systems 5 are arranged in a distributed manner, there is no need to install a large-scale stationary power storage system as in the prior art, and the capacity of the AC / DC converter, Both the capacity of the power storage device can be realized by a low-capacity storage battery system. When a low-capacity storage battery system is used, a plurality of storage battery systems are required depending on the magnitude of power demand of the
そして、このように低容量の蓄電池システムを分散配置するようにした蓄電池システムは、一般家庭用およびオフィスのOA機器用の非常用蓄電池などに既に普及しているため、汎用性が高く、低コストで実現することができる。
本実施形態では、このような安価なシステムを統合管理し、所定時間T(例えば30分)単位で発電や消費動向の計測・管理・予測を行い、また、単位時間(例えば1分)単位で蓄電池システム5を制御し、エネルギー変換の回数が少なく、エネルギー変換効率の高い直流配電網への給電や充電を行うことで、ピークカットを実現し、省エネルギーを実現することができる。
The storage battery system in which low-capacity storage battery systems are distributed in this manner is already widely used for emergency storage batteries for general household and office OA equipment, and is therefore highly versatile and low in cost. Can be realized.
In this embodiment, such an inexpensive system is integratedly managed, and power generation and consumption trends are measured, managed, and predicted in units of a predetermined time T (for example, 30 minutes), and in units of units (for example, 1 minute). By controlling the storage battery system 5 and performing power supply and charging to a DC power distribution network with a small number of energy conversions and high energy conversion efficiency, peak cut can be realized and energy saving can be realized.
また、交流電源系統12から受電する電力量として予測される受電電力量が、交流電源系統12から買電する電力量の目標値、すなわち目標受電電力量と一致するように制御を行っているため、例えば目標受電電力量を、年間の受電電力量の目標値に応じて設定することによって、年間の受電電力量を目標値(以下)に抑えることができ、すなわち、経費削減等につなげることができる。
In addition, control is performed so that the received power amount predicted as the amount of power received from the AC
また、AC/DC変換器7よりもエネルギー変換効率のよい、DC/DC変換器6を用い、電圧階級が等しい直流配電網による電力供給と充電とを行うことで、高効率な電力供給網を実現することができる。
また、交流電源系統12から交流電力を受電し直流配電網10に電力供給する際に必要なAC/DC変換器7cのエネルギー変換効率を最大化するために、比較的変換効率の高い負荷率で交流電力を受電し、高効率な直流配電網10内で消費と充電とを行うことで省エネルギーを実現することができる。
In addition, by using the DC /
Further, in order to maximize the energy conversion efficiency of the AC /
また、蓄電池システム5を分散配置しているため、小さなサイズの蓄電装置5aによりシステム化することができる。例えば、市販されている1kW/2.45kWhの蓄電装置5aであれば、300×500×高さ700(mm)程度である。ここに、制御部5bとしての制御用コントローラPLCを取り付ければよい。したがって、蓄電池システム5は、各戸や各ブースに設置可能なサイズとなり、従来に比較して、蓄電池設置スペースの省スペース化を図ることができる。
Moreover, since the storage battery system 5 is distributedly arranged, the system can be systemized by a small-sized
なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。
さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。
It should be noted that the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but includes all embodiments that provide the same effects as those intended by the present invention.
Furthermore, the scope of the invention is not limited to the combinations of features of the invention defined by the claims, but may be defined by any desired combination of particular features among all the disclosed features.
なお、上記実施形態において、燃料電池2および太陽光発電システム3が直流発電装置に対応し、各種センサm1〜m4が電力量検出部に対応し、図3のステップS21の処理が受電電力量予測部に対応し、ステップS22の処理が目標受電電力量設定部に対応し、ステップS23の処理が放電電力量設定部に対応している。
また、図2のステップS15の処理が受電電力量設定部に対応している。
In the above embodiment, the
Further, the process of step S15 in FIG. 2 corresponds to the received power amount setting unit.
1 直流配電システム
2 燃料電池
3 太陽光発電システム
4 直流負荷
5 蓄電池システム
6、6a〜6c DC/DC変換器
7、7a〜7c AC/DC変換器
10 直流配電網
12 交流電源系統
DESCRIPTION OF SYMBOLS 1
Claims (3)
蓄電装置と、
交流電源系統と直流配電網との間に接続される交流/直流変換器と、
前記直流発電装置、前記蓄電装置および直流給電負荷のそれぞれと前記直流配電網との間に接続される直流/直流変換器と、
前記直流給電負荷の需要電力量と、前記蓄電装置の充放電可能電力量と、前記直流発電装置が供給可能な直流電力量と、をそれぞれ検出する電力量検出部と、
前記蓄電装置の充放電制御を行う充放電制御装置と、
前記電力量検出部の検出結果に基づき、前記直流給電負荷への配電制御を行う配電制御装置と、を備え、
前記配電制御装置は、
前記直流給電負荷の需要電力量と前記直流発電装置が供給可能な直流電力量との差分から、所定時間当たりの、前記交流電源系統から受電する必要のある受電電力量を予測する受電電力量予測部と、
前記所定時間当たりの、前記交流電源系統から受電する受電電力量の目標値を設定する目標受電電力量設定部と、
前記需要電力量と前記直流発電装置により供給される直流電力量との差分を補うための、前記蓄電装置から放電させる目標放電電力量を設定する放電電力量設定部と、
を有し、
前記放電電力量設定部は、
前記受電電力量予測部で予測した必要受電電力量が前記目標受電電力量設定部で設定した目標受電電力量と一致し、かつ前記蓄電装置に対応して駆動される前記直流/直流変換器の負荷率が予め設定した閾値以上となり得る放電電力量を前記目標放電電力量として設定し、
前記充放電制御装置は、前記蓄電装置の放電電力量が、前記目標放電電力量となるように前記放電制御を行うことを特徴とする直流配電システム。 A DC power generator for generating DC power;
A power storage device;
An AC / DC converter connected between the AC power supply system and the DC distribution network;
A DC / DC converter connected between each of the DC power generation device, the power storage device and a DC power supply load and the DC distribution network;
A power amount detection unit that detects a demand power amount of the DC power supply load, a chargeable / dischargeable power amount of the power storage device, and a DC power amount that can be supplied by the DC power generation device;
A charge / discharge control device for charge / discharge control of the power storage device;
A power distribution control device that performs power distribution control to the DC power supply load based on the detection result of the power amount detection unit,
The power distribution control device
A received power amount prediction unit that predicts a received power amount that needs to be received from the AC power supply system per predetermined time from a difference between a demand power amount of the DC power supply load and a DC power amount that can be supplied by the DC power generator. When,
A target received power amount setting unit for setting a target value of the received power amount received from the AC power supply system per the predetermined time;
A discharge power amount setting unit for setting a target discharge power amount to be discharged from the power storage device to compensate for the difference between the demand power amount and the DC power amount supplied by the DC power generation device;
Have
The discharge power amount setting unit includes:
The required received power amount predicted by the received power amount prediction unit matches the target received power amount set by the target received power amount setting unit, and the DC / DC converter driven corresponding to the power storage device A discharge power amount at which a load factor can be equal to or higher than a preset threshold is set as the target discharge power amount,
The DC power distribution system, wherein the charge / discharge control device performs the discharge control so that a discharge power amount of the power storage device becomes the target discharge power amount.
前記直流発電装置が供給可能な直流電力量と前記蓄電装置の放電電力量との和と、前記直流給電負荷の需要電力量との差分相当の受電電力量でありかつ、前記交流/直流変換器の負荷率が予め設定した閾値以上となり得る受電電力量を受電電力量指令値として設定する受電電力量設定部を有し、
前記交流電源系統からの受電電力量が前記受電電力量指令値と一致するように、前記交流/直流変換器を制御することを特徴とする請求項1記載の直流配電システム。 The power distribution control device
A received power amount corresponding to a difference between a sum of a DC power amount that can be supplied by the DC power generation device and a discharge power amount of the power storage device, and a demand power amount of the DC power supply load, and the AC / DC converter A received power amount setting unit that sets a received power amount that can be equal to or higher than a preset threshold value as a received power command value;
2. The DC power distribution system according to claim 1, wherein the AC / DC converter is controlled such that the amount of received power from the AC power supply system matches the received power amount command value.
前記放電電力量設定部は、
前記複数の蓄電装置のうち、1又は複数の蓄電装置の放電電力量の和が前記目標放電電力量となり、且つ、前記1又は複数の蓄電装置に対応して駆動される前記直流/直流変換器の負荷率が予め設定した閾値以上となり得る前記1又は複数の蓄電装置を選定するとともに、当該蓄電装置それぞれの放電電力量の目標値を設定し、
前記充放電制御装置は、前記選定した1又は複数の蓄電装置の放電電力量が当該蓄電装置に設定された前記放電電力量の目標値となるように充放電制御を行うことを特徴とする請求項1又は請求項2記載の直流配電システム。 A plurality of the power storage devices are provided,
The discharge power amount setting unit includes:
The DC / DC converter driven corresponding to the one or the plurality of power storage devices, wherein the sum of the discharge power amounts of one or the plurality of power storage devices among the plurality of power storage devices becomes the target discharge power amount Selecting the one or more power storage devices that can be equal to or higher than a preset threshold value, and setting a target value for the amount of discharge power of each power storage device,
The charge / discharge control device performs charge / discharge control so that a discharge power amount of the selected one or more power storage devices becomes a target value of the discharge power amount set in the power storage device. Item 5. The DC power distribution system according to item 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014162346A JP6522901B2 (en) | 2014-08-08 | 2014-08-08 | DC distribution system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014162346A JP6522901B2 (en) | 2014-08-08 | 2014-08-08 | DC distribution system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016039721A true JP2016039721A (en) | 2016-03-22 |
JP6522901B2 JP6522901B2 (en) | 2019-05-29 |
Family
ID=55530415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014162346A Active JP6522901B2 (en) | 2014-08-08 | 2014-08-08 | DC distribution system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6522901B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029051A (en) * | 2017-07-25 | 2019-02-21 | 東京瓦斯株式会社 | Fuel cell system, control device, and program |
JPWO2017183337A1 (en) * | 2016-04-22 | 2019-02-28 | 住友電気工業株式会社 | Demand monitoring apparatus, demand monitoring system, demand monitoring method, and demand monitoring program |
WO2020161765A1 (en) * | 2019-02-04 | 2020-08-13 | Tdk株式会社 | Direct-current power supply system |
WO2020202716A1 (en) * | 2019-03-29 | 2020-10-08 | パナソニックIpマネジメント株式会社 | Measurement system, measurement method, and program |
JP2021090258A (en) * | 2019-12-03 | 2021-06-10 | 株式会社豊田自動織機 | Electric power system and power supply device |
JP2022021372A (en) * | 2020-07-22 | 2022-02-03 | 三菱電機株式会社 | Storage battery control device, storage battery system, and program |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05276660A (en) * | 1992-03-24 | 1993-10-22 | Tokyo Gas Co Ltd | Dc power supply |
JPH1155856A (en) * | 1997-08-05 | 1999-02-26 | Hakko Denki Kk | Electric power system operation system and terminal equipment for consumer used in the system |
JP2012095523A (en) * | 2010-10-01 | 2012-05-17 | Shimizu Corp | Operation management device, operation management method and operation management program |
JP2014075878A (en) * | 2012-10-03 | 2014-04-24 | Sharp Corp | Power conditioner and power supply system |
JP2014124065A (en) * | 2012-12-21 | 2014-07-03 | Fuji Electric Co Ltd | Power demand prediction device and program |
JP2014128062A (en) * | 2012-12-25 | 2014-07-07 | Taisei Corp | Dc power distribution system |
-
2014
- 2014-08-08 JP JP2014162346A patent/JP6522901B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05276660A (en) * | 1992-03-24 | 1993-10-22 | Tokyo Gas Co Ltd | Dc power supply |
JPH1155856A (en) * | 1997-08-05 | 1999-02-26 | Hakko Denki Kk | Electric power system operation system and terminal equipment for consumer used in the system |
JP2012095523A (en) * | 2010-10-01 | 2012-05-17 | Shimizu Corp | Operation management device, operation management method and operation management program |
JP2014075878A (en) * | 2012-10-03 | 2014-04-24 | Sharp Corp | Power conditioner and power supply system |
JP2014124065A (en) * | 2012-12-21 | 2014-07-03 | Fuji Electric Co Ltd | Power demand prediction device and program |
JP2014128062A (en) * | 2012-12-25 | 2014-07-07 | Taisei Corp | Dc power distribution system |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017183337A1 (en) * | 2016-04-22 | 2019-02-28 | 住友電気工業株式会社 | Demand monitoring apparatus, demand monitoring system, demand monitoring method, and demand monitoring program |
JP2019029051A (en) * | 2017-07-25 | 2019-02-21 | 東京瓦斯株式会社 | Fuel cell system, control device, and program |
WO2020161765A1 (en) * | 2019-02-04 | 2020-08-13 | Tdk株式会社 | Direct-current power supply system |
JPWO2020161765A1 (en) * | 2019-02-04 | 2021-12-02 | Tdk株式会社 | DC power supply system |
JP7207437B2 (en) | 2019-02-04 | 2023-01-18 | Tdk株式会社 | DC power supply system |
WO2020202716A1 (en) * | 2019-03-29 | 2020-10-08 | パナソニックIpマネジメント株式会社 | Measurement system, measurement method, and program |
JP2020165929A (en) * | 2019-03-29 | 2020-10-08 | パナソニックIpマネジメント株式会社 | Measurement system, measurement method, and program |
JP2021090258A (en) * | 2019-12-03 | 2021-06-10 | 株式会社豊田自動織機 | Electric power system and power supply device |
JP7276103B2 (en) | 2019-12-03 | 2023-05-18 | 株式会社豊田自動織機 | Power system and power supply |
JP2022021372A (en) * | 2020-07-22 | 2022-02-03 | 三菱電機株式会社 | Storage battery control device, storage battery system, and program |
JP7349965B2 (en) | 2020-07-22 | 2023-09-25 | 三菱電機株式会社 | Storage battery control device, storage battery system and program |
Also Published As
Publication number | Publication date |
---|---|
JP6522901B2 (en) | 2019-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3206276B1 (en) | Energy storage system and management method thereof | |
JP6028499B2 (en) | Power supply | |
US9099893B2 (en) | Power control device for a power grid, comprising a control unit for controlling an energy flow between the power generation unit, the energy storage unit, the consumer unit and/or the power grid | |
US8263276B1 (en) | Startup power control in a fuel cell system | |
US20130241495A1 (en) | Energy storage system and method of controlling the same | |
WO2011114422A1 (en) | Power supply system, power supply method, program, recording medium, and power supply controller | |
JP2016039721A (en) | Dc power distribution system | |
US20120217800A1 (en) | Solar power systems optimized for use in communications networks | |
KR102046045B1 (en) | Renewable energy storage system and operating method thereof | |
US9853536B2 (en) | Methods, systems, and computer readable media for managing the distribution of power from a photovoltaic source in a multiple-floor building | |
US10749346B2 (en) | Power management system | |
KR20150011301A (en) | Power control device for ship | |
JP2015192566A (en) | Power system and dc power transmission method | |
JP2015039262A (en) | Distributed power supply facility system | |
JP5897501B2 (en) | Power supply system | |
JP2017051083A (en) | Power generation system, power generation method and program | |
KR102222560B1 (en) | An energy storage system | |
JP2015220889A (en) | Power supply system | |
JPWO2015111144A1 (en) | Power supply system and energy management system used therefor | |
JP5373528B2 (en) | Power distribution equipment | |
KR20150085227A (en) | The control device and method for Energy Storage System | |
KR101587488B1 (en) | High efficiency battery charge/discharge system and method in grid-tied system | |
JP2017135888A (en) | Power conversion system | |
JP2016116428A (en) | Autonomous operation system for distributed power source | |
CN117096936A (en) | Control method of power supply circuit, power supply equipment and energy storage equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6522901 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |