JP2015048421A - ポリカーボネート樹脂 - Google Patents
ポリカーボネート樹脂 Download PDFInfo
- Publication number
- JP2015048421A JP2015048421A JP2013181221A JP2013181221A JP2015048421A JP 2015048421 A JP2015048421 A JP 2015048421A JP 2013181221 A JP2013181221 A JP 2013181221A JP 2013181221 A JP2013181221 A JP 2013181221A JP 2015048421 A JP2015048421 A JP 2015048421A
- Authority
- JP
- Japan
- Prior art keywords
- polycarbonate resin
- dihydroxy compound
- bis
- dihydroxy
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *C1[C@]2OCN(CO)[C@@]2OC1 Chemical compound *C1[C@]2OCN(CO)[C@@]2OC1 0.000 description 1
- WBWDWNSJVPULFH-UHFFFAOYSA-N OCCC1CCC(CO)CC1 Chemical compound OCCC1CCC(CO)CC1 WBWDWNSJVPULFH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
【課題】色相、透明性、耐候性に優れ、さらに耐衝撃性などの機械的強度と耐熱性及び高温高湿下での耐久性を向上させたポリカーボネート樹脂を提供すること。【解決手段】下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位、および下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位を少なくとも含む共重合ポリカーボネート樹脂であり、下記式(2)で表されるジヒドロキシ化合物のトランス比率が70%以上である共重合ポリカーボネート樹脂。【選択図】なし
Description
本発明は、透明性、耐熱性、耐候性、機械的強度及び高温高湿下での耐久性に優れたポリカーボネート樹脂に関する。
ポリカーボネート樹脂は一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性、機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体、レンズ等の光学分野等でいわゆるエンジニアリングプラスチックとして広く利用されている。
従来のポリカーボネート樹脂は、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネート樹脂の提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動などをもたらすことが危惧されていることからも、使用後に廃棄処分をしてもカーボンニュートラルな植物由来モノマーを原料としたポリカーボネート樹脂の開発が求められている。
従来のポリカーボネート樹脂は、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネート樹脂の提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動などをもたらすことが危惧されていることからも、使用後に廃棄処分をしてもカーボンニュートラルな植物由来モノマーを原料としたポリカーボネート樹脂の開発が求められている。
かかる状況下、バイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(ISB)をモノマー成分としたポリカーボネート樹脂が提案されている。耐熱性を活かした成形材料としての利用の他にも、優れた光学特性を活かし、光学用途やガラス代替用途への利用も検討されている。ISBから得られるポリカーボネート樹脂は優れた耐熱性を有しているが、一方で機械物性が劣るため、柔軟性を付与するために他の脂肪族ジヒドロキシ化合物を共重合することで、機械物性と耐熱性とのバランスを図っている(例えば特許文献1、2参照)。さらに共重合成分として、脂環式ジヒドロキシ化合物を用いることで、高い耐熱性を保持したまま、機械物性を向上できることが知られている。(特許文献3参照)。また、シクロヘキサン構造を有するジヒドロキシ化合物のうち、トランス体が多い原料を用いることで、共重合ポリカーボネートの透明性、耐衝撃性などの機械的特性に優れ、屈折率とアッベ数のバランスを良好に保ち、低光弾性定数等の光学的特性に優れ、流動性が良好であり、耐熱性が向上できることが記載されている。(特許文献4参照)。
特に射出成形分野においては、前述の耐熱性と機械物性に加えて、高流動性も求められている。一般的に分子量が高いほど耐熱性や機械物性も向上する傾向があるが、分子量が高くなると溶融樹脂の流動性は低下する。さらに、耐熱性や耐衝撃性などの機械物性についても、さらなる向上が求められており、従来のポリカーボネート樹脂では要求される性能を満足できていない。また、本発明のポリカーボネートは、イソソルビドの構造に起因して、吸水率が非常に高いことが材料特性として問題になることが多く、特に高温高湿下での耐久性(例えば、温水処理後のヘイズの低下を抑制することなど)が要求されている。特許文献4に記載の発明では、シクロヘキサン構造を有するジヒドロキシ化合物のうち
、トランス体が多い原料を用いて、耐熱性を向上させ、流動性も確保している。しかし、特許文献4に記載の発明では、芳香族化合物を構成単位とするポリカーボネート樹脂であるため、本発明のように、イソソルビドの構造による材料特性(高温高湿下での耐久性)の問題に関しては、起こりえない。そのため、本発明とは課題を異にするものである。
、トランス体が多い原料を用いて、耐熱性を向上させ、流動性も確保している。しかし、特許文献4に記載の発明では、芳香族化合物を構成単位とするポリカーボネート樹脂であるため、本発明のように、イソソルビドの構造による材料特性(高温高湿下での耐久性)の問題に関しては、起こりえない。そのため、本発明とは課題を異にするものである。
本発明の目的は、上記の問題点を解消し、色相、透明性、耐候性に優れ、さらに耐衝撃性などの機械的強度と耐熱性及び高温高湿下での耐久性を向上させたポリカーボネート樹脂を提供することにある。
本発明者らは、上記課題を解決するべく、鋭意検討を重ねた結果、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位、および下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位を少なくとも含む共重合ポリカーボネート樹脂であり、下記式(2)で表されるジヒドロキシ化合物のトランス比率が70%以上である共重合ポリカーボネート樹脂が、高い耐熱性と耐衝撃性を兼ね備えることを見出し、本発明に至った。
即ち、本発明の要旨は下記のとおりである。
[1]下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位、および下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位を少なくとも含む共重合ポリカーボネート樹脂であり、下記式(2)で表されるジヒドロキシ化合物のトランス比率が70%以上である共重合ポリカーボネート樹脂。
[1]下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位、および下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位を少なくとも含む共重合ポリカーボネート樹脂であり、下記式(2)で表されるジヒドロキシ化合物のトランス比率が70%以上である共重合ポリカーボネート樹脂。
[2]該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、前記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位のモル分率が10〜90mol%
であり、前記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位のモル分率が10〜90mol%である[1]に記載の共重合ポリカーボネート樹脂。
[3]該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、芳香族ジヒドロキシ化合物に由来する構造単位のモル分率が10mol%未満である[1]または[2]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[4]該ポリカーボネート樹脂のガラス転移温度が80℃以上、180℃以下であることを特徴とする[1]乃至[3]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[5]測定温度240℃、剪断速度91.2sec−1における該ポリカーボネート樹脂の溶融粘度が300Pa・s以上、3000Pa・s以下であることを特徴とする[1]乃至[4]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[6]該ポリカーボネート樹脂が、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、及び脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種のリン系化合物を含有することを特徴とする[1]乃至[5]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[7]該ポリカーボネート樹脂がヒンダードフェノール化合物を含有することを特徴とする[1]乃至[6]のいずれか1項に記載の共重合ポリカーボネート樹脂。
であり、前記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位のモル分率が10〜90mol%である[1]に記載の共重合ポリカーボネート樹脂。
[3]該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、芳香族ジヒドロキシ化合物に由来する構造単位のモル分率が10mol%未満である[1]または[2]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[4]該ポリカーボネート樹脂のガラス転移温度が80℃以上、180℃以下であることを特徴とする[1]乃至[3]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[5]測定温度240℃、剪断速度91.2sec−1における該ポリカーボネート樹脂の溶融粘度が300Pa・s以上、3000Pa・s以下であることを特徴とする[1]乃至[4]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[6]該ポリカーボネート樹脂が、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、及び脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種のリン系化合物を含有することを特徴とする[1]乃至[5]のいずれか1項に記載の共重合ポリカーボネート樹脂。
[7]該ポリカーボネート樹脂がヒンダードフェノール化合物を含有することを特徴とする[1]乃至[6]のいずれか1項に記載の共重合ポリカーボネート樹脂。
本発明によれば、色相、透明性、耐熱性、耐候性、機械的強度及び高温高湿下での耐久性に優れ、電気・電子部品、自動車用部品、ガラス代替用途等の射出成形分野、フィルム、シート分野、ボトル、容器分野、さらには、カメラレンズ、ファインダーレンズ、CCDやCMOS用レンズなどのレンズ用途、液晶や有機ELディスプレイなどに利用される位相差フィルム、拡散シート、偏光フィルムなどのフィルム、シート、光ディスク、光学材料、光学部品、色素及び電荷移動剤等を固定化するバインダー用途といった幅広い分野へ適用可能なポリカーボネート樹脂を提供することができる。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
<ポリカーボネート樹脂の原料>
(ジヒドロキシ化合物)
本発明のポリカーボネート樹脂は、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位、および下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位を少なくとも含む。
(ジヒドロキシ化合物)
本発明のポリカーボネート樹脂は、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位、および下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位を少なくとも含む。
前記式(1)で表されるジヒドロキシ化合物としては、立体異性体の関係にあるイソソ
ルビド(ISB)、イソマンニドおよびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも入手および製造のしやすさの観点からはISBが最も好ましい。ISBは、植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる無水糖アルコールである。
ルビド(ISB)、イソマンニドおよびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも入手および製造のしやすさの観点からはISBが最も好ましい。ISBは、植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる無水糖アルコールである。
本発明のポリカーボネート樹脂においては、ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位のモル分率の範囲は20〜90mol%であることが好ましい。さらに30〜90mol%が好ましく、特に40〜85mol%が好ましい。前記式(1)で表されるジヒドロキシ化合物の含有量が多いほど耐熱性は高くなるが、耐衝撃性や引張破断伸度などの機械物性が低下しやすくなるため、ポリカーボネート樹脂の一部は柔軟性を付与できる成分を共重合することが好ましい。
前記式(2)で表されるジヒドロキシ化合物としては、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも入手および製造のしやすさの観点からは1,4−シクロヘキサンジメタノールが最も好ましい。
前記式(2)で表されるジヒドロキシ化合物はシス体とトランス体のラセミ体として製造され、例えば、1,4−シクロヘキサンジメタノールは下記式(3)と(4)で表される異性体からなる。本発明においては、前記式(2)で表されるジヒドロキシ化合物のトランス比率の範囲は、下限値が70%以上である。さらに72%以上であることが好ましく、74%以上であることがさらに好ましく、76%以上であることが特に好ましい。上限値は、100%であり、トランス比率が高いほど、耐熱性と耐衝撃性が向上する。
なお、本発明でいう「トランス比率」とは、シス―トランス異性体全体に対するトランス体の比率である。
なお、本発明でいう「トランス比率」とは、シス―トランス異性体全体に対するトランス体の比率である。
本発明のポリカーボネート樹脂においては、ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、前記式(2)で表されるジヒドロキシ化合物に由来する構造単位のモル分率の範囲は、適宜、共重合比率を調整することが望ましく、前記式(2)で表されるジヒドロキシ化合物の含有量が多いほど耐衝撃性は高くなるが、耐熱性が低下しやすくなるため、物性のバランスを考慮して、10〜80mol%であることが好ましい。さらに12〜70mol%が好ましく、特に15〜60mol%が好ましい。
本発明のポリカーボネート樹脂は、上記の二種類のジヒドロキシ化合物(以下「特定ジ
ヒドロキシ化合物」と称す場合がある。)以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構造単位を含んでいてもよい。前記その他のジヒドロキシ化合物としては、例えば、直鎖脂肪族炭化水素のジヒドロキシ化合物、分岐を有する直鎖脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物、オキシアルキレングリコール類、芳香族基に結合したエーテル基を主鎖中に有するジヒドロキシ化合物、ヘテロ環を有するジヒドロキシ化合物、芳香族ビスフェノール類等が挙げられる。
ヒドロキシ化合物」と称す場合がある。)以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構造単位を含んでいてもよい。前記その他のジヒドロキシ化合物としては、例えば、直鎖脂肪族炭化水素のジヒドロキシ化合物、分岐を有する直鎖脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物、オキシアルキレングリコール類、芳香族基に結合したエーテル基を主鎖中に有するジヒドロキシ化合物、ヘテロ環を有するジヒドロキシ化合物、芳香族ビスフェノール類等が挙げられる。
前記の直鎖脂肪族炭化水素のジヒドロキシ化合物としては、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,10−デカンジオールおよび1,12−ドデカンジオール等が挙げられる。
前記の分岐を有する直鎖脂肪族炭化水素のジヒドロキシ化合物としては、例えば、ネオペンチルグリコールおよびヘキシレングリコール等が挙げられる。
前記の脂環式炭化水素のジヒドロキシ化合物としては、例えば、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、水添2,2−ビス(4−ヒドロキシフェニル)プロパン(=水添ビスフェノールA)、リモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
前記の脂環式炭化水素のジヒドロキシ化合物としては、例えば、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、水添2,2−ビス(4−ヒドロキシフェニル)プロパン(=水添ビスフェノールA)、リモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
前記のオキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等が挙げられる。
前記の主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物としては、例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル]フルオレン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、2,2−ビス[4−(2−ヒドロキシプロポキシ)フェニル]プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニルおよびビス[4−(2−ヒドロキシエトキシ)フェニル]スルホン等が挙げられる。
ヘテロ環を有するジヒドロキシ化合物としては、下記式(5)および下記式(6)で表されるスピログリコール等が挙げられる。
ヘテロ環を有するジヒドロキシ化合物としては、下記式(5)および下記式(6)で表されるスピログリコール等が挙げられる。
前記の芳香族ビスフェノール類としては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4’−ジヒドロキシ−ジフェニルメタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−5−ニトロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−2−エチルヘキサン、1,1−ビス(4−ヒドロキシフェニル)デカン、1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(4−ヒドロキシフェニル)ノナン、2,2−ビス(4−ヒドロキシフェニル)デカン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル、4,4’−ジヒドロキシ−2,5−ジエトキシジフェニルエーテル、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、(4−ヒドロキシ−3−n−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−sec−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン等が挙げられる。
これらのその他のジヒドロキシ化合物も、得られるポリカーボネート樹脂の要求性能に応じて、単独で前記特定ジヒドロキシ化合物と併用してもよく、2種以上を組み合わせた上で前記特定ジヒドロキシ化合物と併用してもよい。中でも、ポリカーボネート樹脂の色調や耐候性、光学特性の観点からは、分子構造内に芳香環構造を有しないジヒドロキシ化
合物、即ち脂肪族炭化水素のジヒドロキシ化合物または脂環式炭化水素のジヒドロキシ化合物が好ましく、これらを併用してもよい。
合物、即ち脂肪族炭化水素のジヒドロキシ化合物または脂環式炭化水素のジヒドロキシ化合物が好ましく、これらを併用してもよい。
これら前記その他のジヒドロキシ化合物を、前記特定ジヒドロキシ化合物と併用することにより、ポリカーボネート樹脂の柔軟性や機械物性の改善、および成形性の改善などの効果を得ることも可能である。ただし、ポリカーボネート樹脂中の前記その他のジヒドロキシ化合物に由来する構造単位の含有割合が多過ぎると、機械的物性の低下または耐熱性の低下を招くことがあるため、本発明のポリカーボネート樹脂において、前記その他のジヒドロキシ化合物に由来する構造単位の割合は、好ましくは40mol%以下、さらに好ましくは30mol%以下、特に好ましくは20mol%以下である。
前記その他のジヒドロキシ化合物の中で、芳香族成分を含有するジヒドロキシ化合物は得られるポリカーボネート樹脂の耐候性の低下を招くため、本発明のポリカーボネート樹脂においては、芳香族ジヒドロキシ化合物の含有量は10mol%未満であることが好ましい。さらに5mol%未満が好ましく、特に2mol%未満が好ましい。
本発明のポリカーボネート樹脂の製造に使用される全てのジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤または熱安定剤等の安定剤を含んでいてもよい。特に酸性下で本発明の特定ジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。
本発明のポリカーボネート樹脂の製造に使用される全てのジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤または熱安定剤等の安定剤を含んでいてもよい。特に酸性下で本発明の特定ジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。
塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩および脂肪酸塩、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−メチルジエタノールアミン、ジエチルエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールおよびアミノキノリン等のアミン系化合物、並びにジ−(tert−ブチル)アミンおよび2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。これらの安定剤の中でも安定化の効果からはテトラメチルアンモニウムヒドロキシド、イミダゾールまたはヒンダードアミン系化合物が好ましい。
これら塩基性安定剤の、本発明で用いる全てのジヒドロキシ化合物中の含有量に特に制限はないが、本発明で用いる前記の特定ジヒドロキシ化合物は酸性状態では不安定であるので、上記の安定剤を含む特定ジヒドロキシ化合物の水溶液のpHが7付近となるように安定剤を添加することが好ましい。
安定剤の量が少なすぎると特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると特定ジヒドロキシ化合物の変性を招く場合があるので、本発明
で用いるそれぞれのジヒドロキシ化合物に対して、0.0001重量%〜1重量%であることが好ましく、より好ましくは0.001重量%〜0.1重量%である。
安定剤の量が少なすぎると特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると特定ジヒドロキシ化合物の変性を招く場合があるので、本発明
で用いるそれぞれのジヒドロキシ化合物に対して、0.0001重量%〜1重量%であることが好ましく、より好ましくは0.001重量%〜0.1重量%である。
これら塩基性安定剤を本発明で用いるジヒドロキシ化合物に含めたままポリカーボネート樹脂の製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度または品質の制御が困難になるだけでなく、樹脂色相の悪化を招いてしまう。
このため、特定ジヒドロキシ化合物または前記その他のジヒドロキシ化合物のうち塩基性安定剤を含有するものについては、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂または蒸留等で除去することが好ましい。
このため、特定ジヒドロキシ化合物または前記その他のジヒドロキシ化合物のうち塩基性安定剤を含有するものについては、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂または蒸留等で除去することが好ましい。
また、本発明で用いられる特定ジヒドロキシ化合物は、水分の存在下では、酸素によって徐々に酸化されやすい。従って、保管または製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
(炭酸ジエステル)
本発明のポリカーボネート樹脂は、上述した特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(7)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明のポリカーボネート樹脂は、上述した特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(7)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
前記式(7)において、A1およびA2は、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基または置換もしくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。A1およびA2の好ましいものは置換もしくは無置換の芳香族炭化水素基であり、より好ましいのは無置換の芳香族炭化水素基である。
前記式(7)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)およびジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ−t−ブチルカーボネート等が挙げられる。中でも好ましくはジフェニルカーボネートまたは置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。
なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、不純物が重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、不純物が重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
<エステル交換反応触媒>
本発明のポリカーボネート樹脂は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させて製造される。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。
本発明のポリカーボネート樹脂は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させて製造される。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。
前記エステル交換反応の際には、エステル交換反応触媒存在下で重縮合を行うが、本発明のポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート
樹脂の品質に非常に大きな影響を与え得る。
樹脂の品質に非常に大きな影響を与え得る。
用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。
前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でも重合活性と得られるポリカーボネート樹脂の色相の観点から、リチウム化合物が好ましい。
前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。中でもマグネシウム化合物、カルシウム化合物またはバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も好ましくはカルシウム化合物である。
なお、前記の1族金属化合物及び/又は2族金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
前記の塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メ
チルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
チルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
前記のアミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリンおよびグアニジン等が挙げられる。
上記重合触媒の使用量は、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmolが好ましく、より好ましくは0.5μmol〜100μmolであり、特に1μmol〜50μmolが好ましい。
中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは5μmol以下で、特に好ましくは3μmol以下である。
中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは5μmol以下で、特に好ましくは3μmol以下である。
触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネート樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られたポリカーボネート樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂の色相の悪化または成形加工時の樹脂の着色を招く可能性がある。
ただし、1族金属の中でもナトリウム、カリウムまたはセシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂中のこれらの金属の化合物の合計量は、金属量として、1重量ppm以下であることが好ましく、さらには0.5重量ppm以下であることが好ましい。
<ポリカーボネート樹脂の製造方法>
本発明のポリカーボネート樹脂は、特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって得られる。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上であり、その上限は通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上120℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足する可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相や熱安定性に悪影響を及ぼす可能性がある。
本発明のポリカーボネート樹脂は、特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって得られる。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上であり、その上限は通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上120℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足する可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相や熱安定性に悪影響を及ぼす可能性がある。
本発明のポリカーボネート樹脂の原料である特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと混合する操作は、酸素濃度10vol%以下、更には0.0001vol%〜10vol%、中でも0.0001vol%〜5vol%、特には0.0001vol%〜1vol%の雰囲気下で行うことが、色相悪化防止の観点から好まし
い。
い。
本発明のポリカーボネート樹脂を得るためには、反応に用いる特定ジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルを0.90〜1.20のモル比率で用いることが好ましく、さらに好ましくは、0.95〜1.10のモル比率である。このモル比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成形時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。
また、このモル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネート樹脂の製造が困難となる場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相や耐候性を悪化させる可能性がある。さらには、特定ジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、成形時の汚れや臭気の問題を招く場合があり、好ましくない。
本発明において、ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、通常、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよいが、より少ない熱履歴でポリカーボネート樹脂が得られ、生産性にも優れている連続式が好ましい。
重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが重合速度の制御や得られるポリカーボネート樹脂の品質の観点から重要である。例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量や末端基を持つポリマーが得られなかったりして結果的に本発明の目的を達成することができない可能性がある。
重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが重合速度の制御や得られるポリカーボネート樹脂の品質の観点から重要である。例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量や末端基を持つポリマーが得られなかったりして結果的に本発明の目的を達成することができない可能性がある。
更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることが有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45〜180℃であり、好ましくは80〜150℃、特に好ましくは100〜130℃である。冷媒の温度が高すぎると還流量が減り、その効果が低下し、逆に低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の色相を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。本発明のポリカーボネート樹脂は、触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましいが、重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制することが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。
本発明のポリカーボネート樹脂の製造に使用される反応器は、上述の通り、少なくとも
2つ以上であればよいが、生産効率などの観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは4つである。本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていくなどしてもよい。
2つ以上であればよいが、生産効率などの観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは4つである。本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていくなどしてもよい。
本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、好ましくは水溶液で供給する。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。具体的には、第1段目の反応は、重合反応器の内温の最高温度として、130〜250℃、好ましくは150〜240℃、更に好ましくは170〜230℃で、1〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPa(絶対圧力)の圧力下、0.1〜10時間、好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。具体的には、第1段目の反応は、重合反応器の内温の最高温度として、130〜250℃、好ましくは150〜240℃、更に好ましくは170〜230℃で、1〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPa(絶対圧力)の圧力下、0.1〜10時間、好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を200Pa以下にして、内温の最高温度210〜270℃、好ましくは220〜250℃で、通常0.1〜10時間、好ましくは1〜6時間、特に好ましくは0.5〜3時間行う。
所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると色調が悪化する傾向にある。特にポリカーボネート樹脂の着色や熱劣化を抑制し、色相の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が250℃未満、特に220〜245℃であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると色調が悪化する傾向にある。特にポリカーボネート樹脂の着色や熱劣化を抑制し、色相の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が250℃未満、特に220〜245℃であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じ精製を行った後、炭酸ジフェニルやビスフェノールA等の原料として再利用することが好ましい。
本発明のポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
本発明のポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
押出機を使用した場合、押出機において、残存モノマーの減圧脱揮や、通常知られている熱安定剤、中和剤、紫外線吸収剤、光安定剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練を行うこともできる。
押出機中の溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常200〜300℃、好ましくは210〜280℃、更に好ましくは220〜270℃である。溶融混練温度が200℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。300℃より高いと、ポリカーボネート樹脂の熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、ガスの発生を招く。
押出機中の溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常200〜300℃、好ましくは210〜280℃、更に好ましくは220〜270℃である。溶融混練温度が200℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。300℃より高いと、ポリカーボネート樹脂の熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、ガスの発生を招く。
このようにして得られた本発明のポリカーボネート樹脂の分子量は、還元粘度で表すことができ、還元粘度は、通常0.30dL/g以上であり、0.35dL/g以上が好ま
しく、還元粘度の上限は、1.20dL/g以下、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。なお、ポリカーボネート樹脂の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の測定方法の詳細は実施例の項で記載する。
しく、還元粘度の上限は、1.20dL/g以下、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。なお、ポリカーボネート樹脂の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の測定方法の詳細は実施例の項で記載する。
本発明のポリカーボネート樹脂の溶融粘度は300〜3000Pa・sが好ましく、さらには400〜2800Pa・sが好ましく、特に500Pa・s〜2500Pa・sが好ましい。ポリカーボネート樹脂の溶融粘度が上記範囲より低いと、ポリカーボネート樹脂が脆くなり、十分な機械物性を有する材料とならない。一方、溶融粘度が上記範囲よりも高いと、成形加工時に流動性が不足し、成形品の外観が損なわれたり、寸法精度が悪化したりする。また、剪断発熱により樹脂温度が上昇して、樹脂が着色したり発泡したりする懸念がある。なお、本明細書において溶融粘度とは、キャピラリーレオメーター[東洋精機(株)製]を用いて、測定温度240℃、剪断速度91.2sec−1における溶融粘度を示す。その測定方法の詳細は実施例の項で記載する。
本発明のポリカーボネート樹脂のガラス転移温度は80℃以上、180℃以下であることが好ましく、さらには90℃以上、160℃以下が好ましく、特に95℃以上、140℃以下が好ましい。ポリカーボネート樹脂のガラス転移温度が低すぎると、高温下や高湿下において成形品が変形するなどして、使用に耐えうる耐熱性を満足できない。一方、ポリカーボネート樹脂のガラス転移温度が過度に高いと、成形加工の際に温度を高くせざるを得ず、ポリカーボネート樹脂の分子量低下や着色などの熱劣化を招いたり、ガスの発生により成形品の外観を損ねるおそれがある。なお、ポリカーボネート樹脂のガラス転移温度は示差走査熱量計(DSC)を用いて測定される。測定条件の詳細は実施例の項で記載する。
<ポリカーボネート樹脂の添加剤>
(リン系化合物)
本発明のポリカーボネート樹脂には、重合触媒を失活させ、さらに高温下でのポリカーボネート樹脂の着色を抑制するために添加された、リン系化合物を含有することが好ましい。このリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。特には亜リン酸、ホスホン酸、ホスホン酸エステルが好ましい。
(リン系化合物)
本発明のポリカーボネート樹脂には、重合触媒を失活させ、さらに高温下でのポリカーボネート樹脂の着色を抑制するために添加された、リン系化合物を含有することが好ましい。このリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。特には亜リン酸、ホスホン酸、ホスホン酸エステルが好ましい。
ホスホン酸としては、ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、4−メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物などが挙げられる。
ホスホン酸エステルとしては、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2−エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン
酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
酸性リン酸エステルとしては、リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2−エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、またはジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩などが挙げられる。
脂肪族環状亜リン酸エステルは、リン原子を含む環状構造中に芳香族基を含まない亜リン酸エステル化合物と定義する。例えば、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,6−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマーなどジヒドロキシ化合物とペンタエリスリトールジホスファイトからなるポリマー型の化合物などが挙げられる。
上記の中でも触媒失活と着色抑制の効果が優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特にホスホン酸エステルが好ましい。また、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえってポリカーボネート樹脂が着色してしまうため、リン系化合物の含有量は、ポリカーボネート樹脂中のリン原子の含有量として0.1重量ppm以上、8重量ppm以下とすることが好ましく、さらには0.3重量ppm以上、6重量ppm以下が好ましく、特には0.5重量ppm以上、4重量ppm以下が好ましい。
前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえってポリカーボネート樹脂が着色してしまうため、リン系化合物の含有量は、ポリカーボネート樹脂中のリン原子の含有量として0.1重量ppm以上、8重量ppm以下とすることが好ましく、さらには0.3重量ppm以上、6重量ppm以下が好ましく、特には0.5重量ppm以上、4重量ppm以下が好ましい。
前記リン系化合物は前述のとおり、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。特に、ポリカーボネート樹脂を重合後に溶融状態のまま押出機に供給し、ただちに前記リン系化合物を樹脂に添加することが最も効果的である。さらに、触媒を失活させた状態で、押出機で真空ベントにより脱揮処理を行うと、効率的に低分子成分を脱揮除去することができる。
(ヒンダードフェノール化合物)
本発明のポリカーボネート樹脂には、ヒンダードフェノール化合物も含有することで、ポリカーボネート樹脂のさらなる色調向上が期待できる。
ヒンダードフェノール系化合物としては、具体的には、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−t
ert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル
−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3
,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などが挙げられる。
本発明のポリカーボネート樹脂には、ヒンダードフェノール化合物も含有することで、ポリカーボネート樹脂のさらなる色調向上が期待できる。
ヒンダードフェノール系化合物としては、具体的には、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−t
ert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル
−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3
,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などが挙げられる。
これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
本発明のポリカーボネート樹脂の上記のヒンダードフェノール化合物の含有量は、ポリカーボネート樹脂を100重量部とした場合、0.001重量部〜1重量部が好ましく、0.005重量部〜0.5重量部がより好ましく、0.01重量部〜0.3重量部がさらに好ましい。
なお、ヒンダードフェノール化合物や以下の酸化防止剤についても、リン系化合物と同様に、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。
本発明のポリカーボネート樹脂の上記のヒンダードフェノール化合物の含有量は、ポリカーボネート樹脂を100重量部とした場合、0.001重量部〜1重量部が好ましく、0.005重量部〜0.5重量部がより好ましく、0.01重量部〜0.3重量部がさらに好ましい。
なお、ヒンダードフェノール化合物や以下の酸化防止剤についても、リン系化合物と同様に、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。
(酸化防止剤)
本発明のポリカーボネート樹脂には、酸化防止の目的で、通常知られている酸化防止剤を添加することもできる。
本発明のポリカーボネート樹脂には、酸化防止の目的で、通常知られている酸化防止剤を添加することもできる。
酸化防止剤としては、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。
これらの酸化防止剤は、1種を単独で用いても良く、2種以上を併用してもよい。これらの酸化防止剤の配合量は、ポリカーボネート樹脂を100重量部とした場合、0.0001重量部〜0.1重量部が好ましく、0.0005重量部〜0.08重量部がより好ましく、0.001重量部〜0.05重量部がさらに好ましい。
(ポリカーボネート樹脂組成物)
本発明のポリカーボネート樹脂は、例えば、芳香族ポリカーボネート樹脂、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
更に、本発明のポリカーボネート樹脂は、これらのその他の樹脂成分と共に樹脂組成物に通常用いられる核剤、難燃剤、難燃助剤、無機充填剤、衝撃改良剤、加水分解抑制剤、発泡剤、染顔料等を添加してポリカーボネート樹脂組成物とすることができる。
本発明のポリカーボネート樹脂は、例えば、芳香族ポリカーボネート樹脂、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
更に、本発明のポリカーボネート樹脂は、これらのその他の樹脂成分と共に樹脂組成物に通常用いられる核剤、難燃剤、難燃助剤、無機充填剤、衝撃改良剤、加水分解抑制剤、発泡剤、染顔料等を添加してポリカーボネート樹脂組成物とすることができる。
(ポリカーボネート樹脂の成形方法)
本発明のポリカーボネート樹脂及びこれを含む樹脂組成物は、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形品とすることができ、色相、透明性、耐候性、耐熱性、及び機械的強度に優れた成形品を得ることができる。
本発明のポリカーボネート樹脂及びこれを含む樹脂組成物は、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形品とすることができ、色相、透明性、耐候性、耐熱性、及び機械的強度に優れた成形品を得ることができる。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
[評価方法]
以下において、ポリカーボネート樹脂の物性ないし特性の評価は次の方法により行った。
[評価方法]
以下において、ポリカーボネート樹脂の物性ないし特性の評価は次の方法により行った。
(1)1,4−シクロヘキサンジメタノール(CHDM)のトランス比率の測定
約0.2gのCHDMを5mLのアセトニトリルに溶解させて、ガスクロマトグラフィーを測定し、シス体とトランス体に由来するピークの面積の比からトランス比率を求めた。ガスクロマトグラフィーの測定条件は、次のとおりである。
・カラム:アジレント・テクノロジー社製 DB−1(内径250μm、長さ30m、膜圧0.25μm)
・オーブン温度:150℃ 2分保持 → 昇温5℃/min → 200℃ → 昇温10℃/min → 320℃ 6分保持
・検出器:水素炎イオン化検出器
・注入口温度:250℃
・検出器温度:320℃
・キャリアガス:ヘリウム
・試料注入量:1μL
・スプリット比:50/1
約0.2gのCHDMを5mLのアセトニトリルに溶解させて、ガスクロマトグラフィーを測定し、シス体とトランス体に由来するピークの面積の比からトランス比率を求めた。ガスクロマトグラフィーの測定条件は、次のとおりである。
・カラム:アジレント・テクノロジー社製 DB−1(内径250μm、長さ30m、膜圧0.25μm)
・オーブン温度:150℃ 2分保持 → 昇温5℃/min → 200℃ → 昇温10℃/min → 320℃ 6分保持
・検出器:水素炎イオン化検出器
・注入口温度:250℃
・検出器温度:320℃
・キャリアガス:ヘリウム
・試料注入量:1μL
・スプリット比:50/1
(2)還元粘度の測定
ポリカーボネート樹脂のサンプルを塩化メチレンに溶解させ、0.6g/dLの濃度のポリカーボネート樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t0と溶液の通過時間tから次式(i)より相対粘度ηrelを求め、相対粘度ηrelから次式(ii)より比粘度ηspを求めた。
ポリカーボネート樹脂のサンプルを塩化メチレンに溶解させ、0.6g/dLの濃度のポリカーボネート樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t0と溶液の通過時間tから次式(i)より相対粘度ηrelを求め、相対粘度ηrelから次式(ii)より比粘度ηspを求めた。
ηrel=t/t0 ・・・(i)
ηsp=(η−η0)/η0=ηrel−1 ・・・(ii)
比粘度ηspを濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
ηsp=(η−η0)/η0=ηrel−1 ・・・(ii)
比粘度ηspを濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(3)溶融粘度の測定
ポリカーボネート樹脂のペレットを90℃で5時間以上、真空乾燥した。乾燥した試料を用いて、キャピラリーレオメーター(東洋精機(株)製)で測定を行った。測定温度は240℃とし、剪断速度9.12〜1824sec−1間で溶融粘度を測定し、91.2sec−1における溶融粘度の値を用いた。ダイス径1mmφ×10mmLのオリフィスを使用した。
ポリカーボネート樹脂のペレットを90℃で5時間以上、真空乾燥した。乾燥した試料を用いて、キャピラリーレオメーター(東洋精機(株)製)で測定を行った。測定温度は240℃とし、剪断速度9.12〜1824sec−1間で溶融粘度を測定し、91.2sec−1における溶融粘度の値を用いた。ダイス径1mmφ×10mmLのオリフィスを使用した。
(4)ガラス転移温度の測定
示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。ポリカーボネート樹脂試料約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で室温から200℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。ポリカーボネート樹脂試料約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で室温から200℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(5)ポリカーボネート樹脂の成形、および機械物性の測定
ポリカーボネート樹脂のペレットを90℃で5時間以上、真空乾燥した。乾燥したポリカーボネート樹脂のペレットを射出成形機(日本製鋼所社製J75EII型)に供給し、最終シリンダーの温度を240℃、成形サイクル23秒間の条件で各種試験片を成形した。
(荷重たわみ温度)
ISO75に準拠し、荷重1.8MPaの測定を行った。
(曲げ弾性率)
ISO178に準拠して測定した。
(ノッチ付きシャルピー衝撃強さ)
ISO179に準拠して測定した。ノッチ付きの金型を使用して、成形時にノッチを入れた。
(耐面衝撃性)
100mm角、厚み2mm平板を試験片に用いて、高速パンクチャー衝撃試験機ハイドロショットHITS−P10[(株)島津製作所製]にて打ち抜き試験を行った。試験温度−20℃、打ち抜き速度4.4m/sec、打撃ポンチ径20mm、サポート径40mmとした。10枚の試験片を用いて測定を行い、脆性破壊となった割合(脆性破壊率)で耐面衝撃性を評価した。脆性破壊率が低いほど耐面衝撃性が優れていることを示す。
ポリカーボネート樹脂のペレットを90℃で5時間以上、真空乾燥した。乾燥したポリカーボネート樹脂のペレットを射出成形機(日本製鋼所社製J75EII型)に供給し、最終シリンダーの温度を240℃、成形サイクル23秒間の条件で各種試験片を成形した。
(荷重たわみ温度)
ISO75に準拠し、荷重1.8MPaの測定を行った。
(曲げ弾性率)
ISO178に準拠して測定した。
(ノッチ付きシャルピー衝撃強さ)
ISO179に準拠して測定した。ノッチ付きの金型を使用して、成形時にノッチを入れた。
(耐面衝撃性)
100mm角、厚み2mm平板を試験片に用いて、高速パンクチャー衝撃試験機ハイドロショットHITS−P10[(株)島津製作所製]にて打ち抜き試験を行った。試験温度−20℃、打ち抜き速度4.4m/sec、打撃ポンチ径20mm、サポート径40mmとした。10枚の試験片を用いて測定を行い、脆性破壊となった割合(脆性破壊率)で耐面衝撃性を評価した。脆性破壊率が低いほど耐面衝撃性が優れていることを示す。
(6)湿熱条件下での耐久性評価
前記(5)の成形条件で60mm角、厚み3mmの平板を成形した。得られた成形品を80℃の温水に浸漬し、10時間処理した。その後、加熱を止めて徐冷し、常温に戻ったところで成形品を取り出した。成形品の外観に異常が生じる場合、成形品が白濁したり、ひび割れしたりするため、外観の悪化の程度をヘイズで評価した。初期および上記の温水処理後のヘイズ測定には濁度計COH400[日本電色工業(株)製]を用いた。なお、ヘイズの値は、低いほど透明度が高いことを表す。本願発明においては、初期のヘイズと温水処理後のヘイズの差の値が小さいほど耐久性が高いものである。
前記(5)の成形条件で60mm角、厚み3mmの平板を成形した。得られた成形品を80℃の温水に浸漬し、10時間処理した。その後、加熱を止めて徐冷し、常温に戻ったところで成形品を取り出した。成形品の外観に異常が生じる場合、成形品が白濁したり、ひび割れしたりするため、外観の悪化の程度をヘイズで評価した。初期および上記の温水処理後のヘイズ測定には濁度計COH400[日本電色工業(株)製]を用いた。なお、ヘイズの値は、低いほど透明度が高いことを表す。本願発明においては、初期のヘイズと温水処理後のヘイズの差の値が小さいほど耐久性が高いものである。
[使用原料]
以下の実施例及び比較例で用いた化合物の略号、および製造元は次の通りである。
・ISB:イソソルビド[ロケットフルーレ社製]
・CHDM:1,4−シクロヘキサンジメタノール 各実施例および比較例にて詳細を述べる。
・DPC:ジフェニルカーボネート[三菱化学(株)製]
・Irg1010:ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][BASF社製]
・亜リン酸[太平化学産業(株)製]
・AS2112:トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト[(株)ADEKA製]
・E−275:エチレングリコールジステアレート[日油(株)製]
以下の実施例及び比較例で用いた化合物の略号、および製造元は次の通りである。
・ISB:イソソルビド[ロケットフルーレ社製]
・CHDM:1,4−シクロヘキサンジメタノール 各実施例および比較例にて詳細を述べる。
・DPC:ジフェニルカーボネート[三菱化学(株)製]
・Irg1010:ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][BASF社製]
・亜リン酸[太平化学産業(株)製]
・AS2112:トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト[(株)ADEKA製]
・E−275:エチレングリコールジステアレート[日油(株)製]
[ポリカーボネート樹脂の製造例]
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ISB、CHDM、DPC、および酢酸カルシウム1水和物を、モル比率でISB/CHDM/DPC/酢酸カルシウム=0.500/0.500/1.005/1.50×10−6になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005〜0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を210℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、210℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ISB、CHDM、DPC、および酢酸カルシウム1水和物を、モル比率でISB/CHDM/DPC/酢酸カルシウム=0.500/0.500/1.005/1.50×10−6になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005〜0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を210℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、210℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温220℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレット化を行い、ポリカーボネート樹脂を得た。
得られたポリカーボネート樹脂ペレット100重量部に対して、亜リン酸を6.5×10−5重量部、Irg1010を0.1重量部、AS2112を0.05重量部、E−275を0.3重量部添加して、均一になるようにブレンドし、ベント口を1つ有するベント式二軸押出機に供給し、残存低分子成分を減圧脱揮しながら混練した。
[実施例1]
前述のポリカーボネート樹脂の製造例において、江▲蘇▼康恒化工有限公司(JIANGSU KANGHENG CHEMICAL CO.,LTD.)製のCHDM(トランス比率:75%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。結果を表1に示した。
前述のポリカーボネート樹脂の製造例において、江▲蘇▼康恒化工有限公司(JIANGSU KANGHENG CHEMICAL CO.,LTD.)製のCHDM(トランス比率:75%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。結果を表1に示した。
[実施例2]
前述のポリカーボネート樹脂の製造例において、江▲蘇▼康恒化工有限公司(JIANGSU KANGHENG CHEMICAL CO.,LTD.)製のCHDM(トランス比率:78%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。実施例1よりもTgや荷重たわみ温度が向上し、シャルピー衝撃試験の値も向上した。
前述のポリカーボネート樹脂の製造例において、江▲蘇▼康恒化工有限公司(JIANGSU KANGHENG CHEMICAL CO.,LTD.)製のCHDM(トランス比率:78%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。実施例1よりもTgや荷重たわみ温度が向上し、シャルピー衝撃試験の値も向上した。
[実施例3]
江▲蘇▼康恒化工有限公司(JIANGSU KANGHENG CHEMICAL CO.,LTD.)製のCHDMを減圧蒸留した(塔頂温度139〜148℃、圧力100〜400Pa)。得られたCHDMのトランス比率は82%であった。前述のポリカーボネート樹脂の製造例に従ってポリカーボネート樹脂を取得し、各種物性評価を行った。実施例1、2よりもさらに耐熱性と耐衝撃性が向上した。
江▲蘇▼康恒化工有限公司(JIANGSU KANGHENG CHEMICAL CO.,LTD.)製のCHDMを減圧蒸留した(塔頂温度139〜148℃、圧力100〜400Pa)。得られたCHDMのトランス比率は82%であった。前述のポリカーボネート樹脂の製造例に従ってポリカーボネート樹脂を取得し、各種物性評価を行った。実施例1、2よりもさらに耐熱性と耐衝撃性が向上した。
[実施例4]
前述のポリカーボネート樹脂の製造例において、Acros Organics社製のCHDM(トランス比率:98%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。実施例1〜3よりもさらに耐熱性と耐衝撃性が向上した。面衝撃試験による脆性破壊率も低下した。
前述のポリカーボネート樹脂の製造例において、Acros Organics社製のCHDM(トランス比率:98%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。実施例1〜3よりもさらに耐熱性と耐衝撃性が向上した。面衝撃試験による脆性破壊率も低下した。
[実施例5]
成形時の流動性を向上させるために分子量を低くした以外は実施例4と同様に行った。分子量を低下させても、高い耐熱性と耐衝撃性を保持していた。
[比較例1]
前述のポリカーボネート樹脂の製造例において、SK Chemical社製のCHDM(トランス比率:68%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。実施例と比較して、耐熱性と耐衝撃性が低かった。
成形時の流動性を向上させるために分子量を低くした以外は実施例4と同様に行った。分子量を低下させても、高い耐熱性と耐衝撃性を保持していた。
[比較例1]
前述のポリカーボネート樹脂の製造例において、SK Chemical社製のCHDM(トランス比率:68%)を用いた。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。実施例と比較して、耐熱性と耐衝撃性が低かった。
[比較例2]
成形時の流動性を向上させるために分子量を低くした以外は比較例1と同様に行った。耐面衝撃性試験においては、比較例1よりも脆性破壊率が悪化した。
[比較例3]
次の方法に従ってトランス比率42%のCHDMを合成した。
成形時の流動性を向上させるために分子量を低くした以外は比較例1と同様に行った。耐面衝撃性試験においては、比較例1よりも脆性破壊率が悪化した。
[比較例3]
次の方法に従ってトランス比率42%のCHDMを合成した。
流通式管型反応器に6%Ru−3%Pt−7%Sn/活性炭成形触媒を充填し、1,4−シクロヘキサンジカルボン酸水溶液と水素を流通させて、水素化反応を行った。溶解槽にて1,4−シクロヘキサンジカルボン酸(東京化成工業株式会社製、純度99%、トランス体含有率:25%)と蒸留水(和光純薬工業株式会社製、純度100%)を混合し、150℃に昇温して、1,4−シクロヘキサンジカルボン酸の濃度が20重量%の水溶液を調製した。この水溶液を送液ポンプで反応器へ連続的に供給した。水素化反応に使用する水素(純度99.9%以上)は、供給ラインに流量制御計を設け、流量を制御しながら反応器に供給した。反応条件としては、反応温度を220℃、反応器内の全圧は12MPaとし、20重量%の1,4−シクロヘキサンジカルボン酸水溶液を反応器へ500mL/hrで供給し、水素流量は110NL/hrとした。このときの接触時間は0.75h
rであった。なお、本接触時間は触媒充填層体積を1,4−シクロヘキサンジカルボン酸水溶液流量で除することで算出した、いわゆる空塔ベースでの滞留時間である。反応器出口において、CHDM含有液を抜き出し、この液を蒸留精製して、CHDMを得た。
rであった。なお、本接触時間は触媒充填層体積を1,4−シクロヘキサンジカルボン酸水溶液流量で除することで算出した、いわゆる空塔ベースでの滞留時間である。反応器出口において、CHDM含有液を抜き出し、この液を蒸留精製して、CHDMを得た。
上記の方法で合成したCHDMを用いて、前述のポリカーボネート樹脂の製造例に従って、ポリカーボネート樹脂を得た。得られたポリカーボネート樹脂を前述の方法にて各種物性の評価を行った。耐熱性の低下とともに、耐面衝撃性が著しく低下した。
以上の結果から、通常、耐熱性と耐衝撃性はトレードオフとなる場合が多いが、本発明のポリカーボネート樹脂においては、CHDMのトランス比率が高いほど耐熱性が向上するとともに、耐衝撃性も向上することが分かった。また、耐熱性と機械物性がともに改善したことから、湿熱条件下での耐久性も向上した。
以上の結果から、通常、耐熱性と耐衝撃性はトレードオフとなる場合が多いが、本発明のポリカーボネート樹脂においては、CHDMのトランス比率が高いほど耐熱性が向上するとともに、耐衝撃性も向上することが分かった。また、耐熱性と機械物性がともに改善したことから、湿熱条件下での耐久性も向上した。
本発明によれば、色相、透明性、耐熱性、耐候性、及び機械的強度に優れ、電気・電子部品、自動車用部品、ガラス代替用途等の射出成形分野、フィルム、シート分野、ボトル、容器分野、さらには、カメラレンズ、ファインダーレンズ、CCDやCMOS用レンズなどのレンズ用途、液晶や有機ELディスプレイなどに利用される位相差フィルム、拡散シート、偏光フィルムなどのフィルム、シート、光ディスク、光学材料、光学部品、色素及び電荷移動剤等を固定化するバインダー用途といった幅広い分野へ適用可能なポリカーボネート樹脂を提供することができる。
Claims (7)
- 該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、前記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位のモル分率が10〜90mol%であり、前記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位のモル分率が10〜90mol%である請求項1に記載の共重合ポリカーボネート樹脂。
- 該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対して、芳香族ジヒドロキシ化合物に由来する構造単位のモル分率が10mol%未満である請求項1または2に記載の共重合ポリカーボネート樹脂。
- 該ポリカーボネート樹脂のガラス転移温度が80℃以上、180℃以下であることを特徴とする請求項1乃至3のいずれか1項に記載の共重合ポリカーボネート樹脂。
- 測定温度240℃、剪断速度91.2sec−1における該ポリカーボネート樹脂の溶融粘度が300Pa・s以上、3000Pa・s以下であることを特徴とする請求項1乃至4のいずれか1項に記載の共重合ポリカーボネート樹脂。
- 該ポリカーボネート樹脂が、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、及び脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種のリン系化合物を含有することを特徴とする請求項1乃至5のいずれか1項に記載の共重合ポリカーボネート樹脂。
- 該ポリカーボネート樹脂がヒンダードフェノール化合物を含有することを特徴とする請求項1乃至6のいずれか1項に記載の共重合ポリカーボネート樹脂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013181221A JP2015048421A (ja) | 2013-09-02 | 2013-09-02 | ポリカーボネート樹脂 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013181221A JP2015048421A (ja) | 2013-09-02 | 2013-09-02 | ポリカーボネート樹脂 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015048421A true JP2015048421A (ja) | 2015-03-16 |
Family
ID=52698704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013181221A Pending JP2015048421A (ja) | 2013-09-02 | 2013-09-02 | ポリカーボネート樹脂 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015048421A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017165892A (ja) * | 2016-03-17 | 2017-09-21 | 三菱ケミカル株式会社 | 透明樹脂フィルム |
WO2018116607A1 (ja) * | 2016-12-19 | 2018-06-28 | 三菱エンジニアリングプラスチックス株式会社 | ポリカーボネート樹脂組成物及び成形品 |
CN115386077A (zh) * | 2022-06-07 | 2022-11-25 | 华东理工大学 | 聚碳酸酯共聚物及制造方法 |
-
2013
- 2013-09-02 JP JP2013181221A patent/JP2015048421A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017165892A (ja) * | 2016-03-17 | 2017-09-21 | 三菱ケミカル株式会社 | 透明樹脂フィルム |
WO2018116607A1 (ja) * | 2016-12-19 | 2018-06-28 | 三菱エンジニアリングプラスチックス株式会社 | ポリカーボネート樹脂組成物及び成形品 |
US10975239B2 (en) | 2016-12-19 | 2021-04-13 | Mitsubishi Engineering-Plastics Corporation | Polycarbonate resin composition and molded article |
CN115386077A (zh) * | 2022-06-07 | 2022-11-25 | 华东理工大学 | 聚碳酸酯共聚物及制造方法 |
CN115386077B (zh) * | 2022-06-07 | 2024-05-14 | 华东理工大学 | 聚碳酸酯共聚物及制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015022B2 (ja) | ポリカーボネート樹脂組成物及び成形品 | |
KR20120117756A (ko) | 폴리카보네이트 수지 조성물 그리고 이것을 성형하여 얻어지는 성형체, 필름, 플레이트 및 사출 성형품 | |
JP6609896B2 (ja) | ポリカーボネート樹脂組成物及び成形品 | |
WO2010061928A1 (ja) | ジヒドロキシ化合物を使用したポリカーボネートの製造方法 | |
JP5782691B2 (ja) | ポリカーボネート樹脂組成物及び成形品 | |
JP6146989B2 (ja) | ポリカーボネート樹脂組成物およびその製造方法 | |
JP2014080602A (ja) | ポリカーボネート樹脂 | |
JP6507495B2 (ja) | ポリカーボネート樹脂組成物 | |
JP2015048421A (ja) | ポリカーボネート樹脂 | |
JP6349849B2 (ja) | ポリカーボネート樹脂 | |
JP5786551B2 (ja) | ポリカーボネート樹脂組成物及び成形品 | |
JP2017088774A (ja) | 熱可塑性樹脂組成物、及びこれを用いた成形品 | |
JP5644243B2 (ja) | ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形品 | |
JP6264809B2 (ja) | ポリカーボネート樹脂の製造方法 | |
JP6179318B2 (ja) | ポリカーボネート樹脂の製造方法 | |
JP6163794B2 (ja) | ポリカーボネートの製造方法 | |
JP6146151B2 (ja) | ポリカーボネート樹脂の製造方法 | |
JP4072670B2 (ja) | ポリカーボネート樹脂組成物 | |
JP2017014368A (ja) | ポリカーボネート樹脂組成物、及びその成形体 | |
JP2015129212A (ja) | 導光板 | |
JP2015183086A (ja) | ポリカーボネート樹脂の製造方法 | |
JP2014169396A (ja) | ポリカーボネート樹脂製造方法 | |
JP5907232B2 (ja) | ポリカーボネート樹脂 | |
JP6079067B2 (ja) | 共重合ポリカーボネート | |
JP2015187204A (ja) | ポリカーボネート樹脂からなる押出成形品 |