[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020202716A1 - Measurement system, measurement method, and program - Google Patents

Measurement system, measurement method, and program Download PDF

Info

Publication number
WO2020202716A1
WO2020202716A1 PCT/JP2020/001981 JP2020001981W WO2020202716A1 WO 2020202716 A1 WO2020202716 A1 WO 2020202716A1 JP 2020001981 W JP2020001981 W JP 2020001981W WO 2020202716 A1 WO2020202716 A1 WO 2020202716A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric energy
power
measurement
energy
creation
Prior art date
Application number
PCT/JP2020/001981
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 平田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020202716A1 publication Critical patent/WO2020202716A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/56Special tariff meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods

Definitions

  • the present disclosure relates generally to measurement systems, measurement methods and programs, and more specifically to measurement systems, measurement methods and programs for measuring renewable energy.
  • Patent Document 1 a system for measuring the amount of commercial power consumed at a target facility is known (see Patent Document 1).
  • Patent Document 1 describes a power measuring instrument meter reading / display system that measures the power consumption of the target facility and displays the usage data indicating the measured power consumption on the display device.
  • Patent Document 1 it is possible to measure the electric power when the stored electric power is discharged, but is the discharged electric power the electric energy (electric power) generated by the creation and storage cooperation system? , It is not possible to distinguish whether it is the power of a commercial power source. Therefore, when the stored electric power is discharged, it is not possible to measure the amount of electric energy (electric power) generated by the creation / storage cooperation system among the discharged electric power.
  • This disclosure is made in view of the above problems, and is a measurement system and measurement capable of measuring the amount of electric energy generated by the creation and storage cooperation system among the amount of discharged electric power when the stored electric power is discharged.
  • the purpose is to provide methods and programs.
  • the measurement system is used in the creation and storage cooperation system.
  • the creation and storage cooperation system uses a power generation facility that uses renewable energy, power obtained from a grid power source, and electric energy obtained from the renewable energy by the power generation facility or other energy converted from the electric energy. It is equipped with a storage facility for storing.
  • the measurement system includes a first measurement unit and a second measurement unit.
  • the first measurement unit measures the first electric energy input to the creation / storage cooperation system from the outside.
  • the second measuring unit measures the second electric energy output from the creation / storage cooperation system to the outside.
  • the measurement method is the measurement method in the measurement system used in the creation and storage cooperation system.
  • the creation and storage cooperation system uses a power generation facility that uses renewable energy, power obtained from a grid power source, and electric energy obtained from the renewable energy by the power generation facility or other energy converted from the electric energy. It is equipped with a storage facility for storing.
  • the measurement method includes a first measurement step and a second measurement step. The first measurement step measures the first electric energy input to the creation / storage cooperation system from the outside. The second measurement step measures the second electric energy output from the creation / storage cooperation system to the outside.
  • the program according to one aspect of the present disclosure is a program for causing a computer to execute the measurement method.
  • FIG. 1 is a diagram illustrating a configuration of a measurement system and a creation and storage cooperation system according to an embodiment.
  • FIG. 2 is a diagram illustrating the operation of the same measurement system.
  • the measurement system 1 of the present embodiment is provided in the facility 5 and is used in the creation and storage cooperation system 2 provided in the facility (see FIG. 1).
  • "Facilities" as used in this disclosure are non-residential facilities such as business establishments, factories, buildings, stores, offices, schools, welfare facilities or hospitals, and residential facilities such as detached houses, apartment houses, or apartment houses. including.
  • Non-residential facilities include theaters, movie theaters, public halls, amusement halls, complex facilities, restaurants, department stores, hotels, inns, kindergartens, libraries, museums, museums, underground malls, stations and airports.
  • the "facility" referred to in the present disclosure includes outdoor facilities such as a stadium, a garden, a parking lot, a ground and a park.
  • the creation and storage cooperation system 2 includes a power generation facility 60 and a storage facility 70.
  • the power generation facility 60 is a facility that generates power using renewable energy (RE: Renewable Energy).
  • renewable energy as used in the present disclosure means all energies that naturally regenerate at a speed higher than that used, and is synonymous with (or similar to) green power or new energy.
  • “renewable energy” means all energies that are not depleted, exist anywhere on earth, and do not emit (increase) CO 2 .
  • Renewable energies include, for example, atmospheric heat (air heat), sunlight, wind power, hydropower, geothermal heat, solar heat and biomass.
  • the power generation facility 60 is, for example, a solar power generation facility.
  • the power generation facility 60 outputs the electric energy (electric power) obtained from the renewable energy of the power generation facility 60 to the outside of the storage facility 70 or the creation / storage cooperation system 2.
  • the outside of the creation and storage cooperation system 2 is a load 50 (see FIG. 1) or a system power supply 7 (see FIG. 1) provided in the facility 5.
  • the load 50 is, for example, an electric device that operates by receiving an electric power supply.
  • the storage facility 70 is a facility in which the power generation facility 60 stores electric energy (electric power) obtained from renewable energy or other energy converted from the electric energy. Further, the storage facility 70 stores the electric power from the system power source 7. Specifically, the storage facility 70 stores the electric power from the system power source 7 or other energy converted from the electric power.
  • the storage facility 70 outputs the stored energy to the outside of the creation / storage cooperation system 2. For example, when the storage facility 70 stores electric energy, the storage facility 70 outputs the electric energy to the outside of the creation / storage cooperation system 2, for example, a load 50 or a system power supply 7 provided in the facility 5.
  • the measurement system 1 measures the first electric energy input from the outside to the creation and storage cooperation system 2 and the second electric energy to be output to the outside from the creation and storage cooperation system 2, respectively. Further, the measurement system 1 measures the electric energy (electric energy sold) as the electric energy sold to the system power source 7. The measurement system 1 obtains the renewable energy consumed in the facility 5 by using the measured first electric energy, the second electric energy, and the electric energy sold.
  • the measurement system 1 causes the server 6 to determine the consideration generated according to the consumption amount (self-consumption amount) of the electric energy obtained from the obtained renewable energy.
  • the consideration is the consideration generated for the self-consumption at the facility 5, and as an example, money (including credits and virtual currency), points (points), goods, or maintenance of the facility 5. It is realized by benefits including services such as.
  • the creation and storage cooperation system 2 includes a power generation facility 60, a storage facility 70, and a power conditioner (PCS: Power Conditioning System).
  • PCS Power Conditioning System
  • the power generation facility 60 is, for example, a photovoltaic power generation facility, and generates electric energy using sunlight as an energy source for RE.
  • the storage facility 70 stores at least one facility that stores electric power (electric energy) from the grid power source 7 and electric energy (electric power) obtained from renewable energy by the power generation facility 60 or other energy converted from the electric energy. Have.
  • the storage facility 70 includes a power storage device 71, a flywheel 72, and a hydrogen storage device 73.
  • the power storage device 71 is, for example, a storage battery.
  • the power storage device 71 stores (charges) electrical energy (electric power) obtained from renewable energy by the power generation facility 60. Further, the power storage device 71 stores the electric energy (electric power) output from the system power source 7.
  • the fly wheel 72 converts the electric energy obtained from the renewable energy by the power generation facility 60 into the physical energy of the rotary motion and stores it, and supplies power by the power generated from the rotary motion at the time of discharge. Further, the fly wheel 72 converts the electric energy (electric power) output from the system power source 7 into physical energy of rotational motion and stores it, and supplies electric power by power generation from the rotational motion at the time of discharge.
  • the hydrogen storage device 73 generates hydrogen by using the electric energy obtained from the renewable energy by the power generation facility 60, and stores the electric power as hydrogen.
  • the hydrogen storage device 73 uses the electric energy output from the system power source 7 to generate hydrogen, and stores electric power as hydrogen.
  • the hydrogen storage device 73 inputs hydrogen to the fuel cell 74 (see FIG. 1) that uses electric power to supply electric power obtained from hydrogen.
  • the PCS80 has a plurality of converters 81 to 84 (four in the illustrated example) and an inverter 85.
  • the converter 81 is provided in the path in which the inverter 85 and the power generation facility 60 are connected (see FIG. 1).
  • the converter 81 has a DC / DC converter function.
  • the converter 81 outputs the electric energy (electric power) output from the power generation facility 60 to the system power source 7 outside the creation / storage cooperation system 2
  • the converter 81 outputs the electric energy to the inverter 85 via the DC / DC converter.
  • the converter 81 outputs the electric energy to the converters 82 to 84 via the DC / DC converter.
  • the power storage equipment 71 outputs the electric power to the flywheel 72 via the converters 82 and 83.
  • the converter 82 is a bidirectional converter, and is provided in a path in which the inverter 85 and the power storage device 71 are connected (see FIG. 1).
  • the converter 82 has a DC / DC converter function.
  • the converter 82 outputs the electric energy output from the power generation facility 60 to the power storage device 71 via the DC / DC converter, and stores the electric energy in the power storage device 71.
  • the converter 82 receives the electric energy (electric power) output from the system power source 7 via the inverter 85
  • the converter 82 outputs the received electric energy to the power storage device 71 via the DC / DC converter to the power storage device 71.
  • Store electricity The converter 82 outputs the electric energy (electric power) output from the power storage device 71 to the inverter 85 via the DC / DC converter.
  • the converter 83 is provided in the path where the inverter 85 and the flywheel 72 are connected (see FIG. 1).
  • the converter 83 has a bidirectional AC / DC converter function.
  • the converter 83 outputs the electric energy (electric power) output from the flywheel 72 to the inverter 85 via the AC / DC converter. Further, the converter 83 outputs the electric power output from the inverter 85 to the flywheel 72.
  • the converter 84 is provided in the path in which the inverter 85 and the fuel cell 74 are connected (see FIG. 1).
  • the converter 84 has a function of a DC / DC converter.
  • the converter 84 outputs the electric energy (electric power) output from the fuel cell 74 to the inverter 85 via the DC / DC converter.
  • the inverter 85 is electrically connected to the distribution board 30.
  • the inverter 85 is connected to the converters 81 to 84 and the hydrogen storage device 73.
  • the inverter 85 has a function of outputting the electric energy (electric power) of the creation and storage cooperation system 2 to the outside and a function of receiving the electric energy from the outside.
  • the inverter 85 converts the DC power into AC power and outputs the DC power to the outside.
  • the inverter 85 receives the AC power output from the outside, for example, the system power supply 7, it converts the received AC power into DC power and outputs it to the storage facility 70.
  • the inverter 85 converts the AC power output from the system power supply 7 into DC power, and outputs the converted DC power to the power storage device 71 via the converter 82.
  • the inverter 85 converts the AC power output from the grid power source 7 into DC power, and outputs the converted DC power to the flywheel 72 via the converter 83 to convert the electric power (electrical energy) into rotational motion energy. Is accumulated in the fly wheel 72.
  • the inverter 85 converts the AC power output from the grid power source 7 into DC power, outputs the converted DC power to the hydrogen storage device 73, and uses the DC power (electrical energy) to generate hydrogen. , Accumulates electricity as hydrogen.
  • the measurement system 1 includes a first measurement device 10, a second measurement device 20, and a control device 40.
  • the first measuring device 10 is provided between the distribution board 30 and the creation / storage cooperation system 2 (PCS80), and measures the input / output electric energy of the inverter 85, that is, the creation / storage cooperation system 2.
  • the second measuring device 20 is provided between the distribution board 30 and the system power supply 7, and measures the amount of input / output power between the system power supply 7 and the distribution board 30.
  • the control device 40 calculates the self-consumption of RE out of the total amount of power consumed by the facility 5, that is, the amount of power consumed by the plurality of loads 50.
  • the self-consumption amount of RE is the consumption amount of electric energy obtained from RE.
  • the first measuring device 10 has a first measuring unit 11, a second measuring unit 12, and an output unit 13.
  • the first measuring device 10 is provided in the facility 5 separately from the PCS 80.
  • the first measuring device 10 and the PCS 80 have different housings and are provided in the facility 5.
  • the first measurement unit 11 measures the first electric energy input from the outside to the creation / storage cooperation system 2. Specifically, the first measurement unit 11 measures the amount of electric power output from the system power supply 7 via the distribution board 30. The first measurement unit 11 measures the electric energy obtained by integrating the electric power output from the system power supply 7 via the distribution board 30 over a certain period (for example, 30 minutes) as the first electric energy. In short, the first measurement unit 11 measures the amount of power from the system power source 7 charged (stored) in the creation / storage cooperation system 2 as the first power amount.
  • the second measurement unit 12 measures the second electric energy output from the creation / storage cooperation system 2 to the outside. Specifically, the second measurement unit 12 measures the amount of electric power output from the creation / storage cooperation system 2. The second measurement unit 12 measures the electric energy obtained by integrating the electric power output from the creation / storage cooperation system 2 in a certain period (for example, 30 minutes) as the second electric energy. In short, the second measurement unit 12 measures the amount of power discharged from the creation / storage cooperation system 2 as the second power amount.
  • connection system of the first measurement unit 11 and the second measurement unit 12 will be described.
  • Each of the first measurement unit 11 and the second measurement unit 12 has a first terminal and a second terminal. Each of the first measuring unit 11 and the second measuring unit 12 measures the amount of electric power input to the first terminal and output from the second terminal. Each of the first measuring unit 11 and the second measuring unit 12 does not measure the amount of electric power input to the second terminal and output from the first terminal.
  • the first terminal of the first measurement unit 11 is electrically connected to the distribution board 30.
  • the second terminal of the first measuring unit 11 is electrically connected to the second terminal of the second measuring unit 12.
  • the first terminal of the second measurement unit 12 is connected to the inverter 85.
  • the power output from the distribution board 30 is input to the first terminal of the first measurement unit 11 and output from the second terminal of the first measurement unit 11. Further, the electric power output from the first measurement unit 11 is input to the second terminal of the second measurement unit 12, and is output from the first terminal of the second measurement unit 12. On the other hand, the electric power output from the inverter 85 is input to the first terminal of the second measurement unit 12, and is output from the second terminal of the second measurement unit 12. Further, the electric power output from the second measurement unit 12 is input to the second terminal of the first measurement unit 11, and is output from the first terminal of the first measurement unit 11. As a result, the first measurement unit 11 can measure the first electric energy input to the creation / storage cooperation system 2 from the outside. Then, the second measurement unit 12 can measure the second electric energy output from the creation / storage cooperation system 2 to the outside.
  • the output unit 13 outputs the first electric energy measured by the first measurement unit 11 and the second electric energy measured by the second measurement unit 12 to the control device 40 by communication.
  • the communication between the first measuring device 10 and the control device 40 may be a wired communication or a wireless communication.
  • the second measuring device 20 has a power selling measuring unit 21 (third measuring unit), a power purchasing measuring unit 22, and an output unit 23. There is.
  • the power sales measurement unit 21 measures the third electric energy output from the distribution board 30 to the system power supply 7. Specifically, the power sale measuring unit 21 measures the amount of power output from the distribution board 30 to the system power supply 7, that is, the amount of power output to the system power supply 7 as power sale. The power sale measurement unit 21 measures the amount of power obtained by integrating the power output from the distribution board 30 over a certain period (for example, 30 minutes) as the third power amount.
  • the power purchase measurement unit 22 measures the fourth electric energy input from the system power supply 7 to the distribution board 30. Specifically, the power purchase measuring unit 22 measures the amount of power input from the system power source 7 to the distribution board 30, that is, the amount of power input to the distribution board 30 as power purchase. The power purchase measurement unit 22 measures the amount of power obtained by integrating the power output from the system power source 7 over a certain period (for example, 30 minutes) as the fourth power amount.
  • connection system of the power sale measurement unit 21 and the power purchase measurement unit 22 will be described.
  • Each of the power sale measurement unit 21 and the power purchase measurement unit 22 has a first terminal and a second terminal. Each of the power selling measurement unit 21 and the power purchasing measuring unit 22 measures the amount of electric energy input to the first terminal and output from the second terminal. Each of the power selling measurement unit 21 and the power purchasing measuring unit 22 does not measure the amount of power input to the second terminal and output from the first terminal.
  • the first terminal of the power purchase measurement unit 22 is electrically connected to the system power supply 7.
  • the second terminal of the power purchase measurement unit 22 is electrically connected to the second terminal of the power sale measurement unit 21.
  • the first terminal of the power sale measuring unit 21 is electrically connected to the distribution board 30.
  • the power output from the distribution board 30 is input to the first terminal of the power selling measurement unit 21, and is output from the second terminal of the power selling measuring unit 21. Further, the power output from the power sale measurement unit 21 is input to the second terminal of the power purchase measurement unit 22, and is output from the first terminal of the power purchase measurement unit 22.
  • the power output from the system power supply 7 is input to the first terminal of the power purchase measurement unit 22, and is output from the second terminal of the power purchase measurement unit 22. Further, the power output from the power purchase measurement unit 22 is input to the second terminal of the power sale measurement unit 21, and is output from the first terminal of the power sale measurement unit 21.
  • the power sales measuring unit 21 can measure the third electric energy output from the distribution board 30 to the system power supply 7. Then, the power purchase measuring unit 22 can measure the fourth electric energy input from the system power source 7 to the distribution board 30.
  • the output unit 23 outputs the third electric energy measured by the power selling measurement unit 21 and the fourth electric energy measured by the power purchasing measuring unit 22 to the control device 40 by communication.
  • the communication between the second measuring device 20 and the control device 40 may be a wired communication or a wireless communication.
  • control device 40 has a first communication unit 41, a second communication unit 42, and a processing unit 43.
  • the control device 40 is, for example, a controller of a HEMS (home energy management system).
  • the control device 40 has, for example, a computer system having a processor and a memory. Then, when the processor executes the program stored in the memory, the computer system functions as the processing unit 43.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, but may be recorded in a non-temporary recording medium such as a memory card and provided, or provided through a telecommunications line such as the Internet. May be done.
  • the first communication unit 41 has a communication interface for communicating with the first measuring device 10 and the second measuring device 20.
  • the first communication unit 41 receives the first electric energy measured by the first measurement unit 11 and the second electric energy measured by the second measurement unit 12 from the first measurement device 10.
  • the first communication unit 41 receives from the second measuring device 20 the third electric energy measured by the power selling measuring unit 21 and the fourth electric energy measured by the power purchasing measuring unit 22.
  • the second communication unit 42 has a communication interface for communicating with the server 6 via a network NT1 such as the Internet.
  • the processing unit 43 has a first calculation unit 401, a second calculation unit 402, and a discrimination unit 403.
  • the first calculation unit 401 subtracts the first electric energy measured by the first measurement unit 11 of the first measurement device 10 from the second electric energy measured by the second measurement unit 12 of the first measurement device 10. Calculate the differential electric energy. As a result, the electric energy by RE is obtained from the electric energy discharged from the creation and storage cooperation system 2.
  • the first calculation unit 401 corresponds to the difference calculation unit of the present disclosure described later.
  • the second calculation unit 402 calculates the self-consumption amount of the electric energy obtained from the renewable energy consumed in the facility 5 based on the first electric energy amount, the second electric energy amount, and the third electric energy amount. Specifically, the second calculation unit 402 calculates the self-consumption amount by subtracting the third electric energy amount from the differential electric energy amount calculated by the first calculation unit 401. The second calculation unit 402 transmits the calculated self-consumption amount to the server 6 via the second communication unit 42.
  • the discrimination unit 403 determines whether or not the device provided with the creation and storage cooperation system 2 is a device that uses renewable energy. For example, the control device 40 acquires identifiers such as the name and model number of the device provided in the creation and storage cooperation system 2 from an information terminal such as a smartphone used by the user. The control device 40 determines whether or not the device is a device that uses renewable energy based on the acquired identifier. Specifically, the discrimination unit 403 inquires to the outside whether or not the device is a device that uses renewable energy, based on the acquired identifier. The determination unit 403 determines whether or not the device is a device that uses renewable energy in response to the result of an inquiry to the outside.
  • identifiers such as the name and model number of the device provided in the creation and storage cooperation system 2 from an information terminal such as a smartphone used by the user.
  • the control device 40 determines whether or not the device is a device that uses renewable energy based on the acquired identifier.
  • the discrimination unit 403 inquires to
  • the determination unit 403 determines that the device is not a device that uses renewable energy, that is, if it determines that the device is a device that generates electric energy using fossil fuel or the like, a message or the like indicating that compensation cannot be received. Notify the user.
  • the server 6 is configured to be able to communicate with the control device 40 via the network NT1.
  • the server 6 has, for example, a computer system having a processor and a memory. Then, when the processor executes the program stored in the memory, the computer system functions as the server 6.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, but may be recorded in a non-temporary recording medium such as a memory card and provided, or provided through a telecommunications line such as the Internet. May be done.
  • the server 6 When the server 6 receives the self-consumption amount of RE at the facility 5 transmitted from the control device 40 of the measurement system 1, the server 6 stores the received self-consumption amount.
  • the server 6 determines the consideration based on the stored self-consumption amount. For example, the server 6 calculates the total value of self-consumption for a predetermined period (for example, one month), and determines the consideration generated for the calculated total value.
  • the server 6 may notify the user or the like of the transition of the self-consumption amount for a predetermined period (for example, one month).
  • the power purchase measurement unit 22 of the second measuring device 20 measures the amount of power from the system power source 7 as the fourth power amount, and outputs the measured fourth power amount to the control device 40 (steps S1 and S2).
  • the first measurement unit 11 of the first measurement device 10 measures the amount of electric power input from the outside to the creation and storage cooperation system 2 as the first electric energy, and outputs the measured first electric energy to the control device 40 (step). S3, S4).
  • the second measurement unit 12 of the first measurement device 10 measures the electric power output to the outside from the creation and storage cooperation system 2 as the second electric energy, and outputs the measured second electric energy to the control device 40 (step S5). , S6).
  • the power selling measurement unit 21 of the second measuring device 20 measures the amount of power from the distribution board 30 as the third power amount, and outputs the measured third power amount to the control device 40 (steps S7 and S8).
  • the first calculation unit 401 of the control device 40 calculates the differential electric energy using the first electric energy and the second electric energy received from the first measurement device 10 via the first communication unit 41 (step S9). .. Specifically, the first calculation unit 401 subtracts the first electric energy from the second electric energy to calculate the differential electric energy.
  • the second calculation unit 402 of the control device 40 uses the first electric energy, the second electric energy, and the third electric energy received from the second measuring device 20 via the first communication unit 41 to consume RE in-house.
  • the amount is calculated (step S10).
  • the second calculation unit 402 calculates the self-consumption of RE by subtracting the third electric energy from the differential electric energy calculated from the first electric energy and the second electric energy.
  • the second communication unit 42 outputs (transmits) the self-consumption amount to the server 6 in order for the server 6 to determine the consideration generated for the self-consumption amount of RE calculated by the second calculation unit 402 (step). S11).
  • the server 6 determines the consideration generated for the self-consumption received from the measurement system 1 (step S12).
  • the first measurement unit 11 of the first measurement device 10 of the embodiment measures the amount of electric power input from the outside to the creation and storage cooperation system 2 as the first electric energy.
  • the second measurement unit 12 of the first measurement device 10 measures the amount of power output to the outside from the creation / storage cooperation system 2 as the second power amount.
  • the first calculation unit 401 of the control device 40 subtracts the first electric energy from the second electric energy to calculate the differential electric energy.
  • the first electric energy is the electric energy output by the system power source 7, and is stored in the storage facility 70. Further, the storage facility 70 also stores the electric energy (electric power) obtained by the power generation facility 60 using RE. Therefore, by subtracting the first electric energy from the second electric energy (discharged electric energy) output from the creation and storage cooperation system 2, the electric energy generated by the creation and storage cooperation system 2, that is, RE is used. The amount of electrical energy obtained can be obtained.
  • the measurement system 1 uses the renewable energy, which is the electric energy generated by the creation / storage cooperation system, among the discharged electric energy, to obtain the electric energy.
  • the amount (electric energy) can be measured.
  • the second measuring device 20 of the measuring system 1 measures the sold electric energy (third electric energy).
  • the second calculation unit 402 of the control device 40 subtracts the third electric energy from the differential electric energy to calculate the self-consumption of RE.
  • the differential electric energy output from the creation and storage cooperation system 2 is consumed by the plurality of loads 50 of the facility 5, or is output to the system power supply 7. Therefore, by subtracting the third electric energy from the differential electric energy, the electric energy of RE consumed in the facility 5, that is, the self-consumption of RE can be obtained.
  • the control device 40 transmits the self-consumption amount of RE to the server 6 in order to determine the consideration generated for the self-consumption amount of RE. In short, it will add value to RE's self-consumption, and the value of RE's self-consumption can be increased.
  • the first measuring device 10 is a separate body from the PCS 80. Assuming that the first measuring device 10 has the same housing as the PCS 80, when the first measuring device 10 is replaced, the PCS 80 itself needs to be replaced. Therefore, the converters 81 to 84 and the inverter 85 must be replaced even if they do not need to be replaced. Therefore, by separating the first measuring device 10 from the PCS 80, the replacement target can be kept to the minimum necessary.
  • the first measuring device 10 is configured to be separate from the PCS80, even if it has the same housing as the PCS80, it is within the scope of the technical idea of the present disclosure.
  • control device 40 is configured to calculate both the differential electric energy amount and the self-consumption amount of RE, but is not limited to this configuration.
  • the first measuring device 10 may calculate the differential electric energy.
  • the first measuring device 10 outputs the calculated differential electric energy to the control device 40.
  • the control device 40 calculates the self-consumption amount of RE by using the differential electric energy received from the first measuring device 10 and the third electric energy received from the second measuring device 20.
  • the server 6 may calculate the differential electric energy and the self-consumption of RE.
  • the control device 40 transmits the first electric energy and the second electric energy received from the first measuring device 10 and the third electric energy received from the second measuring device 20 to the server 6.
  • control device 40 may calculate the differential electric energy, and the server 6 may calculate the self-consumption of RE.
  • the electric energy (electric power) output from the creation and storage cooperation system 2 may include electric energy using fossil fuels, that is, electric energy obtained without using RE.
  • a measuring device that measures the amount of electric power is provided on the output side of the generated electric energy (electric power).
  • a measuring device for measuring electric energy is provided on the output side of a fuel cell that uses gas. This makes it possible to measure the amount of electric energy (electric energy) generated without using RE.
  • the first calculation unit 401 subtracts the second electric energy and the amount of electric energy generated without using RE from the first electric energy, so that the electric energy (electric power) output from the creation and storage cooperation system 2 Of these, RE can be used to determine the amount of electrical energy generated.
  • a device that generates electrical energy without using RE may output electric power (AC power) via an inverter different from the inverter 85 of PCS80.
  • AC power electric power
  • the device that generates electric energy without using RE is connected to the distribution board 30 from the other inverter without going through the first measuring device 10.
  • the server 6 is configured to determine the consideration for one facility 5, but is not limited to this configuration.
  • the server 6 may set a plurality of facilities 5 as one group and determine the consideration for the group. In this case, the server 6 calculates the total value of the self-consumption amount in the predetermined period for each of the plurality of facilities 5. The server 6 calculates the sum of the total values of the plurality of facilities 5 as the amount of self-consumption in a predetermined period in the group. The server 6 determines the consideration incurred for the self-consumption of the group in a predetermined period. In this case, the determined consideration is assigned to each of the plurality of facilities 5. Alternatively, when the consideration is cash or points, the result of dividing the determined consideration by the number of the plurality of facilities 5 is assigned to each of the plurality of facilities 5.
  • control device 40 (discrimination unit 403) is configured to acquire the identifier of the device included in the creation / storage cooperation system 2 from the information terminal, but is not limited to this configuration.
  • the control device 40 may acquire the identifier of the device connected to each of the converters 81 to 84 by communicating with each of the converters 81 to 84.
  • the control device 40 communicates with the power generation equipment 60 and the storage equipment 70 (power storage device 71, flywheel 72, hydrogen storage device 73) to generate power generation equipment 60, power storage device 71, flywheel 72, and hydrogen.
  • the respective identifiers of the storage device 73 may be acquired.
  • the solar power generation facility has been described as an example of the power generation facility 60.
  • the power generation facility 60 is not limited to the photovoltaic power generation facility.
  • the power generation facility 60 may be a hydroelectric power generation facility or a wind power generation facility.
  • the converter provided in the path in which the power generation facility 60 and the inverter 85 are connected has the function of an AC / DC converter.
  • the creation and storage cooperation system 2 is configured to include one power generation facility 60, but is not limited to this configuration.
  • the creation and storage cooperation system 2 may be provided with a plurality of power generation facilities 60.
  • the creation and storage cooperation system 2 is configured to include one inverter 85, but is not limited to this configuration.
  • the creation and storage cooperation system 2 may be configured to include a plurality of inverters 85. In this case, each of the plurality of inverters 85 is connected to the first measuring device 10.
  • the above embodiment is only one of the various embodiments of the present disclosure.
  • the above-described embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved.
  • the same function as that of the measurement system 1 may be realized by a measurement method, a computer program, a non-temporary recording medium on which the program is recorded, or the like.
  • the measurement method includes a power generation facility 60 that uses renewable energy, an electric energy that the power generation facility 60 obtains from renewable energy, or a storage facility 70 that stores other energy converted from the electric energy. It is a measurement method in the measurement system used in the creation and storage cooperation system 2 provided with.
  • the measuring method includes a first measuring step and a second measuring step.
  • the first measurement step measures the first electric energy input from the outside to the creation and storage cooperation system 2.
  • the second measurement step measures the second electric energy output from the creation / storage cooperation system 2 to the outside.
  • the program according to one aspect is a program for making a computer system function as the above-mentioned measurement method.
  • the execution subject of the measurement system 1 or the measurement method in the present disclosure includes a computer system.
  • a computer system has a processor and memory as hardware.
  • the processor executes the program recorded in the memory of the computer system, the function as the execution subject of the measurement system 1 or the measurement method in the present disclosure is realized.
  • the program may be pre-recorded in the memory of the computer system or may be provided through a telecommunication line.
  • the program may also be recorded and provided on a non-temporary recording medium such as a memory card, optical disk, or hard disk drive that can be read by a computer system.
  • a processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips.
  • the plurality of chips may be integrated in one device, or may be distributed in a pluralit
  • the measurement system 1 which is a computer system may be a system composed of one or a plurality of computers.
  • the measurement system 1 may be realized by the cloud (cloud computing).
  • the measurement system (1) of the first aspect is used in the creation and storage cooperation system.
  • the creation and storage cooperation system (2) is a power generation facility (60) that uses renewable energy, power obtained from the grid power source (7), and electric energy or electric energy obtained from renewable energy by the power generation facility (60). It is equipped with a storage facility (70) for storing other energy converted from.
  • the measurement system (1) includes a first measurement unit (11) and a second measurement unit (12).
  • the first measurement unit (11) measures the first electric energy input from the outside to the creation / storage cooperation system (2).
  • the second measurement unit (12) measures the second electric energy output from the creation / storage cooperation system (2) to the outside.
  • the amount of electric energy generated by the creation and storage cooperation system can be obtained by using the first electric energy and the second electric energy. Therefore, the measurement system (1) can measure the amount of electric energy (electric energy) generated by the creation / storage cooperation system among the discharged electric energy when the stored electric power is discharged.
  • the energy output from the creation and storage cooperation system (2) to the outside is electric energy using renewable energy.
  • the amount of electric energy obtained by using the renewable energy which is the electric energy generated by the creation and storage cooperation system among the discharged electric energy ( (Electric energy) can be measured.
  • the measurement system (1) of the third aspect further includes a discrimination unit (403) in the first or second aspect.
  • the discriminating unit (403) determines whether or not the energy output from the creation / storage cooperation system (2) to the outside is electrical energy obtained from renewable energy.
  • the first measurement unit (11) sets the cumulative value of electric power in a certain period as the first electric energy.
  • the second measurement unit (12) uses the cumulative value of electric power in a certain period as the second electric energy.
  • the first measurement unit (11) sets the cumulative value of the power in a certain period as the first electric energy, so that the measurement is performed even when the power data cannot be acquired in a part of the certain period.
  • the accuracy of the first electric energy can be improved.
  • the second measurement unit (12) uses the cumulative value of the power in a certain period as the second electric energy, so that the second measurement unit (12) measures the power data even if the power data cannot be acquired in a part of the certain period. 2
  • the accuracy of electric energy can be improved.
  • the measurement system (1) of the fifth aspect further includes a difference calculation unit (first calculation unit 401) in any one of the first to fourth aspects.
  • the difference calculation unit calculates the difference between the first electric energy and the second electric energy.
  • the measurement system (1) of the sixth aspect further includes a third measurement unit (power sale measurement unit 21) in any one of the first to fifth aspects.
  • the third measuring unit measures the third electric energy output to the external system power supply (7).
  • the amount of electric power sold to the grid power supply (7) can be measured as the third electric energy.
  • the measurement system (1) of the seventh aspect further includes a consumption amount calculation unit (second calculation unit 402) in the sixth aspect.
  • the consumption calculation unit is based on the first electric energy, the second electric energy, and the third electric energy, and the electric energy obtained from the renewable energy in the facility (5) which receives the electric energy from the grid power source (7). Calculate the amount of self-consumption, which is the amount of consumption of.
  • the first measurement unit (11) and the second measurement unit (12) are different from the creation and storage cooperation system (2). It is provided separately.
  • the replacement target can be kept to the minimum necessary.
  • the measurement system (1) of the ninth aspect further includes an output unit (13) in any one of the first to eighth aspects.
  • the output unit (13) outputs the first electric energy and the second electric energy by communication.
  • the output destinations of the first electric energy and the second electric energy can be provided separately from the first measurement unit (11) and the second measurement unit (12).
  • the measurement method of the tenth aspect is the measurement method in the measurement system (1) used in the creation and storage cooperation system (2).
  • the creation and storage cooperation system (2) is a power generation facility (60) that uses renewable energy, electric power obtained from a grid power source (7), and electric energy or electric energy obtained from renewable energy by the power generation facility (60). It is equipped with a storage facility (70) for storing other energy converted from.
  • the measuring method includes a first measuring step and a second measuring step. The first measurement step measures the first electric energy input from the outside to the creation and storage cooperation system (2). The second measurement step measures the second electric energy output from the creation / storage cooperation system (2) to the outside.
  • the measurement method of the eleventh aspect further includes a third measurement step in the tenth aspect.
  • the third measurement step measures the third electric energy output to the external system power supply (7).
  • the amount of electric power sold to the grid power supply (7) can be measured as the third electric energy.
  • the measurement method of the twelfth aspect further includes a consumption calculation step in the eleventh aspect.
  • the consumption calculation step is self-consumption in which renewable energy is consumed in the facility (5) that receives power from the grid power source (7) using the first electric energy, the second electric energy, and the third electric energy. Calculate the amount.
  • the measurement method of the thirteenth aspect further includes an output step in the twelfth aspect.
  • the self-consumption amount is output to the server (6) in order for the server (6) to determine the consideration generated for the self-consumption amount.
  • the value of RE's self-consumption is added, and the value of RE's self-consumption can be increased.
  • the program of the fourteenth aspect is a program for causing a computer to execute the measurement method of any one of the tenth to thirteenth aspects.
  • Measurement system 2 Creation and storage cooperation system 5 Facilities 6 Servers 7 System power supply 11 1st measurement unit 12 2nd measurement unit 13 Output unit 21 Power sales measurement unit (3rd measurement unit) 60 Power generation equipment 70 Storage equipment 401 1st calculation unit (difference calculation unit) 402 Second calculation unit (consumption calculation unit) 403 Discriminator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Provided are a measurement system, measurement method, and program that make it possible to, when stored power is discharged, measure the amount of electrical energy generated by a coordinated generation and storage system in the discharged power. This measurement system (1) is used by a coordinated generation and storage system (2). The coordinated generation and storage system (2) comprises power generation equipment (60) that uses renewable energy, and storage equipment (70) for storing power obtained from a system power supply (7) and either electrical energy obtained by the power generation equipment (60) from the renewable energy or other energy converted from the electrical energy. The measurement system (1) comprises a first measurement unit (11) and second measurement unit (12). The first measurement unit (11) measures a first power amount input into the coordinated generation and storage system (2) from the outside. The second measurement unit (12) measures a second power amount output to the outside from the coordinated generation and storage system (2).

Description

計測システム、計測方法及びプログラムMeasurement system, measurement method and program
 本開示は、一般に計測システム、計測方法及びプログラムに関し、より詳細には再生可能エネルギーを計測する計測システム、計測方法及びプログラムに関する。 The present disclosure relates generally to measurement systems, measurement methods and programs, and more specifically to measurement systems, measurement methods and programs for measuring renewable energy.
 従来、対象施設で消費された商用電力の電力量を計測するシステムが知られている(特許文献1参照)。 Conventionally, a system for measuring the amount of commercial power consumed at a target facility is known (see Patent Document 1).
 特許文献1では、対象施設の消費電力量を計測し、計測した消費電力を示す使用量データを、表示装置に表示する電力計量器検針・表示システムが記載されている。 Patent Document 1 describes a power measuring instrument meter reading / display system that measures the power consumption of the target facility and displays the usage data indicating the measured power consumption on the display device.
 ところで、近年、太陽光等を利用して電気エネルギー(電力)を生成し、生成した電気エネルギーを蓄積する創蓄連携システムがある。このシステムでは、太陽光発電設備、当該太陽光発電設備で発電された電力(電気エネルギー)と、系統電源から出力された電力(商用電力)とを蓄積する。 By the way, in recent years, there is a creation and storage cooperation system that generates electric energy (electric power) using sunlight and stores the generated electric energy. In this system, the photovoltaic power generation facility, the power generated by the photovoltaic power generation facility (electrical energy), and the power output from the grid power source (commercial power) are stored.
 特許文献1を利用することで、蓄積された電力が放電される際の電力を計測することはできるが、放電された電力が、創蓄連携システムで生成された電気エネルギー(電力)であるか、商用電源の電力であるかを区別することができない。そのため、蓄積された電力が放電された場合に、放電された電力量のうち、創蓄連携システムで生成された電気エネルギー(電力)の量を計測することができない。 By using Patent Document 1, it is possible to measure the electric power when the stored electric power is discharged, but is the discharged electric power the electric energy (electric power) generated by the creation and storage cooperation system? , It is not possible to distinguish whether it is the power of a commercial power source. Therefore, when the stored electric power is discharged, it is not possible to measure the amount of electric energy (electric power) generated by the creation / storage cooperation system among the discharged electric power.
特開2014-130015号公報Japanese Unexamined Patent Publication No. 2014-130015
 本開示は上記課題に鑑みてなされ、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーの量を計測することができる計測システム、計測方法及びプログラムを提供することを目的とする。 This disclosure is made in view of the above problems, and is a measurement system and measurement capable of measuring the amount of electric energy generated by the creation and storage cooperation system among the amount of discharged electric power when the stored electric power is discharged. The purpose is to provide methods and programs.
 本開示の一態様に係る計測システムは、創蓄連携システムで用いられる。前記創蓄連携システムは、再生可能エネルギーを利用する発電設備と、系統電源から得た電力、及び前記発電設備が前記再生可能エネルギーから得た電気エネルギー若しくは前記電気エネルギーから変換された他のエネルギーを蓄える蓄積設備と、を備える。前記計測システムは、第1計測部と、第2計測部と、を備える。前記第1計測部は、前記創蓄連携システムに外部から入力される第1電力量を計測する。前記第2計測部は、前記創蓄連携システムから前記外部に出力される第2電力量を計測する。 The measurement system according to one aspect of the present disclosure is used in the creation and storage cooperation system. The creation and storage cooperation system uses a power generation facility that uses renewable energy, power obtained from a grid power source, and electric energy obtained from the renewable energy by the power generation facility or other energy converted from the electric energy. It is equipped with a storage facility for storing. The measurement system includes a first measurement unit and a second measurement unit. The first measurement unit measures the first electric energy input to the creation / storage cooperation system from the outside. The second measuring unit measures the second electric energy output from the creation / storage cooperation system to the outside.
 本開示の一態様に係る計測方法は、創蓄連携システムで用いられる計測システムでの計測方法である。前記創蓄連携システムは、再生可能エネルギーを利用する発電設備と、系統電源から得た電力、及び前記発電設備が前記再生可能エネルギーから得た電気エネルギー若しくは前記電気エネルギーから変換された他のエネルギーを蓄える蓄積設備と、を備える。前記計測方法は、第1計測ステップと、第2計測ステップと、を含む。前記第1計測ステップは、前記創蓄連携システムに外部から入力される第1電力量を計測する。前記第2計測ステップは、前記創蓄連携システムから外部に出力される第2電力量を計測する。 The measurement method according to one aspect of the present disclosure is the measurement method in the measurement system used in the creation and storage cooperation system. The creation and storage cooperation system uses a power generation facility that uses renewable energy, power obtained from a grid power source, and electric energy obtained from the renewable energy by the power generation facility or other energy converted from the electric energy. It is equipped with a storage facility for storing. The measurement method includes a first measurement step and a second measurement step. The first measurement step measures the first electric energy input to the creation / storage cooperation system from the outside. The second measurement step measures the second electric energy output from the creation / storage cooperation system to the outside.
 本開示の一態様に係るプログラムは、前記計測方法を、コンピュータに実行させるためのプログラムである。 The program according to one aspect of the present disclosure is a program for causing a computer to execute the measurement method.
図1は、一実施形態に係る計測システム及び創蓄連携システムの構成を説明する図である。FIG. 1 is a diagram illustrating a configuration of a measurement system and a creation and storage cooperation system according to an embodiment. 図2は、同上の計測システムの動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the same measurement system.
 以下に説明する実施形態及び変形例は、本開示の一例に過ぎず、本開示は、実施形態及び変形例に限定されない。以下の実施形態及び変形例以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 The embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is not limited to the embodiments and modifications. Other than the following embodiments and modifications, various changes can be made according to the design and the like as long as they do not deviate from the technical idea of the present disclosure.
 (実施形態)
 以下、本実施形態に係る計測システム、及び計測方法について、図1~図2を用いて説明する。
(Embodiment)
Hereinafter, the measurement system and the measurement method according to the present embodiment will be described with reference to FIGS. 1 and 2.
 (1)概要
 本実施形態の計測システム1は、施設5に設けられ、当該施設に設けられた創蓄連携システム2に用いられる(図1参照)。本開示でいう「施設」は、事業所、工場、ビル、店舗、オフィス、学校、福祉施設又は病院等の非住宅施設、及び戸建住宅、集合住宅、又は集合住宅の各住戸等の住宅施設を含む。非住宅施設には、劇場、映画館、公会堂、遊技場、複合施設、飲食店、百貨店、ホテル、旅館、幼稚園、図書館、博物館、美術館、地下街、駅及び空港等も含む。さらには、本開示でいう「施設」には、球場、庭、駐車場、グランド及び公園等の屋外施設を含む。
(1) Outline The measurement system 1 of the present embodiment is provided in the facility 5 and is used in the creation and storage cooperation system 2 provided in the facility (see FIG. 1). "Facilities" as used in this disclosure are non-residential facilities such as business establishments, factories, buildings, stores, offices, schools, welfare facilities or hospitals, and residential facilities such as detached houses, apartment houses, or apartment houses. including. Non-residential facilities include theaters, movie theaters, public halls, amusement halls, complex facilities, restaurants, department stores, hotels, inns, kindergartens, libraries, museums, museums, underground malls, stations and airports. Furthermore, the "facility" referred to in the present disclosure includes outdoor facilities such as a stadium, a garden, a parking lot, a ground and a park.
 創蓄連携システム2は、図1に示すように、発電設備60と、蓄積設備70と、を含む。 As shown in FIG. 1, the creation and storage cooperation system 2 includes a power generation facility 60 and a storage facility 70.
 発電設備60は、再生可能エネルギー(RE:Renewable Energy)を利用して発電を行う設備である。本開示でいう「再生可能エネルギー」は、利用する以上の速度で自然に再生するエネルギー全般を意味し、グリーンパワー又は新エネルギー等と同義(又は類似)である。または、「再生可能エネルギー」は、枯渇せず、地球上のどこにでも存在し、かつCOを排出しない(増加させない)エネルギー全般を意味する。再生可能エネルギーは、例えば、大気中の熱(空気熱)、太陽光、風力、水力、地熱、太陽熱及びバイオマス等を含む。発電設備60は、例えば太陽光発電設備である。発電設備60は、発電設備60が再生可能エネルギーから得た電気エネルギー(電力)を、蓄積設備70又は創蓄連携システム2の外部に出力する。創蓄連携システム2の外部とは、施設5に設けられた負荷50(図1参照)又は系統電源7(図1参照)である。負荷50は、例えば電力の供給を受けることで動作する電気機器である。 The power generation facility 60 is a facility that generates power using renewable energy (RE: Renewable Energy). The term "renewable energy" as used in the present disclosure means all energies that naturally regenerate at a speed higher than that used, and is synonymous with (or similar to) green power or new energy. Alternatively, "renewable energy" means all energies that are not depleted, exist anywhere on earth, and do not emit (increase) CO 2 . Renewable energies include, for example, atmospheric heat (air heat), sunlight, wind power, hydropower, geothermal heat, solar heat and biomass. The power generation facility 60 is, for example, a solar power generation facility. The power generation facility 60 outputs the electric energy (electric power) obtained from the renewable energy of the power generation facility 60 to the outside of the storage facility 70 or the creation / storage cooperation system 2. The outside of the creation and storage cooperation system 2 is a load 50 (see FIG. 1) or a system power supply 7 (see FIG. 1) provided in the facility 5. The load 50 is, for example, an electric device that operates by receiving an electric power supply.
 蓄積設備70は、発電設備60が再生可能エネルギーから得た電気エネルギー(電力)又は電気エネルギーから変換された他のエネルギーを蓄える設備である。さらに、蓄積設備70は、系統電源7からの電力を蓄積する。具体的には、蓄積設備70は、系統電源7からの電力、又は当該電力から変換された他のエネルギーを蓄える。 The storage facility 70 is a facility in which the power generation facility 60 stores electric energy (electric power) obtained from renewable energy or other energy converted from the electric energy. Further, the storage facility 70 stores the electric power from the system power source 7. Specifically, the storage facility 70 stores the electric power from the system power source 7 or other energy converted from the electric power.
 蓄積設備70は、蓄積したエネルギーを創蓄連携システム2の外部に出力する。例えば、蓄積設備70は、電気エネルギーを蓄積している場合には当該電気エネルギーを創蓄連携システム2の外部、例えば施設5に設けられた負荷50又は系統電源7に出力する。 The storage facility 70 outputs the stored energy to the outside of the creation / storage cooperation system 2. For example, when the storage facility 70 stores electric energy, the storage facility 70 outputs the electric energy to the outside of the creation / storage cooperation system 2, for example, a load 50 or a system power supply 7 provided in the facility 5.
 計測システム1は、創蓄連携システム2に外部から入力される第1電力量と、創蓄連携システム2から外部に出力される第2電力量とを、それぞれ計測する。さらに、計測システム1は、系統電源7への売電としての電力量(売電電力量)を計測する。計測システム1は、計測した第1電力量、第2電力量及び売電電力量を用いて、施設5で消費した再生可能エネルギーを求める。 The measurement system 1 measures the first electric energy input from the outside to the creation and storage cooperation system 2 and the second electric energy to be output to the outside from the creation and storage cooperation system 2, respectively. Further, the measurement system 1 measures the electric energy (electric energy sold) as the electric energy sold to the system power source 7. The measurement system 1 obtains the renewable energy consumed in the facility 5 by using the measured first electric energy, the second electric energy, and the electric energy sold.
 計測システム1は、求めた再生可能エネルギーから得られた電気エネルギーの消費量(自家消費量)に応じて発生する対価を、サーバ6に決定させる。ここで、対価とは、施設5での自家消費量に対して発生する対価であって、一例として、金銭(クレジット及び仮想通貨等を含む)、ポイント(点数)、物品、又は施設5のメンテナンス等のサービスを含む特典等で実現される。 The measurement system 1 causes the server 6 to determine the consideration generated according to the consumption amount (self-consumption amount) of the electric energy obtained from the obtained renewable energy. Here, the consideration is the consideration generated for the self-consumption at the facility 5, and as an example, money (including credits and virtual currency), points (points), goods, or maintenance of the facility 5. It is realized by benefits including services such as.
 (2)構成
 (2-1)創畜連携システム
 ここでは、創蓄連携システム2の構成について説明する。
(2) Configuration (2-1) Livestock creation cooperation system Here, the configuration of the creation and storage cooperation system 2 will be described.
 創蓄連携システム2は、図1に示すように、発電設備60と、蓄積設備70と、パワーコンディショナー(PCS:Power Conditioning System)と、を備える。 As shown in FIG. 1, the creation and storage cooperation system 2 includes a power generation facility 60, a storage facility 70, and a power conditioner (PCS: Power Conditioning System).
 発電設備60は、例えば太陽光発電設備であり、太陽光をREのエネルギー源として電気エネルギーを生成する。 The power generation facility 60 is, for example, a photovoltaic power generation facility, and generates electric energy using sunlight as an energy source for RE.
 蓄積設備70は、系統電源7からの電力(電力量)、及び発電設備60が再生可能エネルギーから得た電気エネルギー(電力)又は電気エネルギーから変換された他のエネルギーを蓄える、少なくとも1つの設備を有する。本実施形態では、蓄積設備70は、蓄電装置71と、フライホイール72と、水素蓄積装置73と、を有する。 The storage facility 70 stores at least one facility that stores electric power (electric energy) from the grid power source 7 and electric energy (electric power) obtained from renewable energy by the power generation facility 60 or other energy converted from the electric energy. Have. In the present embodiment, the storage facility 70 includes a power storage device 71, a flywheel 72, and a hydrogen storage device 73.
 蓄電装置71は、例えば蓄電池である。蓄電装置71は、発電設備60が再生可能エネルギーから得た電気エネルギー(電力)を蓄積(充電)する。さらに、蓄電装置71は、系統電源7から出力された電気エネルギー(電力)を蓄積する。 The power storage device 71 is, for example, a storage battery. The power storage device 71 stores (charges) electrical energy (electric power) obtained from renewable energy by the power generation facility 60. Further, the power storage device 71 stores the electric energy (electric power) output from the system power source 7.
 フライホイール72は、発電設備60が再生可能エネルギーから得た電気エネルギーを回転運動の物理的エネルギーに変換して保存し、放電時に回転運動からの発電によって電力を供給する。さらに、フライホイール72は、系統電源7から出力された電気エネルギー(電力)を回転運動の物理的エネルギーに変換して保存し、放電時に回転運動からの発電によって電力を供給する。 The fly wheel 72 converts the electric energy obtained from the renewable energy by the power generation facility 60 into the physical energy of the rotary motion and stores it, and supplies power by the power generated from the rotary motion at the time of discharge. Further, the fly wheel 72 converts the electric energy (electric power) output from the system power source 7 into physical energy of rotational motion and stores it, and supplies electric power by power generation from the rotational motion at the time of discharge.
 水素蓄積装置73は、発電設備60が再生可能エネルギーから得た電気エネルギーを利用して水素を生成し、水素として電力を蓄積する。水素蓄積装置73は、系統電源7から出力された電気エネルギーを利用して水素を生成し、水素として電力を蓄積する。水素蓄積装置73は、放電時には、電力を利用する燃料電池74(図1参照)に水素を入力して、水素から得られる電力を供給する。 The hydrogen storage device 73 generates hydrogen by using the electric energy obtained from the renewable energy by the power generation facility 60, and stores the electric power as hydrogen. The hydrogen storage device 73 uses the electric energy output from the system power source 7 to generate hydrogen, and stores electric power as hydrogen. At the time of discharging, the hydrogen storage device 73 inputs hydrogen to the fuel cell 74 (see FIG. 1) that uses electric power to supply electric power obtained from hydrogen.
 PCS80は、複数(図示例では4つ)のコンバータ81~84と、インバータ85とを有する。 The PCS80 has a plurality of converters 81 to 84 (four in the illustrated example) and an inverter 85.
 コンバータ81は、インバータ85と発電設備60とが接続された経路中に設けられている(図1参照)。コンバータ81は、DC/DCコンバータの機能を有している。コンバータ81は、発電設備60から出力された電気エネルギー(電力)を、創蓄連携システム2の外部である系統電源7へ出力する場合には、当該電気エネルギーをDC/DCコンバータを介してインバータ85に出力する。コンバータ81は、発電設備60から出力された電気エネルギー(電力)を、蓄積設備70に出力する場合には、当該電気エネルギーをDC/DCコンバータを介してコンバータ82~84に出力する。また、例えば、蓄電装置71で蓄積された電力をフライホイール72に出力する場合には、蓄電設備71は、当該電力をコンバータ82,83を介してフライホイール72に出力する。 The converter 81 is provided in the path in which the inverter 85 and the power generation facility 60 are connected (see FIG. 1). The converter 81 has a DC / DC converter function. When the converter 81 outputs the electric energy (electric power) output from the power generation facility 60 to the system power source 7 outside the creation / storage cooperation system 2, the converter 81 outputs the electric energy to the inverter 85 via the DC / DC converter. Output to. When the converter 81 outputs the electric energy (electric power) output from the power generation facility 60 to the storage facility 70, the converter 81 outputs the electric energy to the converters 82 to 84 via the DC / DC converter. Further, for example, when the electric power stored in the power storage device 71 is output to the flywheel 72, the power storage equipment 71 outputs the electric power to the flywheel 72 via the converters 82 and 83.
 コンバータ82は、双方向のコンバータであり、インバータ85と蓄電装置71とが接続された経路中に設けられている(図1参照)。コンバータ82は、DC/DCコンバータの機能を有している。コンバータ82は、発電設備60から出力された電気エネルギーを、DC/DCコンバータを介して蓄電装置71に出力して、蓄電装置71に蓄電させる。コンバータ82は、系統電源7から出力された電気エネルギー(電力)を、インバータ85を介して受け取ると、受け取った電気エネルギーをDC/DCコンバータを介して蓄電装置71に出力して、蓄電装置71に蓄電させる。コンバータ82は、蓄電装置71から出力された電気エネルギー(電力)を、DC/DCコンバータを介してインバータ85に出力する。 The converter 82 is a bidirectional converter, and is provided in a path in which the inverter 85 and the power storage device 71 are connected (see FIG. 1). The converter 82 has a DC / DC converter function. The converter 82 outputs the electric energy output from the power generation facility 60 to the power storage device 71 via the DC / DC converter, and stores the electric energy in the power storage device 71. When the converter 82 receives the electric energy (electric power) output from the system power source 7 via the inverter 85, the converter 82 outputs the received electric energy to the power storage device 71 via the DC / DC converter to the power storage device 71. Store electricity. The converter 82 outputs the electric energy (electric power) output from the power storage device 71 to the inverter 85 via the DC / DC converter.
 コンバータ83は、インバータ85とフライホイール72とが接続された経路中に設けられている(図1参照)。コンバータ83は、双方向AC/DCコンバータの機能を有している。コンバータ83は、フライホイール72から出力された電気エネルギー(電力)を、AC/DCコンバータを介してインバータ85に出力する。また、コンバータ83は、インバータ85から出力された電力を、フライホイール72に出力する。 The converter 83 is provided in the path where the inverter 85 and the flywheel 72 are connected (see FIG. 1). The converter 83 has a bidirectional AC / DC converter function. The converter 83 outputs the electric energy (electric power) output from the flywheel 72 to the inverter 85 via the AC / DC converter. Further, the converter 83 outputs the electric power output from the inverter 85 to the flywheel 72.
 コンバータ84は、インバータ85と燃料電池74とが接続された経路中に設けられている(図1参照)。コンバータ84は、DC/DCコンバータの機能を有している。コンバータ84は、燃料電池74から出力された電気エネルギー(電力)を、DC/DCコンバータを介してインバータ85に出力する。 The converter 84 is provided in the path in which the inverter 85 and the fuel cell 74 are connected (see FIG. 1). The converter 84 has a function of a DC / DC converter. The converter 84 outputs the electric energy (electric power) output from the fuel cell 74 to the inverter 85 via the DC / DC converter.
 インバータ85は、分電盤30と電気的に接続されている。インバータ85は、コンバータ81~84及び水素蓄積装置73と接続されている。インバータ85は、創蓄連携システム2の電気エネルギー(電力)を外部に出力する機能、及び外部からの電気エネルギーを受け付ける機能を有している。インバータ85は、創蓄連携システム2の電気エネルギー(電力)を外部に出力する際には、直流電力を交流電力に変換して、外部に出力する。インバータ85は、外部、例えば系統電源7から出力された交流電力を受け付けると、受け付けた交流電力を直流電力に変換して蓄積設備70に出力する。例えば、インバータ85は、系統電源7から出力された交流電力を直流電力に変換して、変換した直流電力を、コンバータ82を介して蓄電装置71に出力する。インバータ85は、系統電源7から出力された交流電力を直流電力に変換し、変換した直流電力を、コンバータ83を介してフライホイール72に出力することで、電力(電気エネルギー)を回転運動のエネルギーとしてフライホイール72に蓄積させる。インバータ85は、系統電源7から出力された交流電力を直流電力に変換して、変換した直流電力を、水素蓄積装置73に出力して、直流電力(電気エネルギー)を利用して水素を生成し、水素として電力を蓄積する。 The inverter 85 is electrically connected to the distribution board 30. The inverter 85 is connected to the converters 81 to 84 and the hydrogen storage device 73. The inverter 85 has a function of outputting the electric energy (electric power) of the creation and storage cooperation system 2 to the outside and a function of receiving the electric energy from the outside. When the electric energy (electric power) of the creation / storage cooperation system 2 is output to the outside, the inverter 85 converts the DC power into AC power and outputs the DC power to the outside. When the inverter 85 receives the AC power output from the outside, for example, the system power supply 7, it converts the received AC power into DC power and outputs it to the storage facility 70. For example, the inverter 85 converts the AC power output from the system power supply 7 into DC power, and outputs the converted DC power to the power storage device 71 via the converter 82. The inverter 85 converts the AC power output from the grid power source 7 into DC power, and outputs the converted DC power to the flywheel 72 via the converter 83 to convert the electric power (electrical energy) into rotational motion energy. Is accumulated in the fly wheel 72. The inverter 85 converts the AC power output from the grid power source 7 into DC power, outputs the converted DC power to the hydrogen storage device 73, and uses the DC power (electrical energy) to generate hydrogen. , Accumulates electricity as hydrogen.
 (2-2)計測システム
 ここでは、計測システム1の構成について説明する。
(2-2) Measurement system Here, the configuration of the measurement system 1 will be described.
 計測システム1は、図1に示すように、第1計測装置10と、第2計測装置20と、制御装置40と、を含む。 As shown in FIG. 1, the measurement system 1 includes a first measurement device 10, a second measurement device 20, and a control device 40.
 第1計測装置10は、分電盤30と創蓄連携システム2(のPCS80)との間に設けられ、インバータ85、つまり創蓄連携システム2の入出力電力量を計測する。 The first measuring device 10 is provided between the distribution board 30 and the creation / storage cooperation system 2 (PCS80), and measures the input / output electric energy of the inverter 85, that is, the creation / storage cooperation system 2.
 第2計測装置20は、分電盤30と系統電源7との間に設けられ、系統電源7と分電盤30との間の入出力電力量を計測する。 The second measuring device 20 is provided between the distribution board 30 and the system power supply 7, and measures the amount of input / output power between the system power supply 7 and the distribution board 30.
 制御装置40は、施設5で消費する電力、つまり複数の負荷50が消費する電力量の総和のうち、REの自家消費量を算出する。ここで、REの自家消費量とは、REから得られた電気エネルギーの消費量である。 The control device 40 calculates the self-consumption of RE out of the total amount of power consumed by the facility 5, that is, the amount of power consumed by the plurality of loads 50. Here, the self-consumption amount of RE is the consumption amount of electric energy obtained from RE.
 以下、第1計測装置10、第2計測装置20及び制御装置40の詳細な構成について説明する。 Hereinafter, the detailed configurations of the first measuring device 10, the second measuring device 20, and the control device 40 will be described.
 (2-2-1)第1計測装置
 第1計測装置10は、図1に示すように、第1計測部11、第2計測部12、出力部13を有している。第1計測装置10は、PCS80とは別体で施設5に設けられている。言い換えると、第1計測装置10とPCS80とは、互いに異なる筐体で、施設5に設けられている。
(2-2-1) First Measuring Device As shown in FIG. 1, the first measuring device 10 has a first measuring unit 11, a second measuring unit 12, and an output unit 13. The first measuring device 10 is provided in the facility 5 separately from the PCS 80. In other words, the first measuring device 10 and the PCS 80 have different housings and are provided in the facility 5.
 第1計測部11は、創蓄連携システム2に外部から入力される第1電力量を計測する。具体的に、第1計測部11は、系統電源7から分電盤30を介して出力された電力量を計測する。第1計測部11は、系統電源7から分電盤30を介して出力された電力を一定期間(例えば30分)で積算した電力量を第1電力量として計測する。要するに、第1計測部11は、創蓄連携システム2に充電(蓄電)される、系統電源7からの電力量を第1電力量として計測する。 The first measurement unit 11 measures the first electric energy input from the outside to the creation / storage cooperation system 2. Specifically, the first measurement unit 11 measures the amount of electric power output from the system power supply 7 via the distribution board 30. The first measurement unit 11 measures the electric energy obtained by integrating the electric power output from the system power supply 7 via the distribution board 30 over a certain period (for example, 30 minutes) as the first electric energy. In short, the first measurement unit 11 measures the amount of power from the system power source 7 charged (stored) in the creation / storage cooperation system 2 as the first power amount.
 第2計測部12は、創蓄連携システム2から外部に出力される第2電力量を計測する。具体的に、第2計測部12は、創蓄連携システム2から出力された電力量を計測する。第2計測部12は、創蓄連携システム2から出力された電力を一定期間(例えば30分)で積算した電力量を第2電力量として計測する。要するに、第2計測部12は、創蓄連携システム2から放電される電力量を第2電力量として計測する。 The second measurement unit 12 measures the second electric energy output from the creation / storage cooperation system 2 to the outside. Specifically, the second measurement unit 12 measures the amount of electric power output from the creation / storage cooperation system 2. The second measurement unit 12 measures the electric energy obtained by integrating the electric power output from the creation / storage cooperation system 2 in a certain period (for example, 30 minutes) as the second electric energy. In short, the second measurement unit 12 measures the amount of power discharged from the creation / storage cooperation system 2 as the second power amount.
 ここで、第1計測部11及び第2計測部12の接続体系について説明する。 Here, the connection system of the first measurement unit 11 and the second measurement unit 12 will be described.
 第1計測部11及び第2計測部12のそれぞれは、第1端子及び第2端子を有している。第1計測部11及び第2計測部12のそれぞれは、第1端子に入力され、第2端子から出力される電力量を計測する。第1計測部11及び第2計測部12のそれぞれは、第2端子に入力され、第1端子から出力される電力量の計測は行わない。 Each of the first measurement unit 11 and the second measurement unit 12 has a first terminal and a second terminal. Each of the first measuring unit 11 and the second measuring unit 12 measures the amount of electric power input to the first terminal and output from the second terminal. Each of the first measuring unit 11 and the second measuring unit 12 does not measure the amount of electric power input to the second terminal and output from the first terminal.
 第1計測部11の第1端子は、分電盤30と電気的に接続される。第1計測部11の第2端子は、第2計測部12の第2端子と電気的に接続される。第2計測部12の第1端子は、インバータ85と接続される。 The first terminal of the first measurement unit 11 is electrically connected to the distribution board 30. The second terminal of the first measuring unit 11 is electrically connected to the second terminal of the second measuring unit 12. The first terminal of the second measurement unit 12 is connected to the inverter 85.
 この接続体系により、分電盤30から出力された電力は、第1計測部11の第1端子に入力され、第1計測部11の第2端子から出力される。さらに、第1計測部11から出力された電力は、第2計測部12の第2端子に入力され、第2計測部12の第1端子から出力される。一方、インバータ85から出力された電力は、第2計測部12の第1端子に入力され、第2計測部12の第2端子から出力される。さらに、第2計測部12から出力された電力は、第1計測部11の第2端子に入力され、第1計測部11の第1端子から出力される。これにより、第1計測部11では、創蓄連携システム2に外部から入力される第1電力量を計測することが可能となる。そして、第2計測部12では、創蓄連携システム2から外部に出力される第2電力量を計測することが可能となる。 With this connection system, the power output from the distribution board 30 is input to the first terminal of the first measurement unit 11 and output from the second terminal of the first measurement unit 11. Further, the electric power output from the first measurement unit 11 is input to the second terminal of the second measurement unit 12, and is output from the first terminal of the second measurement unit 12. On the other hand, the electric power output from the inverter 85 is input to the first terminal of the second measurement unit 12, and is output from the second terminal of the second measurement unit 12. Further, the electric power output from the second measurement unit 12 is input to the second terminal of the first measurement unit 11, and is output from the first terminal of the first measurement unit 11. As a result, the first measurement unit 11 can measure the first electric energy input to the creation / storage cooperation system 2 from the outside. Then, the second measurement unit 12 can measure the second electric energy output from the creation / storage cooperation system 2 to the outside.
 出力部13は、第1計測部11が計測した第1電力量、及び第2計測部12が計測した第2電力量を、それぞれ制御装置40に通信により出力する。ここで、第1計測装置10と制御装置40との間の通信は、有線による通信であってもよいし、無線による通信であってもよい。 The output unit 13 outputs the first electric energy measured by the first measurement unit 11 and the second electric energy measured by the second measurement unit 12 to the control device 40 by communication. Here, the communication between the first measuring device 10 and the control device 40 may be a wired communication or a wireless communication.
 (2-2-2)第2計測装置
 第2計測装置20は、図1に示すように、売電計測部21(第3計測部)、買電計測部22、出力部23を有している。
(2-2-2) Second Measuring Device As shown in FIG. 1, the second measuring device 20 has a power selling measuring unit 21 (third measuring unit), a power purchasing measuring unit 22, and an output unit 23. There is.
 売電計測部21は、分電盤30から系統電源7に出力される第3電力量を計測する。具体的に、売電計測部21は、分電盤30から系統電源7に出力された電力量、つまり売電として系統電源7に出力された電力量を計測する。売電計測部21は、分電盤30から出力された電力を一定期間(例えば30分)で積算した電力量を第3電力量として計測する。 The power sales measurement unit 21 measures the third electric energy output from the distribution board 30 to the system power supply 7. Specifically, the power sale measuring unit 21 measures the amount of power output from the distribution board 30 to the system power supply 7, that is, the amount of power output to the system power supply 7 as power sale. The power sale measurement unit 21 measures the amount of power obtained by integrating the power output from the distribution board 30 over a certain period (for example, 30 minutes) as the third power amount.
 買電計測部22は、系統電源7から分電盤30に入力される第4電力量を計測する。具体的に、買電計測部22は、系統電源7から分電盤30に入力された電力量、つまり買電として分電盤30に入力された電力量を計測する。買電計測部22は、系統電源7から出力された電力を一定期間(例えば30分)で積算した電力量を第4電力量として計測する。 The power purchase measurement unit 22 measures the fourth electric energy input from the system power supply 7 to the distribution board 30. Specifically, the power purchase measuring unit 22 measures the amount of power input from the system power source 7 to the distribution board 30, that is, the amount of power input to the distribution board 30 as power purchase. The power purchase measurement unit 22 measures the amount of power obtained by integrating the power output from the system power source 7 over a certain period (for example, 30 minutes) as the fourth power amount.
 ここで、売電計測部21及び買電計測部22の接続体系について説明する。 Here, the connection system of the power sale measurement unit 21 and the power purchase measurement unit 22 will be described.
 売電計測部21及び買電計測部22のそれぞれは、第1端子及び第2端子を有している。売電計測部21及び買電計測部22のそれぞれは、第1端子に入力され、第2端子から出力される電力量を計測する。売電計測部21及び買電計測部22のそれぞれは、第2端子に入力され、第1端子から出力される電力量の計測は行わない。 Each of the power sale measurement unit 21 and the power purchase measurement unit 22 has a first terminal and a second terminal. Each of the power selling measurement unit 21 and the power purchasing measuring unit 22 measures the amount of electric energy input to the first terminal and output from the second terminal. Each of the power selling measurement unit 21 and the power purchasing measuring unit 22 does not measure the amount of power input to the second terminal and output from the first terminal.
 買電計測部22の第1端子は、系統電源7と電気的に接続される。買電計測部22の第2端子は、売電計測部21の第2端子と電気的に接続される。売電計測部21の第1端子は、分電盤30と電気的に接続される。 The first terminal of the power purchase measurement unit 22 is electrically connected to the system power supply 7. The second terminal of the power purchase measurement unit 22 is electrically connected to the second terminal of the power sale measurement unit 21. The first terminal of the power sale measuring unit 21 is electrically connected to the distribution board 30.
 この接続体系により、分電盤30から出力された電力は、売電計測部21の第1端子に入力され、売電計測部21の第2端子から出力される。さらに、売電計測部21から出力された電力は、買電計測部22の第2端子に入力され、買電計測部22の第1端子から出力される。一方、系統電源7から出力された電力は、買電計測部22の第1端子に入力され、買電計測部22の第2端子から出力される。さらに、買電計測部22から出力された電力は、売電計測部21の第2端子に入力され、売電計測部21の第1端子から出力される。これにより、売電計測部21では、分電盤30から系統電源7に出力される第3電力量を計測することが可能となる。そして、買電計測部22では、系統電源7から分電盤30に入力される第4電力量を計測することが可能となる。 With this connection system, the power output from the distribution board 30 is input to the first terminal of the power selling measurement unit 21, and is output from the second terminal of the power selling measuring unit 21. Further, the power output from the power sale measurement unit 21 is input to the second terminal of the power purchase measurement unit 22, and is output from the first terminal of the power purchase measurement unit 22. On the other hand, the power output from the system power supply 7 is input to the first terminal of the power purchase measurement unit 22, and is output from the second terminal of the power purchase measurement unit 22. Further, the power output from the power purchase measurement unit 22 is input to the second terminal of the power sale measurement unit 21, and is output from the first terminal of the power sale measurement unit 21. As a result, the power sales measuring unit 21 can measure the third electric energy output from the distribution board 30 to the system power supply 7. Then, the power purchase measuring unit 22 can measure the fourth electric energy input from the system power source 7 to the distribution board 30.
 出力部23は、売電計測部21が計測した第3電力量、及び買電計測部22が計測した第4電力量を、それぞれ制御装置40に通信により出力する。ここで、第2計測装置20と制御装置40との間の通信は、有線による通信であってもよいし、無線による通信であってもよい。 The output unit 23 outputs the third electric energy measured by the power selling measurement unit 21 and the fourth electric energy measured by the power purchasing measuring unit 22 to the control device 40 by communication. Here, the communication between the second measuring device 20 and the control device 40 may be a wired communication or a wireless communication.
 (2-2-3)制御装置
 制御装置40は、図1に示すように、第1通信部41、第2通信部42及び処理部43を有している。制御装置40は、例えば、HEMS(home energy management system)のコントローラである。
(2-2-3) Control device As shown in FIG. 1, the control device 40 has a first communication unit 41, a second communication unit 42, and a processing unit 43. The control device 40 is, for example, a controller of a HEMS (home energy management system).
 制御装置40は、例えばプロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが処理部43として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 The control device 40 has, for example, a computer system having a processor and a memory. Then, when the processor executes the program stored in the memory, the computer system functions as the processing unit 43. The program executed by the processor is recorded in advance in the memory of the computer system here, but may be recorded in a non-temporary recording medium such as a memory card and provided, or provided through a telecommunications line such as the Internet. May be done.
 第1通信部41は、第1計測装置10及び第2計測装置20と通信を行うための通信インタフェースを有している。第1通信部41は、第1計測装置10から第1計測部11が計測した第1電力量、及び第2計測部12が計測した第2電力量を受け取る。 The first communication unit 41 has a communication interface for communicating with the first measuring device 10 and the second measuring device 20. The first communication unit 41 receives the first electric energy measured by the first measurement unit 11 and the second electric energy measured by the second measurement unit 12 from the first measurement device 10.
 第1通信部41は、第2計測装置20から売電計測部21が計測した第3電力量、及び買電計測部22が計測した第4電力量を受け取る。 The first communication unit 41 receives from the second measuring device 20 the third electric energy measured by the power selling measuring unit 21 and the fourth electric energy measured by the power purchasing measuring unit 22.
 第2通信部42は、インターネット等のネットワークNT1を介してサーバ6と通信を行うための通信インタフェースを有している。 The second communication unit 42 has a communication interface for communicating with the server 6 via a network NT1 such as the Internet.
 処理部43は、図1に示すように、第1算出部401、第2算出部402及び判別部403を有する。 As shown in FIG. 1, the processing unit 43 has a first calculation unit 401, a second calculation unit 402, and a discrimination unit 403.
 第1算出部401は、第1計測装置10の第2計測部12が計測した第2電力量から、第1計測装置10の第1計測部11が計測した第1電力量を減算して、差分電力量を算出する。これにより、創蓄連携システム2から放電された電力量のうちREによる電力量が求められる。なお、第1算出部401は、後述する本開示の差分算出部に相当する。 The first calculation unit 401 subtracts the first electric energy measured by the first measurement unit 11 of the first measurement device 10 from the second electric energy measured by the second measurement unit 12 of the first measurement device 10. Calculate the differential electric energy. As a result, the electric energy by RE is obtained from the electric energy discharged from the creation and storage cooperation system 2. The first calculation unit 401 corresponds to the difference calculation unit of the present disclosure described later.
 第2算出部402は、第1電力量、第2電力量及び第3電力量に基づいて、再生可能エネルギーから得られた電気エネルギーが施設5で消費された自家消費量を算出する。具体的には、第2算出部402は、第1算出部401が算出した差分電力量から第3電力量を減算して、自家消費量を算出する。第2算出部402は、算出した自家消費量を、第2通信部42を介してサーバ6に送信する。 The second calculation unit 402 calculates the self-consumption amount of the electric energy obtained from the renewable energy consumed in the facility 5 based on the first electric energy amount, the second electric energy amount, and the third electric energy amount. Specifically, the second calculation unit 402 calculates the self-consumption amount by subtracting the third electric energy amount from the differential electric energy amount calculated by the first calculation unit 401. The second calculation unit 402 transmits the calculated self-consumption amount to the server 6 via the second communication unit 42.
 判別部403は、創蓄連携システム2の設けられた装置が、再生可能エネルギーを利用する装置であるか否かを判別する。例えば、制御装置40は、ユーザが利用するスマートフォン等の情報端末から創蓄連携システム2に設ける装置の名称、型番等の識別子を取得する。制御装置40は、取得した識別子を基に、当該装置が再生可能エネルギーを利用する装置であるか否かを判別する。具体的には、判別部403は、取得した識別子を基に、当該装置が再生可能エネルギーを利用する装置であるか否かを外部に問い合わせる。判別部403は、外部への問い合わせ結果に応じて、当該装置が再生可能エネルギーを利用する装置であるか否かを判別する。判別部403は、当該装置が再生可能エネルギーを利用する装置でないと判別、つまり化石燃料等を利用して電気エネルギーを生成する装置であると判別すると、対価を受けることができないことを表すメッセージ等をユーザに通知する。 The discrimination unit 403 determines whether or not the device provided with the creation and storage cooperation system 2 is a device that uses renewable energy. For example, the control device 40 acquires identifiers such as the name and model number of the device provided in the creation and storage cooperation system 2 from an information terminal such as a smartphone used by the user. The control device 40 determines whether or not the device is a device that uses renewable energy based on the acquired identifier. Specifically, the discrimination unit 403 inquires to the outside whether or not the device is a device that uses renewable energy, based on the acquired identifier. The determination unit 403 determines whether or not the device is a device that uses renewable energy in response to the result of an inquiry to the outside. If the determination unit 403 determines that the device is not a device that uses renewable energy, that is, if it determines that the device is a device that generates electric energy using fossil fuel or the like, a message or the like indicating that compensation cannot be received. Notify the user.
 (2-3)サーバ
 サーバ6は、ネットワークNT1を介して制御装置40と通信可能に構成されている。
(2-3) Server The server 6 is configured to be able to communicate with the control device 40 via the network NT1.
 サーバ6は、例えばプロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムがサーバ6として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 The server 6 has, for example, a computer system having a processor and a memory. Then, when the processor executes the program stored in the memory, the computer system functions as the server 6. The program executed by the processor is recorded in advance in the memory of the computer system here, but may be recorded in a non-temporary recording medium such as a memory card and provided, or provided through a telecommunications line such as the Internet. May be done.
 サーバ6は、計測システム1の制御装置40から送信された施設5でのREの自家消費量を受け取ると、受け取った自家消費量を記憶する。 When the server 6 receives the self-consumption amount of RE at the facility 5 transmitted from the control device 40 of the measurement system 1, the server 6 stores the received self-consumption amount.
 サーバ6は、記憶している自家消費量を基に、対価を決定する。例えば、サーバ6は、所定期間(例えば、1ヶ月)の自家消費量の合計値を算出し、算出した合計値に対して発生する対価を決定する。 The server 6 determines the consideration based on the stored self-consumption amount. For example, the server 6 calculates the total value of self-consumption for a predetermined period (for example, one month), and determines the consideration generated for the calculated total value.
 また、サーバ6は、所定期間(例えば、1ヶ月)の自家消費量の推移を、ユーザ等に通知してもよい。 Further, the server 6 may notify the user or the like of the transition of the self-consumption amount for a predetermined period (for example, one month).
 (3)動作
 ここでは、計測システム1及びサーバ6の動作について、主に図2を用いて説明する。
(3) Operation Here, the operations of the measurement system 1 and the server 6 will be described mainly with reference to FIG.
 第2計測装置20の買電計測部22は、系統電源7からの電力量を第4電力量として計測し、計測した第4電力量を制御装置40に出力する(ステップS1,S2)。 The power purchase measurement unit 22 of the second measuring device 20 measures the amount of power from the system power source 7 as the fourth power amount, and outputs the measured fourth power amount to the control device 40 (steps S1 and S2).
 第1計測装置10の第1計測部11は、創蓄連携システム2に外部から入力される電力量を第1電力量として計測し、計測した第1電力量を制御装置40に出力する(ステップS3,S4)。 The first measurement unit 11 of the first measurement device 10 measures the amount of electric power input from the outside to the creation and storage cooperation system 2 as the first electric energy, and outputs the measured first electric energy to the control device 40 (step). S3, S4).
 第1計測装置10の第2計測部12は、創蓄連携システム2から外部に出力される電力を第2電力量として計測し、計測した第2電力量を制御装置40に出力する(ステップS5,S6)。 The second measurement unit 12 of the first measurement device 10 measures the electric power output to the outside from the creation and storage cooperation system 2 as the second electric energy, and outputs the measured second electric energy to the control device 40 (step S5). , S6).
 第2計測装置20の売電計測部21は、分電盤30からの電力量を第3電力量として計測し、計測した第3電力量を制御装置40に出力する(ステップS7,S8)。 The power selling measurement unit 21 of the second measuring device 20 measures the amount of power from the distribution board 30 as the third power amount, and outputs the measured third power amount to the control device 40 (steps S7 and S8).
 制御装置40の第1算出部401は、第1通信部41を介して第1計測装置10から受け取った第1電力量及び第2電力量を用いて、差分電力量を算出する(ステップS9)。具体的には、第1算出部401は、第2電力量から第1電力量を減算して、差分電力量を算出する。 The first calculation unit 401 of the control device 40 calculates the differential electric energy using the first electric energy and the second electric energy received from the first measurement device 10 via the first communication unit 41 (step S9). .. Specifically, the first calculation unit 401 subtracts the first electric energy from the second electric energy to calculate the differential electric energy.
 制御装置40の第2算出部402は、第1電力量、第2電力量、及び第1通信部41を介して第2計測装置20から受け取った第3電力量を用いて、REの自家消費量を算出する(ステップS10)。具体的には、第2算出部402は、第1電力量及び第2電力量から算出された差分電力量から第3電力量を減算して、REの自家消費量を算出する。 The second calculation unit 402 of the control device 40 uses the first electric energy, the second electric energy, and the third electric energy received from the second measuring device 20 via the first communication unit 41 to consume RE in-house. The amount is calculated (step S10). Specifically, the second calculation unit 402 calculates the self-consumption of RE by subtracting the third electric energy from the differential electric energy calculated from the first electric energy and the second electric energy.
 第2通信部42は、第2算出部402が算出したREの自家消費量に対して発生する対価をサーバ6で決定させるために、サーバ6に当該自家消費量を出力(送信)する(ステップS11)。 The second communication unit 42 outputs (transmits) the self-consumption amount to the server 6 in order for the server 6 to determine the consideration generated for the self-consumption amount of RE calculated by the second calculation unit 402 (step). S11).
 サーバ6は、計測システム1から受け取った自家消費量に対して発生する対価を決定する(ステップS12)。 The server 6 determines the consideration generated for the self-consumption received from the measurement system 1 (step S12).
 (4)利点
 以上説明したように、実施形態の第1計測装置10の第1計測部11は、創蓄連携システム2に外部から入力される電力量を第1電力量として計測する。第1計測装置10の第2計測部12は、創蓄連携システム2から外部に出力される電力量を第2電力量として計測する。制御装置40の第1算出部401は、第2電力量から第1電力量を減算して、差分電力量を算出する。
(4) Advantages As described above, the first measurement unit 11 of the first measurement device 10 of the embodiment measures the amount of electric power input from the outside to the creation and storage cooperation system 2 as the first electric energy. The second measurement unit 12 of the first measurement device 10 measures the amount of power output to the outside from the creation / storage cooperation system 2 as the second power amount. The first calculation unit 401 of the control device 40 subtracts the first electric energy from the second electric energy to calculate the differential electric energy.
 第1電力量は、系統電源7が出力した電力量であって、蓄積設備70で蓄積される。さらに、蓄積設備70は、発電設備60がREを使用して得られた電気エネルギー(電力)をも蓄積している。そこで、創蓄連携システム2から出力された第2電力量(放電された電力量)から第1電力量を減算することで、創蓄連携システム2で生成された電気エネルギー、つまりREを使用して得られた電気エネルギーの量を求めることができる。 The first electric energy is the electric energy output by the system power source 7, and is stored in the storage facility 70. Further, the storage facility 70 also stores the electric energy (electric power) obtained by the power generation facility 60 using RE. Therefore, by subtracting the first electric energy from the second electric energy (discharged electric energy) output from the creation and storage cooperation system 2, the electric energy generated by the creation and storage cooperation system 2, that is, RE is used. The amount of electrical energy obtained can be obtained.
 したがって、計測システム1は、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーである再生可能エネルギーを利用して得られた電気エネルギーの量(電力量)を計測することができる。 Therefore, when the stored electric power is discharged, the measurement system 1 uses the renewable energy, which is the electric energy generated by the creation / storage cooperation system, among the discharged electric energy, to obtain the electric energy. The amount (electric energy) can be measured.
 さらに、計測システム1の第2計測装置20は、売電した電力量(第3電力量)を計測している。制御装置40の第2算出部402は、差分電力量から第3電力量を減算して、REの自家消費量を算出する。 Further, the second measuring device 20 of the measuring system 1 measures the sold electric energy (third electric energy). The second calculation unit 402 of the control device 40 subtracts the third electric energy from the differential electric energy to calculate the self-consumption of RE.
 創蓄連携システム2から出力された差分電力量は、施設5の複数の負荷50で消費される、又は系統電源7に出力される。そこで、差分電力量から第3電力量を減算することで、施設5で消費されたREの電力量、つまりREの自家消費量を求めることができる。 The differential electric energy output from the creation and storage cooperation system 2 is consumed by the plurality of loads 50 of the facility 5, or is output to the system power supply 7. Therefore, by subtracting the third electric energy from the differential electric energy, the electric energy of RE consumed in the facility 5, that is, the self-consumption of RE can be obtained.
 制御装置40は、REの自家消費量に対して発生した対価を決定するために、REの自家消費量をサーバ6に送信する。要は、REの自家消費量に付加価値を与えることになり、REの自家消費量の価値を高めることができる。 The control device 40 transmits the self-consumption amount of RE to the server 6 in order to determine the consideration generated for the self-consumption amount of RE. In short, it will add value to RE's self-consumption, and the value of RE's self-consumption can be increased.
 また、実施形態では、第1計測装置10は、PCS80と別体としている。第1計測装置10をPCS80と同一の筐体とすると、第1計測装置10を交換する場合、PCS80そのものを交換する必要がある。そのため、コンバータ81~84及びインバータ85について交換する必要がなくても交換しなければならない。そこで、第1計測装置10は、PCS80と別体とすることで、交換対象を必要最小限に留めることができる。 Further, in the embodiment, the first measuring device 10 is a separate body from the PCS 80. Assuming that the first measuring device 10 has the same housing as the PCS 80, when the first measuring device 10 is replaced, the PCS 80 itself needs to be replaced. Therefore, the converters 81 to 84 and the inverter 85 must be replaced even if they do not need to be replaced. Therefore, by separating the first measuring device 10 from the PCS 80, the replacement target can be kept to the minimum necessary.
 なお、第1計測装置10は、PCS80と別体とする構成としたが、PCS80と同一の筐体であっても、本開示の技術的思想の範囲内である。 Although the first measuring device 10 is configured to be separate from the PCS80, even if it has the same housing as the PCS80, it is within the scope of the technical idea of the present disclosure.
 (5)変形例
 (5-1)変形例1
 上記実施形態では、制御装置40が差分電力量及びREの自家消費量の双方を算出する構成としたが、この構成に限定されない。
(5) Modification example (5-1) Modification example 1
In the above embodiment, the control device 40 is configured to calculate both the differential electric energy amount and the self-consumption amount of RE, but is not limited to this configuration.
 第1計測装置10が差分電力量を算出してもよい。この場合に、第1計測装置10は、算出した差分電力量を制御装置40に出力する。制御装置40は、第1計測装置10から受け取った差分電力量と第2計測装置20から受け取った第3電力量とを用いて、REの自家消費量を算出する。 The first measuring device 10 may calculate the differential electric energy. In this case, the first measuring device 10 outputs the calculated differential electric energy to the control device 40. The control device 40 calculates the self-consumption amount of RE by using the differential electric energy received from the first measuring device 10 and the third electric energy received from the second measuring device 20.
 または、サーバ6が、差分電力量及びREの自家消費量を算出してもよい。この場合、制御装置40は、第1計測装置10から受け取った第1電力量及び第2電力量と、第2計測装置20から受け取った第3電力量と、をサーバ6に送信する。 Alternatively, the server 6 may calculate the differential electric energy and the self-consumption of RE. In this case, the control device 40 transmits the first electric energy and the second electric energy received from the first measuring device 10 and the third electric energy received from the second measuring device 20 to the server 6.
 または、制御装置40が差分電力量を算出し、サーバ6がREの自家消費量を算出してもよい。 Alternatively, the control device 40 may calculate the differential electric energy, and the server 6 may calculate the self-consumption of RE.
 (5-2)変形例2
 上記実施形態では、創蓄連携システム2から出力される電気エネルギー(電力)は、REを利用した電気エネルギーであることを前提としている。
(5-2) Modification 2
In the above embodiment, it is premised that the electric energy (electric power) output from the creation / storage cooperation system 2 is the electric energy using RE.
 しかしながら、創蓄連携システム2から出力される電気エネルギー(電力)は、化石燃料を利用した電気エネルギー、つまりREを利用しないで得られた電気エネルギーが含まれてもよい。 However, the electric energy (electric power) output from the creation and storage cooperation system 2 may include electric energy using fossil fuels, that is, electric energy obtained without using RE.
 この場合、REを利用しないで電気エネルギーを生成する装置に対して、生成した電気エネルギー(電力)の出力側に、電力量を計測する計測装置を設ける。例えば、ガスを利用する燃料電池の出力側に電力量を計測する計測装置を設ける。これにより、REを利用しないで生成された電気エネルギーの量(電力量)を計測することができる。第1算出部401は、第1電力量から、第2電力量及びREを利用しないで生成された電気エネルギーの量を減算することで、創蓄連携システム2から出力される電気エネルギー(電力)のうち、REを利用して生成された電気エネルギーの量を求めることができる。 In this case, for a device that generates electric energy without using RE, a measuring device that measures the amount of electric power is provided on the output side of the generated electric energy (electric power). For example, a measuring device for measuring electric energy is provided on the output side of a fuel cell that uses gas. This makes it possible to measure the amount of electric energy (electric energy) generated without using RE. The first calculation unit 401 subtracts the second electric energy and the amount of electric energy generated without using RE from the first electric energy, so that the electric energy (electric power) output from the creation and storage cooperation system 2 Of these, RE can be used to determine the amount of electrical energy generated.
 なお、REを利用しないで電気エネルギーを生成する装置が、PCS80のインバータ85とは別のインバータを介して電力(交流電力)を出力する場合がある。この場合、REを利用しないで電気エネルギーを生成する装置は、当該別のインバータから第1計測装置10を介すことなく分電盤30に接続することが好ましい。 Note that a device that generates electrical energy without using RE may output electric power (AC power) via an inverter different from the inverter 85 of PCS80. In this case, it is preferable that the device that generates electric energy without using RE is connected to the distribution board 30 from the other inverter without going through the first measuring device 10.
 (5-3)変形例3
 上記実施形態では、サーバ6は、一の施設5に対して対価を決定する構成としたが、この構成に限定されない。
(5-3) Modification 3
In the above embodiment, the server 6 is configured to determine the consideration for one facility 5, but is not limited to this configuration.
 サーバ6は、複数の施設5を1つのグループとして、当該グループに対して対価を決定してもよい。この場合、サーバ6は、複数の施設5のそれぞれに対して所定期間での自家消費量の合計値を算出する。サーバ6は、複数の施設5のそれぞれの合計値の総和を、グループにおける所定期間での自家消費量として算出する。サーバ6は、グループにおける所定期間での自家消費量に対して発生する対価を決定する。この場合、決定された対価が、複数の施設5のそれぞれに割り当てられる。または、対価が現金又はポイントである場合には、決定された対価を複数の施設5の数で除算した結果が、複数の施設5のそれぞれに割り当てられる。 The server 6 may set a plurality of facilities 5 as one group and determine the consideration for the group. In this case, the server 6 calculates the total value of the self-consumption amount in the predetermined period for each of the plurality of facilities 5. The server 6 calculates the sum of the total values of the plurality of facilities 5 as the amount of self-consumption in a predetermined period in the group. The server 6 determines the consideration incurred for the self-consumption of the group in a predetermined period. In this case, the determined consideration is assigned to each of the plurality of facilities 5. Alternatively, when the consideration is cash or points, the result of dividing the determined consideration by the number of the plurality of facilities 5 is assigned to each of the plurality of facilities 5.
 (5-4)変形例4
 上記実施形態では、制御装置40(の判別部403)は、情報端末から創蓄連携システム2に含まれる装置の識別子を取得する構成としたが、この構成に限定されない。
(5-4) Modification 4
In the above embodiment, the control device 40 (discrimination unit 403) is configured to acquire the identifier of the device included in the creation / storage cooperation system 2 from the information terminal, but is not limited to this configuration.
 制御装置40は、各コンバータ81~84との通信により、各コンバータ81~84に接続された装置の識別子を取得してもよい。または、制御装置40は、発電設備60、及び蓄積設備70の各装置(蓄電装置71、フライホイール72、水素蓄積装置73)との通信により、発電設備60、蓄電装置71、フライホイール72及び水素蓄積装置73のそれぞれの識別子を取得してもよい。 The control device 40 may acquire the identifier of the device connected to each of the converters 81 to 84 by communicating with each of the converters 81 to 84. Alternatively, the control device 40 communicates with the power generation equipment 60 and the storage equipment 70 (power storage device 71, flywheel 72, hydrogen storage device 73) to generate power generation equipment 60, power storage device 71, flywheel 72, and hydrogen. The respective identifiers of the storage device 73 may be acquired.
 (5-5)変形例5
 上記実施形態では、発電設備60として太陽光発電設備を一例として説明した。しかしながら、発電設備60は太陽光発電設備に限定されない。
(5-5) Modification 5
In the above embodiment, the solar power generation facility has been described as an example of the power generation facility 60. However, the power generation facility 60 is not limited to the photovoltaic power generation facility.
 発電設備60は、水力発電設備であってもよいし、風力発電設備であってもよい。この場合、発生する電気エネルギー(電力)が交流である場合には、発電設備60とインバータ85とが接続された経路中に設けられるコンバータはAC/DCコンバータの機能を有している。 The power generation facility 60 may be a hydroelectric power generation facility or a wind power generation facility. In this case, when the generated electric energy (electric power) is alternating current, the converter provided in the path in which the power generation facility 60 and the inverter 85 are connected has the function of an AC / DC converter.
 また、創蓄連携システム2は、1つの発電設備60を備える構成としたが、この構成に限定されない。創蓄連携システム2は、複数の発電設備60を備えてもよい。 Further, the creation and storage cooperation system 2 is configured to include one power generation facility 60, but is not limited to this configuration. The creation and storage cooperation system 2 may be provided with a plurality of power generation facilities 60.
 また、創蓄連携システム2は、1つのインバータ85を備える構成としたが、この構成に限定されない。創蓄連携システム2は、複数のインバータ85を備える構成としてもよい。この場合、複数のインバータ85の各々は、第1計測装置10に接続される。 Further, the creation and storage cooperation system 2 is configured to include one inverter 85, but is not limited to this configuration. The creation and storage cooperation system 2 may be configured to include a plurality of inverters 85. In this case, each of the plurality of inverters 85 is connected to the first measuring device 10.
 (その他の変形例)
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、計測システム1と同様の機能は、計測方法、コンピュータプログラム、又はプログラムを記録した非一時的な記録媒体等で具現化されてもよい。一態様に係る計測方法は、再生可能エネルギーを利用する発電設備60と、発電設備60が再生可能エネルギーから得た電気エネルギー、又は当該電気エネルギーから変換された他のエネルギーを蓄える蓄積設備70と、を備える創蓄連携システム2で用いられる計測システムでの計測方法である。計測方法は、第1計測ステップと、第2計測ステップと、を含む。第1計測ステップは、創蓄連携システム2に外部から入力される第1電力量を計測する。第2計測ステップは、創蓄連携システム2から外部に出力される第2電力量を計測する。一態様に係るプログラムは、コンピュータシステムを、上述した計測方法として機能させるためのプログラムである。
(Other variants)
The above embodiment is only one of the various embodiments of the present disclosure. The above-described embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as that of the measurement system 1 may be realized by a measurement method, a computer program, a non-temporary recording medium on which the program is recorded, or the like. The measurement method according to one embodiment includes a power generation facility 60 that uses renewable energy, an electric energy that the power generation facility 60 obtains from renewable energy, or a storage facility 70 that stores other energy converted from the electric energy. It is a measurement method in the measurement system used in the creation and storage cooperation system 2 provided with. The measuring method includes a first measuring step and a second measuring step. The first measurement step measures the first electric energy input from the outside to the creation and storage cooperation system 2. The second measurement step measures the second electric energy output from the creation / storage cooperation system 2 to the outside. The program according to one aspect is a program for making a computer system function as the above-mentioned measurement method.
 本開示における計測システム1又は計測方法の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを有する。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における計測システム1又は計測方法の実行主体としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されていてもよいが、電気通信回線を通じて提供されてもよい。また、プログラムは、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的な記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1又は複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。 The execution subject of the measurement system 1 or the measurement method in the present disclosure includes a computer system. A computer system has a processor and memory as hardware. When the processor executes the program recorded in the memory of the computer system, the function as the execution subject of the measurement system 1 or the measurement method in the present disclosure is realized. The program may be pre-recorded in the memory of the computer system or may be provided through a telecommunication line. The program may also be recorded and provided on a non-temporary recording medium such as a memory card, optical disk, or hard disk drive that can be read by a computer system. A processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). A plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips. The plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
 コンピュータシステムである計測システム1は、1又は複数のコンピュータで構成されるシステムであってもよい。例えば、計測システム1の少なくとも一部の機能は、クラウド(クラウドコンピューティング)によって実現されてもよい。 The measurement system 1 which is a computer system may be a system composed of one or a plurality of computers. For example, at least a part of the functions of the measurement system 1 may be realized by the cloud (cloud computing).
 (まとめ)
 以上説明したように、第1の態様の計測システム(1)は、創蓄連携システムで用いられる。創蓄連携システム(2)は、再生可能エネルギーを利用する発電設備(60)と、系統電源(7)から得た電力、及び発電設備(60)が再生可能エネルギーから得た電気エネルギー若しくは電気エネルギーから変換された他のエネルギーを蓄える蓄積設備(70)と、を備える。計測システム(1)は、第1計測部(11)と、第2計測部(12)と、を備える。第1計測部(11)は、創蓄連携システム(2)に外部から入力される第1電力量を計測する。第2計測部(12)は、創蓄連携システム(2)から外部に出力される第2電力量を計測する。
(Summary)
As described above, the measurement system (1) of the first aspect is used in the creation and storage cooperation system. The creation and storage cooperation system (2) is a power generation facility (60) that uses renewable energy, power obtained from the grid power source (7), and electric energy or electric energy obtained from renewable energy by the power generation facility (60). It is equipped with a storage facility (70) for storing other energy converted from. The measurement system (1) includes a first measurement unit (11) and a second measurement unit (12). The first measurement unit (11) measures the first electric energy input from the outside to the creation / storage cooperation system (2). The second measurement unit (12) measures the second electric energy output from the creation / storage cooperation system (2) to the outside.
 この構成によると、第1電力量と第2電力量を用いて、創蓄連携システムで生成された電気エネルギーの量を求めることができる。したがって、計測システム(1)は、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーの量(電力量)を計測することができる。 According to this configuration, the amount of electric energy generated by the creation and storage cooperation system can be obtained by using the first electric energy and the second electric energy. Therefore, the measurement system (1) can measure the amount of electric energy (electric energy) generated by the creation / storage cooperation system among the discharged electric energy when the stored electric power is discharged.
 第2の態様の計測システム(1)では、第1の態様において、創蓄連携システム(2)から外部に出力されるエネルギーは、再生可能エネルギーを利用した電気エネルギーである。 In the measurement system (1) of the second aspect, in the first aspect, the energy output from the creation and storage cooperation system (2) to the outside is electric energy using renewable energy.
 この構成によると、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーである再生可能エネルギーを利用して得られた電気エネルギーの量(電力量)を計測することができる。 According to this configuration, when the stored electric power is discharged, the amount of electric energy obtained by using the renewable energy which is the electric energy generated by the creation and storage cooperation system among the discharged electric energy ( (Electric energy) can be measured.
 第3の態様の計測システム(1)は、第1又は第2の態様において、判別部(403)を、更に備える。判別部(403)は、創蓄連携システム(2)から外部に出力されるエネルギーが再生可能エネルギーから得られた電気エネルギーであるか否かを判別する。 The measurement system (1) of the third aspect further includes a discrimination unit (403) in the first or second aspect. The discriminating unit (403) determines whether or not the energy output from the creation / storage cooperation system (2) to the outside is electrical energy obtained from renewable energy.
 この構成によると、創蓄連携システム(2)から外部に出力されるエネルギーが再生可能エネルギーから得られた電気エネルギーであるか否かを判別することができる。 According to this configuration, it is possible to determine whether or not the energy output from the creation and storage cooperation system (2) to the outside is electrical energy obtained from renewable energy.
 第4の態様の計測システム(1)では、第1~第3のいずれかの態様において、第1計測部(11)は、一定期間における電力の累積値を第1電力量とする。第2計測部(12)は、一定期間における電力の累積値を第2電力量とする。 In the measurement system (1) of the fourth aspect, in any one of the first to third aspects, the first measurement unit (11) sets the cumulative value of electric power in a certain period as the first electric energy. The second measurement unit (12) uses the cumulative value of electric power in a certain period as the second electric energy.
 この構成によると、第1計測部(11)は一定期間における電力の累積値を第1電力量とすることで、一定期間のうち一部で電力のデータが取得できない場合であっても計測された第1電力量の精度を高めることができる。同様に、第2計測部(12)は一定期間における電力の累積値を第2電力量とすることで、一定期間のうち一部で電力のデータが取得できない場合であっても計測された第2電力量の精度を高めることができる。 According to this configuration, the first measurement unit (11) sets the cumulative value of the power in a certain period as the first electric energy, so that the measurement is performed even when the power data cannot be acquired in a part of the certain period. The accuracy of the first electric energy can be improved. Similarly, the second measurement unit (12) uses the cumulative value of the power in a certain period as the second electric energy, so that the second measurement unit (12) measures the power data even if the power data cannot be acquired in a part of the certain period. 2 The accuracy of electric energy can be improved.
 第5の態様の計測システム(1)は、第1~第4のいずれかの態様において、差分算出部(第1算出部401)を、更に備える。差分算出部は、第1電力量と第2電力量との差分を算出する。 The measurement system (1) of the fifth aspect further includes a difference calculation unit (first calculation unit 401) in any one of the first to fourth aspects. The difference calculation unit calculates the difference between the first electric energy and the second electric energy.
 この構成によると、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーの量(電力量)を計測することができる。 According to this configuration, when the stored electric power is discharged, it is possible to measure the amount of electric energy (electric energy) generated by the creation and storage cooperation system among the discharged electric energy.
 第6の態様の計測システム(1)は、第1~第5のいずれかの態様において、第3計測部(売電計測部21)を、更に備える。第3計測部は、外部としての系統電源(7)に出力する第3電力量を計測する。 The measurement system (1) of the sixth aspect further includes a third measurement unit (power sale measurement unit 21) in any one of the first to fifth aspects. The third measuring unit measures the third electric energy output to the external system power supply (7).
 この構成によると、創蓄連携システム(2)から出力された電力量のうち、系統電源(7)に売られた電力の量を第3電力量として計測することができる。 According to this configuration, of the electric energy output from the creation and storage cooperation system (2), the amount of electric power sold to the grid power supply (7) can be measured as the third electric energy.
 第7の態様の計測システム(1)は、第6の態様において、消費量算出部(第2算出部402)を、更に備える。消費量算出部は、第1電力量、第2電力量及び第3電力量に基づいて、系統電源(7)からの電力の供給を受ける施設(5)で再生可能エネルギーから得られた電気エネルギーの消費量である自家消費量を算出する。 The measurement system (1) of the seventh aspect further includes a consumption amount calculation unit (second calculation unit 402) in the sixth aspect. The consumption calculation unit is based on the first electric energy, the second electric energy, and the third electric energy, and the electric energy obtained from the renewable energy in the facility (5) which receives the electric energy from the grid power source (7). Calculate the amount of self-consumption, which is the amount of consumption of.
 この構成によると、創蓄連携システム(2)から出力された電力量のうち、施設(5)で消費されたREの消費量を求めることができる。 According to this configuration, it is possible to obtain the amount of RE consumed in the facility (5) out of the amount of electricity output from the creation and storage cooperation system (2).
 第8の態様の計測システム(1)は、第1~第7のいずれかの態様において、第1計測部(11)及び第2計測部(12)は、創蓄連携システム(2)とは別体に設けられている。 In the measurement system (1) of the eighth aspect, in any one of the first to seventh aspects, the first measurement unit (11) and the second measurement unit (12) are different from the creation and storage cooperation system (2). It is provided separately.
 この構成によると、交換対象を必要最小限に留めることができる。 According to this configuration, the replacement target can be kept to the minimum necessary.
 第9の態様の計測システム(1)は、第1~第8のいずれかの態様において、出力部(13)を、更に備える。出力部(13)は、第1電力量と第2電力量とを通信により出力する。 The measurement system (1) of the ninth aspect further includes an output unit (13) in any one of the first to eighth aspects. The output unit (13) outputs the first electric energy and the second electric energy by communication.
 この構成によると、第1電力量と第2電力量との出力先を、第1計測部(11)及び第2計測部(12)とは別に設けることができる。 According to this configuration, the output destinations of the first electric energy and the second electric energy can be provided separately from the first measurement unit (11) and the second measurement unit (12).
 第10の態様の計測方法は、創蓄連携システム(2)で用いられる計測システム(1)での計測方法である。創蓄連携システム(2)は、再生可能エネルギーを利用する発電設備(60)と、系統電源(7)から得た電力、及び発電設備(60)が再生可能エネルギーから得た電気エネルギー若しくは電気エネルギーから変換された他のエネルギーを蓄える蓄積設備(70)と、を備える。計測方法は、第1計測ステップと、第2計測ステップと、を含む。第1計測ステップは、創蓄連携システム(2)に外部から入力される第1電力量を計測する。第2計測ステップは、創蓄連携システム(2)から外部に出力される第2電力量を計測する。 The measurement method of the tenth aspect is the measurement method in the measurement system (1) used in the creation and storage cooperation system (2). The creation and storage cooperation system (2) is a power generation facility (60) that uses renewable energy, electric power obtained from a grid power source (7), and electric energy or electric energy obtained from renewable energy by the power generation facility (60). It is equipped with a storage facility (70) for storing other energy converted from. The measuring method includes a first measuring step and a second measuring step. The first measurement step measures the first electric energy input from the outside to the creation and storage cooperation system (2). The second measurement step measures the second electric energy output from the creation / storage cooperation system (2) to the outside.
 この計測方法によると、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーの量(電力量)を計測することができる。 According to this measurement method, when the stored electric power is discharged, it is possible to measure the amount of electric energy (electric energy) generated by the creation and storage cooperation system among the discharged electric energy.
 第11の態様の計測方法は、第10の態様において、第3計測ステップを、更に含む。第3計測ステップは、外部としての系統電源(7)に出力する第3電力量を計測する。 The measurement method of the eleventh aspect further includes a third measurement step in the tenth aspect. The third measurement step measures the third electric energy output to the external system power supply (7).
 この計測方法によると、創蓄連携システム(2)から出力された電力量のうち、系統電源(7)に売られた電力の量を第3電力量として計測することができる。 According to this measurement method, of the electric energy output from the creation and storage cooperation system (2), the amount of electric power sold to the grid power supply (7) can be measured as the third electric energy.
 第12の態様の計測方法は、第11の態様において、消費量算出ステップを、更に含む。消費量算出ステップは、第1電力量、第2電力量及び第3電力量を用いて、系統電源(7)からの電力の供給を受ける施設(5)で再生可能エネルギーが消費された自家消費量を算出する。 The measurement method of the twelfth aspect further includes a consumption calculation step in the eleventh aspect. The consumption calculation step is self-consumption in which renewable energy is consumed in the facility (5) that receives power from the grid power source (7) using the first electric energy, the second electric energy, and the third electric energy. Calculate the amount.
 この計測方法によると、創蓄連携システム(2)から出力された電力量のうち、施設(5)で消費されたREの消費量を求めることができる。 According to this measurement method, it is possible to obtain the amount of RE consumed at the facility (5) out of the amount of electricity output from the creation / storage cooperation system (2).
 第13の態様の計測方法は、第12の態様において、出力ステップを、更に含む。出力ステップは、自家消費量に対して発生する対価をサーバ(6)で決定させるために、サーバ(6)に自家消費量を出力する。 The measurement method of the thirteenth aspect further includes an output step in the twelfth aspect. In the output step, the self-consumption amount is output to the server (6) in order for the server (6) to determine the consideration generated for the self-consumption amount.
 この計測方法によると、REの自家消費量に付加価値を与えることになり、REの自家消費量の価値を高めることができる。 According to this measurement method, the value of RE's self-consumption is added, and the value of RE's self-consumption can be increased.
 第14の態様のプログラムは、第10~第13のいずれかの態様の計測方法を、コンピュータに実行させるためのプログラムである。 The program of the fourteenth aspect is a program for causing a computer to execute the measurement method of any one of the tenth to thirteenth aspects.
 このプログラムによると、蓄積された電力が放電された場合に、放電された電力量のうち創蓄連携システムで生成された電気エネルギーの量(電力量)を計測することができる。 According to this program, when the stored electric power is discharged, it is possible to measure the amount of electric energy (electric energy) generated by the creation and storage cooperation system out of the discharged electric energy.
  1  計測システム
  2  創蓄連携システム
  5  施設
  6  サーバ
  7  系統電源
  11  第1計測部
  12  第2計測部
  13  出力部
  21  売電計測部(第3計測部)
  60  発電設備
  70  蓄積設備
  401  第1算出部(差分算出部)
  402  第2算出部(消費量算出部)
  403  判別部
1 Measurement system 2 Creation and storage cooperation system 5 Facilities 6 Servers 7 System power supply 11 1st measurement unit 12 2nd measurement unit 13 Output unit 21 Power sales measurement unit (3rd measurement unit)
60 Power generation equipment 70 Storage equipment 401 1st calculation unit (difference calculation unit)
402 Second calculation unit (consumption calculation unit)
403 Discriminator

Claims (14)

  1.  再生可能エネルギーを利用する発電設備と、系統電源から得た電力、及び前記発電設備が前記再生可能エネルギーから得た電気エネルギー若しくは前記電気エネルギーから変換された他のエネルギーを蓄える蓄積設備と、を備える創蓄連携システムで用いられる計測システムであって、
     前記創蓄連携システムに外部から入力される第1電力量を計測する第1計測部と、
     前記創蓄連携システムから前記外部に出力される第2電力量を計測する第2計測部と、を備える、
     計測システム。
    It is provided with a power generation facility that uses renewable energy, a storage facility that stores electric power obtained from a system power source, and an electric energy obtained from the renewable energy or other energy converted from the electric energy. It is a measurement system used in the creation and storage cooperation system.
    The first measuring unit that measures the first electric energy input from the outside to the creation and storage cooperation system, and
    A second measuring unit for measuring a second electric energy output from the creation and storage cooperation system to the outside is provided.
    Measurement system.
  2.  前記創蓄連携システムから前記外部に出力されるエネルギーは、再生可能エネルギーを利用した前記電気エネルギーである、
     請求項1に記載の計測システム。
    The energy output from the creation and storage cooperation system to the outside is the electric energy using renewable energy.
    The measurement system according to claim 1.
  3.  前記創蓄連携システムから前記外部に出力されるエネルギーが再生可能エネルギーから得られた前記電気エネルギーであるか否かを判別する判別部を、更に備える、
     請求項1又は2に記載の計測システム。
    Further, a discriminating unit for determining whether or not the energy output from the creation and storage cooperation system to the outside is the electrical energy obtained from the renewable energy is provided.
    The measurement system according to claim 1 or 2.
  4.  前記第1計測部は、一定期間における電力の累積値を前記第1電力量とし、
     前記第2計測部は、前記一定期間における電力の累積値を前記第2電力量とする、
     請求項1~3のいずれか一項に記載の計測システム。
    The first measuring unit sets the cumulative value of electric power in a certain period as the first electric energy.
    The second measuring unit uses the cumulative value of electric power in the fixed period as the second electric energy.
    The measurement system according to any one of claims 1 to 3.
  5.  前記第1電力量と前記第2電力量との差分を算出する差分算出部を、更に備える、
     請求項1~4のいずれか一項に記載の計測システム。
    A difference calculation unit for calculating the difference between the first electric energy and the second electric energy is further provided.
    The measurement system according to any one of claims 1 to 4.
  6.  前記外部としての前記系統電源に出力する第3電力量を計測する第3計測部を、更に備える、
     請求項1~5のいずれか一項に記載の計測システム。
    A third measuring unit for measuring the amount of third power output to the system power supply as the outside is further provided.
    The measurement system according to any one of claims 1 to 5.
  7.  前記第1電力量、前記第2電力量及び前記第3電力量に基づいて、前記系統電源からの電力の供給を受ける施設で前記再生可能エネルギーから得られた前記電気エネルギーの消費量である自家消費量を算出する消費量算出部を、更に備える、
     請求項6に記載の計測システム。
    A self-consumption of the electrical energy obtained from the renewable energy at a facility that receives power from the grid power source based on the first electric energy, the second electric energy, and the third electric energy. Further equipped with a consumption calculation unit for calculating consumption,
    The measurement system according to claim 6.
  8.  前記第1計測部及び前記第2計測部は、前記創蓄連携システムとは別体に設けられている、
     請求項1~7のいずれか一項に記載の計測システム。
    The first measurement unit and the second measurement unit are provided separately from the creation and storage cooperation system.
    The measurement system according to any one of claims 1 to 7.
  9.  前記第1電力量と前記第2電力量とを通信により出力する出力部を、更に備える、
     請求項1~8のいずれか一項に記載の計測システム。
    An output unit that outputs the first electric energy and the second electric energy by communication is further provided.
    The measurement system according to any one of claims 1 to 8.
  10.  再生可能エネルギーを利用する発電設備と、系統電源から得た電力、又は前記発電設備が前記再生可能エネルギーから得た電気エネルギー若しくは前記電気エネルギーから変換された他のエネルギーを蓄える蓄積設備と、を備える創蓄連携システムで用いられる計測システムでの計測方法であって、
     前記創蓄連携システムに外部から入力される第1電力量を計測する第1計測ステップと、
     前記創蓄連携システムから外部に出力される第2電力量を計測する第2計測ステップと、を含む、
     計測方法。
    It is provided with a power generation facility that uses renewable energy and a storage facility that stores electric power obtained from a grid power source, or electric energy obtained from the renewable energy or other energy converted from the electric energy. It is a measurement method in the measurement system used in the creation and storage cooperation system.
    The first measurement step of measuring the first electric energy input from the outside to the creation and storage cooperation system, and
    The second measurement step of measuring the second electric energy output from the creation and storage cooperation system to the outside is included.
    Measurement method.
  11.  前記外部としての前記系統電源に出力する第3電力量を計測する第3計測ステップを、更に含む、
     請求項10に記載の計測方法。
    A third measurement step of measuring the amount of third power output to the system power supply as the outside is further included.
    The measuring method according to claim 10.
  12.  前記第1電力量、前記第2電力量及び前記第3電力量を用いて、前記系統電源からの電力の供給を受ける施設で前記再生可能エネルギーが消費された自家消費量を算出する消費量算出ステップを、更に含む、
     請求項11に記載の計測方法。
    Using the first electric energy, the second electric energy, and the third electric energy, the consumption amount calculation for calculating the self-consumption amount of the renewable energy consumed in the facility receiving the electric power from the system power source. Including more steps,
    The measuring method according to claim 11.
  13.  前記自家消費量に対して発生する対価をサーバで決定させるために、前記サーバに前記自家消費量を出力する出力ステップを、更に含む、
     請求項12に記載の計測方法。
    An output step of outputting the self-consumption to the server is further included in order for the server to determine the consideration generated for the self-consumption.
    The measuring method according to claim 12.
  14.  請求項10~13のいずれか一項に記載の計測方法を、コンピュータに実行させるためのプログラム。 A program for causing a computer to execute the measurement method according to any one of claims 10 to 13.
PCT/JP2020/001981 2019-03-29 2020-01-21 Measurement system, measurement method, and program WO2020202716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069207 2019-03-29
JP2019069207A JP7129662B2 (en) 2019-03-29 2019-03-29 Measurement system, measurement method, program and cooperation system

Publications (1)

Publication Number Publication Date
WO2020202716A1 true WO2020202716A1 (en) 2020-10-08

Family

ID=72668902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001981 WO2020202716A1 (en) 2019-03-29 2020-01-21 Measurement system, measurement method, and program

Country Status (2)

Country Link
JP (1) JP7129662B2 (en)
WO (1) WO2020202716A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125171A (en) * 2009-12-14 2011-06-23 Hitachi Engineering & Services Co Ltd Natural energy power station equipped with power storage apparatus
WO2011099142A1 (en) * 2010-02-12 2011-08-18 日本風力開発株式会社 Wind turbine generator system
JP2011172454A (en) * 2010-02-22 2011-09-01 Kddi Corp Rectifier control system for photovoltaic power generation system
JP2014230455A (en) * 2013-05-27 2014-12-08 株式会社東芝 Power generator
WO2015136642A1 (en) * 2014-03-12 2015-09-17 国立大学法人東北大学 Power estimation device, power estimation program, and power estimation method
JP2016039721A (en) * 2014-08-08 2016-03-22 大成建設株式会社 Dc power distribution system
JP2017093106A (en) * 2015-11-09 2017-05-25 シャープ株式会社 Power management device
WO2017146243A1 (en) * 2016-02-25 2017-08-31 京セラ株式会社 Power management server, power management system, and power management method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891386B2 (en) * 2010-12-15 2016-03-23 パナソニックIpマネジメント株式会社 Power control apparatus and power supply system using the same
JP6054670B2 (en) * 2012-08-02 2016-12-27 大和ハウス工業株式会社 Power supply system
JP6512503B2 (en) * 2013-08-09 2019-05-15 パナソニックIpマネジメント株式会社 Power adjustment device, power adjustment method, program
WO2015159388A1 (en) * 2014-04-16 2015-10-22 三菱電機株式会社 Control apparatus, control system, control method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125171A (en) * 2009-12-14 2011-06-23 Hitachi Engineering & Services Co Ltd Natural energy power station equipped with power storage apparatus
WO2011099142A1 (en) * 2010-02-12 2011-08-18 日本風力開発株式会社 Wind turbine generator system
JP2011172454A (en) * 2010-02-22 2011-09-01 Kddi Corp Rectifier control system for photovoltaic power generation system
JP2014230455A (en) * 2013-05-27 2014-12-08 株式会社東芝 Power generator
WO2015136642A1 (en) * 2014-03-12 2015-09-17 国立大学法人東北大学 Power estimation device, power estimation program, and power estimation method
JP2016039721A (en) * 2014-08-08 2016-03-22 大成建設株式会社 Dc power distribution system
JP2017093106A (en) * 2015-11-09 2017-05-25 シャープ株式会社 Power management device
WO2017146243A1 (en) * 2016-02-25 2017-08-31 京セラ株式会社 Power management server, power management system, and power management method

Also Published As

Publication number Publication date
JP2020165929A (en) 2020-10-08
JP7129662B2 (en) 2022-09-02

Similar Documents

Publication Publication Date Title
US8943324B2 (en) Green energy generation apparatus, mobile device, electric storage apparatus, and management method of green energy information
JP5488047B2 (en) Electric power transaction server, green market management server, transaction management method, and green transaction management method
Qureshi Power-demand routing in massive geo-distributed systems
JP6824600B2 (en) Power supply system
JP2021501557A (en) Blockchain distribution energy management with balancing optimization
US20110125422A1 (en) Method and device for measuring and monitoring
US9764178B1 (en) Electricity generating system
TW201713954A (en) Solar energy metering, communications, and control system
CN109787263A (en) A kind of home energy source based on multistage cloud energy storage is mutually helped system and dispatching method
TW201643444A (en) Method for clear delineation of wholesale and retail energy usage and activity involving energy storage devices
JP2015517695A (en) System and method for managing the consumption of power generated by renewable and environmentally friendly sources
Mareels et al. On making energy demand and network constraints compatible in the last mile of the power grid
JP7416663B2 (en) System and program
Kusakana Optimal peer‐to‐peer energy sharing between grid‐connected prosumers with different demand profiles and renewable energy sources
WO2020202716A1 (en) Measurement system, measurement method, and program
Gellings Smart Grid Planning and Implementation
Starke et al. Control and management of multiple converters in a residential smart grid
JP5748802B2 (en) Individual power management system and portable micro power meter for the system
TWI697678B (en) Expandable combination electric meter
Eissa Smart Metering Technology and Services: Inspirations for Energy Utilities
JP2020052549A (en) Power-receiving point power prediction device, power-receiving point power prediction method and program
KR20160001611A (en) Apparatus for managing load power by demand response and method thereof
Thyagaraj Naidu Energy harvesting from human motion in smart cities: an alternative renewable energy source
JP2016171632A (en) Feeding adjustment apparatus, feeding adjustment method and program
WO2023234354A1 (en) Control system, control method, program, and interconnection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782997

Country of ref document: EP

Kind code of ref document: A1