[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015039262A - Distributed power supply facility system - Google Patents

Distributed power supply facility system Download PDF

Info

Publication number
JP2015039262A
JP2015039262A JP2013169464A JP2013169464A JP2015039262A JP 2015039262 A JP2015039262 A JP 2015039262A JP 2013169464 A JP2013169464 A JP 2013169464A JP 2013169464 A JP2013169464 A JP 2013169464A JP 2015039262 A JP2015039262 A JP 2015039262A
Authority
JP
Japan
Prior art keywords
power
distributed
voltage
reactive
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013169464A
Other languages
Japanese (ja)
Other versions
JP5885711B2 (en
JP2015039262A5 (en
Inventor
正明 大島
Masaaki Oshima
正明 大島
修一 宇敷
Shuichi Ushiki
修一 宇敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2013169464A priority Critical patent/JP5885711B2/en
Priority to PCT/JP2014/070720 priority patent/WO2015025712A1/en
Publication of JP2015039262A publication Critical patent/JP2015039262A/en
Publication of JP2015039262A5 publication Critical patent/JP2015039262A5/ja
Application granted granted Critical
Publication of JP5885711B2 publication Critical patent/JP5885711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve entire operation efficiency so as to also suppress increase of a cooperation point voltage in the case where a plurality of distributed power supply facilities are cooperated with a low-voltage single-phase distribution line at one cooperation point.SOLUTION: Several power computers 12 among a plurality of distributed power supply facilities 14 are power computers with reactive power regulation functions each including a function for outputting reactive power, and power computers of the remaining distributed power supply facilities are normal power computers with no reactive power regulation function. Any one of the power computers with the reactive power regulation functions outputs reactive power and the power computers of the remaining distributed power supply facilities output only active power. Each of the power computers determines whether a cooperation point voltage exceeds a predetermined value in accordance with increase of active power. Among the power computers, the power computer with the reactive power regulation function outputting the active power successively outputs reactive power so as to prevent the cooperation point voltage from exceeding the predetermined value in the case where it is predicted that the cooperation point voltage may exceed the predetermined value.

Description

本発明は、分散電源とパワコンとからなる複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系した分散電源設備システムに関する。   The present invention relates to a distributed power supply equipment system in which a plurality of distributed power supply equipment including a distributed power supply and a power conditioner are connected to a low-voltage single-phase distribution line at one connection point.

分散電源として、太陽光発電設備や風力発電設備あるいは燃料電池など直流電力を発生する直流エネルギー源の分散電源がある。このような分散電源とパワーコンディショナ(以下、パワコンという)とを組み合わせて分散電源設備を構成し、パワコンは分散電源からの直流電力を交流電力に変換し電力系統との連系制御を行い電力系統に電力を供給する。   As a distributed power source, there is a distributed power source of a DC energy source that generates DC power, such as a solar power generation facility, a wind power generation facility, or a fuel cell. Such a distributed power supply and a power conditioner (hereinafter referred to as a power conditioner) are combined to form a distributed power supply facility. The power conditioner converts the DC power from the distributed power supply into AC power and controls the interconnection with the power system. Supply power to the grid.

通常、分散電源とパワコンとからなる分散電源設備は、電力系統の低圧単相配電線に接続される。例えば、分散電源が太陽光発電設備である場合には210Vの配電線に接続される。この場合、太陽光発電設備の導入量の拡大に伴い、複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系して変圧器を介して電力系統に電力を供給することがある。   Usually, a distributed power source facility including a distributed power source and a power conditioner is connected to a low-voltage single-phase distribution line of a power system. For example, when the distributed power source is a photovoltaic power generation facility, it is connected to a 210 V distribution line. In this case, along with the increase in the amount of solar power generation equipment installed, supply power to the power system via a transformer by connecting multiple distributed power supply equipment to a low-voltage single-phase distribution line at one connection point. There is.

複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系した場合、分散電源設備から変圧器までを繋ぐ低圧単相配電線(引込み線)の連系点の電圧が上昇することがある。これは、複数の分散電源設備で発電した電力が電力系統に供給される逆潮流時には、逆潮流が低圧単相配電線に流れることにより、そのインピーダンスで発生する電圧分だけ連系点の電圧が上昇するからである。   When multiple distributed power supply facilities are connected to a low-voltage single-phase distribution line at a single connection point, the voltage at the connection point of the low-voltage single-phase distribution line (lead line) connecting the distributed power supply system to the transformer must increase. There is. This is because when the power generated by multiple distributed power facilities is supplied to the power grid, the reverse power flows through the low-voltage single-phase distribution line, and the voltage at the interconnection point increases by the voltage generated by the impedance. Because it does.

ここで、配電系統と所定の分散型電源との接続点電圧が所定の上限値を下回り、かつ、上限値を下回る所定の閾値を上回る時に、電力の運転力率が所定の下限値を下回らない条件を満たすとき無効電力を増加させるように電力を制御し、配電系統と所定の分散型電源との接続点電圧が所定の上限値を上回り、かつ、電力の運転力率が所定の下限値を下回らない場合には、無効電力を増加させるように電力を制御し、配電系統と所定の分散型電源との接続点電圧が所定の上限値を上回り、かつ、電力の運転力率が所定の下限値を下回る場合には、有効電力および無効電力を低減させるように制御するようにしたものがある(特許文献1参照)。   Here, when the voltage at the connection point between the power distribution system and the predetermined distributed power source is below a predetermined upper limit value and exceeds a predetermined threshold value below the upper limit value, the driving power factor of the electric power does not fall below the predetermined lower limit value. When the condition is satisfied, the power is controlled so as to increase the reactive power, the connection point voltage between the distribution system and the predetermined distributed power source exceeds the predetermined upper limit value, and the driving power factor of the electric power exceeds the predetermined lower limit value. If not, control the power to increase the reactive power, the voltage at the connection point between the distribution system and the predetermined distributed power source exceeds the predetermined upper limit, and the driving power factor of the power is the predetermined lower limit When the value is lower than the value, there is one that is controlled so as to reduce the active power and the reactive power (see Patent Document 1).

る。 The

特許第5091439号公報Japanese Patent No. 5091439

しかし、特許文献1のものでは、それぞれの分散電源設備が接続点電圧に基づいて無効電力を増加したり有効電力を減少させたりして、分散電源設備の接続点電圧が上昇しないように制御しているが、個々の分散電源設備が個別に接続点電圧を制御するものであるので、一箇所の連系点で複数の分散電源設備が連系した場合には、他の分散電源設備での電圧制御と協調を取ることが必要となる。   However, in the thing of patent document 1, it controls so that each distributed power supply equipment may increase reactive power or reduce active power based on a connection point voltage, and the connection point voltage of a distributed power supply equipment may not rise. However, since each distributed power supply equipment individually controls the connection point voltage, when multiple distributed power supply facilities are connected at a single connection point, It is necessary to coordinate with voltage control.

また、個々の分散電源設備は、無効電力を増加したり有効電力を減少させたりするので、最大電力点追従制御を行う場合の有効電力出力と出力抑制制御を行う場合の有効電力出力との差である出力抑制損失が増え分散電源設備の運転効率が低下する。   In addition, since each distributed power supply facility increases reactive power or decreases active power, the difference between active power output when maximum power point tracking control is performed and active power output when output suppression control is performed. The output suppression loss increases, and the operating efficiency of the distributed power supply facility decreases.

本発明の目的は、複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系した場合に、全体の運転効率の向上を図ることができ連系点電圧の上昇も抑制できる分散電源設備システムを提供することである。   The object of the present invention is to improve the overall operation efficiency and suppress the increase of the connection point voltage when a plurality of distributed power supply facilities are connected to the low-voltage single-phase distribution line at one connection point. It is to provide a distributed power supply equipment system.

本発明の分散電源設備システムは、直流エネルギー源の分散電源と前記分散電源からの直流電力を交流電力に変換するパワコンとを備えた複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系して変圧器を介して電力系統に電力を供給する分散電源設備システムにおいて、複数の分散電源設備のうち何台かのパワコンは無効電力を出力する機能を有する無効電力調整機能付パワコンとし、残りの分散電源設備のパワコンは無効電力の調整機能を有しない通常パワコンとし、前記無効電力調整機能付パワコンのうちいずれか1台は無効電力を出力し、残りの分散電源設備のパワコンは有効電力のみを出力し、複数の分散電源設備の各々のパワコンは有効電力の増加に応じて連系点電圧が所定値を超えるか否かを判定し、各々のパワコンのうち有効電力を出力している無効電力調整機能付パワコンは連系点電圧が所定値を超えると予想されるときは連系点電圧が所定値を超えないように順次無効電力を出力すること特徴とする。   The distributed power supply equipment system of the present invention comprises a plurality of distributed power supply equipment comprising a distributed power source of a direct current energy source and a power converter for converting direct current power from the distributed power source into alternating current power at a single interconnection point. In a distributed power supply system that supplies power to a power system via a transformer connected to an electric wire, some power converters of multiple distributed power supply facilities have a reactive power adjustment function that has a function of outputting reactive power The power converter of the remaining distributed power supply equipment is a normal power control that does not have a reactive power adjustment function, and one of the power converters with the reactive power adjustment function outputs reactive power, and the power control of the remaining distributed power supply equipment. Outputs only active power, and each power conditioner of a plurality of distributed power supply facilities determines whether or not the interconnection point voltage exceeds a predetermined value according to the increase in active power. Among them, the power converter with reactive power adjustment function that outputs active power outputs reactive power sequentially so that the interconnection point voltage does not exceed the predetermined value when the interconnection point voltage is expected to exceed the predetermined value. And

本発明によれば、複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系する場合に、無効電力調整機能付パワコンを接続し、無効電力調整機能付パワコンは、連系点電圧が所定値を超えると予想されるときは連系点電圧が超えないように順次無効電力を出力するので、全体の運転効率の向上を図ることができ連系点電圧の上昇も抑制できる。   According to the present invention, when connecting a plurality of distributed power supply facilities to a low-voltage single-phase distribution line at a single connection point, a power converter with a reactive power adjustment function is connected, When the point voltage is expected to exceed a predetermined value, reactive power is sequentially output so that the connection point voltage does not exceed, so the overall operating efficiency can be improved and the increase of the connection point voltage can be suppressed. .

本発明の実施形態に係る分散電源設備システムの一例の構成図。The block diagram of an example of the distributed power supply equipment system which concerns on embodiment of this invention. 本発明の実施形態におけるパワコンの構成図。The block diagram of the power conditioner in embodiment of this invention. 本発明の実施形態に係る分散電源設備システムの他の一例の構成図。The block diagram of another example of the distributed power supply equipment system which concerns on embodiment of this invention. 本発明の実施形態に係る分散電源設備システムの別の他の一例の構成図。The block diagram of another another example of the distributed power supply equipment system which concerns on embodiment of this invention. 本発明の実施形態に係る分散電源設備システムの実施例の構成図。The block diagram of the Example of the distributed power supply equipment system which concerns on embodiment of this invention. 本発明の実施形態に係る分散電源設備システムの実施例における通常パワコンの出力電力Pxと連系点電圧V1の関係を示すグラフ。The graph which shows the relationship between the output power Px of the normal power conditioner, and the connection point voltage V1 in the Example of the distributed power supply equipment system which concerns on embodiment of this invention. 本発明の実施形態に係る分散電源設備システムの実施例における無効電力調整機能付パワコンの出力電力Pyと連系点電圧V1の関係を示すグラフ。The graph which shows the relationship between the output electric power Py of the power conditioner with a reactive power adjustment function in the Example of the distributed power supply equipment system which concerns on embodiment of this invention, and the connection point voltage V1. 本発明の実施形態に係る分散電源設備システムの実施例における無効電力調整機能付パワコン12yと通常パワコン12xとの並列運転時の連系点電圧V1との関係を示すグラフ。The graph which shows the relationship between the connection point voltage V1 at the time of the parallel operation of the power conditioner 12y with a reactive power adjustment function and the normal power conditioner 12x in the Example of the distributed power supply equipment system which concerns on embodiment of this invention.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る分散電源設備システムの一例の構成図である。分散電源11a〜11nは、太陽光発電設備や風力発電設備あるいは燃料電池などの直流電力を発生する直流エネルギー源である。パワコン12a〜12nは分散電源11a〜11nにそれぞれ設けられ、分散電源11a〜11nからの直流電力を交流電力に変換し連系点13に連系する。すなわち、分散電源11a〜11nとパワコン12a〜12nとを組み合わせて分散電源設備14a〜14nを構成し、これら複数の分散電源設備14a〜14nは、一箇所の連系点13で低圧単相配電線15に連系され、変圧器16を介して電力系統17に電力を供給する。また、連系点13には分散電源設備側負荷18が接続され、変圧器16の電力系統17側には電力系統側負荷19が接続されている。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an example of a distributed power supply equipment system according to an embodiment of the present invention. The distributed power sources 11a to 11n are direct-current energy sources that generate direct-current power such as solar power generation facilities, wind power generation facilities, or fuel cells. The power conditioners 12a to 12n are provided in the distributed power sources 11a to 11n, respectively, convert DC power from the distributed power sources 11a to 11n into AC power, and link to the interconnection point 13. That is, the distributed power sources 11a to 11n and the power conditioners 12a to 12n are combined to form the distributed power source facilities 14a to 14n, and the plurality of distributed power source facilities 14a to 14n are connected to the low-voltage single-phase distribution line 15 at one interconnection point 13. And supplies power to the power system 17 via the transformer 16. In addition, a distributed power supply facility side load 18 is connected to the interconnection point 13, and a power system side load 19 is connected to the power system 17 side of the transformer 16.

複数の分散電源設備14a〜14nのうち何台かのパワコン12a〜12iは無効電力を出力する機能を有する無効電力調整機能付パワコンで構成する。これは、各々の分散電源設備14a〜14nで発電した電力が電力系統17に供給される逆潮流時には、逆潮流が低圧単相配電線15に流れることにより、そのインピーダンスZ(=R+jωL)で発生する電圧分だけ連系点13の電圧V1が上昇するので、無効電力を出力することによって連系点電圧V1の上昇を抑制するためである。   Some of the plurality of power conditioners 12a to 12i among the plurality of distributed power supply facilities 14a to 14n are configured as power conditioners with a reactive power adjustment function having a function of outputting reactive power. This occurs at the impedance Z (= R + jωL) when the reverse power flow is supplied to the power system 17 when the power generated by each of the distributed power supply facilities 14a to 14n is supplied to the low-voltage single-phase distribution line 15. This is because the voltage V1 at the interconnection point 13 increases by the amount corresponding to the voltage, so that the increase of the interconnection point voltage V1 is suppressed by outputting reactive power.

いま、分散電源設備14a〜14nのうち何台かのパワコン12a、12bを無効電力調整機能付パワコンとし、残りの分散電源設備のパワコン12c〜12nは無効電力の調整機能を有しない通常パワコンとする。無効電力調整機能付パワコンは、例えば、本出願人の特許5184153号公報に示される単相電圧型交直変換装置を用いる。この無効電力調整機能付パワコンは、内部インピーダンスを持ち無効電力制御を行える同期単相発電機と同じ特性を持つ電圧型電圧制御方式のインバータであり、単相の無効電力を精度良く迅速に計算できる機能、例えば、特許第238358号公報に示される交流電力測定装置を有するものである。一方、通常パワコン12c〜12nは、分散電源11c〜11nで発電した直流電力を交流電力に変換する電圧型電流制御方式のインバータである。   Now, some of the power conditioners 12a and 12b among the distributed power supply facilities 14a to 14n are power conditioners having a reactive power adjustment function, and the remaining power conditioners 12c to 12n of the distributed power supply facilities are normal power conditioners having no reactive power adjustment function. . For example, a single phase voltage type AC / DC converter disclosed in Japanese Patent No. 5184153 of the present applicant is used as the power converter with the reactive power adjustment function. This power converter with reactive power adjustment function is a voltage-type voltage control inverter with the same characteristics as a synchronous single-phase generator that has internal impedance and can perform reactive power control, and can calculate single-phase reactive power accurately and quickly. It has a function, for example, the AC power measuring device shown in Japanese Patent No. 238358. On the other hand, the normal power conditioners 12c to 12n are voltage-type current control type inverters that convert DC power generated by the distributed power supplies 11c to 11n into AC power.

そして、無効電力調整機能付パワコン12a、12bのうちいずれか1台、例えば、無効電力調整機能付パワコン12aは無効電力Qaを出力する。図1では、無効電力調整機能付パワコン12aは無効電力Qaだけでなく有効電力Paも出力している場合を示している。また、残りの分散電源設備のパワコン12b〜12nは有効電力Pb〜Pnのみを出力する。   Then, any one of the power controllers 12a and 12b with the reactive power adjustment function, for example, the power converter 12a with the reactive power adjustment function, outputs the reactive power Qa. FIG. 1 shows a case where the power converter 12a with the reactive power adjustment function outputs not only the reactive power Qa but also the active power Pa. Moreover, the power conditioners 12b to 12n of the remaining distributed power supply facilities output only the active powers Pb to Pn.

この状態で、各々のパワコン12a〜12nは有効電力Pの増加に応じて連系点電圧V1が所定値を超えるか否かを判定する。図2はパワコン12の構成図である。パワコン12は分散電源11からの直流電力を電力変換部20に入力し、この電力変換部20により交流電力に変換する。その際に、電力変換部20の出力電圧Vを電圧検出器21で検出し、電力変換部20の出力電流Iを電流検出器22で検出して、連系点電圧監視部23に入力する。連系点電圧監視部23は出力電圧V及び出力電流Iに基づいて、自己の出力電力Pを演算し連系点電圧V1が所定値を超えると予想されるか否かを監視する。例えば、自己の出力電力Pと連系点電圧V1との相関関係を予め記憶しておき、自己の出力電力Pが増加したときは、その相関関係から連系点電圧V1が所定値を超えると予想されるか否かを監視する。   In this state, each of the power conditioners 12a to 12n determines whether or not the interconnection point voltage V1 exceeds a predetermined value in accordance with an increase in the active power P. FIG. 2 is a configuration diagram of the power conditioner 12. The power conditioner 12 inputs DC power from the distributed power supply 11 to the power conversion unit 20, and the power conversion unit 20 converts the DC power into AC power. At that time, the output voltage V of the power conversion unit 20 is detected by the voltage detector 21, the output current I of the power conversion unit 20 is detected by the current detector 22, and is input to the interconnection point voltage monitoring unit 23. Based on the output voltage V and the output current I, the connection point voltage monitoring unit 23 calculates its own output power P and monitors whether or not the connection point voltage V1 is expected to exceed a predetermined value. For example, the correlation between the self output power P and the connection point voltage V1 is stored in advance, and when the self output power P increases, the connection point voltage V1 exceeds a predetermined value due to the correlation. Monitor if expected.

連系点電圧監視部23により連系点電圧V1が所定値を超えると予想されなかったときは、既に無効電力Qaを出力しているパワコン12aはそのままの状態を維持する。同様に、有効電力Pb〜Pnのみを出力しているパワコン12b〜12nもそのままの状態を維持する。有効電力Pb〜Pnのみを出力しているパワコン12b〜12nは、最大電力追従制御MPPTにより有効電力Pb〜Pnを出力する。   When the connection point voltage V1 is not predicted to exceed the predetermined value by the connection point voltage monitoring unit 23, the power conditioner 12a that has already output the reactive power Qa is maintained as it is. Similarly, the power conditioners 12b to 12n outputting only the effective powers Pb to Pn also maintain the same state. The power conditioners 12b to 12n outputting only the active powers Pb to Pn output the active powers Pb to Pn by the maximum power tracking control MPPT.

次に、連系点電圧監視部23により連系点電圧V1が所定値を超えると予想されたときについて説明する。パワコン12が無効電力調整機能付パワコン12a、12bであるときは、その連系点電圧監視部23a、23bにより連系点電圧V1が所定値を超えると予想されたときは、制御部24a、24bは連系点電圧V1が所定値を超えないように無効電力を出力するように動作する。   Next, a case where the connection point voltage V1 is predicted to exceed the predetermined value by the connection point voltage monitoring unit 23 will be described. When the power conditioner 12 is a power conditioner 12a, 12b with a reactive power adjustment function, when the connection point voltage monitoring unit 23a, 23b predicts that the connection point voltage V1 exceeds a predetermined value, the control units 24a, 24b Operates so as to output reactive power so that the interconnection point voltage V1 does not exceed a predetermined value.

例えば、無効電力調整機能付パワコン12aは既に無効電力Qaを出力しているので、無効電力Qaを大きくし有効電力Paを小さくし、無効電力調整機能付パワコン12bは、無効電力調整機能付パワコン12aが無効電力Qaのみを出力する状態となっても連系点電圧V1が所定値を超えると予想されるときに、最大電力追従制御MPPTを止め無効電力Qbを出力するようにする。また、無効電力調整機能付パワコン12aの無効電力Qaはそのままに維持し、無効電力調整機能付パワコン12bが追加で無効電力Qbを出力するようにしてもよい。   For example, since the power converter 12a with the reactive power adjustment function has already output the reactive power Qa, the reactive power Qa is increased to reduce the active power Pa, and the power controller 12b with the reactive power adjustment function is connected to the power converter 12a with the reactive power adjustment function. When the interconnection point voltage V1 is expected to exceed a predetermined value even if only the reactive power Qa is output, the maximum power tracking control MPPT is stopped and the reactive power Qb is output. Further, the reactive power Qa of the power converter 12a with the reactive power adjustment function may be maintained as it is, and the power converter 12b with the reactive power adjustment function may additionally output the reactive power Qb.

一方、パワコン12が通常パワコン12c〜12nであるときは、その連系点電圧監視部23c〜23nにより連系点電圧V1が所定値を超えると予想されたときは、制御部24c〜24nは最大電力追従制御MPPTを止め有効電力Pc〜Pnの出力を小さくする。それでも、連系点電圧V1が所定値を超えると予想されたときは、通常パワコン12c〜12nにいずれかを停止するようにしてもよい。   On the other hand, when the power conditioner 12 is the normal power conditioners 12c to 12n, when the connection point voltage V1 is predicted to exceed the predetermined value by the connection point voltage monitoring parts 23c to 23n, the control parts 24c to 24n are the maximum. The power follow-up control MPPT is stopped and the outputs of the effective powers Pc to Pn are reduced. Still, when it is predicted that the interconnection point voltage V1 exceeds the predetermined value, any one of the normal power conditioners 12c to 12n may be stopped.

なお、実際には、無効電力調整機能付パワコン12a、12bにより無効電力を出力するので、連系点電圧V1が所定値を超えると予想される状態は解除される。従って、通常パワコン12c〜12nの制御部24c〜24nは最大電力追従制御MPPTを維持することになる。   Actually, since the reactive power is output by the power conditioners 12a and 12b with the reactive power adjustment function, the state where the interconnection point voltage V1 is expected to exceed the predetermined value is released. Therefore, the control units 24c to 24n of the normal power conditioners 12c to 12n maintain the maximum power tracking control MPPT.

以上の説明では、無効電力調整機能付パワコンと通常パワコンとを混在させた場合について説明したが、すべてのパワコンを無効電力調整機能付パワコンとしてもよい。この場合、無効電力Qを出力しないときは、無効電力調整機能付パワコンは最大電力追従制御MPPTで有効電力Pを出力することになる。   In the above description, the case where the power converter with the reactive power adjustment function and the normal power converter are mixed is described, but all the power converters may be the power converter with the reactive power adjustment function. In this case, when the reactive power Q is not output, the power converter with the reactive power adjustment function outputs the active power P by the maximum power tracking control MPPT.

次に、本発明の実施形態の他の一例を説明する。図3は本発明の実施形態に係る分散電源設備システムの他の一例の構成図である。この他の一例は、図1に示した実施形態に対し、無効電力調整機能付パワコンのうちいずれか1台は無効電力を出力することに代えて、常時は、各々のパワコンは有効電力のみを出力し、連系点電圧が所定値を超えると予想されるときは無効電力調整機能付パワコンから無効電力を出力するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, another example of the embodiment of the present invention will be described. FIG. 3 is a configuration diagram of another example of the distributed power supply equipment system according to the embodiment of the present invention. Another example is that, in contrast to the embodiment shown in FIG. 1, instead of outputting any reactive power to any one of the power converters with the reactive power adjustment function, each power converter always outputs only the active power. When the output voltage is predicted to exceed the predetermined value, the reactive power is output from the power converter with the reactive power adjustment function. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図3(a)において、いま、分散電源設備14a〜14nのうちのパワコン12a、12bを無効電力調整機能付パワコンとし、残りの分散電源設備のパワコン12c〜12nは無効電力の調整機能を有しない通常パワコンとする。そして、常時は、各々のパワコン12a〜12nは最大電力追従制御MPPTにより有効電力Pa〜Pnのみを出力している。この状態で、各々のパワコン12a〜12nの連系点電圧監視部23a〜23nは有効電力Pa〜Pnの増加に応じて連系点電圧V1が所定値を超えるか否かを判定する。   In FIG. 3A, the power conditioners 12a and 12b of the distributed power supply facilities 14a to 14n are power conditioners with a reactive power adjustment function, and the power conditioners 12c to 12n of the remaining distributed power supply facilities do not have a reactive power adjustment function. Usually power inverter. And each power conditioner 12a-12n always outputs only active power Pa-Pn by maximum power tracking control MPPT. In this state, the interconnection point voltage monitoring units 23a to 23n of the respective power conditioners 12a to 12n determine whether or not the interconnection point voltage V1 exceeds a predetermined value in accordance with an increase in the active power Pa to Pn.

連系点電圧監視部23a〜23nにより連系点電圧V1が所定値を超えると予想されなかったときは、各々のパワコン12a〜12nはそのままの状態を維持する。一方、無効電力調整機能付パワコン12a、12bの連系点電圧監視部23a、23bにより連系点電圧V1が所定値を超えると予想されたときは、パワコン12a、12bのうちのいずれかが連系点電圧V1が所定値を超えないように無効電力を出力する。いま、パワコン12aが無効電力を出力するように動作したとする。   When the connection point voltage V1 is not expected to exceed the predetermined value by the connection point voltage monitoring units 23a to 23n, the respective power conditioners 12a to 12n are maintained as they are. On the other hand, when the connection point voltage V1 is predicted to exceed a predetermined value by the connection point voltage monitoring units 23a and 23b of the power conditioners 12a and 12b with the reactive power adjustment function, one of the power conditioners 12a and 12b is connected. Reactive power is output so that the system point voltage V1 does not exceed a predetermined value. Now, assume that the power conditioner 12a operates to output reactive power.

図3(b)は、パワコン12aが有効電力Paを出力しつつ無効電力Qaを出力している状態を示す構成図である。そして、パワコン12aが無効電力Qaのみを出力する状態となっても連系点電圧V1が所定値を超えると予想されるときには、パワコン12bが最大電力追従制御MPPTを止め無効電力Qbを出力する。なお、パワコン12a、12bの双方が有効電力Pa、Pbを出力しつつ無効電力Qa、Qbを出力するようにしてもよい。   FIG. 3B is a configuration diagram showing a state where the power conditioner 12a outputs the reactive power Qa while outputting the active power Pa. And even if the power conditioner 12a becomes the state which outputs only the reactive power Qa, when it is estimated that the connection point voltage V1 exceeds a predetermined value, the power conditioner 12b stops the maximum power tracking control MPPT and outputs the reactive power Qb. Note that both the power conditioners 12a and 12b may output the reactive powers Qa and Qb while outputting the active powers Pa and Pb.

一方、通常パワコン12c〜12nの連系点電圧監視部23c〜23nにより連系点電圧V1が所定値を超えると予想されたときは、制御部24c〜24nは最大電力追従制御MPPTを止め有効電力Pc〜Pnの出力を小さくする。それでも、連系点電圧V1が所定値を超えると予想されたときは、通常パワコン12c〜12nにいずれかを停止するようにしてもよい。なお、実際には、無効電力調整機能付パワコン12a、12bにより無効電力を出力するので、連系点電圧V1が所定値を超えると予想される状態は解除される。従って、通常パワコン12c〜12nの制御部24c〜24nは最大電力追従制御MPPTを維持することになる。   On the other hand, when the connection point voltage V1 is predicted to exceed a predetermined value by the connection point voltage monitoring units 23c to 23n of the normal power conditioners 12c to 12n, the control units 24c to 24n stop the maximum power follow-up control MPPT and the effective power Reduce the output of Pc to Pn. Still, when it is predicted that the interconnection point voltage V1 exceeds the predetermined value, any one of the normal power conditioners 12c to 12n may be stopped. Actually, since the reactive power is output by the power conditioners 12a and 12b with the reactive power adjustment function, the state where the interconnection point voltage V1 is expected to exceed the predetermined value is released. Therefore, the control units 24c to 24n of the normal power conditioners 12c to 12n maintain the maximum power tracking control MPPT.

以上の説明では、無効電力調整機能付パワコンと通常パワコンとを混在させた場合について説明したが、すべてのパワコンを無効電力調整機能付パワコンとしてもよい。この場合、無効電力Qを出力しないときは、無効電力調整機能付パワコンは最大電力追従制御MPPTで有効電力Pを出力することになる。   In the above description, the case where the power converter with the reactive power adjustment function and the normal power converter are mixed is described, but all the power converters may be the power converter with the reactive power adjustment function. In this case, when the reactive power Q is not output, the power converter with the reactive power adjustment function outputs the active power P by the maximum power tracking control MPPT.

また、以上の説明では、各々のパワコン12a〜12nは、パワコン12a〜12nの出力電圧V及び出力電流Iを検出し、自己の出力電圧V及び出力電流Iに基づいて、自己の出力電力Pを演算し連系点電圧V1が所定値を超えると予想されるか否かを監視するようにしたが、図4(a)に示すように、自己の出力電圧V及び出力電流Iに加えて、連系点電圧V1及び連系点電流I1を検出し、自己の低圧単相配電線の接続点の電圧V及び出力電流I、複数台のパワコン12a〜12nの連系点電圧V1及び連系点電流I1に基づいて、連系点電圧V1が所定値を超えるか否かを判定するようにしてもよい。   In the above description, each of the power conditioners 12a to 12n detects the output voltage V and the output current I of the power conditioners 12a to 12n, and based on the output voltage V and the output current I of itself, It is calculated and monitored whether or not the interconnection point voltage V1 is expected to exceed a predetermined value, but as shown in FIG. 4A, in addition to its own output voltage V and output current I, The connection point voltage V1 and the connection point current I1 are detected, the voltage V and the output current I of the connection point of the own low-voltage single-phase distribution line, the connection point voltage V1 and the connection point current of the plurality of power conditioners 12a to 12n. Based on I1, it may be determined whether the interconnection point voltage V1 exceeds a predetermined value.

例えば、自己の出力電力Pと連系点電圧V1との相関関係に加え、自己の出力電力Pの増加分と連系点電圧V1の上昇分との相関関係から、連系点電圧V1が所定値を超えると予想されるか否かを判定する。また、自己の出力電圧V及び出力電流Iの検出を省略し、連系点電圧V1及び連系点電流I1に基づいて連系点電力P1を演算し、連系点電力P1の増加分と連系点電圧V1の上昇分との相関関係から、連系点電圧V1が所定値を超えると予想されるか否かを判定するようにしてもよい。   For example, in addition to the correlation between its own output power P and the connection point voltage V1, the connection point voltage V1 is determined based on the correlation between the increase in its own output power P and the increase in the connection point voltage V1. Determine if the value is expected to be exceeded. In addition, the detection of the self output voltage V and the output current I is omitted, the connection point power P1 is calculated based on the connection point voltage V1 and the connection point current I1, and the increase in the connection point power P1 is linked to the increase. Based on the correlation with the increase in the system point voltage V1, it may be determined whether or not the connection point voltage V1 is expected to exceed a predetermined value.

また、図4(b)に示すように、自己の出力電圧V及び出力電流Iに加えて、
変圧器17の分散電源14側の端子電圧V2及び端子電流I2を検出し、自己の低圧単相配電線の接続点の電圧V及び出力電流I、変圧器17の分散電源14側の端子電圧V2及び端子電流I2に基づいて、連系点電圧V1が所定値を超えるか否かを判定するようにしてもよい。
Further, as shown in FIG. 4B, in addition to its own output voltage V and output current I,
The terminal voltage V2 and the terminal current I2 on the distributed power source 14 side of the transformer 17 are detected, the voltage V and the output current I at the connection point of its own low-voltage single-phase distribution line, the terminal voltage V2 on the distributed power source 14 side of the transformer 17 and Based on the terminal current I2, it may be determined whether the interconnection point voltage V1 exceeds a predetermined value.

例えば、自己の出力電力Pと連系点電圧V1との相関関係に加え、自己の出力電力Pの増加分と変圧器17の分散電源14側の端子電圧V2の上昇分との相関関係から、連系点電圧V1が所定値を超えると予想されるか否かを判定する。   For example, in addition to the correlation between the self output power P and the interconnection point voltage V1, the correlation between the increase in the self output power P and the increase in the terminal voltage V2 on the distributed power source 14 side of the transformer 17, It is determined whether or not the interconnection point voltage V1 is expected to exceed a predetermined value.

また、自己の出力電圧V及び出力電流Iの検出を省略し、変圧器17の分散電源14側の端子電圧V2及び端子電流I2に基づいて端子電力P2を演算し、端子電力P2の増加分と連系点電圧V1の上昇分との相関関係から、連系点電圧V1が所定値を超えると予想されるか否かを判定するようにしてもよい。 Further, the detection of its own output voltage V and output current I is omitted, the terminal power P2 is calculated based on the terminal voltage V2 and the terminal current I2 on the distributed power source 14 side of the transformer 17, and the increase in the terminal power P2 is calculated. It may be determined whether or not the connection point voltage V1 is expected to exceed a predetermined value from the correlation with the increase in the connection point voltage V1.

図5は本発明の実施形態に係る分散電源設備システムの実施例の構成図である。図5に実施例において、分散電源設備側負荷18、分散電源11x、11yとして太陽光発電設備、そのパワコンとして通常パワコン12xと無効電力調整機能付パワコン12yとを用意し、分散電源設備14x、14yとした。そして、連系点電圧V1、低圧単相配電線15のインピーダンスをZ(=R+jωL)、変圧器16、電力系統17の交流電圧Vac、他の住宅側負荷あるいは電力系統側負荷19を備えた分散電源設備システムを構成した。   FIG. 5 is a configuration diagram of an example of a distributed power supply facility system according to an embodiment of the present invention. In the embodiment shown in FIG. 5, a distributed power source equipment load 18, a photovoltaic power generation facility as the distributed power sources 11 x and 11 y, a normal power conditioner 12 x and a power conditioner 12 y with a reactive power adjustment function as the power conditioner, and the distributed power source facilities 14 x and 14 y are prepared. It was. The distributed power source includes the interconnection point voltage V1, the impedance of the low-voltage single-phase distribution line 15 as Z (= R + jωL), the transformer 16, the AC voltage Vac of the power system 17, and another residential load or the power grid load 19. The equipment system was configured.

分散電源設備側負荷18は2kW、電力系統側負荷19は5kWとし、交流電圧源Vac(=200V)は単相、変圧器16の巻数比は1対1とした。また、実施例では、実際の配電系統よりも厳しくし、30kVAの変圧器16から住宅へ引き込むまでの距離を100mとし、低圧配電線の抵抗値RをR=0.9Ω、リアクタンス値XをjωL=0.9Ωとした。   The distributed power equipment load 18 is 2 kW, the power grid load 19 is 5 kW, the AC voltage source Vac (= 200 V) is single phase, and the turns ratio of the transformer 16 is 1: 1. Further, in the embodiment, it is made stricter than the actual distribution system, the distance from the 30 kVA transformer 16 to the house is 100 m, the resistance value R of the low voltage distribution line is R = 0.9Ω, and the reactance value X is jωL. = 0.9Ω.

パワコン12a、12bの出力が零である初期状態は、電力系統側から分散電源設備側負荷18へ2kWの電力供給P0があり、連系点電圧V1は190Vに電圧降下した。   In the initial state in which the outputs of the power conditioners 12a and 12b are zero, there is a power supply P0 of 2 kW from the power system side to the distributed power supply equipment side load 18, and the interconnection point voltage V1 drops to 190V.

次に、通常パワコン12xのみを運転し、有効電力Pxによる連系点電圧V1の変化を測定した。日射量の増加に伴い分散電源11xの発電量が増加し、パワコン12xから電力系統17側に逆潮流する電力によって連系点電圧V1が上昇する。図6にパワコン12xの有効電力Pxと連系点電圧V1の関係を示す。   Next, only the normal power conditioner 12x was operated, and the change in the interconnection point voltage V1 due to the active power Px was measured. As the amount of solar radiation increases, the amount of power generated by the distributed power source 11x increases, and the interconnection point voltage V1 increases due to the power flowing backward from the power conditioner 12x to the power system 17 side. FIG. 6 shows the relationship between the active power Px of the power conditioner 12x and the interconnection point voltage V1.

図6の曲線S1に示すように、パワコン12xの運転前は、連系点電圧V1は電力系統17から分散電源設備側負荷18への潮流による低圧単相配電線15の電圧降下で190Vとなる。パワコン12xの運転後において、分散電源設備側負荷18への電力供給は電力系統17からパワコン12xへ徐々に切替り、低圧単相配電線15の電圧降下が低減する。そして、分散電源設備側負荷18への供給がパワコン14xのみになると、パワコン14xから2kWの有効電力Pxが供給され連系点電圧V1は199Vになる。このときの連系点電圧V1の電圧上昇は9.2Vとなる。   As shown by a curve S1 in FIG. 6, before the operation of the power conditioner 12x, the connection point voltage V1 becomes 190 V due to the voltage drop of the low-voltage single-phase distribution line 15 due to the power flow from the power system 17 to the distributed power equipment load 18. After the operation of the power conditioner 12x, the power supply to the distributed power supply facility side load 18 is gradually switched from the power system 17 to the power conditioner 12x, and the voltage drop of the low-voltage single-phase distribution line 15 is reduced. When the supply to the distributed power supply facility side load 18 is only the power conditioner 14x, 2kW of active power Px is supplied from the power conditioner 14x, and the interconnection point voltage V1 becomes 199V. At this time, the voltage rise of the interconnection point voltage V1 is 9.2V.

パワコン12xからの電力供給がさらに増加し、配電系統へ逆潮流すると低圧単相配電線15の電圧降下によって、連系点電圧V1は、199Vを超えて上昇する。例えば、パワコン14xから3kWの有効電力Pxが供給されると、逆潮流電力は他の電力系統側負荷19に供給され、連系点電圧V1の電圧上昇は13.4Vとなる。電力系統17の系統電圧Vacの変化は無視できるとし、低圧単相配電線のインピーダンスZのみの電圧変化に着目する。   When the power supply from the power conditioner 12x further increases and reversely flows into the distribution system, the interconnection point voltage V1 rises above 199V due to the voltage drop of the low-voltage single-phase distribution line 15. For example, when 3kW of active power Px is supplied from the power conditioner 14x, the reverse power flow power is supplied to the other power system side load 19, and the voltage increase of the interconnection point voltage V1 becomes 13.4V. It is assumed that the change in the system voltage Vac of the power system 17 can be ignored, and attention is paid to the voltage change only in the impedance Z of the low-voltage single-phase distribution line.

次に、無効電力調整機能付パワコン12yのみ運転し、有効電力Pyと無効電力Qyとによる連系点電圧V1の変化を測定した。太陽電池設備である分散電源11yの出力増加に伴い発電量が増加し、パワコン12yの有効電力Pyの出力も増加する。パワコン12yから電力系統17側への逆潮流によって連系点電圧V1が上昇するが、パワコン12yは無効電力Qyも同時に発生するため、連系点電圧V1の上昇を抑制する。   Next, only the power conditioner 12y with the reactive power adjustment function was operated, and the change in the connection point voltage V1 due to the active power Py and the reactive power Qy was measured. As the output of the distributed power source 11y, which is a solar cell facility, increases, the amount of power generation increases and the output of the active power Py of the power conditioner 12y also increases. Although the interconnection point voltage V1 rises due to the reverse flow from the power conditioner 12y to the power system 17, the power conditioner 12y also generates reactive power Qy at the same time, and therefore suppresses the rise of the interconnection point voltage V1.

図7に無効電力Qyを出力するパワコン12yの有効電力Pyと連系点電圧V1との関係を示す。図7では通常パワコン12xによる有効電力Pxの曲線S1も併せて記載している。図7の曲線S2に示すように、有効電力Pyによる電圧上昇分と無効電力Qyによる電圧降下分の相殺によって、有効電力3kW時の電圧上昇は4.5Vになり、有効電力Pxのみの通常パワコン12xに比べ、8.9Vの電圧上昇抑制となっている。   FIG. 7 shows the relationship between the active power Py of the power conditioner 12y that outputs the reactive power Qy and the interconnection point voltage V1. FIG. 7 also shows a curve S1 of the active power Px by the normal power conditioner 12x. As shown by the curve S2 in FIG. 7, the voltage rise at the active power of 3 kW becomes 4.5 V due to the offset between the voltage rise by the active power Py and the voltage drop by the reactive power Qy. Compared to 12x, the voltage rise is suppressed to 8.9V.

有効電力Pyが5kW時でも電圧上昇は6.1Vであり、逆潮流時であっても系統電圧Vacより低く抑制されている。この時点の無効電力Qyは,約1.3kVarである。無効電力Qyは無効電力調整機能付パワコン12yの出力電流Iyと出力電圧Vyとの位相差から生じている。   Even when the active power Py is 5 kW, the voltage rise is 6.1 V, and is suppressed to be lower than the system voltage Vac even during reverse power flow. The reactive power Qy at this time is about 1.3 kVar. The reactive power Qy is generated from the phase difference between the output current Iy and the output voltage Vy of the power converter 12y with the reactive power adjustment function.

次に、無効電力調整機能付パワコン12yのみを運転し、その後に通常パワコン12xを運転し、有効電力P(Py,Px+Py)と無効電力Qyによる連系点電圧V1の変化を測定した。図8に無効電力調整機能付パワコン12yと通常パワコン12xとの並列運転時の連系点電圧V1との関係を示す。図8では通常パワコン12xによる有効電力Pxの曲線S1も併せて記載している。図8の曲線S3に示すように、無効電力調整機能付パワコン12yのみを運転し、有効電力P(Py)を3kWまで出力した後、通常パワコン12xを追加運転して2台の並列運転を実施した。   Next, only the power conditioner 12y with the reactive power adjustment function was operated, and then the normal power conditioner 12x was operated, and the change in the connection point voltage V1 due to the active power P (Py, Px + Py) and the reactive power Qy was measured. FIG. 8 shows the relationship between the interconnection point voltage V1 during parallel operation of the power converter 12y with the reactive power adjustment function and the normal power converter 12x. In FIG. 8, the curve S1 of the active power Px by the normal power conditioner 12x is also shown. As shown by the curve S3 in FIG. 8, only the power converter 12y with the reactive power adjustment function is operated, the active power P (Py) is output up to 3 kW, and then the normal power conditioner 12x is additionally operated to perform the parallel operation of the two units. did.

無効電力調整機能付パワコン12yによって,無効電力Qyが発生している低圧単相配電線に、通常パワコン12xより、さらに有効電力Pxが2kWが逆潮流しているが、電圧上昇は4vとなり、通常パワコン12x単体では、9.2Vの電圧降下が観測されたが、パワコン12yとの並列運転時は、5.2Vの電圧抑制ができた。このように、無効電力調整機能付パワコン12yは、通常パワコン12xと並列して連系した場合にも連系点電圧V1の電圧上昇抑制機能を発揮する。   The power converter 12y with the reactive power adjustment function causes the low-voltage single-phase distribution line in which the reactive power Qy is generated to have a reverse power flow of 2kW from the normal power converter 12x, but the voltage rise is 4v. With 12x alone, a voltage drop of 9.2V was observed, but a voltage of 5.2V could be suppressed during parallel operation with the power conditioner 12y. In this way, the power converter 12y with the reactive power adjustment function exhibits the function of suppressing the voltage increase of the connection point voltage V1 even when connected in parallel with the normal power converter 12x.

本発明の実施形態では、無効電力調整機能付パワコン12から有効電力Pと無効電力Qとを同時に発生させることで、逆潮流時の電圧上昇値を抑制できる。また、一箇所の連系点13に複数のパワコン12を接続し、各パワコン12が有効電力Pを出力しているときに、少なくとも何れか1台が無効電力Qを出力することで逆潮流時の電圧上昇値を抑制できる。   In the embodiment of the present invention, by generating the active power P and the reactive power Q simultaneously from the power converter 12 with the reactive power adjustment function, it is possible to suppress the voltage increase value during reverse power flow. In addition, when a plurality of power conditioners 12 are connected to one interconnection point 13 and each power conditioner 12 outputs active power P, at least one of them outputs reactive power Q, so that during reverse power flow The voltage rise value can be suppressed.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…分散電源、12…パワコン、13…連系点、14…分散電源設備、15…低圧単相配電線、16…変圧器、17…電力系統、18…分散電源設備側負荷、19…電力系統側負荷、20…電力変換部、21…電圧検出器、22…電流検出器、23…連系点電圧監視部、24…制御部 DESCRIPTION OF SYMBOLS 11 ... Distributed power supply, 12 ... Power conditioner, 13 ... Interconnection point, 14 ... Distributed power supply equipment, 15 ... Low voltage single phase distribution line, 16 ... Transformer, 17 ... Electric power system, 18 ... Distributed power equipment side load, 19 ... Electric power system Side load, 20 ... power conversion unit, 21 ... voltage detector, 22 ... current detector, 23 ... interconnection point voltage monitoring unit, 24 ... control unit

Claims (9)

直流エネルギー源の分散電源と前記分散電源からの直流電力を交流電力に変換するパワコンとを備えた複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系して変圧器を介して電力系統に電力を供給する分散電源設備システムにおいて、
複数の分散電源設備のうち何台かのパワコンは無効電力を出力する機能を有する無効電力調整機能付パワコンとし、
残りの分散電源設備のパソコンは無効電力の調整機能を有しない通常パワコンとし、
前記無効電力調整機能付パワコンのうちいずれか1台は無効電力を出力し、
残りの分散電源設備のパワコンは有効電力のみを出力し、
複数の分散電源設備の各々のパワコンは有効電力の増加に応じて連系点電圧が所定値を超えるか否かを判定し、
各々のパワコンのうち有効電力を出力している無効電力調整機能付パソコンは連系点電圧が所定値を超えると予想されるときは連系点電圧が所定値を超えないように無効電力を出力すること特徴とする分散電源設備システム。
A plurality of distributed power supply facilities including a distributed power source of a direct current energy source and a power converter for converting direct current power from the distributed power source into alternating current power are connected to a low-voltage single-phase distribution line at one connection point. In the distributed power supply equipment system that supplies power to the power system via
Some of the power controllers in the plurality of distributed power supply facilities are power controllers with a reactive power adjustment function having a function of outputting reactive power,
The remaining PCs with distributed power facilities are normal power conditioners that do not have a reactive power adjustment function.
Any one of the power converters with the reactive power adjustment function outputs reactive power,
The remaining distributed power equipment power conditioners output only active power,
Each power controller of the plurality of distributed power supply facilities determines whether or not the interconnection point voltage exceeds a predetermined value in accordance with an increase in active power,
A PC with reactive power adjustment function that outputs active power among each power conditioner outputs reactive power so that the connection point voltage does not exceed the predetermined value when the connection point voltage is expected to exceed the predetermined value. A distributed power supply system characterized by
直流エネルギー源の分散電源と前記分散電源からの直流電力を交流電力に変換するパワコンとを備えた複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系して変圧器を介して電力系統に電力を供給する分散電源設備システムにおいて、
複数の分散電源設備のうち何台かのパワコンは無効電力を出力する機能を有する無効電力調整機能付パワコンとし、
残りの分散電源設備のパソコンは無効電力の調整機能を有しない通常パワコンとし、
複数の分散電源設備の各々のパワコンは有効電力のみを出力し、
複数の分散電源設備の各々のパワコンは有効電力の増加に応じて連系点電圧が所定値を超えるか否かを判定し、
各々のパワコンのうち前記無効電力調整機能付パソコンは連系点電圧が所定値を超えると予想されるときは連系点電圧が所定値を超えないように無効電力を出力すること特徴とする分散電源設備システム。
A plurality of distributed power supply facilities including a distributed power source of a direct current energy source and a power converter for converting direct current power from the distributed power source into alternating current power are connected to a low-voltage single-phase distribution line at one connection point. In the distributed power supply equipment system that supplies power to the power system via
Some of the power controllers in the plurality of distributed power supply facilities are power controllers with a reactive power adjustment function having a function of outputting reactive power,
The remaining PCs with distributed power facilities are normal power conditioners that do not have a reactive power adjustment function.
Each power conditioner of multiple distributed power facilities outputs only active power,
Each power controller of the plurality of distributed power supply facilities determines whether or not the interconnection point voltage exceeds a predetermined value in accordance with an increase in active power,
The reactive power adjustment function personal computer of each power conditioner outputs reactive power so that the interconnection point voltage does not exceed a predetermined value when the interconnection point voltage is expected to exceed a predetermined value. Power supply equipment system.
直流エネルギー源の分散電源と前記分散電源からの直流電力を交流電力に変換するパワコンとを備えた複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系して変圧器を介して電力系統に電力を供給する分散電源設備システムにおいて、
複数の分散電源設備の各々のパワコンは無効電力を出力する機能を有する無効電力調整機能付パワコンとし、
前記無効電力調整機能付パワコンのうちいずれか1台は無効電力を出力し、
残りの無効電力調整機能付パワコンは有効電力のみを出力し、
各々の無効電力調整機能付パワコンは有効電力の増加に応じて連系点電圧が所定値を超えるか否かを判定し、
各々の無効電力調整機能付パワコンのうち有効電力を出力している無効電力調整機能付パソコンは連系点電圧が所定値を超えると予想されるときは連系点電圧が所定値を超えないように無効電力を出力すること特徴とする分散電源設備システム。
A plurality of distributed power supply facilities including a distributed power source of a direct current energy source and a power converter for converting direct current power from the distributed power source into alternating current power are connected to a low-voltage single-phase distribution line at one connection point. In the distributed power supply equipment system that supplies power to the power system via
Each power conditioner of a plurality of distributed power supply facilities is a power conditioner with a reactive power adjustment function having a function of outputting reactive power,
Any one of the power converters with the reactive power adjustment function outputs reactive power,
The remaining inverters with reactive power adjustment function output only active power,
Each power converter with a reactive power adjustment function determines whether or not the interconnection point voltage exceeds a predetermined value in accordance with an increase in active power,
PCs with reactive power adjustment function that output active power among each power converter with reactive power adjustment function, when the connection point voltage is expected to exceed the predetermined value, the connection point voltage should not exceed the predetermined value A distributed power supply system that outputs reactive power to
直流エネルギー源の分散電源と前記分散電源からの直流電力を交流電力に変換するパワコンとを備えた複数の分散電源設備を一箇所の連系点で低圧単相配電線に連系して変圧器を介して電力系統に電力を供給する分散電源設備システムにおいて、
複数の分散電源設備の各々のパワコンは無効電力を出力する機能を有する無効電力調整機能付パワコンとし、
各々の無効電力調整機能付パワコンは有効電力のみを出力し、
各々の無効電力調整機能付パワコンは有効電力の増加に応じて連系点電圧が所定値を超えるか否かを判定し、
各々の無効電力調整機能付パソコンは連系点電圧が所定値を超えると予想されるときは連系点電圧が所定値を超えないように無効電力を出力すること特徴とする分散電源設備システム。
A plurality of distributed power supply facilities including a distributed power source of a direct current energy source and a power converter for converting direct current power from the distributed power source into alternating current power are connected to a low-voltage single-phase distribution line at one connection point. In the distributed power supply equipment system that supplies power to the power system via
Each power conditioner of a plurality of distributed power supply facilities is a power conditioner with a reactive power adjustment function having a function of outputting reactive power,
Each power converter with reactive power adjustment function outputs only active power,
Each power converter with a reactive power adjustment function determines whether or not the interconnection point voltage exceeds a predetermined value in accordance with an increase in active power,
Each of the personal computers with a reactive power adjustment function outputs reactive power so that the interconnection point voltage does not exceed a predetermined value when the interconnection point voltage is expected to exceed a predetermined value.
各パワコンは、自己の低圧単相配電線の接続点の電圧に基づいて、連系点電圧が所定値を超えるか否かを判定することを特徴とする請求項1乃至4のいずれか1項に記載の分散電源設備システム。   Each power conditioner determines whether or not the interconnection point voltage exceeds a predetermined value based on the voltage at the connection point of its own low-voltage single-phase distribution line. The described distributed power supply equipment system. 各パワコンは、複数台のパワコンの連系点の電圧に基づいて、連系点電圧が所定値を超えるか否かを判定することを特徴とする請求項1乃至4のいずれか1項に記載の分散電源設備システム。   5. The power control unit according to claim 1, wherein each power control unit determines whether the connection point voltage exceeds a predetermined value based on a voltage at a connection point of a plurality of power control units. 6. Distributed power equipment system. 各パワコンは、前記変圧器の前記分散電源側の端子電圧に基づいて、連系点電圧が所定値超えるか否かを判定することを特徴とする請求項1乃至4のいずれか1項に記載の分散電源設備システム。   5. The power control unit according to claim 1, wherein each power conditioner determines whether or not a connection point voltage exceeds a predetermined value based on a terminal voltage on the distributed power source side of the transformer. Distributed power equipment system. 各パワコンは、自己の低圧単相配電線の接続点の電圧及び複数台のパワコンの連系点の電圧に基づいて、連系点電圧が所定値を超えるか否かを判定することを特徴とする請求項1乃至4のいずれか1項に記載の分散電源設備システム。   Each power control unit determines whether or not the connection point voltage exceeds a predetermined value based on the voltage at the connection point of its own low-voltage single-phase distribution line and the voltage at the connection point of a plurality of power control units. The distributed power supply system according to any one of claims 1 to 4. 各パワコンは、自己の低圧単相配電線の接続点の電圧及び前記変圧器の前記分散電源側の端子電圧に基づいて、連系点電圧が所定値超えるか否かを判定することを特徴とする請求項1乃至4のいずれか1項に記載の分散電源設備システム。   Each power conditioner determines whether or not the interconnection point voltage exceeds a predetermined value based on the voltage at the connection point of its own low-voltage single-phase distribution line and the terminal voltage on the distributed power source side of the transformer. The distributed power supply system according to any one of claims 1 to 4.
JP2013169464A 2013-08-19 2013-08-19 Distributed power equipment system Expired - Fee Related JP5885711B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013169464A JP5885711B2 (en) 2013-08-19 2013-08-19 Distributed power equipment system
PCT/JP2014/070720 WO2015025712A1 (en) 2013-08-19 2014-08-06 Distributed power supply facility system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169464A JP5885711B2 (en) 2013-08-19 2013-08-19 Distributed power equipment system

Publications (3)

Publication Number Publication Date
JP2015039262A true JP2015039262A (en) 2015-02-26
JP2015039262A5 JP2015039262A5 (en) 2015-10-01
JP5885711B2 JP5885711B2 (en) 2016-03-15

Family

ID=52483492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169464A Expired - Fee Related JP5885711B2 (en) 2013-08-19 2013-08-19 Distributed power equipment system

Country Status (2)

Country Link
JP (1) JP5885711B2 (en)
WO (1) WO2015025712A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226232A (en) * 2015-06-03 2016-12-28 東京電力ホールディングス株式会社 Device and method for supporting discrimination against cause of system voltage rise
JP2017131024A (en) * 2016-01-19 2017-07-27 三菱電機株式会社 Power generation system
JP2019509006A (en) * 2016-03-04 2019-03-28 ドゥサン フューエル セル アメリカ、インコーポレイテッド Fuel cell power plant with active power mode and reactive power mode
WO2019130665A1 (en) * 2017-12-27 2019-07-04 株式会社日立製作所 Power generation system
CN112152226A (en) * 2020-08-28 2020-12-29 华北电力科学研究院有限责任公司 Voltage regulation method and device based on distributed photovoltaic nodes
WO2021006274A1 (en) * 2019-07-09 2021-01-14 富士電機株式会社 Grid interconnection device and server
JP2021164317A (en) * 2020-03-31 2021-10-11 大和ハウス工業株式会社 Power supply system
US11233398B2 (en) 2017-09-12 2022-01-25 Mitsubishi Electric Corporation Distributed power supply system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096631A1 (en) * 2017-11-16 2019-05-23 Sma Solar Technology Ag Feeding electric power from a photovoltaic system into an ac system having a low short-circuit capacity
CN113346518B (en) * 2021-05-20 2022-10-21 南方电网电动汽车服务有限公司 Voltage control method, system, electronic device and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2011114910A (en) * 2009-11-25 2011-06-09 Tokyo Gas Co Ltd Distributed power supply system, photovoltaic generating set, fuel cell device, and voltage adjustment method of distributed power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201086A (en) * 1997-01-14 1998-07-31 Nissin Electric Co Ltd Solar beam power generation system
JP2000232736A (en) * 1999-02-12 2000-08-22 Tdk Corp Linked distributed power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2011114910A (en) * 2009-11-25 2011-06-09 Tokyo Gas Co Ltd Distributed power supply system, photovoltaic generating set, fuel cell device, and voltage adjustment method of distributed power supply system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226232A (en) * 2015-06-03 2016-12-28 東京電力ホールディングス株式会社 Device and method for supporting discrimination against cause of system voltage rise
JP2017131024A (en) * 2016-01-19 2017-07-27 三菱電機株式会社 Power generation system
JP2019509006A (en) * 2016-03-04 2019-03-28 ドゥサン フューエル セル アメリカ、インコーポレイテッド Fuel cell power plant with active power mode and reactive power mode
US11442483B2 (en) 2016-03-04 2022-09-13 Hyaxiom, Inc. Fuel cell power plant with real and reactive power modes
US11233398B2 (en) 2017-09-12 2022-01-25 Mitsubishi Electric Corporation Distributed power supply system
WO2019130665A1 (en) * 2017-12-27 2019-07-04 株式会社日立製作所 Power generation system
JP2019118182A (en) * 2017-12-27 2019-07-18 株式会社日立製作所 Power generation system
JP7010690B2 (en) 2017-12-27 2022-01-26 株式会社日立インダストリアルプロダクツ Power generation system
CN113228454A (en) * 2019-07-09 2021-08-06 富士电机株式会社 System interconnection device and server
JP2021013294A (en) * 2019-07-09 2021-02-04 富士電機株式会社 Grid interconnection device and server
WO2021006274A1 (en) * 2019-07-09 2021-01-14 富士電機株式会社 Grid interconnection device and server
US11515711B2 (en) 2019-07-09 2022-11-29 Fuji Electric Co., Ltd. Grid interconnection device and server
JP7338518B2 (en) 2019-07-09 2023-09-05 富士電機株式会社 Server and power generation system
JP2021164317A (en) * 2020-03-31 2021-10-11 大和ハウス工業株式会社 Power supply system
JP7438826B2 (en) 2020-03-31 2024-02-27 大和ハウス工業株式会社 power supply system
CN112152226B (en) * 2020-08-28 2022-08-02 华北电力科学研究院有限责任公司 Voltage regulation method and device based on distributed photovoltaic nodes
CN112152226A (en) * 2020-08-28 2020-12-29 华北电力科学研究院有限责任公司 Voltage regulation method and device based on distributed photovoltaic nodes

Also Published As

Publication number Publication date
WO2015025712A1 (en) 2015-02-26
JP5885711B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5885711B2 (en) Distributed power equipment system
JP5618294B2 (en) High and low voltage distribution system voltage regulation system
US8263276B1 (en) Startup power control in a fuel cell system
EP2667476B1 (en) Photovoltaic system and power supply system
EP3018787A1 (en) Microgrid control device and control method therefor
JP2015019538A (en) System power storage device
JP2014230455A (en) Power generator
JP5939069B2 (en) Inverter
JP5897501B2 (en) Power supply system
JP2017051083A (en) Power generation system, power generation method and program
JP2010279133A (en) Method and device for controlling power conditioner in solar light generating system
JP6574651B2 (en) Power control device
JP2015220889A (en) Power supply system
JP2017099235A (en) Power conversion system and controller
JP6021312B2 (en) Distributed power supply system and circuit switching device
JP6783581B2 (en) Power supply system
US10886744B2 (en) Power conversion system, power supply system and power conversion device
JP2014230366A (en) Power generation device
JP6415260B2 (en) Power conditioner, its control device and power system
JP5799548B2 (en) Power generation system
JP2011167014A (en) Device for control of converter
JP7040029B2 (en) Power control device, control method of power control device
JP6422247B2 (en) Inverter
JP7261078B2 (en) Distributed power system
JP2012029541A (en) Hybrid power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5885711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees