[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011130685A - Closed circulation type culture method for fishes or shellfishes - Google Patents

Closed circulation type culture method for fishes or shellfishes Download PDF

Info

Publication number
JP2011130685A
JP2011130685A JP2009291041A JP2009291041A JP2011130685A JP 2011130685 A JP2011130685 A JP 2011130685A JP 2009291041 A JP2009291041 A JP 2009291041A JP 2009291041 A JP2009291041 A JP 2009291041A JP 2011130685 A JP2011130685 A JP 2011130685A
Authority
JP
Japan
Prior art keywords
tank
water
breeding
activated sludge
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009291041A
Other languages
Japanese (ja)
Other versions
JP5847376B2 (en
Inventor
Yoshinari Fujii
能成 藤井
Shin Sakikawa
心 先川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEA PLUS CORP
Original Assignee
SEA PLUS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEA PLUS CORP filed Critical SEA PLUS CORP
Priority to JP2009291041A priority Critical patent/JP5847376B2/en
Publication of JP2011130685A publication Critical patent/JP2011130685A/en
Application granted granted Critical
Publication of JP5847376B2 publication Critical patent/JP5847376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for rearing fishes or shellfishes (cultured fishes) in a closed circulation type culture apparatus, by which the installation can be simplified to more largely lower the cost of the installation, and labors and costs for operation maintenance than those of conventional techniques, and the characteristic smells and flesh qualities of the cultured fishes can remarkably be improved. <P>SOLUTION: The method for rearing the cultured fishes or shellfishes in the closed circulation type culture apparatus for the fishes or shellfishes with a membrane separation activated sludge treatment device as a main device for separating or degrading suspended substances and excretory substances from circulated water containing left feeds and feces extracted from rearing tanks, and ammonia, organic feces, and the like excreted from reared fishes, includes adding particular activated carbon to an aeration tank of the membrane separation activated sludge treatment device and operating the culture device. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、飼育槽の水を浄化装置に通して浄化・循環させながら魚介類を飼育する閉鎖循環式養殖装置を用いた養殖方法に関する。さらに詳しくは、膜分離活性汚泥処理装置を魚介類が排泄したアンモニアや有機性排泄物の分解除去装置とする、飼育水を循環させて食用の魚介類を陸上の飼育槽中において高密度で養殖する閉鎖循環式養殖装置を用いた養殖方法に関する。
背景技術
The present invention relates to an aquaculture method using a closed-circulation aquaculture device that raises seafood while purifying and circulating water in a breeding tank through a purification device. More specifically, the membrane-separated activated sludge treatment device is a device that decomposes and removes ammonia and organic excreta excreted by fish and shellfish, and cultivates edible fish and shellfish in aquaculture tanks on land by circulating the breeding water. The present invention relates to an aquaculture method using a closed circulation culture apparatus.
Background art

従来から、食用等の魚介類の陸上養殖は、海に近接した陸上において、海水または海水が地中に浸透した海水浸透水を、陸上の飼育槽へ多量に連続的にくみ上げて供給しつつ排水する「かけ流し方式」により行われている。あるいは、河川または湖沼などに隣接する陸上において、河川水、湖沼水または地下水等をくみ上げて飼育槽に供給しつつ排水する「かけ流し方式」により行われている。排水中には餌の残りかすや糞、粘性物質などの有機性排泄物が含まれている。したがって、特に閉鎖性水域に面している場合には、海域や湖沼の汚染を引き起こし、近接する自然界の生物相に著しい悪影響を与えるのみならず、飼育水として汲み上げている養殖場自体も水質汚染の影響を受けて、魚病発生や生育不良等の被害を受けることになる。   Conventionally, on-shore aquaculture of edible fish and shellfish is drained while supplying a large amount of seawater or seawater-penetrated water into which the seawater has penetrated into the ground on land close to the sea. This is done by the “flowing method”. Alternatively, on the land adjacent to a river or lake, etc., it is carried out by a “flowing method” in which river water, lake water, groundwater, or the like is pumped and drained while being supplied to a breeding tank. The wastewater contains organic waste such as food residue, feces, and viscous substances. Therefore, especially when facing confined waters, it causes pollution of the seas and lakes, and not only has a significant adverse effect on the nearby natural biota, but also the farms that are pumped up as breeding water itself. As a result, it will be affected by the occurrence of fish diseases and poor growth.

さらに、従来の「掛け流し方式」では、取水された飼育水中に魚病の原因となる細菌やウィルスなどが生存していることがあるので、しばしば魚病が発生し大きな被害を受けている。特に最近は、一般的にも周辺水域の環境汚染が進んでおり、その結果、魚病の原因菌も増加しているため養殖業に大きな被害を与えている。このような問題に対して、成長を促進する化学物質に加えて、魚病対策には合成殺菌剤や抗生物質等の医薬品等が相当量使用されることになり、魚体中の残留化学物質の問題だけでなく、化学物質や医薬品等の環境中への排出も問題となっている。   Furthermore, in the conventional “run-off method”, fish disease and bacteria that cause fish disease sometimes survive in the intake water, so fish disease often occurs and is seriously damaged. Especially recently, environmental pollution in the surrounding water area has generally progressed, and as a result, the number of causative bacteria for fish diseases has increased, causing serious damage to the aquaculture industry. In response to such problems, in addition to chemical substances that promote growth, pharmaceuticals such as synthetic fungicides and antibiotics are used in a considerable amount to combat fish diseases. In addition to problems, the release of chemical substances and pharmaceuticals into the environment is also a problem.

また、「かけ流し方式」であると、海から離れた場所で海水性魚介類を養殖することが困難であった。さらには、エビ等の暖水性魚介類を養殖する場合や、魚介類の成長に最適な水温を保とうとする場合、「かけ流し方式」は温度調節のために多大なエネルギーを要するという問題もあった。   In addition, it was difficult to cultivate seawater fish and shellfish at a place away from the sea with the “pour-off method”. Furthermore, when cultivating warm-water fish and shellfish such as shrimps, or when trying to maintain the optimum water temperature for the growth of fish and shellfish, the “pour-off method” has a problem that it requires a lot of energy for temperature control. It was.

そこで近年、上述のような問題点を解決しうる方式として、飼育水を循環しつつ浄化処理をして用いる、閉鎖循環式養殖の技術に関する研究開発が種々進められ、一部、試験的な商業生産が行われるようになって来ている。   Therefore, in recent years, as a method that can solve the above-mentioned problems, various research and development related to closed-circulation aquaculture technology that uses purification water while circulating breeding water has been promoted. Production is starting to take place.

従来開発されてきた閉鎖循環式養殖装置は基本的に次のような装置から構成されている。すなわち、飼育槽から抜き出された飼育水は懸濁物質を除去するための沈殿槽または物理ろ過装置を経由して泡沫分離装置に導入される。物理ろ過には液体サイクロンやドラムフィルターが使用されている。泡沫分離装置は蛋白質や脂質などの微細な懸濁物質を除去するもので、泡沫とともに除去される物質は系外に排出される。泡沫分離装置を通過した飼育水は有機物の分解を目的とする生物処理を受け、さらに飼育魚が排泄するアンモニアを無毒化する硝化装置に供給される。生物処理は、プラスチックスや無機質の担体を充填した槽や、浄水処理に使用されている濾過装置と同様の砂とアンスラサイトを濾材とする濾層等の担体表面に、BODやアンモニアの分解に効率的に作用する微生物を繁殖させた生物濾過が用いられている。硝化処理をされた飼育水は温度調節装置を経由して紫外線殺菌処理装置を通過し、酸素溶入装置で溶存酸素濃度を調節されて、飼育槽に供給される。   Conventionally developed closed-circulation aquaculture devices are basically composed of the following devices. That is, the breeding water extracted from the breeding tank is introduced into the foam separation device via a sedimentation tank or a physical filtration device for removing suspended substances. Liquid cyclones and drum filters are used for physical filtration. The foam separation device removes fine suspended substances such as proteins and lipids, and the substances removed together with the foam are discharged out of the system. The breeding water that has passed through the foam separation device is subjected to biological treatment for the purpose of decomposing organic matter, and further supplied to a nitrification device that detoxifies ammonia excreted by the breeding fish. Biological treatment is used to decompose BOD and ammonia on tank surfaces filled with plastics and inorganic carriers, and on the carrier surfaces such as filter layers using sand and anthracite as filter media used for water purification treatment. Biological filtration is used to propagate microorganisms that act efficiently. The breeding water subjected to nitrification passes through the ultraviolet sterilization treatment device via the temperature control device, the dissolved oxygen concentration is adjusted by the oxygen infusion device, and is supplied to the breeding tank.

一般的に、飼育水の循環量は1〜2時間で水槽の飼育水全量が1回入れ替わる程度に循環される。また、飼育水の約5%程度の新鮮水が供給され換水されれば、アンモニアの硝化で生成する硝酸イオン濃度を飼育魚に影響を与えない程度に維持することができて、脱窒処理等が不要とされている。さらに、閉鎖循環式養殖法で長期間運転すると飼育水の着色が進むので、そのためにも数%程度の換水が必要であると言われている。飼育水の換水が行われ難い場合には、泡沫分離−生物処理−硝化処理と並列して一部の循環水を脱窒処理する装置を設置して、処理水を硝化処理後の循環水に合流する方法も提案されている。あるいは、BOD分解と硝化を十分な能力を持った生物濾過槽で同時に行う方法もある。   Generally, the amount of breeding water is circulated so that the total amount of breeding water in the tank is changed once in 1 to 2 hours. In addition, if fresh water of about 5% of the breeding water is supplied and replaced, the nitrate ion concentration produced by nitrification of ammonia can be maintained at a level that does not affect the breeding fish. Is considered unnecessary. Furthermore, it is said that when the system is operated for a long period of time in a closed circulation culture method, the color of the breeding water advances. If it is difficult to replace breeding water, install a device to denitrify some circulating water in parallel with foam separation-biological treatment-nitrification treatment, and turn the treated water into circulated water after nitrification treatment A method of joining has also been proposed. Alternatively, there is a method in which BOD decomposition and nitrification are simultaneously performed in a biological filtration tank having sufficient capacity.

したがって、従来の閉鎖循環式養殖では、糞や餌の残りかす(残餌)等を分離し、アンモニア等の代謝物質を分解処理するために、上述のような複雑で大規模な浄化処理装置の組合せが必要である。その結果、建設費及び運転管理費がかさみ、養殖魚の生産コスト低減を困難にしているという問題がある。多種にわたる多数の設備の運転には、電力費のみならず、維持管理に修繕用備品費と同時に過大な人件費も必要となる。特に海水組成の飼育水を必要とする海水魚の場合には、その腐食性のため金属部品や電気系統などの維持管理が重要な問題となる。さらに、換水は養殖魚の生産コストを押し上げる要因の一つである。すなわち、新鮮水を供給するコストが必要であり、特に環境を考慮して人工海水を使用する陸上閉鎖循環式養殖の場合には、人工海水に使用する塩分の費用が養殖魚の生産コストに相当程度占めることになる。   Therefore, in the conventional closed-circulation aquaculture, in order to separate feces and residual food (residual food) and decompose metabolites such as ammonia, a complicated and large-scale purification treatment apparatus as described above is used. A combination is needed. As a result, there is a problem that construction costs and operation management costs are high, making it difficult to reduce the production cost of cultured fish. The operation of a large number of various facilities requires not only power costs but also excessive labor costs as well as repair equipment costs for maintenance. In particular, in the case of marine fish that require breeding water with a seawater composition, maintenance of metal parts, electrical systems, etc. becomes an important issue due to its corrosive nature. Furthermore, water exchange is one of the factors that increase the production cost of farmed fish. In other words, the cost of supplying fresh water is necessary. Especially in the case of land-based closed-loop culture using artificial seawater in consideration of the environment, the cost of salt used for artificial seawater is comparable to the production cost of cultured fish. Will occupy.

閉鎖循環式養殖の場合、飼育水中に魚病の原因となる細菌やウィルスを持ち込まなければ原理的に魚病発生の恐れはない。しかし、稚魚ないし幼魚が魚病の原因となる細菌やウィルスを潜在的に保有していることもあり、経済的に高密度で飼育することが要求され、魚種によっては細菌が増殖しやすい環境で運転され、給餌も十分に行うことなどから、細菌などが増殖しやすいという問題がある。そのため、従来は紫外線殺菌灯やオゾン処理による殺菌処理法が用いられることが多い。   In the case of closed-circulation aquaculture, in principle there is no risk of fish disease unless bacteria and viruses that cause fish disease are brought into the breeding water. However, because young fish or young fish potentially carry bacteria and viruses that cause fish disease, it is required to be kept economically at a high density, and depending on the fish species, the environment in which bacteria can easily grow Because it is driven by and fully fed, there is a problem that bacteria and the like are likely to grow. Therefore, conventionally, an ultraviolet germicidal lamp or an sterilization method using ozone treatment is often used.

しかし、紫外線による殺菌は、飼育水のように懸濁物や紫外線を吸収する有機物などが多い環境では、懸濁物や有機物に遮光ないし吸収されるため効果が限定的であり、懸濁物や有機物の濃度の変動の影響を受け、殺菌効果に不確実性が付きまとうという問題がある。また、オゾンは殺菌能力が高いものの、飼育水のように水道水などと異なって、BOD負荷が高い場合にはBODすなわち有機物等の分解に費やされる上に、海水組成中の臭素やヨウ素、その他の物質と反応して生物に悪影響を与える様々な物質を生成する。したがって、オゾン添加量を微妙に調整する必要があり、さらに、オゾン処理によるこのような副生物を処理するための工程や設備を追加する必要もある。そのため、オゾン発生装置が高価であるばかりでなく、なお一層コストが増加してしまう。   However, sterilization by ultraviolet rays has a limited effect in environments where there are many suspensions or organic matter that absorbs ultraviolet rays, such as breeding water. There is a problem that the sterilization effect is uncertain due to the influence of fluctuations in the concentration of organic matter. Also, although ozone has a high sterilizing ability, unlike breeding water, such as tap water, when BOD load is high, it is spent on the decomposition of BOD, ie organic matter, bromine and iodine in the seawater composition, etc. Reacts with other substances to produce various substances that adversely affect organisms. Therefore, it is necessary to finely adjust the amount of ozone added, and it is also necessary to add a process and equipment for treating such by-products by ozone treatment. Therefore, not only is the ozone generator expensive, but the cost further increases.

さらに、「かけ流し方式」で飼育された魚にも共通する養殖魚の問題点であるが、閉鎖循環式養殖法で飼育された魚の場合には特に、ともすると身質や臭いなどに関して天然魚に劣るとされている。その理由として、身質の違いは養殖魚の運動不足が原因ではないかと考えられており、臭い等の違いは循環水の浄化処理方法に由来する飼育水の水質にあるのではないかと想像されるがいまだ確かめられてはいない。   Furthermore, it is a problem of cultured fish that is common to fish bred in the “flow-off method”, but especially in the case of fish bred in a closed-circulation culture method, It is said to be inferior. The reason for this is thought to be that the difference in the quality is due to the lack of movement of the cultured fish, and the difference in odor is thought to be due to the quality of the breeding water derived from the purification method of the circulating water However, it has not been confirmed yet.

例えば、特許文献1の養殖装置によると、飼育水槽から引き出された水は、全量が沈殿槽に導入されてスラッジが分離され、次いで、一組となった泡沫分離槽及び硝化槽を通る。そして、この後、一部が脱窒槽を通って沈殿槽に戻され、残りは、紫外線殺菌装置を通って飼育水槽に戻される。すなわち、飼育水槽に戻る水は全て紫外線殺菌を経る。   For example, according to the aquaculture device of Patent Document 1, the entire amount of water drawn from the breeding aquarium is introduced into the settling tank to separate sludge, and then passes through a pair of foam separation tank and nitrification tank. And after this, a part is returned to a sedimentation tank through a denitrification tank, and the remainder is returned to a breeding tank through an ultraviolet sterilizer. That is, all of the water returning to the breeding tank undergoes ultraviolet sterilization.

また、本公知例には実施の一例として、沈殿槽の下部から取り出された固形分を含む高度濃縮水を、濾過膜を用いる「固液分離手段」により分離して、この後、分離した水を沈殿槽に戻す方法が示されている。なお、引用文献1の0023段落には、中空糸膜が硝化菌や脱窒菌を通さないため、分離槽内部における濾過膜の外側の部分に、硝化菌や脱窒菌を含む活性汚泥を生息させることができるとの言及があるが、活性炭を濾過膜の外側の部分に添加する運転方法については記載が無いだけでなく示唆する記述もない。   In addition, as an example of implementation in this known example, highly concentrated water containing solids taken out from the lower part of the precipitation tank is separated by “solid-liquid separation means” using a filtration membrane, and then the separated water is separated. It shows how to return to the settling tank. In addition, in paragraph 0023 of Cited Document 1, since the hollow fiber membrane does not pass nitrifying bacteria and denitrifying bacteria, the activated sludge containing nitrifying bacteria and denitrifying bacteria is allowed to inhabit the portion outside the filtration membrane inside the separation tank. However, there is no description or suggestion about the operation method of adding activated carbon to the outer part of the filtration membrane.

特許文献1の養殖装置では、大掛かりな紫外線殺菌装置を必要とする他、循環水の全量を通す大掛かりな硝化槽を必要とする。そのため、設備コスト及び運転コストを低減させることは困難である。   The aquaculture device of Patent Document 1 requires a large-scale ultraviolet sterilizer and a large-scale nitrification tank that allows the entire amount of circulating water to pass through. Therefore, it is difficult to reduce the equipment cost and the operation cost.

他方、特許文献2では、同様の養殖装置において、沈殿装置として渦巻流れを生じさせて遠心力により固液分離を行う「沈殿槽」、及び、プラスチッ クの網などからなる「フィルター装置」を採用するとともに、硝化菌等が付着した濾材からなる「バイオフィルター(生物濾過槽)」と呼ばれる浄化装置が用いられる。また、温度調節にはヒートポンプが用いられている。特許文献2の装置では、「バイオフィルター(生物濾過槽)」装置が相当大掛かりになるためにコスト高となる他、循環水の全量を通す紫外線殺菌装置も必要であり、さらには、「沈殿槽」で分離された固形残渣を別途に処理する必要がある。   On the other hand, Patent Document 2 employs a “precipitation tank” that produces a spiral flow and performs solid-liquid separation by centrifugal force as a precipitation device, and a “filter device” that includes a plastic net, etc. In addition, a purification device called a “biofilter (biological filtration tank)” made of a filter medium to which nitrifying bacteria or the like are attached is used. A heat pump is used for temperature adjustment. In the apparatus of Patent Document 2, the “biofilter (biological filtration tank)” apparatus is considerably large, which increases the cost, and also requires an ultraviolet sterilizer for passing the entire amount of circulating water. It is necessary to separately process the solid residue separated in “2.

また、特許文献3では、「漁港、魚市場および陸上養殖場等から発生する有機性廃水」を「膜分離活性汚泥処理槽」中に導入して処理した後、濾過膜により分離した処理水を排出するとともに、余剰汚泥を、ゴカイの養殖水槽へと排出して処理することが記載されている。特許文献3の方法によると、漁港での高濃度有機性廃水を処理するとともに、この際に発生する余剰汚泥をも処理することができる。しかし、比較的少量の高濃度廃水を処理するのに適した技術であり、閉鎖循環式養殖のように大量の飼育水を循環させて処理する場合には適してない。しかも、「膜分離活性汚泥処理槽」に活性炭を添加して運転する方法には全く言及していない。   In Patent Document 3, “organic wastewater generated from fishing ports, fish markets, land farms, etc.” is introduced into a “membrane separation activated sludge treatment tank” and treated, and then treated water separated by a filtration membrane is used. In addition to discharging, it is described that surplus sludge is discharged into aquaculture tanks for treatment. According to the method of patent document 3, while processing the high concentration organic waste water in a fishing port, the excess sludge generated in this case can also be processed. However, this technique is suitable for treating a relatively small amount of high-concentration wastewater, and is not suitable for treatment by circulating a large amount of breeding water as in closed circulation culture. Moreover, no mention is made of a method of operating by adding activated carbon to the “membrane separation activated sludge treatment tank”.

近年、膜分離活性汚泥処理法は、下水処理や工業排水処理の分野で徐々に採用され始めている(非特許文献1)。しかし、非特許文献1の表4.2及び4.5にあるように、一般的な膜分離活性汚泥処理装置(MBR:メンブレンバイオリアクター)の運転環境では、BOD容積負荷が数十〜数千g/m3であり、高濃度のBOD負荷が必須条件の一つとされている。また、活性汚泥処理槽(曝気槽)における内部MLSS(活性汚泥浮遊物質;Mixed liquor Suspended Solid)は、一般的な運転条件で、数百〜数万mg/Lである。 In recent years, the membrane separation activated sludge treatment method has been gradually adopted in the fields of sewage treatment and industrial wastewater treatment (Non-Patent Document 1). However, as shown in Tables 4.2 and 4.5 of Non-Patent Document 1, in an operating environment of a general membrane separation activated sludge treatment apparatus (MBR: membrane bioreactor), the BOD volumetric load is several tens to several thousand g / m 3. Therefore, high concentration BOD loading is considered as one of the essential conditions. Further, the internal MLSS (Mixed liquor Suspended Solid) in the activated sludge treatment tank (aeration tank) is several hundred to tens of thousands mg / L under general operating conditions.

しかるに、閉鎖循環式養殖法における飼育水中のBOD 容積負荷は数mg/Lと、通常実施されている膜分離活性汚泥法の処理原水に比較して、格段に低く、膜分離活性汚泥処理法を閉鎖循環式養殖法飼育水の処理に適用した場合、内部MLSSは100mg/L以下となってしまう。このように著しく低いMLSSで膜分離活性汚泥処理装置を運転した場合には、活性汚泥からなる懸濁粒子が曝気によって駆動される上向流に乗って膜面の目詰まり層を洗い取る効果が期待されず、分離膜の目詰まりが極めて生じやすくなり、長期間の安定運転が非常に困難であるので、このような処理原水には適用できないと考えられていた。さらに、膜分離活性汚泥法を海水などの塩分濃度の高い処理原水に対して適用した例のほとんどなく、海水組成の飼育水等に適用できるか否かは不明であった。 However, the BOD volume load in the breeding water in the closed-circulation aquaculture method is several mg / L, which is much lower than the raw water treated by the membrane separation activated sludge method, which is usually practiced. When applied to the closed circulation culture method breeding water treatment, the internal MLSS will be 100mg / L or less. When the membrane separation activated sludge treatment device is operated with such extremely low MLSS, the suspended particles made of activated sludge ride on the upward flow driven by aeration and have the effect of washing the clogged layer on the membrane surface. It was not expected and clogging of the separation membrane was very likely to occur, and long-term stable operation was very difficult, and thus it was considered that it could not be applied to such treated raw water. Furthermore, there are almost no examples of applying the membrane separation activated sludge method to treated raw water having a high salt concentration such as seawater, and it was unclear whether it could be applied to breeding water having a seawater composition.

すなわち、特許文献1中に、部分的に膜分離活性汚泥法を組み合わせることができる旨の示唆があるとしても、実際上の使用は困難であると考えられていた。そのためか、特許文献1以外で、膜分離活性汚泥法を閉鎖循環式養殖法に適用することを示唆する公知例は見いだされていない。なお、特許文献1の提案は、硝化槽と並列に、沈殿槽の回収系の高濃度の沈殿分離水に膜分離活性汚泥処理装置を配置するものである。   That is, even if Patent Document 1 suggests that the membrane separation activated sludge method can be partially combined, it has been considered that practical use is difficult. For this reason, other than Patent Document 1, there is no known example suggesting that the membrane separation activated sludge method is applied to the closed circulation culture method. In addition, the proposal of patent document 1 arrange | positions a membrane-separation activated sludge processing apparatus in the high concentration sedimentation separation water of the collection system of a sedimentation tank in parallel with a nitrification tank.

他方、低濃度のBODに対して膜分離活性汚泥法と思われる技術を適用した例としては非特許文献2がある。この公知例では、水道浄水処理において原水中のトリハロメタンや臭気物質の除去に広く応用されている生物活性炭を適用し、水中の濁質や細菌類を浸漬膜ろ過で除去しようとするものであり、質的に劣る水道浄水用原水に対して生物活性炭と膜ろ過の組合せの効果を確かめることを目的とした実験に関するものである。その際に、浸漬膜エレメント間を上昇する循環流を起こさせる目的で散気をし、さらに生物活性炭の沈着を防ぐために死水部には間欠的に散気をして、たまたま膜分離活性汚泥処理法と同様の条件で運転した場合に、目詰まりを抑制するのに有効に作用することを見出して報告したものである。しかしながら、このような方法が、飼育魚が排泄する粘性物質や蛋白質等を含む閉鎖循環式養殖法の循環水の浄化処理に適用しうるか否かに関しては、何ら言及されていないし、示唆する記述も全くなく、さらに、活性炭を添加した場合に養殖魚の身質や匂い等が著しく改善され、換水も必要としなくなること等を想起させるような記述も勿論見当たらない。   On the other hand, there is Non-Patent Document 2 as an example in which a technique considered to be a membrane separation activated sludge method is applied to a low concentration BOD. In this known example, biological activated carbon that is widely applied to the removal of trihalomethane and odorous substances in raw water in tap water purification treatment is applied, and turbidity and bacteria in the water are removed by immersion membrane filtration. It relates to experiments aimed at confirming the effect of the combination of biological activated carbon and membrane filtration on raw water for quality water purification. At that time, it diffuses for the purpose of creating a circulating flow that rises between the submerged membrane elements, and in addition, intermittently diffuses the dead water part to prevent the deposition of biological activated carbon, and happens to be membrane-separated activated sludge treatment. It was found and reported that it effectively works to suppress clogging when operated under the same conditions as the law. However, there is no mention or suggestion as to whether such a method can be applied to the purification of circulating water in closed-circulation aquaculture methods containing viscous substances and proteins excreted by domestic fish. Furthermore, there is no description that reminds us that, when activated carbon is added, the quality and smell of cultured fish are remarkably improved and no need for water replacement.

閉鎖循環式養殖法の上述のような状況を鑑みて、我々は先に、従来の閉鎖循環式養殖装置を構成している機器装置類を省略して著しく簡素化した、膜分離活性汚泥法を魚介類が排泄したアンモニアや有機性排泄物の分解除去装置とする、飼育水を循環させて食用の魚介類を陸上の飼育槽中において高密度で養殖する、設備コスト、運転維持管理の手数及びコスト等を大幅に低減する、新規な閉鎖循環式養殖装置および養殖方法を提案した。本発明はこれをさらに改善した発明である。    In view of the above situation of the closed-circulation aquaculture method, we first developed a membrane-separated activated sludge method that has been greatly simplified by omitting the equipment that constitutes the conventional closed-circulation aquaculture device. A device for decomposing and removing ammonia and organic excreta excreted by fish and shellfish, circulating the breeding water and cultivating edible fish and shellfish in an aquaculture tank at a high density, equipment cost, operation maintenance and management A new closed-circulation aquaculture device and aquaculture method that significantly reduce costs were proposed. The present invention further improves this.

特開2002-223667JP2002-223667 特許3769680Patent 3769680 特開2005-074420JP2005-074420

"Membrane Bioreactors for Wastewater Treatment" T. Steph enson, K. Brindle, S. Judd, B. Jefferson; IWA publishing, 01 June 200 0; ISBN:9781900222075. (「膜利用生物反応槽による排水処理」 北尾高嶺監修: 石田宏司, 松村修三, 和泉清司訳; 財団法人日本環境整備教育センター, 2003.3.)"Membrane Bioreactors for Wastewater Treatment" T. Steph enson, K. Brindle, S. Judd, B. Jefferson; IWA publishing, 01 June 200 0; ISBN: 9781900222075. : Koji Ishida, Shuzo Matsumura, Kiyoji Izumi; Japan Environmental Education Center, 2003.3.) “ACT21 第3研究委員会持ち込み研究最終報告書、生物活性炭・膜ろ過システムの研究”((財)水道技術研究センター,平成14年4月).“ACT21 3rd Research Committee Bring Research Final Report, Research on Biological Activated Carbon / Membrane Filtration System” (Water Technology Research Center, April 2002).

本発明は、上記問題点を鑑みてなされたものであり、閉鎖循環式養殖装置を用いて生産された魚の身質および食感を顕著に改善する養殖方法を提供するものであり、さらに詳しくは、設備構成を大幅に簡略化した、膜分離活性汚泥法を魚介類が排泄したアンモニアや有機性排泄物の分解除去装置とする、魚介類の閉鎖循環式養殖装置の改善された運転方法を提供するものである。   The present invention has been made in view of the above problems, and provides an aquaculture method that significantly improves the quality and texture of fish produced using a closed circulation culture device. , Providing an improved operation method for a closed-circulation aquaculture system for seafood that uses a membrane-separated activated sludge process, which greatly simplifies the equipment configuration, to decompose and remove ammonia and organic excreta excreted by seafood To do.

本発明は、飼育槽から抜き出した残餌や糞及び飼育魚が排泄したアンモニア及び有機性排泄物などを含む飼育水から、懸濁物質や排泄物質を分離または分解処理する装置として膜分離活性汚泥処理装置(MBR:メンブレンバイオリアクター)を備えた魚介類の閉鎖循環式養殖装置を運転する際に、膜分離活性汚泥処理装置の曝気槽に粒子状活性炭を加えて運転することを特徴とする。   The present invention provides a membrane-separated activated sludge as an apparatus for separating or decomposing suspended substances and excreted substances from breeding water including residual food extracted from the breeding tank, feces and ammonia and organic excretions excreted by the breeding fish. When operating a fishery product closed circulation culture device equipped with a treatment device (MBR: membrane bioreactor), it is operated by adding particulate activated carbon to the aeration tank of the membrane separation activated sludge treatment device.

膜分離活性汚泥処理装置を備えた魚介類の閉鎖循環式養殖装置としては、魚介類を飼育する飼育水槽と、飼育水槽の下端から引き出された残餌や糞などからなる沈降性懸濁物質を多く含む排水を一時蓄える貯留槽と、その下流に配置された貯留槽から引き出された未処理飼育水を浄化処理する膜分離活性汚泥処理装置と、その下流に配置された浄化処理済みの処理水を貯留する温度調節機能を有する調整槽と、及び調整槽から送りだされ飼育槽に供給される処理水の溶存酸素濃度を調整する酸素溶入装置とを備えている閉鎖循環式養殖装置であれば本発明を適用できる。   As a closed-circulation aquaculture device for seafood equipped with a membrane-separated activated sludge treatment device, a sedimentation suspension material consisting of a rearing aquarium for rearing seafood and residual food or feces drawn from the lower end of the rearing aquarium A storage tank that temporarily stores a large amount of waste water, a membrane-separated activated sludge treatment device that purifies untreated breeding water drawn from the storage tank disposed downstream thereof, and a purified treated water disposed downstream thereof A closed-circulation aquaculture device equipped with a temperature-adjusting tank having a temperature control function and an oxygen infusion device for adjusting the dissolved oxygen concentration of the treated water fed from the conditioning tank and supplied to the breeding tank The present invention can be applied.

あるいは、魚介類を飼育する飼育水槽と、飼育水槽の下端から引き出された排水を沈降性懸濁物質からなる液と1次上澄みとに分離する第1懸濁物質分離装置と、飼育水槽の上部から引き出された飼育水中の沈降性懸濁物質と、及び前記1次上澄み中の残余の沈降性懸濁 物質を2次上澄みとに分離する第2懸濁物質分離装置と、前記2次上澄みを第1〜3の分流路に分配する分配機構と、第2の分流路の下流に配置され、アンモニアを処理する活性汚泥を含む水槽及び活性汚泥処理された水から浮遊性懸濁物質及び細菌を分離するための濾過膜からなる膜分離活性汚泥処理装置(MBR)と、第3の分流路の下流に配置され、前記2次上みから浮遊性懸濁物質及び細菌を分離するための濾過膜からなる膜濾過装置と、膜分離活性汚泥処理装置及び膜濾過装置の下流に配置されて浄化処理済みの処理水を貯留する調整槽と、前記第3の分流路の下流端をなし飼育水槽中へと前記2次上澄みを戻す還流給水口と、調整槽中の処理水を飼育水槽中へと戻す処理水還流路と、膜分離活性汚泥処理装置の上流に配置され、前記2次上澄み、前記1次上澄み、または前記排水を貯留する未処理水貯留槽とからなる閉鎖循環式養殖装置であれば、さらに好ましく適用できる。このような閉鎖循環式養殖装置であれば、処理すべきアンモニア及び有機性排泄物の発生量に見合った最小限の膜分離活性汚泥処理装置の設備規模とすることができると同時に、曝気槽中に供給する有機物濃度を高めて活性汚泥濃度を高めることができるので、活性炭の添加量を低減してさらに生産コストを低減することができる。   Alternatively, a rearing tank for rearing seafood, a first suspended solids separating device for separating the drainage drawn from the lower end of the rearing tank into a liquid composed of sedimentary suspended solids and a primary supernatant, and an upper part of the rearing tank A second suspended solids separator for separating the suspended sediment in the breeding water extracted from the suspension and the remaining suspended suspended matter in the primary supernatant into a secondary supernatant; and the secondary supernatant. A distribution mechanism that distributes to the first to third distribution channels, a water tank that is disposed downstream of the second distribution channel, and includes activated sludge for treating ammonia, and suspended suspended solids and bacteria from the activated sludge-treated water. A membrane separation activated sludge treatment device (MBR) comprising a filtration membrane for separation, and a filtration membrane for separating suspended suspended solids and bacteria from the secondary top, which is arranged downstream of the third branch channel A membrane filtration device, a membrane separation activated sludge treatment device, and An adjustment tank that is disposed downstream of the membrane filtration device and stores treated water that has been purified; a reflux water supply port that forms the downstream end of the third branch channel and returns the secondary supernatant into the breeding water tank; A treated water return path for returning treated water in the tank to the breeding water tank, and an untreated water reservoir for storing the secondary supernatant, the primary supernatant, or the waste water, disposed upstream of the membrane separation activated sludge treatment apparatus. If it is a closed circulation culture device which consists of a tank, it can apply more preferably. With such a closed-circulation aquaculture device, it is possible to make the facility scale of the minimum membrane separation activated sludge treatment device commensurate with the amount of ammonia and organic waste to be treated, and at the same time, in the aeration tank Since the activated sludge concentration can be increased by increasing the concentration of organic matter supplied to the product, the amount of activated carbon added can be reduced to further reduce the production cost.

本発明の魚介類の閉鎖循環式養殖方法は、前段落(0027段落)に記載する閉鎖循環式養殖装置を用い、給餌直後及び/または排泄のピークに対応する期間に、調整槽から飼育水槽への処理水の供給、及び、飼育水槽の下部からの排水を増加させるとともに、前記のピークに対応する期間中、処理水の供給量と排水量との間に差を付けることにより、飼育水槽の水位を増減変動させて運転しても勿論問題ない。水質変動に比例または対応させて処理水の供給量と排水量とを制御すること(比例制御方式)によって、未処理水中のアンモニア及び有機性排泄物等の処理対象物質の濃度の低い時間帯の循環水の、膜分離活性汚泥処理装置に送る水量を低減することができるので、曝気槽中に供給する有機物濃度をさらに高めて活性汚泥濃度を高く維持することができる。したがって、このような比例制御方式による運転方法と併用して本発明を採用すると、膜分離活性汚泥処理装置(MBR)をより小型化して、かつ活性汚泥濃度を高めることが可能となるので、添加する活性炭量をさらに低減できるために、一層のコスト削減が可能となる。   The closed-circulation culture method for seafood of the present invention uses the closed-circulation culture apparatus described in the preceding paragraph (paragraph 0027) and immediately after feeding and / or during the period corresponding to the peak of excretion, from the adjustment tank to the breeding aquarium. The water level of the rearing tank is increased by increasing the amount of wastewater from the lower part of the breeding tank and increasing the amount of drainage between the amount of treated water and the amount of drainage during the period corresponding to the peak. Of course, there is no problem even if the vehicle is operated with increasing or decreasing. By controlling the amount of treated water supplied and discharged in proportion to or corresponding to water quality fluctuations (proportional control method), circulation during times when the concentration of substances to be treated, such as ammonia and organic excreta in untreated water, is low Since the amount of water sent to the membrane-separated activated sludge treatment apparatus can be reduced, the concentration of organic matter supplied into the aeration tank can be further increased to maintain the activated sludge concentration high. Therefore, when the present invention is adopted in combination with the operation method based on such a proportional control method, the membrane separation activated sludge treatment device (MBR) can be further miniaturized and the activated sludge concentration can be increased. Since the amount of activated carbon to be reduced can be further reduced, further cost reduction is possible.

本発明の魚介類の閉鎖循環式養殖方法は、上記の閉鎖循環式養殖装置が備える膜分離活性汚泥処理装置の曝気槽中に、粒子状活性炭を曝気水槽中の活性汚泥を含む処理水量に対して乾燥炭重量で0.2〜5.0%、好ましくは0.4〜2.5%添加して運転することを特徴とする。粒子状活性炭は曝気槽内に閉じ込められているので、基本的に曝気空気と共に飛散するミストに含まれて失われるか、曝気槽内での運動で破砕されて微粉炭となり機能しなくなるだけであるので、粒子状活性炭が失われる割合は非常に微小であるが、減少分を適宜追加補充することで十分に維持管理される。   The closed-circulation culture method for seafood of the present invention is based on the amount of treated water containing activated carbon in the aeration tank in the aeration tank of the membrane separation activated sludge treatment apparatus provided in the above-mentioned closed-circulation culture apparatus. The dry carbon weight is 0.2 to 5.0%, preferably 0.4 to 2.5%. Since the particulate activated carbon is confined in the aeration tank, it is basically lost by being contained in the mist scattered with the aeration air, or it is crushed by the movement in the aeration tank and only functions as pulverized coal. Therefore, the rate of loss of particulate activated carbon is very small, but it can be sufficiently maintained and managed by appropriately supplementing the decrease.

粒子状活性炭としては、水道浄水処理や飲料水中の不純物を除去する目的に用いられる粒状活性炭または粉末活性炭が好ましく使用される。活性炭の性状としては、乾燥炭であっても湿式活性炭であってもよい。粒子状活性炭のサイズは20メッシュ以下、好ましくは100メッシュ以下のもので、曝気槽中で沈降してしまうことなく水流に乗ってMBRの膜面に損傷を与えることなく膜面に生成するケーク層を掻き取り、膜の目詰まりを抑制できるものであれば使用可能である。このような観点から、沈降しにくく柔らかい木質系の粉末活性炭が特に好ましく使用される。なお、粒子状活性炭の粒径が小さすぎると膜面に生成するケーク層を掻き取る力が弱く膜の目詰まりを抑制できず、うまく機能しないと考えられる。また、粒径が大きすぎると沈降しやすくなり、曝気によって起こる水流に乗って曝気槽内を流動しがたく、膜の目詰まりの抑制に機能し難いと考えられる。   As the particulate activated carbon, granular activated carbon or powdered activated carbon used for the purpose of removing impurities in tap water purification or drinking water is preferably used. The activated carbon may be dry charcoal or wet activated carbon. The size of the particulate activated carbon is 20 mesh or less, preferably 100 mesh or less, and the cake layer is generated on the membrane surface without damaging the membrane surface of the MBR by riding on the water flow without settling in the aeration tank. Any material can be used as long as it can scrape off and prevent clogging of the film. From this point of view, soft wood-based powdered activated carbon which is hard to settle is particularly preferably used. In addition, when the particle size of particulate activated carbon is too small, the force which scrapes off the cake layer produced | generated on a film | membrane surface is weak, clogging of a film | membrane cannot be suppressed, and it is thought that it does not function well. Further, if the particle size is too large, it tends to settle, and it is difficult to flow in the aeration tank by riding on the water flow caused by aeration, and it is considered difficult to function to suppress clogging of the membrane.

しかし、上記以外のものであっても、飼育魚や人に悪影響を与えるような溶出物がなく、たとえば食品製造工程等に使用されるもので、上述のような特性を備えたものであれば使用することができる。   However, even if it is other than the above, there is no eluate that adversely affects domestic fish and humans, and it can be used if it is used in, for example, food production processes and has the above characteristics can do.

本発明の魚介類の閉鎖循環式養殖方法によると、従来技術による閉鎖循環式養殖方法で生産された養殖魚に比較して、飼育魚の身質が改善され、養殖魚に特有の匂いが消失し、食感が著しく向上した養殖魚を生産することができる。   According to the closed-circulation culture method for seafood of the present invention, the quality of the domesticated fish is improved and the smell peculiar to the cultured fish disappears compared to the cultured fish produced by the closed-circulation culture method according to the prior art. It is possible to produce cultured fish with a significantly improved texture.

さらには、本発明の魚介類の閉鎖循環式養殖方法によると、閉鎖循環式養殖法で必要とされている新鮮水の換水が殆ど必要でなくなるので、特に人工海水を使用する海水性魚介類の生産コストに相当の割合でしめる塩類供給を大幅に削減できて、一層の生産コスト低減が可能となる。   Furthermore, according to the closed-circulation aquaculture method for fish and shellfish of the present invention, the replacement of fresh water required in the closed-circulation aquaculture method is almost unnecessary. It is possible to greatly reduce the salt supply, which is a substantial proportion of the production cost, and to further reduce the production cost.

また、本発明の魚介類の閉鎖循環式養殖方法によると、アンモニア及び有機性排泄物、残餌や糞などの懸濁物質全てを膜分離活性汚泥処理装置に供給し活性汚泥として利用できて、換水も実質的に必要なくなるので、系外に排出される排水汚泥等の廃棄物量はほとんど無視できる程度に減少する。   In addition, according to the closed circulation culture method for seafood of the present invention, ammonia and organic excrement, suspended matter such as residual food and feces can be supplied to the membrane separation activated sludge treatment device and used as activated sludge, Since water exchange is virtually unnecessary, the amount of waste such as wastewater sludge discharged outside the system decreases to a level that can be ignored.

本発明の一実施形態に好ましく適用される閉鎖循環式養殖装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the closed circulation culture device applied preferably to one Embodiment of this invention. 図1の閉鎖循環式養殖装置における第1及び第2液体サイクロンの構成例を示す模式的な断面斜視図である。It is a typical section perspective view showing the example of composition of the 1st and 2nd hydrocyclone in the closed circulation type aquaculture device of Drawing 1.

本発明の一実施形態に好ましく適用される閉鎖循環式養殖装置について、図1〜2を用いて説明する。本実施形態の閉鎖循環式養殖装置10は、複数の飼育水槽1-1, 1- 2・・と、飼育水槽1ごとに設けられ、各飼育水槽1-1, 1-2・・下端から沈降性懸濁物質濃縮水すなわちスラッジ懸濁液Bを受け入れる第1液体サイクロン2-1, 2-2・・と、第1液体サイクロン2-1, 2-2・・から排出される上澄み( 1次上澄み)C、及び、各飼育水槽1-1, 1-2・・から取水した飼育水Aを受け入れる一つの第2液体サイクロン3と、第2液体サイクロン3から排出される上澄み(2次上澄み)Eを第1〜3の分流路81,82,83に分配する分配機構8と、第2の分流路82の下流端に配置される未処理水貯留槽4と、この下流の膜分離活性汚泥処理装置(MBR)5と、第3の分流路83の下流端に配置される膜濾過装置6と、膜分離活性汚泥処理装置5からの浄化処理水S、及び、膜濾過装置6からの膜濾過処理水Iを受け入れて貯留する調整槽7と、この下流の酸素溶入装置9とからなる。   A closed circulation culture device that is preferably applied to an embodiment of the present invention will be described with reference to FIGS. The closed-circulation aquaculture apparatus 10 of the present embodiment is provided for each of the breeding aquariums 1-1, 1-2, and each of the breeding aquariums 1. First liquid cyclones 2-1, 2-2, etc. that receive the concentrated suspended solids, ie, sludge suspension B, and the supernatant discharged from the first liquid cyclones 2-1, 2-2, etc. (primary (Supernatant) C and one second liquid cyclone 3 that receives the breeding water A taken from each breeding tank 1-1, 1-2, ..., and the supernatant discharged from the second liquid cyclone 3 (secondary supernatant) A distribution mechanism 8 that distributes E to the first to third branch channels 81, 82, and 83, an untreated water storage tank 4 that is disposed at the downstream end of the second branch channel 82, and a membrane separation activated sludge downstream thereof Treatment device (MBR) 5, membrane filtration device 6 arranged at the downstream end of the third branch 83, purified water S from the membrane separation activated sludge treatment device 5, and membrane from the membrane filtration device 6 Filtered water I Is composed of an adjustment tank 7 for receiving and storing oxygen, and an oxygen infusion device 9 downstream thereof.

飼育水槽1-1, 1-2・・は、底面が中央部または特定の箇所に向かって深くなるように緩やかに傾斜しており、このようにして形成された最深部に、スラッジ懸濁液排出パイプ12が接続している。飼育水槽1-1, 1-2・・は、好ましくは、円形または楕円形、または正八角形等の正多角形である。   The breeding tanks 1-1, 1-2,... Are gently inclined so that the bottom surface becomes deeper toward the center or a specific location, and the sludge suspension is formed in the deepest part thus formed. A discharge pipe 12 is connected. The rearing tanks 1-1, 1-2,... Are preferably circular, elliptical, or regular polygons such as regular octagons.

なお、本明細書では、便宜上、第1液体サイクロン2-1, 2-2にて主として分離されるものを「沈降性懸濁物質」または「スラッジ」と呼ぶことにする。すなわち、残餌(えさの食べかす)や糞などに由来する、水中を漂う懸濁物質(SS)のうち、飼育水槽1-1, 1-2・・の底部に溜まって底から取り出し可能なものを「沈降性懸濁物質」または「スラッジ」と呼ぶことにする。また、「沈降性懸濁物質」以外の懸濁物質を「浮遊性懸濁物質」と呼ぶことにする。   In the present specification, for the sake of convenience, what is mainly separated by the first hydrocyclones 2-1 and 2-2 will be referred to as “sedimentable suspended matter” or “sludge”. That is, suspended matter (SS) floating in the water derived from residual food (food feed) or feces, etc., that can be collected from the bottom of the rearing tank 1-1, 1-2,. Will be referred to as “sedimentable suspended matter” or “sludge”. In addition, suspended substances other than “sedimentable suspended substances” will be referred to as “floating suspended substances”.

第1液体サイクロン2-1, 2-2・・の上部には、スラッジを高濃度で含むスラッジ懸濁液Bが、スラッジ懸濁液排出パイプ12を通って接線方向へと流入する。第1液体サイクロン2-1, 2-2・・の下端からは、スラッジMが、スラッジ排出パイプ24を通って未処理水貯留槽4へと送られる。また、第2液体サイクロン3の下端からも、スラッジ・SS排出パイプ34を通って、上澄み水中に残留していたスラッジを含むスラッジ懸濁液Jが未処理水貯留槽4へと送られる。   In the upper part of the first hydrocyclone 2-1, 2-2,..., A sludge suspension B containing sludge at a high concentration flows in the tangential direction through the sludge suspension discharge pipe 12. From the lower ends of the first hydrocyclones 2-1, 2-2,..., Sludge M is sent to the untreated water storage tank 4 through the sludge discharge pipe 24. The sludge suspension J containing the sludge remaining in the supernatant water is also sent to the untreated water storage tank 4 from the lower end of the second hydrocyclone 3 through the sludge / SS discharge pipe 34.

図2に、第1液体サイクロン2-1, 2-2・・及び第2液体サイクロン3の構成例を模式的に示す。第2液体サイクロン3は、各第1液体サイクロン2よりも大型であり、例えば、内径が1.5〜4.0倍である。なお、第1液体サイクロン2 の内径は、例えば、飼育水槽1-1, 1-2・・の内径の0.3〜0.6倍である。   FIG. 2 schematically shows a configuration example of the first hydrocyclone 2-1, 2-2... And the second hydrocyclone 3. The second hydrocyclone 3 is larger than each first hydrocyclone 2, and has an inner diameter of 1.5 to 4.0 times, for example. The inner diameter of the first hydrocyclone 2 is, for example, 0.3 to 0.6 times the inner diameter of the rearing tanks 1-1, 1-2,.

第1液体サイクロン2及び第2液体サイクロン3には、適宜、じゃま板を内壁面に設けることができる。じゃま板は、円錐部分の内壁に軸方向に延びるものを設けることもでき、円筒部に、渦巻き流を強めるための、螺旋状などのものを設けることもできる。特に、沈降性懸濁物質が沈殿しにくいものの場合には、じゃま板を適宜配置することができる。   The first hydrocyclone 2 and the second hydrocyclone 3 can be appropriately provided with baffles on the inner wall surface. The baffle plate can be provided with an axially extending inner wall of the conical portion, and the cylindrical portion can be provided with a spiral or the like for enhancing the spiral flow. In particular, when the sedimentary suspended solids are difficult to settle, a baffle plate can be appropriately disposed.

第1液体サイクロン2-1, 2-2から、1次上澄みCが、サイクロン間パイプ23 を通って第2液体サイクロン3へと排出される。また、飼育水槽1-1, 1-2・・の上部から、飼育水Aが、飼育水排出パイプ13を通って第2液体サイクロン3 へと送られる。ここで、図2の例に示すように、サイクロン間パイプ23は、飼育水排出パイプ13に合流しており、1次上澄みCと、飼育水槽1-1, 1-2・・上部の飼育水Aとが混合した混合上澄みDが、第2液体サイクロン3の上部へと、接線方向に導入される。   The primary supernatant C is discharged from the first hydrocyclones 2-1 and 2-2 to the second hydrocyclone 3 through the intercyclonic pipe 23. Also, the breeding water A is sent to the second hydrocyclone 3 through the breeding water discharge pipe 13 from the upper part of the breeding tanks 1-1, 1-2,. Here, as shown in the example of FIG. 2, the intercyclonic pipe 23 is joined to the breeding water discharge pipe 13, and the primary supernatant C and the breeding water in the breeding tanks 1-1, 1-2. A mixed supernatant D mixed with A is introduced tangentially into the upper part of the second hydrocyclone 3.

第2液体サイクロン3からの2次上澄み排出パイプ32が、第1の三方バルブ8 5に接続し、第1の三方バルブ85により、飼育水槽1-1, 1-2・・へと戻る第1の分流路81と、それ以外とに分けられる。第1の分流路81以外に振り分けられた2次上澄みGは、第2の三方バルブ86により、第2の分流路82及び第3の分流路8 3に分けられる。これら第1及び第2の三方バルブ85,86、及び後述の第3の三方 バルブ87は、好ましくは電動三方弁であり、電磁三方弁、手動弁またはこれらの組み合わせであって良い。   The secondary supernatant discharge pipe 32 from the second hydrocyclone 3 is connected to the first three-way valve 85, and the first three-way valve 85 returns to the breeding tank 1-1, 1-2,. It is divided into the other flow path 81 and the other. The secondary supernatant G distributed to other than the first branch 81 is divided into a second branch 82 and a third branch 83 by a second three-way valve 86. The first and second three-way valves 85 and 86 and the third three-way valve 87 described later are preferably electric three-way valves, and may be electromagnetic three-way valves, manual valves, or a combination thereof.

膜分離活性汚泥処理装置(MBR)5には、未処理水供給パイプ45を通じて、未処理水貯留槽4の下部から、スラッジ懸濁液M及びJに第2の分流路82に送られた2次上澄みNを加えた混合液が供給される。   The membrane separation activated sludge treatment device (MBR) 5 was sent to the second branch 82 through the untreated water supply pipe 45 from the lower portion of the untreated water storage tank 4 to the sludge suspensions M and J. Next, a mixed liquid to which the supernatant N is added is supplied.

膜分離活性汚泥処理装置(MBR)5は、活性汚泥を含む活性汚泥処理槽と、この処理槽に浸漬される分離膜モジュールと、分離膜を通じて処理水を吸引するためのポンプとからなる。ここでの分離膜は、微細な懸濁物質はもとより細菌をも透過させないものであり、好ましくは、大部分のウィルスを除去可能なものである。   The membrane separation activated sludge treatment apparatus (MBR) 5 includes an activated sludge treatment tank containing activated sludge, a separation membrane module immersed in the treatment tank, and a pump for sucking treated water through the separation membrane. The separation membrane here does not allow permeation of bacteria as well as fine suspended substances, and is preferably capable of removing most viruses.

活性汚泥は、アンモニアを分解する硝化活性汚泥からなり、この硝化活性汚泥には、海水に馴化したものが用いられる。好ましくは、バイコム株式会社が開発した、減容された海水馴養硝化汚泥を製造する方法(WO00/077171) により得られる高活性の消化活性汚泥が用いられる。該活性汚泥は淡水中においても高い消化活性を示すものである。   The activated sludge is composed of nitrified activated sludge that decomposes ammonia, and nitrified activated sludge that is adapted to seawater is used. Preferably, highly active digestion activated sludge obtained by a method (WO00 / 077171) for producing reduced-volume seawater-fed nitrification sludge developed by Vicom Corporation is used. The activated sludge exhibits high digestive activity even in fresh water.

バイコム株式会社が開発した海水馴養硝化汚泥の製造方法は、アンモニア酸化細菌及び亜硝酸酸化細菌の混合系からなる硝化細菌と、その他の活性細菌とを含むし尿用活性汚泥から、前記硝化細菌のみを高濃度に含む減容された海水馴養硝化汚泥を製造する方法であって、以下のA−Eの工程からなる。A : 前記し尿用活性汚泥を、海水で希釈するとともに、下水処理場で発生する消化脱離液及び/または汚泥脱水濾液を加えることで、アンモニアの濃度が100〜300mg/リットルである海水希釈汚泥を得て、また、必要な場合にはこの海水希釈汚泥に希硫酸を加えることでpHを8.5以下とする。B: 0.4〜0.7mol の炭酸ナトリウムに対し0.4〜0.8molの炭酸水素ナトリウムを含む混合塩・水溶液を用意する。C: 1〜3カ月の間、前記海水希釈汚泥について、一つの培養槽中にて、(1) pHを監視しつつ適宜に前記混合塩水溶液を加えることでpHを7.5〜8.5に保ち、(2) 溶存酸素が2〜5mg/リットルとなるように曝気量を調節し、(3) 温度を20〜40℃に保ち、また、(4) 逐次、アンモニアの濃度が100〜300mg/リットルとなるように、前記の消化脱離液及び/または汚 泥脱水濾液を加え、必要に応じて海水を加える。D: このような培養操作により、他の細菌をほとんど死滅させ、死滅した細菌に由来する難分解性有機物を含んでなる核(例えば20〜100μmのグラニュール)の周囲に硝化細菌が取り付いた硝化細菌フロック(例えば直径50〜100μm)を形成させる。E: この硝化細菌フロックを沈殿させることで、減容された海水馴養硝化汚泥を得る。例えば、し尿用活性汚泥が硝化細菌を0.35%程度含み、前記の海水馴養硝化汚泥が消化細菌をその約10倍の含有率で含む。また、例えば、し尿用活性汚泥の1/3〜1/4に減容される。上記「比例制御方式」を採用するとともに、このような高度に減容された海水馴養硝化汚泥を用いることで、アンモニア濃度が、通常の汚水処理に比べて格段に低い条件でも、高い効率で硝化処理を行うことができる。   The manufacturing method of seawater-adapted nitrification sludge developed by Vicom Co., Ltd. is based on the nitrification bacteria consisting of a mixed system of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and other activated bacteria. A method for producing a reduced-volume seawater-fed nitrification sludge containing a high concentration, comprising the following steps A-E. A: The activated sludge for human waste is diluted with seawater and added with digestion desorption liquid and / or sludge dehydrated filtrate generated at a sewage treatment plant, so that the concentration of ammonia is 100 to 300 mg / liter. In addition, when necessary, the pH is adjusted to 8.5 or less by adding dilute sulfuric acid to this seawater-diluted sludge. B: Prepare a mixed salt / water solution containing 0.4 to 0.8 mol of sodium bicarbonate to 0.4 to 0.7 mol of sodium carbonate. C: For 1 to 3 months, the seawater-diluted sludge was maintained in a single culture tank by (1) monitoring the pH and adding the mixed salt aqueous solution appropriately to maintain the pH at 7.5 to 8.5. 2) Adjust the amount of aeration so that the dissolved oxygen is 2-5mg / liter, (3) Keep the temperature at 20-40 ° C, and (4) Sequentially, the ammonia concentration will be 100-300mg / liter. As described above, the digestion and desorption liquid and / or the sludge dehydrated filtrate are added, and seawater is added as necessary. D: Nitrification with nitrifying bacteria attached around nuclei (for example, 20-100 μm granules) containing persistent organic matter derived from the killed bacteria. Bacterial flocs (eg 50-100 μm in diameter) are formed. E: By precipitating this nitrifying bacterial floc, the reduced volume of seawater-adapted nitrifying sludge is obtained. For example, activated sludge for human waste contains about 0.35% of nitrifying bacteria, and the seawater-adapted nitrifying sludge contains digestive bacteria at a content of about 10 times that of nitrifying bacteria. For example, the volume is reduced to 1/3 to 1/4 of the activated sludge for human waste. By adopting the above "proportional control method" and using such highly reduced seawater-adapted nitrification sludge, nitrification is highly efficient even under conditions where the ammonia concentration is much lower than that of normal sewage treatment. Processing can be performed.

しかし、本発明に使用される硝化活性汚泥としては、上記の海水馴養硝化汚泥に限定されるものではない。   However, the nitrifying activated sludge used in the present invention is not limited to the above-mentioned seawater conditioned nitrifying sludge.

膜分離活性汚泥処理装置(MBR)5の分離膜モジュールとしては、平膜型、及び中空型のいずれでも良い。平膜型の分離膜モジュールは、濾過水通路を確保するためのスペーサーを平坦な濾過膜(平膜)で包み込んで封筒状に折り畳み、端部を液密に封止した膜エレメントから成る。膜エレメントの上端部には、濾過水を集水するチューブが取り付けられている。このような膜エレメントを多数枚、スペーサーを挟み込むようにして重ね合わせ、一定間隔で積層された膜モジュールとしている。活性汚泥処理槽内に浸漬配置された各膜エレメントの間の間隙を通って、活性汚泥に供給する曝気空気が上昇する。このようにして、活性汚泥が懸濁した水に随伴流を発生させることで、膜エレメントの表面に発生する汚泥の堆積層(ケーク層)を洗い流す。すなわち、このような効果により、濾過速度を一定レベルに維持している。   The separation membrane module of the membrane separation activated sludge treatment apparatus (MBR) 5 may be either a flat membrane type or a hollow type. The flat membrane type separation membrane module is composed of a membrane element in which a spacer for securing a filtered water passage is wrapped with a flat filtration membrane (flat membrane), folded into an envelope shape, and the end is liquid-tightly sealed. A tube for collecting filtered water is attached to the upper end of the membrane element. A large number of such membrane elements are stacked so as to sandwich a spacer, and the membrane module is stacked at a constant interval. Aeration air supplied to the activated sludge rises through the gaps between the membrane elements immersed in the activated sludge treatment tank. In this way, by generating an accompanying flow in the water in which the activated sludge is suspended, the sludge deposit layer (cake layer) generated on the surface of the membrane element is washed away. In other words, the filtration rate is maintained at a constant level by such an effect.

中空糸型の分離膜モジュールは、束状にまとめられた中空糸の両端部または一端部を開口させ、中空糸膜側面から中空糸膜内部に濾過した処理水を吸引するものである。通常、垂直方向に中空糸膜のモジュールを設置し、上記と同様の曝気空気の上昇流により、汚泥の堆積層(ケーク層)を洗い流す。   The hollow fiber type separation membrane module is configured to open both ends or one end of hollow fibers collected in a bundle and suck the filtered treated water into the hollow fiber membrane from the side of the hollow fiber membrane. Normally, a hollow fiber membrane module is installed in the vertical direction, and the sludge accumulation layer (cake layer) is washed away by the upward flow of aeration air similar to the above.

なお、曝気槽に粒子状活性炭を添加して用いる本発明においては、平膜型膜モジュールからなる膜分離活性汚泥処理装置(MBR)がより好ましく適用される。中空糸型の分離膜モジュールの場合には、しばしば、粒子状活性炭中に含まれる微粉炭等が中空糸膜の両端部の密接した部位に入り込み、洗浄操作等でも除去しにくく、分離膜モジュールとしての機能が低下しやすいため、平膜型膜モジュールからなる膜分離活性汚泥処理装置(MBR)の方が使い勝手がよい。   In the present invention in which particulate activated carbon is added to the aeration tank, a membrane separation activated sludge treatment apparatus (MBR) comprising a flat membrane membrane module is more preferably applied. In the case of a hollow fiber type separation membrane module, the pulverized coal contained in the particulate activated carbon often enters the close parts of the both ends of the hollow fiber membrane and is difficult to remove even with a washing operation, etc. Therefore, the membrane separation activated sludge treatment device (MBR) consisting of a flat membrane membrane module is easier to use.

活性汚泥処理槽に所定量以上の粒子状活性炭を含む汚泥が貯留した場合には活性汚泥槽に設けられた排出弁54から排出することができる。   When sludge containing a predetermined amount or more of particulate activated carbon is stored in the activated sludge treatment tank, it can be discharged from a discharge valve 54 provided in the activated sludge tank.

また、曝気槽の外に膜分離装置を配置したいわゆる槽外設置型膜分離活性汚泥処理装置(MBR)も使用することができる。この方式は、曝気槽からポンプで引き抜いた活性汚泥を含む処理水を槽外に設置した膜分離装置に導入して濾過水を取り出し、濃縮された活性汚泥水を曝気槽に返送、循環する方式である。濾過水の取り出し方法は、吸引式であっても加圧式であってもよいが、吸引式の方が動力費が少なくて済むのでより好ましい。   In addition, a so-called outside tank type membrane separation activated sludge treatment apparatus (MBR) in which a membrane separation apparatus is disposed outside the aeration tank can also be used. In this method, treated water containing activated sludge extracted from the aeration tank by pump is introduced into a membrane separation device installed outside the tank, filtered water is taken out, and concentrated activated sludge water is returned to the aeration tank for circulation. It is. The method for taking out the filtered water may be a suction type or a pressure type, but the suction type is more preferable because it requires less power cost.

膜分離活性汚泥処理装置(MBR)に使用される分離膜の材質に関しては、通常よく使われるのは高分子物質からなる分離膜であるが、特に材質によって制約を受けるものではない。しかし、強度が高く耐薬品性に優れているものが、耐久性に優れるので好ましい。耐久性の観点からいえば、セラミックからなる分離膜も好ましく使用される。   As for the material of the separation membrane used in the membrane separation activated sludge treatment apparatus (MBR), a separation membrane made of a high molecular weight material is commonly used, but there is no particular restriction on the material. However, those having high strength and excellent chemical resistance are preferred because of their excellent durability. From the viewpoint of durability, a separation membrane made of ceramic is also preferably used.

膜濾過装置6は、膜分離活性汚泥処理装置(MBR)5に用いられると同様の濾過膜、すなわち、精密濾過膜または限外濾過膜からなる。濾過膜モジュールの形式としては、膜分離活性汚泥処理装置(MBR)5のものと同様である。また、好ましく採用できるものとしては、中空糸型の膜モジュール、例えば水道浄水プロセス用のものを挙げることができる。中空糸膜モジュールは、全濾過型の他、クロスフロー型であっても良い。全濾過型の場合、一定時間ごとに、適宜、逆流洗浄、及び/またはエアレーションを行って目詰まり物質を洗い落とす。このような洗浄の際に出てくる懸濁液Lは、スラッジ濃縮液Jなどとともに、未処理水貯留槽4へ送られる。   The membrane filtration device 6 comprises a filtration membrane similar to that used in the membrane separation activated sludge treatment device (MBR) 5, that is, a microfiltration membrane or an ultrafiltration membrane. The form of the filtration membrane module is the same as that of the membrane separation activated sludge treatment apparatus (MBR) 5. Moreover, as what can be preferably employ | adopted, the thing for hollow fiber type membrane modules, for example, a water purification process, can be mentioned. The hollow fiber membrane module may be a cross flow type as well as a total filtration type. In the case of the all-filtration type, the clogging substances are washed away by performing back-flushing and / or aeration as appropriate at regular intervals. The suspension L that comes out at the time of such washing is sent to the untreated water storage tank 4 together with the sludge concentrate J and the like.

なお、膜濾過装置6の上流には、必要に応じて、金属メッシュや濾布などからなる簡易なフィルターを配置しておくことができる。このフィルターは、粗いごみを取り除くためのものである。フィルターで捕捉された懸濁物質等は、間欠的に逆流洗浄を行うか、系外に取り外して洗浄して再使用する。逆流洗浄水または系外で洗浄した時の洗浄廃水は未処理水貯留槽4または膜分離活性汚泥処理装置(MBR)5に戻して処理される。   A simple filter made of a metal mesh, a filter cloth, or the like can be disposed upstream of the membrane filtration device 6 as necessary. This filter is for removing coarse dust. Suspended substances and the like captured by the filter are intermittently backwashed or removed from the system and washed for reuse. Backwash water or washing waste water washed outside the system is returned to the untreated water storage tank 4 or the membrane separation activated sludge treatment device (MBR) 5 for treatment.

膜分離活性汚泥処理装置(MBR)5を通過して処理された浄化処理水S、及び膜濾過装置6を通過して処理された濾過処理水Iは、これらが混合された混合処理水Uとして調整槽7中に貯留される間に、調整槽7に付属する温調機構75 により所定の温度に調整される。また、処理水還流路84中には、酸素発生装置95を備えた酸素溶入装置9が備えられる。なお、酸素溶入装置9は、加圧式、減圧式(ディフューザー方式など)などでも良く、また、酸素源は、ガス分離膜(PSA)で分離した酸素ガス、液体酸素などでも良い。   Purified treated water S treated through the membrane separation activated sludge treatment device (MBR) 5 and filtered treated water I treated through the membrane filtration device 6 are mixed treated water U in which they are mixed. While stored in the adjustment tank 7, the temperature is adjusted to a predetermined temperature by a temperature adjustment mechanism 75 attached to the adjustment tank 7. Further, in the treated water recirculation path 84, an oxygen infusion device 9 including an oxygen generator 95 is provided. The oxygen infusion device 9 may be a pressure type, a pressure reduction type (diffuser type or the like), and the oxygen source may be oxygen gas separated by a gas separation membrane (PSA), liquid oxygen, or the like.

図示の例において、第1分流路81中に、さらに第3の三方バルブ87が設けられており、これからの分岐路88が酸素溶入装置9にまで延びている。アンモニアなどの発生が少なく、膜分離活性汚泥処理装置(MBR)5及び膜濾過装置6を通過する循環水の割合が低いが、飼育水槽中の酸素濃度を高く保つ必要がある場合などに、適宜、第3の三方バルブ87の制御により第1分流路81の水Fの一部が酸素溶入装置9へと送られる。   In the illustrated example, a third three-way valve 87 is further provided in the first branch flow path 81, and a branch path 88 extending to the oxygen infusion device 9 extends from there. Appropriately when there is little generation of ammonia, etc. and the ratio of circulating water passing through the membrane separation activated sludge treatment device (MBR) 5 and the membrane filtration device 6 is low, but it is necessary to keep the oxygen concentration in the breeding tank high By controlling the third three-way valve 87, a part of the water F in the first branch flow path 81 is sent to the oxygen infusion device 9.

なお、海水を飼育水に使用する例で、塩分濃度を低下させる必要がある場合には、調整槽7、または膜濾過装置6の逆洗水にpH調整剤とともに、塩分濃度調整のための補給水を給水する事ができる。逆に、塩分濃度を上昇させる必要がある場合には、飼育槽1-1,1-2,1-3,1-4、または未処理水貯留槽4に塩類を供給する事ができる。しかし、実際の運転経験からは、おそらく曝気槽から水が蒸発して失われるためか、塩分濃度が上昇する傾向があり、水道水を補給する必要があった。   In addition, when seawater is used for breeding water and it is necessary to reduce the salinity, replenishment for adjusting the salinity with the adjustment tank 7 or backwash water of the membrane filtration device 6 together with the pH adjuster. Can supply water. Conversely, when it is necessary to increase the salinity, salts can be supplied to the breeding tanks 1-1, 1-2, 1-3, 1-4, or the untreated water storage tank 4. However, from actual operating experience, the salt concentration tends to increase, probably because water is evaporated and lost from the aeration tank, and it is necessary to replenish tap water.

図示の例では、水流ポンプ89として、膜分離活性汚泥処理装置(MBR)5に付属する吸引式のもの、及び、膜濾過装置6に付属する押し出し式のもののみが配置されている。しかし、これ以外にも、各水槽の水位の差の調整などの必要に応じて、適宜、1つまたは複数の水流ポンプが、配置される。   In the illustrated example, only the suction type attached to the membrane separation activated sludge treatment apparatus (MBR) 5 and the extrusion type attached to the membrane filtration apparatus 6 are arranged as the water flow pump 89. However, in addition to this, one or a plurality of water flow pumps are appropriately arranged as necessary for adjusting the difference in the water level of each water tank.

本実施形態の閉鎖循環式養殖装置であると、二重の懸濁物質分離装置により、懸濁物質を効率的に分離濃縮できるため、膜分離活性汚泥処理装置(MBR )5に養殖魚の排泄する糞や残餌など有機性汚濁物質を効率的に供給して、MBRの機能維持を安定化できると同時に、膜濾過装置6への負荷を軽減する事で目詰まり及びこれを解消する洗浄操作を最小限に抑えることができる。   In the closed circulation type aquaculture apparatus of the present embodiment, the suspended substance can be efficiently separated and concentrated by the double suspended substance separation apparatus. Therefore, the cultured fish is excreted in the membrane separation activated sludge treatment apparatus (MBR) 5. Efficiently supply organic pollutants such as feces and residual food to stabilize MBR function maintenance, and at the same time, reduce the load on the membrane filtration device 6 to prevent clogging and cleaning operations Can be minimized.

また、膜分離活性汚泥処理装置(MBR)5においては、アンモニアや有機物などの排泄物を分解処理するだけでなく細菌類も活性汚泥に捕食されて死滅分解され、さらに濾過膜は細菌やウィルスを効率よく除去することができるので、紫外線殺菌装置などの殺菌設備を省略するか、あるいは規模を著しく小さくする事が出来る。飼育方法によっては図1の経路Fにのみ紫外線殺菌設備を設ければ良い。   In the membrane separation activated sludge treatment equipment (MBR) 5, not only the wastes such as ammonia and organic matter are decomposed, but also the bacteria are preyed and killed by the activated sludge. Since it can be removed efficiently, sterilization equipment such as an ultraviolet sterilizer can be omitted or the scale can be significantly reduced. Depending on the breeding method, ultraviolet sterilization equipment may be provided only on the path F in FIG.

本実施形態の閉鎖循環式養殖装置では、二重の懸濁物質分離装置で懸濁物質(SS)を除去した後の2次上澄みについて、全量を膜分離活性汚泥処理装置(MBR)5や膜濾過装置6に送るのではなく、アンモニア、SS、及び細菌の除去に必要な分だけこれらに送る方式である。一の好ましい実施形態において、膜分離活性汚泥処理装置(MBR)5の側へと送られる懸濁液の水量Lは、膜濾過装置6へと送られる水量Hの5〜15%である。また、一の好ましい運転条件において、2次上澄みEのうち、第1分流路81を通って飼育水槽1-1, 1-2・・へと還流する水量Fと、膜濾過装置6へと送られる水量Hと、膜分離活性汚泥処理装置(MBR)5の側へと送られる水量Nとの比、F/H/Nはおよそ、4〜6%/39〜43%/53〜55%である。   In the closed circulation type aquaculture device of this embodiment, the total amount of the secondary supernatant after removing suspended solids (SS) by the double suspended solids separator is the membrane separation activated sludge treatment device (MBR) 5 or membrane. Instead of sending it to the filtration device 6, it is a system that sends only the amount necessary for removing ammonia, SS, and bacteria. In one preferred embodiment, the amount L of the suspension sent to the membrane separation activated sludge treatment device (MBR) 5 side is 5 to 15% of the amount H of water sent to the membrane filtration device 6. Further, in one preferable operating condition, the amount of water F returning to the breeding tanks 1-1, 1-2,... Of the secondary supernatant E through the first diversion channel 81 and the membrane filtration device 6 Ratio of the amount of water H and the amount of water N sent to the membrane separation activated sludge treatment unit (MBR) 5 side, F / H / N is approximately 4-6% / 39-43% / 53-55% is there.

したがって、アンモニア及び細菌や懸濁物質を除去するための設備コスト及び運転コストを最小限に抑えることができる。細菌及び浮遊性懸濁物質を除去するだけのためには、膜分離活性汚泥処理装置(MBR)5だけでなく、膜濾過装置6をも用いることができるので、膜分離活性汚泥処理装置(MBR)5は、アンモニア除去などの活性汚泥処理のために必要な程度の能力及びサイズを備えれば足りる。また、二重の液体サイクロン装置を通って出てきた2次上澄みについて、どれだけを膜分離活性汚泥処理装置(MBR)5に送り、どれだけを膜濾過装置6に送るかについては、飼育水槽1から引き出される飼育水について、アンモニア濃度、懸濁物質(SS)、細菌数などを測定し、測定結果に基づき決定することができる。   Therefore, the equipment cost and operation cost for removing ammonia, bacteria, and suspended solids can be minimized. In order to remove bacteria and suspended suspended solids, not only membrane separation activated sludge treatment equipment (MBR) 5 but also membrane filtration equipment 6 can be used, so membrane separation activated sludge treatment equipment (MBR) 5) is sufficient if it has the capacity and size necessary for activated sludge treatment such as ammonia removal. In addition, about the secondary supernatant which came out through double hydrocyclone device, how much is sent to membrane separation activated sludge processing device (MBR) 5 and how much is sent to membrane filtration device 6 The breeding water drawn from 1 can be determined based on the measurement results by measuring the ammonia concentration, suspended solids (SS), the number of bacteria, and the like.

本実施形態の閉鎖循環式養殖装置であると、特に、飼育水槽内でのアンモニア及び有機性排泄物の発生量が多い時間帯に、アンモニア及び有機性排泄物濃度の高い排水を一時貯留しておき、安定的に膜分離活性汚泥処理装置(MBR)5へと送ることができるため、活性汚泥処理装置の効率を高く保つことができる。さらに、より高い活性汚泥濃度を維持することができるために、添加する粒子状活性炭をより少なくすることができる。   In the closed circulation type aquaculture device of the present embodiment, particularly in a time zone in which the generation amount of ammonia and organic excrement is large in the breeding aquarium, wastewater with a high concentration of ammonia and organic excrement is temporarily stored. In addition, since it can be stably sent to the membrane separation activated sludge treatment device (MBR) 5, the efficiency of the activated sludge treatment device can be kept high. Furthermore, since the higher activated sludge density | concentration can be maintained, the particulate activated carbon to add can be decreased.

なお、上述の液体サイクロンによる沈降性懸濁物質の分離機能や、膜濾過装置による浮遊性懸濁物質の分離機能は、膜分離活性汚泥処理装置(MBR)の設備規模を小さくすると同時に活性汚泥濃度を高濃度に維持して効率的に機能させるために付設される機能装置であり、本発明を適用するための必要条件でないことは以上の記述から明らかである。すなわち、養殖装置全体の規模によっては、飼育循環水全量を膜分離活性汚泥処理装置(MBR)に供給する簡素なプロセスフローからなる閉鎖循環式養殖装置であっても、さらには、液体サイクロンまたは従来公知の物理濾過装置あるいは膜濾過装置だけを付設した閉鎖循環式養殖装置であっても、好ましく本発明を適用できることは以上の説明から明らかである。   In addition, the separation function of sedimentary suspended solids using the above hydrocyclone and the separation function of suspended suspended solids using a membrane filtration device reduce the scale of the membrane separation activated sludge treatment equipment (MBR) and at the same time activate sludge concentration. It is clear from the above description that the functional device is attached to maintain a high concentration in order to function efficiently and is not a necessary condition for applying the present invention. That is, depending on the scale of the entire aquaculture device, even a closed-circulation aquaculture device consisting of a simple process flow that supplies the total amount of circulating water to the membrane separation activated sludge treatment device (MBR), It is clear from the above description that the present invention can be preferably applied even to a closed circulation type aquaculture device provided with only a known physical filtration device or membrane filtration device.

膜分離活性汚泥処理装置(MBR)と液体サイクロン及び/または膜濾過装置を主要な浄化処理装置とする閉鎖循環式養殖装置は、従来技術からなる閉鎖循環式養殖装置に比べて、簡素な構成により維持管理の容易なことに加えて、可動機械装置が格段に少なく、また海水等の腐食を受ける機材の使用も著しく少なく、電力費及び維持管理費用が少なくて済むうえに、活性炭添加によって換水もほとんど必要なくなるので、一層の生産コストが低減されるのである。   The closed-circulation aquaculture equipment that uses the membrane separation activated sludge treatment equipment (MBR) and hydrocyclone and / or membrane filtration equipment as the main purification treatment equipment has a simple structure compared to the closed-circulation culture equipment of the prior art. In addition to the ease of maintenance, the number of movable machinery is remarkably small, the use of equipment subject to corrosion such as seawater is remarkably low, and power and maintenance costs can be reduced. Since it is almost unnecessary, the production cost is further reduced.

次に本発明の一実施例と比較例をもって本発明について説明するが、本発明はこの実施例によって限定されるものではない。   Next, the present invention will be described with reference to one example and a comparative example of the present invention, but the present invention is not limited to this example.

本実施例は、容量4m3の飼育水槽を2槽、同3.5m3の貯留槽、8m3の膜分離活性汚泥処理装置(MBR)、3m3の調整槽、及び膜面積12m2の膜ろ過装置を備えた、一実施形態として図1〜2に示したと同様の構成の閉鎖循環式養殖装置を使用して、平均体重約65gのヒラメ幼魚500尾を投入し、MBRには乾燥炭として0.65重量%の粒子状活性炭を投入して運転、飼育した。本実施例の養殖期間中、換水は一度もなく、人工海水濃度が上昇するので、適宜水道水にpH調整剤を添加して補給し、濃度調整をした。したがって、水質分析のサンプリングと濾過膜モジュールを取り外して洗浄する際に系外に取り出される水以外に、養殖装置系外に排出された飼育水はなかった。飼育期間中、アンモニア濃度は0.1〜3.1mg-N/L(飼育水1リットルあたりのアンモニア性窒素量)、亜硝酸濃度は0.00〜2.3mg-N/Lに維持され、ヒラメ養殖の飼育水として十分に満足できる水準であった。また、硝酸イオン濃度は、飼育90日目で176mg-N/L、159日目で268mg-N/Lで、それぞれ給餌量から推定した理論値に対して、71.6%と59.4%であって、基準値とされている600mg-N/に対して十分に低い値で維持された。脱窒装置を備えていないにも関わらず硝酸イオン濃度が著しく低く維持されている理由は明らかでないが、粒子状活性炭を添加して運転されるMBRの性能によるものなのか、あるいは貯留槽内で脱窒反応が起こっているのか、または両者の生物反応の相加的効果ではないかと推定される。飼育期間を通じて、飼育水の外観は無色・透明であった。一般細菌数は、簡易測定法の結果であるが、膜濾過装置では100%、MBRでは99%以上が除去されていた。また、この方式の閉鎖循環式養殖装置の場合には、点検・監視・管理の必要な駆動装置付きの機器が非常に少なくて、日常の維持管理は飼育魚への給餌と状態の観察、及び水質分析とその監視に集中することができて、著しく管理の手数が省けることが確かめられた。 This example, 2 tank breeding aquarium capacity 4m 3, reservoir of the 3.5 m 3, a membrane separation activated sludge treatment apparatus 8m 3 (MBR), adjustment tank 3m 3, and membrane area 12m 2 membrane filtration Using a closed-circulation aquaculture device with the same configuration as shown in FIGS. 1 and 2 as an embodiment, 500 flounder larvae with an average weight of about 65 g are introduced, and the MBR has 0.65 as dry charcoal. It was operated and bred by adding particulate activated carbon of wt%. During the aquaculture period of this example, there was no water exchange and the artificial seawater concentration increased. Therefore, a pH adjuster was appropriately added to tap water to adjust the concentration. Therefore, there was no breeding water discharged outside the aquaculture system other than water taken out of the system when sampling for water quality analysis and the filtration membrane module was removed and washed. During the breeding period, the ammonia concentration is maintained at 0.1 to 3.1 mg-N / L (ammonia nitrogen amount per liter of breeding water) and the nitrous acid concentration is maintained at 0.00 to 2.3 mg-N / L. The level was satisfactory. In addition, the nitrate ion concentration was 176 mg-N / L on the 90th day of breeding and 268 mg-N / L on the 159th day, 71.6% and 59.4% of the theoretical value estimated from the feeding amount, It was maintained at a value sufficiently lower than the standard value of 600 mg-N /. The reason why the nitrate ion concentration is kept extremely low despite the lack of a denitrification device is not clear, but it is due to the performance of MBR operated by adding particulate activated carbon, or in the storage tank It is presumed that denitrification reaction is taking place or an additive effect of both biological reactions. Throughout the breeding period, the appearance of the breeding water was colorless and transparent. The number of general bacteria was the result of a simple measurement method, but 100% was removed from the membrane filtration device and 99% or more was removed from the MBR. In addition, in the case of this type of closed circulation aquaculture equipment, there are very few devices with drive devices that need to be inspected, monitored, and managed, and daily maintenance management includes feeding fish and observing their condition, and It was confirmed that it was possible to concentrate on water quality analysis and monitoring, and that management work was saved significantly.

約150日後、平均体重約450gに達したところで1回目の試食評価した。当初の実験条件の都合で一時期給餌量に制限を加えていたので成長は若干遅くなっているが、本発明の効果を確認する上でなんら支障はない。   About 150 days later, when the average weight reached about 450 g, the first tasting evaluation was performed. Growth was slowed slightly because the amount of feed was limited for the time of the initial experimental conditions, but there was no problem in confirming the effect of the present invention.

試食評価に当たっては、数日間給餌を停止して飼育した後、絞めて1昼夜後に試食した。評価を魚介類の養殖の専門技術者からパネラーを選んで行った結果、匂いについては延べ人数で、「匂いを感じない」が20人中19人、「食べると匂いを感じる」が1人であった。食感に関しては、「しっかりしている」と「やや柔らかい」が19人で、「柔らかい感じ」という評価が1人であった。旨みについては、「旨い」と「旨みがある」と答えた人数は、14人、「味がない」という評価が4人、「その他」が2人であった。   In the evaluation of the tasting, the feeding was stopped for several days and the animals were reared and then squeezed and sampled one day and night. As a result of selecting panelists from seafood aquaculture specialists, the total number of odors was 19 people, `` I do not feel smell '' 19 out of 20 people, `` I feel smell when I eat '' is 1 person there were. As for the texture, 19 people were “solid” and “slightly soft”, and 1 was “soft”. As for umami, the number of respondents who answered “delicious” and “had umami” was 14 people, “no taste” was rated 4 people, and “other” was 2 people.

さらにその2ヶ月後、飼育開始から210日後に720〜770gのほぼ出荷サイズに近いサンプル魚で2回目の試食評価をした。その結果、匂いについては延べ人数で、「匂いを感じない」が8人中7人、「食べると匂いを感じる」が1人であった。食感に関しては、「しっかりしている」と「やや柔らかい」が8人で、「柔らかい感じ」という評価が0人であった。旨みについては、「旨い」と「旨みがある」「甘みがある」と答えた人数は7人、「味がない」という評価が1人であった。   Two months later, 210 days after the start of breeding, a second sample of 720-770g sample fish close to the shipping size was evaluated. As a result, the total number of scents was 7 people, “no scent” was 7 out of 8 people and “smells when eaten” was 1 person. Regarding the texture, 8 people were “solid” and “slightly soft”, and 0 people rated “soft”. As for umami, seven respondents answered that it was “delicious”, “has umami”, and “had a sweetness”, and one was rated as “no taste”.

比較例は、液体サイクロン式沈降性懸濁物質分離装置を備えた40m3の飼育水槽5槽、ドラムフィルター式物理濾過装置、泡沫分離装置、有機物分解用の回転円板床型生物処理装置、砂流動床型アンモニア硝化装置、紫外線殺菌装置、温度調節機能を有する調整槽、及びPSAで製造される酸素を飼育水に溶解・調整する酸素溶入装置からなる、商業的規模の閉鎖循環式養殖装置を使用して、ヒラメを1水槽当たり4000尾投入した水槽2槽、2000尾投入した水槽2槽、尾数調整用の予備のヒラメを1槽に投入して、試験生産を行った。この飼育期間中、1日の換水率を約5%として人工海水を補給した。水質は各項目とも基準値の範囲内に管理されていたが、外観は着色があり、若干濁りが認められた。 The comparative examples are 5 40m 3 breeding water tanks equipped with liquid cyclone type sedimentation suspended solids separation device, drum filter type physical filtration device, foam separation device, rotating disk bed type biological treatment device for organic matter decomposition, sand flow A commercial scale closed-circulation aquaculture device consisting of a bed-type ammonia nitrification device, an ultraviolet sterilization device, a temperature-regulating tank, and an oxygen infusion device that dissolves and adjusts oxygen produced by PSA in the breeding water. In use, two tanks with 4,000 flounder per tank, two tanks with 2,000 flounder, and spare flounder for adjusting the number of tails were put into one tank for trial production. During this breeding period, artificial seawater was replenished at a daily water change rate of about 5%. The water quality was controlled within the standard value range for each item, but the appearance was colored and some turbidity was observed.

なお、水質条件の調整にやや問題があって生育速度が若干従来の経験より劣ったが、本発明の効果の比較には問題はない。   Although the growth rate is slightly inferior to conventional experience due to some problems in the adjustment of water quality conditions, there is no problem in comparing the effects of the present invention.

評価は1〜2月毎に試食評価したが、実施例と比較するために、平均体重が450gに達した時点で評価したデータを次に示すと次のようになる。すなわち、4000尾投入した水槽のヒラメと2000尾投入したヒラメのデータに差は認められていないので、両者を含めて示した。パネラーと評価方法は実施例と同様である。匂いについては延べ人数で、「匂いを感じない」が25人中17人、「食べると少し臭い」が5人、「食べると臭い」が3人であった。食感に関しては、「しっかりしている」と「やや柔らかい」が26人中21人で、「柔らかい感じ」という評価が5人であった。旨みについては、「旨い」と「旨みがある」と答えた人数は、26人中18人、「味がない」という評価が4人、「不味い」という評価が1人、「生臭い」が2人、「その他」が1人であった。   Although the evaluation was made on a sample basis every 1 to 2 months, the data evaluated when the average body weight reached 450 g for comparison with the examples are as follows. In other words, there was no difference between the data of 4,000 flounder thrown and 2,000 flounder thrown, so both are shown. Panelists and evaluation methods are the same as in the examples. The total number of scents was 17 people out of 25, “no scent”, 5 “a little smell when eaten”, and 3 “a smell when eaten”. Regarding the texture, 21 people out of 26 were “solid” and “slightly soft”, and 5 people rated it as “soft”. As for umami, the number of respondents who answered “delicious” and “had umami” was 18 out of 26, 4 were “not tasteful”, 1 was “tasteless”, and 2 were “bad” One person was "Other".

さらに、比較例の約800gに達したヒラメの試食評価では、上述の450gサイズより若干匂いと食感で改善がみられたもののほぼ同様の評価結果であった。   Further, in the evaluation of the Japanese flounder that reached about 800 g in the comparative example, although the odor and texture were slightly improved from the above-mentioned 450 g size, the evaluation results were almost the same.

以上の評価結果は、本発明の方法で飼育した養殖魚の方が、匂い、食感、旨みで明らかに改善されていることを示している。   The above evaluation results show that the cultured fish bred by the method of the present invention is clearly improved in smell, texture and taste.

Claims (15)

魚介類を飼育する閉鎖循環式養殖装置の飼育槽から抜き出した、残餌や糞及び飼育魚が排泄したアンモニア及び有機性排泄物などを含む飼育水から、懸濁物質や排泄物質を分離または分解処理する装置として、膜分離活性汚泥処理装置を備えた閉鎖循環式養殖装置を使用して養殖魚を飼育するにあたり、膜分離活性汚泥処理装置の曝気槽に粒子状活性炭を添加して運転することを特徴とする魚介類の飼育方法。   Suspended and excreted substances are separated or decomposed from rearing water, including residual food, feces, and ammonia and organic excretions excreted by the reared fish extracted from the rearing tank of the closed-circulation aquaculture equipment that rears seafood When raising cultured fish using a closed-circulation aquaculture device equipped with a membrane separation activated sludge treatment device as a treatment device, add particulate activated carbon to the aeration tank of the membrane separation activated sludge treatment device and operate. A method of raising seafood characterized by 請求項1に記載の飼育方法において、閉鎖循環式養殖装置が少なくとも、魚介類を飼育する飼育水槽(1)と、飼育水槽(1)の下端から引き出された残餌や糞などからなる沈降性懸濁物質を多く含む排水を一時蓄える貯留槽(2)と、その下流に配置された貯留槽から引き出された未処理飼育水を浄化処理する膜分離活性汚泥処理装置(3)と、その下流に配置された浄化処理済みの処理水を貯留する温度調節機能を有する調整槽(4)と、調整槽から送りだされ飼育槽に供給される処理水の溶存酸素濃度を調整する酸素溶入装置(5)と、を備えていることを特徴とする魚介類の飼育方法。   2. The breeding method according to claim 1, wherein the closed-circulation aquaculture device comprises at least a breeding tank (1) for breeding fish and shellfish, and residual food or feces drawn from the lower end of the breeding tank (1). A storage tank (2) that temporarily stores wastewater containing a lot of suspended solids, a membrane-separated activated sludge treatment device (3) that purifies untreated breeding water drawn from a storage tank located downstream of the storage tank, and its downstream The adjustment tank (4) having a temperature adjustment function for storing treated water that has been subjected to purification treatment, and an oxygen infusion device that adjusts the dissolved oxygen concentration of the treatment water fed from the adjustment tank and supplied to the breeding tank (5). A method for raising seafood, comprising: 請求項1に記載の飼育方法において、閉鎖循環式養殖装置が、魚介類を飼育する飼育水槽(1)と、飼育水槽(1)の下端から引き出された排水(B)を、沈降性懸濁物質を含む液(M)と1次上澄み(C)とに分離する第1懸濁物質分離装置(2)と、飼育水槽(1)の上部から引き出された飼育水(A)、及び前記1次上澄み(C)を、残余の沈降性懸濁物質を含む液(J)と2次上澄み(E)とに分離する第2懸濁物質分離装置(3)と、前記2次上澄み(E)を第1〜3の分流路(81〜83)に分配する分配機構(85,86)と、第2の分流路(82)の下流に配置され、アンモニア等を処理する活性汚泥を含む水槽及び活性汚泥処理された水から浮遊性懸濁物質及び細菌を分離するための濾過膜からなる膜分離活性汚泥処理装置(MBR :メンブレンバイオリアクター)(5)と、第3の分流路(83)の下流に配置され、前記2次上澄み(E)から浮遊性懸濁物質及び細菌を分離するための濾過膜からなる膜濾過装置(6)と、膜分離活性汚泥処理装置(5)及び膜濾過装置(6)の下流に配置されて浄化処理済みの処理水を貯留する調整槽(7)と、前記第1の分流路(81)の下流端をなし飼育水槽(1)中へと前記2次上澄み(E)を戻す還流給水口(81A)と、調整槽(7)中の処理水を飼育水槽(1)中へと戻す処理水還流路(84)と、膜分離活性汚泥処理装置(5)の上流に配置され、前記2次上澄み、前記1次上澄み、または前記排水を貯留する未処理水貯留槽(4)とからなることを特徴とする魚介類の飼育方法。   2. The breeding method according to claim 1, wherein the closed circulation type aquaculture apparatus is configured to suspend the aquatic tank (1) for cultivating seafood and the drainage (B) drawn from the lower end of the aquarium (1). A first suspended substance separation device (2) for separating the substance-containing liquid (M) and the primary supernatant (C), the breeding water (A) drawn from the upper part of the breeding tank (1), and the above 1 A second suspended material separator (3) for separating the secondary supernatant (C) into a liquid (J) containing the remaining sedimentary suspended solids and a secondary supernatant (E); and the secondary supernatant (E) A distribution mechanism (85, 86) that distributes water to the first to third distribution channels (81 to 83), a water tank that is disposed downstream of the second distribution channel (82), and that includes activated sludge for treating ammonia and the like; Membrane separation activated sludge treatment equipment (MBR: membrane bioreactor) consisting of filtration membranes for separating suspended suspended solids and bacteria from activated sludge treated water ) (5) and a membrane filtration device (6) which is arranged downstream of the third branch channel (83) and which comprises a filtration membrane for separating suspended suspended matter and bacteria from the secondary supernatant (E) An adjustment tank (7) that is disposed downstream of the membrane separation activated sludge treatment device (5) and the membrane filtration device (6) and stores treated water that has been subjected to purification treatment, and the first branch channel (81). Refrigerated water supply port (81A) that returns the secondary supernatant (E) into the rearing water tank (1) and the treated water in the adjustment tank (7) into the rearing water tank (1). A reflux path (84) and an untreated water storage tank (4) that is disposed upstream of the membrane separation activated sludge treatment device (5) and stores the secondary supernatant, the primary supernatant, or the waste water. A method of raising seafood characterized by 請求項1に記載の飼育方法において、粒子状活性炭の添加量が曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.2〜5.0重量%であることを特徴とする魚介類の飼育方法。 The breeding method according to claim 1, wherein the amount of particulate activated carbon added is 0.2 to 5.0 wt% in dry weight with respect to the treated water containing activated sludge in the aeration tank. Method. 請求項1に記載の飼育方法において、粒子状活性炭の添加量が曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.4〜2.5重量%であることを特徴とする魚介類の飼育方法。 The breeding method according to claim 1, wherein the amount of particulate activated carbon added is 0.4 to 2.5% by dry weight with respect to the treated water containing activated sludge in the aeration tank. Method. 請求項2に記載の飼育方法において、粒子状活性炭の添加量が曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.2〜5.0重量%であることを特徴とする魚介類の飼育方法。 The breeding method according to claim 2, wherein the amount of particulate activated carbon added is 0.2 to 5.0 wt% in dry weight with respect to the treated water containing activated sludge in the aeration tank. Method. 請求項2に記載の飼育方法において、粒子状活性炭の添加量が曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.4〜2.5重量%であることを特徴とする魚介類の飼育方法。 The breeding method according to claim 2, wherein the amount of particulate activated carbon added is 0.4 to 2.5% by weight in dry weight with respect to the treated water containing activated sludge in the aeration tank. Method. 請求項3に記載の飼育方法において、粒子状活性炭の添加量が曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.2〜5.0重量%であることを特徴とする魚介類の飼育方法。 The breeding method according to claim 3, wherein the addition amount of the particulate activated carbon is 0.2 to 5.0 wt% in dry weight with respect to the treated water containing activated sludge in the aeration tank. Method. 請求項3に記載の飼育方法において、粒子状活性炭の添加量が曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.4〜2.5重量%であることを特徴とする魚介類の飼育方法。 The breeding method according to claim 3, wherein the amount of particulate activated carbon added is 0.4 to 2.5% by dry weight with respect to the treated water containing activated sludge in the aeration tank. Method. 請求項1に記載の飼育方法において、粒子状活性炭の粒子サイズが20メッシュ以下である粉末活性炭または粒状活性炭であることを特徴とする魚介類の飼育方法。 2. The method for breeding fish and shellfish according to claim 1, wherein the activated carbon is powdered activated carbon or granular activated carbon in which the particle size of the particulate activated carbon is 20 mesh or less. 請求項2に記載の飼育方法において、粒子状活性炭の粒子サイズが20メッシュ以下である粉末活性炭または粒状活性炭であることを特徴とする魚介類の飼育方法。 3. The method for breeding fish and shellfish according to claim 2, wherein the activated carbon is powdered activated carbon or granular activated carbon in which the particle size of the particulate activated carbon is 20 mesh or less. 請求項3に記載の飼育方法において、粒子状活性炭の粒子サイズが20メッシュ以下である粉末活性炭または粒状活性炭であることを特徴とする魚介類の飼育方法。 4. The method for breeding fish and shellfish according to claim 3, wherein the activated carbon is powdered activated carbon or granular activated carbon in which the particle size of the particulate activated carbon is 20 mesh or less. 魚介類を飼育する閉鎖循環式養殖装置の飼育槽から抜き出した、残餌や糞及び飼育魚が排泄したアンモニア及び有機性排泄物などを含む飼育水から、懸濁物質や排泄物質を分離または分解処理する装置として、膜分離活性汚泥処理装置を備えた閉鎖循環式養殖装置を使用して養殖魚を飼育するにあたり、膜分離活性汚泥処理装置の曝気槽に、粒子サイズが20メッシュ以下である粉末活性炭または粒状活性炭を、曝気槽中の活性汚泥を含む処理水に対して、乾燥重量で0.2〜5.0重量%添加して運転することを特徴とする魚介類の飼育方法。   Suspended and excreted substances are separated or decomposed from rearing water, including residual food, feces, and ammonia and organic excretions excreted by the reared fish extracted from the rearing tank of the closed-circulation aquaculture equipment that rears seafood When raising cultured fish using a closed-circulation aquaculture device equipped with a membrane separation activated sludge treatment device as a treatment device, a powder having a particle size of 20 mesh or less in the aeration tank of the membrane separation activated sludge treatment device A method for breeding seafood, characterized in that activated carbon or granular activated carbon is operated by adding 0.2 to 5.0% by weight in dry weight to treated water containing activated sludge in an aeration tank. 請求項13に記載の飼育方法において、閉鎖循環式養殖装置が少なくとも、魚介類を飼育する飼育水槽(1)と、飼育水槽(1)の下端から引き出された残餌や糞などからなる沈降性懸濁物質を多く含む排水を一時蓄える貯留槽(2)と、その下流に配置された貯留槽から引き出された未処理飼育水を浄化処理する膜分離活性汚泥処理装置(3)と、その下流に配置された浄化処理済みの処理水を貯留する温度調節機能を有する調整槽(4)と、及び調整槽から送りだされ飼育槽に供給される処理水の溶存酸素濃度を調整する酸素溶入装置(5)を備えていることを特徴とする魚介類の飼育方法。   14. The breeding method according to claim 13, wherein the closed-circulation aquaculture device comprises at least a breeding tank (1) for breeding fish and shellfish, and residual food or feces drawn from the lower end of the breeding tank (1). A storage tank (2) that temporarily stores wastewater containing a lot of suspended solids, a membrane-separated activated sludge treatment device (3) that purifies untreated breeding water drawn from a storage tank located downstream of the storage tank, and its downstream An adjustment tank (4) that has a temperature adjustment function for storing treated water that has been subjected to purification treatment, and oxygen infusion that adjusts the dissolved oxygen concentration of the treated water fed from the adjustment tank and supplied to the breeding tank A method for raising seafood, characterized by comprising a device (5). 請求項13に記載の飼育方法において、閉鎖循環式養殖装置が、魚介類を飼育する飼育水槽(1)と、飼育水槽(1)の下端から引き出された排水(B)を、沈降性懸濁物質を含む液(M)と1次上澄み(C)とに分離する第1懸濁物質分離装置(2)と、飼育水槽(1)の上部から引き出された飼育水(A)、及び前記1次上澄み(C)を、残余の沈降性懸濁物質を含む液(J)と2次上澄み( E)とに分離する第2懸濁物質分離装置(3)と、前記2次上澄み(E)を第1〜3の分流路(81〜83)に分配する分配機構(85,86)と、第2の分流路(82)の下流に配置され、アンモニア等を処理する活性汚泥を含む水槽及び活性汚泥処理された水から浮遊性懸濁物質及び細菌を分離するための濾過膜からなる膜分離活性汚泥処理装置(5)と、第3の分流路(83)の下流に配置され、前記2次上澄み(E)から浮遊性懸濁物質及び細菌を分離するための濾過膜からなる膜濾過装置(6)と、膜分離活性汚泥処理装置(5)及び膜濾過装置(6)の下流に配置されて浄化処理済みの処理水を貯留する調整槽(7)と、前記第1の分流路(81)の下流端をなし飼育水槽(1)中へと前記2次上澄み(E)を戻す還流給水口(81A)と、調整槽(7)中の処理水を飼育水槽(1)中へと戻す処理水還流路(84)と、膜分離活性汚泥処理装置(5)の上流に配置され、前記2次上澄み、前記1次上澄み、または前記排水を貯留する未処理水貯留槽(4)とからなることを特徴とする魚介類の飼育方法。   14. The breeding method according to claim 13, wherein the closed-circulation aquaculture apparatus is configured to suspend the aquatic tank (1) for cultivating seafood and the drainage (B) drawn from the lower end of the aquarium (1). A first suspended substance separation device (2) for separating the substance-containing liquid (M) and the primary supernatant (C), the breeding water (A) drawn from the upper part of the breeding tank (1), and the above 1 A second suspended material separator (3) for separating the second supernatant (C) into a liquid (J) containing the remaining sedimentary suspended solids (J) and a second supernatant (E); and the second supernatant (E) A distribution mechanism (85, 86) that distributes water to the first to third distribution channels (81 to 83), a water tank that is disposed downstream of the second distribution channel (82), and that includes activated sludge for treating ammonia and the like; Membrane-separated activated sludge treatment device (5) consisting of a filtration membrane for separating suspended suspended solids and bacteria from activated sludge-treated water, and below the third branch channel (83) A membrane filtration device (6) comprising a filtration membrane for separating suspended suspended matter and bacteria from the secondary supernatant (E), a membrane separation activated sludge treatment device (5), and a membrane filtration device ( 6) an adjustment tank (7) that is disposed downstream of the purified water to be treated, and the secondary supernatant forms the downstream end of the first diversion channel (81) into the breeding water tank (1). (E) Return water feed port (81A), treated water return channel (84) for returning treated water in the adjustment tank (7) to the breeding tank (1), and membrane separation activated sludge treatment device (5) A seafood rearing method comprising the secondary supernatant, the primary supernatant, or an untreated water storage tank (4) for storing the waste water.
JP2009291041A 2009-12-22 2009-12-22 Closed circulation culture method for seafood Active JP5847376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291041A JP5847376B2 (en) 2009-12-22 2009-12-22 Closed circulation culture method for seafood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291041A JP5847376B2 (en) 2009-12-22 2009-12-22 Closed circulation culture method for seafood

Publications (2)

Publication Number Publication Date
JP2011130685A true JP2011130685A (en) 2011-07-07
JP5847376B2 JP5847376B2 (en) 2016-01-20

Family

ID=44344092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291041A Active JP5847376B2 (en) 2009-12-22 2009-12-22 Closed circulation culture method for seafood

Country Status (1)

Country Link
JP (1) JP5847376B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102403A1 (en) * 2011-01-24 2012-08-02 Sumitomo Chemical Company, Limited Method and apparatus for separating liquid
CN105409868A (en) * 2015-12-23 2016-03-23 环境保护部南京环境科学研究所 Filtering device for preventing and controlling procambarus clarkii and application of filtering device
JP2017056447A (en) * 2015-09-18 2017-03-23 王子ホールディングス株式会社 Water treatment system and method
CN106746234A (en) * 2016-12-29 2017-05-31 北京市水产科学研究所 Sub- cold water fishes industrial circulating water cultivating system and method
CN108828142A (en) * 2018-04-27 2018-11-16 宿松富民水产养殖有限公司 The comprehensive method for automatically regulating of oxygen in a kind of loach pond
JP2019068772A (en) * 2017-10-10 2019-05-09 オルガノ株式会社 Water treatment device and water treatment method
JP2019084505A (en) * 2017-11-08 2019-06-06 オルガノ株式会社 Water treatment apparatus and water treatment method
KR20190095151A (en) * 2018-02-05 2019-08-14 주식회사 에코니티 The water treatment system for fish breeding by applying membrane filtration process
CN110547238A (en) * 2018-05-15 2019-12-10 中国科学院青岛生物能源与过程研究所 aquaculture ecosystem and control method thereof
US10537094B2 (en) 2016-09-01 2020-01-21 Kowa Kogyo Co., Ltd. Multi-tube nozzle for use in eradicating harmful aquatic organisms
JP2020104101A (en) * 2018-12-27 2020-07-09 南京大学 Method for strengthning removal of diclofenac in sewage by means of enrichment of nitrifying bacteria
CN112021247A (en) * 2020-09-28 2020-12-04 珠海南方利洋水产科技有限公司 Circulating water culture system with biological carbon source
CN112939229A (en) * 2021-01-27 2021-06-11 广东海洋大学 Method for separating and treating water and sewage of aquaculture tail water
CN113875676A (en) * 2021-09-14 2022-01-04 浙江省海洋水产养殖研究所 Intelligent marine organism culture system, matched culture pond and method for constructing system
WO2022071545A1 (en) 2020-10-02 2022-04-07 株式会社ノベルジェン Water processing method, water processing system, carbonization/combustion material, and carbonization/combustion material manufacturing method
CN115259498A (en) * 2022-08-03 2022-11-01 湖南省水产科学研究所 Aquaculture wastewater purification device and purification method
CN115321741A (en) * 2021-05-11 2022-11-11 湖南迪易清环保科技有限公司 Breeding sewage treatment method
CN115594332A (en) * 2022-09-20 2023-01-13 吴秋仙(Cn) Method for treating aquaculture tail water
CN118811909A (en) * 2024-09-19 2024-10-22 连云港赣榆佳信水产开发有限公司 Waste water purification device for aquaculture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106242A (en) * 1982-12-09 1984-06-19 三和電気土木工事株式会社 Breeding of fishes and shellfishes
JPS6463325A (en) * 1987-05-12 1989-03-09 Inax Corp Culture of water circulation type and culture device
JP2002223667A (en) * 2001-01-31 2002-08-13 Matsushita Electric Works Ltd Rearing equipment for fish and shell fish
JP2004358376A (en) * 2003-06-05 2004-12-24 Yoji Nagano Filter medium and filtering device
JP2005022903A (en) * 2003-06-30 2005-01-27 Mitsuishi Taika Renga Kk Ceramic porous body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106242A (en) * 1982-12-09 1984-06-19 三和電気土木工事株式会社 Breeding of fishes and shellfishes
JPS6463325A (en) * 1987-05-12 1989-03-09 Inax Corp Culture of water circulation type and culture device
JP2002223667A (en) * 2001-01-31 2002-08-13 Matsushita Electric Works Ltd Rearing equipment for fish and shell fish
JP2004358376A (en) * 2003-06-05 2004-12-24 Yoji Nagano Filter medium and filtering device
JP2005022903A (en) * 2003-06-30 2005-01-27 Mitsuishi Taika Renga Kk Ceramic porous body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014011373; 根本 大輔、梅津 剛: '高濃度活性汚泥下の活性炭使用による吸着性能実験' 第36回土木学会関東支部技術研究発表会講演概要集 36巻7号, 200903 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102403A1 (en) * 2011-01-24 2012-08-02 Sumitomo Chemical Company, Limited Method and apparatus for separating liquid
JP2017056447A (en) * 2015-09-18 2017-03-23 王子ホールディングス株式会社 Water treatment system and method
CN105409868A (en) * 2015-12-23 2016-03-23 环境保护部南京环境科学研究所 Filtering device for preventing and controlling procambarus clarkii and application of filtering device
US10537094B2 (en) 2016-09-01 2020-01-21 Kowa Kogyo Co., Ltd. Multi-tube nozzle for use in eradicating harmful aquatic organisms
CN106746234A (en) * 2016-12-29 2017-05-31 北京市水产科学研究所 Sub- cold water fishes industrial circulating water cultivating system and method
JP2019068772A (en) * 2017-10-10 2019-05-09 オルガノ株式会社 Water treatment device and water treatment method
JP2019084505A (en) * 2017-11-08 2019-06-06 オルガノ株式会社 Water treatment apparatus and water treatment method
JP7089859B2 (en) 2017-11-08 2022-06-23 オルガノ株式会社 Water treatment equipment and water treatment method
KR20190095151A (en) * 2018-02-05 2019-08-14 주식회사 에코니티 The water treatment system for fish breeding by applying membrane filtration process
KR102380257B1 (en) * 2018-02-05 2022-03-29 주식회사 에코니티 The water treatment system for fish breeding by applying membrane filtration process
CN108828142A (en) * 2018-04-27 2018-11-16 宿松富民水产养殖有限公司 The comprehensive method for automatically regulating of oxygen in a kind of loach pond
CN110547238A (en) * 2018-05-15 2019-12-10 中国科学院青岛生物能源与过程研究所 aquaculture ecosystem and control method thereof
CN110547238B (en) * 2018-05-15 2023-08-29 中国科学院青岛生物能源与过程研究所 Aquaculture ecological system and control method thereof
JP2020104101A (en) * 2018-12-27 2020-07-09 南京大学 Method for strengthning removal of diclofenac in sewage by means of enrichment of nitrifying bacteria
CN112021247A (en) * 2020-09-28 2020-12-04 珠海南方利洋水产科技有限公司 Circulating water culture system with biological carbon source
WO2022071545A1 (en) 2020-10-02 2022-04-07 株式会社ノベルジェン Water processing method, water processing system, carbonization/combustion material, and carbonization/combustion material manufacturing method
CN112939229A (en) * 2021-01-27 2021-06-11 广东海洋大学 Method for separating and treating water and sewage of aquaculture tail water
CN115321741A (en) * 2021-05-11 2022-11-11 湖南迪易清环保科技有限公司 Breeding sewage treatment method
CN113875676A (en) * 2021-09-14 2022-01-04 浙江省海洋水产养殖研究所 Intelligent marine organism culture system, matched culture pond and method for constructing system
CN115259498A (en) * 2022-08-03 2022-11-01 湖南省水产科学研究所 Aquaculture wastewater purification device and purification method
CN115594332A (en) * 2022-09-20 2023-01-13 吴秋仙(Cn) Method for treating aquaculture tail water
CN118811909A (en) * 2024-09-19 2024-10-22 连云港赣榆佳信水产开发有限公司 Waste water purification device for aquaculture

Also Published As

Publication number Publication date
JP5847376B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5847376B2 (en) Closed circulation culture method for seafood
Cripps et al. Solids management and removal for intensive land-based aquaculture production systems
US9637402B2 (en) Methods for the conversion of fish waste from aquaculture systems to methane via a modified UASB reactor
Holan et al. Intensive rearing of cod larvae (Gadus morhua) in recirculating aquaculture systems (RAS) implementing a membrane bioreactor (MBR) for enhanced colloidal particle and fine suspended solids removal
JP5254834B2 (en) Land culture system
JP5544512B2 (en) Circulation culture apparatus and method for seafood
CN109942156B (en) Biological filter based mariculture tail water treatment system and application method thereof
Holan et al. Membrane performance and fouling behavior of membrane bioreactors installed in marine recirculating aquaculture systems
Singer et al. A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture
KR20220026459A (en) Culturing apparatus for rearing shrimp having water circulation system
Davidson et al. Integrating activated sludge membrane biological reactors with freshwater RAS: Preliminary evaluation of water use, water quality, and rainbow trout Oncorhynchus mykiss performance
JP5917187B2 (en) Reprocessing method of sewage treated water
JP5296071B2 (en) Closed circulation culture apparatus and method for seafood
KR100461959B1 (en) An apparatus of multi-storied canal-type closed recirculating system for aquatic animal culture with mineral particles and foam fractionator
JP2023526094A (en) A multi-stage biofilter for removing microplastic particles and biochemical waste from aquaculture water
Yamamoto Characteristics of closed recirculating systems
Piedrahita et al. Evaluation and improvements of solids removal systems for aquaculture
CN113135639A (en) Aquaculture tail water recycling treatment system and application method
SALEM DEVELOPMENT OF A MECHANICAL FILTER TO SUIT THE INTENSIVE AQUACULTURE
JPH11225616A (en) Circulating and filtering vessel for culturing fishes and shellfishes, and circulating and filtering device
KR102654357B1 (en) Recirculating aquaculture system with low power automatic water purification and aquaculture tank included in it
CN214735237U (en) Aquaculture tail water circulation recycling treatment system
JP6931784B1 (en) Water purification system for growing aquatic products
JP2768639B2 (en) Algae continuous removal method
Semmen et al. Life Support Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150908

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5847376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250